vmscan: set up pagevec as late as possible in shrink_inactive_list()
[linux-2.6/btrfs-unstable.git] / mm / vmscan.c
blob12b692164bcc1bf3dfef8c23aab6264cb5305785
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
49 #include "internal.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
54 struct scan_control {
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned;
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed;
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim;
64 unsigned long hibernation_mode;
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
69 int may_writepage;
71 /* Can mapped pages be reclaimed? */
72 int may_unmap;
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
77 int swappiness;
79 int order;
82 * Intend to reclaim enough contenious memory rather than to reclaim
83 * enough amount memory. I.e, it's the mode for high order allocation.
85 bool lumpy_reclaim_mode;
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup *mem_cgroup;
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
94 nodemask_t *nodemask;
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc) (1)
140 #endif
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
148 return &zone->reclaim_stat;
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
154 if (!scanning_global_lru(sc))
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
157 return zone_page_state(zone, NR_LRU_BASE + lru);
162 * Add a shrinker callback to be called from the vm
164 void register_shrinker(struct shrinker *shrinker)
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
171 EXPORT_SYMBOL(register_shrinker);
174 * Remove one
176 void unregister_shrinker(struct shrinker *shrinker)
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
182 EXPORT_SYMBOL(unregister_shrinker);
184 #define SHRINK_BATCH 128
186 * Call the shrink functions to age shrinkable caches
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
202 * Returns the number of slab objects which we shrunk.
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
207 struct shrinker *shrinker;
208 unsigned long ret = 0;
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
213 if (!down_read_trylock(&shrinker_rwsem))
214 return 1; /* Assume we'll be able to shrink next time */
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
219 unsigned long max_pass;
221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
222 delta = (4 * scanned) / shrinker->seeks;
223 delta *= max_pass;
224 do_div(delta, lru_pages + 1);
225 shrinker->nr += delta;
226 if (shrinker->nr < 0) {
227 printk(KERN_ERR "shrink_slab: %pF negative objects to "
228 "delete nr=%ld\n",
229 shrinker->shrink, shrinker->nr);
230 shrinker->nr = max_pass;
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
236 * freeable entries.
238 if (shrinker->nr > max_pass * 2)
239 shrinker->nr = max_pass * 2;
241 total_scan = shrinker->nr;
242 shrinker->nr = 0;
244 while (total_scan >= SHRINK_BATCH) {
245 long this_scan = SHRINK_BATCH;
246 int shrink_ret;
247 int nr_before;
249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251 gfp_mask);
252 if (shrink_ret == -1)
253 break;
254 if (shrink_ret < nr_before)
255 ret += nr_before - shrink_ret;
256 count_vm_events(SLABS_SCANNED, this_scan);
257 total_scan -= this_scan;
259 cond_resched();
262 shrinker->nr += total_scan;
264 up_read(&shrinker_rwsem);
265 return ret;
268 static inline int is_page_cache_freeable(struct page *page)
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
275 return page_count(page) - page_has_private(page) == 2;
278 static int may_write_to_queue(struct backing_dev_info *bdi)
280 if (current->flags & PF_SWAPWRITE)
281 return 1;
282 if (!bdi_write_congested(bdi))
283 return 1;
284 if (bdi == current->backing_dev_info)
285 return 1;
286 return 0;
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
301 static void handle_write_error(struct address_space *mapping,
302 struct page *page, int error)
304 lock_page_nosync(page);
305 if (page_mapping(page) == mapping)
306 mapping_set_error(mapping, error);
307 unlock_page(page);
310 /* Request for sync pageout. */
311 enum pageout_io {
312 PAGEOUT_IO_ASYNC,
313 PAGEOUT_IO_SYNC,
316 /* possible outcome of pageout() */
317 typedef enum {
318 /* failed to write page out, page is locked */
319 PAGE_KEEP,
320 /* move page to the active list, page is locked */
321 PAGE_ACTIVATE,
322 /* page has been sent to the disk successfully, page is unlocked */
323 PAGE_SUCCESS,
324 /* page is clean and locked */
325 PAGE_CLEAN,
326 } pageout_t;
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
332 static pageout_t pageout(struct page *page, struct address_space *mapping,
333 enum pageout_io sync_writeback)
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
342 * If this process is currently in __generic_file_aio_write() against
343 * this page's queue, we can perform writeback even if that
344 * will block.
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
351 if (!is_page_cache_freeable(page))
352 return PAGE_KEEP;
353 if (!mapping) {
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
358 if (page_has_private(page)) {
359 if (try_to_free_buffers(page)) {
360 ClearPageDirty(page);
361 printk("%s: orphaned page\n", __func__);
362 return PAGE_CLEAN;
365 return PAGE_KEEP;
367 if (mapping->a_ops->writepage == NULL)
368 return PAGE_ACTIVATE;
369 if (!may_write_to_queue(mapping->backing_dev_info))
370 return PAGE_KEEP;
372 if (clear_page_dirty_for_io(page)) {
373 int res;
374 struct writeback_control wbc = {
375 .sync_mode = WB_SYNC_NONE,
376 .nr_to_write = SWAP_CLUSTER_MAX,
377 .range_start = 0,
378 .range_end = LLONG_MAX,
379 .nonblocking = 1,
380 .for_reclaim = 1,
383 SetPageReclaim(page);
384 res = mapping->a_ops->writepage(page, &wbc);
385 if (res < 0)
386 handle_write_error(mapping, page, res);
387 if (res == AOP_WRITEPAGE_ACTIVATE) {
388 ClearPageReclaim(page);
389 return PAGE_ACTIVATE;
393 * Wait on writeback if requested to. This happens when
394 * direct reclaiming a large contiguous area and the
395 * first attempt to free a range of pages fails.
397 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
398 wait_on_page_writeback(page);
400 if (!PageWriteback(page)) {
401 /* synchronous write or broken a_ops? */
402 ClearPageReclaim(page);
404 trace_mm_vmscan_writepage(page,
405 trace_reclaim_flags(page, sync_writeback));
406 inc_zone_page_state(page, NR_VMSCAN_WRITE);
407 return PAGE_SUCCESS;
410 return PAGE_CLEAN;
414 * Same as remove_mapping, but if the page is removed from the mapping, it
415 * gets returned with a refcount of 0.
417 static int __remove_mapping(struct address_space *mapping, struct page *page)
419 BUG_ON(!PageLocked(page));
420 BUG_ON(mapping != page_mapping(page));
422 spin_lock_irq(&mapping->tree_lock);
424 * The non racy check for a busy page.
426 * Must be careful with the order of the tests. When someone has
427 * a ref to the page, it may be possible that they dirty it then
428 * drop the reference. So if PageDirty is tested before page_count
429 * here, then the following race may occur:
431 * get_user_pages(&page);
432 * [user mapping goes away]
433 * write_to(page);
434 * !PageDirty(page) [good]
435 * SetPageDirty(page);
436 * put_page(page);
437 * !page_count(page) [good, discard it]
439 * [oops, our write_to data is lost]
441 * Reversing the order of the tests ensures such a situation cannot
442 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
443 * load is not satisfied before that of page->_count.
445 * Note that if SetPageDirty is always performed via set_page_dirty,
446 * and thus under tree_lock, then this ordering is not required.
448 if (!page_freeze_refs(page, 2))
449 goto cannot_free;
450 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
451 if (unlikely(PageDirty(page))) {
452 page_unfreeze_refs(page, 2);
453 goto cannot_free;
456 if (PageSwapCache(page)) {
457 swp_entry_t swap = { .val = page_private(page) };
458 __delete_from_swap_cache(page);
459 spin_unlock_irq(&mapping->tree_lock);
460 swapcache_free(swap, page);
461 } else {
462 __remove_from_page_cache(page);
463 spin_unlock_irq(&mapping->tree_lock);
464 mem_cgroup_uncharge_cache_page(page);
467 return 1;
469 cannot_free:
470 spin_unlock_irq(&mapping->tree_lock);
471 return 0;
475 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
476 * someone else has a ref on the page, abort and return 0. If it was
477 * successfully detached, return 1. Assumes the caller has a single ref on
478 * this page.
480 int remove_mapping(struct address_space *mapping, struct page *page)
482 if (__remove_mapping(mapping, page)) {
484 * Unfreezing the refcount with 1 rather than 2 effectively
485 * drops the pagecache ref for us without requiring another
486 * atomic operation.
488 page_unfreeze_refs(page, 1);
489 return 1;
491 return 0;
495 * putback_lru_page - put previously isolated page onto appropriate LRU list
496 * @page: page to be put back to appropriate lru list
498 * Add previously isolated @page to appropriate LRU list.
499 * Page may still be unevictable for other reasons.
501 * lru_lock must not be held, interrupts must be enabled.
503 void putback_lru_page(struct page *page)
505 int lru;
506 int active = !!TestClearPageActive(page);
507 int was_unevictable = PageUnevictable(page);
509 VM_BUG_ON(PageLRU(page));
511 redo:
512 ClearPageUnevictable(page);
514 if (page_evictable(page, NULL)) {
516 * For evictable pages, we can use the cache.
517 * In event of a race, worst case is we end up with an
518 * unevictable page on [in]active list.
519 * We know how to handle that.
521 lru = active + page_lru_base_type(page);
522 lru_cache_add_lru(page, lru);
523 } else {
525 * Put unevictable pages directly on zone's unevictable
526 * list.
528 lru = LRU_UNEVICTABLE;
529 add_page_to_unevictable_list(page);
531 * When racing with an mlock clearing (page is
532 * unlocked), make sure that if the other thread does
533 * not observe our setting of PG_lru and fails
534 * isolation, we see PG_mlocked cleared below and move
535 * the page back to the evictable list.
537 * The other side is TestClearPageMlocked().
539 smp_mb();
543 * page's status can change while we move it among lru. If an evictable
544 * page is on unevictable list, it never be freed. To avoid that,
545 * check after we added it to the list, again.
547 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
548 if (!isolate_lru_page(page)) {
549 put_page(page);
550 goto redo;
552 /* This means someone else dropped this page from LRU
553 * So, it will be freed or putback to LRU again. There is
554 * nothing to do here.
558 if (was_unevictable && lru != LRU_UNEVICTABLE)
559 count_vm_event(UNEVICTABLE_PGRESCUED);
560 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
561 count_vm_event(UNEVICTABLE_PGCULLED);
563 put_page(page); /* drop ref from isolate */
566 enum page_references {
567 PAGEREF_RECLAIM,
568 PAGEREF_RECLAIM_CLEAN,
569 PAGEREF_KEEP,
570 PAGEREF_ACTIVATE,
573 static enum page_references page_check_references(struct page *page,
574 struct scan_control *sc)
576 int referenced_ptes, referenced_page;
577 unsigned long vm_flags;
579 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
580 referenced_page = TestClearPageReferenced(page);
582 /* Lumpy reclaim - ignore references */
583 if (sc->lumpy_reclaim_mode)
584 return PAGEREF_RECLAIM;
587 * Mlock lost the isolation race with us. Let try_to_unmap()
588 * move the page to the unevictable list.
590 if (vm_flags & VM_LOCKED)
591 return PAGEREF_RECLAIM;
593 if (referenced_ptes) {
594 if (PageAnon(page))
595 return PAGEREF_ACTIVATE;
597 * All mapped pages start out with page table
598 * references from the instantiating fault, so we need
599 * to look twice if a mapped file page is used more
600 * than once.
602 * Mark it and spare it for another trip around the
603 * inactive list. Another page table reference will
604 * lead to its activation.
606 * Note: the mark is set for activated pages as well
607 * so that recently deactivated but used pages are
608 * quickly recovered.
610 SetPageReferenced(page);
612 if (referenced_page)
613 return PAGEREF_ACTIVATE;
615 return PAGEREF_KEEP;
618 /* Reclaim if clean, defer dirty pages to writeback */
619 if (referenced_page)
620 return PAGEREF_RECLAIM_CLEAN;
622 return PAGEREF_RECLAIM;
626 * shrink_page_list() returns the number of reclaimed pages
628 static unsigned long shrink_page_list(struct list_head *page_list,
629 struct scan_control *sc,
630 enum pageout_io sync_writeback)
632 LIST_HEAD(ret_pages);
633 struct pagevec freed_pvec;
634 int pgactivate = 0;
635 unsigned long nr_reclaimed = 0;
637 cond_resched();
639 pagevec_init(&freed_pvec, 1);
640 while (!list_empty(page_list)) {
641 enum page_references references;
642 struct address_space *mapping;
643 struct page *page;
644 int may_enter_fs;
646 cond_resched();
648 page = lru_to_page(page_list);
649 list_del(&page->lru);
651 if (!trylock_page(page))
652 goto keep;
654 VM_BUG_ON(PageActive(page));
656 sc->nr_scanned++;
658 if (unlikely(!page_evictable(page, NULL)))
659 goto cull_mlocked;
661 if (!sc->may_unmap && page_mapped(page))
662 goto keep_locked;
664 /* Double the slab pressure for mapped and swapcache pages */
665 if (page_mapped(page) || PageSwapCache(page))
666 sc->nr_scanned++;
668 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
669 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
671 if (PageWriteback(page)) {
673 * Synchronous reclaim is performed in two passes,
674 * first an asynchronous pass over the list to
675 * start parallel writeback, and a second synchronous
676 * pass to wait for the IO to complete. Wait here
677 * for any page for which writeback has already
678 * started.
680 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
681 wait_on_page_writeback(page);
682 else
683 goto keep_locked;
686 references = page_check_references(page, sc);
687 switch (references) {
688 case PAGEREF_ACTIVATE:
689 goto activate_locked;
690 case PAGEREF_KEEP:
691 goto keep_locked;
692 case PAGEREF_RECLAIM:
693 case PAGEREF_RECLAIM_CLEAN:
694 ; /* try to reclaim the page below */
698 * Anonymous process memory has backing store?
699 * Try to allocate it some swap space here.
701 if (PageAnon(page) && !PageSwapCache(page)) {
702 if (!(sc->gfp_mask & __GFP_IO))
703 goto keep_locked;
704 if (!add_to_swap(page))
705 goto activate_locked;
706 may_enter_fs = 1;
709 mapping = page_mapping(page);
712 * The page is mapped into the page tables of one or more
713 * processes. Try to unmap it here.
715 if (page_mapped(page) && mapping) {
716 switch (try_to_unmap(page, TTU_UNMAP)) {
717 case SWAP_FAIL:
718 goto activate_locked;
719 case SWAP_AGAIN:
720 goto keep_locked;
721 case SWAP_MLOCK:
722 goto cull_mlocked;
723 case SWAP_SUCCESS:
724 ; /* try to free the page below */
728 if (PageDirty(page)) {
729 if (references == PAGEREF_RECLAIM_CLEAN)
730 goto keep_locked;
731 if (!may_enter_fs)
732 goto keep_locked;
733 if (!sc->may_writepage)
734 goto keep_locked;
736 /* Page is dirty, try to write it out here */
737 switch (pageout(page, mapping, sync_writeback)) {
738 case PAGE_KEEP:
739 goto keep_locked;
740 case PAGE_ACTIVATE:
741 goto activate_locked;
742 case PAGE_SUCCESS:
743 if (PageWriteback(page) || PageDirty(page))
744 goto keep;
746 * A synchronous write - probably a ramdisk. Go
747 * ahead and try to reclaim the page.
749 if (!trylock_page(page))
750 goto keep;
751 if (PageDirty(page) || PageWriteback(page))
752 goto keep_locked;
753 mapping = page_mapping(page);
754 case PAGE_CLEAN:
755 ; /* try to free the page below */
760 * If the page has buffers, try to free the buffer mappings
761 * associated with this page. If we succeed we try to free
762 * the page as well.
764 * We do this even if the page is PageDirty().
765 * try_to_release_page() does not perform I/O, but it is
766 * possible for a page to have PageDirty set, but it is actually
767 * clean (all its buffers are clean). This happens if the
768 * buffers were written out directly, with submit_bh(). ext3
769 * will do this, as well as the blockdev mapping.
770 * try_to_release_page() will discover that cleanness and will
771 * drop the buffers and mark the page clean - it can be freed.
773 * Rarely, pages can have buffers and no ->mapping. These are
774 * the pages which were not successfully invalidated in
775 * truncate_complete_page(). We try to drop those buffers here
776 * and if that worked, and the page is no longer mapped into
777 * process address space (page_count == 1) it can be freed.
778 * Otherwise, leave the page on the LRU so it is swappable.
780 if (page_has_private(page)) {
781 if (!try_to_release_page(page, sc->gfp_mask))
782 goto activate_locked;
783 if (!mapping && page_count(page) == 1) {
784 unlock_page(page);
785 if (put_page_testzero(page))
786 goto free_it;
787 else {
789 * rare race with speculative reference.
790 * the speculative reference will free
791 * this page shortly, so we may
792 * increment nr_reclaimed here (and
793 * leave it off the LRU).
795 nr_reclaimed++;
796 continue;
801 if (!mapping || !__remove_mapping(mapping, page))
802 goto keep_locked;
805 * At this point, we have no other references and there is
806 * no way to pick any more up (removed from LRU, removed
807 * from pagecache). Can use non-atomic bitops now (and
808 * we obviously don't have to worry about waking up a process
809 * waiting on the page lock, because there are no references.
811 __clear_page_locked(page);
812 free_it:
813 nr_reclaimed++;
814 if (!pagevec_add(&freed_pvec, page)) {
815 __pagevec_free(&freed_pvec);
816 pagevec_reinit(&freed_pvec);
818 continue;
820 cull_mlocked:
821 if (PageSwapCache(page))
822 try_to_free_swap(page);
823 unlock_page(page);
824 putback_lru_page(page);
825 continue;
827 activate_locked:
828 /* Not a candidate for swapping, so reclaim swap space. */
829 if (PageSwapCache(page) && vm_swap_full())
830 try_to_free_swap(page);
831 VM_BUG_ON(PageActive(page));
832 SetPageActive(page);
833 pgactivate++;
834 keep_locked:
835 unlock_page(page);
836 keep:
837 list_add(&page->lru, &ret_pages);
838 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
840 list_splice(&ret_pages, page_list);
841 if (pagevec_count(&freed_pvec))
842 __pagevec_free(&freed_pvec);
843 count_vm_events(PGACTIVATE, pgactivate);
844 return nr_reclaimed;
848 * Attempt to remove the specified page from its LRU. Only take this page
849 * if it is of the appropriate PageActive status. Pages which are being
850 * freed elsewhere are also ignored.
852 * page: page to consider
853 * mode: one of the LRU isolation modes defined above
855 * returns 0 on success, -ve errno on failure.
857 int __isolate_lru_page(struct page *page, int mode, int file)
859 int ret = -EINVAL;
861 /* Only take pages on the LRU. */
862 if (!PageLRU(page))
863 return ret;
866 * When checking the active state, we need to be sure we are
867 * dealing with comparible boolean values. Take the logical not
868 * of each.
870 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
871 return ret;
873 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
874 return ret;
877 * When this function is being called for lumpy reclaim, we
878 * initially look into all LRU pages, active, inactive and
879 * unevictable; only give shrink_page_list evictable pages.
881 if (PageUnevictable(page))
882 return ret;
884 ret = -EBUSY;
886 if (likely(get_page_unless_zero(page))) {
888 * Be careful not to clear PageLRU until after we're
889 * sure the page is not being freed elsewhere -- the
890 * page release code relies on it.
892 ClearPageLRU(page);
893 ret = 0;
896 return ret;
900 * zone->lru_lock is heavily contended. Some of the functions that
901 * shrink the lists perform better by taking out a batch of pages
902 * and working on them outside the LRU lock.
904 * For pagecache intensive workloads, this function is the hottest
905 * spot in the kernel (apart from copy_*_user functions).
907 * Appropriate locks must be held before calling this function.
909 * @nr_to_scan: The number of pages to look through on the list.
910 * @src: The LRU list to pull pages off.
911 * @dst: The temp list to put pages on to.
912 * @scanned: The number of pages that were scanned.
913 * @order: The caller's attempted allocation order
914 * @mode: One of the LRU isolation modes
915 * @file: True [1] if isolating file [!anon] pages
917 * returns how many pages were moved onto *@dst.
919 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
920 struct list_head *src, struct list_head *dst,
921 unsigned long *scanned, int order, int mode, int file)
923 unsigned long nr_taken = 0;
924 unsigned long nr_lumpy_taken = 0;
925 unsigned long nr_lumpy_dirty = 0;
926 unsigned long nr_lumpy_failed = 0;
927 unsigned long scan;
929 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
930 struct page *page;
931 unsigned long pfn;
932 unsigned long end_pfn;
933 unsigned long page_pfn;
934 int zone_id;
936 page = lru_to_page(src);
937 prefetchw_prev_lru_page(page, src, flags);
939 VM_BUG_ON(!PageLRU(page));
941 switch (__isolate_lru_page(page, mode, file)) {
942 case 0:
943 list_move(&page->lru, dst);
944 mem_cgroup_del_lru(page);
945 nr_taken++;
946 break;
948 case -EBUSY:
949 /* else it is being freed elsewhere */
950 list_move(&page->lru, src);
951 mem_cgroup_rotate_lru_list(page, page_lru(page));
952 continue;
954 default:
955 BUG();
958 if (!order)
959 continue;
962 * Attempt to take all pages in the order aligned region
963 * surrounding the tag page. Only take those pages of
964 * the same active state as that tag page. We may safely
965 * round the target page pfn down to the requested order
966 * as the mem_map is guarenteed valid out to MAX_ORDER,
967 * where that page is in a different zone we will detect
968 * it from its zone id and abort this block scan.
970 zone_id = page_zone_id(page);
971 page_pfn = page_to_pfn(page);
972 pfn = page_pfn & ~((1 << order) - 1);
973 end_pfn = pfn + (1 << order);
974 for (; pfn < end_pfn; pfn++) {
975 struct page *cursor_page;
977 /* The target page is in the block, ignore it. */
978 if (unlikely(pfn == page_pfn))
979 continue;
981 /* Avoid holes within the zone. */
982 if (unlikely(!pfn_valid_within(pfn)))
983 break;
985 cursor_page = pfn_to_page(pfn);
987 /* Check that we have not crossed a zone boundary. */
988 if (unlikely(page_zone_id(cursor_page) != zone_id))
989 continue;
992 * If we don't have enough swap space, reclaiming of
993 * anon page which don't already have a swap slot is
994 * pointless.
996 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
997 !PageSwapCache(cursor_page))
998 continue;
1000 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1001 list_move(&cursor_page->lru, dst);
1002 mem_cgroup_del_lru(cursor_page);
1003 nr_taken++;
1004 nr_lumpy_taken++;
1005 if (PageDirty(cursor_page))
1006 nr_lumpy_dirty++;
1007 scan++;
1008 } else {
1009 if (mode == ISOLATE_BOTH &&
1010 page_count(cursor_page))
1011 nr_lumpy_failed++;
1016 *scanned = scan;
1018 trace_mm_vmscan_lru_isolate(order,
1019 nr_to_scan, scan,
1020 nr_taken,
1021 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1022 mode);
1023 return nr_taken;
1026 static unsigned long isolate_pages_global(unsigned long nr,
1027 struct list_head *dst,
1028 unsigned long *scanned, int order,
1029 int mode, struct zone *z,
1030 int active, int file)
1032 int lru = LRU_BASE;
1033 if (active)
1034 lru += LRU_ACTIVE;
1035 if (file)
1036 lru += LRU_FILE;
1037 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1038 mode, file);
1042 * clear_active_flags() is a helper for shrink_active_list(), clearing
1043 * any active bits from the pages in the list.
1045 static unsigned long clear_active_flags(struct list_head *page_list,
1046 unsigned int *count)
1048 int nr_active = 0;
1049 int lru;
1050 struct page *page;
1052 list_for_each_entry(page, page_list, lru) {
1053 lru = page_lru_base_type(page);
1054 if (PageActive(page)) {
1055 lru += LRU_ACTIVE;
1056 ClearPageActive(page);
1057 nr_active++;
1059 count[lru]++;
1062 return nr_active;
1066 * isolate_lru_page - tries to isolate a page from its LRU list
1067 * @page: page to isolate from its LRU list
1069 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1070 * vmstat statistic corresponding to whatever LRU list the page was on.
1072 * Returns 0 if the page was removed from an LRU list.
1073 * Returns -EBUSY if the page was not on an LRU list.
1075 * The returned page will have PageLRU() cleared. If it was found on
1076 * the active list, it will have PageActive set. If it was found on
1077 * the unevictable list, it will have the PageUnevictable bit set. That flag
1078 * may need to be cleared by the caller before letting the page go.
1080 * The vmstat statistic corresponding to the list on which the page was
1081 * found will be decremented.
1083 * Restrictions:
1084 * (1) Must be called with an elevated refcount on the page. This is a
1085 * fundamentnal difference from isolate_lru_pages (which is called
1086 * without a stable reference).
1087 * (2) the lru_lock must not be held.
1088 * (3) interrupts must be enabled.
1090 int isolate_lru_page(struct page *page)
1092 int ret = -EBUSY;
1094 if (PageLRU(page)) {
1095 struct zone *zone = page_zone(page);
1097 spin_lock_irq(&zone->lru_lock);
1098 if (PageLRU(page) && get_page_unless_zero(page)) {
1099 int lru = page_lru(page);
1100 ret = 0;
1101 ClearPageLRU(page);
1103 del_page_from_lru_list(zone, page, lru);
1105 spin_unlock_irq(&zone->lru_lock);
1107 return ret;
1111 * Are there way too many processes in the direct reclaim path already?
1113 static int too_many_isolated(struct zone *zone, int file,
1114 struct scan_control *sc)
1116 unsigned long inactive, isolated;
1118 if (current_is_kswapd())
1119 return 0;
1121 if (!scanning_global_lru(sc))
1122 return 0;
1124 if (file) {
1125 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1126 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1127 } else {
1128 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1129 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1132 return isolated > inactive;
1136 * TODO: Try merging with migrations version of putback_lru_pages
1138 static noinline_for_stack void
1139 putback_lru_pages(struct zone *zone, struct zone_reclaim_stat *reclaim_stat,
1140 unsigned long nr_anon, unsigned long nr_file,
1141 struct list_head *page_list)
1143 struct page *page;
1144 struct pagevec pvec;
1146 pagevec_init(&pvec, 1);
1149 * Put back any unfreeable pages.
1151 spin_lock(&zone->lru_lock);
1152 while (!list_empty(page_list)) {
1153 int lru;
1154 page = lru_to_page(page_list);
1155 VM_BUG_ON(PageLRU(page));
1156 list_del(&page->lru);
1157 if (unlikely(!page_evictable(page, NULL))) {
1158 spin_unlock_irq(&zone->lru_lock);
1159 putback_lru_page(page);
1160 spin_lock_irq(&zone->lru_lock);
1161 continue;
1163 SetPageLRU(page);
1164 lru = page_lru(page);
1165 add_page_to_lru_list(zone, page, lru);
1166 if (is_active_lru(lru)) {
1167 int file = is_file_lru(lru);
1168 reclaim_stat->recent_rotated[file]++;
1170 if (!pagevec_add(&pvec, page)) {
1171 spin_unlock_irq(&zone->lru_lock);
1172 __pagevec_release(&pvec);
1173 spin_lock_irq(&zone->lru_lock);
1176 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1177 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1179 spin_unlock_irq(&zone->lru_lock);
1180 pagevec_release(&pvec);
1184 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1185 * of reclaimed pages
1187 static noinline_for_stack unsigned long
1188 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1189 struct scan_control *sc, int priority, int file)
1191 LIST_HEAD(page_list);
1192 unsigned long nr_scanned;
1193 unsigned long nr_reclaimed = 0;
1194 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1195 unsigned long nr_taken;
1196 unsigned long nr_active;
1197 unsigned int count[NR_LRU_LISTS] = { 0, };
1198 unsigned long nr_anon;
1199 unsigned long nr_file;
1201 while (unlikely(too_many_isolated(zone, file, sc))) {
1202 congestion_wait(BLK_RW_ASYNC, HZ/10);
1204 /* We are about to die and free our memory. Return now. */
1205 if (fatal_signal_pending(current))
1206 return SWAP_CLUSTER_MAX;
1210 lru_add_drain();
1211 spin_lock_irq(&zone->lru_lock);
1213 if (scanning_global_lru(sc)) {
1214 nr_taken = isolate_pages_global(nr_to_scan,
1215 &page_list, &nr_scanned, sc->order,
1216 sc->lumpy_reclaim_mode ?
1217 ISOLATE_BOTH : ISOLATE_INACTIVE,
1218 zone, 0, file);
1219 zone->pages_scanned += nr_scanned;
1220 if (current_is_kswapd())
1221 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1222 nr_scanned);
1223 else
1224 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1225 nr_scanned);
1226 } else {
1227 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1228 &page_list, &nr_scanned, sc->order,
1229 sc->lumpy_reclaim_mode ?
1230 ISOLATE_BOTH : ISOLATE_INACTIVE,
1231 zone, sc->mem_cgroup,
1232 0, file);
1234 * mem_cgroup_isolate_pages() keeps track of
1235 * scanned pages on its own.
1239 if (nr_taken == 0) {
1240 spin_unlock_irq(&zone->lru_lock);
1241 return 0;
1244 nr_active = clear_active_flags(&page_list, count);
1245 __count_vm_events(PGDEACTIVATE, nr_active);
1247 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1248 -count[LRU_ACTIVE_FILE]);
1249 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1250 -count[LRU_INACTIVE_FILE]);
1251 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1252 -count[LRU_ACTIVE_ANON]);
1253 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1254 -count[LRU_INACTIVE_ANON]);
1256 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1257 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1258 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1259 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1261 reclaim_stat->recent_scanned[0] += nr_anon;
1262 reclaim_stat->recent_scanned[1] += nr_file;
1264 spin_unlock_irq(&zone->lru_lock);
1266 nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1269 * If we are direct reclaiming for contiguous pages and we do
1270 * not reclaim everything in the list, try again and wait
1271 * for IO to complete. This will stall high-order allocations
1272 * but that should be acceptable to the caller
1274 if (nr_reclaimed < nr_taken && !current_is_kswapd() &&
1275 sc->lumpy_reclaim_mode) {
1276 congestion_wait(BLK_RW_ASYNC, HZ/10);
1279 * The attempt at page out may have made some
1280 * of the pages active, mark them inactive again.
1282 nr_active = clear_active_flags(&page_list, count);
1283 count_vm_events(PGDEACTIVATE, nr_active);
1285 nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1288 local_irq_disable();
1289 if (current_is_kswapd())
1290 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1291 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1293 putback_lru_pages(zone, reclaim_stat, nr_anon, nr_file, &page_list);
1294 return nr_reclaimed;
1298 * This moves pages from the active list to the inactive list.
1300 * We move them the other way if the page is referenced by one or more
1301 * processes, from rmap.
1303 * If the pages are mostly unmapped, the processing is fast and it is
1304 * appropriate to hold zone->lru_lock across the whole operation. But if
1305 * the pages are mapped, the processing is slow (page_referenced()) so we
1306 * should drop zone->lru_lock around each page. It's impossible to balance
1307 * this, so instead we remove the pages from the LRU while processing them.
1308 * It is safe to rely on PG_active against the non-LRU pages in here because
1309 * nobody will play with that bit on a non-LRU page.
1311 * The downside is that we have to touch page->_count against each page.
1312 * But we had to alter page->flags anyway.
1315 static void move_active_pages_to_lru(struct zone *zone,
1316 struct list_head *list,
1317 enum lru_list lru)
1319 unsigned long pgmoved = 0;
1320 struct pagevec pvec;
1321 struct page *page;
1323 pagevec_init(&pvec, 1);
1325 while (!list_empty(list)) {
1326 page = lru_to_page(list);
1328 VM_BUG_ON(PageLRU(page));
1329 SetPageLRU(page);
1331 list_move(&page->lru, &zone->lru[lru].list);
1332 mem_cgroup_add_lru_list(page, lru);
1333 pgmoved++;
1335 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1336 spin_unlock_irq(&zone->lru_lock);
1337 if (buffer_heads_over_limit)
1338 pagevec_strip(&pvec);
1339 __pagevec_release(&pvec);
1340 spin_lock_irq(&zone->lru_lock);
1343 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1344 if (!is_active_lru(lru))
1345 __count_vm_events(PGDEACTIVATE, pgmoved);
1348 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1349 struct scan_control *sc, int priority, int file)
1351 unsigned long nr_taken;
1352 unsigned long pgscanned;
1353 unsigned long vm_flags;
1354 LIST_HEAD(l_hold); /* The pages which were snipped off */
1355 LIST_HEAD(l_active);
1356 LIST_HEAD(l_inactive);
1357 struct page *page;
1358 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1359 unsigned long nr_rotated = 0;
1361 lru_add_drain();
1362 spin_lock_irq(&zone->lru_lock);
1363 if (scanning_global_lru(sc)) {
1364 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1365 &pgscanned, sc->order,
1366 ISOLATE_ACTIVE, zone,
1367 1, file);
1368 zone->pages_scanned += pgscanned;
1369 } else {
1370 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1371 &pgscanned, sc->order,
1372 ISOLATE_ACTIVE, zone,
1373 sc->mem_cgroup, 1, file);
1375 * mem_cgroup_isolate_pages() keeps track of
1376 * scanned pages on its own.
1380 reclaim_stat->recent_scanned[file] += nr_taken;
1382 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1383 if (file)
1384 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1385 else
1386 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1387 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1388 spin_unlock_irq(&zone->lru_lock);
1390 while (!list_empty(&l_hold)) {
1391 cond_resched();
1392 page = lru_to_page(&l_hold);
1393 list_del(&page->lru);
1395 if (unlikely(!page_evictable(page, NULL))) {
1396 putback_lru_page(page);
1397 continue;
1400 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1401 nr_rotated++;
1403 * Identify referenced, file-backed active pages and
1404 * give them one more trip around the active list. So
1405 * that executable code get better chances to stay in
1406 * memory under moderate memory pressure. Anon pages
1407 * are not likely to be evicted by use-once streaming
1408 * IO, plus JVM can create lots of anon VM_EXEC pages,
1409 * so we ignore them here.
1411 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1412 list_add(&page->lru, &l_active);
1413 continue;
1417 ClearPageActive(page); /* we are de-activating */
1418 list_add(&page->lru, &l_inactive);
1422 * Move pages back to the lru list.
1424 spin_lock_irq(&zone->lru_lock);
1426 * Count referenced pages from currently used mappings as rotated,
1427 * even though only some of them are actually re-activated. This
1428 * helps balance scan pressure between file and anonymous pages in
1429 * get_scan_ratio.
1431 reclaim_stat->recent_rotated[file] += nr_rotated;
1433 move_active_pages_to_lru(zone, &l_active,
1434 LRU_ACTIVE + file * LRU_FILE);
1435 move_active_pages_to_lru(zone, &l_inactive,
1436 LRU_BASE + file * LRU_FILE);
1437 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1438 spin_unlock_irq(&zone->lru_lock);
1441 static int inactive_anon_is_low_global(struct zone *zone)
1443 unsigned long active, inactive;
1445 active = zone_page_state(zone, NR_ACTIVE_ANON);
1446 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1448 if (inactive * zone->inactive_ratio < active)
1449 return 1;
1451 return 0;
1455 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1456 * @zone: zone to check
1457 * @sc: scan control of this context
1459 * Returns true if the zone does not have enough inactive anon pages,
1460 * meaning some active anon pages need to be deactivated.
1462 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1464 int low;
1466 if (scanning_global_lru(sc))
1467 low = inactive_anon_is_low_global(zone);
1468 else
1469 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1470 return low;
1473 static int inactive_file_is_low_global(struct zone *zone)
1475 unsigned long active, inactive;
1477 active = zone_page_state(zone, NR_ACTIVE_FILE);
1478 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1480 return (active > inactive);
1484 * inactive_file_is_low - check if file pages need to be deactivated
1485 * @zone: zone to check
1486 * @sc: scan control of this context
1488 * When the system is doing streaming IO, memory pressure here
1489 * ensures that active file pages get deactivated, until more
1490 * than half of the file pages are on the inactive list.
1492 * Once we get to that situation, protect the system's working
1493 * set from being evicted by disabling active file page aging.
1495 * This uses a different ratio than the anonymous pages, because
1496 * the page cache uses a use-once replacement algorithm.
1498 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1500 int low;
1502 if (scanning_global_lru(sc))
1503 low = inactive_file_is_low_global(zone);
1504 else
1505 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1506 return low;
1509 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1510 int file)
1512 if (file)
1513 return inactive_file_is_low(zone, sc);
1514 else
1515 return inactive_anon_is_low(zone, sc);
1518 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1519 struct zone *zone, struct scan_control *sc, int priority)
1521 int file = is_file_lru(lru);
1523 if (is_active_lru(lru)) {
1524 if (inactive_list_is_low(zone, sc, file))
1525 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1526 return 0;
1529 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1533 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1534 * until we collected @swap_cluster_max pages to scan.
1536 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1537 unsigned long *nr_saved_scan)
1539 unsigned long nr;
1541 *nr_saved_scan += nr_to_scan;
1542 nr = *nr_saved_scan;
1544 if (nr >= SWAP_CLUSTER_MAX)
1545 *nr_saved_scan = 0;
1546 else
1547 nr = 0;
1549 return nr;
1553 * Determine how aggressively the anon and file LRU lists should be
1554 * scanned. The relative value of each set of LRU lists is determined
1555 * by looking at the fraction of the pages scanned we did rotate back
1556 * onto the active list instead of evict.
1558 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1560 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1561 unsigned long *nr, int priority)
1563 unsigned long anon, file, free;
1564 unsigned long anon_prio, file_prio;
1565 unsigned long ap, fp;
1566 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1567 u64 fraction[2], denominator;
1568 enum lru_list l;
1569 int noswap = 0;
1571 /* If we have no swap space, do not bother scanning anon pages. */
1572 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1573 noswap = 1;
1574 fraction[0] = 0;
1575 fraction[1] = 1;
1576 denominator = 1;
1577 goto out;
1580 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1581 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1582 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1583 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1585 if (scanning_global_lru(sc)) {
1586 free = zone_page_state(zone, NR_FREE_PAGES);
1587 /* If we have very few page cache pages,
1588 force-scan anon pages. */
1589 if (unlikely(file + free <= high_wmark_pages(zone))) {
1590 fraction[0] = 1;
1591 fraction[1] = 0;
1592 denominator = 1;
1593 goto out;
1598 * OK, so we have swap space and a fair amount of page cache
1599 * pages. We use the recently rotated / recently scanned
1600 * ratios to determine how valuable each cache is.
1602 * Because workloads change over time (and to avoid overflow)
1603 * we keep these statistics as a floating average, which ends
1604 * up weighing recent references more than old ones.
1606 * anon in [0], file in [1]
1608 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1609 spin_lock_irq(&zone->lru_lock);
1610 reclaim_stat->recent_scanned[0] /= 2;
1611 reclaim_stat->recent_rotated[0] /= 2;
1612 spin_unlock_irq(&zone->lru_lock);
1615 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1616 spin_lock_irq(&zone->lru_lock);
1617 reclaim_stat->recent_scanned[1] /= 2;
1618 reclaim_stat->recent_rotated[1] /= 2;
1619 spin_unlock_irq(&zone->lru_lock);
1623 * With swappiness at 100, anonymous and file have the same priority.
1624 * This scanning priority is essentially the inverse of IO cost.
1626 anon_prio = sc->swappiness;
1627 file_prio = 200 - sc->swappiness;
1630 * The amount of pressure on anon vs file pages is inversely
1631 * proportional to the fraction of recently scanned pages on
1632 * each list that were recently referenced and in active use.
1634 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1635 ap /= reclaim_stat->recent_rotated[0] + 1;
1637 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1638 fp /= reclaim_stat->recent_rotated[1] + 1;
1640 fraction[0] = ap;
1641 fraction[1] = fp;
1642 denominator = ap + fp + 1;
1643 out:
1644 for_each_evictable_lru(l) {
1645 int file = is_file_lru(l);
1646 unsigned long scan;
1648 scan = zone_nr_lru_pages(zone, sc, l);
1649 if (priority || noswap) {
1650 scan >>= priority;
1651 scan = div64_u64(scan * fraction[file], denominator);
1653 nr[l] = nr_scan_try_batch(scan,
1654 &reclaim_stat->nr_saved_scan[l]);
1658 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1661 * If we need a large contiguous chunk of memory, or have
1662 * trouble getting a small set of contiguous pages, we
1663 * will reclaim both active and inactive pages.
1665 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1666 sc->lumpy_reclaim_mode = 1;
1667 else if (sc->order && priority < DEF_PRIORITY - 2)
1668 sc->lumpy_reclaim_mode = 1;
1669 else
1670 sc->lumpy_reclaim_mode = 0;
1674 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1676 static void shrink_zone(int priority, struct zone *zone,
1677 struct scan_control *sc)
1679 unsigned long nr[NR_LRU_LISTS];
1680 unsigned long nr_to_scan;
1681 enum lru_list l;
1682 unsigned long nr_reclaimed = sc->nr_reclaimed;
1683 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1685 get_scan_count(zone, sc, nr, priority);
1687 set_lumpy_reclaim_mode(priority, sc);
1689 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1690 nr[LRU_INACTIVE_FILE]) {
1691 for_each_evictable_lru(l) {
1692 if (nr[l]) {
1693 nr_to_scan = min_t(unsigned long,
1694 nr[l], SWAP_CLUSTER_MAX);
1695 nr[l] -= nr_to_scan;
1697 nr_reclaimed += shrink_list(l, nr_to_scan,
1698 zone, sc, priority);
1702 * On large memory systems, scan >> priority can become
1703 * really large. This is fine for the starting priority;
1704 * we want to put equal scanning pressure on each zone.
1705 * However, if the VM has a harder time of freeing pages,
1706 * with multiple processes reclaiming pages, the total
1707 * freeing target can get unreasonably large.
1709 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1710 break;
1713 sc->nr_reclaimed = nr_reclaimed;
1716 * Even if we did not try to evict anon pages at all, we want to
1717 * rebalance the anon lru active/inactive ratio.
1719 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1720 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1722 throttle_vm_writeout(sc->gfp_mask);
1726 * This is the direct reclaim path, for page-allocating processes. We only
1727 * try to reclaim pages from zones which will satisfy the caller's allocation
1728 * request.
1730 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1731 * Because:
1732 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1733 * allocation or
1734 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1735 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1736 * zone defense algorithm.
1738 * If a zone is deemed to be full of pinned pages then just give it a light
1739 * scan then give up on it.
1741 static bool shrink_zones(int priority, struct zonelist *zonelist,
1742 struct scan_control *sc)
1744 struct zoneref *z;
1745 struct zone *zone;
1746 bool all_unreclaimable = true;
1748 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1749 gfp_zone(sc->gfp_mask), sc->nodemask) {
1750 if (!populated_zone(zone))
1751 continue;
1753 * Take care memory controller reclaiming has small influence
1754 * to global LRU.
1756 if (scanning_global_lru(sc)) {
1757 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1758 continue;
1759 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1760 continue; /* Let kswapd poll it */
1763 shrink_zone(priority, zone, sc);
1764 all_unreclaimable = false;
1766 return all_unreclaimable;
1770 * This is the main entry point to direct page reclaim.
1772 * If a full scan of the inactive list fails to free enough memory then we
1773 * are "out of memory" and something needs to be killed.
1775 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1776 * high - the zone may be full of dirty or under-writeback pages, which this
1777 * caller can't do much about. We kick the writeback threads and take explicit
1778 * naps in the hope that some of these pages can be written. But if the
1779 * allocating task holds filesystem locks which prevent writeout this might not
1780 * work, and the allocation attempt will fail.
1782 * returns: 0, if no pages reclaimed
1783 * else, the number of pages reclaimed
1785 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1786 struct scan_control *sc)
1788 int priority;
1789 bool all_unreclaimable;
1790 unsigned long total_scanned = 0;
1791 struct reclaim_state *reclaim_state = current->reclaim_state;
1792 struct zoneref *z;
1793 struct zone *zone;
1794 unsigned long writeback_threshold;
1796 get_mems_allowed();
1797 delayacct_freepages_start();
1799 if (scanning_global_lru(sc))
1800 count_vm_event(ALLOCSTALL);
1802 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1803 sc->nr_scanned = 0;
1804 if (!priority)
1805 disable_swap_token();
1806 all_unreclaimable = shrink_zones(priority, zonelist, sc);
1808 * Don't shrink slabs when reclaiming memory from
1809 * over limit cgroups
1811 if (scanning_global_lru(sc)) {
1812 unsigned long lru_pages = 0;
1813 for_each_zone_zonelist(zone, z, zonelist,
1814 gfp_zone(sc->gfp_mask)) {
1815 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1816 continue;
1818 lru_pages += zone_reclaimable_pages(zone);
1821 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1822 if (reclaim_state) {
1823 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1824 reclaim_state->reclaimed_slab = 0;
1827 total_scanned += sc->nr_scanned;
1828 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1829 goto out;
1832 * Try to write back as many pages as we just scanned. This
1833 * tends to cause slow streaming writers to write data to the
1834 * disk smoothly, at the dirtying rate, which is nice. But
1835 * that's undesirable in laptop mode, where we *want* lumpy
1836 * writeout. So in laptop mode, write out the whole world.
1838 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1839 if (total_scanned > writeback_threshold) {
1840 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1841 sc->may_writepage = 1;
1844 /* Take a nap, wait for some writeback to complete */
1845 if (!sc->hibernation_mode && sc->nr_scanned &&
1846 priority < DEF_PRIORITY - 2)
1847 congestion_wait(BLK_RW_ASYNC, HZ/10);
1850 out:
1852 * Now that we've scanned all the zones at this priority level, note
1853 * that level within the zone so that the next thread which performs
1854 * scanning of this zone will immediately start out at this priority
1855 * level. This affects only the decision whether or not to bring
1856 * mapped pages onto the inactive list.
1858 if (priority < 0)
1859 priority = 0;
1861 delayacct_freepages_end();
1862 put_mems_allowed();
1864 if (sc->nr_reclaimed)
1865 return sc->nr_reclaimed;
1867 /* top priority shrink_zones still had more to do? don't OOM, then */
1868 if (scanning_global_lru(sc) && !all_unreclaimable)
1869 return 1;
1871 return 0;
1874 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1875 gfp_t gfp_mask, nodemask_t *nodemask)
1877 unsigned long nr_reclaimed;
1878 struct scan_control sc = {
1879 .gfp_mask = gfp_mask,
1880 .may_writepage = !laptop_mode,
1881 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1882 .may_unmap = 1,
1883 .may_swap = 1,
1884 .swappiness = vm_swappiness,
1885 .order = order,
1886 .mem_cgroup = NULL,
1887 .nodemask = nodemask,
1890 trace_mm_vmscan_direct_reclaim_begin(order,
1891 sc.may_writepage,
1892 gfp_mask);
1894 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1896 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1898 return nr_reclaimed;
1901 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1903 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1904 gfp_t gfp_mask, bool noswap,
1905 unsigned int swappiness,
1906 struct zone *zone, int nid)
1908 struct scan_control sc = {
1909 .may_writepage = !laptop_mode,
1910 .may_unmap = 1,
1911 .may_swap = !noswap,
1912 .swappiness = swappiness,
1913 .order = 0,
1914 .mem_cgroup = mem,
1916 nodemask_t nm = nodemask_of_node(nid);
1918 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1919 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1920 sc.nodemask = &nm;
1921 sc.nr_reclaimed = 0;
1922 sc.nr_scanned = 0;
1924 * NOTE: Although we can get the priority field, using it
1925 * here is not a good idea, since it limits the pages we can scan.
1926 * if we don't reclaim here, the shrink_zone from balance_pgdat
1927 * will pick up pages from other mem cgroup's as well. We hack
1928 * the priority and make it zero.
1930 shrink_zone(0, zone, &sc);
1931 return sc.nr_reclaimed;
1934 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1935 gfp_t gfp_mask,
1936 bool noswap,
1937 unsigned int swappiness)
1939 struct zonelist *zonelist;
1940 struct scan_control sc = {
1941 .may_writepage = !laptop_mode,
1942 .may_unmap = 1,
1943 .may_swap = !noswap,
1944 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1945 .swappiness = swappiness,
1946 .order = 0,
1947 .mem_cgroup = mem_cont,
1948 .nodemask = NULL, /* we don't care the placement */
1951 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1952 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1953 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1954 return do_try_to_free_pages(zonelist, &sc);
1956 #endif
1958 /* is kswapd sleeping prematurely? */
1959 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1961 int i;
1963 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1964 if (remaining)
1965 return 1;
1967 /* If after HZ/10, a zone is below the high mark, it's premature */
1968 for (i = 0; i < pgdat->nr_zones; i++) {
1969 struct zone *zone = pgdat->node_zones + i;
1971 if (!populated_zone(zone))
1972 continue;
1974 if (zone->all_unreclaimable)
1975 continue;
1977 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1978 0, 0))
1979 return 1;
1982 return 0;
1986 * For kswapd, balance_pgdat() will work across all this node's zones until
1987 * they are all at high_wmark_pages(zone).
1989 * Returns the number of pages which were actually freed.
1991 * There is special handling here for zones which are full of pinned pages.
1992 * This can happen if the pages are all mlocked, or if they are all used by
1993 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1994 * What we do is to detect the case where all pages in the zone have been
1995 * scanned twice and there has been zero successful reclaim. Mark the zone as
1996 * dead and from now on, only perform a short scan. Basically we're polling
1997 * the zone for when the problem goes away.
1999 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2000 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2001 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2002 * lower zones regardless of the number of free pages in the lower zones. This
2003 * interoperates with the page allocator fallback scheme to ensure that aging
2004 * of pages is balanced across the zones.
2006 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2008 int all_zones_ok;
2009 int priority;
2010 int i;
2011 unsigned long total_scanned;
2012 struct reclaim_state *reclaim_state = current->reclaim_state;
2013 struct scan_control sc = {
2014 .gfp_mask = GFP_KERNEL,
2015 .may_unmap = 1,
2016 .may_swap = 1,
2018 * kswapd doesn't want to be bailed out while reclaim. because
2019 * we want to put equal scanning pressure on each zone.
2021 .nr_to_reclaim = ULONG_MAX,
2022 .swappiness = vm_swappiness,
2023 .order = order,
2024 .mem_cgroup = NULL,
2026 loop_again:
2027 total_scanned = 0;
2028 sc.nr_reclaimed = 0;
2029 sc.may_writepage = !laptop_mode;
2030 count_vm_event(PAGEOUTRUN);
2032 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2033 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2034 unsigned long lru_pages = 0;
2035 int has_under_min_watermark_zone = 0;
2037 /* The swap token gets in the way of swapout... */
2038 if (!priority)
2039 disable_swap_token();
2041 all_zones_ok = 1;
2044 * Scan in the highmem->dma direction for the highest
2045 * zone which needs scanning
2047 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2048 struct zone *zone = pgdat->node_zones + i;
2050 if (!populated_zone(zone))
2051 continue;
2053 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2054 continue;
2057 * Do some background aging of the anon list, to give
2058 * pages a chance to be referenced before reclaiming.
2060 if (inactive_anon_is_low(zone, &sc))
2061 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2062 &sc, priority, 0);
2064 if (!zone_watermark_ok(zone, order,
2065 high_wmark_pages(zone), 0, 0)) {
2066 end_zone = i;
2067 break;
2070 if (i < 0)
2071 goto out;
2073 for (i = 0; i <= end_zone; i++) {
2074 struct zone *zone = pgdat->node_zones + i;
2076 lru_pages += zone_reclaimable_pages(zone);
2080 * Now scan the zone in the dma->highmem direction, stopping
2081 * at the last zone which needs scanning.
2083 * We do this because the page allocator works in the opposite
2084 * direction. This prevents the page allocator from allocating
2085 * pages behind kswapd's direction of progress, which would
2086 * cause too much scanning of the lower zones.
2088 for (i = 0; i <= end_zone; i++) {
2089 struct zone *zone = pgdat->node_zones + i;
2090 int nr_slab;
2091 int nid, zid;
2093 if (!populated_zone(zone))
2094 continue;
2096 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2097 continue;
2099 sc.nr_scanned = 0;
2101 nid = pgdat->node_id;
2102 zid = zone_idx(zone);
2104 * Call soft limit reclaim before calling shrink_zone.
2105 * For now we ignore the return value
2107 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2108 nid, zid);
2110 * We put equal pressure on every zone, unless one
2111 * zone has way too many pages free already.
2113 if (!zone_watermark_ok(zone, order,
2114 8*high_wmark_pages(zone), end_zone, 0))
2115 shrink_zone(priority, zone, &sc);
2116 reclaim_state->reclaimed_slab = 0;
2117 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2118 lru_pages);
2119 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2120 total_scanned += sc.nr_scanned;
2121 if (zone->all_unreclaimable)
2122 continue;
2123 if (nr_slab == 0 &&
2124 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2125 zone->all_unreclaimable = 1;
2127 * If we've done a decent amount of scanning and
2128 * the reclaim ratio is low, start doing writepage
2129 * even in laptop mode
2131 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2132 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2133 sc.may_writepage = 1;
2135 if (!zone_watermark_ok(zone, order,
2136 high_wmark_pages(zone), end_zone, 0)) {
2137 all_zones_ok = 0;
2139 * We are still under min water mark. This
2140 * means that we have a GFP_ATOMIC allocation
2141 * failure risk. Hurry up!
2143 if (!zone_watermark_ok(zone, order,
2144 min_wmark_pages(zone), end_zone, 0))
2145 has_under_min_watermark_zone = 1;
2149 if (all_zones_ok)
2150 break; /* kswapd: all done */
2152 * OK, kswapd is getting into trouble. Take a nap, then take
2153 * another pass across the zones.
2155 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2156 if (has_under_min_watermark_zone)
2157 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2158 else
2159 congestion_wait(BLK_RW_ASYNC, HZ/10);
2163 * We do this so kswapd doesn't build up large priorities for
2164 * example when it is freeing in parallel with allocators. It
2165 * matches the direct reclaim path behaviour in terms of impact
2166 * on zone->*_priority.
2168 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2169 break;
2171 out:
2172 if (!all_zones_ok) {
2173 cond_resched();
2175 try_to_freeze();
2178 * Fragmentation may mean that the system cannot be
2179 * rebalanced for high-order allocations in all zones.
2180 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2181 * it means the zones have been fully scanned and are still
2182 * not balanced. For high-order allocations, there is
2183 * little point trying all over again as kswapd may
2184 * infinite loop.
2186 * Instead, recheck all watermarks at order-0 as they
2187 * are the most important. If watermarks are ok, kswapd will go
2188 * back to sleep. High-order users can still perform direct
2189 * reclaim if they wish.
2191 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2192 order = sc.order = 0;
2194 goto loop_again;
2197 return sc.nr_reclaimed;
2201 * The background pageout daemon, started as a kernel thread
2202 * from the init process.
2204 * This basically trickles out pages so that we have _some_
2205 * free memory available even if there is no other activity
2206 * that frees anything up. This is needed for things like routing
2207 * etc, where we otherwise might have all activity going on in
2208 * asynchronous contexts that cannot page things out.
2210 * If there are applications that are active memory-allocators
2211 * (most normal use), this basically shouldn't matter.
2213 static int kswapd(void *p)
2215 unsigned long order;
2216 pg_data_t *pgdat = (pg_data_t*)p;
2217 struct task_struct *tsk = current;
2218 DEFINE_WAIT(wait);
2219 struct reclaim_state reclaim_state = {
2220 .reclaimed_slab = 0,
2222 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2224 lockdep_set_current_reclaim_state(GFP_KERNEL);
2226 if (!cpumask_empty(cpumask))
2227 set_cpus_allowed_ptr(tsk, cpumask);
2228 current->reclaim_state = &reclaim_state;
2231 * Tell the memory management that we're a "memory allocator",
2232 * and that if we need more memory we should get access to it
2233 * regardless (see "__alloc_pages()"). "kswapd" should
2234 * never get caught in the normal page freeing logic.
2236 * (Kswapd normally doesn't need memory anyway, but sometimes
2237 * you need a small amount of memory in order to be able to
2238 * page out something else, and this flag essentially protects
2239 * us from recursively trying to free more memory as we're
2240 * trying to free the first piece of memory in the first place).
2242 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2243 set_freezable();
2245 order = 0;
2246 for ( ; ; ) {
2247 unsigned long new_order;
2248 int ret;
2250 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2251 new_order = pgdat->kswapd_max_order;
2252 pgdat->kswapd_max_order = 0;
2253 if (order < new_order) {
2255 * Don't sleep if someone wants a larger 'order'
2256 * allocation
2258 order = new_order;
2259 } else {
2260 if (!freezing(current) && !kthread_should_stop()) {
2261 long remaining = 0;
2263 /* Try to sleep for a short interval */
2264 if (!sleeping_prematurely(pgdat, order, remaining)) {
2265 remaining = schedule_timeout(HZ/10);
2266 finish_wait(&pgdat->kswapd_wait, &wait);
2267 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2271 * After a short sleep, check if it was a
2272 * premature sleep. If not, then go fully
2273 * to sleep until explicitly woken up
2275 if (!sleeping_prematurely(pgdat, order, remaining)) {
2276 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2277 schedule();
2278 } else {
2279 if (remaining)
2280 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2281 else
2282 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2286 order = pgdat->kswapd_max_order;
2288 finish_wait(&pgdat->kswapd_wait, &wait);
2290 ret = try_to_freeze();
2291 if (kthread_should_stop())
2292 break;
2295 * We can speed up thawing tasks if we don't call balance_pgdat
2296 * after returning from the refrigerator
2298 if (!ret) {
2299 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2300 balance_pgdat(pgdat, order);
2303 return 0;
2307 * A zone is low on free memory, so wake its kswapd task to service it.
2309 void wakeup_kswapd(struct zone *zone, int order)
2311 pg_data_t *pgdat;
2313 if (!populated_zone(zone))
2314 return;
2316 pgdat = zone->zone_pgdat;
2317 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2318 return;
2319 if (pgdat->kswapd_max_order < order)
2320 pgdat->kswapd_max_order = order;
2321 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2322 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2323 return;
2324 if (!waitqueue_active(&pgdat->kswapd_wait))
2325 return;
2326 wake_up_interruptible(&pgdat->kswapd_wait);
2330 * The reclaimable count would be mostly accurate.
2331 * The less reclaimable pages may be
2332 * - mlocked pages, which will be moved to unevictable list when encountered
2333 * - mapped pages, which may require several travels to be reclaimed
2334 * - dirty pages, which is not "instantly" reclaimable
2336 unsigned long global_reclaimable_pages(void)
2338 int nr;
2340 nr = global_page_state(NR_ACTIVE_FILE) +
2341 global_page_state(NR_INACTIVE_FILE);
2343 if (nr_swap_pages > 0)
2344 nr += global_page_state(NR_ACTIVE_ANON) +
2345 global_page_state(NR_INACTIVE_ANON);
2347 return nr;
2350 unsigned long zone_reclaimable_pages(struct zone *zone)
2352 int nr;
2354 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2355 zone_page_state(zone, NR_INACTIVE_FILE);
2357 if (nr_swap_pages > 0)
2358 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2359 zone_page_state(zone, NR_INACTIVE_ANON);
2361 return nr;
2364 #ifdef CONFIG_HIBERNATION
2366 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2367 * freed pages.
2369 * Rather than trying to age LRUs the aim is to preserve the overall
2370 * LRU order by reclaiming preferentially
2371 * inactive > active > active referenced > active mapped
2373 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2375 struct reclaim_state reclaim_state;
2376 struct scan_control sc = {
2377 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2378 .may_swap = 1,
2379 .may_unmap = 1,
2380 .may_writepage = 1,
2381 .nr_to_reclaim = nr_to_reclaim,
2382 .hibernation_mode = 1,
2383 .swappiness = vm_swappiness,
2384 .order = 0,
2386 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2387 struct task_struct *p = current;
2388 unsigned long nr_reclaimed;
2390 p->flags |= PF_MEMALLOC;
2391 lockdep_set_current_reclaim_state(sc.gfp_mask);
2392 reclaim_state.reclaimed_slab = 0;
2393 p->reclaim_state = &reclaim_state;
2395 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2397 p->reclaim_state = NULL;
2398 lockdep_clear_current_reclaim_state();
2399 p->flags &= ~PF_MEMALLOC;
2401 return nr_reclaimed;
2403 #endif /* CONFIG_HIBERNATION */
2405 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2406 not required for correctness. So if the last cpu in a node goes
2407 away, we get changed to run anywhere: as the first one comes back,
2408 restore their cpu bindings. */
2409 static int __devinit cpu_callback(struct notifier_block *nfb,
2410 unsigned long action, void *hcpu)
2412 int nid;
2414 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2415 for_each_node_state(nid, N_HIGH_MEMORY) {
2416 pg_data_t *pgdat = NODE_DATA(nid);
2417 const struct cpumask *mask;
2419 mask = cpumask_of_node(pgdat->node_id);
2421 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2422 /* One of our CPUs online: restore mask */
2423 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2426 return NOTIFY_OK;
2430 * This kswapd start function will be called by init and node-hot-add.
2431 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2433 int kswapd_run(int nid)
2435 pg_data_t *pgdat = NODE_DATA(nid);
2436 int ret = 0;
2438 if (pgdat->kswapd)
2439 return 0;
2441 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2442 if (IS_ERR(pgdat->kswapd)) {
2443 /* failure at boot is fatal */
2444 BUG_ON(system_state == SYSTEM_BOOTING);
2445 printk("Failed to start kswapd on node %d\n",nid);
2446 ret = -1;
2448 return ret;
2452 * Called by memory hotplug when all memory in a node is offlined.
2454 void kswapd_stop(int nid)
2456 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2458 if (kswapd)
2459 kthread_stop(kswapd);
2462 static int __init kswapd_init(void)
2464 int nid;
2466 swap_setup();
2467 for_each_node_state(nid, N_HIGH_MEMORY)
2468 kswapd_run(nid);
2469 hotcpu_notifier(cpu_callback, 0);
2470 return 0;
2473 module_init(kswapd_init)
2475 #ifdef CONFIG_NUMA
2477 * Zone reclaim mode
2479 * If non-zero call zone_reclaim when the number of free pages falls below
2480 * the watermarks.
2482 int zone_reclaim_mode __read_mostly;
2484 #define RECLAIM_OFF 0
2485 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2486 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2487 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2490 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2491 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2492 * a zone.
2494 #define ZONE_RECLAIM_PRIORITY 4
2497 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2498 * occur.
2500 int sysctl_min_unmapped_ratio = 1;
2503 * If the number of slab pages in a zone grows beyond this percentage then
2504 * slab reclaim needs to occur.
2506 int sysctl_min_slab_ratio = 5;
2508 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2510 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2511 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2512 zone_page_state(zone, NR_ACTIVE_FILE);
2515 * It's possible for there to be more file mapped pages than
2516 * accounted for by the pages on the file LRU lists because
2517 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2519 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2522 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2523 static long zone_pagecache_reclaimable(struct zone *zone)
2525 long nr_pagecache_reclaimable;
2526 long delta = 0;
2529 * If RECLAIM_SWAP is set, then all file pages are considered
2530 * potentially reclaimable. Otherwise, we have to worry about
2531 * pages like swapcache and zone_unmapped_file_pages() provides
2532 * a better estimate
2534 if (zone_reclaim_mode & RECLAIM_SWAP)
2535 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2536 else
2537 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2539 /* If we can't clean pages, remove dirty pages from consideration */
2540 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2541 delta += zone_page_state(zone, NR_FILE_DIRTY);
2543 /* Watch for any possible underflows due to delta */
2544 if (unlikely(delta > nr_pagecache_reclaimable))
2545 delta = nr_pagecache_reclaimable;
2547 return nr_pagecache_reclaimable - delta;
2551 * Try to free up some pages from this zone through reclaim.
2553 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2555 /* Minimum pages needed in order to stay on node */
2556 const unsigned long nr_pages = 1 << order;
2557 struct task_struct *p = current;
2558 struct reclaim_state reclaim_state;
2559 int priority;
2560 struct scan_control sc = {
2561 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2562 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2563 .may_swap = 1,
2564 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2565 SWAP_CLUSTER_MAX),
2566 .gfp_mask = gfp_mask,
2567 .swappiness = vm_swappiness,
2568 .order = order,
2570 unsigned long slab_reclaimable;
2572 cond_resched();
2574 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2575 * and we also need to be able to write out pages for RECLAIM_WRITE
2576 * and RECLAIM_SWAP.
2578 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2579 lockdep_set_current_reclaim_state(gfp_mask);
2580 reclaim_state.reclaimed_slab = 0;
2581 p->reclaim_state = &reclaim_state;
2583 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2585 * Free memory by calling shrink zone with increasing
2586 * priorities until we have enough memory freed.
2588 priority = ZONE_RECLAIM_PRIORITY;
2589 do {
2590 shrink_zone(priority, zone, &sc);
2591 priority--;
2592 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2595 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2596 if (slab_reclaimable > zone->min_slab_pages) {
2598 * shrink_slab() does not currently allow us to determine how
2599 * many pages were freed in this zone. So we take the current
2600 * number of slab pages and shake the slab until it is reduced
2601 * by the same nr_pages that we used for reclaiming unmapped
2602 * pages.
2604 * Note that shrink_slab will free memory on all zones and may
2605 * take a long time.
2607 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2608 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2609 slab_reclaimable - nr_pages)
2613 * Update nr_reclaimed by the number of slab pages we
2614 * reclaimed from this zone.
2616 sc.nr_reclaimed += slab_reclaimable -
2617 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2620 p->reclaim_state = NULL;
2621 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2622 lockdep_clear_current_reclaim_state();
2623 return sc.nr_reclaimed >= nr_pages;
2626 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2628 int node_id;
2629 int ret;
2632 * Zone reclaim reclaims unmapped file backed pages and
2633 * slab pages if we are over the defined limits.
2635 * A small portion of unmapped file backed pages is needed for
2636 * file I/O otherwise pages read by file I/O will be immediately
2637 * thrown out if the zone is overallocated. So we do not reclaim
2638 * if less than a specified percentage of the zone is used by
2639 * unmapped file backed pages.
2641 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2642 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2643 return ZONE_RECLAIM_FULL;
2645 if (zone->all_unreclaimable)
2646 return ZONE_RECLAIM_FULL;
2649 * Do not scan if the allocation should not be delayed.
2651 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2652 return ZONE_RECLAIM_NOSCAN;
2655 * Only run zone reclaim on the local zone or on zones that do not
2656 * have associated processors. This will favor the local processor
2657 * over remote processors and spread off node memory allocations
2658 * as wide as possible.
2660 node_id = zone_to_nid(zone);
2661 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2662 return ZONE_RECLAIM_NOSCAN;
2664 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2665 return ZONE_RECLAIM_NOSCAN;
2667 ret = __zone_reclaim(zone, gfp_mask, order);
2668 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2670 if (!ret)
2671 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2673 return ret;
2675 #endif
2678 * page_evictable - test whether a page is evictable
2679 * @page: the page to test
2680 * @vma: the VMA in which the page is or will be mapped, may be NULL
2682 * Test whether page is evictable--i.e., should be placed on active/inactive
2683 * lists vs unevictable list. The vma argument is !NULL when called from the
2684 * fault path to determine how to instantate a new page.
2686 * Reasons page might not be evictable:
2687 * (1) page's mapping marked unevictable
2688 * (2) page is part of an mlocked VMA
2691 int page_evictable(struct page *page, struct vm_area_struct *vma)
2694 if (mapping_unevictable(page_mapping(page)))
2695 return 0;
2697 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2698 return 0;
2700 return 1;
2704 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2705 * @page: page to check evictability and move to appropriate lru list
2706 * @zone: zone page is in
2708 * Checks a page for evictability and moves the page to the appropriate
2709 * zone lru list.
2711 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2712 * have PageUnevictable set.
2714 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2716 VM_BUG_ON(PageActive(page));
2718 retry:
2719 ClearPageUnevictable(page);
2720 if (page_evictable(page, NULL)) {
2721 enum lru_list l = page_lru_base_type(page);
2723 __dec_zone_state(zone, NR_UNEVICTABLE);
2724 list_move(&page->lru, &zone->lru[l].list);
2725 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2726 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2727 __count_vm_event(UNEVICTABLE_PGRESCUED);
2728 } else {
2730 * rotate unevictable list
2732 SetPageUnevictable(page);
2733 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2734 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2735 if (page_evictable(page, NULL))
2736 goto retry;
2741 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2742 * @mapping: struct address_space to scan for evictable pages
2744 * Scan all pages in mapping. Check unevictable pages for
2745 * evictability and move them to the appropriate zone lru list.
2747 void scan_mapping_unevictable_pages(struct address_space *mapping)
2749 pgoff_t next = 0;
2750 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2751 PAGE_CACHE_SHIFT;
2752 struct zone *zone;
2753 struct pagevec pvec;
2755 if (mapping->nrpages == 0)
2756 return;
2758 pagevec_init(&pvec, 0);
2759 while (next < end &&
2760 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2761 int i;
2762 int pg_scanned = 0;
2764 zone = NULL;
2766 for (i = 0; i < pagevec_count(&pvec); i++) {
2767 struct page *page = pvec.pages[i];
2768 pgoff_t page_index = page->index;
2769 struct zone *pagezone = page_zone(page);
2771 pg_scanned++;
2772 if (page_index > next)
2773 next = page_index;
2774 next++;
2776 if (pagezone != zone) {
2777 if (zone)
2778 spin_unlock_irq(&zone->lru_lock);
2779 zone = pagezone;
2780 spin_lock_irq(&zone->lru_lock);
2783 if (PageLRU(page) && PageUnevictable(page))
2784 check_move_unevictable_page(page, zone);
2786 if (zone)
2787 spin_unlock_irq(&zone->lru_lock);
2788 pagevec_release(&pvec);
2790 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2796 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2797 * @zone - zone of which to scan the unevictable list
2799 * Scan @zone's unevictable LRU lists to check for pages that have become
2800 * evictable. Move those that have to @zone's inactive list where they
2801 * become candidates for reclaim, unless shrink_inactive_zone() decides
2802 * to reactivate them. Pages that are still unevictable are rotated
2803 * back onto @zone's unevictable list.
2805 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2806 static void scan_zone_unevictable_pages(struct zone *zone)
2808 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2809 unsigned long scan;
2810 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2812 while (nr_to_scan > 0) {
2813 unsigned long batch_size = min(nr_to_scan,
2814 SCAN_UNEVICTABLE_BATCH_SIZE);
2816 spin_lock_irq(&zone->lru_lock);
2817 for (scan = 0; scan < batch_size; scan++) {
2818 struct page *page = lru_to_page(l_unevictable);
2820 if (!trylock_page(page))
2821 continue;
2823 prefetchw_prev_lru_page(page, l_unevictable, flags);
2825 if (likely(PageLRU(page) && PageUnevictable(page)))
2826 check_move_unevictable_page(page, zone);
2828 unlock_page(page);
2830 spin_unlock_irq(&zone->lru_lock);
2832 nr_to_scan -= batch_size;
2838 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2840 * A really big hammer: scan all zones' unevictable LRU lists to check for
2841 * pages that have become evictable. Move those back to the zones'
2842 * inactive list where they become candidates for reclaim.
2843 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2844 * and we add swap to the system. As such, it runs in the context of a task
2845 * that has possibly/probably made some previously unevictable pages
2846 * evictable.
2848 static void scan_all_zones_unevictable_pages(void)
2850 struct zone *zone;
2852 for_each_zone(zone) {
2853 scan_zone_unevictable_pages(zone);
2858 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2859 * all nodes' unevictable lists for evictable pages
2861 unsigned long scan_unevictable_pages;
2863 int scan_unevictable_handler(struct ctl_table *table, int write,
2864 void __user *buffer,
2865 size_t *length, loff_t *ppos)
2867 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2869 if (write && *(unsigned long *)table->data)
2870 scan_all_zones_unevictable_pages();
2872 scan_unevictable_pages = 0;
2873 return 0;
2877 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2878 * a specified node's per zone unevictable lists for evictable pages.
2881 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2882 struct sysdev_attribute *attr,
2883 char *buf)
2885 return sprintf(buf, "0\n"); /* always zero; should fit... */
2888 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2889 struct sysdev_attribute *attr,
2890 const char *buf, size_t count)
2892 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2893 struct zone *zone;
2894 unsigned long res;
2895 unsigned long req = strict_strtoul(buf, 10, &res);
2897 if (!req)
2898 return 1; /* zero is no-op */
2900 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2901 if (!populated_zone(zone))
2902 continue;
2903 scan_zone_unevictable_pages(zone);
2905 return 1;
2909 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2910 read_scan_unevictable_node,
2911 write_scan_unevictable_node);
2913 int scan_unevictable_register_node(struct node *node)
2915 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2918 void scan_unevictable_unregister_node(struct node *node)
2920 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);