2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
25 * Inode locking rules:
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_list_lock
42 * Inode LRU list locks
48 * inode->i_sb->s_inode_list_lock
55 static unsigned int i_hash_mask __read_mostly
;
56 static unsigned int i_hash_shift __read_mostly
;
57 static struct hlist_head
*inode_hashtable __read_mostly
;
58 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops
= {
66 EXPORT_SYMBOL(empty_aops
);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat
;
73 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
74 static DEFINE_PER_CPU(unsigned long, nr_unused
);
76 static struct kmem_cache
*inode_cachep __read_mostly
;
78 static long get_nr_inodes(void)
82 for_each_possible_cpu(i
)
83 sum
+= per_cpu(nr_inodes
, i
);
84 return sum
< 0 ? 0 : sum
;
87 static inline long get_nr_inodes_unused(void)
91 for_each_possible_cpu(i
)
92 sum
+= per_cpu(nr_unused
, i
);
93 return sum
< 0 ? 0 : sum
;
96 long get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty
> 0 ? nr_dirty
: 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(struct ctl_table
*table
, int write
,
108 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
110 inodes_stat
.nr_inodes
= get_nr_inodes();
111 inodes_stat
.nr_unused
= get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
116 static int no_open(struct inode
*inode
, struct file
*file
)
122 * inode_init_always - perform inode structure initialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
129 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
131 static const struct inode_operations empty_iops
;
132 static const struct file_operations no_open_fops
= {.open
= no_open
};
133 struct address_space
*const mapping
= &inode
->i_data
;
136 inode
->i_blkbits
= sb
->s_blocksize_bits
;
138 atomic_set(&inode
->i_count
, 1);
139 inode
->i_op
= &empty_iops
;
140 inode
->i_fop
= &no_open_fops
;
141 inode
->__i_nlink
= 1;
142 inode
->i_opflags
= 0;
144 inode
->i_opflags
|= IOP_XATTR
;
145 i_uid_write(inode
, 0);
146 i_gid_write(inode
, 0);
147 atomic_set(&inode
->i_writecount
, 0);
151 inode
->i_generation
= 0;
152 inode
->i_pipe
= NULL
;
153 inode
->i_bdev
= NULL
;
154 inode
->i_cdev
= NULL
;
155 inode
->i_link
= NULL
;
156 inode
->i_dir_seq
= 0;
158 inode
->dirtied_when
= 0;
160 #ifdef CONFIG_CGROUP_WRITEBACK
161 inode
->i_wb_frn_winner
= 0;
162 inode
->i_wb_frn_avg_time
= 0;
163 inode
->i_wb_frn_history
= 0;
166 if (security_inode_alloc(inode
))
168 spin_lock_init(&inode
->i_lock
);
169 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
171 init_rwsem(&inode
->i_rwsem
);
172 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
174 atomic_set(&inode
->i_dio_count
, 0);
176 mapping
->a_ops
= &empty_aops
;
177 mapping
->host
= inode
;
179 atomic_set(&mapping
->i_mmap_writable
, 0);
180 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
181 mapping
->private_data
= NULL
;
182 mapping
->writeback_index
= 0;
183 inode
->i_private
= NULL
;
184 inode
->i_mapping
= mapping
;
185 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
190 #ifdef CONFIG_FSNOTIFY
191 inode
->i_fsnotify_mask
= 0;
193 inode
->i_flctx
= NULL
;
194 this_cpu_inc(nr_inodes
);
200 EXPORT_SYMBOL(inode_init_always
);
202 static struct inode
*alloc_inode(struct super_block
*sb
)
206 if (sb
->s_op
->alloc_inode
)
207 inode
= sb
->s_op
->alloc_inode(sb
);
209 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
214 if (unlikely(inode_init_always(sb
, inode
))) {
215 if (inode
->i_sb
->s_op
->destroy_inode
)
216 inode
->i_sb
->s_op
->destroy_inode(inode
);
218 kmem_cache_free(inode_cachep
, inode
);
225 void free_inode_nonrcu(struct inode
*inode
)
227 kmem_cache_free(inode_cachep
, inode
);
229 EXPORT_SYMBOL(free_inode_nonrcu
);
231 void __destroy_inode(struct inode
*inode
)
233 BUG_ON(inode_has_buffers(inode
));
234 inode_detach_wb(inode
);
235 security_inode_free(inode
);
236 fsnotify_inode_delete(inode
);
237 locks_free_lock_context(inode
);
238 if (!inode
->i_nlink
) {
239 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
240 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
243 #ifdef CONFIG_FS_POSIX_ACL
244 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
245 posix_acl_release(inode
->i_acl
);
246 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
247 posix_acl_release(inode
->i_default_acl
);
249 this_cpu_dec(nr_inodes
);
251 EXPORT_SYMBOL(__destroy_inode
);
253 static void i_callback(struct rcu_head
*head
)
255 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
256 kmem_cache_free(inode_cachep
, inode
);
259 static void destroy_inode(struct inode
*inode
)
261 BUG_ON(!list_empty(&inode
->i_lru
));
262 __destroy_inode(inode
);
263 if (inode
->i_sb
->s_op
->destroy_inode
)
264 inode
->i_sb
->s_op
->destroy_inode(inode
);
266 call_rcu(&inode
->i_rcu
, i_callback
);
270 * drop_nlink - directly drop an inode's link count
273 * This is a low-level filesystem helper to replace any
274 * direct filesystem manipulation of i_nlink. In cases
275 * where we are attempting to track writes to the
276 * filesystem, a decrement to zero means an imminent
277 * write when the file is truncated and actually unlinked
280 void drop_nlink(struct inode
*inode
)
282 WARN_ON(inode
->i_nlink
== 0);
285 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
287 EXPORT_SYMBOL(drop_nlink
);
290 * clear_nlink - directly zero an inode's link count
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. See
295 * drop_nlink() for why we care about i_nlink hitting zero.
297 void clear_nlink(struct inode
*inode
)
299 if (inode
->i_nlink
) {
300 inode
->__i_nlink
= 0;
301 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
304 EXPORT_SYMBOL(clear_nlink
);
307 * set_nlink - directly set an inode's link count
309 * @nlink: new nlink (should be non-zero)
311 * This is a low-level filesystem helper to replace any
312 * direct filesystem manipulation of i_nlink.
314 void set_nlink(struct inode
*inode
, unsigned int nlink
)
319 /* Yes, some filesystems do change nlink from zero to one */
320 if (inode
->i_nlink
== 0)
321 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
323 inode
->__i_nlink
= nlink
;
326 EXPORT_SYMBOL(set_nlink
);
329 * inc_nlink - directly increment an inode's link count
332 * This is a low-level filesystem helper to replace any
333 * direct filesystem manipulation of i_nlink. Currently,
334 * it is only here for parity with dec_nlink().
336 void inc_nlink(struct inode
*inode
)
338 if (unlikely(inode
->i_nlink
== 0)) {
339 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
340 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
345 EXPORT_SYMBOL(inc_nlink
);
347 void address_space_init_once(struct address_space
*mapping
)
349 memset(mapping
, 0, sizeof(*mapping
));
350 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
| __GFP_ACCOUNT
);
351 spin_lock_init(&mapping
->tree_lock
);
352 init_rwsem(&mapping
->i_mmap_rwsem
);
353 INIT_LIST_HEAD(&mapping
->private_list
);
354 spin_lock_init(&mapping
->private_lock
);
355 mapping
->i_mmap
= RB_ROOT
;
357 EXPORT_SYMBOL(address_space_init_once
);
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
364 void inode_init_once(struct inode
*inode
)
366 memset(inode
, 0, sizeof(*inode
));
367 INIT_HLIST_NODE(&inode
->i_hash
);
368 INIT_LIST_HEAD(&inode
->i_devices
);
369 INIT_LIST_HEAD(&inode
->i_io_list
);
370 INIT_LIST_HEAD(&inode
->i_wb_list
);
371 INIT_LIST_HEAD(&inode
->i_lru
);
372 address_space_init_once(&inode
->i_data
);
373 i_size_ordered_init(inode
);
375 EXPORT_SYMBOL(inode_init_once
);
377 static void init_once(void *foo
)
379 struct inode
*inode
= (struct inode
*) foo
;
381 inode_init_once(inode
);
385 * inode->i_lock must be held
387 void __iget(struct inode
*inode
)
389 atomic_inc(&inode
->i_count
);
393 * get additional reference to inode; caller must already hold one.
395 void ihold(struct inode
*inode
)
397 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
399 EXPORT_SYMBOL(ihold
);
401 static void inode_lru_list_add(struct inode
*inode
)
403 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
404 this_cpu_inc(nr_unused
);
406 inode
->i_state
|= I_REFERENCED
;
410 * Add inode to LRU if needed (inode is unused and clean).
412 * Needs inode->i_lock held.
414 void inode_add_lru(struct inode
*inode
)
416 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
417 I_FREEING
| I_WILL_FREE
)) &&
418 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& MS_ACTIVE
)
419 inode_lru_list_add(inode
);
423 static void inode_lru_list_del(struct inode
*inode
)
426 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
427 this_cpu_dec(nr_unused
);
431 * inode_sb_list_add - add inode to the superblock list of inodes
432 * @inode: inode to add
434 void inode_sb_list_add(struct inode
*inode
)
436 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
437 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
438 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
440 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
442 static inline void inode_sb_list_del(struct inode
*inode
)
444 if (!list_empty(&inode
->i_sb_list
)) {
445 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
446 list_del_init(&inode
->i_sb_list
);
447 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
451 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
455 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
457 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
458 return tmp
& i_hash_mask
;
462 * __insert_inode_hash - hash an inode
463 * @inode: unhashed inode
464 * @hashval: unsigned long value used to locate this object in the
467 * Add an inode to the inode hash for this superblock.
469 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
471 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
473 spin_lock(&inode_hash_lock
);
474 spin_lock(&inode
->i_lock
);
475 hlist_add_head(&inode
->i_hash
, b
);
476 spin_unlock(&inode
->i_lock
);
477 spin_unlock(&inode_hash_lock
);
479 EXPORT_SYMBOL(__insert_inode_hash
);
482 * __remove_inode_hash - remove an inode from the hash
483 * @inode: inode to unhash
485 * Remove an inode from the superblock.
487 void __remove_inode_hash(struct inode
*inode
)
489 spin_lock(&inode_hash_lock
);
490 spin_lock(&inode
->i_lock
);
491 hlist_del_init(&inode
->i_hash
);
492 spin_unlock(&inode
->i_lock
);
493 spin_unlock(&inode_hash_lock
);
495 EXPORT_SYMBOL(__remove_inode_hash
);
497 void clear_inode(struct inode
*inode
)
501 * We have to cycle tree_lock here because reclaim can be still in the
502 * process of removing the last page (in __delete_from_page_cache())
503 * and we must not free mapping under it.
505 spin_lock_irq(&inode
->i_data
.tree_lock
);
506 BUG_ON(inode
->i_data
.nrpages
);
507 BUG_ON(inode
->i_data
.nrexceptional
);
508 spin_unlock_irq(&inode
->i_data
.tree_lock
);
509 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
510 BUG_ON(!(inode
->i_state
& I_FREEING
));
511 BUG_ON(inode
->i_state
& I_CLEAR
);
512 BUG_ON(!list_empty(&inode
->i_wb_list
));
513 /* don't need i_lock here, no concurrent mods to i_state */
514 inode
->i_state
= I_FREEING
| I_CLEAR
;
516 EXPORT_SYMBOL(clear_inode
);
519 * Free the inode passed in, removing it from the lists it is still connected
520 * to. We remove any pages still attached to the inode and wait for any IO that
521 * is still in progress before finally destroying the inode.
523 * An inode must already be marked I_FREEING so that we avoid the inode being
524 * moved back onto lists if we race with other code that manipulates the lists
525 * (e.g. writeback_single_inode). The caller is responsible for setting this.
527 * An inode must already be removed from the LRU list before being evicted from
528 * the cache. This should occur atomically with setting the I_FREEING state
529 * flag, so no inodes here should ever be on the LRU when being evicted.
531 static void evict(struct inode
*inode
)
533 const struct super_operations
*op
= inode
->i_sb
->s_op
;
535 BUG_ON(!(inode
->i_state
& I_FREEING
));
536 BUG_ON(!list_empty(&inode
->i_lru
));
538 if (!list_empty(&inode
->i_io_list
))
539 inode_io_list_del(inode
);
541 inode_sb_list_del(inode
);
544 * Wait for flusher thread to be done with the inode so that filesystem
545 * does not start destroying it while writeback is still running. Since
546 * the inode has I_FREEING set, flusher thread won't start new work on
547 * the inode. We just have to wait for running writeback to finish.
549 inode_wait_for_writeback(inode
);
551 if (op
->evict_inode
) {
552 op
->evict_inode(inode
);
554 truncate_inode_pages_final(&inode
->i_data
);
557 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
559 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
562 remove_inode_hash(inode
);
564 spin_lock(&inode
->i_lock
);
565 wake_up_bit(&inode
->i_state
, __I_NEW
);
566 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
567 spin_unlock(&inode
->i_lock
);
569 destroy_inode(inode
);
573 * dispose_list - dispose of the contents of a local list
574 * @head: the head of the list to free
576 * Dispose-list gets a local list with local inodes in it, so it doesn't
577 * need to worry about list corruption and SMP locks.
579 static void dispose_list(struct list_head
*head
)
581 while (!list_empty(head
)) {
584 inode
= list_first_entry(head
, struct inode
, i_lru
);
585 list_del_init(&inode
->i_lru
);
593 * evict_inodes - evict all evictable inodes for a superblock
594 * @sb: superblock to operate on
596 * Make sure that no inodes with zero refcount are retained. This is
597 * called by superblock shutdown after having MS_ACTIVE flag removed,
598 * so any inode reaching zero refcount during or after that call will
599 * be immediately evicted.
601 void evict_inodes(struct super_block
*sb
)
603 struct inode
*inode
, *next
;
607 spin_lock(&sb
->s_inode_list_lock
);
608 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
609 if (atomic_read(&inode
->i_count
))
612 spin_lock(&inode
->i_lock
);
613 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
614 spin_unlock(&inode
->i_lock
);
618 inode
->i_state
|= I_FREEING
;
619 inode_lru_list_del(inode
);
620 spin_unlock(&inode
->i_lock
);
621 list_add(&inode
->i_lru
, &dispose
);
624 * We can have a ton of inodes to evict at unmount time given
625 * enough memory, check to see if we need to go to sleep for a
626 * bit so we don't livelock.
628 if (need_resched()) {
629 spin_unlock(&sb
->s_inode_list_lock
);
631 dispose_list(&dispose
);
635 spin_unlock(&sb
->s_inode_list_lock
);
637 dispose_list(&dispose
);
641 * invalidate_inodes - attempt to free all inodes on a superblock
642 * @sb: superblock to operate on
643 * @kill_dirty: flag to guide handling of dirty inodes
645 * Attempts to free all inodes for a given superblock. If there were any
646 * busy inodes return a non-zero value, else zero.
647 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
650 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
653 struct inode
*inode
, *next
;
656 spin_lock(&sb
->s_inode_list_lock
);
657 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
658 spin_lock(&inode
->i_lock
);
659 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
660 spin_unlock(&inode
->i_lock
);
663 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
664 spin_unlock(&inode
->i_lock
);
668 if (atomic_read(&inode
->i_count
)) {
669 spin_unlock(&inode
->i_lock
);
674 inode
->i_state
|= I_FREEING
;
675 inode_lru_list_del(inode
);
676 spin_unlock(&inode
->i_lock
);
677 list_add(&inode
->i_lru
, &dispose
);
679 spin_unlock(&sb
->s_inode_list_lock
);
681 dispose_list(&dispose
);
687 * Isolate the inode from the LRU in preparation for freeing it.
689 * Any inodes which are pinned purely because of attached pagecache have their
690 * pagecache removed. If the inode has metadata buffers attached to
691 * mapping->private_list then try to remove them.
693 * If the inode has the I_REFERENCED flag set, then it means that it has been
694 * used recently - the flag is set in iput_final(). When we encounter such an
695 * inode, clear the flag and move it to the back of the LRU so it gets another
696 * pass through the LRU before it gets reclaimed. This is necessary because of
697 * the fact we are doing lazy LRU updates to minimise lock contention so the
698 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
699 * with this flag set because they are the inodes that are out of order.
701 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
702 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
704 struct list_head
*freeable
= arg
;
705 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
708 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
709 * If we fail to get the lock, just skip it.
711 if (!spin_trylock(&inode
->i_lock
))
715 * Referenced or dirty inodes are still in use. Give them another pass
716 * through the LRU as we canot reclaim them now.
718 if (atomic_read(&inode
->i_count
) ||
719 (inode
->i_state
& ~I_REFERENCED
)) {
720 list_lru_isolate(lru
, &inode
->i_lru
);
721 spin_unlock(&inode
->i_lock
);
722 this_cpu_dec(nr_unused
);
726 /* recently referenced inodes get one more pass */
727 if (inode
->i_state
& I_REFERENCED
) {
728 inode
->i_state
&= ~I_REFERENCED
;
729 spin_unlock(&inode
->i_lock
);
733 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
735 spin_unlock(&inode
->i_lock
);
736 spin_unlock(lru_lock
);
737 if (remove_inode_buffers(inode
)) {
739 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
740 if (current_is_kswapd())
741 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
743 __count_vm_events(PGINODESTEAL
, reap
);
744 if (current
->reclaim_state
)
745 current
->reclaim_state
->reclaimed_slab
+= reap
;
752 WARN_ON(inode
->i_state
& I_NEW
);
753 inode
->i_state
|= I_FREEING
;
754 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
755 spin_unlock(&inode
->i_lock
);
757 this_cpu_dec(nr_unused
);
762 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
763 * This is called from the superblock shrinker function with a number of inodes
764 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
765 * then are freed outside inode_lock by dispose_list().
767 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
772 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
773 inode_lru_isolate
, &freeable
);
774 dispose_list(&freeable
);
778 static void __wait_on_freeing_inode(struct inode
*inode
);
780 * Called with the inode lock held.
782 static struct inode
*find_inode(struct super_block
*sb
,
783 struct hlist_head
*head
,
784 int (*test
)(struct inode
*, void *),
787 struct inode
*inode
= NULL
;
790 hlist_for_each_entry(inode
, head
, i_hash
) {
791 if (inode
->i_sb
!= sb
)
793 if (!test(inode
, data
))
795 spin_lock(&inode
->i_lock
);
796 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
797 __wait_on_freeing_inode(inode
);
801 spin_unlock(&inode
->i_lock
);
808 * find_inode_fast is the fast path version of find_inode, see the comment at
809 * iget_locked for details.
811 static struct inode
*find_inode_fast(struct super_block
*sb
,
812 struct hlist_head
*head
, unsigned long ino
)
814 struct inode
*inode
= NULL
;
817 hlist_for_each_entry(inode
, head
, i_hash
) {
818 if (inode
->i_ino
!= ino
)
820 if (inode
->i_sb
!= sb
)
822 spin_lock(&inode
->i_lock
);
823 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
824 __wait_on_freeing_inode(inode
);
828 spin_unlock(&inode
->i_lock
);
835 * Each cpu owns a range of LAST_INO_BATCH numbers.
836 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
837 * to renew the exhausted range.
839 * This does not significantly increase overflow rate because every CPU can
840 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
841 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
842 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
843 * overflow rate by 2x, which does not seem too significant.
845 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
846 * error if st_ino won't fit in target struct field. Use 32bit counter
847 * here to attempt to avoid that.
849 #define LAST_INO_BATCH 1024
850 static DEFINE_PER_CPU(unsigned int, last_ino
);
852 unsigned int get_next_ino(void)
854 unsigned int *p
= &get_cpu_var(last_ino
);
855 unsigned int res
= *p
;
858 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
859 static atomic_t shared_last_ino
;
860 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
862 res
= next
- LAST_INO_BATCH
;
867 /* get_next_ino should not provide a 0 inode number */
871 put_cpu_var(last_ino
);
874 EXPORT_SYMBOL(get_next_ino
);
877 * new_inode_pseudo - obtain an inode
880 * Allocates a new inode for given superblock.
881 * Inode wont be chained in superblock s_inodes list
883 * - fs can't be unmount
884 * - quotas, fsnotify, writeback can't work
886 struct inode
*new_inode_pseudo(struct super_block
*sb
)
888 struct inode
*inode
= alloc_inode(sb
);
891 spin_lock(&inode
->i_lock
);
893 spin_unlock(&inode
->i_lock
);
894 INIT_LIST_HEAD(&inode
->i_sb_list
);
900 * new_inode - obtain an inode
903 * Allocates a new inode for given superblock. The default gfp_mask
904 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
905 * If HIGHMEM pages are unsuitable or it is known that pages allocated
906 * for the page cache are not reclaimable or migratable,
907 * mapping_set_gfp_mask() must be called with suitable flags on the
908 * newly created inode's mapping
911 struct inode
*new_inode(struct super_block
*sb
)
915 spin_lock_prefetch(&sb
->s_inode_list_lock
);
917 inode
= new_inode_pseudo(sb
);
919 inode_sb_list_add(inode
);
922 EXPORT_SYMBOL(new_inode
);
924 #ifdef CONFIG_DEBUG_LOCK_ALLOC
925 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
927 if (S_ISDIR(inode
->i_mode
)) {
928 struct file_system_type
*type
= inode
->i_sb
->s_type
;
930 /* Set new key only if filesystem hasn't already changed it */
931 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
933 * ensure nobody is actually holding i_mutex
935 // mutex_destroy(&inode->i_mutex);
936 init_rwsem(&inode
->i_rwsem
);
937 lockdep_set_class(&inode
->i_rwsem
,
938 &type
->i_mutex_dir_key
);
942 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
946 * unlock_new_inode - clear the I_NEW state and wake up any waiters
947 * @inode: new inode to unlock
949 * Called when the inode is fully initialised to clear the new state of the
950 * inode and wake up anyone waiting for the inode to finish initialisation.
952 void unlock_new_inode(struct inode
*inode
)
954 lockdep_annotate_inode_mutex_key(inode
);
955 spin_lock(&inode
->i_lock
);
956 WARN_ON(!(inode
->i_state
& I_NEW
));
957 inode
->i_state
&= ~I_NEW
;
959 wake_up_bit(&inode
->i_state
, __I_NEW
);
960 spin_unlock(&inode
->i_lock
);
962 EXPORT_SYMBOL(unlock_new_inode
);
965 * lock_two_nondirectories - take two i_mutexes on non-directory objects
967 * Lock any non-NULL argument that is not a directory.
968 * Zero, one or two objects may be locked by this function.
970 * @inode1: first inode to lock
971 * @inode2: second inode to lock
973 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
976 swap(inode1
, inode2
);
978 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
980 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
981 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
983 EXPORT_SYMBOL(lock_two_nondirectories
);
986 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
987 * @inode1: first inode to unlock
988 * @inode2: second inode to unlock
990 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
992 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
993 inode_unlock(inode1
);
994 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
995 inode_unlock(inode2
);
997 EXPORT_SYMBOL(unlock_two_nondirectories
);
1000 * iget5_locked - obtain an inode from a mounted file system
1001 * @sb: super block of file system
1002 * @hashval: hash value (usually inode number) to get
1003 * @test: callback used for comparisons between inodes
1004 * @set: callback used to initialize a new struct inode
1005 * @data: opaque data pointer to pass to @test and @set
1007 * Search for the inode specified by @hashval and @data in the inode cache,
1008 * and if present it is return it with an increased reference count. This is
1009 * a generalized version of iget_locked() for file systems where the inode
1010 * number is not sufficient for unique identification of an inode.
1012 * If the inode is not in cache, allocate a new inode and return it locked,
1013 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1014 * before unlocking it via unlock_new_inode().
1016 * Note both @test and @set are called with the inode_hash_lock held, so can't
1019 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1020 int (*test
)(struct inode
*, void *),
1021 int (*set
)(struct inode
*, void *), void *data
)
1023 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1024 struct inode
*inode
;
1026 spin_lock(&inode_hash_lock
);
1027 inode
= find_inode(sb
, head
, test
, data
);
1028 spin_unlock(&inode_hash_lock
);
1031 wait_on_inode(inode
);
1032 if (unlikely(inode_unhashed(inode
))) {
1039 inode
= alloc_inode(sb
);
1043 spin_lock(&inode_hash_lock
);
1044 /* We released the lock, so.. */
1045 old
= find_inode(sb
, head
, test
, data
);
1047 if (set(inode
, data
))
1050 spin_lock(&inode
->i_lock
);
1051 inode
->i_state
= I_NEW
;
1052 hlist_add_head(&inode
->i_hash
, head
);
1053 spin_unlock(&inode
->i_lock
);
1054 inode_sb_list_add(inode
);
1055 spin_unlock(&inode_hash_lock
);
1057 /* Return the locked inode with I_NEW set, the
1058 * caller is responsible for filling in the contents
1064 * Uhhuh, somebody else created the same inode under
1065 * us. Use the old inode instead of the one we just
1068 spin_unlock(&inode_hash_lock
);
1069 destroy_inode(inode
);
1071 wait_on_inode(inode
);
1072 if (unlikely(inode_unhashed(inode
))) {
1080 spin_unlock(&inode_hash_lock
);
1081 destroy_inode(inode
);
1084 EXPORT_SYMBOL(iget5_locked
);
1087 * iget_locked - obtain an inode from a mounted file system
1088 * @sb: super block of file system
1089 * @ino: inode number to get
1091 * Search for the inode specified by @ino in the inode cache and if present
1092 * return it with an increased reference count. This is for file systems
1093 * where the inode number is sufficient for unique identification of an inode.
1095 * If the inode is not in cache, allocate a new inode and return it locked,
1096 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1097 * before unlocking it via unlock_new_inode().
1099 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1101 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1102 struct inode
*inode
;
1104 spin_lock(&inode_hash_lock
);
1105 inode
= find_inode_fast(sb
, head
, ino
);
1106 spin_unlock(&inode_hash_lock
);
1108 wait_on_inode(inode
);
1109 if (unlikely(inode_unhashed(inode
))) {
1116 inode
= alloc_inode(sb
);
1120 spin_lock(&inode_hash_lock
);
1121 /* We released the lock, so.. */
1122 old
= find_inode_fast(sb
, head
, ino
);
1125 spin_lock(&inode
->i_lock
);
1126 inode
->i_state
= I_NEW
;
1127 hlist_add_head(&inode
->i_hash
, head
);
1128 spin_unlock(&inode
->i_lock
);
1129 inode_sb_list_add(inode
);
1130 spin_unlock(&inode_hash_lock
);
1132 /* Return the locked inode with I_NEW set, the
1133 * caller is responsible for filling in the contents
1139 * Uhhuh, somebody else created the same inode under
1140 * us. Use the old inode instead of the one we just
1143 spin_unlock(&inode_hash_lock
);
1144 destroy_inode(inode
);
1146 wait_on_inode(inode
);
1147 if (unlikely(inode_unhashed(inode
))) {
1154 EXPORT_SYMBOL(iget_locked
);
1157 * search the inode cache for a matching inode number.
1158 * If we find one, then the inode number we are trying to
1159 * allocate is not unique and so we should not use it.
1161 * Returns 1 if the inode number is unique, 0 if it is not.
1163 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1165 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1166 struct inode
*inode
;
1168 spin_lock(&inode_hash_lock
);
1169 hlist_for_each_entry(inode
, b
, i_hash
) {
1170 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1171 spin_unlock(&inode_hash_lock
);
1175 spin_unlock(&inode_hash_lock
);
1181 * iunique - get a unique inode number
1183 * @max_reserved: highest reserved inode number
1185 * Obtain an inode number that is unique on the system for a given
1186 * superblock. This is used by file systems that have no natural
1187 * permanent inode numbering system. An inode number is returned that
1188 * is higher than the reserved limit but unique.
1191 * With a large number of inodes live on the file system this function
1192 * currently becomes quite slow.
1194 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1197 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1198 * error if st_ino won't fit in target struct field. Use 32bit counter
1199 * here to attempt to avoid that.
1201 static DEFINE_SPINLOCK(iunique_lock
);
1202 static unsigned int counter
;
1205 spin_lock(&iunique_lock
);
1207 if (counter
<= max_reserved
)
1208 counter
= max_reserved
+ 1;
1210 } while (!test_inode_iunique(sb
, res
));
1211 spin_unlock(&iunique_lock
);
1215 EXPORT_SYMBOL(iunique
);
1217 struct inode
*igrab(struct inode
*inode
)
1219 spin_lock(&inode
->i_lock
);
1220 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1222 spin_unlock(&inode
->i_lock
);
1224 spin_unlock(&inode
->i_lock
);
1226 * Handle the case where s_op->clear_inode is not been
1227 * called yet, and somebody is calling igrab
1228 * while the inode is getting freed.
1234 EXPORT_SYMBOL(igrab
);
1237 * ilookup5_nowait - search for an inode in the inode cache
1238 * @sb: super block of file system to search
1239 * @hashval: hash value (usually inode number) to search for
1240 * @test: callback used for comparisons between inodes
1241 * @data: opaque data pointer to pass to @test
1243 * Search for the inode specified by @hashval and @data in the inode cache.
1244 * If the inode is in the cache, the inode is returned with an incremented
1247 * Note: I_NEW is not waited upon so you have to be very careful what you do
1248 * with the returned inode. You probably should be using ilookup5() instead.
1250 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1252 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1253 int (*test
)(struct inode
*, void *), void *data
)
1255 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1256 struct inode
*inode
;
1258 spin_lock(&inode_hash_lock
);
1259 inode
= find_inode(sb
, head
, test
, data
);
1260 spin_unlock(&inode_hash_lock
);
1264 EXPORT_SYMBOL(ilookup5_nowait
);
1267 * ilookup5 - search for an inode in the inode cache
1268 * @sb: super block of file system to search
1269 * @hashval: hash value (usually inode number) to search for
1270 * @test: callback used for comparisons between inodes
1271 * @data: opaque data pointer to pass to @test
1273 * Search for the inode specified by @hashval and @data in the inode cache,
1274 * and if the inode is in the cache, return the inode with an incremented
1275 * reference count. Waits on I_NEW before returning the inode.
1276 * returned with an incremented reference count.
1278 * This is a generalized version of ilookup() for file systems where the
1279 * inode number is not sufficient for unique identification of an inode.
1281 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1283 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1284 int (*test
)(struct inode
*, void *), void *data
)
1286 struct inode
*inode
;
1288 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1290 wait_on_inode(inode
);
1291 if (unlikely(inode_unhashed(inode
))) {
1298 EXPORT_SYMBOL(ilookup5
);
1301 * ilookup - search for an inode in the inode cache
1302 * @sb: super block of file system to search
1303 * @ino: inode number to search for
1305 * Search for the inode @ino in the inode cache, and if the inode is in the
1306 * cache, the inode is returned with an incremented reference count.
1308 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1310 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1311 struct inode
*inode
;
1313 spin_lock(&inode_hash_lock
);
1314 inode
= find_inode_fast(sb
, head
, ino
);
1315 spin_unlock(&inode_hash_lock
);
1318 wait_on_inode(inode
);
1319 if (unlikely(inode_unhashed(inode
))) {
1326 EXPORT_SYMBOL(ilookup
);
1329 * find_inode_nowait - find an inode in the inode cache
1330 * @sb: super block of file system to search
1331 * @hashval: hash value (usually inode number) to search for
1332 * @match: callback used for comparisons between inodes
1333 * @data: opaque data pointer to pass to @match
1335 * Search for the inode specified by @hashval and @data in the inode
1336 * cache, where the helper function @match will return 0 if the inode
1337 * does not match, 1 if the inode does match, and -1 if the search
1338 * should be stopped. The @match function must be responsible for
1339 * taking the i_lock spin_lock and checking i_state for an inode being
1340 * freed or being initialized, and incrementing the reference count
1341 * before returning 1. It also must not sleep, since it is called with
1342 * the inode_hash_lock spinlock held.
1344 * This is a even more generalized version of ilookup5() when the
1345 * function must never block --- find_inode() can block in
1346 * __wait_on_freeing_inode() --- or when the caller can not increment
1347 * the reference count because the resulting iput() might cause an
1348 * inode eviction. The tradeoff is that the @match funtion must be
1349 * very carefully implemented.
1351 struct inode
*find_inode_nowait(struct super_block
*sb
,
1352 unsigned long hashval
,
1353 int (*match
)(struct inode
*, unsigned long,
1357 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1358 struct inode
*inode
, *ret_inode
= NULL
;
1361 spin_lock(&inode_hash_lock
);
1362 hlist_for_each_entry(inode
, head
, i_hash
) {
1363 if (inode
->i_sb
!= sb
)
1365 mval
= match(inode
, hashval
, data
);
1373 spin_unlock(&inode_hash_lock
);
1376 EXPORT_SYMBOL(find_inode_nowait
);
1378 int insert_inode_locked(struct inode
*inode
)
1380 struct super_block
*sb
= inode
->i_sb
;
1381 ino_t ino
= inode
->i_ino
;
1382 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1385 struct inode
*old
= NULL
;
1386 spin_lock(&inode_hash_lock
);
1387 hlist_for_each_entry(old
, head
, i_hash
) {
1388 if (old
->i_ino
!= ino
)
1390 if (old
->i_sb
!= sb
)
1392 spin_lock(&old
->i_lock
);
1393 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1394 spin_unlock(&old
->i_lock
);
1400 spin_lock(&inode
->i_lock
);
1401 inode
->i_state
|= I_NEW
;
1402 hlist_add_head(&inode
->i_hash
, head
);
1403 spin_unlock(&inode
->i_lock
);
1404 spin_unlock(&inode_hash_lock
);
1408 spin_unlock(&old
->i_lock
);
1409 spin_unlock(&inode_hash_lock
);
1411 if (unlikely(!inode_unhashed(old
))) {
1418 EXPORT_SYMBOL(insert_inode_locked
);
1420 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1421 int (*test
)(struct inode
*, void *), void *data
)
1423 struct super_block
*sb
= inode
->i_sb
;
1424 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1427 struct inode
*old
= NULL
;
1429 spin_lock(&inode_hash_lock
);
1430 hlist_for_each_entry(old
, head
, i_hash
) {
1431 if (old
->i_sb
!= sb
)
1433 if (!test(old
, data
))
1435 spin_lock(&old
->i_lock
);
1436 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1437 spin_unlock(&old
->i_lock
);
1443 spin_lock(&inode
->i_lock
);
1444 inode
->i_state
|= I_NEW
;
1445 hlist_add_head(&inode
->i_hash
, head
);
1446 spin_unlock(&inode
->i_lock
);
1447 spin_unlock(&inode_hash_lock
);
1451 spin_unlock(&old
->i_lock
);
1452 spin_unlock(&inode_hash_lock
);
1454 if (unlikely(!inode_unhashed(old
))) {
1461 EXPORT_SYMBOL(insert_inode_locked4
);
1464 int generic_delete_inode(struct inode
*inode
)
1468 EXPORT_SYMBOL(generic_delete_inode
);
1471 * Called when we're dropping the last reference
1474 * Call the FS "drop_inode()" function, defaulting to
1475 * the legacy UNIX filesystem behaviour. If it tells
1476 * us to evict inode, do so. Otherwise, retain inode
1477 * in cache if fs is alive, sync and evict if fs is
1480 static void iput_final(struct inode
*inode
)
1482 struct super_block
*sb
= inode
->i_sb
;
1483 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1486 WARN_ON(inode
->i_state
& I_NEW
);
1489 drop
= op
->drop_inode(inode
);
1491 drop
= generic_drop_inode(inode
);
1493 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1494 inode_add_lru(inode
);
1495 spin_unlock(&inode
->i_lock
);
1500 inode
->i_state
|= I_WILL_FREE
;
1501 spin_unlock(&inode
->i_lock
);
1502 write_inode_now(inode
, 1);
1503 spin_lock(&inode
->i_lock
);
1504 WARN_ON(inode
->i_state
& I_NEW
);
1505 inode
->i_state
&= ~I_WILL_FREE
;
1508 inode
->i_state
|= I_FREEING
;
1509 if (!list_empty(&inode
->i_lru
))
1510 inode_lru_list_del(inode
);
1511 spin_unlock(&inode
->i_lock
);
1517 * iput - put an inode
1518 * @inode: inode to put
1520 * Puts an inode, dropping its usage count. If the inode use count hits
1521 * zero, the inode is then freed and may also be destroyed.
1523 * Consequently, iput() can sleep.
1525 void iput(struct inode
*inode
)
1529 BUG_ON(inode
->i_state
& I_CLEAR
);
1531 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1532 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1533 atomic_inc(&inode
->i_count
);
1534 inode
->i_state
&= ~I_DIRTY_TIME
;
1535 spin_unlock(&inode
->i_lock
);
1536 trace_writeback_lazytime_iput(inode
);
1537 mark_inode_dirty_sync(inode
);
1543 EXPORT_SYMBOL(iput
);
1546 * bmap - find a block number in a file
1547 * @inode: inode of file
1548 * @block: block to find
1550 * Returns the block number on the device holding the inode that
1551 * is the disk block number for the block of the file requested.
1552 * That is, asked for block 4 of inode 1 the function will return the
1553 * disk block relative to the disk start that holds that block of the
1556 sector_t
bmap(struct inode
*inode
, sector_t block
)
1559 if (inode
->i_mapping
->a_ops
->bmap
)
1560 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1563 EXPORT_SYMBOL(bmap
);
1566 * Update times in overlayed inode from underlying real inode
1568 static void update_ovl_inode_times(struct dentry
*dentry
, struct inode
*inode
,
1572 struct inode
*realinode
= d_real_inode(dentry
);
1574 if (unlikely(inode
!= realinode
) &&
1575 (!timespec_equal(&inode
->i_mtime
, &realinode
->i_mtime
) ||
1576 !timespec_equal(&inode
->i_ctime
, &realinode
->i_ctime
))) {
1577 inode
->i_mtime
= realinode
->i_mtime
;
1578 inode
->i_ctime
= realinode
->i_ctime
;
1584 * With relative atime, only update atime if the previous atime is
1585 * earlier than either the ctime or mtime or if at least a day has
1586 * passed since the last atime update.
1588 static int relatime_need_update(const struct path
*path
, struct inode
*inode
,
1589 struct timespec now
, bool rcu
)
1592 if (!(path
->mnt
->mnt_flags
& MNT_RELATIME
))
1595 update_ovl_inode_times(path
->dentry
, inode
, rcu
);
1597 * Is mtime younger than atime? If yes, update atime:
1599 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1602 * Is ctime younger than atime? If yes, update atime:
1604 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1608 * Is the previous atime value older than a day? If yes,
1611 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1614 * Good, we can skip the atime update:
1619 int generic_update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1621 int iflags
= I_DIRTY_TIME
;
1623 if (flags
& S_ATIME
)
1624 inode
->i_atime
= *time
;
1625 if (flags
& S_VERSION
)
1626 inode_inc_iversion(inode
);
1627 if (flags
& S_CTIME
)
1628 inode
->i_ctime
= *time
;
1629 if (flags
& S_MTIME
)
1630 inode
->i_mtime
= *time
;
1632 if (!(inode
->i_sb
->s_flags
& MS_LAZYTIME
) || (flags
& S_VERSION
))
1633 iflags
|= I_DIRTY_SYNC
;
1634 __mark_inode_dirty(inode
, iflags
);
1637 EXPORT_SYMBOL(generic_update_time
);
1640 * This does the actual work of updating an inodes time or version. Must have
1641 * had called mnt_want_write() before calling this.
1643 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1645 int (*update_time
)(struct inode
*, struct timespec
*, int);
1647 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1648 generic_update_time
;
1650 return update_time(inode
, time
, flags
);
1654 * touch_atime - update the access time
1655 * @path: the &struct path to update
1656 * @inode: inode to update
1658 * Update the accessed time on an inode and mark it for writeback.
1659 * This function automatically handles read only file systems and media,
1660 * as well as the "noatime" flag and inode specific "noatime" markers.
1662 bool __atime_needs_update(const struct path
*path
, struct inode
*inode
,
1665 struct vfsmount
*mnt
= path
->mnt
;
1666 struct timespec now
;
1668 if (inode
->i_flags
& S_NOATIME
)
1671 /* Atime updates will likely cause i_uid and i_gid to be written
1672 * back improprely if their true value is unknown to the vfs.
1674 if (HAS_UNMAPPED_ID(inode
))
1677 if (IS_NOATIME(inode
))
1679 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1682 if (mnt
->mnt_flags
& MNT_NOATIME
)
1684 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1687 now
= current_time(inode
);
1689 if (!relatime_need_update(path
, inode
, now
, rcu
))
1692 if (timespec_equal(&inode
->i_atime
, &now
))
1698 void touch_atime(const struct path
*path
)
1700 struct vfsmount
*mnt
= path
->mnt
;
1701 struct inode
*inode
= d_inode(path
->dentry
);
1702 struct timespec now
;
1704 if (!__atime_needs_update(path
, inode
, false))
1707 if (!sb_start_write_trylock(inode
->i_sb
))
1710 if (__mnt_want_write(mnt
) != 0)
1713 * File systems can error out when updating inodes if they need to
1714 * allocate new space to modify an inode (such is the case for
1715 * Btrfs), but since we touch atime while walking down the path we
1716 * really don't care if we failed to update the atime of the file,
1717 * so just ignore the return value.
1718 * We may also fail on filesystems that have the ability to make parts
1719 * of the fs read only, e.g. subvolumes in Btrfs.
1721 now
= current_time(inode
);
1722 update_time(inode
, &now
, S_ATIME
);
1723 __mnt_drop_write(mnt
);
1725 sb_end_write(inode
->i_sb
);
1727 EXPORT_SYMBOL(touch_atime
);
1730 * The logic we want is
1732 * if suid or (sgid and xgrp)
1735 int should_remove_suid(struct dentry
*dentry
)
1737 umode_t mode
= d_inode(dentry
)->i_mode
;
1740 /* suid always must be killed */
1741 if (unlikely(mode
& S_ISUID
))
1742 kill
= ATTR_KILL_SUID
;
1745 * sgid without any exec bits is just a mandatory locking mark; leave
1746 * it alone. If some exec bits are set, it's a real sgid; kill it.
1748 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1749 kill
|= ATTR_KILL_SGID
;
1751 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1756 EXPORT_SYMBOL(should_remove_suid
);
1759 * Return mask of changes for notify_change() that need to be done as a
1760 * response to write or truncate. Return 0 if nothing has to be changed.
1761 * Negative value on error (change should be denied).
1763 int dentry_needs_remove_privs(struct dentry
*dentry
)
1765 struct inode
*inode
= d_inode(dentry
);
1769 if (IS_NOSEC(inode
))
1772 mask
= should_remove_suid(dentry
);
1773 ret
= security_inode_need_killpriv(dentry
);
1777 mask
|= ATTR_KILL_PRIV
;
1781 static int __remove_privs(struct dentry
*dentry
, int kill
)
1783 struct iattr newattrs
;
1785 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1787 * Note we call this on write, so notify_change will not
1788 * encounter any conflicting delegations:
1790 return notify_change(dentry
, &newattrs
, NULL
);
1794 * Remove special file priviledges (suid, capabilities) when file is written
1797 int file_remove_privs(struct file
*file
)
1799 struct dentry
*dentry
= file_dentry(file
);
1800 struct inode
*inode
= file_inode(file
);
1804 /* Fast path for nothing security related */
1805 if (IS_NOSEC(inode
))
1808 kill
= dentry_needs_remove_privs(dentry
);
1812 error
= __remove_privs(dentry
, kill
);
1814 inode_has_no_xattr(inode
);
1818 EXPORT_SYMBOL(file_remove_privs
);
1821 * file_update_time - update mtime and ctime time
1822 * @file: file accessed
1824 * Update the mtime and ctime members of an inode and mark the inode
1825 * for writeback. Note that this function is meant exclusively for
1826 * usage in the file write path of filesystems, and filesystems may
1827 * choose to explicitly ignore update via this function with the
1828 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1829 * timestamps are handled by the server. This can return an error for
1830 * file systems who need to allocate space in order to update an inode.
1833 int file_update_time(struct file
*file
)
1835 struct inode
*inode
= file_inode(file
);
1836 struct timespec now
;
1840 /* First try to exhaust all avenues to not sync */
1841 if (IS_NOCMTIME(inode
))
1844 now
= current_time(inode
);
1845 if (!timespec_equal(&inode
->i_mtime
, &now
))
1848 if (!timespec_equal(&inode
->i_ctime
, &now
))
1851 if (IS_I_VERSION(inode
))
1852 sync_it
|= S_VERSION
;
1857 /* Finally allowed to write? Takes lock. */
1858 if (__mnt_want_write_file(file
))
1861 ret
= update_time(inode
, &now
, sync_it
);
1862 __mnt_drop_write_file(file
);
1866 EXPORT_SYMBOL(file_update_time
);
1868 int inode_needs_sync(struct inode
*inode
)
1872 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1876 EXPORT_SYMBOL(inode_needs_sync
);
1879 * If we try to find an inode in the inode hash while it is being
1880 * deleted, we have to wait until the filesystem completes its
1881 * deletion before reporting that it isn't found. This function waits
1882 * until the deletion _might_ have completed. Callers are responsible
1883 * to recheck inode state.
1885 * It doesn't matter if I_NEW is not set initially, a call to
1886 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1889 static void __wait_on_freeing_inode(struct inode
*inode
)
1891 wait_queue_head_t
*wq
;
1892 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1893 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1894 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1895 spin_unlock(&inode
->i_lock
);
1896 spin_unlock(&inode_hash_lock
);
1898 finish_wait(wq
, &wait
.wait
);
1899 spin_lock(&inode_hash_lock
);
1902 static __initdata
unsigned long ihash_entries
;
1903 static int __init
set_ihash_entries(char *str
)
1907 ihash_entries
= simple_strtoul(str
, &str
, 0);
1910 __setup("ihash_entries=", set_ihash_entries
);
1913 * Initialize the waitqueues and inode hash table.
1915 void __init
inode_init_early(void)
1919 /* If hashes are distributed across NUMA nodes, defer
1920 * hash allocation until vmalloc space is available.
1926 alloc_large_system_hash("Inode-cache",
1927 sizeof(struct hlist_head
),
1936 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1937 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1940 void __init
inode_init(void)
1944 /* inode slab cache */
1945 inode_cachep
= kmem_cache_create("inode_cache",
1946 sizeof(struct inode
),
1948 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1949 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
1952 /* Hash may have been set up in inode_init_early */
1957 alloc_large_system_hash("Inode-cache",
1958 sizeof(struct hlist_head
),
1967 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1968 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1971 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1973 inode
->i_mode
= mode
;
1974 if (S_ISCHR(mode
)) {
1975 inode
->i_fop
= &def_chr_fops
;
1976 inode
->i_rdev
= rdev
;
1977 } else if (S_ISBLK(mode
)) {
1978 inode
->i_fop
= &def_blk_fops
;
1979 inode
->i_rdev
= rdev
;
1980 } else if (S_ISFIFO(mode
))
1981 inode
->i_fop
= &pipefifo_fops
;
1982 else if (S_ISSOCK(mode
))
1983 ; /* leave it no_open_fops */
1985 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1986 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1989 EXPORT_SYMBOL(init_special_inode
);
1992 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1994 * @dir: Directory inode
1995 * @mode: mode of the new inode
1997 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
2000 inode
->i_uid
= current_fsuid();
2001 if (dir
&& dir
->i_mode
& S_ISGID
) {
2002 inode
->i_gid
= dir
->i_gid
;
2006 inode
->i_gid
= current_fsgid();
2007 inode
->i_mode
= mode
;
2009 EXPORT_SYMBOL(inode_init_owner
);
2012 * inode_owner_or_capable - check current task permissions to inode
2013 * @inode: inode being checked
2015 * Return true if current either has CAP_FOWNER in a namespace with the
2016 * inode owner uid mapped, or owns the file.
2018 bool inode_owner_or_capable(const struct inode
*inode
)
2020 struct user_namespace
*ns
;
2022 if (uid_eq(current_fsuid(), inode
->i_uid
))
2025 ns
= current_user_ns();
2026 if (ns_capable(ns
, CAP_FOWNER
) && kuid_has_mapping(ns
, inode
->i_uid
))
2030 EXPORT_SYMBOL(inode_owner_or_capable
);
2033 * Direct i/o helper functions
2035 static void __inode_dio_wait(struct inode
*inode
)
2037 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
2038 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
2041 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
2042 if (atomic_read(&inode
->i_dio_count
))
2044 } while (atomic_read(&inode
->i_dio_count
));
2045 finish_wait(wq
, &q
.wait
);
2049 * inode_dio_wait - wait for outstanding DIO requests to finish
2050 * @inode: inode to wait for
2052 * Waits for all pending direct I/O requests to finish so that we can
2053 * proceed with a truncate or equivalent operation.
2055 * Must be called under a lock that serializes taking new references
2056 * to i_dio_count, usually by inode->i_mutex.
2058 void inode_dio_wait(struct inode
*inode
)
2060 if (atomic_read(&inode
->i_dio_count
))
2061 __inode_dio_wait(inode
);
2063 EXPORT_SYMBOL(inode_dio_wait
);
2066 * inode_set_flags - atomically set some inode flags
2068 * Note: the caller should be holding i_mutex, or else be sure that
2069 * they have exclusive access to the inode structure (i.e., while the
2070 * inode is being instantiated). The reason for the cmpxchg() loop
2071 * --- which wouldn't be necessary if all code paths which modify
2072 * i_flags actually followed this rule, is that there is at least one
2073 * code path which doesn't today so we use cmpxchg() out of an abundance
2076 * In the long run, i_mutex is overkill, and we should probably look
2077 * at using the i_lock spinlock to protect i_flags, and then make sure
2078 * it is so documented in include/linux/fs.h and that all code follows
2079 * the locking convention!!
2081 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2084 unsigned int old_flags
, new_flags
;
2086 WARN_ON_ONCE(flags
& ~mask
);
2088 old_flags
= ACCESS_ONCE(inode
->i_flags
);
2089 new_flags
= (old_flags
& ~mask
) | flags
;
2090 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2091 new_flags
) != old_flags
));
2093 EXPORT_SYMBOL(inode_set_flags
);
2095 void inode_nohighmem(struct inode
*inode
)
2097 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2099 EXPORT_SYMBOL(inode_nohighmem
);
2102 * current_time - Return FS time
2105 * Return the current time truncated to the time granularity supported by
2108 * Note that inode and inode->sb cannot be NULL.
2109 * Otherwise, the function warns and returns time without truncation.
2111 struct timespec
current_time(struct inode
*inode
)
2113 struct timespec now
= current_kernel_time();
2115 if (unlikely(!inode
->i_sb
)) {
2116 WARN(1, "current_time() called with uninitialized super_block in the inode");
2120 return timespec_trunc(now
, inode
->i_sb
->s_time_gran
);
2122 EXPORT_SYMBOL(current_time
);