iwlwifi: mvm: add compile-time option to disable EBS
[linux-2.6/btrfs-unstable.git] / include / net / tcp.h
blob12d68335acd485820222e157d3a12792a01e1902
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the TCP module.
8 * Version: @(#)tcp.h 1.0.5 05/23/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
18 #ifndef _TCP_H
19 #define _TCP_H
21 #define FASTRETRANS_DEBUG 1
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
49 #include <linux/bpf.h>
50 #include <linux/filter.h>
51 #include <linux/bpf-cgroup.h>
53 extern struct inet_hashinfo tcp_hashinfo;
55 extern struct percpu_counter tcp_orphan_count;
56 void tcp_time_wait(struct sock *sk, int state, int timeo);
58 #define MAX_TCP_HEADER (128 + MAX_HEADER)
59 #define MAX_TCP_OPTION_SPACE 40
62 * Never offer a window over 32767 without using window scaling. Some
63 * poor stacks do signed 16bit maths!
65 #define MAX_TCP_WINDOW 32767U
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS 1024
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL 600
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD 8
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS 16U
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE 14U
88 /* urg_data states */
89 #define TCP_URG_VALID 0x0100
90 #define TCP_URG_NOTYET 0x0200
91 #define TCP_URG_READ 0x0400
93 #define TCP_RETR1 3 /*
94 * This is how many retries it does before it
95 * tries to figure out if the gateway is
96 * down. Minimal RFC value is 3; it corresponds
97 * to ~3sec-8min depending on RTO.
100 #define TCP_RETR2 15 /*
101 * This should take at least
102 * 90 minutes to time out.
103 * RFC1122 says that the limit is 100 sec.
104 * 15 is ~13-30min depending on RTO.
107 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
108 * when active opening a connection.
109 * RFC1122 says the minimum retry MUST
110 * be at least 180secs. Nevertheless
111 * this value is corresponding to
112 * 63secs of retransmission with the
113 * current initial RTO.
116 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
117 * when passive opening a connection.
118 * This is corresponding to 31secs of
119 * retransmission with the current
120 * initial RTO.
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 * state, about 60 seconds */
125 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
126 /* BSD style FIN_WAIT2 deadlock breaker.
127 * It used to be 3min, new value is 60sec,
128 * to combine FIN-WAIT-2 timeout with
129 * TIME-WAIT timer.
132 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
133 #if HZ >= 100
134 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
135 #define TCP_ATO_MIN ((unsigned)(HZ/25))
136 #else
137 #define TCP_DELACK_MIN 4U
138 #define TCP_ATO_MIN 4U
139 #endif
140 #define TCP_RTO_MAX ((unsigned)(120*HZ))
141 #define TCP_RTO_MIN ((unsigned)(HZ/5))
142 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
143 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
144 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
145 * used as a fallback RTO for the
146 * initial data transmission if no
147 * valid RTT sample has been acquired,
148 * most likely due to retrans in 3WHS.
151 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
152 * for local resources.
154 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
155 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
156 #define TCP_KEEPALIVE_INTVL (75*HZ)
158 #define MAX_TCP_KEEPIDLE 32767
159 #define MAX_TCP_KEEPINTVL 32767
160 #define MAX_TCP_KEEPCNT 127
161 #define MAX_TCP_SYNCNT 127
163 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
165 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
166 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
167 * after this time. It should be equal
168 * (or greater than) TCP_TIMEWAIT_LEN
169 * to provide reliability equal to one
170 * provided by timewait state.
172 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
173 * timestamps. It must be less than
174 * minimal timewait lifetime.
177 * TCP option
180 #define TCPOPT_NOP 1 /* Padding */
181 #define TCPOPT_EOL 0 /* End of options */
182 #define TCPOPT_MSS 2 /* Segment size negotiating */
183 #define TCPOPT_WINDOW 3 /* Window scaling */
184 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
185 #define TCPOPT_SACK 5 /* SACK Block */
186 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
187 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
189 #define TCPOPT_EXP 254 /* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
193 #define TCPOPT_FASTOPEN_MAGIC 0xF989
196 * TCP option lengths
199 #define TCPOLEN_MSS 4
200 #define TCPOLEN_WINDOW 3
201 #define TCPOLEN_SACK_PERM 2
202 #define TCPOLEN_TIMESTAMP 10
203 #define TCPOLEN_MD5SIG 18
204 #define TCPOLEN_FASTOPEN_BASE 2
205 #define TCPOLEN_EXP_FASTOPEN_BASE 4
207 /* But this is what stacks really send out. */
208 #define TCPOLEN_TSTAMP_ALIGNED 12
209 #define TCPOLEN_WSCALE_ALIGNED 4
210 #define TCPOLEN_SACKPERM_ALIGNED 4
211 #define TCPOLEN_SACK_BASE 2
212 #define TCPOLEN_SACK_BASE_ALIGNED 4
213 #define TCPOLEN_SACK_PERBLOCK 8
214 #define TCPOLEN_MD5SIG_ALIGNED 20
215 #define TCPOLEN_MSS_ALIGNED 4
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK 2 /* Socket is corked */
220 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND 10
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define TFO_CLIENT_ENABLE 1
230 #define TFO_SERVER_ENABLE 2
231 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
233 /* Accept SYN data w/o any cookie option */
234 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
236 /* Force enable TFO on all listeners, i.e., not requiring the
237 * TCP_FASTOPEN socket option.
239 #define TFO_SERVER_WO_SOCKOPT1 0x400
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_fastopen;
244 extern int sysctl_tcp_retrans_collapse;
245 extern int sysctl_tcp_stdurg;
246 extern int sysctl_tcp_rfc1337;
247 extern int sysctl_tcp_abort_on_overflow;
248 extern int sysctl_tcp_max_orphans;
249 extern int sysctl_tcp_fack;
250 extern int sysctl_tcp_reordering;
251 extern int sysctl_tcp_max_reordering;
252 extern int sysctl_tcp_dsack;
253 extern long sysctl_tcp_mem[3];
254 extern int sysctl_tcp_wmem[3];
255 extern int sysctl_tcp_rmem[3];
256 extern int sysctl_tcp_app_win;
257 extern int sysctl_tcp_adv_win_scale;
258 extern int sysctl_tcp_frto;
259 extern int sysctl_tcp_low_latency;
260 extern int sysctl_tcp_nometrics_save;
261 extern int sysctl_tcp_moderate_rcvbuf;
262 extern int sysctl_tcp_tso_win_divisor;
263 extern int sysctl_tcp_workaround_signed_windows;
264 extern int sysctl_tcp_slow_start_after_idle;
265 extern int sysctl_tcp_thin_linear_timeouts;
266 extern int sysctl_tcp_thin_dupack;
267 extern int sysctl_tcp_early_retrans;
268 extern int sysctl_tcp_recovery;
269 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
271 extern int sysctl_tcp_limit_output_bytes;
272 extern int sysctl_tcp_challenge_ack_limit;
273 extern int sysctl_tcp_min_tso_segs;
274 extern int sysctl_tcp_min_rtt_wlen;
275 extern int sysctl_tcp_autocorking;
276 extern int sysctl_tcp_invalid_ratelimit;
277 extern int sysctl_tcp_pacing_ss_ratio;
278 extern int sysctl_tcp_pacing_ca_ratio;
280 extern atomic_long_t tcp_memory_allocated;
281 extern struct percpu_counter tcp_sockets_allocated;
282 extern unsigned long tcp_memory_pressure;
284 /* optimized version of sk_under_memory_pressure() for TCP sockets */
285 static inline bool tcp_under_memory_pressure(const struct sock *sk)
287 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
288 mem_cgroup_under_socket_pressure(sk->sk_memcg))
289 return true;
291 return tcp_memory_pressure;
294 * The next routines deal with comparing 32 bit unsigned ints
295 * and worry about wraparound (automatic with unsigned arithmetic).
298 static inline bool before(__u32 seq1, __u32 seq2)
300 return (__s32)(seq1-seq2) < 0;
302 #define after(seq2, seq1) before(seq1, seq2)
304 /* is s2<=s1<=s3 ? */
305 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
307 return seq3 - seq2 >= seq1 - seq2;
310 static inline bool tcp_out_of_memory(struct sock *sk)
312 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
313 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
314 return true;
315 return false;
318 void sk_forced_mem_schedule(struct sock *sk, int size);
320 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
322 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
323 int orphans = percpu_counter_read_positive(ocp);
325 if (orphans << shift > sysctl_tcp_max_orphans) {
326 orphans = percpu_counter_sum_positive(ocp);
327 if (orphans << shift > sysctl_tcp_max_orphans)
328 return true;
330 return false;
333 bool tcp_check_oom(struct sock *sk, int shift);
336 extern struct proto tcp_prot;
338 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
339 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
340 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
341 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
343 void tcp_tasklet_init(void);
345 void tcp_v4_err(struct sk_buff *skb, u32);
347 void tcp_shutdown(struct sock *sk, int how);
349 void tcp_v4_early_demux(struct sk_buff *skb);
350 int tcp_v4_rcv(struct sk_buff *skb);
352 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
353 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
354 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
355 int flags);
356 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
357 size_t size, int flags);
358 void tcp_release_cb(struct sock *sk);
359 void tcp_wfree(struct sk_buff *skb);
360 void tcp_write_timer_handler(struct sock *sk);
361 void tcp_delack_timer_handler(struct sock *sk);
362 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
363 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
364 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
365 const struct tcphdr *th);
366 void tcp_rcv_space_adjust(struct sock *sk);
367 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
368 void tcp_twsk_destructor(struct sock *sk);
369 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
370 struct pipe_inode_info *pipe, size_t len,
371 unsigned int flags);
373 static inline void tcp_dec_quickack_mode(struct sock *sk,
374 const unsigned int pkts)
376 struct inet_connection_sock *icsk = inet_csk(sk);
378 if (icsk->icsk_ack.quick) {
379 if (pkts >= icsk->icsk_ack.quick) {
380 icsk->icsk_ack.quick = 0;
381 /* Leaving quickack mode we deflate ATO. */
382 icsk->icsk_ack.ato = TCP_ATO_MIN;
383 } else
384 icsk->icsk_ack.quick -= pkts;
388 #define TCP_ECN_OK 1
389 #define TCP_ECN_QUEUE_CWR 2
390 #define TCP_ECN_DEMAND_CWR 4
391 #define TCP_ECN_SEEN 8
393 enum tcp_tw_status {
394 TCP_TW_SUCCESS = 0,
395 TCP_TW_RST = 1,
396 TCP_TW_ACK = 2,
397 TCP_TW_SYN = 3
401 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
402 struct sk_buff *skb,
403 const struct tcphdr *th);
404 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
405 struct request_sock *req, bool fastopen);
406 int tcp_child_process(struct sock *parent, struct sock *child,
407 struct sk_buff *skb);
408 void tcp_enter_loss(struct sock *sk);
409 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
410 void tcp_clear_retrans(struct tcp_sock *tp);
411 void tcp_update_metrics(struct sock *sk);
412 void tcp_init_metrics(struct sock *sk);
413 void tcp_metrics_init(void);
414 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
415 void tcp_disable_fack(struct tcp_sock *tp);
416 void tcp_close(struct sock *sk, long timeout);
417 void tcp_init_sock(struct sock *sk);
418 unsigned int tcp_poll(struct file *file, struct socket *sock,
419 struct poll_table_struct *wait);
420 int tcp_getsockopt(struct sock *sk, int level, int optname,
421 char __user *optval, int __user *optlen);
422 int tcp_setsockopt(struct sock *sk, int level, int optname,
423 char __user *optval, unsigned int optlen);
424 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
425 char __user *optval, int __user *optlen);
426 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
427 char __user *optval, unsigned int optlen);
428 void tcp_set_keepalive(struct sock *sk, int val);
429 void tcp_syn_ack_timeout(const struct request_sock *req);
430 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
431 int flags, int *addr_len);
432 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
433 struct tcp_options_received *opt_rx,
434 int estab, struct tcp_fastopen_cookie *foc);
435 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
438 * TCP v4 functions exported for the inet6 API
441 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
442 void tcp_v4_mtu_reduced(struct sock *sk);
443 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
444 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
445 struct sock *tcp_create_openreq_child(const struct sock *sk,
446 struct request_sock *req,
447 struct sk_buff *skb);
448 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
449 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
450 struct request_sock *req,
451 struct dst_entry *dst,
452 struct request_sock *req_unhash,
453 bool *own_req);
454 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
455 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
456 int tcp_connect(struct sock *sk);
457 enum tcp_synack_type {
458 TCP_SYNACK_NORMAL,
459 TCP_SYNACK_FASTOPEN,
460 TCP_SYNACK_COOKIE,
462 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
463 struct request_sock *req,
464 struct tcp_fastopen_cookie *foc,
465 enum tcp_synack_type synack_type);
466 int tcp_disconnect(struct sock *sk, int flags);
468 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
469 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
470 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
472 /* From syncookies.c */
473 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
474 struct request_sock *req,
475 struct dst_entry *dst, u32 tsoff);
476 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
477 u32 cookie);
478 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
479 #ifdef CONFIG_SYN_COOKIES
481 /* Syncookies use a monotonic timer which increments every 60 seconds.
482 * This counter is used both as a hash input and partially encoded into
483 * the cookie value. A cookie is only validated further if the delta
484 * between the current counter value and the encoded one is less than this,
485 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
486 * the counter advances immediately after a cookie is generated).
488 #define MAX_SYNCOOKIE_AGE 2
489 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
490 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
492 /* syncookies: remember time of last synqueue overflow
493 * But do not dirty this field too often (once per second is enough)
494 * It is racy as we do not hold a lock, but race is very minor.
496 static inline void tcp_synq_overflow(const struct sock *sk)
498 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
499 unsigned long now = jiffies;
501 if (time_after(now, last_overflow + HZ))
502 tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
505 /* syncookies: no recent synqueue overflow on this listening socket? */
506 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
508 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
510 return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
513 static inline u32 tcp_cookie_time(void)
515 u64 val = get_jiffies_64();
517 do_div(val, TCP_SYNCOOKIE_PERIOD);
518 return val;
521 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
522 u16 *mssp);
523 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
524 u64 cookie_init_timestamp(struct request_sock *req);
525 bool cookie_timestamp_decode(const struct net *net,
526 struct tcp_options_received *opt);
527 bool cookie_ecn_ok(const struct tcp_options_received *opt,
528 const struct net *net, const struct dst_entry *dst);
530 /* From net/ipv6/syncookies.c */
531 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
532 u32 cookie);
533 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
535 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
536 const struct tcphdr *th, u16 *mssp);
537 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
538 #endif
539 /* tcp_output.c */
541 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
542 int min_tso_segs);
543 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
544 int nonagle);
545 bool tcp_may_send_now(struct sock *sk);
546 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
547 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
548 void tcp_retransmit_timer(struct sock *sk);
549 void tcp_xmit_retransmit_queue(struct sock *);
550 void tcp_simple_retransmit(struct sock *);
551 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
552 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
553 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
555 void tcp_send_probe0(struct sock *);
556 void tcp_send_partial(struct sock *);
557 int tcp_write_wakeup(struct sock *, int mib);
558 void tcp_send_fin(struct sock *sk);
559 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
560 int tcp_send_synack(struct sock *);
561 void tcp_push_one(struct sock *, unsigned int mss_now);
562 void tcp_send_ack(struct sock *sk);
563 void tcp_send_delayed_ack(struct sock *sk);
564 void tcp_send_loss_probe(struct sock *sk);
565 bool tcp_schedule_loss_probe(struct sock *sk);
566 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
567 const struct sk_buff *next_skb);
569 /* tcp_input.c */
570 void tcp_rearm_rto(struct sock *sk);
571 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
572 void tcp_reset(struct sock *sk);
573 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
574 void tcp_fin(struct sock *sk);
576 /* tcp_timer.c */
577 void tcp_init_xmit_timers(struct sock *);
578 static inline void tcp_clear_xmit_timers(struct sock *sk)
580 hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
581 inet_csk_clear_xmit_timers(sk);
584 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
585 unsigned int tcp_current_mss(struct sock *sk);
587 /* Bound MSS / TSO packet size with the half of the window */
588 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
590 int cutoff;
592 /* When peer uses tiny windows, there is no use in packetizing
593 * to sub-MSS pieces for the sake of SWS or making sure there
594 * are enough packets in the pipe for fast recovery.
596 * On the other hand, for extremely large MSS devices, handling
597 * smaller than MSS windows in this way does make sense.
599 if (tp->max_window > TCP_MSS_DEFAULT)
600 cutoff = (tp->max_window >> 1);
601 else
602 cutoff = tp->max_window;
604 if (cutoff && pktsize > cutoff)
605 return max_t(int, cutoff, 68U - tp->tcp_header_len);
606 else
607 return pktsize;
610 /* tcp.c */
611 void tcp_get_info(struct sock *, struct tcp_info *);
613 /* Read 'sendfile()'-style from a TCP socket */
614 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
615 sk_read_actor_t recv_actor);
617 void tcp_initialize_rcv_mss(struct sock *sk);
619 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
620 int tcp_mss_to_mtu(struct sock *sk, int mss);
621 void tcp_mtup_init(struct sock *sk);
622 void tcp_init_buffer_space(struct sock *sk);
624 static inline void tcp_bound_rto(const struct sock *sk)
626 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
627 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
630 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
632 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
635 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
637 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
638 ntohl(TCP_FLAG_ACK) |
639 snd_wnd);
642 static inline void tcp_fast_path_on(struct tcp_sock *tp)
644 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
647 static inline void tcp_fast_path_check(struct sock *sk)
649 struct tcp_sock *tp = tcp_sk(sk);
651 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
652 tp->rcv_wnd &&
653 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
654 !tp->urg_data)
655 tcp_fast_path_on(tp);
658 /* Compute the actual rto_min value */
659 static inline u32 tcp_rto_min(struct sock *sk)
661 const struct dst_entry *dst = __sk_dst_get(sk);
662 u32 rto_min = TCP_RTO_MIN;
664 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
665 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
666 return rto_min;
669 static inline u32 tcp_rto_min_us(struct sock *sk)
671 return jiffies_to_usecs(tcp_rto_min(sk));
674 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
676 return dst_metric_locked(dst, RTAX_CC_ALGO);
679 /* Minimum RTT in usec. ~0 means not available. */
680 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
682 return minmax_get(&tp->rtt_min);
685 /* Compute the actual receive window we are currently advertising.
686 * Rcv_nxt can be after the window if our peer push more data
687 * than the offered window.
689 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
691 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
693 if (win < 0)
694 win = 0;
695 return (u32) win;
698 /* Choose a new window, without checks for shrinking, and without
699 * scaling applied to the result. The caller does these things
700 * if necessary. This is a "raw" window selection.
702 u32 __tcp_select_window(struct sock *sk);
704 void tcp_send_window_probe(struct sock *sk);
706 /* TCP uses 32bit jiffies to save some space.
707 * Note that this is different from tcp_time_stamp, which
708 * historically has been the same until linux-4.13.
710 #define tcp_jiffies32 ((u32)jiffies)
713 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
714 * It is no longer tied to jiffies, but to 1 ms clock.
715 * Note: double check if you want to use tcp_jiffies32 instead of this.
717 #define TCP_TS_HZ 1000
719 static inline u64 tcp_clock_ns(void)
721 return local_clock();
724 static inline u64 tcp_clock_us(void)
726 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
729 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
730 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
732 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
735 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
736 static inline u32 tcp_time_stamp_raw(void)
738 return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
742 /* Refresh 1us clock of a TCP socket,
743 * ensuring monotically increasing values.
745 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
747 u64 val = tcp_clock_us();
749 if (val > tp->tcp_mstamp)
750 tp->tcp_mstamp = val;
753 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
755 return max_t(s64, t1 - t0, 0);
758 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
760 return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
764 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
766 #define TCPHDR_FIN 0x01
767 #define TCPHDR_SYN 0x02
768 #define TCPHDR_RST 0x04
769 #define TCPHDR_PSH 0x08
770 #define TCPHDR_ACK 0x10
771 #define TCPHDR_URG 0x20
772 #define TCPHDR_ECE 0x40
773 #define TCPHDR_CWR 0x80
775 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
777 /* This is what the send packet queuing engine uses to pass
778 * TCP per-packet control information to the transmission code.
779 * We also store the host-order sequence numbers in here too.
780 * This is 44 bytes if IPV6 is enabled.
781 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
783 struct tcp_skb_cb {
784 __u32 seq; /* Starting sequence number */
785 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
786 union {
787 /* Note : tcp_tw_isn is used in input path only
788 * (isn chosen by tcp_timewait_state_process())
790 * tcp_gso_segs/size are used in write queue only,
791 * cf tcp_skb_pcount()/tcp_skb_mss()
793 __u32 tcp_tw_isn;
794 struct {
795 u16 tcp_gso_segs;
796 u16 tcp_gso_size;
799 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
801 __u8 sacked; /* State flags for SACK/FACK. */
802 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
803 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
804 #define TCPCB_LOST 0x04 /* SKB is lost */
805 #define TCPCB_TAGBITS 0x07 /* All tag bits */
806 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
807 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
808 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
809 TCPCB_REPAIRED)
811 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
812 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
813 eor:1, /* Is skb MSG_EOR marked? */
814 unused:6;
815 __u32 ack_seq; /* Sequence number ACK'd */
816 union {
817 struct {
818 /* There is space for up to 24 bytes */
819 __u32 in_flight:30,/* Bytes in flight at transmit */
820 is_app_limited:1, /* cwnd not fully used? */
821 unused:1;
822 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
823 __u32 delivered;
824 /* start of send pipeline phase */
825 u64 first_tx_mstamp;
826 /* when we reached the "delivered" count */
827 u64 delivered_mstamp;
828 } tx; /* only used for outgoing skbs */
829 union {
830 struct inet_skb_parm h4;
831 #if IS_ENABLED(CONFIG_IPV6)
832 struct inet6_skb_parm h6;
833 #endif
834 } header; /* For incoming skbs */
838 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
841 #if IS_ENABLED(CONFIG_IPV6)
842 /* This is the variant of inet6_iif() that must be used by TCP,
843 * as TCP moves IP6CB into a different location in skb->cb[]
845 static inline int tcp_v6_iif(const struct sk_buff *skb)
847 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
849 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
851 #endif
853 /* TCP_SKB_CB reference means this can not be used from early demux */
854 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
856 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
857 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
858 skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
859 return true;
860 #endif
861 return false;
864 /* Due to TSO, an SKB can be composed of multiple actual
865 * packets. To keep these tracked properly, we use this.
867 static inline int tcp_skb_pcount(const struct sk_buff *skb)
869 return TCP_SKB_CB(skb)->tcp_gso_segs;
872 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
874 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
877 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
879 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
882 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
883 static inline int tcp_skb_mss(const struct sk_buff *skb)
885 return TCP_SKB_CB(skb)->tcp_gso_size;
888 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
890 return likely(!TCP_SKB_CB(skb)->eor);
893 /* Events passed to congestion control interface */
894 enum tcp_ca_event {
895 CA_EVENT_TX_START, /* first transmit when no packets in flight */
896 CA_EVENT_CWND_RESTART, /* congestion window restart */
897 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
898 CA_EVENT_LOSS, /* loss timeout */
899 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
900 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
901 CA_EVENT_DELAYED_ACK, /* Delayed ack is sent */
902 CA_EVENT_NON_DELAYED_ACK,
905 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
906 enum tcp_ca_ack_event_flags {
907 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
908 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
909 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
913 * Interface for adding new TCP congestion control handlers
915 #define TCP_CA_NAME_MAX 16
916 #define TCP_CA_MAX 128
917 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
919 #define TCP_CA_UNSPEC 0
921 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
922 #define TCP_CONG_NON_RESTRICTED 0x1
923 /* Requires ECN/ECT set on all packets */
924 #define TCP_CONG_NEEDS_ECN 0x2
926 union tcp_cc_info;
928 struct ack_sample {
929 u32 pkts_acked;
930 s32 rtt_us;
931 u32 in_flight;
934 /* A rate sample measures the number of (original/retransmitted) data
935 * packets delivered "delivered" over an interval of time "interval_us".
936 * The tcp_rate.c code fills in the rate sample, and congestion
937 * control modules that define a cong_control function to run at the end
938 * of ACK processing can optionally chose to consult this sample when
939 * setting cwnd and pacing rate.
940 * A sample is invalid if "delivered" or "interval_us" is negative.
942 struct rate_sample {
943 u64 prior_mstamp; /* starting timestamp for interval */
944 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
945 s32 delivered; /* number of packets delivered over interval */
946 long interval_us; /* time for tp->delivered to incr "delivered" */
947 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
948 int losses; /* number of packets marked lost upon ACK */
949 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
950 u32 prior_in_flight; /* in flight before this ACK */
951 bool is_app_limited; /* is sample from packet with bubble in pipe? */
952 bool is_retrans; /* is sample from retransmission? */
955 struct tcp_congestion_ops {
956 struct list_head list;
957 u32 key;
958 u32 flags;
960 /* initialize private data (optional) */
961 void (*init)(struct sock *sk);
962 /* cleanup private data (optional) */
963 void (*release)(struct sock *sk);
965 /* return slow start threshold (required) */
966 u32 (*ssthresh)(struct sock *sk);
967 /* do new cwnd calculation (required) */
968 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
969 /* call before changing ca_state (optional) */
970 void (*set_state)(struct sock *sk, u8 new_state);
971 /* call when cwnd event occurs (optional) */
972 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
973 /* call when ack arrives (optional) */
974 void (*in_ack_event)(struct sock *sk, u32 flags);
975 /* new value of cwnd after loss (required) */
976 u32 (*undo_cwnd)(struct sock *sk);
977 /* hook for packet ack accounting (optional) */
978 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
979 /* suggest number of segments for each skb to transmit (optional) */
980 u32 (*tso_segs_goal)(struct sock *sk);
981 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
982 u32 (*sndbuf_expand)(struct sock *sk);
983 /* call when packets are delivered to update cwnd and pacing rate,
984 * after all the ca_state processing. (optional)
986 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
987 /* get info for inet_diag (optional) */
988 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
989 union tcp_cc_info *info);
991 char name[TCP_CA_NAME_MAX];
992 struct module *owner;
995 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
996 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
998 void tcp_assign_congestion_control(struct sock *sk);
999 void tcp_init_congestion_control(struct sock *sk);
1000 void tcp_cleanup_congestion_control(struct sock *sk);
1001 int tcp_set_default_congestion_control(const char *name);
1002 void tcp_get_default_congestion_control(char *name);
1003 void tcp_get_available_congestion_control(char *buf, size_t len);
1004 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1005 int tcp_set_allowed_congestion_control(char *allowed);
1006 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load);
1007 void tcp_reinit_congestion_control(struct sock *sk,
1008 const struct tcp_congestion_ops *ca);
1009 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1010 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1012 u32 tcp_reno_ssthresh(struct sock *sk);
1013 u32 tcp_reno_undo_cwnd(struct sock *sk);
1014 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1015 extern struct tcp_congestion_ops tcp_reno;
1017 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1018 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1019 #ifdef CONFIG_INET
1020 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1021 #else
1022 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1024 return NULL;
1026 #endif
1028 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1030 const struct inet_connection_sock *icsk = inet_csk(sk);
1032 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1035 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1037 struct inet_connection_sock *icsk = inet_csk(sk);
1039 if (icsk->icsk_ca_ops->set_state)
1040 icsk->icsk_ca_ops->set_state(sk, ca_state);
1041 icsk->icsk_ca_state = ca_state;
1044 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1046 const struct inet_connection_sock *icsk = inet_csk(sk);
1048 if (icsk->icsk_ca_ops->cwnd_event)
1049 icsk->icsk_ca_ops->cwnd_event(sk, event);
1052 /* From tcp_rate.c */
1053 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1054 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1055 struct rate_sample *rs);
1056 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1057 struct rate_sample *rs);
1058 void tcp_rate_check_app_limited(struct sock *sk);
1060 /* These functions determine how the current flow behaves in respect of SACK
1061 * handling. SACK is negotiated with the peer, and therefore it can vary
1062 * between different flows.
1064 * tcp_is_sack - SACK enabled
1065 * tcp_is_reno - No SACK
1066 * tcp_is_fack - FACK enabled, implies SACK enabled
1068 static inline int tcp_is_sack(const struct tcp_sock *tp)
1070 return tp->rx_opt.sack_ok;
1073 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1075 return !tcp_is_sack(tp);
1078 static inline bool tcp_is_fack(const struct tcp_sock *tp)
1080 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1083 static inline void tcp_enable_fack(struct tcp_sock *tp)
1085 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1088 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1090 return tp->sacked_out + tp->lost_out;
1093 /* This determines how many packets are "in the network" to the best
1094 * of our knowledge. In many cases it is conservative, but where
1095 * detailed information is available from the receiver (via SACK
1096 * blocks etc.) we can make more aggressive calculations.
1098 * Use this for decisions involving congestion control, use just
1099 * tp->packets_out to determine if the send queue is empty or not.
1101 * Read this equation as:
1103 * "Packets sent once on transmission queue" MINUS
1104 * "Packets left network, but not honestly ACKed yet" PLUS
1105 * "Packets fast retransmitted"
1107 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1109 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1112 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1114 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1116 return tp->snd_cwnd < tp->snd_ssthresh;
1119 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1121 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1124 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1126 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1127 (1 << inet_csk(sk)->icsk_ca_state);
1130 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1131 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1132 * ssthresh.
1134 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1136 const struct tcp_sock *tp = tcp_sk(sk);
1138 if (tcp_in_cwnd_reduction(sk))
1139 return tp->snd_ssthresh;
1140 else
1141 return max(tp->snd_ssthresh,
1142 ((tp->snd_cwnd >> 1) +
1143 (tp->snd_cwnd >> 2)));
1146 /* Use define here intentionally to get WARN_ON location shown at the caller */
1147 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1149 void tcp_enter_cwr(struct sock *sk);
1150 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1152 /* The maximum number of MSS of available cwnd for which TSO defers
1153 * sending if not using sysctl_tcp_tso_win_divisor.
1155 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1157 return 3;
1160 /* Returns end sequence number of the receiver's advertised window */
1161 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1163 return tp->snd_una + tp->snd_wnd;
1166 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1167 * flexible approach. The RFC suggests cwnd should not be raised unless
1168 * it was fully used previously. And that's exactly what we do in
1169 * congestion avoidance mode. But in slow start we allow cwnd to grow
1170 * as long as the application has used half the cwnd.
1171 * Example :
1172 * cwnd is 10 (IW10), but application sends 9 frames.
1173 * We allow cwnd to reach 18 when all frames are ACKed.
1174 * This check is safe because it's as aggressive as slow start which already
1175 * risks 100% overshoot. The advantage is that we discourage application to
1176 * either send more filler packets or data to artificially blow up the cwnd
1177 * usage, and allow application-limited process to probe bw more aggressively.
1179 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1181 const struct tcp_sock *tp = tcp_sk(sk);
1183 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1184 if (tcp_in_slow_start(tp))
1185 return tp->snd_cwnd < 2 * tp->max_packets_out;
1187 return tp->is_cwnd_limited;
1190 /* Something is really bad, we could not queue an additional packet,
1191 * because qdisc is full or receiver sent a 0 window.
1192 * We do not want to add fuel to the fire, or abort too early,
1193 * so make sure the timer we arm now is at least 200ms in the future,
1194 * regardless of current icsk_rto value (as it could be ~2ms)
1196 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1198 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1201 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1202 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1203 unsigned long max_when)
1205 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1207 return (unsigned long)min_t(u64, when, max_when);
1210 static inline void tcp_check_probe_timer(struct sock *sk)
1212 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1213 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1214 tcp_probe0_base(sk), TCP_RTO_MAX);
1217 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1219 tp->snd_wl1 = seq;
1222 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1224 tp->snd_wl1 = seq;
1228 * Calculate(/check) TCP checksum
1230 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1231 __be32 daddr, __wsum base)
1233 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1236 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1238 return __skb_checksum_complete(skb);
1241 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1243 return !skb_csum_unnecessary(skb) &&
1244 __tcp_checksum_complete(skb);
1247 /* Prequeue for VJ style copy to user, combined with checksumming. */
1249 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1251 tp->ucopy.task = NULL;
1252 tp->ucopy.len = 0;
1253 tp->ucopy.memory = 0;
1254 skb_queue_head_init(&tp->ucopy.prequeue);
1257 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1258 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1259 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1261 #undef STATE_TRACE
1263 #ifdef STATE_TRACE
1264 static const char *statename[]={
1265 "Unused","Established","Syn Sent","Syn Recv",
1266 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1267 "Close Wait","Last ACK","Listen","Closing"
1269 #endif
1270 void tcp_set_state(struct sock *sk, int state);
1272 void tcp_done(struct sock *sk);
1274 int tcp_abort(struct sock *sk, int err);
1276 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1278 rx_opt->dsack = 0;
1279 rx_opt->num_sacks = 0;
1282 u32 tcp_default_init_rwnd(u32 mss);
1283 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1285 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1287 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1288 struct tcp_sock *tp = tcp_sk(sk);
1289 s32 delta;
1291 if (!sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1292 ca_ops->cong_control)
1293 return;
1294 delta = tcp_jiffies32 - tp->lsndtime;
1295 if (delta > inet_csk(sk)->icsk_rto)
1296 tcp_cwnd_restart(sk, delta);
1299 /* Determine a window scaling and initial window to offer. */
1300 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1301 __u32 *window_clamp, int wscale_ok,
1302 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1304 static inline int tcp_win_from_space(int space)
1306 int tcp_adv_win_scale = sysctl_tcp_adv_win_scale;
1308 return tcp_adv_win_scale <= 0 ?
1309 (space>>(-tcp_adv_win_scale)) :
1310 space - (space>>tcp_adv_win_scale);
1313 /* Note: caller must be prepared to deal with negative returns */
1314 static inline int tcp_space(const struct sock *sk)
1316 return tcp_win_from_space(sk->sk_rcvbuf -
1317 atomic_read(&sk->sk_rmem_alloc));
1320 static inline int tcp_full_space(const struct sock *sk)
1322 return tcp_win_from_space(sk->sk_rcvbuf);
1325 extern void tcp_openreq_init_rwin(struct request_sock *req,
1326 const struct sock *sk_listener,
1327 const struct dst_entry *dst);
1329 void tcp_enter_memory_pressure(struct sock *sk);
1330 void tcp_leave_memory_pressure(struct sock *sk);
1332 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1334 struct net *net = sock_net((struct sock *)tp);
1336 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1339 static inline int keepalive_time_when(const struct tcp_sock *tp)
1341 struct net *net = sock_net((struct sock *)tp);
1343 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1346 static inline int keepalive_probes(const struct tcp_sock *tp)
1348 struct net *net = sock_net((struct sock *)tp);
1350 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1353 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1355 const struct inet_connection_sock *icsk = &tp->inet_conn;
1357 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1358 tcp_jiffies32 - tp->rcv_tstamp);
1361 static inline int tcp_fin_time(const struct sock *sk)
1363 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1364 const int rto = inet_csk(sk)->icsk_rto;
1366 if (fin_timeout < (rto << 2) - (rto >> 1))
1367 fin_timeout = (rto << 2) - (rto >> 1);
1369 return fin_timeout;
1372 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1373 int paws_win)
1375 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1376 return true;
1377 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1378 return true;
1380 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1381 * then following tcp messages have valid values. Ignore 0 value,
1382 * or else 'negative' tsval might forbid us to accept their packets.
1384 if (!rx_opt->ts_recent)
1385 return true;
1386 return false;
1389 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1390 int rst)
1392 if (tcp_paws_check(rx_opt, 0))
1393 return false;
1395 /* RST segments are not recommended to carry timestamp,
1396 and, if they do, it is recommended to ignore PAWS because
1397 "their cleanup function should take precedence over timestamps."
1398 Certainly, it is mistake. It is necessary to understand the reasons
1399 of this constraint to relax it: if peer reboots, clock may go
1400 out-of-sync and half-open connections will not be reset.
1401 Actually, the problem would be not existing if all
1402 the implementations followed draft about maintaining clock
1403 via reboots. Linux-2.2 DOES NOT!
1405 However, we can relax time bounds for RST segments to MSL.
1407 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1408 return false;
1409 return true;
1412 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1413 int mib_idx, u32 *last_oow_ack_time);
1415 static inline void tcp_mib_init(struct net *net)
1417 /* See RFC 2012 */
1418 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1419 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1420 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1421 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1424 /* from STCP */
1425 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1427 tp->lost_skb_hint = NULL;
1430 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1432 tcp_clear_retrans_hints_partial(tp);
1433 tp->retransmit_skb_hint = NULL;
1436 union tcp_md5_addr {
1437 struct in_addr a4;
1438 #if IS_ENABLED(CONFIG_IPV6)
1439 struct in6_addr a6;
1440 #endif
1443 /* - key database */
1444 struct tcp_md5sig_key {
1445 struct hlist_node node;
1446 u8 keylen;
1447 u8 family; /* AF_INET or AF_INET6 */
1448 union tcp_md5_addr addr;
1449 u8 prefixlen;
1450 u8 key[TCP_MD5SIG_MAXKEYLEN];
1451 struct rcu_head rcu;
1454 /* - sock block */
1455 struct tcp_md5sig_info {
1456 struct hlist_head head;
1457 struct rcu_head rcu;
1460 /* - pseudo header */
1461 struct tcp4_pseudohdr {
1462 __be32 saddr;
1463 __be32 daddr;
1464 __u8 pad;
1465 __u8 protocol;
1466 __be16 len;
1469 struct tcp6_pseudohdr {
1470 struct in6_addr saddr;
1471 struct in6_addr daddr;
1472 __be32 len;
1473 __be32 protocol; /* including padding */
1476 union tcp_md5sum_block {
1477 struct tcp4_pseudohdr ip4;
1478 #if IS_ENABLED(CONFIG_IPV6)
1479 struct tcp6_pseudohdr ip6;
1480 #endif
1483 /* - pool: digest algorithm, hash description and scratch buffer */
1484 struct tcp_md5sig_pool {
1485 struct ahash_request *md5_req;
1486 void *scratch;
1489 /* - functions */
1490 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1491 const struct sock *sk, const struct sk_buff *skb);
1492 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1493 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1494 gfp_t gfp);
1495 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1496 int family, u8 prefixlen);
1497 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1498 const struct sock *addr_sk);
1500 #ifdef CONFIG_TCP_MD5SIG
1501 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1502 const union tcp_md5_addr *addr,
1503 int family);
1504 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1505 #else
1506 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1507 const union tcp_md5_addr *addr,
1508 int family)
1510 return NULL;
1512 #define tcp_twsk_md5_key(twsk) NULL
1513 #endif
1515 bool tcp_alloc_md5sig_pool(void);
1517 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1518 static inline void tcp_put_md5sig_pool(void)
1520 local_bh_enable();
1523 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1524 unsigned int header_len);
1525 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1526 const struct tcp_md5sig_key *key);
1528 /* From tcp_fastopen.c */
1529 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1530 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1531 unsigned long *last_syn_loss);
1532 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1533 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1534 u16 try_exp);
1535 struct tcp_fastopen_request {
1536 /* Fast Open cookie. Size 0 means a cookie request */
1537 struct tcp_fastopen_cookie cookie;
1538 struct msghdr *data; /* data in MSG_FASTOPEN */
1539 size_t size;
1540 int copied; /* queued in tcp_connect() */
1542 void tcp_free_fastopen_req(struct tcp_sock *tp);
1544 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1545 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1546 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1547 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1548 struct request_sock *req,
1549 struct tcp_fastopen_cookie *foc,
1550 struct dst_entry *dst);
1551 void tcp_fastopen_init_key_once(bool publish);
1552 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1553 struct tcp_fastopen_cookie *cookie);
1554 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1555 #define TCP_FASTOPEN_KEY_LENGTH 16
1557 /* Fastopen key context */
1558 struct tcp_fastopen_context {
1559 struct crypto_cipher *tfm;
1560 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1561 struct rcu_head rcu;
1564 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1565 void tcp_fastopen_active_disable(struct sock *sk);
1566 bool tcp_fastopen_active_should_disable(struct sock *sk);
1567 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1568 void tcp_fastopen_active_timeout_reset(void);
1570 /* Latencies incurred by various limits for a sender. They are
1571 * chronograph-like stats that are mutually exclusive.
1573 enum tcp_chrono {
1574 TCP_CHRONO_UNSPEC,
1575 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1576 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1577 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1578 __TCP_CHRONO_MAX,
1581 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1582 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1584 /* write queue abstraction */
1585 static inline void tcp_write_queue_purge(struct sock *sk)
1587 struct sk_buff *skb;
1589 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1590 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1591 sk_wmem_free_skb(sk, skb);
1592 sk_mem_reclaim(sk);
1593 tcp_clear_all_retrans_hints(tcp_sk(sk));
1596 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1598 return skb_peek(&sk->sk_write_queue);
1601 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1603 return skb_peek_tail(&sk->sk_write_queue);
1606 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1607 const struct sk_buff *skb)
1609 return skb_queue_next(&sk->sk_write_queue, skb);
1612 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1613 const struct sk_buff *skb)
1615 return skb_queue_prev(&sk->sk_write_queue, skb);
1618 #define tcp_for_write_queue(skb, sk) \
1619 skb_queue_walk(&(sk)->sk_write_queue, skb)
1621 #define tcp_for_write_queue_from(skb, sk) \
1622 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1624 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1625 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1627 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1629 return sk->sk_send_head;
1632 static inline bool tcp_skb_is_last(const struct sock *sk,
1633 const struct sk_buff *skb)
1635 return skb_queue_is_last(&sk->sk_write_queue, skb);
1638 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1640 if (tcp_skb_is_last(sk, skb))
1641 sk->sk_send_head = NULL;
1642 else
1643 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1646 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1648 if (sk->sk_send_head == skb_unlinked) {
1649 sk->sk_send_head = NULL;
1650 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1652 if (tcp_sk(sk)->highest_sack == skb_unlinked)
1653 tcp_sk(sk)->highest_sack = NULL;
1656 static inline void tcp_init_send_head(struct sock *sk)
1658 sk->sk_send_head = NULL;
1661 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1663 __skb_queue_tail(&sk->sk_write_queue, skb);
1666 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1668 __tcp_add_write_queue_tail(sk, skb);
1670 /* Queue it, remembering where we must start sending. */
1671 if (sk->sk_send_head == NULL) {
1672 sk->sk_send_head = skb;
1673 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1675 if (tcp_sk(sk)->highest_sack == NULL)
1676 tcp_sk(sk)->highest_sack = skb;
1680 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1682 __skb_queue_head(&sk->sk_write_queue, skb);
1685 /* Insert buff after skb on the write queue of sk. */
1686 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1687 struct sk_buff *buff,
1688 struct sock *sk)
1690 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1693 /* Insert new before skb on the write queue of sk. */
1694 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1695 struct sk_buff *skb,
1696 struct sock *sk)
1698 __skb_queue_before(&sk->sk_write_queue, skb, new);
1700 if (sk->sk_send_head == skb)
1701 sk->sk_send_head = new;
1704 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1706 __skb_unlink(skb, &sk->sk_write_queue);
1709 static inline bool tcp_write_queue_empty(struct sock *sk)
1711 return skb_queue_empty(&sk->sk_write_queue);
1714 static inline void tcp_push_pending_frames(struct sock *sk)
1716 if (tcp_send_head(sk)) {
1717 struct tcp_sock *tp = tcp_sk(sk);
1719 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1723 /* Start sequence of the skb just after the highest skb with SACKed
1724 * bit, valid only if sacked_out > 0 or when the caller has ensured
1725 * validity by itself.
1727 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1729 if (!tp->sacked_out)
1730 return tp->snd_una;
1732 if (tp->highest_sack == NULL)
1733 return tp->snd_nxt;
1735 return TCP_SKB_CB(tp->highest_sack)->seq;
1738 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1740 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1741 tcp_write_queue_next(sk, skb);
1744 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1746 return tcp_sk(sk)->highest_sack;
1749 static inline void tcp_highest_sack_reset(struct sock *sk)
1751 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1754 /* Called when old skb is about to be deleted (to be combined with new skb) */
1755 static inline void tcp_highest_sack_combine(struct sock *sk,
1756 struct sk_buff *old,
1757 struct sk_buff *new)
1759 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1760 tcp_sk(sk)->highest_sack = new;
1763 /* This helper checks if socket has IP_TRANSPARENT set */
1764 static inline bool inet_sk_transparent(const struct sock *sk)
1766 switch (sk->sk_state) {
1767 case TCP_TIME_WAIT:
1768 return inet_twsk(sk)->tw_transparent;
1769 case TCP_NEW_SYN_RECV:
1770 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1772 return inet_sk(sk)->transparent;
1775 /* Determines whether this is a thin stream (which may suffer from
1776 * increased latency). Used to trigger latency-reducing mechanisms.
1778 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1780 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1783 /* /proc */
1784 enum tcp_seq_states {
1785 TCP_SEQ_STATE_LISTENING,
1786 TCP_SEQ_STATE_ESTABLISHED,
1789 int tcp_seq_open(struct inode *inode, struct file *file);
1791 struct tcp_seq_afinfo {
1792 char *name;
1793 sa_family_t family;
1794 const struct file_operations *seq_fops;
1795 struct seq_operations seq_ops;
1798 struct tcp_iter_state {
1799 struct seq_net_private p;
1800 sa_family_t family;
1801 enum tcp_seq_states state;
1802 struct sock *syn_wait_sk;
1803 int bucket, offset, sbucket, num;
1804 loff_t last_pos;
1807 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1808 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1810 extern struct request_sock_ops tcp_request_sock_ops;
1811 extern struct request_sock_ops tcp6_request_sock_ops;
1813 void tcp_v4_destroy_sock(struct sock *sk);
1815 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1816 netdev_features_t features);
1817 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1818 int tcp_gro_complete(struct sk_buff *skb);
1820 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1822 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1824 struct net *net = sock_net((struct sock *)tp);
1825 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1828 static inline bool tcp_stream_memory_free(const struct sock *sk)
1830 const struct tcp_sock *tp = tcp_sk(sk);
1831 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1833 return notsent_bytes < tcp_notsent_lowat(tp);
1836 #ifdef CONFIG_PROC_FS
1837 int tcp4_proc_init(void);
1838 void tcp4_proc_exit(void);
1839 #endif
1841 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1842 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1843 const struct tcp_request_sock_ops *af_ops,
1844 struct sock *sk, struct sk_buff *skb);
1846 /* TCP af-specific functions */
1847 struct tcp_sock_af_ops {
1848 #ifdef CONFIG_TCP_MD5SIG
1849 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1850 const struct sock *addr_sk);
1851 int (*calc_md5_hash)(char *location,
1852 const struct tcp_md5sig_key *md5,
1853 const struct sock *sk,
1854 const struct sk_buff *skb);
1855 int (*md5_parse)(struct sock *sk,
1856 int optname,
1857 char __user *optval,
1858 int optlen);
1859 #endif
1862 struct tcp_request_sock_ops {
1863 u16 mss_clamp;
1864 #ifdef CONFIG_TCP_MD5SIG
1865 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1866 const struct sock *addr_sk);
1867 int (*calc_md5_hash) (char *location,
1868 const struct tcp_md5sig_key *md5,
1869 const struct sock *sk,
1870 const struct sk_buff *skb);
1871 #endif
1872 void (*init_req)(struct request_sock *req,
1873 const struct sock *sk_listener,
1874 struct sk_buff *skb);
1875 #ifdef CONFIG_SYN_COOKIES
1876 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1877 __u16 *mss);
1878 #endif
1879 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1880 const struct request_sock *req);
1881 u32 (*init_seq)(const struct sk_buff *skb);
1882 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1883 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1884 struct flowi *fl, struct request_sock *req,
1885 struct tcp_fastopen_cookie *foc,
1886 enum tcp_synack_type synack_type);
1889 #ifdef CONFIG_SYN_COOKIES
1890 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1891 const struct sock *sk, struct sk_buff *skb,
1892 __u16 *mss)
1894 tcp_synq_overflow(sk);
1895 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1896 return ops->cookie_init_seq(skb, mss);
1898 #else
1899 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1900 const struct sock *sk, struct sk_buff *skb,
1901 __u16 *mss)
1903 return 0;
1905 #endif
1907 int tcpv4_offload_init(void);
1909 void tcp_v4_init(void);
1910 void tcp_init(void);
1912 /* tcp_recovery.c */
1913 extern void tcp_rack_mark_lost(struct sock *sk);
1914 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1915 u64 xmit_time);
1916 extern void tcp_rack_reo_timeout(struct sock *sk);
1919 * Save and compile IPv4 options, return a pointer to it
1921 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1923 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1924 struct ip_options_rcu *dopt = NULL;
1926 if (opt->optlen) {
1927 int opt_size = sizeof(*dopt) + opt->optlen;
1929 dopt = kmalloc(opt_size, GFP_ATOMIC);
1930 if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1931 kfree(dopt);
1932 dopt = NULL;
1935 return dopt;
1938 /* locally generated TCP pure ACKs have skb->truesize == 2
1939 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1940 * This is much faster than dissecting the packet to find out.
1941 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1943 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1945 return skb->truesize == 2;
1948 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1950 skb->truesize = 2;
1953 static inline int tcp_inq(struct sock *sk)
1955 struct tcp_sock *tp = tcp_sk(sk);
1956 int answ;
1958 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1959 answ = 0;
1960 } else if (sock_flag(sk, SOCK_URGINLINE) ||
1961 !tp->urg_data ||
1962 before(tp->urg_seq, tp->copied_seq) ||
1963 !before(tp->urg_seq, tp->rcv_nxt)) {
1965 answ = tp->rcv_nxt - tp->copied_seq;
1967 /* Subtract 1, if FIN was received */
1968 if (answ && sock_flag(sk, SOCK_DONE))
1969 answ--;
1970 } else {
1971 answ = tp->urg_seq - tp->copied_seq;
1974 return answ;
1977 int tcp_peek_len(struct socket *sock);
1979 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1981 u16 segs_in;
1983 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1984 tp->segs_in += segs_in;
1985 if (skb->len > tcp_hdrlen(skb))
1986 tp->data_segs_in += segs_in;
1990 * TCP listen path runs lockless.
1991 * We forced "struct sock" to be const qualified to make sure
1992 * we don't modify one of its field by mistake.
1993 * Here, we increment sk_drops which is an atomic_t, so we can safely
1994 * make sock writable again.
1996 static inline void tcp_listendrop(const struct sock *sk)
1998 atomic_inc(&((struct sock *)sk)->sk_drops);
1999 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2002 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2005 * Interface for adding Upper Level Protocols over TCP
2008 #define TCP_ULP_NAME_MAX 16
2009 #define TCP_ULP_MAX 128
2010 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2012 struct tcp_ulp_ops {
2013 struct list_head list;
2015 /* initialize ulp */
2016 int (*init)(struct sock *sk);
2017 /* cleanup ulp */
2018 void (*release)(struct sock *sk);
2020 char name[TCP_ULP_NAME_MAX];
2021 struct module *owner;
2023 int tcp_register_ulp(struct tcp_ulp_ops *type);
2024 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2025 int tcp_set_ulp(struct sock *sk, const char *name);
2026 void tcp_get_available_ulp(char *buf, size_t len);
2027 void tcp_cleanup_ulp(struct sock *sk);
2029 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2030 * is < 0, then the BPF op failed (for example if the loaded BPF
2031 * program does not support the chosen operation or there is no BPF
2032 * program loaded).
2034 #ifdef CONFIG_BPF
2035 static inline int tcp_call_bpf(struct sock *sk, int op)
2037 struct bpf_sock_ops_kern sock_ops;
2038 int ret;
2040 if (sk_fullsock(sk))
2041 sock_owned_by_me(sk);
2043 memset(&sock_ops, 0, sizeof(sock_ops));
2044 sock_ops.sk = sk;
2045 sock_ops.op = op;
2047 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2048 if (ret == 0)
2049 ret = sock_ops.reply;
2050 else
2051 ret = -1;
2052 return ret;
2054 #else
2055 static inline int tcp_call_bpf(struct sock *sk, int op)
2057 return -EPERM;
2059 #endif
2061 static inline u32 tcp_timeout_init(struct sock *sk)
2063 int timeout;
2065 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT);
2067 if (timeout <= 0)
2068 timeout = TCP_TIMEOUT_INIT;
2069 return timeout;
2072 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2074 int rwnd;
2076 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT);
2078 if (rwnd < 0)
2079 rwnd = 0;
2080 return rwnd;
2083 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2085 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN) == 1);
2087 #endif /* _TCP_H */