ARM: dts: Add USB 2.0 support on exynos5420
[linux-2.6/btrfs-unstable.git] / fs / splice.c
blob9bc07d2b53cf3a0e66605912386f9d2367601585
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
46 struct page *page = buf->page;
47 struct address_space *mapping;
49 lock_page(page);
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
63 wait_on_page_writeback(page);
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
83 out_unlock:
84 unlock_page(page);
85 return 1;
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
102 struct page *page = buf->page;
103 int err;
105 if (!PageUptodate(page)) {
106 lock_page(page);
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
126 * Page is ok afterall, we are done.
128 unlock_page(page);
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
188 ret = 0;
189 do_wakeup = 0;
190 page_nr = 0;
192 pipe_lock(pipe);
194 for (;;) {
195 if (!pipe->readers) {
196 send_sig(SIGPIPE, current, 0);
197 if (!ret)
198 ret = -EPIPE;
199 break;
202 if (pipe->nrbufs < pipe->buffers) {
203 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 struct pipe_buffer *buf = pipe->bufs + newbuf;
206 buf->page = spd->pages[page_nr];
207 buf->offset = spd->partial[page_nr].offset;
208 buf->len = spd->partial[page_nr].len;
209 buf->private = spd->partial[page_nr].private;
210 buf->ops = spd->ops;
211 if (spd->flags & SPLICE_F_GIFT)
212 buf->flags |= PIPE_BUF_FLAG_GIFT;
214 pipe->nrbufs++;
215 page_nr++;
216 ret += buf->len;
218 if (pipe->files)
219 do_wakeup = 1;
221 if (!--spd->nr_pages)
222 break;
223 if (pipe->nrbufs < pipe->buffers)
224 continue;
226 break;
229 if (spd->flags & SPLICE_F_NONBLOCK) {
230 if (!ret)
231 ret = -EAGAIN;
232 break;
235 if (signal_pending(current)) {
236 if (!ret)
237 ret = -ERESTARTSYS;
238 break;
241 if (do_wakeup) {
242 smp_mb();
243 if (waitqueue_active(&pipe->wait))
244 wake_up_interruptible_sync(&pipe->wait);
245 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 do_wakeup = 0;
249 pipe->waiting_writers++;
250 pipe_wait(pipe);
251 pipe->waiting_writers--;
254 pipe_unlock(pipe);
256 if (do_wakeup)
257 wakeup_pipe_readers(pipe);
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
262 return ret;
265 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 page_cache_release(spd->pages[i]);
271 * Check if we need to grow the arrays holding pages and partial page
272 * descriptions.
274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278 spd->nr_pages_max = buffers;
279 if (buffers <= PIPE_DEF_BUFFERS)
280 return 0;
282 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
283 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285 if (spd->pages && spd->partial)
286 return 0;
288 kfree(spd->pages);
289 kfree(spd->partial);
290 return -ENOMEM;
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296 return;
298 kfree(spd->pages);
299 kfree(spd->partial);
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .nr_pages_max = PIPE_DEF_BUFFERS,
319 .flags = flags,
320 .ops = &page_cache_pipe_buf_ops,
321 .spd_release = spd_release_page,
324 if (splice_grow_spd(pipe, &spd))
325 return -ENOMEM;
327 index = *ppos >> PAGE_CACHE_SHIFT;
328 loff = *ppos & ~PAGE_CACHE_MASK;
329 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
330 nr_pages = min(req_pages, spd.nr_pages_max);
333 * Lookup the (hopefully) full range of pages we need.
335 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
336 index += spd.nr_pages;
339 * If find_get_pages_contig() returned fewer pages than we needed,
340 * readahead/allocate the rest and fill in the holes.
342 if (spd.nr_pages < nr_pages)
343 page_cache_sync_readahead(mapping, &in->f_ra, in,
344 index, req_pages - spd.nr_pages);
346 error = 0;
347 while (spd.nr_pages < nr_pages) {
349 * Page could be there, find_get_pages_contig() breaks on
350 * the first hole.
352 page = find_get_page(mapping, index);
353 if (!page) {
355 * page didn't exist, allocate one.
357 page = page_cache_alloc_cold(mapping);
358 if (!page)
359 break;
361 error = add_to_page_cache_lru(page, mapping, index,
362 GFP_KERNEL);
363 if (unlikely(error)) {
364 page_cache_release(page);
365 if (error == -EEXIST)
366 continue;
367 break;
370 * add_to_page_cache() locks the page, unlock it
371 * to avoid convoluting the logic below even more.
373 unlock_page(page);
376 spd.pages[spd.nr_pages++] = page;
377 index++;
381 * Now loop over the map and see if we need to start IO on any
382 * pages, fill in the partial map, etc.
384 index = *ppos >> PAGE_CACHE_SHIFT;
385 nr_pages = spd.nr_pages;
386 spd.nr_pages = 0;
387 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
388 unsigned int this_len;
390 if (!len)
391 break;
394 * this_len is the max we'll use from this page
396 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
397 page = spd.pages[page_nr];
399 if (PageReadahead(page))
400 page_cache_async_readahead(mapping, &in->f_ra, in,
401 page, index, req_pages - page_nr);
404 * If the page isn't uptodate, we may need to start io on it
406 if (!PageUptodate(page)) {
407 lock_page(page);
410 * Page was truncated, or invalidated by the
411 * filesystem. Redo the find/create, but this time the
412 * page is kept locked, so there's no chance of another
413 * race with truncate/invalidate.
415 if (!page->mapping) {
416 unlock_page(page);
417 page = find_or_create_page(mapping, index,
418 mapping_gfp_mask(mapping));
420 if (!page) {
421 error = -ENOMEM;
422 break;
424 page_cache_release(spd.pages[page_nr]);
425 spd.pages[page_nr] = page;
428 * page was already under io and is now done, great
430 if (PageUptodate(page)) {
431 unlock_page(page);
432 goto fill_it;
436 * need to read in the page
438 error = mapping->a_ops->readpage(in, page);
439 if (unlikely(error)) {
441 * We really should re-lookup the page here,
442 * but it complicates things a lot. Instead
443 * lets just do what we already stored, and
444 * we'll get it the next time we are called.
446 if (error == AOP_TRUNCATED_PAGE)
447 error = 0;
449 break;
452 fill_it:
454 * i_size must be checked after PageUptodate.
456 isize = i_size_read(mapping->host);
457 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
458 if (unlikely(!isize || index > end_index))
459 break;
462 * if this is the last page, see if we need to shrink
463 * the length and stop
465 if (end_index == index) {
466 unsigned int plen;
469 * max good bytes in this page
471 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
472 if (plen <= loff)
473 break;
476 * force quit after adding this page
478 this_len = min(this_len, plen - loff);
479 len = this_len;
482 spd.partial[page_nr].offset = loff;
483 spd.partial[page_nr].len = this_len;
484 len -= this_len;
485 loff = 0;
486 spd.nr_pages++;
487 index++;
491 * Release any pages at the end, if we quit early. 'page_nr' is how far
492 * we got, 'nr_pages' is how many pages are in the map.
494 while (page_nr < nr_pages)
495 page_cache_release(spd.pages[page_nr++]);
496 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
498 if (spd.nr_pages)
499 error = splice_to_pipe(pipe, &spd);
501 splice_shrink_spd(&spd);
502 return error;
506 * generic_file_splice_read - splice data from file to a pipe
507 * @in: file to splice from
508 * @ppos: position in @in
509 * @pipe: pipe to splice to
510 * @len: number of bytes to splice
511 * @flags: splice modifier flags
513 * Description:
514 * Will read pages from given file and fill them into a pipe. Can be
515 * used as long as the address_space operations for the source implements
516 * a readpage() hook.
519 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
520 struct pipe_inode_info *pipe, size_t len,
521 unsigned int flags)
523 loff_t isize, left;
524 int ret;
526 isize = i_size_read(in->f_mapping->host);
527 if (unlikely(*ppos >= isize))
528 return 0;
530 left = isize - *ppos;
531 if (unlikely(left < len))
532 len = left;
534 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
535 if (ret > 0) {
536 *ppos += ret;
537 file_accessed(in);
540 return ret;
542 EXPORT_SYMBOL(generic_file_splice_read);
544 static const struct pipe_buf_operations default_pipe_buf_ops = {
545 .can_merge = 0,
546 .confirm = generic_pipe_buf_confirm,
547 .release = generic_pipe_buf_release,
548 .steal = generic_pipe_buf_steal,
549 .get = generic_pipe_buf_get,
552 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
553 struct pipe_buffer *buf)
555 return 1;
558 /* Pipe buffer operations for a socket and similar. */
559 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
560 .can_merge = 0,
561 .confirm = generic_pipe_buf_confirm,
562 .release = generic_pipe_buf_release,
563 .steal = generic_pipe_buf_nosteal,
564 .get = generic_pipe_buf_get,
566 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
568 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
569 unsigned long vlen, loff_t offset)
571 mm_segment_t old_fs;
572 loff_t pos = offset;
573 ssize_t res;
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
579 set_fs(old_fs);
581 return res;
584 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
585 loff_t pos)
587 mm_segment_t old_fs;
588 ssize_t res;
590 old_fs = get_fs();
591 set_fs(get_ds());
592 /* The cast to a user pointer is valid due to the set_fs() */
593 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
594 set_fs(old_fs);
596 return res;
598 EXPORT_SYMBOL(kernel_write);
600 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
601 struct pipe_inode_info *pipe, size_t len,
602 unsigned int flags)
604 unsigned int nr_pages;
605 unsigned int nr_freed;
606 size_t offset;
607 struct page *pages[PIPE_DEF_BUFFERS];
608 struct partial_page partial[PIPE_DEF_BUFFERS];
609 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
610 ssize_t res;
611 size_t this_len;
612 int error;
613 int i;
614 struct splice_pipe_desc spd = {
615 .pages = pages,
616 .partial = partial,
617 .nr_pages_max = PIPE_DEF_BUFFERS,
618 .flags = flags,
619 .ops = &default_pipe_buf_ops,
620 .spd_release = spd_release_page,
623 if (splice_grow_spd(pipe, &spd))
624 return -ENOMEM;
626 res = -ENOMEM;
627 vec = __vec;
628 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
629 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
630 if (!vec)
631 goto shrink_ret;
634 offset = *ppos & ~PAGE_CACHE_MASK;
635 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
637 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
638 struct page *page;
640 page = alloc_page(GFP_USER);
641 error = -ENOMEM;
642 if (!page)
643 goto err;
645 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
646 vec[i].iov_base = (void __user *) page_address(page);
647 vec[i].iov_len = this_len;
648 spd.pages[i] = page;
649 spd.nr_pages++;
650 len -= this_len;
651 offset = 0;
654 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
655 if (res < 0) {
656 error = res;
657 goto err;
660 error = 0;
661 if (!res)
662 goto err;
664 nr_freed = 0;
665 for (i = 0; i < spd.nr_pages; i++) {
666 this_len = min_t(size_t, vec[i].iov_len, res);
667 spd.partial[i].offset = 0;
668 spd.partial[i].len = this_len;
669 if (!this_len) {
670 __free_page(spd.pages[i]);
671 spd.pages[i] = NULL;
672 nr_freed++;
674 res -= this_len;
676 spd.nr_pages -= nr_freed;
678 res = splice_to_pipe(pipe, &spd);
679 if (res > 0)
680 *ppos += res;
682 shrink_ret:
683 if (vec != __vec)
684 kfree(vec);
685 splice_shrink_spd(&spd);
686 return res;
688 err:
689 for (i = 0; i < spd.nr_pages; i++)
690 __free_page(spd.pages[i]);
692 res = error;
693 goto shrink_ret;
695 EXPORT_SYMBOL(default_file_splice_read);
698 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
699 * using sendpage(). Return the number of bytes sent.
701 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
702 struct pipe_buffer *buf, struct splice_desc *sd)
704 struct file *file = sd->u.file;
705 loff_t pos = sd->pos;
706 int more;
708 if (!likely(file->f_op->sendpage))
709 return -EINVAL;
711 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
713 if (sd->len < sd->total_len && pipe->nrbufs > 1)
714 more |= MSG_SENDPAGE_NOTLAST;
716 return file->f_op->sendpage(file, buf->page, buf->offset,
717 sd->len, &pos, more);
721 * This is a little more tricky than the file -> pipe splicing. There are
722 * basically three cases:
724 * - Destination page already exists in the address space and there
725 * are users of it. For that case we have no other option that
726 * copying the data. Tough luck.
727 * - Destination page already exists in the address space, but there
728 * are no users of it. Make sure it's uptodate, then drop it. Fall
729 * through to last case.
730 * - Destination page does not exist, we can add the pipe page to
731 * the page cache and avoid the copy.
733 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
734 * sd->flags), we attempt to migrate pages from the pipe to the output
735 * file address space page cache. This is possible if no one else has
736 * the pipe page referenced outside of the pipe and page cache. If
737 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
738 * a new page in the output file page cache and fill/dirty that.
740 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
741 struct splice_desc *sd)
743 struct file *file = sd->u.file;
744 struct address_space *mapping = file->f_mapping;
745 unsigned int offset, this_len;
746 struct page *page;
747 void *fsdata;
748 int ret;
750 offset = sd->pos & ~PAGE_CACHE_MASK;
752 this_len = sd->len;
753 if (this_len + offset > PAGE_CACHE_SIZE)
754 this_len = PAGE_CACHE_SIZE - offset;
756 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
757 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
758 if (unlikely(ret))
759 goto out;
761 if (buf->page != page) {
762 char *src = kmap_atomic(buf->page);
763 char *dst = kmap_atomic(page);
765 memcpy(dst + offset, src + buf->offset, this_len);
766 flush_dcache_page(page);
767 kunmap_atomic(dst);
768 kunmap_atomic(src);
770 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
771 page, fsdata);
772 out:
773 return ret;
775 EXPORT_SYMBOL(pipe_to_file);
777 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
779 smp_mb();
780 if (waitqueue_active(&pipe->wait))
781 wake_up_interruptible(&pipe->wait);
782 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
786 * splice_from_pipe_feed - feed available data from a pipe to a file
787 * @pipe: pipe to splice from
788 * @sd: information to @actor
789 * @actor: handler that splices the data
791 * Description:
792 * This function loops over the pipe and calls @actor to do the
793 * actual moving of a single struct pipe_buffer to the desired
794 * destination. It returns when there's no more buffers left in
795 * the pipe or if the requested number of bytes (@sd->total_len)
796 * have been copied. It returns a positive number (one) if the
797 * pipe needs to be filled with more data, zero if the required
798 * number of bytes have been copied and -errno on error.
800 * This, together with splice_from_pipe_{begin,end,next}, may be
801 * used to implement the functionality of __splice_from_pipe() when
802 * locking is required around copying the pipe buffers to the
803 * destination.
805 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
806 splice_actor *actor)
808 int ret;
810 while (pipe->nrbufs) {
811 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
812 const struct pipe_buf_operations *ops = buf->ops;
814 sd->len = buf->len;
815 if (sd->len > sd->total_len)
816 sd->len = sd->total_len;
818 ret = buf->ops->confirm(pipe, buf);
819 if (unlikely(ret)) {
820 if (ret == -ENODATA)
821 ret = 0;
822 return ret;
825 ret = actor(pipe, buf, sd);
826 if (ret <= 0)
827 return ret;
829 buf->offset += ret;
830 buf->len -= ret;
832 sd->num_spliced += ret;
833 sd->len -= ret;
834 sd->pos += ret;
835 sd->total_len -= ret;
837 if (!buf->len) {
838 buf->ops = NULL;
839 ops->release(pipe, buf);
840 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
841 pipe->nrbufs--;
842 if (pipe->files)
843 sd->need_wakeup = true;
846 if (!sd->total_len)
847 return 0;
850 return 1;
852 EXPORT_SYMBOL(splice_from_pipe_feed);
855 * splice_from_pipe_next - wait for some data to splice from
856 * @pipe: pipe to splice from
857 * @sd: information about the splice operation
859 * Description:
860 * This function will wait for some data and return a positive
861 * value (one) if pipe buffers are available. It will return zero
862 * or -errno if no more data needs to be spliced.
864 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
866 while (!pipe->nrbufs) {
867 if (!pipe->writers)
868 return 0;
870 if (!pipe->waiting_writers && sd->num_spliced)
871 return 0;
873 if (sd->flags & SPLICE_F_NONBLOCK)
874 return -EAGAIN;
876 if (signal_pending(current))
877 return -ERESTARTSYS;
879 if (sd->need_wakeup) {
880 wakeup_pipe_writers(pipe);
881 sd->need_wakeup = false;
884 pipe_wait(pipe);
887 return 1;
889 EXPORT_SYMBOL(splice_from_pipe_next);
892 * splice_from_pipe_begin - start splicing from pipe
893 * @sd: information about the splice operation
895 * Description:
896 * This function should be called before a loop containing
897 * splice_from_pipe_next() and splice_from_pipe_feed() to
898 * initialize the necessary fields of @sd.
900 void splice_from_pipe_begin(struct splice_desc *sd)
902 sd->num_spliced = 0;
903 sd->need_wakeup = false;
905 EXPORT_SYMBOL(splice_from_pipe_begin);
908 * splice_from_pipe_end - finish splicing from pipe
909 * @pipe: pipe to splice from
910 * @sd: information about the splice operation
912 * Description:
913 * This function will wake up pipe writers if necessary. It should
914 * be called after a loop containing splice_from_pipe_next() and
915 * splice_from_pipe_feed().
917 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
919 if (sd->need_wakeup)
920 wakeup_pipe_writers(pipe);
922 EXPORT_SYMBOL(splice_from_pipe_end);
925 * __splice_from_pipe - splice data from a pipe to given actor
926 * @pipe: pipe to splice from
927 * @sd: information to @actor
928 * @actor: handler that splices the data
930 * Description:
931 * This function does little more than loop over the pipe and call
932 * @actor to do the actual moving of a single struct pipe_buffer to
933 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
934 * pipe_to_user.
937 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
938 splice_actor *actor)
940 int ret;
942 splice_from_pipe_begin(sd);
943 do {
944 ret = splice_from_pipe_next(pipe, sd);
945 if (ret > 0)
946 ret = splice_from_pipe_feed(pipe, sd, actor);
947 } while (ret > 0);
948 splice_from_pipe_end(pipe, sd);
950 return sd->num_spliced ? sd->num_spliced : ret;
952 EXPORT_SYMBOL(__splice_from_pipe);
955 * splice_from_pipe - splice data from a pipe to a file
956 * @pipe: pipe to splice from
957 * @out: file to splice to
958 * @ppos: position in @out
959 * @len: how many bytes to splice
960 * @flags: splice modifier flags
961 * @actor: handler that splices the data
963 * Description:
964 * See __splice_from_pipe. This function locks the pipe inode,
965 * otherwise it's identical to __splice_from_pipe().
968 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
969 loff_t *ppos, size_t len, unsigned int flags,
970 splice_actor *actor)
972 ssize_t ret;
973 struct splice_desc sd = {
974 .total_len = len,
975 .flags = flags,
976 .pos = *ppos,
977 .u.file = out,
980 pipe_lock(pipe);
981 ret = __splice_from_pipe(pipe, &sd, actor);
982 pipe_unlock(pipe);
984 return ret;
988 * generic_file_splice_write - splice data from a pipe to a file
989 * @pipe: pipe info
990 * @out: file to write to
991 * @ppos: position in @out
992 * @len: number of bytes to splice
993 * @flags: splice modifier flags
995 * Description:
996 * Will either move or copy pages (determined by @flags options) from
997 * the given pipe inode to the given file.
1000 ssize_t
1001 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1002 loff_t *ppos, size_t len, unsigned int flags)
1004 struct address_space *mapping = out->f_mapping;
1005 struct inode *inode = mapping->host;
1006 struct splice_desc sd = {
1007 .total_len = len,
1008 .flags = flags,
1009 .pos = *ppos,
1010 .u.file = out,
1012 ssize_t ret;
1014 pipe_lock(pipe);
1016 splice_from_pipe_begin(&sd);
1017 do {
1018 ret = splice_from_pipe_next(pipe, &sd);
1019 if (ret <= 0)
1020 break;
1022 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1023 ret = file_remove_suid(out);
1024 if (!ret) {
1025 ret = file_update_time(out);
1026 if (!ret)
1027 ret = splice_from_pipe_feed(pipe, &sd,
1028 pipe_to_file);
1030 mutex_unlock(&inode->i_mutex);
1031 } while (ret > 0);
1032 splice_from_pipe_end(pipe, &sd);
1034 pipe_unlock(pipe);
1036 if (sd.num_spliced)
1037 ret = sd.num_spliced;
1039 if (ret > 0) {
1040 int err;
1042 err = generic_write_sync(out, *ppos, ret);
1043 if (err)
1044 ret = err;
1045 else
1046 *ppos += ret;
1047 balance_dirty_pages_ratelimited(mapping);
1050 return ret;
1053 EXPORT_SYMBOL(generic_file_splice_write);
1055 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1056 struct splice_desc *sd)
1058 int ret;
1059 void *data;
1060 loff_t tmp = sd->pos;
1062 data = kmap(buf->page);
1063 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1064 kunmap(buf->page);
1066 return ret;
1069 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1070 struct file *out, loff_t *ppos,
1071 size_t len, unsigned int flags)
1073 ssize_t ret;
1075 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1076 if (ret > 0)
1077 *ppos += ret;
1079 return ret;
1083 * generic_splice_sendpage - splice data from a pipe to a socket
1084 * @pipe: pipe to splice from
1085 * @out: socket to write to
1086 * @ppos: position in @out
1087 * @len: number of bytes to splice
1088 * @flags: splice modifier flags
1090 * Description:
1091 * Will send @len bytes from the pipe to a network socket. No data copying
1092 * is involved.
1095 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1096 loff_t *ppos, size_t len, unsigned int flags)
1098 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1101 EXPORT_SYMBOL(generic_splice_sendpage);
1104 * Attempt to initiate a splice from pipe to file.
1106 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1107 loff_t *ppos, size_t len, unsigned int flags)
1109 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1110 loff_t *, size_t, unsigned int);
1112 if (out->f_op->splice_write)
1113 splice_write = out->f_op->splice_write;
1114 else
1115 splice_write = default_file_splice_write;
1117 return splice_write(pipe, out, ppos, len, flags);
1121 * Attempt to initiate a splice from a file to a pipe.
1123 static long do_splice_to(struct file *in, loff_t *ppos,
1124 struct pipe_inode_info *pipe, size_t len,
1125 unsigned int flags)
1127 ssize_t (*splice_read)(struct file *, loff_t *,
1128 struct pipe_inode_info *, size_t, unsigned int);
1129 int ret;
1131 if (unlikely(!(in->f_mode & FMODE_READ)))
1132 return -EBADF;
1134 ret = rw_verify_area(READ, in, ppos, len);
1135 if (unlikely(ret < 0))
1136 return ret;
1138 if (in->f_op->splice_read)
1139 splice_read = in->f_op->splice_read;
1140 else
1141 splice_read = default_file_splice_read;
1143 return splice_read(in, ppos, pipe, len, flags);
1147 * splice_direct_to_actor - splices data directly between two non-pipes
1148 * @in: file to splice from
1149 * @sd: actor information on where to splice to
1150 * @actor: handles the data splicing
1152 * Description:
1153 * This is a special case helper to splice directly between two
1154 * points, without requiring an explicit pipe. Internally an allocated
1155 * pipe is cached in the process, and reused during the lifetime of
1156 * that process.
1159 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1160 splice_direct_actor *actor)
1162 struct pipe_inode_info *pipe;
1163 long ret, bytes;
1164 umode_t i_mode;
1165 size_t len;
1166 int i, flags;
1169 * We require the input being a regular file, as we don't want to
1170 * randomly drop data for eg socket -> socket splicing. Use the
1171 * piped splicing for that!
1173 i_mode = file_inode(in)->i_mode;
1174 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1175 return -EINVAL;
1178 * neither in nor out is a pipe, setup an internal pipe attached to
1179 * 'out' and transfer the wanted data from 'in' to 'out' through that
1181 pipe = current->splice_pipe;
1182 if (unlikely(!pipe)) {
1183 pipe = alloc_pipe_info();
1184 if (!pipe)
1185 return -ENOMEM;
1188 * We don't have an immediate reader, but we'll read the stuff
1189 * out of the pipe right after the splice_to_pipe(). So set
1190 * PIPE_READERS appropriately.
1192 pipe->readers = 1;
1194 current->splice_pipe = pipe;
1198 * Do the splice.
1200 ret = 0;
1201 bytes = 0;
1202 len = sd->total_len;
1203 flags = sd->flags;
1206 * Don't block on output, we have to drain the direct pipe.
1208 sd->flags &= ~SPLICE_F_NONBLOCK;
1210 while (len) {
1211 size_t read_len;
1212 loff_t pos = sd->pos, prev_pos = pos;
1214 ret = do_splice_to(in, &pos, pipe, len, flags);
1215 if (unlikely(ret <= 0))
1216 goto out_release;
1218 read_len = ret;
1219 sd->total_len = read_len;
1222 * NOTE: nonblocking mode only applies to the input. We
1223 * must not do the output in nonblocking mode as then we
1224 * could get stuck data in the internal pipe:
1226 ret = actor(pipe, sd);
1227 if (unlikely(ret <= 0)) {
1228 sd->pos = prev_pos;
1229 goto out_release;
1232 bytes += ret;
1233 len -= ret;
1234 sd->pos = pos;
1236 if (ret < read_len) {
1237 sd->pos = prev_pos + ret;
1238 goto out_release;
1242 done:
1243 pipe->nrbufs = pipe->curbuf = 0;
1244 file_accessed(in);
1245 return bytes;
1247 out_release:
1249 * If we did an incomplete transfer we must release
1250 * the pipe buffers in question:
1252 for (i = 0; i < pipe->buffers; i++) {
1253 struct pipe_buffer *buf = pipe->bufs + i;
1255 if (buf->ops) {
1256 buf->ops->release(pipe, buf);
1257 buf->ops = NULL;
1261 if (!bytes)
1262 bytes = ret;
1264 goto done;
1266 EXPORT_SYMBOL(splice_direct_to_actor);
1268 static int direct_splice_actor(struct pipe_inode_info *pipe,
1269 struct splice_desc *sd)
1271 struct file *file = sd->u.file;
1273 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1274 sd->flags);
1278 * do_splice_direct - splices data directly between two files
1279 * @in: file to splice from
1280 * @ppos: input file offset
1281 * @out: file to splice to
1282 * @opos: output file offset
1283 * @len: number of bytes to splice
1284 * @flags: splice modifier flags
1286 * Description:
1287 * For use by do_sendfile(). splice can easily emulate sendfile, but
1288 * doing it in the application would incur an extra system call
1289 * (splice in + splice out, as compared to just sendfile()). So this helper
1290 * can splice directly through a process-private pipe.
1293 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1294 loff_t *opos, size_t len, unsigned int flags)
1296 struct splice_desc sd = {
1297 .len = len,
1298 .total_len = len,
1299 .flags = flags,
1300 .pos = *ppos,
1301 .u.file = out,
1302 .opos = opos,
1304 long ret;
1306 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1307 return -EBADF;
1309 if (unlikely(out->f_flags & O_APPEND))
1310 return -EINVAL;
1312 ret = rw_verify_area(WRITE, out, opos, len);
1313 if (unlikely(ret < 0))
1314 return ret;
1316 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1317 if (ret > 0)
1318 *ppos = sd.pos;
1320 return ret;
1323 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1324 struct pipe_inode_info *opipe,
1325 size_t len, unsigned int flags);
1328 * Determine where to splice to/from.
1330 static long do_splice(struct file *in, loff_t __user *off_in,
1331 struct file *out, loff_t __user *off_out,
1332 size_t len, unsigned int flags)
1334 struct pipe_inode_info *ipipe;
1335 struct pipe_inode_info *opipe;
1336 loff_t offset;
1337 long ret;
1339 ipipe = get_pipe_info(in);
1340 opipe = get_pipe_info(out);
1342 if (ipipe && opipe) {
1343 if (off_in || off_out)
1344 return -ESPIPE;
1346 if (!(in->f_mode & FMODE_READ))
1347 return -EBADF;
1349 if (!(out->f_mode & FMODE_WRITE))
1350 return -EBADF;
1352 /* Splicing to self would be fun, but... */
1353 if (ipipe == opipe)
1354 return -EINVAL;
1356 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1359 if (ipipe) {
1360 if (off_in)
1361 return -ESPIPE;
1362 if (off_out) {
1363 if (!(out->f_mode & FMODE_PWRITE))
1364 return -EINVAL;
1365 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1366 return -EFAULT;
1367 } else {
1368 offset = out->f_pos;
1371 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1372 return -EBADF;
1374 if (unlikely(out->f_flags & O_APPEND))
1375 return -EINVAL;
1377 ret = rw_verify_area(WRITE, out, &offset, len);
1378 if (unlikely(ret < 0))
1379 return ret;
1381 file_start_write(out);
1382 ret = do_splice_from(ipipe, out, &offset, len, flags);
1383 file_end_write(out);
1385 if (!off_out)
1386 out->f_pos = offset;
1387 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1388 ret = -EFAULT;
1390 return ret;
1393 if (opipe) {
1394 if (off_out)
1395 return -ESPIPE;
1396 if (off_in) {
1397 if (!(in->f_mode & FMODE_PREAD))
1398 return -EINVAL;
1399 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1400 return -EFAULT;
1401 } else {
1402 offset = in->f_pos;
1405 ret = do_splice_to(in, &offset, opipe, len, flags);
1407 if (!off_in)
1408 in->f_pos = offset;
1409 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1410 ret = -EFAULT;
1412 return ret;
1415 return -EINVAL;
1419 * Map an iov into an array of pages and offset/length tupples. With the
1420 * partial_page structure, we can map several non-contiguous ranges into
1421 * our ones pages[] map instead of splitting that operation into pieces.
1422 * Could easily be exported as a generic helper for other users, in which
1423 * case one would probably want to add a 'max_nr_pages' parameter as well.
1425 static int get_iovec_page_array(const struct iovec __user *iov,
1426 unsigned int nr_vecs, struct page **pages,
1427 struct partial_page *partial, bool aligned,
1428 unsigned int pipe_buffers)
1430 int buffers = 0, error = 0;
1432 while (nr_vecs) {
1433 unsigned long off, npages;
1434 struct iovec entry;
1435 void __user *base;
1436 size_t len;
1437 int i;
1439 error = -EFAULT;
1440 if (copy_from_user(&entry, iov, sizeof(entry)))
1441 break;
1443 base = entry.iov_base;
1444 len = entry.iov_len;
1447 * Sanity check this iovec. 0 read succeeds.
1449 error = 0;
1450 if (unlikely(!len))
1451 break;
1452 error = -EFAULT;
1453 if (!access_ok(VERIFY_READ, base, len))
1454 break;
1457 * Get this base offset and number of pages, then map
1458 * in the user pages.
1460 off = (unsigned long) base & ~PAGE_MASK;
1463 * If asked for alignment, the offset must be zero and the
1464 * length a multiple of the PAGE_SIZE.
1466 error = -EINVAL;
1467 if (aligned && (off || len & ~PAGE_MASK))
1468 break;
1470 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1471 if (npages > pipe_buffers - buffers)
1472 npages = pipe_buffers - buffers;
1474 error = get_user_pages_fast((unsigned long)base, npages,
1475 0, &pages[buffers]);
1477 if (unlikely(error <= 0))
1478 break;
1481 * Fill this contiguous range into the partial page map.
1483 for (i = 0; i < error; i++) {
1484 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1486 partial[buffers].offset = off;
1487 partial[buffers].len = plen;
1489 off = 0;
1490 len -= plen;
1491 buffers++;
1495 * We didn't complete this iov, stop here since it probably
1496 * means we have to move some of this into a pipe to
1497 * be able to continue.
1499 if (len)
1500 break;
1503 * Don't continue if we mapped fewer pages than we asked for,
1504 * or if we mapped the max number of pages that we have
1505 * room for.
1507 if (error < npages || buffers == pipe_buffers)
1508 break;
1510 nr_vecs--;
1511 iov++;
1514 if (buffers)
1515 return buffers;
1517 return error;
1520 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1521 struct splice_desc *sd)
1523 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1524 return n == sd->len ? n : -EFAULT;
1528 * For lack of a better implementation, implement vmsplice() to userspace
1529 * as a simple copy of the pipes pages to the user iov.
1531 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1532 unsigned long nr_segs, unsigned int flags)
1534 struct pipe_inode_info *pipe;
1535 struct splice_desc sd;
1536 long ret;
1537 struct iovec iovstack[UIO_FASTIOV];
1538 struct iovec *iov = iovstack;
1539 struct iov_iter iter;
1540 ssize_t count = 0;
1542 pipe = get_pipe_info(file);
1543 if (!pipe)
1544 return -EBADF;
1546 ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1547 ARRAY_SIZE(iovstack), iovstack, &iov);
1548 if (ret <= 0)
1549 return ret;
1551 iov_iter_init(&iter, iov, nr_segs, count, 0);
1553 sd.len = 0;
1554 sd.total_len = count;
1555 sd.flags = flags;
1556 sd.u.data = &iter;
1557 sd.pos = 0;
1559 pipe_lock(pipe);
1560 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1561 pipe_unlock(pipe);
1563 if (iov != iovstack)
1564 kfree(iov);
1566 return ret;
1570 * vmsplice splices a user address range into a pipe. It can be thought of
1571 * as splice-from-memory, where the regular splice is splice-from-file (or
1572 * to file). In both cases the output is a pipe, naturally.
1574 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1575 unsigned long nr_segs, unsigned int flags)
1577 struct pipe_inode_info *pipe;
1578 struct page *pages[PIPE_DEF_BUFFERS];
1579 struct partial_page partial[PIPE_DEF_BUFFERS];
1580 struct splice_pipe_desc spd = {
1581 .pages = pages,
1582 .partial = partial,
1583 .nr_pages_max = PIPE_DEF_BUFFERS,
1584 .flags = flags,
1585 .ops = &user_page_pipe_buf_ops,
1586 .spd_release = spd_release_page,
1588 long ret;
1590 pipe = get_pipe_info(file);
1591 if (!pipe)
1592 return -EBADF;
1594 if (splice_grow_spd(pipe, &spd))
1595 return -ENOMEM;
1597 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1598 spd.partial, false,
1599 spd.nr_pages_max);
1600 if (spd.nr_pages <= 0)
1601 ret = spd.nr_pages;
1602 else
1603 ret = splice_to_pipe(pipe, &spd);
1605 splice_shrink_spd(&spd);
1606 return ret;
1610 * Note that vmsplice only really supports true splicing _from_ user memory
1611 * to a pipe, not the other way around. Splicing from user memory is a simple
1612 * operation that can be supported without any funky alignment restrictions
1613 * or nasty vm tricks. We simply map in the user memory and fill them into
1614 * a pipe. The reverse isn't quite as easy, though. There are two possible
1615 * solutions for that:
1617 * - memcpy() the data internally, at which point we might as well just
1618 * do a regular read() on the buffer anyway.
1619 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1620 * has restriction limitations on both ends of the pipe).
1622 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1625 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1626 unsigned long, nr_segs, unsigned int, flags)
1628 struct fd f;
1629 long error;
1631 if (unlikely(nr_segs > UIO_MAXIOV))
1632 return -EINVAL;
1633 else if (unlikely(!nr_segs))
1634 return 0;
1636 error = -EBADF;
1637 f = fdget(fd);
1638 if (f.file) {
1639 if (f.file->f_mode & FMODE_WRITE)
1640 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1641 else if (f.file->f_mode & FMODE_READ)
1642 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1644 fdput(f);
1647 return error;
1650 #ifdef CONFIG_COMPAT
1651 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1652 unsigned int, nr_segs, unsigned int, flags)
1654 unsigned i;
1655 struct iovec __user *iov;
1656 if (nr_segs > UIO_MAXIOV)
1657 return -EINVAL;
1658 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1659 for (i = 0; i < nr_segs; i++) {
1660 struct compat_iovec v;
1661 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1662 get_user(v.iov_len, &iov32[i].iov_len) ||
1663 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1664 put_user(v.iov_len, &iov[i].iov_len))
1665 return -EFAULT;
1667 return sys_vmsplice(fd, iov, nr_segs, flags);
1669 #endif
1671 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1672 int, fd_out, loff_t __user *, off_out,
1673 size_t, len, unsigned int, flags)
1675 struct fd in, out;
1676 long error;
1678 if (unlikely(!len))
1679 return 0;
1681 error = -EBADF;
1682 in = fdget(fd_in);
1683 if (in.file) {
1684 if (in.file->f_mode & FMODE_READ) {
1685 out = fdget(fd_out);
1686 if (out.file) {
1687 if (out.file->f_mode & FMODE_WRITE)
1688 error = do_splice(in.file, off_in,
1689 out.file, off_out,
1690 len, flags);
1691 fdput(out);
1694 fdput(in);
1696 return error;
1700 * Make sure there's data to read. Wait for input if we can, otherwise
1701 * return an appropriate error.
1703 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1705 int ret;
1708 * Check ->nrbufs without the inode lock first. This function
1709 * is speculative anyways, so missing one is ok.
1711 if (pipe->nrbufs)
1712 return 0;
1714 ret = 0;
1715 pipe_lock(pipe);
1717 while (!pipe->nrbufs) {
1718 if (signal_pending(current)) {
1719 ret = -ERESTARTSYS;
1720 break;
1722 if (!pipe->writers)
1723 break;
1724 if (!pipe->waiting_writers) {
1725 if (flags & SPLICE_F_NONBLOCK) {
1726 ret = -EAGAIN;
1727 break;
1730 pipe_wait(pipe);
1733 pipe_unlock(pipe);
1734 return ret;
1738 * Make sure there's writeable room. Wait for room if we can, otherwise
1739 * return an appropriate error.
1741 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1743 int ret;
1746 * Check ->nrbufs without the inode lock first. This function
1747 * is speculative anyways, so missing one is ok.
1749 if (pipe->nrbufs < pipe->buffers)
1750 return 0;
1752 ret = 0;
1753 pipe_lock(pipe);
1755 while (pipe->nrbufs >= pipe->buffers) {
1756 if (!pipe->readers) {
1757 send_sig(SIGPIPE, current, 0);
1758 ret = -EPIPE;
1759 break;
1761 if (flags & SPLICE_F_NONBLOCK) {
1762 ret = -EAGAIN;
1763 break;
1765 if (signal_pending(current)) {
1766 ret = -ERESTARTSYS;
1767 break;
1769 pipe->waiting_writers++;
1770 pipe_wait(pipe);
1771 pipe->waiting_writers--;
1774 pipe_unlock(pipe);
1775 return ret;
1779 * Splice contents of ipipe to opipe.
1781 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1782 struct pipe_inode_info *opipe,
1783 size_t len, unsigned int flags)
1785 struct pipe_buffer *ibuf, *obuf;
1786 int ret = 0, nbuf;
1787 bool input_wakeup = false;
1790 retry:
1791 ret = ipipe_prep(ipipe, flags);
1792 if (ret)
1793 return ret;
1795 ret = opipe_prep(opipe, flags);
1796 if (ret)
1797 return ret;
1800 * Potential ABBA deadlock, work around it by ordering lock
1801 * grabbing by pipe info address. Otherwise two different processes
1802 * could deadlock (one doing tee from A -> B, the other from B -> A).
1804 pipe_double_lock(ipipe, opipe);
1806 do {
1807 if (!opipe->readers) {
1808 send_sig(SIGPIPE, current, 0);
1809 if (!ret)
1810 ret = -EPIPE;
1811 break;
1814 if (!ipipe->nrbufs && !ipipe->writers)
1815 break;
1818 * Cannot make any progress, because either the input
1819 * pipe is empty or the output pipe is full.
1821 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1822 /* Already processed some buffers, break */
1823 if (ret)
1824 break;
1826 if (flags & SPLICE_F_NONBLOCK) {
1827 ret = -EAGAIN;
1828 break;
1832 * We raced with another reader/writer and haven't
1833 * managed to process any buffers. A zero return
1834 * value means EOF, so retry instead.
1836 pipe_unlock(ipipe);
1837 pipe_unlock(opipe);
1838 goto retry;
1841 ibuf = ipipe->bufs + ipipe->curbuf;
1842 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1843 obuf = opipe->bufs + nbuf;
1845 if (len >= ibuf->len) {
1847 * Simply move the whole buffer from ipipe to opipe
1849 *obuf = *ibuf;
1850 ibuf->ops = NULL;
1851 opipe->nrbufs++;
1852 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1853 ipipe->nrbufs--;
1854 input_wakeup = true;
1855 } else {
1857 * Get a reference to this pipe buffer,
1858 * so we can copy the contents over.
1860 ibuf->ops->get(ipipe, ibuf);
1861 *obuf = *ibuf;
1864 * Don't inherit the gift flag, we need to
1865 * prevent multiple steals of this page.
1867 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1869 obuf->len = len;
1870 opipe->nrbufs++;
1871 ibuf->offset += obuf->len;
1872 ibuf->len -= obuf->len;
1874 ret += obuf->len;
1875 len -= obuf->len;
1876 } while (len);
1878 pipe_unlock(ipipe);
1879 pipe_unlock(opipe);
1882 * If we put data in the output pipe, wakeup any potential readers.
1884 if (ret > 0)
1885 wakeup_pipe_readers(opipe);
1887 if (input_wakeup)
1888 wakeup_pipe_writers(ipipe);
1890 return ret;
1894 * Link contents of ipipe to opipe.
1896 static int link_pipe(struct pipe_inode_info *ipipe,
1897 struct pipe_inode_info *opipe,
1898 size_t len, unsigned int flags)
1900 struct pipe_buffer *ibuf, *obuf;
1901 int ret = 0, i = 0, nbuf;
1904 * Potential ABBA deadlock, work around it by ordering lock
1905 * grabbing by pipe info address. Otherwise two different processes
1906 * could deadlock (one doing tee from A -> B, the other from B -> A).
1908 pipe_double_lock(ipipe, opipe);
1910 do {
1911 if (!opipe->readers) {
1912 send_sig(SIGPIPE, current, 0);
1913 if (!ret)
1914 ret = -EPIPE;
1915 break;
1919 * If we have iterated all input buffers or ran out of
1920 * output room, break.
1922 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1923 break;
1925 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1926 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1929 * Get a reference to this pipe buffer,
1930 * so we can copy the contents over.
1932 ibuf->ops->get(ipipe, ibuf);
1934 obuf = opipe->bufs + nbuf;
1935 *obuf = *ibuf;
1938 * Don't inherit the gift flag, we need to
1939 * prevent multiple steals of this page.
1941 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1943 if (obuf->len > len)
1944 obuf->len = len;
1946 opipe->nrbufs++;
1947 ret += obuf->len;
1948 len -= obuf->len;
1949 i++;
1950 } while (len);
1953 * return EAGAIN if we have the potential of some data in the
1954 * future, otherwise just return 0
1956 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1957 ret = -EAGAIN;
1959 pipe_unlock(ipipe);
1960 pipe_unlock(opipe);
1963 * If we put data in the output pipe, wakeup any potential readers.
1965 if (ret > 0)
1966 wakeup_pipe_readers(opipe);
1968 return ret;
1972 * This is a tee(1) implementation that works on pipes. It doesn't copy
1973 * any data, it simply references the 'in' pages on the 'out' pipe.
1974 * The 'flags' used are the SPLICE_F_* variants, currently the only
1975 * applicable one is SPLICE_F_NONBLOCK.
1977 static long do_tee(struct file *in, struct file *out, size_t len,
1978 unsigned int flags)
1980 struct pipe_inode_info *ipipe = get_pipe_info(in);
1981 struct pipe_inode_info *opipe = get_pipe_info(out);
1982 int ret = -EINVAL;
1985 * Duplicate the contents of ipipe to opipe without actually
1986 * copying the data.
1988 if (ipipe && opipe && ipipe != opipe) {
1990 * Keep going, unless we encounter an error. The ipipe/opipe
1991 * ordering doesn't really matter.
1993 ret = ipipe_prep(ipipe, flags);
1994 if (!ret) {
1995 ret = opipe_prep(opipe, flags);
1996 if (!ret)
1997 ret = link_pipe(ipipe, opipe, len, flags);
2001 return ret;
2004 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2006 struct fd in;
2007 int error;
2009 if (unlikely(!len))
2010 return 0;
2012 error = -EBADF;
2013 in = fdget(fdin);
2014 if (in.file) {
2015 if (in.file->f_mode & FMODE_READ) {
2016 struct fd out = fdget(fdout);
2017 if (out.file) {
2018 if (out.file->f_mode & FMODE_WRITE)
2019 error = do_tee(in.file, out.file,
2020 len, flags);
2021 fdput(out);
2024 fdput(in);
2027 return error;