net: hns: Use phy_driver to setup Phy loopback
[linux-2.6/btrfs-unstable.git] / drivers / net / vrf.c
blobf4d0054981c63a5d0a6540c1fc1d40c3096ad726
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 * Based on dummy, team and ipvlan drivers
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 #include <net/netns/generic.h>
41 #define DRV_NAME "vrf"
42 #define DRV_VERSION "1.0"
44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
46 static unsigned int vrf_net_id;
48 struct net_vrf {
49 struct rtable __rcu *rth;
50 struct rtable __rcu *rth_local;
51 struct rt6_info __rcu *rt6;
52 struct rt6_info __rcu *rt6_local;
53 u32 tb_id;
56 struct pcpu_dstats {
57 u64 tx_pkts;
58 u64 tx_bytes;
59 u64 tx_drps;
60 u64 rx_pkts;
61 u64 rx_bytes;
62 u64 rx_drps;
63 struct u64_stats_sync syncp;
66 static void vrf_rx_stats(struct net_device *dev, int len)
68 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
70 u64_stats_update_begin(&dstats->syncp);
71 dstats->rx_pkts++;
72 dstats->rx_bytes += len;
73 u64_stats_update_end(&dstats->syncp);
76 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
78 vrf_dev->stats.tx_errors++;
79 kfree_skb(skb);
82 static void vrf_get_stats64(struct net_device *dev,
83 struct rtnl_link_stats64 *stats)
85 int i;
87 for_each_possible_cpu(i) {
88 const struct pcpu_dstats *dstats;
89 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
90 unsigned int start;
92 dstats = per_cpu_ptr(dev->dstats, i);
93 do {
94 start = u64_stats_fetch_begin_irq(&dstats->syncp);
95 tbytes = dstats->tx_bytes;
96 tpkts = dstats->tx_pkts;
97 tdrops = dstats->tx_drps;
98 rbytes = dstats->rx_bytes;
99 rpkts = dstats->rx_pkts;
100 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
101 stats->tx_bytes += tbytes;
102 stats->tx_packets += tpkts;
103 stats->tx_dropped += tdrops;
104 stats->rx_bytes += rbytes;
105 stats->rx_packets += rpkts;
109 /* by default VRF devices do not have a qdisc and are expected
110 * to be created with only a single queue.
112 static bool qdisc_tx_is_default(const struct net_device *dev)
114 struct netdev_queue *txq;
115 struct Qdisc *qdisc;
117 if (dev->num_tx_queues > 1)
118 return false;
120 txq = netdev_get_tx_queue(dev, 0);
121 qdisc = rcu_access_pointer(txq->qdisc);
123 return !qdisc->enqueue;
126 /* Local traffic destined to local address. Reinsert the packet to rx
127 * path, similar to loopback handling.
129 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
130 struct dst_entry *dst)
132 int len = skb->len;
134 skb_orphan(skb);
136 skb_dst_set(skb, dst);
137 skb_dst_force(skb);
139 /* set pkt_type to avoid skb hitting packet taps twice -
140 * once on Tx and again in Rx processing
142 skb->pkt_type = PACKET_LOOPBACK;
144 skb->protocol = eth_type_trans(skb, dev);
146 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
147 vrf_rx_stats(dev, len);
148 else
149 this_cpu_inc(dev->dstats->rx_drps);
151 return NETDEV_TX_OK;
154 #if IS_ENABLED(CONFIG_IPV6)
155 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
156 struct sk_buff *skb)
158 int err;
160 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
161 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
163 if (likely(err == 1))
164 err = dst_output(net, sk, skb);
166 return err;
169 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
170 struct net_device *dev)
172 const struct ipv6hdr *iph = ipv6_hdr(skb);
173 struct net *net = dev_net(skb->dev);
174 struct flowi6 fl6 = {
175 /* needed to match OIF rule */
176 .flowi6_oif = dev->ifindex,
177 .flowi6_iif = LOOPBACK_IFINDEX,
178 .daddr = iph->daddr,
179 .saddr = iph->saddr,
180 .flowlabel = ip6_flowinfo(iph),
181 .flowi6_mark = skb->mark,
182 .flowi6_proto = iph->nexthdr,
183 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
185 int ret = NET_XMIT_DROP;
186 struct dst_entry *dst;
187 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
189 dst = ip6_route_output(net, NULL, &fl6);
190 if (dst == dst_null)
191 goto err;
193 skb_dst_drop(skb);
195 /* if dst.dev is loopback or the VRF device again this is locally
196 * originated traffic destined to a local address. Short circuit
197 * to Rx path using our local dst
199 if (dst->dev == net->loopback_dev || dst->dev == dev) {
200 struct net_vrf *vrf = netdev_priv(dev);
201 struct rt6_info *rt6_local;
203 /* release looked up dst and use cached local dst */
204 dst_release(dst);
206 rcu_read_lock();
208 rt6_local = rcu_dereference(vrf->rt6_local);
209 if (unlikely(!rt6_local)) {
210 rcu_read_unlock();
211 goto err;
214 /* Ordering issue: cached local dst is created on newlink
215 * before the IPv6 initialization. Using the local dst
216 * requires rt6i_idev to be set so make sure it is.
218 if (unlikely(!rt6_local->rt6i_idev)) {
219 rt6_local->rt6i_idev = in6_dev_get(dev);
220 if (!rt6_local->rt6i_idev) {
221 rcu_read_unlock();
222 goto err;
226 dst = &rt6_local->dst;
227 dst_hold(dst);
229 rcu_read_unlock();
231 return vrf_local_xmit(skb, dev, &rt6_local->dst);
234 skb_dst_set(skb, dst);
236 /* strip the ethernet header added for pass through VRF device */
237 __skb_pull(skb, skb_network_offset(skb));
239 ret = vrf_ip6_local_out(net, skb->sk, skb);
240 if (unlikely(net_xmit_eval(ret)))
241 dev->stats.tx_errors++;
242 else
243 ret = NET_XMIT_SUCCESS;
245 return ret;
246 err:
247 vrf_tx_error(dev, skb);
248 return NET_XMIT_DROP;
250 #else
251 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
252 struct net_device *dev)
254 vrf_tx_error(dev, skb);
255 return NET_XMIT_DROP;
257 #endif
259 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
260 static int vrf_ip_local_out(struct net *net, struct sock *sk,
261 struct sk_buff *skb)
263 int err;
265 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
266 skb, NULL, skb_dst(skb)->dev, dst_output);
267 if (likely(err == 1))
268 err = dst_output(net, sk, skb);
270 return err;
273 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
274 struct net_device *vrf_dev)
276 struct iphdr *ip4h = ip_hdr(skb);
277 int ret = NET_XMIT_DROP;
278 struct flowi4 fl4 = {
279 /* needed to match OIF rule */
280 .flowi4_oif = vrf_dev->ifindex,
281 .flowi4_iif = LOOPBACK_IFINDEX,
282 .flowi4_tos = RT_TOS(ip4h->tos),
283 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
284 .flowi4_proto = ip4h->protocol,
285 .daddr = ip4h->daddr,
286 .saddr = ip4h->saddr,
288 struct net *net = dev_net(vrf_dev);
289 struct rtable *rt;
291 rt = ip_route_output_flow(net, &fl4, NULL);
292 if (IS_ERR(rt))
293 goto err;
295 skb_dst_drop(skb);
297 /* if dst.dev is loopback or the VRF device again this is locally
298 * originated traffic destined to a local address. Short circuit
299 * to Rx path using our local dst
301 if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
302 struct net_vrf *vrf = netdev_priv(vrf_dev);
303 struct rtable *rth_local;
304 struct dst_entry *dst = NULL;
306 ip_rt_put(rt);
308 rcu_read_lock();
310 rth_local = rcu_dereference(vrf->rth_local);
311 if (likely(rth_local)) {
312 dst = &rth_local->dst;
313 dst_hold(dst);
316 rcu_read_unlock();
318 if (unlikely(!dst))
319 goto err;
321 return vrf_local_xmit(skb, vrf_dev, dst);
324 skb_dst_set(skb, &rt->dst);
326 /* strip the ethernet header added for pass through VRF device */
327 __skb_pull(skb, skb_network_offset(skb));
329 if (!ip4h->saddr) {
330 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
331 RT_SCOPE_LINK);
334 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
335 if (unlikely(net_xmit_eval(ret)))
336 vrf_dev->stats.tx_errors++;
337 else
338 ret = NET_XMIT_SUCCESS;
340 out:
341 return ret;
342 err:
343 vrf_tx_error(vrf_dev, skb);
344 goto out;
347 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
349 switch (skb->protocol) {
350 case htons(ETH_P_IP):
351 return vrf_process_v4_outbound(skb, dev);
352 case htons(ETH_P_IPV6):
353 return vrf_process_v6_outbound(skb, dev);
354 default:
355 vrf_tx_error(dev, skb);
356 return NET_XMIT_DROP;
360 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
362 int len = skb->len;
363 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
365 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
366 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
368 u64_stats_update_begin(&dstats->syncp);
369 dstats->tx_pkts++;
370 dstats->tx_bytes += len;
371 u64_stats_update_end(&dstats->syncp);
372 } else {
373 this_cpu_inc(dev->dstats->tx_drps);
376 return ret;
379 static int vrf_finish_direct(struct net *net, struct sock *sk,
380 struct sk_buff *skb)
382 struct net_device *vrf_dev = skb->dev;
384 if (!list_empty(&vrf_dev->ptype_all) &&
385 likely(skb_headroom(skb) >= ETH_HLEN)) {
386 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
388 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
389 eth_zero_addr(eth->h_dest);
390 eth->h_proto = skb->protocol;
392 rcu_read_lock_bh();
393 dev_queue_xmit_nit(skb, vrf_dev);
394 rcu_read_unlock_bh();
396 skb_pull(skb, ETH_HLEN);
399 return 1;
402 #if IS_ENABLED(CONFIG_IPV6)
403 /* modelled after ip6_finish_output2 */
404 static int vrf_finish_output6(struct net *net, struct sock *sk,
405 struct sk_buff *skb)
407 struct dst_entry *dst = skb_dst(skb);
408 struct net_device *dev = dst->dev;
409 struct neighbour *neigh;
410 struct in6_addr *nexthop;
411 int ret;
413 nf_reset(skb);
415 skb->protocol = htons(ETH_P_IPV6);
416 skb->dev = dev;
418 rcu_read_lock_bh();
419 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
420 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
421 if (unlikely(!neigh))
422 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
423 if (!IS_ERR(neigh)) {
424 sock_confirm_neigh(skb, neigh);
425 ret = neigh_output(neigh, skb);
426 rcu_read_unlock_bh();
427 return ret;
429 rcu_read_unlock_bh();
431 IP6_INC_STATS(dev_net(dst->dev),
432 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
433 kfree_skb(skb);
434 return -EINVAL;
437 /* modelled after ip6_output */
438 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
440 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
441 net, sk, skb, NULL, skb_dst(skb)->dev,
442 vrf_finish_output6,
443 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
446 /* set dst on skb to send packet to us via dev_xmit path. Allows
447 * packet to go through device based features such as qdisc, netfilter
448 * hooks and packet sockets with skb->dev set to vrf device.
450 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
451 struct sk_buff *skb)
453 struct net_vrf *vrf = netdev_priv(vrf_dev);
454 struct dst_entry *dst = NULL;
455 struct rt6_info *rt6;
457 rcu_read_lock();
459 rt6 = rcu_dereference(vrf->rt6);
460 if (likely(rt6)) {
461 dst = &rt6->dst;
462 dst_hold(dst);
465 rcu_read_unlock();
467 if (unlikely(!dst)) {
468 vrf_tx_error(vrf_dev, skb);
469 return NULL;
472 skb_dst_drop(skb);
473 skb_dst_set(skb, dst);
475 return skb;
478 static int vrf_output6_direct(struct net *net, struct sock *sk,
479 struct sk_buff *skb)
481 skb->protocol = htons(ETH_P_IPV6);
483 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
484 net, sk, skb, NULL, skb->dev,
485 vrf_finish_direct,
486 !(IPCB(skb)->flags & IPSKB_REROUTED));
489 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
490 struct sock *sk,
491 struct sk_buff *skb)
493 struct net *net = dev_net(vrf_dev);
494 int err;
496 skb->dev = vrf_dev;
498 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
499 skb, NULL, vrf_dev, vrf_output6_direct);
501 if (likely(err == 1))
502 err = vrf_output6_direct(net, sk, skb);
504 /* reset skb device */
505 if (likely(err == 1))
506 nf_reset(skb);
507 else
508 skb = NULL;
510 return skb;
513 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
514 struct sock *sk,
515 struct sk_buff *skb)
517 /* don't divert link scope packets */
518 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
519 return skb;
521 if (qdisc_tx_is_default(vrf_dev))
522 return vrf_ip6_out_direct(vrf_dev, sk, skb);
524 return vrf_ip6_out_redirect(vrf_dev, skb);
527 /* holding rtnl */
528 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
530 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
531 struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
532 struct net *net = dev_net(dev);
533 struct dst_entry *dst;
535 RCU_INIT_POINTER(vrf->rt6, NULL);
536 RCU_INIT_POINTER(vrf->rt6_local, NULL);
537 synchronize_rcu();
539 /* move dev in dst's to loopback so this VRF device can be deleted
540 * - based on dst_ifdown
542 if (rt6) {
543 dst = &rt6->dst;
544 dev_put(dst->dev);
545 dst->dev = net->loopback_dev;
546 dev_hold(dst->dev);
547 dst_release(dst);
550 if (rt6_local) {
551 if (rt6_local->rt6i_idev) {
552 in6_dev_put(rt6_local->rt6i_idev);
553 rt6_local->rt6i_idev = NULL;
556 dst = &rt6_local->dst;
557 dev_put(dst->dev);
558 dst->dev = net->loopback_dev;
559 dev_hold(dst->dev);
560 dst_release(dst);
564 static int vrf_rt6_create(struct net_device *dev)
566 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
567 struct net_vrf *vrf = netdev_priv(dev);
568 struct net *net = dev_net(dev);
569 struct fib6_table *rt6i_table;
570 struct rt6_info *rt6, *rt6_local;
571 int rc = -ENOMEM;
573 /* IPv6 can be CONFIG enabled and then disabled runtime */
574 if (!ipv6_mod_enabled())
575 return 0;
577 rt6i_table = fib6_new_table(net, vrf->tb_id);
578 if (!rt6i_table)
579 goto out;
581 /* create a dst for routing packets out a VRF device */
582 rt6 = ip6_dst_alloc(net, dev, flags);
583 if (!rt6)
584 goto out;
586 rt6->rt6i_table = rt6i_table;
587 rt6->dst.output = vrf_output6;
589 /* create a dst for local routing - packets sent locally
590 * to local address via the VRF device as a loopback
592 rt6_local = ip6_dst_alloc(net, dev, flags);
593 if (!rt6_local) {
594 dst_release(&rt6->dst);
595 goto out;
598 rt6_local->rt6i_idev = in6_dev_get(dev);
599 rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
600 rt6_local->rt6i_table = rt6i_table;
601 rt6_local->dst.input = ip6_input;
603 rcu_assign_pointer(vrf->rt6, rt6);
604 rcu_assign_pointer(vrf->rt6_local, rt6_local);
606 rc = 0;
607 out:
608 return rc;
610 #else
611 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
612 struct sock *sk,
613 struct sk_buff *skb)
615 return skb;
618 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
622 static int vrf_rt6_create(struct net_device *dev)
624 return 0;
626 #endif
628 /* modelled after ip_finish_output2 */
629 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
631 struct dst_entry *dst = skb_dst(skb);
632 struct rtable *rt = (struct rtable *)dst;
633 struct net_device *dev = dst->dev;
634 unsigned int hh_len = LL_RESERVED_SPACE(dev);
635 struct neighbour *neigh;
636 u32 nexthop;
637 int ret = -EINVAL;
639 nf_reset(skb);
641 /* Be paranoid, rather than too clever. */
642 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
643 struct sk_buff *skb2;
645 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
646 if (!skb2) {
647 ret = -ENOMEM;
648 goto err;
650 if (skb->sk)
651 skb_set_owner_w(skb2, skb->sk);
653 consume_skb(skb);
654 skb = skb2;
657 rcu_read_lock_bh();
659 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
660 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
661 if (unlikely(!neigh))
662 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
663 if (!IS_ERR(neigh)) {
664 sock_confirm_neigh(skb, neigh);
665 ret = neigh_output(neigh, skb);
668 rcu_read_unlock_bh();
669 err:
670 if (unlikely(ret < 0))
671 vrf_tx_error(skb->dev, skb);
672 return ret;
675 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
677 struct net_device *dev = skb_dst(skb)->dev;
679 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
681 skb->dev = dev;
682 skb->protocol = htons(ETH_P_IP);
684 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
685 net, sk, skb, NULL, dev,
686 vrf_finish_output,
687 !(IPCB(skb)->flags & IPSKB_REROUTED));
690 /* set dst on skb to send packet to us via dev_xmit path. Allows
691 * packet to go through device based features such as qdisc, netfilter
692 * hooks and packet sockets with skb->dev set to vrf device.
694 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
695 struct sk_buff *skb)
697 struct net_vrf *vrf = netdev_priv(vrf_dev);
698 struct dst_entry *dst = NULL;
699 struct rtable *rth;
701 rcu_read_lock();
703 rth = rcu_dereference(vrf->rth);
704 if (likely(rth)) {
705 dst = &rth->dst;
706 dst_hold(dst);
709 rcu_read_unlock();
711 if (unlikely(!dst)) {
712 vrf_tx_error(vrf_dev, skb);
713 return NULL;
716 skb_dst_drop(skb);
717 skb_dst_set(skb, dst);
719 return skb;
722 static int vrf_output_direct(struct net *net, struct sock *sk,
723 struct sk_buff *skb)
725 skb->protocol = htons(ETH_P_IP);
727 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
728 net, sk, skb, NULL, skb->dev,
729 vrf_finish_direct,
730 !(IPCB(skb)->flags & IPSKB_REROUTED));
733 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
734 struct sock *sk,
735 struct sk_buff *skb)
737 struct net *net = dev_net(vrf_dev);
738 int err;
740 skb->dev = vrf_dev;
742 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
743 skb, NULL, vrf_dev, vrf_output_direct);
745 if (likely(err == 1))
746 err = vrf_output_direct(net, sk, skb);
748 /* reset skb device */
749 if (likely(err == 1))
750 nf_reset(skb);
751 else
752 skb = NULL;
754 return skb;
757 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
758 struct sock *sk,
759 struct sk_buff *skb)
761 /* don't divert multicast */
762 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
763 return skb;
765 if (qdisc_tx_is_default(vrf_dev))
766 return vrf_ip_out_direct(vrf_dev, sk, skb);
768 return vrf_ip_out_redirect(vrf_dev, skb);
771 /* called with rcu lock held */
772 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
773 struct sock *sk,
774 struct sk_buff *skb,
775 u16 proto)
777 switch (proto) {
778 case AF_INET:
779 return vrf_ip_out(vrf_dev, sk, skb);
780 case AF_INET6:
781 return vrf_ip6_out(vrf_dev, sk, skb);
784 return skb;
787 /* holding rtnl */
788 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
790 struct rtable *rth = rtnl_dereference(vrf->rth);
791 struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
792 struct net *net = dev_net(dev);
793 struct dst_entry *dst;
795 RCU_INIT_POINTER(vrf->rth, NULL);
796 RCU_INIT_POINTER(vrf->rth_local, NULL);
797 synchronize_rcu();
799 /* move dev in dst's to loopback so this VRF device can be deleted
800 * - based on dst_ifdown
802 if (rth) {
803 dst = &rth->dst;
804 dev_put(dst->dev);
805 dst->dev = net->loopback_dev;
806 dev_hold(dst->dev);
807 dst_release(dst);
810 if (rth_local) {
811 dst = &rth_local->dst;
812 dev_put(dst->dev);
813 dst->dev = net->loopback_dev;
814 dev_hold(dst->dev);
815 dst_release(dst);
819 static int vrf_rtable_create(struct net_device *dev)
821 struct net_vrf *vrf = netdev_priv(dev);
822 struct rtable *rth, *rth_local;
824 if (!fib_new_table(dev_net(dev), vrf->tb_id))
825 return -ENOMEM;
827 /* create a dst for routing packets out through a VRF device */
828 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
829 if (!rth)
830 return -ENOMEM;
832 /* create a dst for local ingress routing - packets sent locally
833 * to local address via the VRF device as a loopback
835 rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
836 if (!rth_local) {
837 dst_release(&rth->dst);
838 return -ENOMEM;
841 rth->dst.output = vrf_output;
842 rth->rt_table_id = vrf->tb_id;
844 rth_local->rt_table_id = vrf->tb_id;
846 rcu_assign_pointer(vrf->rth, rth);
847 rcu_assign_pointer(vrf->rth_local, rth_local);
849 return 0;
852 /**************************** device handling ********************/
854 /* cycle interface to flush neighbor cache and move routes across tables */
855 static void cycle_netdev(struct net_device *dev)
857 unsigned int flags = dev->flags;
858 int ret;
860 if (!netif_running(dev))
861 return;
863 ret = dev_change_flags(dev, flags & ~IFF_UP);
864 if (ret >= 0)
865 ret = dev_change_flags(dev, flags);
867 if (ret < 0) {
868 netdev_err(dev,
869 "Failed to cycle device %s; route tables might be wrong!\n",
870 dev->name);
874 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
876 int ret;
878 /* do not allow loopback device to be enslaved to a VRF.
879 * The vrf device acts as the loopback for the vrf.
881 if (port_dev == dev_net(dev)->loopback_dev)
882 return -EOPNOTSUPP;
884 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
885 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
886 if (ret < 0)
887 goto err;
889 cycle_netdev(port_dev);
891 return 0;
893 err:
894 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
895 return ret;
898 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
900 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
901 return -EINVAL;
903 return do_vrf_add_slave(dev, port_dev);
906 /* inverse of do_vrf_add_slave */
907 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
909 netdev_upper_dev_unlink(port_dev, dev);
910 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
912 cycle_netdev(port_dev);
914 return 0;
917 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
919 return do_vrf_del_slave(dev, port_dev);
922 static void vrf_dev_uninit(struct net_device *dev)
924 struct net_vrf *vrf = netdev_priv(dev);
925 struct net_device *port_dev;
926 struct list_head *iter;
928 vrf_rtable_release(dev, vrf);
929 vrf_rt6_release(dev, vrf);
931 netdev_for_each_lower_dev(dev, port_dev, iter)
932 vrf_del_slave(dev, port_dev);
934 free_percpu(dev->dstats);
935 dev->dstats = NULL;
938 static int vrf_dev_init(struct net_device *dev)
940 struct net_vrf *vrf = netdev_priv(dev);
942 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
943 if (!dev->dstats)
944 goto out_nomem;
946 /* create the default dst which points back to us */
947 if (vrf_rtable_create(dev) != 0)
948 goto out_stats;
950 if (vrf_rt6_create(dev) != 0)
951 goto out_rth;
953 dev->flags = IFF_MASTER | IFF_NOARP;
955 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
956 dev->mtu = 64 * 1024;
958 /* similarly, oper state is irrelevant; set to up to avoid confusion */
959 dev->operstate = IF_OPER_UP;
960 netdev_lockdep_set_classes(dev);
961 return 0;
963 out_rth:
964 vrf_rtable_release(dev, vrf);
965 out_stats:
966 free_percpu(dev->dstats);
967 dev->dstats = NULL;
968 out_nomem:
969 return -ENOMEM;
972 static const struct net_device_ops vrf_netdev_ops = {
973 .ndo_init = vrf_dev_init,
974 .ndo_uninit = vrf_dev_uninit,
975 .ndo_start_xmit = vrf_xmit,
976 .ndo_get_stats64 = vrf_get_stats64,
977 .ndo_add_slave = vrf_add_slave,
978 .ndo_del_slave = vrf_del_slave,
981 static u32 vrf_fib_table(const struct net_device *dev)
983 struct net_vrf *vrf = netdev_priv(dev);
985 return vrf->tb_id;
988 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
990 kfree_skb(skb);
991 return 0;
994 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
995 struct sk_buff *skb,
996 struct net_device *dev)
998 struct net *net = dev_net(dev);
1000 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1001 skb = NULL; /* kfree_skb(skb) handled by nf code */
1003 return skb;
1006 #if IS_ENABLED(CONFIG_IPV6)
1007 /* neighbor handling is done with actual device; do not want
1008 * to flip skb->dev for those ndisc packets. This really fails
1009 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1010 * a start.
1012 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1014 const struct ipv6hdr *iph = ipv6_hdr(skb);
1015 bool rc = false;
1017 if (iph->nexthdr == NEXTHDR_ICMP) {
1018 const struct icmp6hdr *icmph;
1019 struct icmp6hdr _icmph;
1021 icmph = skb_header_pointer(skb, sizeof(*iph),
1022 sizeof(_icmph), &_icmph);
1023 if (!icmph)
1024 goto out;
1026 switch (icmph->icmp6_type) {
1027 case NDISC_ROUTER_SOLICITATION:
1028 case NDISC_ROUTER_ADVERTISEMENT:
1029 case NDISC_NEIGHBOUR_SOLICITATION:
1030 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1031 case NDISC_REDIRECT:
1032 rc = true;
1033 break;
1037 out:
1038 return rc;
1041 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1042 const struct net_device *dev,
1043 struct flowi6 *fl6,
1044 int ifindex,
1045 int flags)
1047 struct net_vrf *vrf = netdev_priv(dev);
1048 struct fib6_table *table = NULL;
1049 struct rt6_info *rt6;
1051 rcu_read_lock();
1053 /* fib6_table does not have a refcnt and can not be freed */
1054 rt6 = rcu_dereference(vrf->rt6);
1055 if (likely(rt6))
1056 table = rt6->rt6i_table;
1058 rcu_read_unlock();
1060 if (!table)
1061 return NULL;
1063 return ip6_pol_route(net, table, ifindex, fl6, flags);
1066 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1067 int ifindex)
1069 const struct ipv6hdr *iph = ipv6_hdr(skb);
1070 struct flowi6 fl6 = {
1071 .daddr = iph->daddr,
1072 .saddr = iph->saddr,
1073 .flowlabel = ip6_flowinfo(iph),
1074 .flowi6_mark = skb->mark,
1075 .flowi6_proto = iph->nexthdr,
1076 .flowi6_iif = ifindex,
1078 struct net *net = dev_net(vrf_dev);
1079 struct rt6_info *rt6;
1081 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
1082 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1083 if (unlikely(!rt6))
1084 return;
1086 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1087 return;
1089 skb_dst_set(skb, &rt6->dst);
1092 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1093 struct sk_buff *skb)
1095 int orig_iif = skb->skb_iif;
1096 bool need_strict;
1098 /* loopback traffic; do not push through packet taps again.
1099 * Reset pkt_type for upper layers to process skb
1101 if (skb->pkt_type == PACKET_LOOPBACK) {
1102 skb->dev = vrf_dev;
1103 skb->skb_iif = vrf_dev->ifindex;
1104 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1105 skb->pkt_type = PACKET_HOST;
1106 goto out;
1109 /* if packet is NDISC or addressed to multicast or link-local
1110 * then keep the ingress interface
1112 need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1113 if (!ipv6_ndisc_frame(skb) && !need_strict) {
1114 vrf_rx_stats(vrf_dev, skb->len);
1115 skb->dev = vrf_dev;
1116 skb->skb_iif = vrf_dev->ifindex;
1118 if (!list_empty(&vrf_dev->ptype_all)) {
1119 skb_push(skb, skb->mac_len);
1120 dev_queue_xmit_nit(skb, vrf_dev);
1121 skb_pull(skb, skb->mac_len);
1124 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1127 if (need_strict)
1128 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1130 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1131 out:
1132 return skb;
1135 #else
1136 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1137 struct sk_buff *skb)
1139 return skb;
1141 #endif
1143 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1144 struct sk_buff *skb)
1146 skb->dev = vrf_dev;
1147 skb->skb_iif = vrf_dev->ifindex;
1148 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1150 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1151 goto out;
1153 /* loopback traffic; do not push through packet taps again.
1154 * Reset pkt_type for upper layers to process skb
1156 if (skb->pkt_type == PACKET_LOOPBACK) {
1157 skb->pkt_type = PACKET_HOST;
1158 goto out;
1161 vrf_rx_stats(vrf_dev, skb->len);
1163 if (!list_empty(&vrf_dev->ptype_all)) {
1164 skb_push(skb, skb->mac_len);
1165 dev_queue_xmit_nit(skb, vrf_dev);
1166 skb_pull(skb, skb->mac_len);
1169 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1170 out:
1171 return skb;
1174 /* called with rcu lock held */
1175 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1176 struct sk_buff *skb,
1177 u16 proto)
1179 switch (proto) {
1180 case AF_INET:
1181 return vrf_ip_rcv(vrf_dev, skb);
1182 case AF_INET6:
1183 return vrf_ip6_rcv(vrf_dev, skb);
1186 return skb;
1189 #if IS_ENABLED(CONFIG_IPV6)
1190 /* send to link-local or multicast address via interface enslaved to
1191 * VRF device. Force lookup to VRF table without changing flow struct
1193 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1194 struct flowi6 *fl6)
1196 struct net *net = dev_net(dev);
1197 int flags = RT6_LOOKUP_F_IFACE;
1198 struct dst_entry *dst = NULL;
1199 struct rt6_info *rt;
1201 /* VRF device does not have a link-local address and
1202 * sending packets to link-local or mcast addresses over
1203 * a VRF device does not make sense
1205 if (fl6->flowi6_oif == dev->ifindex) {
1206 dst = &net->ipv6.ip6_null_entry->dst;
1207 dst_hold(dst);
1208 return dst;
1211 if (!ipv6_addr_any(&fl6->saddr))
1212 flags |= RT6_LOOKUP_F_HAS_SADDR;
1214 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1215 if (rt)
1216 dst = &rt->dst;
1218 return dst;
1220 #endif
1222 static const struct l3mdev_ops vrf_l3mdev_ops = {
1223 .l3mdev_fib_table = vrf_fib_table,
1224 .l3mdev_l3_rcv = vrf_l3_rcv,
1225 .l3mdev_l3_out = vrf_l3_out,
1226 #if IS_ENABLED(CONFIG_IPV6)
1227 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1228 #endif
1231 static void vrf_get_drvinfo(struct net_device *dev,
1232 struct ethtool_drvinfo *info)
1234 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1235 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1238 static const struct ethtool_ops vrf_ethtool_ops = {
1239 .get_drvinfo = vrf_get_drvinfo,
1242 static inline size_t vrf_fib_rule_nl_size(void)
1244 size_t sz;
1246 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1247 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1248 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1250 return sz;
1253 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1255 struct fib_rule_hdr *frh;
1256 struct nlmsghdr *nlh;
1257 struct sk_buff *skb;
1258 int err;
1260 if (family == AF_INET6 && !ipv6_mod_enabled())
1261 return 0;
1263 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1264 if (!skb)
1265 return -ENOMEM;
1267 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1268 if (!nlh)
1269 goto nla_put_failure;
1271 /* rule only needs to appear once */
1272 nlh->nlmsg_flags |= NLM_F_EXCL;
1274 frh = nlmsg_data(nlh);
1275 memset(frh, 0, sizeof(*frh));
1276 frh->family = family;
1277 frh->action = FR_ACT_TO_TBL;
1279 if (nla_put_u32(skb, FRA_L3MDEV, 1))
1280 goto nla_put_failure;
1282 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1283 goto nla_put_failure;
1285 nlmsg_end(skb, nlh);
1287 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1288 skb->sk = dev_net(dev)->rtnl;
1289 if (add_it) {
1290 err = fib_nl_newrule(skb, nlh, NULL);
1291 if (err == -EEXIST)
1292 err = 0;
1293 } else {
1294 err = fib_nl_delrule(skb, nlh, NULL);
1295 if (err == -ENOENT)
1296 err = 0;
1298 nlmsg_free(skb);
1300 return err;
1302 nla_put_failure:
1303 nlmsg_free(skb);
1305 return -EMSGSIZE;
1308 static int vrf_add_fib_rules(const struct net_device *dev)
1310 int err;
1312 err = vrf_fib_rule(dev, AF_INET, true);
1313 if (err < 0)
1314 goto out_err;
1316 err = vrf_fib_rule(dev, AF_INET6, true);
1317 if (err < 0)
1318 goto ipv6_err;
1320 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1321 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1322 if (err < 0)
1323 goto ipmr_err;
1324 #endif
1326 return 0;
1328 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1329 ipmr_err:
1330 vrf_fib_rule(dev, AF_INET6, false);
1331 #endif
1333 ipv6_err:
1334 vrf_fib_rule(dev, AF_INET, false);
1336 out_err:
1337 netdev_err(dev, "Failed to add FIB rules.\n");
1338 return err;
1341 static void vrf_setup(struct net_device *dev)
1343 ether_setup(dev);
1345 /* Initialize the device structure. */
1346 dev->netdev_ops = &vrf_netdev_ops;
1347 dev->l3mdev_ops = &vrf_l3mdev_ops;
1348 dev->ethtool_ops = &vrf_ethtool_ops;
1349 dev->needs_free_netdev = true;
1351 /* Fill in device structure with ethernet-generic values. */
1352 eth_hw_addr_random(dev);
1354 /* don't acquire vrf device's netif_tx_lock when transmitting */
1355 dev->features |= NETIF_F_LLTX;
1357 /* don't allow vrf devices to change network namespaces. */
1358 dev->features |= NETIF_F_NETNS_LOCAL;
1360 /* does not make sense for a VLAN to be added to a vrf device */
1361 dev->features |= NETIF_F_VLAN_CHALLENGED;
1363 /* enable offload features */
1364 dev->features |= NETIF_F_GSO_SOFTWARE;
1365 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1366 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1368 dev->hw_features = dev->features;
1369 dev->hw_enc_features = dev->features;
1371 /* default to no qdisc; user can add if desired */
1372 dev->priv_flags |= IFF_NO_QUEUE;
1375 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1376 struct netlink_ext_ack *extack)
1378 if (tb[IFLA_ADDRESS]) {
1379 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1380 return -EINVAL;
1381 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1382 return -EADDRNOTAVAIL;
1384 return 0;
1387 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1389 unregister_netdevice_queue(dev, head);
1392 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1393 struct nlattr *tb[], struct nlattr *data[],
1394 struct netlink_ext_ack *extack)
1396 struct net_vrf *vrf = netdev_priv(dev);
1397 bool *add_fib_rules;
1398 struct net *net;
1399 int err;
1401 if (!data || !data[IFLA_VRF_TABLE])
1402 return -EINVAL;
1404 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1405 if (vrf->tb_id == RT_TABLE_UNSPEC)
1406 return -EINVAL;
1408 dev->priv_flags |= IFF_L3MDEV_MASTER;
1410 err = register_netdevice(dev);
1411 if (err)
1412 goto out;
1414 net = dev_net(dev);
1415 add_fib_rules = net_generic(net, vrf_net_id);
1416 if (*add_fib_rules) {
1417 err = vrf_add_fib_rules(dev);
1418 if (err) {
1419 unregister_netdevice(dev);
1420 goto out;
1422 *add_fib_rules = false;
1425 out:
1426 return err;
1429 static size_t vrf_nl_getsize(const struct net_device *dev)
1431 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1434 static int vrf_fillinfo(struct sk_buff *skb,
1435 const struct net_device *dev)
1437 struct net_vrf *vrf = netdev_priv(dev);
1439 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1442 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1443 const struct net_device *slave_dev)
1445 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1448 static int vrf_fill_slave_info(struct sk_buff *skb,
1449 const struct net_device *vrf_dev,
1450 const struct net_device *slave_dev)
1452 struct net_vrf *vrf = netdev_priv(vrf_dev);
1454 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1455 return -EMSGSIZE;
1457 return 0;
1460 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1461 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1464 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1465 .kind = DRV_NAME,
1466 .priv_size = sizeof(struct net_vrf),
1468 .get_size = vrf_nl_getsize,
1469 .policy = vrf_nl_policy,
1470 .validate = vrf_validate,
1471 .fill_info = vrf_fillinfo,
1473 .get_slave_size = vrf_get_slave_size,
1474 .fill_slave_info = vrf_fill_slave_info,
1476 .newlink = vrf_newlink,
1477 .dellink = vrf_dellink,
1478 .setup = vrf_setup,
1479 .maxtype = IFLA_VRF_MAX,
1482 static int vrf_device_event(struct notifier_block *unused,
1483 unsigned long event, void *ptr)
1485 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1487 /* only care about unregister events to drop slave references */
1488 if (event == NETDEV_UNREGISTER) {
1489 struct net_device *vrf_dev;
1491 if (!netif_is_l3_slave(dev))
1492 goto out;
1494 vrf_dev = netdev_master_upper_dev_get(dev);
1495 vrf_del_slave(vrf_dev, dev);
1497 out:
1498 return NOTIFY_DONE;
1501 static struct notifier_block vrf_notifier_block __read_mostly = {
1502 .notifier_call = vrf_device_event,
1505 /* Initialize per network namespace state */
1506 static int __net_init vrf_netns_init(struct net *net)
1508 bool *add_fib_rules = net_generic(net, vrf_net_id);
1510 *add_fib_rules = true;
1512 return 0;
1515 static struct pernet_operations vrf_net_ops __net_initdata = {
1516 .init = vrf_netns_init,
1517 .id = &vrf_net_id,
1518 .size = sizeof(bool),
1521 static int __init vrf_init_module(void)
1523 int rc;
1525 register_netdevice_notifier(&vrf_notifier_block);
1527 rc = register_pernet_subsys(&vrf_net_ops);
1528 if (rc < 0)
1529 goto error;
1531 rc = rtnl_link_register(&vrf_link_ops);
1532 if (rc < 0) {
1533 unregister_pernet_subsys(&vrf_net_ops);
1534 goto error;
1537 return 0;
1539 error:
1540 unregister_netdevice_notifier(&vrf_notifier_block);
1541 return rc;
1544 module_init(vrf_init_module);
1545 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1546 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1547 MODULE_LICENSE("GPL");
1548 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1549 MODULE_VERSION(DRV_VERSION);