e1000e: 82579 PHY incorrectly identified during init
[linux-2.6/btrfs-unstable.git] / drivers / net / e1000e / phy.c
blob95da38693b775567c8edb443b2746760cff4eb0d
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/delay.h>
31 #include "e1000.h"
33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 u16 *data, bool read);
40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42 u16 *data, bool read);
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table[] =
46 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 ARRAY_SIZE(e1000_m88_cable_length_table)
50 static const u16 e1000_igp_2_cable_length_table[] =
51 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
58 124};
59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60 ARRAY_SIZE(e1000_igp_2_cable_length_table)
62 #define BM_PHY_REG_PAGE(offset) \
63 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64 #define BM_PHY_REG_NUM(offset) \
65 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67 ~MAX_PHY_REG_ADDRESS)))
69 #define HV_INTC_FC_PAGE_START 768
70 #define I82578_ADDR_REG 29
71 #define I82577_ADDR_REG 16
72 #define I82577_CFG_REG 22
73 #define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
74 #define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
75 #define I82577_CTRL_REG 23
77 /* 82577 specific PHY registers */
78 #define I82577_PHY_CTRL_2 18
79 #define I82577_PHY_STATUS_2 26
80 #define I82577_PHY_DIAG_STATUS 31
82 /* I82577 PHY Status 2 */
83 #define I82577_PHY_STATUS2_REV_POLARITY 0x0400
84 #define I82577_PHY_STATUS2_MDIX 0x0800
85 #define I82577_PHY_STATUS2_SPEED_MASK 0x0300
86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
88 /* I82577 PHY Control 2 */
89 #define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
92 /* I82577 PHY Diagnostics Status */
93 #define I82577_DSTATUS_CABLE_LENGTH 0x03FC
94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
96 /* BM PHY Copper Specific Control 1 */
97 #define BM_CS_CTRL1 16
99 #define HV_MUX_DATA_CTRL PHY_REG(776, 16)
100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
101 #define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
104 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
105 * @hw: pointer to the HW structure
107 * Read the PHY management control register and check whether a PHY reset
108 * is blocked. If a reset is not blocked return 0, otherwise
109 * return E1000_BLK_PHY_RESET (12).
111 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
113 u32 manc;
115 manc = er32(MANC);
117 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
118 E1000_BLK_PHY_RESET : 0;
122 * e1000e_get_phy_id - Retrieve the PHY ID and revision
123 * @hw: pointer to the HW structure
125 * Reads the PHY registers and stores the PHY ID and possibly the PHY
126 * revision in the hardware structure.
128 s32 e1000e_get_phy_id(struct e1000_hw *hw)
130 struct e1000_phy_info *phy = &hw->phy;
131 s32 ret_val = 0;
132 u16 phy_id;
133 u16 retry_count = 0;
135 if (!(phy->ops.read_reg))
136 goto out;
138 while (retry_count < 2) {
139 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
140 if (ret_val)
141 goto out;
143 phy->id = (u32)(phy_id << 16);
144 udelay(20);
145 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
146 if (ret_val)
147 goto out;
149 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
150 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
152 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
153 goto out;
155 retry_count++;
157 out:
158 return ret_val;
162 * e1000e_phy_reset_dsp - Reset PHY DSP
163 * @hw: pointer to the HW structure
165 * Reset the digital signal processor.
167 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
169 s32 ret_val;
171 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
172 if (ret_val)
173 return ret_val;
175 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
179 * e1000e_read_phy_reg_mdic - Read MDI control register
180 * @hw: pointer to the HW structure
181 * @offset: register offset to be read
182 * @data: pointer to the read data
184 * Reads the MDI control register in the PHY at offset and stores the
185 * information read to data.
187 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
189 struct e1000_phy_info *phy = &hw->phy;
190 u32 i, mdic = 0;
192 if (offset > MAX_PHY_REG_ADDRESS) {
193 e_dbg("PHY Address %d is out of range\n", offset);
194 return -E1000_ERR_PARAM;
198 * Set up Op-code, Phy Address, and register offset in the MDI
199 * Control register. The MAC will take care of interfacing with the
200 * PHY to retrieve the desired data.
202 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
203 (phy->addr << E1000_MDIC_PHY_SHIFT) |
204 (E1000_MDIC_OP_READ));
206 ew32(MDIC, mdic);
209 * Poll the ready bit to see if the MDI read completed
210 * Increasing the time out as testing showed failures with
211 * the lower time out
213 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
214 udelay(50);
215 mdic = er32(MDIC);
216 if (mdic & E1000_MDIC_READY)
217 break;
219 if (!(mdic & E1000_MDIC_READY)) {
220 e_dbg("MDI Read did not complete\n");
221 return -E1000_ERR_PHY;
223 if (mdic & E1000_MDIC_ERROR) {
224 e_dbg("MDI Error\n");
225 return -E1000_ERR_PHY;
227 *data = (u16) mdic;
230 * Allow some time after each MDIC transaction to avoid
231 * reading duplicate data in the next MDIC transaction.
233 if (hw->mac.type == e1000_pch2lan)
234 udelay(100);
236 return 0;
240 * e1000e_write_phy_reg_mdic - Write MDI control register
241 * @hw: pointer to the HW structure
242 * @offset: register offset to write to
243 * @data: data to write to register at offset
245 * Writes data to MDI control register in the PHY at offset.
247 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
249 struct e1000_phy_info *phy = &hw->phy;
250 u32 i, mdic = 0;
252 if (offset > MAX_PHY_REG_ADDRESS) {
253 e_dbg("PHY Address %d is out of range\n", offset);
254 return -E1000_ERR_PARAM;
258 * Set up Op-code, Phy Address, and register offset in the MDI
259 * Control register. The MAC will take care of interfacing with the
260 * PHY to retrieve the desired data.
262 mdic = (((u32)data) |
263 (offset << E1000_MDIC_REG_SHIFT) |
264 (phy->addr << E1000_MDIC_PHY_SHIFT) |
265 (E1000_MDIC_OP_WRITE));
267 ew32(MDIC, mdic);
270 * Poll the ready bit to see if the MDI read completed
271 * Increasing the time out as testing showed failures with
272 * the lower time out
274 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
275 udelay(50);
276 mdic = er32(MDIC);
277 if (mdic & E1000_MDIC_READY)
278 break;
280 if (!(mdic & E1000_MDIC_READY)) {
281 e_dbg("MDI Write did not complete\n");
282 return -E1000_ERR_PHY;
284 if (mdic & E1000_MDIC_ERROR) {
285 e_dbg("MDI Error\n");
286 return -E1000_ERR_PHY;
290 * Allow some time after each MDIC transaction to avoid
291 * reading duplicate data in the next MDIC transaction.
293 if (hw->mac.type == e1000_pch2lan)
294 udelay(100);
296 return 0;
300 * e1000e_read_phy_reg_m88 - Read m88 PHY register
301 * @hw: pointer to the HW structure
302 * @offset: register offset to be read
303 * @data: pointer to the read data
305 * Acquires semaphore, if necessary, then reads the PHY register at offset
306 * and storing the retrieved information in data. Release any acquired
307 * semaphores before exiting.
309 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
311 s32 ret_val;
313 ret_val = hw->phy.ops.acquire(hw);
314 if (ret_val)
315 return ret_val;
317 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
318 data);
320 hw->phy.ops.release(hw);
322 return ret_val;
326 * e1000e_write_phy_reg_m88 - Write m88 PHY register
327 * @hw: pointer to the HW structure
328 * @offset: register offset to write to
329 * @data: data to write at register offset
331 * Acquires semaphore, if necessary, then writes the data to PHY register
332 * at the offset. Release any acquired semaphores before exiting.
334 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
336 s32 ret_val;
338 ret_val = hw->phy.ops.acquire(hw);
339 if (ret_val)
340 return ret_val;
342 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
343 data);
345 hw->phy.ops.release(hw);
347 return ret_val;
351 * __e1000e_read_phy_reg_igp - Read igp PHY register
352 * @hw: pointer to the HW structure
353 * @offset: register offset to be read
354 * @data: pointer to the read data
355 * @locked: semaphore has already been acquired or not
357 * Acquires semaphore, if necessary, then reads the PHY register at offset
358 * and stores the retrieved information in data. Release any acquired
359 * semaphores before exiting.
361 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
362 bool locked)
364 s32 ret_val = 0;
366 if (!locked) {
367 if (!(hw->phy.ops.acquire))
368 goto out;
370 ret_val = hw->phy.ops.acquire(hw);
371 if (ret_val)
372 goto out;
375 if (offset > MAX_PHY_MULTI_PAGE_REG) {
376 ret_val = e1000e_write_phy_reg_mdic(hw,
377 IGP01E1000_PHY_PAGE_SELECT,
378 (u16)offset);
379 if (ret_val)
380 goto release;
383 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
384 data);
386 release:
387 if (!locked)
388 hw->phy.ops.release(hw);
389 out:
390 return ret_val;
394 * e1000e_read_phy_reg_igp - Read igp PHY register
395 * @hw: pointer to the HW structure
396 * @offset: register offset to be read
397 * @data: pointer to the read data
399 * Acquires semaphore then reads the PHY register at offset and stores the
400 * retrieved information in data.
401 * Release the acquired semaphore before exiting.
403 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
405 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
409 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
410 * @hw: pointer to the HW structure
411 * @offset: register offset to be read
412 * @data: pointer to the read data
414 * Reads the PHY register at offset and stores the retrieved information
415 * in data. Assumes semaphore already acquired.
417 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
419 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
423 * e1000e_write_phy_reg_igp - Write igp PHY register
424 * @hw: pointer to the HW structure
425 * @offset: register offset to write to
426 * @data: data to write at register offset
427 * @locked: semaphore has already been acquired or not
429 * Acquires semaphore, if necessary, then writes the data to PHY register
430 * at the offset. Release any acquired semaphores before exiting.
432 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
433 bool locked)
435 s32 ret_val = 0;
437 if (!locked) {
438 if (!(hw->phy.ops.acquire))
439 goto out;
441 ret_val = hw->phy.ops.acquire(hw);
442 if (ret_val)
443 goto out;
446 if (offset > MAX_PHY_MULTI_PAGE_REG) {
447 ret_val = e1000e_write_phy_reg_mdic(hw,
448 IGP01E1000_PHY_PAGE_SELECT,
449 (u16)offset);
450 if (ret_val)
451 goto release;
454 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
455 data);
457 release:
458 if (!locked)
459 hw->phy.ops.release(hw);
461 out:
462 return ret_val;
466 * e1000e_write_phy_reg_igp - Write igp PHY register
467 * @hw: pointer to the HW structure
468 * @offset: register offset to write to
469 * @data: data to write at register offset
471 * Acquires semaphore then writes the data to PHY register
472 * at the offset. Release any acquired semaphores before exiting.
474 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
476 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
480 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
481 * @hw: pointer to the HW structure
482 * @offset: register offset to write to
483 * @data: data to write at register offset
485 * Writes the data to PHY register at the offset.
486 * Assumes semaphore already acquired.
488 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
490 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
494 * __e1000_read_kmrn_reg - Read kumeran register
495 * @hw: pointer to the HW structure
496 * @offset: register offset to be read
497 * @data: pointer to the read data
498 * @locked: semaphore has already been acquired or not
500 * Acquires semaphore, if necessary. Then reads the PHY register at offset
501 * using the kumeran interface. The information retrieved is stored in data.
502 * Release any acquired semaphores before exiting.
504 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
505 bool locked)
507 u32 kmrnctrlsta;
508 s32 ret_val = 0;
510 if (!locked) {
511 if (!(hw->phy.ops.acquire))
512 goto out;
514 ret_val = hw->phy.ops.acquire(hw);
515 if (ret_val)
516 goto out;
519 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
520 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
521 ew32(KMRNCTRLSTA, kmrnctrlsta);
523 udelay(2);
525 kmrnctrlsta = er32(KMRNCTRLSTA);
526 *data = (u16)kmrnctrlsta;
528 if (!locked)
529 hw->phy.ops.release(hw);
531 out:
532 return ret_val;
536 * e1000e_read_kmrn_reg - Read kumeran register
537 * @hw: pointer to the HW structure
538 * @offset: register offset to be read
539 * @data: pointer to the read data
541 * Acquires semaphore then reads the PHY register at offset using the
542 * kumeran interface. The information retrieved is stored in data.
543 * Release the acquired semaphore before exiting.
545 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
547 return __e1000_read_kmrn_reg(hw, offset, data, false);
551 * e1000e_read_kmrn_reg_locked - Read kumeran register
552 * @hw: pointer to the HW structure
553 * @offset: register offset to be read
554 * @data: pointer to the read data
556 * Reads the PHY register at offset using the kumeran interface. The
557 * information retrieved is stored in data.
558 * Assumes semaphore already acquired.
560 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
562 return __e1000_read_kmrn_reg(hw, offset, data, true);
566 * __e1000_write_kmrn_reg - Write kumeran register
567 * @hw: pointer to the HW structure
568 * @offset: register offset to write to
569 * @data: data to write at register offset
570 * @locked: semaphore has already been acquired or not
572 * Acquires semaphore, if necessary. Then write the data to PHY register
573 * at the offset using the kumeran interface. Release any acquired semaphores
574 * before exiting.
576 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
577 bool locked)
579 u32 kmrnctrlsta;
580 s32 ret_val = 0;
582 if (!locked) {
583 if (!(hw->phy.ops.acquire))
584 goto out;
586 ret_val = hw->phy.ops.acquire(hw);
587 if (ret_val)
588 goto out;
591 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
592 E1000_KMRNCTRLSTA_OFFSET) | data;
593 ew32(KMRNCTRLSTA, kmrnctrlsta);
595 udelay(2);
597 if (!locked)
598 hw->phy.ops.release(hw);
600 out:
601 return ret_val;
605 * e1000e_write_kmrn_reg - Write kumeran register
606 * @hw: pointer to the HW structure
607 * @offset: register offset to write to
608 * @data: data to write at register offset
610 * Acquires semaphore then writes the data to the PHY register at the offset
611 * using the kumeran interface. Release the acquired semaphore before exiting.
613 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
615 return __e1000_write_kmrn_reg(hw, offset, data, false);
619 * e1000e_write_kmrn_reg_locked - Write kumeran register
620 * @hw: pointer to the HW structure
621 * @offset: register offset to write to
622 * @data: data to write at register offset
624 * Write the data to PHY register at the offset using the kumeran interface.
625 * Assumes semaphore already acquired.
627 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
629 return __e1000_write_kmrn_reg(hw, offset, data, true);
633 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
634 * @hw: pointer to the HW structure
636 * Sets up Carrier-sense on Transmit and downshift values.
638 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
640 struct e1000_phy_info *phy = &hw->phy;
641 s32 ret_val;
642 u16 phy_data;
644 /* Enable CRS on TX. This must be set for half-duplex operation. */
645 ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
646 if (ret_val)
647 goto out;
649 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
651 /* Enable downshift */
652 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
654 ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
656 out:
657 return ret_val;
661 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
662 * @hw: pointer to the HW structure
664 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
665 * and downshift values are set also.
667 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
669 struct e1000_phy_info *phy = &hw->phy;
670 s32 ret_val;
671 u16 phy_data;
673 /* Enable CRS on Tx. This must be set for half-duplex operation. */
674 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
675 if (ret_val)
676 return ret_val;
678 /* For BM PHY this bit is downshift enable */
679 if (phy->type != e1000_phy_bm)
680 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
683 * Options:
684 * MDI/MDI-X = 0 (default)
685 * 0 - Auto for all speeds
686 * 1 - MDI mode
687 * 2 - MDI-X mode
688 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
690 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
692 switch (phy->mdix) {
693 case 1:
694 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
695 break;
696 case 2:
697 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
698 break;
699 case 3:
700 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
701 break;
702 case 0:
703 default:
704 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
705 break;
709 * Options:
710 * disable_polarity_correction = 0 (default)
711 * Automatic Correction for Reversed Cable Polarity
712 * 0 - Disabled
713 * 1 - Enabled
715 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
716 if (phy->disable_polarity_correction == 1)
717 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
719 /* Enable downshift on BM (disabled by default) */
720 if (phy->type == e1000_phy_bm)
721 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
723 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
724 if (ret_val)
725 return ret_val;
727 if ((phy->type == e1000_phy_m88) &&
728 (phy->revision < E1000_REVISION_4) &&
729 (phy->id != BME1000_E_PHY_ID_R2)) {
731 * Force TX_CLK in the Extended PHY Specific Control Register
732 * to 25MHz clock.
734 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
735 if (ret_val)
736 return ret_val;
738 phy_data |= M88E1000_EPSCR_TX_CLK_25;
740 if ((phy->revision == 2) &&
741 (phy->id == M88E1111_I_PHY_ID)) {
742 /* 82573L PHY - set the downshift counter to 5x. */
743 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
744 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
745 } else {
746 /* Configure Master and Slave downshift values */
747 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
748 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
749 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
750 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
752 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
753 if (ret_val)
754 return ret_val;
757 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
758 /* Set PHY page 0, register 29 to 0x0003 */
759 ret_val = e1e_wphy(hw, 29, 0x0003);
760 if (ret_val)
761 return ret_val;
763 /* Set PHY page 0, register 30 to 0x0000 */
764 ret_val = e1e_wphy(hw, 30, 0x0000);
765 if (ret_val)
766 return ret_val;
769 /* Commit the changes. */
770 ret_val = e1000e_commit_phy(hw);
771 if (ret_val) {
772 e_dbg("Error committing the PHY changes\n");
773 return ret_val;
776 if (phy->type == e1000_phy_82578) {
777 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
778 &phy_data);
779 if (ret_val)
780 return ret_val;
782 /* 82578 PHY - set the downshift count to 1x. */
783 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
784 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
785 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
786 phy_data);
787 if (ret_val)
788 return ret_val;
791 return 0;
795 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
796 * @hw: pointer to the HW structure
798 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
799 * igp PHY's.
801 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
803 struct e1000_phy_info *phy = &hw->phy;
804 s32 ret_val;
805 u16 data;
807 ret_val = e1000_phy_hw_reset(hw);
808 if (ret_val) {
809 e_dbg("Error resetting the PHY.\n");
810 return ret_val;
814 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
815 * timeout issues when LFS is enabled.
817 msleep(100);
819 /* disable lplu d0 during driver init */
820 ret_val = e1000_set_d0_lplu_state(hw, false);
821 if (ret_val) {
822 e_dbg("Error Disabling LPLU D0\n");
823 return ret_val;
825 /* Configure mdi-mdix settings */
826 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
827 if (ret_val)
828 return ret_val;
830 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
832 switch (phy->mdix) {
833 case 1:
834 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
835 break;
836 case 2:
837 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
838 break;
839 case 0:
840 default:
841 data |= IGP01E1000_PSCR_AUTO_MDIX;
842 break;
844 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
845 if (ret_val)
846 return ret_val;
848 /* set auto-master slave resolution settings */
849 if (hw->mac.autoneg) {
851 * when autonegotiation advertisement is only 1000Mbps then we
852 * should disable SmartSpeed and enable Auto MasterSlave
853 * resolution as hardware default.
855 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
856 /* Disable SmartSpeed */
857 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
858 &data);
859 if (ret_val)
860 return ret_val;
862 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
863 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
864 data);
865 if (ret_val)
866 return ret_val;
868 /* Set auto Master/Slave resolution process */
869 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
870 if (ret_val)
871 return ret_val;
873 data &= ~CR_1000T_MS_ENABLE;
874 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
875 if (ret_val)
876 return ret_val;
879 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
880 if (ret_val)
881 return ret_val;
883 /* load defaults for future use */
884 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
885 ((data & CR_1000T_MS_VALUE) ?
886 e1000_ms_force_master :
887 e1000_ms_force_slave) :
888 e1000_ms_auto;
890 switch (phy->ms_type) {
891 case e1000_ms_force_master:
892 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
893 break;
894 case e1000_ms_force_slave:
895 data |= CR_1000T_MS_ENABLE;
896 data &= ~(CR_1000T_MS_VALUE);
897 break;
898 case e1000_ms_auto:
899 data &= ~CR_1000T_MS_ENABLE;
900 default:
901 break;
903 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
906 return ret_val;
910 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
911 * @hw: pointer to the HW structure
913 * Reads the MII auto-neg advertisement register and/or the 1000T control
914 * register and if the PHY is already setup for auto-negotiation, then
915 * return successful. Otherwise, setup advertisement and flow control to
916 * the appropriate values for the wanted auto-negotiation.
918 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
920 struct e1000_phy_info *phy = &hw->phy;
921 s32 ret_val;
922 u16 mii_autoneg_adv_reg;
923 u16 mii_1000t_ctrl_reg = 0;
925 phy->autoneg_advertised &= phy->autoneg_mask;
927 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
928 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
929 if (ret_val)
930 return ret_val;
932 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
933 /* Read the MII 1000Base-T Control Register (Address 9). */
934 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
935 if (ret_val)
936 return ret_val;
940 * Need to parse both autoneg_advertised and fc and set up
941 * the appropriate PHY registers. First we will parse for
942 * autoneg_advertised software override. Since we can advertise
943 * a plethora of combinations, we need to check each bit
944 * individually.
948 * First we clear all the 10/100 mb speed bits in the Auto-Neg
949 * Advertisement Register (Address 4) and the 1000 mb speed bits in
950 * the 1000Base-T Control Register (Address 9).
952 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
953 NWAY_AR_100TX_HD_CAPS |
954 NWAY_AR_10T_FD_CAPS |
955 NWAY_AR_10T_HD_CAPS);
956 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
958 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
960 /* Do we want to advertise 10 Mb Half Duplex? */
961 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
962 e_dbg("Advertise 10mb Half duplex\n");
963 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
966 /* Do we want to advertise 10 Mb Full Duplex? */
967 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
968 e_dbg("Advertise 10mb Full duplex\n");
969 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
972 /* Do we want to advertise 100 Mb Half Duplex? */
973 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
974 e_dbg("Advertise 100mb Half duplex\n");
975 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
978 /* Do we want to advertise 100 Mb Full Duplex? */
979 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
980 e_dbg("Advertise 100mb Full duplex\n");
981 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
984 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
985 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
986 e_dbg("Advertise 1000mb Half duplex request denied!\n");
988 /* Do we want to advertise 1000 Mb Full Duplex? */
989 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
990 e_dbg("Advertise 1000mb Full duplex\n");
991 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
995 * Check for a software override of the flow control settings, and
996 * setup the PHY advertisement registers accordingly. If
997 * auto-negotiation is enabled, then software will have to set the
998 * "PAUSE" bits to the correct value in the Auto-Negotiation
999 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1000 * negotiation.
1002 * The possible values of the "fc" parameter are:
1003 * 0: Flow control is completely disabled
1004 * 1: Rx flow control is enabled (we can receive pause frames
1005 * but not send pause frames).
1006 * 2: Tx flow control is enabled (we can send pause frames
1007 * but we do not support receiving pause frames).
1008 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1009 * other: No software override. The flow control configuration
1010 * in the EEPROM is used.
1012 switch (hw->fc.current_mode) {
1013 case e1000_fc_none:
1015 * Flow control (Rx & Tx) is completely disabled by a
1016 * software over-ride.
1018 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1019 break;
1020 case e1000_fc_rx_pause:
1022 * Rx Flow control is enabled, and Tx Flow control is
1023 * disabled, by a software over-ride.
1025 * Since there really isn't a way to advertise that we are
1026 * capable of Rx Pause ONLY, we will advertise that we
1027 * support both symmetric and asymmetric Rx PAUSE. Later
1028 * (in e1000e_config_fc_after_link_up) we will disable the
1029 * hw's ability to send PAUSE frames.
1031 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1032 break;
1033 case e1000_fc_tx_pause:
1035 * Tx Flow control is enabled, and Rx Flow control is
1036 * disabled, by a software over-ride.
1038 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1039 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1040 break;
1041 case e1000_fc_full:
1043 * Flow control (both Rx and Tx) is enabled by a software
1044 * over-ride.
1046 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1047 break;
1048 default:
1049 e_dbg("Flow control param set incorrectly\n");
1050 ret_val = -E1000_ERR_CONFIG;
1051 return ret_val;
1054 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1055 if (ret_val)
1056 return ret_val;
1058 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1060 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1061 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1064 return ret_val;
1068 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1069 * @hw: pointer to the HW structure
1071 * Performs initial bounds checking on autoneg advertisement parameter, then
1072 * configure to advertise the full capability. Setup the PHY to autoneg
1073 * and restart the negotiation process between the link partner. If
1074 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1076 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1078 struct e1000_phy_info *phy = &hw->phy;
1079 s32 ret_val;
1080 u16 phy_ctrl;
1083 * Perform some bounds checking on the autoneg advertisement
1084 * parameter.
1086 phy->autoneg_advertised &= phy->autoneg_mask;
1089 * If autoneg_advertised is zero, we assume it was not defaulted
1090 * by the calling code so we set to advertise full capability.
1092 if (phy->autoneg_advertised == 0)
1093 phy->autoneg_advertised = phy->autoneg_mask;
1095 e_dbg("Reconfiguring auto-neg advertisement params\n");
1096 ret_val = e1000_phy_setup_autoneg(hw);
1097 if (ret_val) {
1098 e_dbg("Error Setting up Auto-Negotiation\n");
1099 return ret_val;
1101 e_dbg("Restarting Auto-Neg\n");
1104 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1105 * the Auto Neg Restart bit in the PHY control register.
1107 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1108 if (ret_val)
1109 return ret_val;
1111 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1112 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1113 if (ret_val)
1114 return ret_val;
1117 * Does the user want to wait for Auto-Neg to complete here, or
1118 * check at a later time (for example, callback routine).
1120 if (phy->autoneg_wait_to_complete) {
1121 ret_val = e1000_wait_autoneg(hw);
1122 if (ret_val) {
1123 e_dbg("Error while waiting for "
1124 "autoneg to complete\n");
1125 return ret_val;
1129 hw->mac.get_link_status = 1;
1131 return ret_val;
1135 * e1000e_setup_copper_link - Configure copper link settings
1136 * @hw: pointer to the HW structure
1138 * Calls the appropriate function to configure the link for auto-neg or forced
1139 * speed and duplex. Then we check for link, once link is established calls
1140 * to configure collision distance and flow control are called. If link is
1141 * not established, we return -E1000_ERR_PHY (-2).
1143 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1145 s32 ret_val;
1146 bool link;
1148 if (hw->mac.autoneg) {
1150 * Setup autoneg and flow control advertisement and perform
1151 * autonegotiation.
1153 ret_val = e1000_copper_link_autoneg(hw);
1154 if (ret_val)
1155 return ret_val;
1156 } else {
1158 * PHY will be set to 10H, 10F, 100H or 100F
1159 * depending on user settings.
1161 e_dbg("Forcing Speed and Duplex\n");
1162 ret_val = e1000_phy_force_speed_duplex(hw);
1163 if (ret_val) {
1164 e_dbg("Error Forcing Speed and Duplex\n");
1165 return ret_val;
1170 * Check link status. Wait up to 100 microseconds for link to become
1171 * valid.
1173 ret_val = e1000e_phy_has_link_generic(hw,
1174 COPPER_LINK_UP_LIMIT,
1176 &link);
1177 if (ret_val)
1178 return ret_val;
1180 if (link) {
1181 e_dbg("Valid link established!!!\n");
1182 e1000e_config_collision_dist(hw);
1183 ret_val = e1000e_config_fc_after_link_up(hw);
1184 } else {
1185 e_dbg("Unable to establish link!!!\n");
1188 return ret_val;
1192 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1193 * @hw: pointer to the HW structure
1195 * Calls the PHY setup function to force speed and duplex. Clears the
1196 * auto-crossover to force MDI manually. Waits for link and returns
1197 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1199 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1201 struct e1000_phy_info *phy = &hw->phy;
1202 s32 ret_val;
1203 u16 phy_data;
1204 bool link;
1206 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1207 if (ret_val)
1208 return ret_val;
1210 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1212 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1213 if (ret_val)
1214 return ret_val;
1217 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1218 * forced whenever speed and duplex are forced.
1220 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1221 if (ret_val)
1222 return ret_val;
1224 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1225 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1227 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1228 if (ret_val)
1229 return ret_val;
1231 e_dbg("IGP PSCR: %X\n", phy_data);
1233 udelay(1);
1235 if (phy->autoneg_wait_to_complete) {
1236 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1238 ret_val = e1000e_phy_has_link_generic(hw,
1239 PHY_FORCE_LIMIT,
1240 100000,
1241 &link);
1242 if (ret_val)
1243 return ret_val;
1245 if (!link)
1246 e_dbg("Link taking longer than expected.\n");
1248 /* Try once more */
1249 ret_val = e1000e_phy_has_link_generic(hw,
1250 PHY_FORCE_LIMIT,
1251 100000,
1252 &link);
1253 if (ret_val)
1254 return ret_val;
1257 return ret_val;
1261 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1262 * @hw: pointer to the HW structure
1264 * Calls the PHY setup function to force speed and duplex. Clears the
1265 * auto-crossover to force MDI manually. Resets the PHY to commit the
1266 * changes. If time expires while waiting for link up, we reset the DSP.
1267 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1268 * successful completion, else return corresponding error code.
1270 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1272 struct e1000_phy_info *phy = &hw->phy;
1273 s32 ret_val;
1274 u16 phy_data;
1275 bool link;
1278 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1279 * forced whenever speed and duplex are forced.
1281 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1282 if (ret_val)
1283 return ret_val;
1285 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1286 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1287 if (ret_val)
1288 return ret_val;
1290 e_dbg("M88E1000 PSCR: %X\n", phy_data);
1292 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1293 if (ret_val)
1294 return ret_val;
1296 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1298 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1299 if (ret_val)
1300 return ret_val;
1302 /* Reset the phy to commit changes. */
1303 ret_val = e1000e_commit_phy(hw);
1304 if (ret_val)
1305 return ret_val;
1307 if (phy->autoneg_wait_to_complete) {
1308 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1310 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1311 100000, &link);
1312 if (ret_val)
1313 return ret_val;
1315 if (!link) {
1316 if (hw->phy.type != e1000_phy_m88) {
1317 e_dbg("Link taking longer than expected.\n");
1318 } else {
1320 * We didn't get link.
1321 * Reset the DSP and cross our fingers.
1323 ret_val = e1e_wphy(hw,
1324 M88E1000_PHY_PAGE_SELECT,
1325 0x001d);
1326 if (ret_val)
1327 return ret_val;
1328 ret_val = e1000e_phy_reset_dsp(hw);
1329 if (ret_val)
1330 return ret_val;
1334 /* Try once more */
1335 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1336 100000, &link);
1337 if (ret_val)
1338 return ret_val;
1341 if (hw->phy.type != e1000_phy_m88)
1342 return 0;
1344 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1345 if (ret_val)
1346 return ret_val;
1349 * Resetting the phy means we need to re-force TX_CLK in the
1350 * Extended PHY Specific Control Register to 25MHz clock from
1351 * the reset value of 2.5MHz.
1353 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1354 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1355 if (ret_val)
1356 return ret_val;
1359 * In addition, we must re-enable CRS on Tx for both half and full
1360 * duplex.
1362 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1363 if (ret_val)
1364 return ret_val;
1366 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1367 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1369 return ret_val;
1373 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1374 * @hw: pointer to the HW structure
1376 * Forces the speed and duplex settings of the PHY.
1377 * This is a function pointer entry point only called by
1378 * PHY setup routines.
1380 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1382 struct e1000_phy_info *phy = &hw->phy;
1383 s32 ret_val;
1384 u16 data;
1385 bool link;
1387 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1388 if (ret_val)
1389 goto out;
1391 e1000e_phy_force_speed_duplex_setup(hw, &data);
1393 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1394 if (ret_val)
1395 goto out;
1397 /* Disable MDI-X support for 10/100 */
1398 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1399 if (ret_val)
1400 goto out;
1402 data &= ~IFE_PMC_AUTO_MDIX;
1403 data &= ~IFE_PMC_FORCE_MDIX;
1405 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1406 if (ret_val)
1407 goto out;
1409 e_dbg("IFE PMC: %X\n", data);
1411 udelay(1);
1413 if (phy->autoneg_wait_to_complete) {
1414 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1416 ret_val = e1000e_phy_has_link_generic(hw,
1417 PHY_FORCE_LIMIT,
1418 100000,
1419 &link);
1420 if (ret_val)
1421 goto out;
1423 if (!link)
1424 e_dbg("Link taking longer than expected.\n");
1426 /* Try once more */
1427 ret_val = e1000e_phy_has_link_generic(hw,
1428 PHY_FORCE_LIMIT,
1429 100000,
1430 &link);
1431 if (ret_val)
1432 goto out;
1435 out:
1436 return ret_val;
1440 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1441 * @hw: pointer to the HW structure
1442 * @phy_ctrl: pointer to current value of PHY_CONTROL
1444 * Forces speed and duplex on the PHY by doing the following: disable flow
1445 * control, force speed/duplex on the MAC, disable auto speed detection,
1446 * disable auto-negotiation, configure duplex, configure speed, configure
1447 * the collision distance, write configuration to CTRL register. The
1448 * caller must write to the PHY_CONTROL register for these settings to
1449 * take affect.
1451 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1453 struct e1000_mac_info *mac = &hw->mac;
1454 u32 ctrl;
1456 /* Turn off flow control when forcing speed/duplex */
1457 hw->fc.current_mode = e1000_fc_none;
1459 /* Force speed/duplex on the mac */
1460 ctrl = er32(CTRL);
1461 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1462 ctrl &= ~E1000_CTRL_SPD_SEL;
1464 /* Disable Auto Speed Detection */
1465 ctrl &= ~E1000_CTRL_ASDE;
1467 /* Disable autoneg on the phy */
1468 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1470 /* Forcing Full or Half Duplex? */
1471 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1472 ctrl &= ~E1000_CTRL_FD;
1473 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1474 e_dbg("Half Duplex\n");
1475 } else {
1476 ctrl |= E1000_CTRL_FD;
1477 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1478 e_dbg("Full Duplex\n");
1481 /* Forcing 10mb or 100mb? */
1482 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1483 ctrl |= E1000_CTRL_SPD_100;
1484 *phy_ctrl |= MII_CR_SPEED_100;
1485 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1486 e_dbg("Forcing 100mb\n");
1487 } else {
1488 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1489 *phy_ctrl |= MII_CR_SPEED_10;
1490 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1491 e_dbg("Forcing 10mb\n");
1494 e1000e_config_collision_dist(hw);
1496 ew32(CTRL, ctrl);
1500 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1501 * @hw: pointer to the HW structure
1502 * @active: boolean used to enable/disable lplu
1504 * Success returns 0, Failure returns 1
1506 * The low power link up (lplu) state is set to the power management level D3
1507 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1508 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1509 * is used during Dx states where the power conservation is most important.
1510 * During driver activity, SmartSpeed should be enabled so performance is
1511 * maintained.
1513 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1515 struct e1000_phy_info *phy = &hw->phy;
1516 s32 ret_val;
1517 u16 data;
1519 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1520 if (ret_val)
1521 return ret_val;
1523 if (!active) {
1524 data &= ~IGP02E1000_PM_D3_LPLU;
1525 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1526 if (ret_val)
1527 return ret_val;
1529 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1530 * during Dx states where the power conservation is most
1531 * important. During driver activity we should enable
1532 * SmartSpeed, so performance is maintained.
1534 if (phy->smart_speed == e1000_smart_speed_on) {
1535 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1536 &data);
1537 if (ret_val)
1538 return ret_val;
1540 data |= IGP01E1000_PSCFR_SMART_SPEED;
1541 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1542 data);
1543 if (ret_val)
1544 return ret_val;
1545 } else if (phy->smart_speed == e1000_smart_speed_off) {
1546 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1547 &data);
1548 if (ret_val)
1549 return ret_val;
1551 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1552 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1553 data);
1554 if (ret_val)
1555 return ret_val;
1557 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1558 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1559 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1560 data |= IGP02E1000_PM_D3_LPLU;
1561 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1562 if (ret_val)
1563 return ret_val;
1565 /* When LPLU is enabled, we should disable SmartSpeed */
1566 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1567 if (ret_val)
1568 return ret_val;
1570 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1571 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1574 return ret_val;
1578 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1579 * @hw: pointer to the HW structure
1581 * Success returns 0, Failure returns 1
1583 * A downshift is detected by querying the PHY link health.
1585 s32 e1000e_check_downshift(struct e1000_hw *hw)
1587 struct e1000_phy_info *phy = &hw->phy;
1588 s32 ret_val;
1589 u16 phy_data, offset, mask;
1591 switch (phy->type) {
1592 case e1000_phy_m88:
1593 case e1000_phy_gg82563:
1594 case e1000_phy_bm:
1595 case e1000_phy_82578:
1596 offset = M88E1000_PHY_SPEC_STATUS;
1597 mask = M88E1000_PSSR_DOWNSHIFT;
1598 break;
1599 case e1000_phy_igp_2:
1600 case e1000_phy_igp_3:
1601 offset = IGP01E1000_PHY_LINK_HEALTH;
1602 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1603 break;
1604 default:
1605 /* speed downshift not supported */
1606 phy->speed_downgraded = false;
1607 return 0;
1610 ret_val = e1e_rphy(hw, offset, &phy_data);
1612 if (!ret_val)
1613 phy->speed_downgraded = (phy_data & mask);
1615 return ret_val;
1619 * e1000_check_polarity_m88 - Checks the polarity.
1620 * @hw: pointer to the HW structure
1622 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1624 * Polarity is determined based on the PHY specific status register.
1626 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1628 struct e1000_phy_info *phy = &hw->phy;
1629 s32 ret_val;
1630 u16 data;
1632 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1634 if (!ret_val)
1635 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1636 ? e1000_rev_polarity_reversed
1637 : e1000_rev_polarity_normal;
1639 return ret_val;
1643 * e1000_check_polarity_igp - Checks the polarity.
1644 * @hw: pointer to the HW structure
1646 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1648 * Polarity is determined based on the PHY port status register, and the
1649 * current speed (since there is no polarity at 100Mbps).
1651 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1653 struct e1000_phy_info *phy = &hw->phy;
1654 s32 ret_val;
1655 u16 data, offset, mask;
1658 * Polarity is determined based on the speed of
1659 * our connection.
1661 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1662 if (ret_val)
1663 return ret_val;
1665 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1666 IGP01E1000_PSSR_SPEED_1000MBPS) {
1667 offset = IGP01E1000_PHY_PCS_INIT_REG;
1668 mask = IGP01E1000_PHY_POLARITY_MASK;
1669 } else {
1671 * This really only applies to 10Mbps since
1672 * there is no polarity for 100Mbps (always 0).
1674 offset = IGP01E1000_PHY_PORT_STATUS;
1675 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1678 ret_val = e1e_rphy(hw, offset, &data);
1680 if (!ret_val)
1681 phy->cable_polarity = (data & mask)
1682 ? e1000_rev_polarity_reversed
1683 : e1000_rev_polarity_normal;
1685 return ret_val;
1689 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1690 * @hw: pointer to the HW structure
1692 * Polarity is determined on the polarity reversal feature being enabled.
1694 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1696 struct e1000_phy_info *phy = &hw->phy;
1697 s32 ret_val;
1698 u16 phy_data, offset, mask;
1701 * Polarity is determined based on the reversal feature being enabled.
1703 if (phy->polarity_correction) {
1704 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1705 mask = IFE_PESC_POLARITY_REVERSED;
1706 } else {
1707 offset = IFE_PHY_SPECIAL_CONTROL;
1708 mask = IFE_PSC_FORCE_POLARITY;
1711 ret_val = e1e_rphy(hw, offset, &phy_data);
1713 if (!ret_val)
1714 phy->cable_polarity = (phy_data & mask)
1715 ? e1000_rev_polarity_reversed
1716 : e1000_rev_polarity_normal;
1718 return ret_val;
1722 * e1000_wait_autoneg - Wait for auto-neg completion
1723 * @hw: pointer to the HW structure
1725 * Waits for auto-negotiation to complete or for the auto-negotiation time
1726 * limit to expire, which ever happens first.
1728 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1730 s32 ret_val = 0;
1731 u16 i, phy_status;
1733 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1734 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1735 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1736 if (ret_val)
1737 break;
1738 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1739 if (ret_val)
1740 break;
1741 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1742 break;
1743 msleep(100);
1747 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1748 * has completed.
1750 return ret_val;
1754 * e1000e_phy_has_link_generic - Polls PHY for link
1755 * @hw: pointer to the HW structure
1756 * @iterations: number of times to poll for link
1757 * @usec_interval: delay between polling attempts
1758 * @success: pointer to whether polling was successful or not
1760 * Polls the PHY status register for link, 'iterations' number of times.
1762 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1763 u32 usec_interval, bool *success)
1765 s32 ret_val = 0;
1766 u16 i, phy_status;
1768 for (i = 0; i < iterations; i++) {
1770 * Some PHYs require the PHY_STATUS register to be read
1771 * twice due to the link bit being sticky. No harm doing
1772 * it across the board.
1774 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1775 if (ret_val)
1777 * If the first read fails, another entity may have
1778 * ownership of the resources, wait and try again to
1779 * see if they have relinquished the resources yet.
1781 udelay(usec_interval);
1782 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1783 if (ret_val)
1784 break;
1785 if (phy_status & MII_SR_LINK_STATUS)
1786 break;
1787 if (usec_interval >= 1000)
1788 mdelay(usec_interval/1000);
1789 else
1790 udelay(usec_interval);
1793 *success = (i < iterations);
1795 return ret_val;
1799 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1800 * @hw: pointer to the HW structure
1802 * Reads the PHY specific status register to retrieve the cable length
1803 * information. The cable length is determined by averaging the minimum and
1804 * maximum values to get the "average" cable length. The m88 PHY has four
1805 * possible cable length values, which are:
1806 * Register Value Cable Length
1807 * 0 < 50 meters
1808 * 1 50 - 80 meters
1809 * 2 80 - 110 meters
1810 * 3 110 - 140 meters
1811 * 4 > 140 meters
1813 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1815 struct e1000_phy_info *phy = &hw->phy;
1816 s32 ret_val;
1817 u16 phy_data, index;
1819 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1820 if (ret_val)
1821 goto out;
1823 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1824 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1825 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1826 ret_val = -E1000_ERR_PHY;
1827 goto out;
1830 phy->min_cable_length = e1000_m88_cable_length_table[index];
1831 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1833 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1835 out:
1836 return ret_val;
1840 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1841 * @hw: pointer to the HW structure
1843 * The automatic gain control (agc) normalizes the amplitude of the
1844 * received signal, adjusting for the attenuation produced by the
1845 * cable. By reading the AGC registers, which represent the
1846 * combination of coarse and fine gain value, the value can be put
1847 * into a lookup table to obtain the approximate cable length
1848 * for each channel.
1850 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1852 struct e1000_phy_info *phy = &hw->phy;
1853 s32 ret_val;
1854 u16 phy_data, i, agc_value = 0;
1855 u16 cur_agc_index, max_agc_index = 0;
1856 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1857 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1858 IGP02E1000_PHY_AGC_A,
1859 IGP02E1000_PHY_AGC_B,
1860 IGP02E1000_PHY_AGC_C,
1861 IGP02E1000_PHY_AGC_D
1864 /* Read the AGC registers for all channels */
1865 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1866 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1867 if (ret_val)
1868 return ret_val;
1871 * Getting bits 15:9, which represent the combination of
1872 * coarse and fine gain values. The result is a number
1873 * that can be put into the lookup table to obtain the
1874 * approximate cable length.
1876 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1877 IGP02E1000_AGC_LENGTH_MASK;
1879 /* Array index bound check. */
1880 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1881 (cur_agc_index == 0))
1882 return -E1000_ERR_PHY;
1884 /* Remove min & max AGC values from calculation. */
1885 if (e1000_igp_2_cable_length_table[min_agc_index] >
1886 e1000_igp_2_cable_length_table[cur_agc_index])
1887 min_agc_index = cur_agc_index;
1888 if (e1000_igp_2_cable_length_table[max_agc_index] <
1889 e1000_igp_2_cable_length_table[cur_agc_index])
1890 max_agc_index = cur_agc_index;
1892 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1895 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1896 e1000_igp_2_cable_length_table[max_agc_index]);
1897 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1899 /* Calculate cable length with the error range of +/- 10 meters. */
1900 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1901 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1902 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1904 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1906 return ret_val;
1910 * e1000e_get_phy_info_m88 - Retrieve PHY information
1911 * @hw: pointer to the HW structure
1913 * Valid for only copper links. Read the PHY status register (sticky read)
1914 * to verify that link is up. Read the PHY special control register to
1915 * determine the polarity and 10base-T extended distance. Read the PHY
1916 * special status register to determine MDI/MDIx and current speed. If
1917 * speed is 1000, then determine cable length, local and remote receiver.
1919 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1921 struct e1000_phy_info *phy = &hw->phy;
1922 s32 ret_val;
1923 u16 phy_data;
1924 bool link;
1926 if (phy->media_type != e1000_media_type_copper) {
1927 e_dbg("Phy info is only valid for copper media\n");
1928 return -E1000_ERR_CONFIG;
1931 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1932 if (ret_val)
1933 return ret_val;
1935 if (!link) {
1936 e_dbg("Phy info is only valid if link is up\n");
1937 return -E1000_ERR_CONFIG;
1940 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1941 if (ret_val)
1942 return ret_val;
1944 phy->polarity_correction = (phy_data &
1945 M88E1000_PSCR_POLARITY_REVERSAL);
1947 ret_val = e1000_check_polarity_m88(hw);
1948 if (ret_val)
1949 return ret_val;
1951 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1952 if (ret_val)
1953 return ret_val;
1955 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1957 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1958 ret_val = e1000_get_cable_length(hw);
1959 if (ret_val)
1960 return ret_val;
1962 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1963 if (ret_val)
1964 return ret_val;
1966 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1967 ? e1000_1000t_rx_status_ok
1968 : e1000_1000t_rx_status_not_ok;
1970 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1971 ? e1000_1000t_rx_status_ok
1972 : e1000_1000t_rx_status_not_ok;
1973 } else {
1974 /* Set values to "undefined" */
1975 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1976 phy->local_rx = e1000_1000t_rx_status_undefined;
1977 phy->remote_rx = e1000_1000t_rx_status_undefined;
1980 return ret_val;
1984 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1985 * @hw: pointer to the HW structure
1987 * Read PHY status to determine if link is up. If link is up, then
1988 * set/determine 10base-T extended distance and polarity correction. Read
1989 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1990 * determine on the cable length, local and remote receiver.
1992 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1994 struct e1000_phy_info *phy = &hw->phy;
1995 s32 ret_val;
1996 u16 data;
1997 bool link;
1999 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2000 if (ret_val)
2001 return ret_val;
2003 if (!link) {
2004 e_dbg("Phy info is only valid if link is up\n");
2005 return -E1000_ERR_CONFIG;
2008 phy->polarity_correction = true;
2010 ret_val = e1000_check_polarity_igp(hw);
2011 if (ret_val)
2012 return ret_val;
2014 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2015 if (ret_val)
2016 return ret_val;
2018 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
2020 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2021 IGP01E1000_PSSR_SPEED_1000MBPS) {
2022 ret_val = e1000_get_cable_length(hw);
2023 if (ret_val)
2024 return ret_val;
2026 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2027 if (ret_val)
2028 return ret_val;
2030 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2031 ? e1000_1000t_rx_status_ok
2032 : e1000_1000t_rx_status_not_ok;
2034 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2035 ? e1000_1000t_rx_status_ok
2036 : e1000_1000t_rx_status_not_ok;
2037 } else {
2038 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2039 phy->local_rx = e1000_1000t_rx_status_undefined;
2040 phy->remote_rx = e1000_1000t_rx_status_undefined;
2043 return ret_val;
2047 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2048 * @hw: pointer to the HW structure
2050 * Populates "phy" structure with various feature states.
2052 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2054 struct e1000_phy_info *phy = &hw->phy;
2055 s32 ret_val;
2056 u16 data;
2057 bool link;
2059 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2060 if (ret_val)
2061 goto out;
2063 if (!link) {
2064 e_dbg("Phy info is only valid if link is up\n");
2065 ret_val = -E1000_ERR_CONFIG;
2066 goto out;
2069 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2070 if (ret_val)
2071 goto out;
2072 phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
2073 ? false : true;
2075 if (phy->polarity_correction) {
2076 ret_val = e1000_check_polarity_ife(hw);
2077 if (ret_val)
2078 goto out;
2079 } else {
2080 /* Polarity is forced */
2081 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2082 ? e1000_rev_polarity_reversed
2083 : e1000_rev_polarity_normal;
2086 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2087 if (ret_val)
2088 goto out;
2090 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
2092 /* The following parameters are undefined for 10/100 operation. */
2093 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2094 phy->local_rx = e1000_1000t_rx_status_undefined;
2095 phy->remote_rx = e1000_1000t_rx_status_undefined;
2097 out:
2098 return ret_val;
2102 * e1000e_phy_sw_reset - PHY software reset
2103 * @hw: pointer to the HW structure
2105 * Does a software reset of the PHY by reading the PHY control register and
2106 * setting/write the control register reset bit to the PHY.
2108 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2110 s32 ret_val;
2111 u16 phy_ctrl;
2113 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2114 if (ret_val)
2115 return ret_val;
2117 phy_ctrl |= MII_CR_RESET;
2118 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2119 if (ret_val)
2120 return ret_val;
2122 udelay(1);
2124 return ret_val;
2128 * e1000e_phy_hw_reset_generic - PHY hardware reset
2129 * @hw: pointer to the HW structure
2131 * Verify the reset block is not blocking us from resetting. Acquire
2132 * semaphore (if necessary) and read/set/write the device control reset
2133 * bit in the PHY. Wait the appropriate delay time for the device to
2134 * reset and release the semaphore (if necessary).
2136 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2138 struct e1000_phy_info *phy = &hw->phy;
2139 s32 ret_val;
2140 u32 ctrl;
2142 ret_val = e1000_check_reset_block(hw);
2143 if (ret_val)
2144 return 0;
2146 ret_val = phy->ops.acquire(hw);
2147 if (ret_val)
2148 return ret_val;
2150 ctrl = er32(CTRL);
2151 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2152 e1e_flush();
2154 udelay(phy->reset_delay_us);
2156 ew32(CTRL, ctrl);
2157 e1e_flush();
2159 udelay(150);
2161 phy->ops.release(hw);
2163 return e1000_get_phy_cfg_done(hw);
2167 * e1000e_get_cfg_done - Generic configuration done
2168 * @hw: pointer to the HW structure
2170 * Generic function to wait 10 milli-seconds for configuration to complete
2171 * and return success.
2173 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2175 mdelay(10);
2176 return 0;
2180 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2181 * @hw: pointer to the HW structure
2183 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2185 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2187 e_dbg("Running IGP 3 PHY init script\n");
2189 /* PHY init IGP 3 */
2190 /* Enable rise/fall, 10-mode work in class-A */
2191 e1e_wphy(hw, 0x2F5B, 0x9018);
2192 /* Remove all caps from Replica path filter */
2193 e1e_wphy(hw, 0x2F52, 0x0000);
2194 /* Bias trimming for ADC, AFE and Driver (Default) */
2195 e1e_wphy(hw, 0x2FB1, 0x8B24);
2196 /* Increase Hybrid poly bias */
2197 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2198 /* Add 4% to Tx amplitude in Gig mode */
2199 e1e_wphy(hw, 0x2010, 0x10B0);
2200 /* Disable trimming (TTT) */
2201 e1e_wphy(hw, 0x2011, 0x0000);
2202 /* Poly DC correction to 94.6% + 2% for all channels */
2203 e1e_wphy(hw, 0x20DD, 0x249A);
2204 /* ABS DC correction to 95.9% */
2205 e1e_wphy(hw, 0x20DE, 0x00D3);
2206 /* BG temp curve trim */
2207 e1e_wphy(hw, 0x28B4, 0x04CE);
2208 /* Increasing ADC OPAMP stage 1 currents to max */
2209 e1e_wphy(hw, 0x2F70, 0x29E4);
2210 /* Force 1000 ( required for enabling PHY regs configuration) */
2211 e1e_wphy(hw, 0x0000, 0x0140);
2212 /* Set upd_freq to 6 */
2213 e1e_wphy(hw, 0x1F30, 0x1606);
2214 /* Disable NPDFE */
2215 e1e_wphy(hw, 0x1F31, 0xB814);
2216 /* Disable adaptive fixed FFE (Default) */
2217 e1e_wphy(hw, 0x1F35, 0x002A);
2218 /* Enable FFE hysteresis */
2219 e1e_wphy(hw, 0x1F3E, 0x0067);
2220 /* Fixed FFE for short cable lengths */
2221 e1e_wphy(hw, 0x1F54, 0x0065);
2222 /* Fixed FFE for medium cable lengths */
2223 e1e_wphy(hw, 0x1F55, 0x002A);
2224 /* Fixed FFE for long cable lengths */
2225 e1e_wphy(hw, 0x1F56, 0x002A);
2226 /* Enable Adaptive Clip Threshold */
2227 e1e_wphy(hw, 0x1F72, 0x3FB0);
2228 /* AHT reset limit to 1 */
2229 e1e_wphy(hw, 0x1F76, 0xC0FF);
2230 /* Set AHT master delay to 127 msec */
2231 e1e_wphy(hw, 0x1F77, 0x1DEC);
2232 /* Set scan bits for AHT */
2233 e1e_wphy(hw, 0x1F78, 0xF9EF);
2234 /* Set AHT Preset bits */
2235 e1e_wphy(hw, 0x1F79, 0x0210);
2236 /* Change integ_factor of channel A to 3 */
2237 e1e_wphy(hw, 0x1895, 0x0003);
2238 /* Change prop_factor of channels BCD to 8 */
2239 e1e_wphy(hw, 0x1796, 0x0008);
2240 /* Change cg_icount + enable integbp for channels BCD */
2241 e1e_wphy(hw, 0x1798, 0xD008);
2243 * Change cg_icount + enable integbp + change prop_factor_master
2244 * to 8 for channel A
2246 e1e_wphy(hw, 0x1898, 0xD918);
2247 /* Disable AHT in Slave mode on channel A */
2248 e1e_wphy(hw, 0x187A, 0x0800);
2250 * Enable LPLU and disable AN to 1000 in non-D0a states,
2251 * Enable SPD+B2B
2253 e1e_wphy(hw, 0x0019, 0x008D);
2254 /* Enable restart AN on an1000_dis change */
2255 e1e_wphy(hw, 0x001B, 0x2080);
2256 /* Enable wh_fifo read clock in 10/100 modes */
2257 e1e_wphy(hw, 0x0014, 0x0045);
2258 /* Restart AN, Speed selection is 1000 */
2259 e1e_wphy(hw, 0x0000, 0x1340);
2261 return 0;
2264 /* Internal function pointers */
2267 * e1000_get_phy_cfg_done - Generic PHY configuration done
2268 * @hw: pointer to the HW structure
2270 * Return success if silicon family did not implement a family specific
2271 * get_cfg_done function.
2273 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2275 if (hw->phy.ops.get_cfg_done)
2276 return hw->phy.ops.get_cfg_done(hw);
2278 return 0;
2282 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2283 * @hw: pointer to the HW structure
2285 * When the silicon family has not implemented a forced speed/duplex
2286 * function for the PHY, simply return 0.
2288 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2290 if (hw->phy.ops.force_speed_duplex)
2291 return hw->phy.ops.force_speed_duplex(hw);
2293 return 0;
2297 * e1000e_get_phy_type_from_id - Get PHY type from id
2298 * @phy_id: phy_id read from the phy
2300 * Returns the phy type from the id.
2302 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2304 enum e1000_phy_type phy_type = e1000_phy_unknown;
2306 switch (phy_id) {
2307 case M88E1000_I_PHY_ID:
2308 case M88E1000_E_PHY_ID:
2309 case M88E1111_I_PHY_ID:
2310 case M88E1011_I_PHY_ID:
2311 phy_type = e1000_phy_m88;
2312 break;
2313 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2314 phy_type = e1000_phy_igp_2;
2315 break;
2316 case GG82563_E_PHY_ID:
2317 phy_type = e1000_phy_gg82563;
2318 break;
2319 case IGP03E1000_E_PHY_ID:
2320 phy_type = e1000_phy_igp_3;
2321 break;
2322 case IFE_E_PHY_ID:
2323 case IFE_PLUS_E_PHY_ID:
2324 case IFE_C_E_PHY_ID:
2325 phy_type = e1000_phy_ife;
2326 break;
2327 case BME1000_E_PHY_ID:
2328 case BME1000_E_PHY_ID_R2:
2329 phy_type = e1000_phy_bm;
2330 break;
2331 case I82578_E_PHY_ID:
2332 phy_type = e1000_phy_82578;
2333 break;
2334 case I82577_E_PHY_ID:
2335 phy_type = e1000_phy_82577;
2336 break;
2337 case I82579_E_PHY_ID:
2338 phy_type = e1000_phy_82579;
2339 break;
2340 default:
2341 phy_type = e1000_phy_unknown;
2342 break;
2344 return phy_type;
2348 * e1000e_determine_phy_address - Determines PHY address.
2349 * @hw: pointer to the HW structure
2351 * This uses a trial and error method to loop through possible PHY
2352 * addresses. It tests each by reading the PHY ID registers and
2353 * checking for a match.
2355 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2357 s32 ret_val = -E1000_ERR_PHY_TYPE;
2358 u32 phy_addr = 0;
2359 u32 i;
2360 enum e1000_phy_type phy_type = e1000_phy_unknown;
2362 hw->phy.id = phy_type;
2364 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2365 hw->phy.addr = phy_addr;
2366 i = 0;
2368 do {
2369 e1000e_get_phy_id(hw);
2370 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2373 * If phy_type is valid, break - we found our
2374 * PHY address
2376 if (phy_type != e1000_phy_unknown) {
2377 ret_val = 0;
2378 goto out;
2380 msleep(1);
2381 i++;
2382 } while (i < 10);
2385 out:
2386 return ret_val;
2390 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2391 * @page: page to access
2393 * Returns the phy address for the page requested.
2395 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2397 u32 phy_addr = 2;
2399 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2400 phy_addr = 1;
2402 return phy_addr;
2406 * e1000e_write_phy_reg_bm - Write BM PHY register
2407 * @hw: pointer to the HW structure
2408 * @offset: register offset to write to
2409 * @data: data to write at register offset
2411 * Acquires semaphore, if necessary, then writes the data to PHY register
2412 * at the offset. Release any acquired semaphores before exiting.
2414 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2416 s32 ret_val;
2417 u32 page_select = 0;
2418 u32 page = offset >> IGP_PAGE_SHIFT;
2419 u32 page_shift = 0;
2421 ret_val = hw->phy.ops.acquire(hw);
2422 if (ret_val)
2423 return ret_val;
2425 /* Page 800 works differently than the rest so it has its own func */
2426 if (page == BM_WUC_PAGE) {
2427 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2428 false);
2429 goto out;
2432 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2434 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2436 * Page select is register 31 for phy address 1 and 22 for
2437 * phy address 2 and 3. Page select is shifted only for
2438 * phy address 1.
2440 if (hw->phy.addr == 1) {
2441 page_shift = IGP_PAGE_SHIFT;
2442 page_select = IGP01E1000_PHY_PAGE_SELECT;
2443 } else {
2444 page_shift = 0;
2445 page_select = BM_PHY_PAGE_SELECT;
2448 /* Page is shifted left, PHY expects (page x 32) */
2449 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2450 (page << page_shift));
2451 if (ret_val)
2452 goto out;
2455 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2456 data);
2458 out:
2459 hw->phy.ops.release(hw);
2460 return ret_val;
2464 * e1000e_read_phy_reg_bm - Read BM PHY register
2465 * @hw: pointer to the HW structure
2466 * @offset: register offset to be read
2467 * @data: pointer to the read data
2469 * Acquires semaphore, if necessary, then reads the PHY register at offset
2470 * and storing the retrieved information in data. Release any acquired
2471 * semaphores before exiting.
2473 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2475 s32 ret_val;
2476 u32 page_select = 0;
2477 u32 page = offset >> IGP_PAGE_SHIFT;
2478 u32 page_shift = 0;
2480 ret_val = hw->phy.ops.acquire(hw);
2481 if (ret_val)
2482 return ret_val;
2484 /* Page 800 works differently than the rest so it has its own func */
2485 if (page == BM_WUC_PAGE) {
2486 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2487 true);
2488 goto out;
2491 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2493 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2495 * Page select is register 31 for phy address 1 and 22 for
2496 * phy address 2 and 3. Page select is shifted only for
2497 * phy address 1.
2499 if (hw->phy.addr == 1) {
2500 page_shift = IGP_PAGE_SHIFT;
2501 page_select = IGP01E1000_PHY_PAGE_SELECT;
2502 } else {
2503 page_shift = 0;
2504 page_select = BM_PHY_PAGE_SELECT;
2507 /* Page is shifted left, PHY expects (page x 32) */
2508 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2509 (page << page_shift));
2510 if (ret_val)
2511 goto out;
2514 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2515 data);
2516 out:
2517 hw->phy.ops.release(hw);
2518 return ret_val;
2522 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2523 * @hw: pointer to the HW structure
2524 * @offset: register offset to be read
2525 * @data: pointer to the read data
2527 * Acquires semaphore, if necessary, then reads the PHY register at offset
2528 * and storing the retrieved information in data. Release any acquired
2529 * semaphores before exiting.
2531 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2533 s32 ret_val;
2534 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2536 ret_val = hw->phy.ops.acquire(hw);
2537 if (ret_val)
2538 return ret_val;
2540 /* Page 800 works differently than the rest so it has its own func */
2541 if (page == BM_WUC_PAGE) {
2542 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2543 true);
2544 goto out;
2547 hw->phy.addr = 1;
2549 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2551 /* Page is shifted left, PHY expects (page x 32) */
2552 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2553 page);
2555 if (ret_val)
2556 goto out;
2559 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2560 data);
2561 out:
2562 hw->phy.ops.release(hw);
2563 return ret_val;
2567 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2568 * @hw: pointer to the HW structure
2569 * @offset: register offset to write to
2570 * @data: data to write at register offset
2572 * Acquires semaphore, if necessary, then writes the data to PHY register
2573 * at the offset. Release any acquired semaphores before exiting.
2575 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2577 s32 ret_val;
2578 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2580 ret_val = hw->phy.ops.acquire(hw);
2581 if (ret_val)
2582 return ret_val;
2584 /* Page 800 works differently than the rest so it has its own func */
2585 if (page == BM_WUC_PAGE) {
2586 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2587 false);
2588 goto out;
2591 hw->phy.addr = 1;
2593 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2594 /* Page is shifted left, PHY expects (page x 32) */
2595 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2596 page);
2598 if (ret_val)
2599 goto out;
2602 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2603 data);
2605 out:
2606 hw->phy.ops.release(hw);
2607 return ret_val;
2611 * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
2612 * @hw: pointer to the HW structure
2613 * @offset: register offset to be read or written
2614 * @data: pointer to the data to read or write
2615 * @read: determines if operation is read or write
2617 * Acquires semaphore, if necessary, then reads the PHY register at offset
2618 * and storing the retrieved information in data. Release any acquired
2619 * semaphores before exiting. Note that procedure to read the wakeup
2620 * registers are different. It works as such:
2621 * 1) Set page 769, register 17, bit 2 = 1
2622 * 2) Set page to 800 for host (801 if we were manageability)
2623 * 3) Write the address using the address opcode (0x11)
2624 * 4) Read or write the data using the data opcode (0x12)
2625 * 5) Restore 769_17.2 to its original value
2627 * Assumes semaphore already acquired.
2629 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2630 u16 *data, bool read)
2632 s32 ret_val;
2633 u16 reg = BM_PHY_REG_NUM(offset);
2634 u16 phy_reg = 0;
2636 /* Gig must be disabled for MDIO accesses to page 800 */
2637 if ((hw->mac.type == e1000_pchlan) &&
2638 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2639 e_dbg("Attempting to access page 800 while gig enabled.\n");
2641 /* All operations in this function are phy address 1 */
2642 hw->phy.addr = 1;
2644 /* Set page 769 */
2645 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2646 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2648 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
2649 if (ret_val) {
2650 e_dbg("Could not read PHY page 769\n");
2651 goto out;
2654 /* First clear bit 4 to avoid a power state change */
2655 phy_reg &= ~(BM_WUC_HOST_WU_BIT);
2656 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2657 if (ret_val) {
2658 e_dbg("Could not clear PHY page 769 bit 4\n");
2659 goto out;
2662 /* Write bit 2 = 1, and clear bit 4 to 769_17 */
2663 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
2664 phy_reg | BM_WUC_ENABLE_BIT);
2665 if (ret_val) {
2666 e_dbg("Could not write PHY page 769 bit 2\n");
2667 goto out;
2670 /* Select page 800 */
2671 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2672 (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2674 /* Write the page 800 offset value using opcode 0x11 */
2675 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2676 if (ret_val) {
2677 e_dbg("Could not write address opcode to page 800\n");
2678 goto out;
2681 if (read) {
2682 /* Read the page 800 value using opcode 0x12 */
2683 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2684 data);
2685 } else {
2686 /* Write the page 800 value using opcode 0x12 */
2687 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2688 *data);
2691 if (ret_val) {
2692 e_dbg("Could not access data value from page 800\n");
2693 goto out;
2697 * Restore 769_17.2 to its original value
2698 * Set page 769
2700 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
2701 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
2703 /* Clear 769_17.2 */
2704 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2705 if (ret_val) {
2706 e_dbg("Could not clear PHY page 769 bit 2\n");
2707 goto out;
2710 out:
2711 return ret_val;
2715 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2716 * @hw: pointer to the HW structure
2718 * In the case of a PHY power down to save power, or to turn off link during a
2719 * driver unload, or wake on lan is not enabled, restore the link to previous
2720 * settings.
2722 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2724 u16 mii_reg = 0;
2726 /* The PHY will retain its settings across a power down/up cycle */
2727 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2728 mii_reg &= ~MII_CR_POWER_DOWN;
2729 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2733 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2734 * @hw: pointer to the HW structure
2736 * In the case of a PHY power down to save power, or to turn off link during a
2737 * driver unload, or wake on lan is not enabled, restore the link to previous
2738 * settings.
2740 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2742 u16 mii_reg = 0;
2744 /* The PHY will retain its settings across a power down/up cycle */
2745 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2746 mii_reg |= MII_CR_POWER_DOWN;
2747 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2748 msleep(1);
2752 * e1000e_commit_phy - Soft PHY reset
2753 * @hw: pointer to the HW structure
2755 * Performs a soft PHY reset on those that apply. This is a function pointer
2756 * entry point called by drivers.
2758 s32 e1000e_commit_phy(struct e1000_hw *hw)
2760 if (hw->phy.ops.commit)
2761 return hw->phy.ops.commit(hw);
2763 return 0;
2767 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2768 * @hw: pointer to the HW structure
2769 * @active: boolean used to enable/disable lplu
2771 * Success returns 0, Failure returns 1
2773 * The low power link up (lplu) state is set to the power management level D0
2774 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2775 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2776 * is used during Dx states where the power conservation is most important.
2777 * During driver activity, SmartSpeed should be enabled so performance is
2778 * maintained. This is a function pointer entry point called by drivers.
2780 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2782 if (hw->phy.ops.set_d0_lplu_state)
2783 return hw->phy.ops.set_d0_lplu_state(hw, active);
2785 return 0;
2789 * __e1000_read_phy_reg_hv - Read HV PHY register
2790 * @hw: pointer to the HW structure
2791 * @offset: register offset to be read
2792 * @data: pointer to the read data
2793 * @locked: semaphore has already been acquired or not
2795 * Acquires semaphore, if necessary, then reads the PHY register at offset
2796 * and stores the retrieved information in data. Release any acquired
2797 * semaphore before exiting.
2799 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2800 bool locked)
2802 s32 ret_val;
2803 u16 page = BM_PHY_REG_PAGE(offset);
2804 u16 reg = BM_PHY_REG_NUM(offset);
2806 if (!locked) {
2807 ret_val = hw->phy.ops.acquire(hw);
2808 if (ret_val)
2809 return ret_val;
2812 /* Page 800 works differently than the rest so it has its own func */
2813 if (page == BM_WUC_PAGE) {
2814 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2815 data, true);
2816 goto out;
2819 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2820 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2821 data, true);
2822 goto out;
2825 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2827 if (page == HV_INTC_FC_PAGE_START)
2828 page = 0;
2830 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2831 u32 phy_addr = hw->phy.addr;
2833 hw->phy.addr = 1;
2835 /* Page is shifted left, PHY expects (page x 32) */
2836 ret_val = e1000e_write_phy_reg_mdic(hw,
2837 IGP01E1000_PHY_PAGE_SELECT,
2838 (page << IGP_PAGE_SHIFT));
2839 hw->phy.addr = phy_addr;
2841 if (ret_val)
2842 goto out;
2845 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2846 data);
2847 out:
2848 if (!locked)
2849 hw->phy.ops.release(hw);
2851 return ret_val;
2855 * e1000_read_phy_reg_hv - Read HV PHY register
2856 * @hw: pointer to the HW structure
2857 * @offset: register offset to be read
2858 * @data: pointer to the read data
2860 * Acquires semaphore then reads the PHY register at offset and stores
2861 * the retrieved information in data. Release the acquired semaphore
2862 * before exiting.
2864 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2866 return __e1000_read_phy_reg_hv(hw, offset, data, false);
2870 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2871 * @hw: pointer to the HW structure
2872 * @offset: register offset to be read
2873 * @data: pointer to the read data
2875 * Reads the PHY register at offset and stores the retrieved information
2876 * in data. Assumes semaphore already acquired.
2878 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2880 return __e1000_read_phy_reg_hv(hw, offset, data, true);
2884 * __e1000_write_phy_reg_hv - Write HV PHY register
2885 * @hw: pointer to the HW structure
2886 * @offset: register offset to write to
2887 * @data: data to write at register offset
2888 * @locked: semaphore has already been acquired or not
2890 * Acquires semaphore, if necessary, then writes the data to PHY register
2891 * at the offset. Release any acquired semaphores before exiting.
2893 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2894 bool locked)
2896 s32 ret_val;
2897 u16 page = BM_PHY_REG_PAGE(offset);
2898 u16 reg = BM_PHY_REG_NUM(offset);
2900 if (!locked) {
2901 ret_val = hw->phy.ops.acquire(hw);
2902 if (ret_val)
2903 return ret_val;
2906 /* Page 800 works differently than the rest so it has its own func */
2907 if (page == BM_WUC_PAGE) {
2908 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
2909 &data, false);
2910 goto out;
2913 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2914 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2915 &data, false);
2916 goto out;
2919 hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2921 if (page == HV_INTC_FC_PAGE_START)
2922 page = 0;
2925 * Workaround MDIO accesses being disabled after entering IEEE Power
2926 * Down (whenever bit 11 of the PHY Control register is set)
2928 if ((hw->phy.type == e1000_phy_82578) &&
2929 (hw->phy.revision >= 1) &&
2930 (hw->phy.addr == 2) &&
2931 ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
2932 (data & (1 << 11))) {
2933 u16 data2 = 0x7EFF;
2934 ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
2935 &data2, false);
2936 if (ret_val)
2937 goto out;
2940 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2941 u32 phy_addr = hw->phy.addr;
2943 hw->phy.addr = 1;
2945 /* Page is shifted left, PHY expects (page x 32) */
2946 ret_val = e1000e_write_phy_reg_mdic(hw,
2947 IGP01E1000_PHY_PAGE_SELECT,
2948 (page << IGP_PAGE_SHIFT));
2949 hw->phy.addr = phy_addr;
2951 if (ret_val)
2952 goto out;
2955 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2956 data);
2958 out:
2959 if (!locked)
2960 hw->phy.ops.release(hw);
2962 return ret_val;
2966 * e1000_write_phy_reg_hv - Write HV PHY register
2967 * @hw: pointer to the HW structure
2968 * @offset: register offset to write to
2969 * @data: data to write at register offset
2971 * Acquires semaphore then writes the data to PHY register at the offset.
2972 * Release the acquired semaphores before exiting.
2974 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2976 return __e1000_write_phy_reg_hv(hw, offset, data, false);
2980 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2981 * @hw: pointer to the HW structure
2982 * @offset: register offset to write to
2983 * @data: data to write at register offset
2985 * Writes the data to PHY register at the offset. Assumes semaphore
2986 * already acquired.
2988 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2990 return __e1000_write_phy_reg_hv(hw, offset, data, true);
2994 * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
2995 * @page: page to be accessed
2997 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2999 u32 phy_addr = 2;
3001 if (page >= HV_INTC_FC_PAGE_START)
3002 phy_addr = 1;
3004 return phy_addr;
3008 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3009 * @hw: pointer to the HW structure
3010 * @offset: register offset to be read or written
3011 * @data: pointer to the data to be read or written
3012 * @read: determines if operation is read or written
3014 * Reads the PHY register at offset and stores the retreived information
3015 * in data. Assumes semaphore already acquired. Note that the procedure
3016 * to read these regs uses the address port and data port to read/write.
3018 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3019 u16 *data, bool read)
3021 s32 ret_val;
3022 u32 addr_reg = 0;
3023 u32 data_reg = 0;
3025 /* This takes care of the difference with desktop vs mobile phy */
3026 addr_reg = (hw->phy.type == e1000_phy_82578) ?
3027 I82578_ADDR_REG : I82577_ADDR_REG;
3028 data_reg = addr_reg + 1;
3030 /* All operations in this function are phy address 2 */
3031 hw->phy.addr = 2;
3033 /* masking with 0x3F to remove the page from offset */
3034 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3035 if (ret_val) {
3036 e_dbg("Could not write PHY the HV address register\n");
3037 goto out;
3040 /* Read or write the data value next */
3041 if (read)
3042 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3043 else
3044 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3046 if (ret_val) {
3047 e_dbg("Could not read data value from HV data register\n");
3048 goto out;
3051 out:
3052 return ret_val;
3056 * e1000_link_stall_workaround_hv - Si workaround
3057 * @hw: pointer to the HW structure
3059 * This function works around a Si bug where the link partner can get
3060 * a link up indication before the PHY does. If small packets are sent
3061 * by the link partner they can be placed in the packet buffer without
3062 * being properly accounted for by the PHY and will stall preventing
3063 * further packets from being received. The workaround is to clear the
3064 * packet buffer after the PHY detects link up.
3066 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3068 s32 ret_val = 0;
3069 u16 data;
3071 if (hw->phy.type != e1000_phy_82578)
3072 goto out;
3074 /* Do not apply workaround if in PHY loopback bit 14 set */
3075 hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
3076 if (data & PHY_CONTROL_LB)
3077 goto out;
3079 /* check if link is up and at 1Gbps */
3080 ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
3081 if (ret_val)
3082 goto out;
3084 data &= BM_CS_STATUS_LINK_UP |
3085 BM_CS_STATUS_RESOLVED |
3086 BM_CS_STATUS_SPEED_MASK;
3088 if (data != (BM_CS_STATUS_LINK_UP |
3089 BM_CS_STATUS_RESOLVED |
3090 BM_CS_STATUS_SPEED_1000))
3091 goto out;
3093 mdelay(200);
3095 /* flush the packets in the fifo buffer */
3096 ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3097 HV_MUX_DATA_CTRL_GEN_TO_MAC |
3098 HV_MUX_DATA_CTRL_FORCE_SPEED);
3099 if (ret_val)
3100 goto out;
3102 ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3103 HV_MUX_DATA_CTRL_GEN_TO_MAC);
3105 out:
3106 return ret_val;
3110 * e1000_check_polarity_82577 - Checks the polarity.
3111 * @hw: pointer to the HW structure
3113 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3115 * Polarity is determined based on the PHY specific status register.
3117 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3119 struct e1000_phy_info *phy = &hw->phy;
3120 s32 ret_val;
3121 u16 data;
3123 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3125 if (!ret_val)
3126 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3127 ? e1000_rev_polarity_reversed
3128 : e1000_rev_polarity_normal;
3130 return ret_val;
3134 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3135 * @hw: pointer to the HW structure
3137 * Calls the PHY setup function to force speed and duplex.
3139 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3141 struct e1000_phy_info *phy = &hw->phy;
3142 s32 ret_val;
3143 u16 phy_data;
3144 bool link;
3146 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
3147 if (ret_val)
3148 goto out;
3150 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3152 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
3153 if (ret_val)
3154 goto out;
3156 udelay(1);
3158 if (phy->autoneg_wait_to_complete) {
3159 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3161 ret_val = e1000e_phy_has_link_generic(hw,
3162 PHY_FORCE_LIMIT,
3163 100000,
3164 &link);
3165 if (ret_val)
3166 goto out;
3168 if (!link)
3169 e_dbg("Link taking longer than expected.\n");
3171 /* Try once more */
3172 ret_val = e1000e_phy_has_link_generic(hw,
3173 PHY_FORCE_LIMIT,
3174 100000,
3175 &link);
3176 if (ret_val)
3177 goto out;
3180 out:
3181 return ret_val;
3185 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3186 * @hw: pointer to the HW structure
3188 * Read PHY status to determine if link is up. If link is up, then
3189 * set/determine 10base-T extended distance and polarity correction. Read
3190 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3191 * determine on the cable length, local and remote receiver.
3193 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3195 struct e1000_phy_info *phy = &hw->phy;
3196 s32 ret_val;
3197 u16 data;
3198 bool link;
3200 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3201 if (ret_val)
3202 goto out;
3204 if (!link) {
3205 e_dbg("Phy info is only valid if link is up\n");
3206 ret_val = -E1000_ERR_CONFIG;
3207 goto out;
3210 phy->polarity_correction = true;
3212 ret_val = e1000_check_polarity_82577(hw);
3213 if (ret_val)
3214 goto out;
3216 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3217 if (ret_val)
3218 goto out;
3220 phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3222 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3223 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3224 ret_val = hw->phy.ops.get_cable_length(hw);
3225 if (ret_val)
3226 goto out;
3228 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
3229 if (ret_val)
3230 goto out;
3232 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3233 ? e1000_1000t_rx_status_ok
3234 : e1000_1000t_rx_status_not_ok;
3236 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3237 ? e1000_1000t_rx_status_ok
3238 : e1000_1000t_rx_status_not_ok;
3239 } else {
3240 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3241 phy->local_rx = e1000_1000t_rx_status_undefined;
3242 phy->remote_rx = e1000_1000t_rx_status_undefined;
3245 out:
3246 return ret_val;
3250 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3251 * @hw: pointer to the HW structure
3253 * Reads the diagnostic status register and verifies result is valid before
3254 * placing it in the phy_cable_length field.
3256 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3258 struct e1000_phy_info *phy = &hw->phy;
3259 s32 ret_val;
3260 u16 phy_data, length;
3262 ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3263 if (ret_val)
3264 goto out;
3266 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3267 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3269 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3270 ret_val = -E1000_ERR_PHY;
3272 phy->cable_length = length;
3274 out:
3275 return ret_val;