e1000e: 82579 PHY incorrectly identified during init
[linux-2.6/btrfs-unstable.git] / drivers / net / e1000e / ich8lan.c
blob5080372b0fd750ead6935846e1660047077eabfa
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
59 #include "e1000.h"
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
114 #define E1000_ICH_RAR_ENTRIES 7
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
143 /* Strapping Option Register - RO */
144 #define E1000_STRAP 0x0000C
145 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
146 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
148 /* OEM Bits Phy Register */
149 #define HV_OEM_BITS PHY_REG(768, 25)
150 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
151 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
152 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
154 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
155 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
157 /* KMRN Mode Control */
158 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
159 #define HV_KMRN_MDIO_SLOW 0x0400
161 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
162 /* Offset 04h HSFSTS */
163 union ich8_hws_flash_status {
164 struct ich8_hsfsts {
165 u16 flcdone :1; /* bit 0 Flash Cycle Done */
166 u16 flcerr :1; /* bit 1 Flash Cycle Error */
167 u16 dael :1; /* bit 2 Direct Access error Log */
168 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
169 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
170 u16 reserved1 :2; /* bit 13:6 Reserved */
171 u16 reserved2 :6; /* bit 13:6 Reserved */
172 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
173 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
174 } hsf_status;
175 u16 regval;
178 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
179 /* Offset 06h FLCTL */
180 union ich8_hws_flash_ctrl {
181 struct ich8_hsflctl {
182 u16 flcgo :1; /* 0 Flash Cycle Go */
183 u16 flcycle :2; /* 2:1 Flash Cycle */
184 u16 reserved :5; /* 7:3 Reserved */
185 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
186 u16 flockdn :6; /* 15:10 Reserved */
187 } hsf_ctrl;
188 u16 regval;
191 /* ICH Flash Region Access Permissions */
192 union ich8_hws_flash_regacc {
193 struct ich8_flracc {
194 u32 grra :8; /* 0:7 GbE region Read Access */
195 u32 grwa :8; /* 8:15 GbE region Write Access */
196 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
197 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
198 } hsf_flregacc;
199 u16 regval;
202 /* ICH Flash Protected Region */
203 union ich8_flash_protected_range {
204 struct ich8_pr {
205 u32 base:13; /* 0:12 Protected Range Base */
206 u32 reserved1:2; /* 13:14 Reserved */
207 u32 rpe:1; /* 15 Read Protection Enable */
208 u32 limit:13; /* 16:28 Protected Range Limit */
209 u32 reserved2:2; /* 29:30 Reserved */
210 u32 wpe:1; /* 31 Write Protection Enable */
211 } range;
212 u32 regval;
215 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
216 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
217 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
218 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
219 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
220 u32 offset, u8 byte);
221 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
222 u8 *data);
223 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
224 u16 *data);
225 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
226 u8 size, u16 *data);
227 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
228 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
229 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
230 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
231 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
232 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
233 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
234 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
235 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
236 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
237 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
238 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
239 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
240 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
242 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
243 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
244 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
245 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
246 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
248 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
250 return readw(hw->flash_address + reg);
253 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
255 return readl(hw->flash_address + reg);
258 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
260 writew(val, hw->flash_address + reg);
263 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
265 writel(val, hw->flash_address + reg);
268 #define er16flash(reg) __er16flash(hw, (reg))
269 #define er32flash(reg) __er32flash(hw, (reg))
270 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
271 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
274 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
275 * @hw: pointer to the HW structure
277 * Initialize family-specific PHY parameters and function pointers.
279 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
281 struct e1000_phy_info *phy = &hw->phy;
282 u32 ctrl, fwsm;
283 s32 ret_val = 0;
285 phy->addr = 1;
286 phy->reset_delay_us = 100;
288 phy->ops.read_reg = e1000_read_phy_reg_hv;
289 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
290 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
291 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
292 phy->ops.write_reg = e1000_write_phy_reg_hv;
293 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
294 phy->ops.power_up = e1000_power_up_phy_copper;
295 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
296 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
299 * The MAC-PHY interconnect may still be in SMBus mode
300 * after Sx->S0. If the manageability engine (ME) is
301 * disabled, then toggle the LANPHYPC Value bit to force
302 * the interconnect to PCIe mode.
304 fwsm = er32(FWSM);
305 if (!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
306 ctrl = er32(CTRL);
307 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
308 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
309 ew32(CTRL, ctrl);
310 udelay(10);
311 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
312 ew32(CTRL, ctrl);
313 msleep(50);
316 * Gate automatic PHY configuration by hardware on
317 * non-managed 82579
319 if (hw->mac.type == e1000_pch2lan)
320 e1000_gate_hw_phy_config_ich8lan(hw, true);
324 * Reset the PHY before any acccess to it. Doing so, ensures that
325 * the PHY is in a known good state before we read/write PHY registers.
326 * The generic reset is sufficient here, because we haven't determined
327 * the PHY type yet.
329 ret_val = e1000e_phy_hw_reset_generic(hw);
330 if (ret_val)
331 goto out;
333 /* Ungate automatic PHY configuration on non-managed 82579 */
334 if ((hw->mac.type == e1000_pch2lan) &&
335 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
336 msleep(10);
337 e1000_gate_hw_phy_config_ich8lan(hw, false);
340 phy->id = e1000_phy_unknown;
341 switch (hw->mac.type) {
342 default:
343 ret_val = e1000e_get_phy_id(hw);
344 if (ret_val)
345 goto out;
346 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
347 break;
348 /* fall-through */
349 case e1000_pch2lan:
351 * In case the PHY needs to be in mdio slow mode,
352 * set slow mode and try to get the PHY id again.
354 ret_val = e1000_set_mdio_slow_mode_hv(hw);
355 if (ret_val)
356 goto out;
357 ret_val = e1000e_get_phy_id(hw);
358 if (ret_val)
359 goto out;
360 break;
362 phy->type = e1000e_get_phy_type_from_id(phy->id);
364 switch (phy->type) {
365 case e1000_phy_82577:
366 case e1000_phy_82579:
367 phy->ops.check_polarity = e1000_check_polarity_82577;
368 phy->ops.force_speed_duplex =
369 e1000_phy_force_speed_duplex_82577;
370 phy->ops.get_cable_length = e1000_get_cable_length_82577;
371 phy->ops.get_info = e1000_get_phy_info_82577;
372 phy->ops.commit = e1000e_phy_sw_reset;
373 break;
374 case e1000_phy_82578:
375 phy->ops.check_polarity = e1000_check_polarity_m88;
376 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
377 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
378 phy->ops.get_info = e1000e_get_phy_info_m88;
379 break;
380 default:
381 ret_val = -E1000_ERR_PHY;
382 break;
385 out:
386 return ret_val;
390 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
391 * @hw: pointer to the HW structure
393 * Initialize family-specific PHY parameters and function pointers.
395 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
397 struct e1000_phy_info *phy = &hw->phy;
398 s32 ret_val;
399 u16 i = 0;
401 phy->addr = 1;
402 phy->reset_delay_us = 100;
404 phy->ops.power_up = e1000_power_up_phy_copper;
405 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
408 * We may need to do this twice - once for IGP and if that fails,
409 * we'll set BM func pointers and try again
411 ret_val = e1000e_determine_phy_address(hw);
412 if (ret_val) {
413 phy->ops.write_reg = e1000e_write_phy_reg_bm;
414 phy->ops.read_reg = e1000e_read_phy_reg_bm;
415 ret_val = e1000e_determine_phy_address(hw);
416 if (ret_val) {
417 e_dbg("Cannot determine PHY addr. Erroring out\n");
418 return ret_val;
422 phy->id = 0;
423 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
424 (i++ < 100)) {
425 msleep(1);
426 ret_val = e1000e_get_phy_id(hw);
427 if (ret_val)
428 return ret_val;
431 /* Verify phy id */
432 switch (phy->id) {
433 case IGP03E1000_E_PHY_ID:
434 phy->type = e1000_phy_igp_3;
435 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
436 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
437 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
438 phy->ops.get_info = e1000e_get_phy_info_igp;
439 phy->ops.check_polarity = e1000_check_polarity_igp;
440 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
441 break;
442 case IFE_E_PHY_ID:
443 case IFE_PLUS_E_PHY_ID:
444 case IFE_C_E_PHY_ID:
445 phy->type = e1000_phy_ife;
446 phy->autoneg_mask = E1000_ALL_NOT_GIG;
447 phy->ops.get_info = e1000_get_phy_info_ife;
448 phy->ops.check_polarity = e1000_check_polarity_ife;
449 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
450 break;
451 case BME1000_E_PHY_ID:
452 phy->type = e1000_phy_bm;
453 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
454 phy->ops.read_reg = e1000e_read_phy_reg_bm;
455 phy->ops.write_reg = e1000e_write_phy_reg_bm;
456 phy->ops.commit = e1000e_phy_sw_reset;
457 phy->ops.get_info = e1000e_get_phy_info_m88;
458 phy->ops.check_polarity = e1000_check_polarity_m88;
459 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
460 break;
461 default:
462 return -E1000_ERR_PHY;
463 break;
466 return 0;
470 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
471 * @hw: pointer to the HW structure
473 * Initialize family-specific NVM parameters and function
474 * pointers.
476 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
478 struct e1000_nvm_info *nvm = &hw->nvm;
479 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
480 u32 gfpreg, sector_base_addr, sector_end_addr;
481 u16 i;
483 /* Can't read flash registers if the register set isn't mapped. */
484 if (!hw->flash_address) {
485 e_dbg("ERROR: Flash registers not mapped\n");
486 return -E1000_ERR_CONFIG;
489 nvm->type = e1000_nvm_flash_sw;
491 gfpreg = er32flash(ICH_FLASH_GFPREG);
494 * sector_X_addr is a "sector"-aligned address (4096 bytes)
495 * Add 1 to sector_end_addr since this sector is included in
496 * the overall size.
498 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
499 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
501 /* flash_base_addr is byte-aligned */
502 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
505 * find total size of the NVM, then cut in half since the total
506 * size represents two separate NVM banks.
508 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
509 << FLASH_SECTOR_ADDR_SHIFT;
510 nvm->flash_bank_size /= 2;
511 /* Adjust to word count */
512 nvm->flash_bank_size /= sizeof(u16);
514 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
516 /* Clear shadow ram */
517 for (i = 0; i < nvm->word_size; i++) {
518 dev_spec->shadow_ram[i].modified = false;
519 dev_spec->shadow_ram[i].value = 0xFFFF;
522 return 0;
526 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
527 * @hw: pointer to the HW structure
529 * Initialize family-specific MAC parameters and function
530 * pointers.
532 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
534 struct e1000_hw *hw = &adapter->hw;
535 struct e1000_mac_info *mac = &hw->mac;
537 /* Set media type function pointer */
538 hw->phy.media_type = e1000_media_type_copper;
540 /* Set mta register count */
541 mac->mta_reg_count = 32;
542 /* Set rar entry count */
543 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
544 if (mac->type == e1000_ich8lan)
545 mac->rar_entry_count--;
546 /* FWSM register */
547 mac->has_fwsm = true;
548 /* ARC subsystem not supported */
549 mac->arc_subsystem_valid = false;
550 /* Adaptive IFS supported */
551 mac->adaptive_ifs = true;
553 /* LED operations */
554 switch (mac->type) {
555 case e1000_ich8lan:
556 case e1000_ich9lan:
557 case e1000_ich10lan:
558 /* check management mode */
559 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
560 /* ID LED init */
561 mac->ops.id_led_init = e1000e_id_led_init;
562 /* setup LED */
563 mac->ops.setup_led = e1000e_setup_led_generic;
564 /* cleanup LED */
565 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
566 /* turn on/off LED */
567 mac->ops.led_on = e1000_led_on_ich8lan;
568 mac->ops.led_off = e1000_led_off_ich8lan;
569 break;
570 case e1000_pchlan:
571 case e1000_pch2lan:
572 /* check management mode */
573 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
574 /* ID LED init */
575 mac->ops.id_led_init = e1000_id_led_init_pchlan;
576 /* setup LED */
577 mac->ops.setup_led = e1000_setup_led_pchlan;
578 /* cleanup LED */
579 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
580 /* turn on/off LED */
581 mac->ops.led_on = e1000_led_on_pchlan;
582 mac->ops.led_off = e1000_led_off_pchlan;
583 break;
584 default:
585 break;
588 /* Enable PCS Lock-loss workaround for ICH8 */
589 if (mac->type == e1000_ich8lan)
590 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
592 /* Gate automatic PHY configuration by hardware on managed 82579 */
593 if ((mac->type == e1000_pch2lan) &&
594 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
595 e1000_gate_hw_phy_config_ich8lan(hw, true);
597 return 0;
601 * e1000_set_eee_pchlan - Enable/disable EEE support
602 * @hw: pointer to the HW structure
604 * Enable/disable EEE based on setting in dev_spec structure. The bits in
605 * the LPI Control register will remain set only if/when link is up.
607 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
609 s32 ret_val = 0;
610 u16 phy_reg;
612 if (hw->phy.type != e1000_phy_82579)
613 goto out;
615 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
616 if (ret_val)
617 goto out;
619 if (hw->dev_spec.ich8lan.eee_disable)
620 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
621 else
622 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
624 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
625 out:
626 return ret_val;
630 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
631 * @hw: pointer to the HW structure
633 * Checks to see of the link status of the hardware has changed. If a
634 * change in link status has been detected, then we read the PHY registers
635 * to get the current speed/duplex if link exists.
637 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
639 struct e1000_mac_info *mac = &hw->mac;
640 s32 ret_val;
641 bool link;
644 * We only want to go out to the PHY registers to see if Auto-Neg
645 * has completed and/or if our link status has changed. The
646 * get_link_status flag is set upon receiving a Link Status
647 * Change or Rx Sequence Error interrupt.
649 if (!mac->get_link_status) {
650 ret_val = 0;
651 goto out;
655 * First we want to see if the MII Status Register reports
656 * link. If so, then we want to get the current speed/duplex
657 * of the PHY.
659 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
660 if (ret_val)
661 goto out;
663 if (hw->mac.type == e1000_pchlan) {
664 ret_val = e1000_k1_gig_workaround_hv(hw, link);
665 if (ret_val)
666 goto out;
669 if (!link)
670 goto out; /* No link detected */
672 mac->get_link_status = false;
674 if (hw->phy.type == e1000_phy_82578) {
675 ret_val = e1000_link_stall_workaround_hv(hw);
676 if (ret_val)
677 goto out;
680 if (hw->mac.type == e1000_pch2lan) {
681 ret_val = e1000_k1_workaround_lv(hw);
682 if (ret_val)
683 goto out;
687 * Check if there was DownShift, must be checked
688 * immediately after link-up
690 e1000e_check_downshift(hw);
692 /* Enable/Disable EEE after link up */
693 ret_val = e1000_set_eee_pchlan(hw);
694 if (ret_val)
695 goto out;
698 * If we are forcing speed/duplex, then we simply return since
699 * we have already determined whether we have link or not.
701 if (!mac->autoneg) {
702 ret_val = -E1000_ERR_CONFIG;
703 goto out;
707 * Auto-Neg is enabled. Auto Speed Detection takes care
708 * of MAC speed/duplex configuration. So we only need to
709 * configure Collision Distance in the MAC.
711 e1000e_config_collision_dist(hw);
714 * Configure Flow Control now that Auto-Neg has completed.
715 * First, we need to restore the desired flow control
716 * settings because we may have had to re-autoneg with a
717 * different link partner.
719 ret_val = e1000e_config_fc_after_link_up(hw);
720 if (ret_val)
721 e_dbg("Error configuring flow control\n");
723 out:
724 return ret_val;
727 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
729 struct e1000_hw *hw = &adapter->hw;
730 s32 rc;
732 rc = e1000_init_mac_params_ich8lan(adapter);
733 if (rc)
734 return rc;
736 rc = e1000_init_nvm_params_ich8lan(hw);
737 if (rc)
738 return rc;
740 switch (hw->mac.type) {
741 case e1000_ich8lan:
742 case e1000_ich9lan:
743 case e1000_ich10lan:
744 rc = e1000_init_phy_params_ich8lan(hw);
745 break;
746 case e1000_pchlan:
747 case e1000_pch2lan:
748 rc = e1000_init_phy_params_pchlan(hw);
749 break;
750 default:
751 break;
753 if (rc)
754 return rc;
756 if (adapter->hw.phy.type == e1000_phy_ife) {
757 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
758 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
761 if ((adapter->hw.mac.type == e1000_ich8lan) &&
762 (adapter->hw.phy.type == e1000_phy_igp_3))
763 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
765 /* Disable EEE by default until IEEE802.3az spec is finalized */
766 if (adapter->flags2 & FLAG2_HAS_EEE)
767 adapter->hw.dev_spec.ich8lan.eee_disable = true;
769 return 0;
772 static DEFINE_MUTEX(nvm_mutex);
775 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
776 * @hw: pointer to the HW structure
778 * Acquires the mutex for performing NVM operations.
780 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
782 mutex_lock(&nvm_mutex);
784 return 0;
788 * e1000_release_nvm_ich8lan - Release NVM mutex
789 * @hw: pointer to the HW structure
791 * Releases the mutex used while performing NVM operations.
793 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
795 mutex_unlock(&nvm_mutex);
798 static DEFINE_MUTEX(swflag_mutex);
801 * e1000_acquire_swflag_ich8lan - Acquire software control flag
802 * @hw: pointer to the HW structure
804 * Acquires the software control flag for performing PHY and select
805 * MAC CSR accesses.
807 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
809 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
810 s32 ret_val = 0;
812 mutex_lock(&swflag_mutex);
814 while (timeout) {
815 extcnf_ctrl = er32(EXTCNF_CTRL);
816 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
817 break;
819 mdelay(1);
820 timeout--;
823 if (!timeout) {
824 e_dbg("SW/FW/HW has locked the resource for too long.\n");
825 ret_val = -E1000_ERR_CONFIG;
826 goto out;
829 timeout = SW_FLAG_TIMEOUT;
831 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
832 ew32(EXTCNF_CTRL, extcnf_ctrl);
834 while (timeout) {
835 extcnf_ctrl = er32(EXTCNF_CTRL);
836 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
837 break;
839 mdelay(1);
840 timeout--;
843 if (!timeout) {
844 e_dbg("Failed to acquire the semaphore.\n");
845 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
846 ew32(EXTCNF_CTRL, extcnf_ctrl);
847 ret_val = -E1000_ERR_CONFIG;
848 goto out;
851 out:
852 if (ret_val)
853 mutex_unlock(&swflag_mutex);
855 return ret_val;
859 * e1000_release_swflag_ich8lan - Release software control flag
860 * @hw: pointer to the HW structure
862 * Releases the software control flag for performing PHY and select
863 * MAC CSR accesses.
865 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
867 u32 extcnf_ctrl;
869 extcnf_ctrl = er32(EXTCNF_CTRL);
870 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
871 ew32(EXTCNF_CTRL, extcnf_ctrl);
873 mutex_unlock(&swflag_mutex);
877 * e1000_check_mng_mode_ich8lan - Checks management mode
878 * @hw: pointer to the HW structure
880 * This checks if the adapter has any manageability enabled.
881 * This is a function pointer entry point only called by read/write
882 * routines for the PHY and NVM parts.
884 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
886 u32 fwsm;
888 fwsm = er32(FWSM);
889 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
890 ((fwsm & E1000_FWSM_MODE_MASK) ==
891 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
895 * e1000_check_mng_mode_pchlan - Checks management mode
896 * @hw: pointer to the HW structure
898 * This checks if the adapter has iAMT enabled.
899 * This is a function pointer entry point only called by read/write
900 * routines for the PHY and NVM parts.
902 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
904 u32 fwsm;
906 fwsm = er32(FWSM);
907 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
908 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
912 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
913 * @hw: pointer to the HW structure
915 * Checks if firmware is blocking the reset of the PHY.
916 * This is a function pointer entry point only called by
917 * reset routines.
919 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
921 u32 fwsm;
923 fwsm = er32(FWSM);
925 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
929 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
930 * @hw: pointer to the HW structure
932 * Assumes semaphore already acquired.
935 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
937 u16 phy_data;
938 u32 strap = er32(STRAP);
939 s32 ret_val = 0;
941 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
943 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
944 if (ret_val)
945 goto out;
947 phy_data &= ~HV_SMB_ADDR_MASK;
948 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
949 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
950 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
952 out:
953 return ret_val;
957 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
958 * @hw: pointer to the HW structure
960 * SW should configure the LCD from the NVM extended configuration region
961 * as a workaround for certain parts.
963 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
965 struct e1000_phy_info *phy = &hw->phy;
966 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
967 s32 ret_val = 0;
968 u16 word_addr, reg_data, reg_addr, phy_page = 0;
971 * Initialize the PHY from the NVM on ICH platforms. This
972 * is needed due to an issue where the NVM configuration is
973 * not properly autoloaded after power transitions.
974 * Therefore, after each PHY reset, we will load the
975 * configuration data out of the NVM manually.
977 switch (hw->mac.type) {
978 case e1000_ich8lan:
979 if (phy->type != e1000_phy_igp_3)
980 return ret_val;
982 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
983 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
984 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
985 break;
987 /* Fall-thru */
988 case e1000_pchlan:
989 case e1000_pch2lan:
990 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
991 break;
992 default:
993 return ret_val;
996 ret_val = hw->phy.ops.acquire(hw);
997 if (ret_val)
998 return ret_val;
1000 data = er32(FEXTNVM);
1001 if (!(data & sw_cfg_mask))
1002 goto out;
1005 * Make sure HW does not configure LCD from PHY
1006 * extended configuration before SW configuration
1008 data = er32(EXTCNF_CTRL);
1009 if (!(hw->mac.type == e1000_pch2lan)) {
1010 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1011 goto out;
1014 cnf_size = er32(EXTCNF_SIZE);
1015 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1016 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1017 if (!cnf_size)
1018 goto out;
1020 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1021 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1023 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1024 (hw->mac.type == e1000_pchlan)) ||
1025 (hw->mac.type == e1000_pch2lan)) {
1027 * HW configures the SMBus address and LEDs when the
1028 * OEM and LCD Write Enable bits are set in the NVM.
1029 * When both NVM bits are cleared, SW will configure
1030 * them instead.
1032 ret_val = e1000_write_smbus_addr(hw);
1033 if (ret_val)
1034 goto out;
1036 data = er32(LEDCTL);
1037 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1038 (u16)data);
1039 if (ret_val)
1040 goto out;
1043 /* Configure LCD from extended configuration region. */
1045 /* cnf_base_addr is in DWORD */
1046 word_addr = (u16)(cnf_base_addr << 1);
1048 for (i = 0; i < cnf_size; i++) {
1049 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1050 &reg_data);
1051 if (ret_val)
1052 goto out;
1054 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1055 1, &reg_addr);
1056 if (ret_val)
1057 goto out;
1059 /* Save off the PHY page for future writes. */
1060 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1061 phy_page = reg_data;
1062 continue;
1065 reg_addr &= PHY_REG_MASK;
1066 reg_addr |= phy_page;
1068 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1069 reg_data);
1070 if (ret_val)
1071 goto out;
1074 out:
1075 hw->phy.ops.release(hw);
1076 return ret_val;
1080 * e1000_k1_gig_workaround_hv - K1 Si workaround
1081 * @hw: pointer to the HW structure
1082 * @link: link up bool flag
1084 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1085 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1086 * If link is down, the function will restore the default K1 setting located
1087 * in the NVM.
1089 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1091 s32 ret_val = 0;
1092 u16 status_reg = 0;
1093 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1095 if (hw->mac.type != e1000_pchlan)
1096 goto out;
1098 /* Wrap the whole flow with the sw flag */
1099 ret_val = hw->phy.ops.acquire(hw);
1100 if (ret_val)
1101 goto out;
1103 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1104 if (link) {
1105 if (hw->phy.type == e1000_phy_82578) {
1106 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1107 &status_reg);
1108 if (ret_val)
1109 goto release;
1111 status_reg &= BM_CS_STATUS_LINK_UP |
1112 BM_CS_STATUS_RESOLVED |
1113 BM_CS_STATUS_SPEED_MASK;
1115 if (status_reg == (BM_CS_STATUS_LINK_UP |
1116 BM_CS_STATUS_RESOLVED |
1117 BM_CS_STATUS_SPEED_1000))
1118 k1_enable = false;
1121 if (hw->phy.type == e1000_phy_82577) {
1122 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1123 &status_reg);
1124 if (ret_val)
1125 goto release;
1127 status_reg &= HV_M_STATUS_LINK_UP |
1128 HV_M_STATUS_AUTONEG_COMPLETE |
1129 HV_M_STATUS_SPEED_MASK;
1131 if (status_reg == (HV_M_STATUS_LINK_UP |
1132 HV_M_STATUS_AUTONEG_COMPLETE |
1133 HV_M_STATUS_SPEED_1000))
1134 k1_enable = false;
1137 /* Link stall fix for link up */
1138 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1139 0x0100);
1140 if (ret_val)
1141 goto release;
1143 } else {
1144 /* Link stall fix for link down */
1145 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1146 0x4100);
1147 if (ret_val)
1148 goto release;
1151 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1153 release:
1154 hw->phy.ops.release(hw);
1155 out:
1156 return ret_val;
1160 * e1000_configure_k1_ich8lan - Configure K1 power state
1161 * @hw: pointer to the HW structure
1162 * @enable: K1 state to configure
1164 * Configure the K1 power state based on the provided parameter.
1165 * Assumes semaphore already acquired.
1167 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1169 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1171 s32 ret_val = 0;
1172 u32 ctrl_reg = 0;
1173 u32 ctrl_ext = 0;
1174 u32 reg = 0;
1175 u16 kmrn_reg = 0;
1177 ret_val = e1000e_read_kmrn_reg_locked(hw,
1178 E1000_KMRNCTRLSTA_K1_CONFIG,
1179 &kmrn_reg);
1180 if (ret_val)
1181 goto out;
1183 if (k1_enable)
1184 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1185 else
1186 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1188 ret_val = e1000e_write_kmrn_reg_locked(hw,
1189 E1000_KMRNCTRLSTA_K1_CONFIG,
1190 kmrn_reg);
1191 if (ret_val)
1192 goto out;
1194 udelay(20);
1195 ctrl_ext = er32(CTRL_EXT);
1196 ctrl_reg = er32(CTRL);
1198 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1199 reg |= E1000_CTRL_FRCSPD;
1200 ew32(CTRL, reg);
1202 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1203 udelay(20);
1204 ew32(CTRL, ctrl_reg);
1205 ew32(CTRL_EXT, ctrl_ext);
1206 udelay(20);
1208 out:
1209 return ret_val;
1213 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1214 * @hw: pointer to the HW structure
1215 * @d0_state: boolean if entering d0 or d3 device state
1217 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1218 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1219 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1221 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1223 s32 ret_val = 0;
1224 u32 mac_reg;
1225 u16 oem_reg;
1227 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1228 return ret_val;
1230 ret_val = hw->phy.ops.acquire(hw);
1231 if (ret_val)
1232 return ret_val;
1234 if (!(hw->mac.type == e1000_pch2lan)) {
1235 mac_reg = er32(EXTCNF_CTRL);
1236 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1237 goto out;
1240 mac_reg = er32(FEXTNVM);
1241 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1242 goto out;
1244 mac_reg = er32(PHY_CTRL);
1246 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1247 if (ret_val)
1248 goto out;
1250 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1252 if (d0_state) {
1253 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1254 oem_reg |= HV_OEM_BITS_GBE_DIS;
1256 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1257 oem_reg |= HV_OEM_BITS_LPLU;
1258 } else {
1259 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1260 oem_reg |= HV_OEM_BITS_GBE_DIS;
1262 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1263 oem_reg |= HV_OEM_BITS_LPLU;
1265 /* Restart auto-neg to activate the bits */
1266 if (!e1000_check_reset_block(hw))
1267 oem_reg |= HV_OEM_BITS_RESTART_AN;
1268 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1270 out:
1271 hw->phy.ops.release(hw);
1273 return ret_val;
1278 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1279 * @hw: pointer to the HW structure
1281 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1283 s32 ret_val;
1284 u16 data;
1286 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1287 if (ret_val)
1288 return ret_val;
1290 data |= HV_KMRN_MDIO_SLOW;
1292 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1294 return ret_val;
1298 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1299 * done after every PHY reset.
1301 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1303 s32 ret_val = 0;
1304 u16 phy_data;
1306 if (hw->mac.type != e1000_pchlan)
1307 return ret_val;
1309 /* Set MDIO slow mode before any other MDIO access */
1310 if (hw->phy.type == e1000_phy_82577) {
1311 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1312 if (ret_val)
1313 goto out;
1316 if (((hw->phy.type == e1000_phy_82577) &&
1317 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1318 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1319 /* Disable generation of early preamble */
1320 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1321 if (ret_val)
1322 return ret_val;
1324 /* Preamble tuning for SSC */
1325 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1326 if (ret_val)
1327 return ret_val;
1330 if (hw->phy.type == e1000_phy_82578) {
1332 * Return registers to default by doing a soft reset then
1333 * writing 0x3140 to the control register.
1335 if (hw->phy.revision < 2) {
1336 e1000e_phy_sw_reset(hw);
1337 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1341 /* Select page 0 */
1342 ret_val = hw->phy.ops.acquire(hw);
1343 if (ret_val)
1344 return ret_val;
1346 hw->phy.addr = 1;
1347 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1348 hw->phy.ops.release(hw);
1349 if (ret_val)
1350 goto out;
1353 * Configure the K1 Si workaround during phy reset assuming there is
1354 * link so that it disables K1 if link is in 1Gbps.
1356 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1357 if (ret_val)
1358 goto out;
1360 /* Workaround for link disconnects on a busy hub in half duplex */
1361 ret_val = hw->phy.ops.acquire(hw);
1362 if (ret_val)
1363 goto out;
1364 ret_val = hw->phy.ops.read_reg_locked(hw,
1365 PHY_REG(BM_PORT_CTRL_PAGE, 17),
1366 &phy_data);
1367 if (ret_val)
1368 goto release;
1369 ret_val = hw->phy.ops.write_reg_locked(hw,
1370 PHY_REG(BM_PORT_CTRL_PAGE, 17),
1371 phy_data & 0x00FF);
1372 release:
1373 hw->phy.ops.release(hw);
1374 out:
1375 return ret_val;
1379 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1380 * @hw: pointer to the HW structure
1382 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1384 u32 mac_reg;
1385 u16 i;
1387 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1388 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1389 mac_reg = er32(RAL(i));
1390 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
1391 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
1392 mac_reg = er32(RAH(i));
1393 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
1394 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
1398 static u32 e1000_calc_rx_da_crc(u8 mac[])
1400 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
1401 u32 i, j, mask, crc;
1403 crc = 0xffffffff;
1404 for (i = 0; i < 6; i++) {
1405 crc = crc ^ mac[i];
1406 for (j = 8; j > 0; j--) {
1407 mask = (crc & 1) * (-1);
1408 crc = (crc >> 1) ^ (poly & mask);
1411 return ~crc;
1415 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1416 * with 82579 PHY
1417 * @hw: pointer to the HW structure
1418 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1420 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1422 s32 ret_val = 0;
1423 u16 phy_reg, data;
1424 u32 mac_reg;
1425 u16 i;
1427 if (hw->mac.type != e1000_pch2lan)
1428 goto out;
1430 /* disable Rx path while enabling/disabling workaround */
1431 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1432 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1433 if (ret_val)
1434 goto out;
1436 if (enable) {
1438 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1439 * SHRAL/H) and initial CRC values to the MAC
1441 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1442 u8 mac_addr[ETH_ALEN] = {0};
1443 u32 addr_high, addr_low;
1445 addr_high = er32(RAH(i));
1446 if (!(addr_high & E1000_RAH_AV))
1447 continue;
1448 addr_low = er32(RAL(i));
1449 mac_addr[0] = (addr_low & 0xFF);
1450 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1451 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1452 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1453 mac_addr[4] = (addr_high & 0xFF);
1454 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1456 ew32(PCH_RAICC(i),
1457 e1000_calc_rx_da_crc(mac_addr));
1460 /* Write Rx addresses to the PHY */
1461 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1463 /* Enable jumbo frame workaround in the MAC */
1464 mac_reg = er32(FFLT_DBG);
1465 mac_reg &= ~(1 << 14);
1466 mac_reg |= (7 << 15);
1467 ew32(FFLT_DBG, mac_reg);
1469 mac_reg = er32(RCTL);
1470 mac_reg |= E1000_RCTL_SECRC;
1471 ew32(RCTL, mac_reg);
1473 ret_val = e1000e_read_kmrn_reg(hw,
1474 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1475 &data);
1476 if (ret_val)
1477 goto out;
1478 ret_val = e1000e_write_kmrn_reg(hw,
1479 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1480 data | (1 << 0));
1481 if (ret_val)
1482 goto out;
1483 ret_val = e1000e_read_kmrn_reg(hw,
1484 E1000_KMRNCTRLSTA_HD_CTRL,
1485 &data);
1486 if (ret_val)
1487 goto out;
1488 data &= ~(0xF << 8);
1489 data |= (0xB << 8);
1490 ret_val = e1000e_write_kmrn_reg(hw,
1491 E1000_KMRNCTRLSTA_HD_CTRL,
1492 data);
1493 if (ret_val)
1494 goto out;
1496 /* Enable jumbo frame workaround in the PHY */
1497 e1e_rphy(hw, PHY_REG(769, 23), &data);
1498 data &= ~(0x7F << 5);
1499 data |= (0x37 << 5);
1500 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1501 if (ret_val)
1502 goto out;
1503 e1e_rphy(hw, PHY_REG(769, 16), &data);
1504 data &= ~(1 << 13);
1505 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1506 if (ret_val)
1507 goto out;
1508 e1e_rphy(hw, PHY_REG(776, 20), &data);
1509 data &= ~(0x3FF << 2);
1510 data |= (0x1A << 2);
1511 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1512 if (ret_val)
1513 goto out;
1514 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1515 if (ret_val)
1516 goto out;
1517 e1e_rphy(hw, HV_PM_CTRL, &data);
1518 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1519 if (ret_val)
1520 goto out;
1521 } else {
1522 /* Write MAC register values back to h/w defaults */
1523 mac_reg = er32(FFLT_DBG);
1524 mac_reg &= ~(0xF << 14);
1525 ew32(FFLT_DBG, mac_reg);
1527 mac_reg = er32(RCTL);
1528 mac_reg &= ~E1000_RCTL_SECRC;
1529 ew32(RCTL, mac_reg);
1531 ret_val = e1000e_read_kmrn_reg(hw,
1532 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1533 &data);
1534 if (ret_val)
1535 goto out;
1536 ret_val = e1000e_write_kmrn_reg(hw,
1537 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1538 data & ~(1 << 0));
1539 if (ret_val)
1540 goto out;
1541 ret_val = e1000e_read_kmrn_reg(hw,
1542 E1000_KMRNCTRLSTA_HD_CTRL,
1543 &data);
1544 if (ret_val)
1545 goto out;
1546 data &= ~(0xF << 8);
1547 data |= (0xB << 8);
1548 ret_val = e1000e_write_kmrn_reg(hw,
1549 E1000_KMRNCTRLSTA_HD_CTRL,
1550 data);
1551 if (ret_val)
1552 goto out;
1554 /* Write PHY register values back to h/w defaults */
1555 e1e_rphy(hw, PHY_REG(769, 23), &data);
1556 data &= ~(0x7F << 5);
1557 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1558 if (ret_val)
1559 goto out;
1560 e1e_rphy(hw, PHY_REG(769, 16), &data);
1561 data |= (1 << 13);
1562 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1563 if (ret_val)
1564 goto out;
1565 e1e_rphy(hw, PHY_REG(776, 20), &data);
1566 data &= ~(0x3FF << 2);
1567 data |= (0x8 << 2);
1568 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1569 if (ret_val)
1570 goto out;
1571 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1572 if (ret_val)
1573 goto out;
1574 e1e_rphy(hw, HV_PM_CTRL, &data);
1575 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1576 if (ret_val)
1577 goto out;
1580 /* re-enable Rx path after enabling/disabling workaround */
1581 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1583 out:
1584 return ret_val;
1588 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1589 * done after every PHY reset.
1591 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1593 s32 ret_val = 0;
1595 if (hw->mac.type != e1000_pch2lan)
1596 goto out;
1598 /* Set MDIO slow mode before any other MDIO access */
1599 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1601 out:
1602 return ret_val;
1606 * e1000_k1_gig_workaround_lv - K1 Si workaround
1607 * @hw: pointer to the HW structure
1609 * Workaround to set the K1 beacon duration for 82579 parts
1611 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1613 s32 ret_val = 0;
1614 u16 status_reg = 0;
1615 u32 mac_reg;
1617 if (hw->mac.type != e1000_pch2lan)
1618 goto out;
1620 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1621 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1622 if (ret_val)
1623 goto out;
1625 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1626 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1627 mac_reg = er32(FEXTNVM4);
1628 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1630 if (status_reg & HV_M_STATUS_SPEED_1000)
1631 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1632 else
1633 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1635 ew32(FEXTNVM4, mac_reg);
1638 out:
1639 return ret_val;
1643 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1644 * @hw: pointer to the HW structure
1645 * @gate: boolean set to true to gate, false to ungate
1647 * Gate/ungate the automatic PHY configuration via hardware; perform
1648 * the configuration via software instead.
1650 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1652 u32 extcnf_ctrl;
1654 if (hw->mac.type != e1000_pch2lan)
1655 return;
1657 extcnf_ctrl = er32(EXTCNF_CTRL);
1659 if (gate)
1660 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1661 else
1662 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1664 ew32(EXTCNF_CTRL, extcnf_ctrl);
1665 return;
1669 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1670 * @hw: pointer to the HW structure
1672 * Check the appropriate indication the MAC has finished configuring the
1673 * PHY after a software reset.
1675 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1677 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1679 /* Wait for basic configuration completes before proceeding */
1680 do {
1681 data = er32(STATUS);
1682 data &= E1000_STATUS_LAN_INIT_DONE;
1683 udelay(100);
1684 } while ((!data) && --loop);
1687 * If basic configuration is incomplete before the above loop
1688 * count reaches 0, loading the configuration from NVM will
1689 * leave the PHY in a bad state possibly resulting in no link.
1691 if (loop == 0)
1692 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1694 /* Clear the Init Done bit for the next init event */
1695 data = er32(STATUS);
1696 data &= ~E1000_STATUS_LAN_INIT_DONE;
1697 ew32(STATUS, data);
1701 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1702 * @hw: pointer to the HW structure
1704 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1706 s32 ret_val = 0;
1707 u16 reg;
1709 if (e1000_check_reset_block(hw))
1710 goto out;
1712 /* Allow time for h/w to get to quiescent state after reset */
1713 msleep(10);
1715 /* Perform any necessary post-reset workarounds */
1716 switch (hw->mac.type) {
1717 case e1000_pchlan:
1718 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1719 if (ret_val)
1720 goto out;
1721 break;
1722 case e1000_pch2lan:
1723 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1724 if (ret_val)
1725 goto out;
1726 break;
1727 default:
1728 break;
1731 /* Dummy read to clear the phy wakeup bit after lcd reset */
1732 if (hw->mac.type >= e1000_pchlan)
1733 e1e_rphy(hw, BM_WUC, &reg);
1735 /* Configure the LCD with the extended configuration region in NVM */
1736 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1737 if (ret_val)
1738 goto out;
1740 /* Configure the LCD with the OEM bits in NVM */
1741 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1743 /* Ungate automatic PHY configuration on non-managed 82579 */
1744 if ((hw->mac.type == e1000_pch2lan) &&
1745 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1746 msleep(10);
1747 e1000_gate_hw_phy_config_ich8lan(hw, false);
1750 out:
1751 return ret_val;
1755 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1756 * @hw: pointer to the HW structure
1758 * Resets the PHY
1759 * This is a function pointer entry point called by drivers
1760 * or other shared routines.
1762 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1764 s32 ret_val = 0;
1766 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1767 if ((hw->mac.type == e1000_pch2lan) &&
1768 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1769 e1000_gate_hw_phy_config_ich8lan(hw, true);
1771 ret_val = e1000e_phy_hw_reset_generic(hw);
1772 if (ret_val)
1773 goto out;
1775 ret_val = e1000_post_phy_reset_ich8lan(hw);
1777 out:
1778 return ret_val;
1782 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1783 * @hw: pointer to the HW structure
1784 * @active: true to enable LPLU, false to disable
1786 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1787 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1788 * the phy speed. This function will manually set the LPLU bit and restart
1789 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1790 * since it configures the same bit.
1792 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1794 s32 ret_val = 0;
1795 u16 oem_reg;
1797 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1798 if (ret_val)
1799 goto out;
1801 if (active)
1802 oem_reg |= HV_OEM_BITS_LPLU;
1803 else
1804 oem_reg &= ~HV_OEM_BITS_LPLU;
1806 oem_reg |= HV_OEM_BITS_RESTART_AN;
1807 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1809 out:
1810 return ret_val;
1814 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1815 * @hw: pointer to the HW structure
1816 * @active: true to enable LPLU, false to disable
1818 * Sets the LPLU D0 state according to the active flag. When
1819 * activating LPLU this function also disables smart speed
1820 * and vice versa. LPLU will not be activated unless the
1821 * device autonegotiation advertisement meets standards of
1822 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1823 * This is a function pointer entry point only called by
1824 * PHY setup routines.
1826 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1828 struct e1000_phy_info *phy = &hw->phy;
1829 u32 phy_ctrl;
1830 s32 ret_val = 0;
1831 u16 data;
1833 if (phy->type == e1000_phy_ife)
1834 return ret_val;
1836 phy_ctrl = er32(PHY_CTRL);
1838 if (active) {
1839 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1840 ew32(PHY_CTRL, phy_ctrl);
1842 if (phy->type != e1000_phy_igp_3)
1843 return 0;
1846 * Call gig speed drop workaround on LPLU before accessing
1847 * any PHY registers
1849 if (hw->mac.type == e1000_ich8lan)
1850 e1000e_gig_downshift_workaround_ich8lan(hw);
1852 /* When LPLU is enabled, we should disable SmartSpeed */
1853 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1854 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1855 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1856 if (ret_val)
1857 return ret_val;
1858 } else {
1859 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1860 ew32(PHY_CTRL, phy_ctrl);
1862 if (phy->type != e1000_phy_igp_3)
1863 return 0;
1866 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1867 * during Dx states where the power conservation is most
1868 * important. During driver activity we should enable
1869 * SmartSpeed, so performance is maintained.
1871 if (phy->smart_speed == e1000_smart_speed_on) {
1872 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1873 &data);
1874 if (ret_val)
1875 return ret_val;
1877 data |= IGP01E1000_PSCFR_SMART_SPEED;
1878 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1879 data);
1880 if (ret_val)
1881 return ret_val;
1882 } else if (phy->smart_speed == e1000_smart_speed_off) {
1883 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1884 &data);
1885 if (ret_val)
1886 return ret_val;
1888 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1889 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1890 data);
1891 if (ret_val)
1892 return ret_val;
1896 return 0;
1900 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1901 * @hw: pointer to the HW structure
1902 * @active: true to enable LPLU, false to disable
1904 * Sets the LPLU D3 state according to the active flag. When
1905 * activating LPLU this function also disables smart speed
1906 * and vice versa. LPLU will not be activated unless the
1907 * device autonegotiation advertisement meets standards of
1908 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1909 * This is a function pointer entry point only called by
1910 * PHY setup routines.
1912 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1914 struct e1000_phy_info *phy = &hw->phy;
1915 u32 phy_ctrl;
1916 s32 ret_val;
1917 u16 data;
1919 phy_ctrl = er32(PHY_CTRL);
1921 if (!active) {
1922 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1923 ew32(PHY_CTRL, phy_ctrl);
1925 if (phy->type != e1000_phy_igp_3)
1926 return 0;
1929 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1930 * during Dx states where the power conservation is most
1931 * important. During driver activity we should enable
1932 * SmartSpeed, so performance is maintained.
1934 if (phy->smart_speed == e1000_smart_speed_on) {
1935 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1936 &data);
1937 if (ret_val)
1938 return ret_val;
1940 data |= IGP01E1000_PSCFR_SMART_SPEED;
1941 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1942 data);
1943 if (ret_val)
1944 return ret_val;
1945 } else if (phy->smart_speed == e1000_smart_speed_off) {
1946 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1947 &data);
1948 if (ret_val)
1949 return ret_val;
1951 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1952 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1953 data);
1954 if (ret_val)
1955 return ret_val;
1957 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1958 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1959 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1960 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1961 ew32(PHY_CTRL, phy_ctrl);
1963 if (phy->type != e1000_phy_igp_3)
1964 return 0;
1967 * Call gig speed drop workaround on LPLU before accessing
1968 * any PHY registers
1970 if (hw->mac.type == e1000_ich8lan)
1971 e1000e_gig_downshift_workaround_ich8lan(hw);
1973 /* When LPLU is enabled, we should disable SmartSpeed */
1974 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1975 if (ret_val)
1976 return ret_val;
1978 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1979 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1982 return 0;
1986 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1987 * @hw: pointer to the HW structure
1988 * @bank: pointer to the variable that returns the active bank
1990 * Reads signature byte from the NVM using the flash access registers.
1991 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1993 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1995 u32 eecd;
1996 struct e1000_nvm_info *nvm = &hw->nvm;
1997 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1998 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1999 u8 sig_byte = 0;
2000 s32 ret_val = 0;
2002 switch (hw->mac.type) {
2003 case e1000_ich8lan:
2004 case e1000_ich9lan:
2005 eecd = er32(EECD);
2006 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2007 E1000_EECD_SEC1VAL_VALID_MASK) {
2008 if (eecd & E1000_EECD_SEC1VAL)
2009 *bank = 1;
2010 else
2011 *bank = 0;
2013 return 0;
2015 e_dbg("Unable to determine valid NVM bank via EEC - "
2016 "reading flash signature\n");
2017 /* fall-thru */
2018 default:
2019 /* set bank to 0 in case flash read fails */
2020 *bank = 0;
2022 /* Check bank 0 */
2023 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2024 &sig_byte);
2025 if (ret_val)
2026 return ret_val;
2027 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2028 E1000_ICH_NVM_SIG_VALUE) {
2029 *bank = 0;
2030 return 0;
2033 /* Check bank 1 */
2034 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2035 bank1_offset,
2036 &sig_byte);
2037 if (ret_val)
2038 return ret_val;
2039 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2040 E1000_ICH_NVM_SIG_VALUE) {
2041 *bank = 1;
2042 return 0;
2045 e_dbg("ERROR: No valid NVM bank present\n");
2046 return -E1000_ERR_NVM;
2049 return 0;
2053 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2054 * @hw: pointer to the HW structure
2055 * @offset: The offset (in bytes) of the word(s) to read.
2056 * @words: Size of data to read in words
2057 * @data: Pointer to the word(s) to read at offset.
2059 * Reads a word(s) from the NVM using the flash access registers.
2061 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2062 u16 *data)
2064 struct e1000_nvm_info *nvm = &hw->nvm;
2065 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2066 u32 act_offset;
2067 s32 ret_val = 0;
2068 u32 bank = 0;
2069 u16 i, word;
2071 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2072 (words == 0)) {
2073 e_dbg("nvm parameter(s) out of bounds\n");
2074 ret_val = -E1000_ERR_NVM;
2075 goto out;
2078 nvm->ops.acquire(hw);
2080 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2081 if (ret_val) {
2082 e_dbg("Could not detect valid bank, assuming bank 0\n");
2083 bank = 0;
2086 act_offset = (bank) ? nvm->flash_bank_size : 0;
2087 act_offset += offset;
2089 ret_val = 0;
2090 for (i = 0; i < words; i++) {
2091 if ((dev_spec->shadow_ram) &&
2092 (dev_spec->shadow_ram[offset+i].modified)) {
2093 data[i] = dev_spec->shadow_ram[offset+i].value;
2094 } else {
2095 ret_val = e1000_read_flash_word_ich8lan(hw,
2096 act_offset + i,
2097 &word);
2098 if (ret_val)
2099 break;
2100 data[i] = word;
2104 nvm->ops.release(hw);
2106 out:
2107 if (ret_val)
2108 e_dbg("NVM read error: %d\n", ret_val);
2110 return ret_val;
2114 * e1000_flash_cycle_init_ich8lan - Initialize flash
2115 * @hw: pointer to the HW structure
2117 * This function does initial flash setup so that a new read/write/erase cycle
2118 * can be started.
2120 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2122 union ich8_hws_flash_status hsfsts;
2123 s32 ret_val = -E1000_ERR_NVM;
2124 s32 i = 0;
2126 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2128 /* Check if the flash descriptor is valid */
2129 if (hsfsts.hsf_status.fldesvalid == 0) {
2130 e_dbg("Flash descriptor invalid. "
2131 "SW Sequencing must be used.\n");
2132 return -E1000_ERR_NVM;
2135 /* Clear FCERR and DAEL in hw status by writing 1 */
2136 hsfsts.hsf_status.flcerr = 1;
2137 hsfsts.hsf_status.dael = 1;
2139 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2142 * Either we should have a hardware SPI cycle in progress
2143 * bit to check against, in order to start a new cycle or
2144 * FDONE bit should be changed in the hardware so that it
2145 * is 1 after hardware reset, which can then be used as an
2146 * indication whether a cycle is in progress or has been
2147 * completed.
2150 if (hsfsts.hsf_status.flcinprog == 0) {
2152 * There is no cycle running at present,
2153 * so we can start a cycle.
2154 * Begin by setting Flash Cycle Done.
2156 hsfsts.hsf_status.flcdone = 1;
2157 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2158 ret_val = 0;
2159 } else {
2161 * Otherwise poll for sometime so the current
2162 * cycle has a chance to end before giving up.
2164 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2165 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2166 if (hsfsts.hsf_status.flcinprog == 0) {
2167 ret_val = 0;
2168 break;
2170 udelay(1);
2172 if (ret_val == 0) {
2174 * Successful in waiting for previous cycle to timeout,
2175 * now set the Flash Cycle Done.
2177 hsfsts.hsf_status.flcdone = 1;
2178 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2179 } else {
2180 e_dbg("Flash controller busy, cannot get access\n");
2184 return ret_val;
2188 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2189 * @hw: pointer to the HW structure
2190 * @timeout: maximum time to wait for completion
2192 * This function starts a flash cycle and waits for its completion.
2194 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2196 union ich8_hws_flash_ctrl hsflctl;
2197 union ich8_hws_flash_status hsfsts;
2198 s32 ret_val = -E1000_ERR_NVM;
2199 u32 i = 0;
2201 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2202 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2203 hsflctl.hsf_ctrl.flcgo = 1;
2204 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2206 /* wait till FDONE bit is set to 1 */
2207 do {
2208 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2209 if (hsfsts.hsf_status.flcdone == 1)
2210 break;
2211 udelay(1);
2212 } while (i++ < timeout);
2214 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2215 return 0;
2217 return ret_val;
2221 * e1000_read_flash_word_ich8lan - Read word from flash
2222 * @hw: pointer to the HW structure
2223 * @offset: offset to data location
2224 * @data: pointer to the location for storing the data
2226 * Reads the flash word at offset into data. Offset is converted
2227 * to bytes before read.
2229 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2230 u16 *data)
2232 /* Must convert offset into bytes. */
2233 offset <<= 1;
2235 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2239 * e1000_read_flash_byte_ich8lan - Read byte from flash
2240 * @hw: pointer to the HW structure
2241 * @offset: The offset of the byte to read.
2242 * @data: Pointer to a byte to store the value read.
2244 * Reads a single byte from the NVM using the flash access registers.
2246 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2247 u8 *data)
2249 s32 ret_val;
2250 u16 word = 0;
2252 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2253 if (ret_val)
2254 return ret_val;
2256 *data = (u8)word;
2258 return 0;
2262 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2263 * @hw: pointer to the HW structure
2264 * @offset: The offset (in bytes) of the byte or word to read.
2265 * @size: Size of data to read, 1=byte 2=word
2266 * @data: Pointer to the word to store the value read.
2268 * Reads a byte or word from the NVM using the flash access registers.
2270 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2271 u8 size, u16 *data)
2273 union ich8_hws_flash_status hsfsts;
2274 union ich8_hws_flash_ctrl hsflctl;
2275 u32 flash_linear_addr;
2276 u32 flash_data = 0;
2277 s32 ret_val = -E1000_ERR_NVM;
2278 u8 count = 0;
2280 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2281 return -E1000_ERR_NVM;
2283 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2284 hw->nvm.flash_base_addr;
2286 do {
2287 udelay(1);
2288 /* Steps */
2289 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2290 if (ret_val != 0)
2291 break;
2293 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2294 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2295 hsflctl.hsf_ctrl.fldbcount = size - 1;
2296 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2297 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2299 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2301 ret_val = e1000_flash_cycle_ich8lan(hw,
2302 ICH_FLASH_READ_COMMAND_TIMEOUT);
2305 * Check if FCERR is set to 1, if set to 1, clear it
2306 * and try the whole sequence a few more times, else
2307 * read in (shift in) the Flash Data0, the order is
2308 * least significant byte first msb to lsb
2310 if (ret_val == 0) {
2311 flash_data = er32flash(ICH_FLASH_FDATA0);
2312 if (size == 1) {
2313 *data = (u8)(flash_data & 0x000000FF);
2314 } else if (size == 2) {
2315 *data = (u16)(flash_data & 0x0000FFFF);
2317 break;
2318 } else {
2320 * If we've gotten here, then things are probably
2321 * completely hosed, but if the error condition is
2322 * detected, it won't hurt to give it another try...
2323 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2325 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2326 if (hsfsts.hsf_status.flcerr == 1) {
2327 /* Repeat for some time before giving up. */
2328 continue;
2329 } else if (hsfsts.hsf_status.flcdone == 0) {
2330 e_dbg("Timeout error - flash cycle "
2331 "did not complete.\n");
2332 break;
2335 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2337 return ret_val;
2341 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2342 * @hw: pointer to the HW structure
2343 * @offset: The offset (in bytes) of the word(s) to write.
2344 * @words: Size of data to write in words
2345 * @data: Pointer to the word(s) to write at offset.
2347 * Writes a byte or word to the NVM using the flash access registers.
2349 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2350 u16 *data)
2352 struct e1000_nvm_info *nvm = &hw->nvm;
2353 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2354 u16 i;
2356 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2357 (words == 0)) {
2358 e_dbg("nvm parameter(s) out of bounds\n");
2359 return -E1000_ERR_NVM;
2362 nvm->ops.acquire(hw);
2364 for (i = 0; i < words; i++) {
2365 dev_spec->shadow_ram[offset+i].modified = true;
2366 dev_spec->shadow_ram[offset+i].value = data[i];
2369 nvm->ops.release(hw);
2371 return 0;
2375 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2376 * @hw: pointer to the HW structure
2378 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2379 * which writes the checksum to the shadow ram. The changes in the shadow
2380 * ram are then committed to the EEPROM by processing each bank at a time
2381 * checking for the modified bit and writing only the pending changes.
2382 * After a successful commit, the shadow ram is cleared and is ready for
2383 * future writes.
2385 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2387 struct e1000_nvm_info *nvm = &hw->nvm;
2388 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2389 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2390 s32 ret_val;
2391 u16 data;
2393 ret_val = e1000e_update_nvm_checksum_generic(hw);
2394 if (ret_val)
2395 goto out;
2397 if (nvm->type != e1000_nvm_flash_sw)
2398 goto out;
2400 nvm->ops.acquire(hw);
2403 * We're writing to the opposite bank so if we're on bank 1,
2404 * write to bank 0 etc. We also need to erase the segment that
2405 * is going to be written
2407 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2408 if (ret_val) {
2409 e_dbg("Could not detect valid bank, assuming bank 0\n");
2410 bank = 0;
2413 if (bank == 0) {
2414 new_bank_offset = nvm->flash_bank_size;
2415 old_bank_offset = 0;
2416 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2417 if (ret_val)
2418 goto release;
2419 } else {
2420 old_bank_offset = nvm->flash_bank_size;
2421 new_bank_offset = 0;
2422 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2423 if (ret_val)
2424 goto release;
2427 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2429 * Determine whether to write the value stored
2430 * in the other NVM bank or a modified value stored
2431 * in the shadow RAM
2433 if (dev_spec->shadow_ram[i].modified) {
2434 data = dev_spec->shadow_ram[i].value;
2435 } else {
2436 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2437 old_bank_offset,
2438 &data);
2439 if (ret_val)
2440 break;
2444 * If the word is 0x13, then make sure the signature bits
2445 * (15:14) are 11b until the commit has completed.
2446 * This will allow us to write 10b which indicates the
2447 * signature is valid. We want to do this after the write
2448 * has completed so that we don't mark the segment valid
2449 * while the write is still in progress
2451 if (i == E1000_ICH_NVM_SIG_WORD)
2452 data |= E1000_ICH_NVM_SIG_MASK;
2454 /* Convert offset to bytes. */
2455 act_offset = (i + new_bank_offset) << 1;
2457 udelay(100);
2458 /* Write the bytes to the new bank. */
2459 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2460 act_offset,
2461 (u8)data);
2462 if (ret_val)
2463 break;
2465 udelay(100);
2466 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2467 act_offset + 1,
2468 (u8)(data >> 8));
2469 if (ret_val)
2470 break;
2474 * Don't bother writing the segment valid bits if sector
2475 * programming failed.
2477 if (ret_val) {
2478 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2479 e_dbg("Flash commit failed.\n");
2480 goto release;
2484 * Finally validate the new segment by setting bit 15:14
2485 * to 10b in word 0x13 , this can be done without an
2486 * erase as well since these bits are 11 to start with
2487 * and we need to change bit 14 to 0b
2489 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2490 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2491 if (ret_val)
2492 goto release;
2494 data &= 0xBFFF;
2495 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2496 act_offset * 2 + 1,
2497 (u8)(data >> 8));
2498 if (ret_val)
2499 goto release;
2502 * And invalidate the previously valid segment by setting
2503 * its signature word (0x13) high_byte to 0b. This can be
2504 * done without an erase because flash erase sets all bits
2505 * to 1's. We can write 1's to 0's without an erase
2507 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2508 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2509 if (ret_val)
2510 goto release;
2512 /* Great! Everything worked, we can now clear the cached entries. */
2513 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2514 dev_spec->shadow_ram[i].modified = false;
2515 dev_spec->shadow_ram[i].value = 0xFFFF;
2518 release:
2519 nvm->ops.release(hw);
2522 * Reload the EEPROM, or else modifications will not appear
2523 * until after the next adapter reset.
2525 if (!ret_val) {
2526 e1000e_reload_nvm(hw);
2527 msleep(10);
2530 out:
2531 if (ret_val)
2532 e_dbg("NVM update error: %d\n", ret_val);
2534 return ret_val;
2538 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2539 * @hw: pointer to the HW structure
2541 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2542 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2543 * calculated, in which case we need to calculate the checksum and set bit 6.
2545 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2547 s32 ret_val;
2548 u16 data;
2551 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2552 * needs to be fixed. This bit is an indication that the NVM
2553 * was prepared by OEM software and did not calculate the
2554 * checksum...a likely scenario.
2556 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2557 if (ret_val)
2558 return ret_val;
2560 if ((data & 0x40) == 0) {
2561 data |= 0x40;
2562 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2563 if (ret_val)
2564 return ret_val;
2565 ret_val = e1000e_update_nvm_checksum(hw);
2566 if (ret_val)
2567 return ret_val;
2570 return e1000e_validate_nvm_checksum_generic(hw);
2574 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2575 * @hw: pointer to the HW structure
2577 * To prevent malicious write/erase of the NVM, set it to be read-only
2578 * so that the hardware ignores all write/erase cycles of the NVM via
2579 * the flash control registers. The shadow-ram copy of the NVM will
2580 * still be updated, however any updates to this copy will not stick
2581 * across driver reloads.
2583 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2585 struct e1000_nvm_info *nvm = &hw->nvm;
2586 union ich8_flash_protected_range pr0;
2587 union ich8_hws_flash_status hsfsts;
2588 u32 gfpreg;
2590 nvm->ops.acquire(hw);
2592 gfpreg = er32flash(ICH_FLASH_GFPREG);
2594 /* Write-protect GbE Sector of NVM */
2595 pr0.regval = er32flash(ICH_FLASH_PR0);
2596 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2597 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2598 pr0.range.wpe = true;
2599 ew32flash(ICH_FLASH_PR0, pr0.regval);
2602 * Lock down a subset of GbE Flash Control Registers, e.g.
2603 * PR0 to prevent the write-protection from being lifted.
2604 * Once FLOCKDN is set, the registers protected by it cannot
2605 * be written until FLOCKDN is cleared by a hardware reset.
2607 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2608 hsfsts.hsf_status.flockdn = true;
2609 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2611 nvm->ops.release(hw);
2615 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2616 * @hw: pointer to the HW structure
2617 * @offset: The offset (in bytes) of the byte/word to read.
2618 * @size: Size of data to read, 1=byte 2=word
2619 * @data: The byte(s) to write to the NVM.
2621 * Writes one/two bytes to the NVM using the flash access registers.
2623 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2624 u8 size, u16 data)
2626 union ich8_hws_flash_status hsfsts;
2627 union ich8_hws_flash_ctrl hsflctl;
2628 u32 flash_linear_addr;
2629 u32 flash_data = 0;
2630 s32 ret_val;
2631 u8 count = 0;
2633 if (size < 1 || size > 2 || data > size * 0xff ||
2634 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2635 return -E1000_ERR_NVM;
2637 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2638 hw->nvm.flash_base_addr;
2640 do {
2641 udelay(1);
2642 /* Steps */
2643 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2644 if (ret_val)
2645 break;
2647 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2648 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2649 hsflctl.hsf_ctrl.fldbcount = size -1;
2650 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2651 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2653 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2655 if (size == 1)
2656 flash_data = (u32)data & 0x00FF;
2657 else
2658 flash_data = (u32)data;
2660 ew32flash(ICH_FLASH_FDATA0, flash_data);
2663 * check if FCERR is set to 1 , if set to 1, clear it
2664 * and try the whole sequence a few more times else done
2666 ret_val = e1000_flash_cycle_ich8lan(hw,
2667 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2668 if (!ret_val)
2669 break;
2672 * If we're here, then things are most likely
2673 * completely hosed, but if the error condition
2674 * is detected, it won't hurt to give it another
2675 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2677 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2678 if (hsfsts.hsf_status.flcerr == 1)
2679 /* Repeat for some time before giving up. */
2680 continue;
2681 if (hsfsts.hsf_status.flcdone == 0) {
2682 e_dbg("Timeout error - flash cycle "
2683 "did not complete.");
2684 break;
2686 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2688 return ret_val;
2692 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2693 * @hw: pointer to the HW structure
2694 * @offset: The index of the byte to read.
2695 * @data: The byte to write to the NVM.
2697 * Writes a single byte to the NVM using the flash access registers.
2699 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2700 u8 data)
2702 u16 word = (u16)data;
2704 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2708 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2709 * @hw: pointer to the HW structure
2710 * @offset: The offset of the byte to write.
2711 * @byte: The byte to write to the NVM.
2713 * Writes a single byte to the NVM using the flash access registers.
2714 * Goes through a retry algorithm before giving up.
2716 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2717 u32 offset, u8 byte)
2719 s32 ret_val;
2720 u16 program_retries;
2722 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2723 if (!ret_val)
2724 return ret_val;
2726 for (program_retries = 0; program_retries < 100; program_retries++) {
2727 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2728 udelay(100);
2729 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2730 if (!ret_val)
2731 break;
2733 if (program_retries == 100)
2734 return -E1000_ERR_NVM;
2736 return 0;
2740 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2741 * @hw: pointer to the HW structure
2742 * @bank: 0 for first bank, 1 for second bank, etc.
2744 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2745 * bank N is 4096 * N + flash_reg_addr.
2747 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2749 struct e1000_nvm_info *nvm = &hw->nvm;
2750 union ich8_hws_flash_status hsfsts;
2751 union ich8_hws_flash_ctrl hsflctl;
2752 u32 flash_linear_addr;
2753 /* bank size is in 16bit words - adjust to bytes */
2754 u32 flash_bank_size = nvm->flash_bank_size * 2;
2755 s32 ret_val;
2756 s32 count = 0;
2757 s32 j, iteration, sector_size;
2759 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2762 * Determine HW Sector size: Read BERASE bits of hw flash status
2763 * register
2764 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2765 * consecutive sectors. The start index for the nth Hw sector
2766 * can be calculated as = bank * 4096 + n * 256
2767 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2768 * The start index for the nth Hw sector can be calculated
2769 * as = bank * 4096
2770 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2771 * (ich9 only, otherwise error condition)
2772 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2774 switch (hsfsts.hsf_status.berasesz) {
2775 case 0:
2776 /* Hw sector size 256 */
2777 sector_size = ICH_FLASH_SEG_SIZE_256;
2778 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2779 break;
2780 case 1:
2781 sector_size = ICH_FLASH_SEG_SIZE_4K;
2782 iteration = 1;
2783 break;
2784 case 2:
2785 sector_size = ICH_FLASH_SEG_SIZE_8K;
2786 iteration = 1;
2787 break;
2788 case 3:
2789 sector_size = ICH_FLASH_SEG_SIZE_64K;
2790 iteration = 1;
2791 break;
2792 default:
2793 return -E1000_ERR_NVM;
2796 /* Start with the base address, then add the sector offset. */
2797 flash_linear_addr = hw->nvm.flash_base_addr;
2798 flash_linear_addr += (bank) ? flash_bank_size : 0;
2800 for (j = 0; j < iteration ; j++) {
2801 do {
2802 /* Steps */
2803 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2804 if (ret_val)
2805 return ret_val;
2808 * Write a value 11 (block Erase) in Flash
2809 * Cycle field in hw flash control
2811 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2812 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2813 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2816 * Write the last 24 bits of an index within the
2817 * block into Flash Linear address field in Flash
2818 * Address.
2820 flash_linear_addr += (j * sector_size);
2821 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2823 ret_val = e1000_flash_cycle_ich8lan(hw,
2824 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2825 if (ret_val == 0)
2826 break;
2829 * Check if FCERR is set to 1. If 1,
2830 * clear it and try the whole sequence
2831 * a few more times else Done
2833 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2834 if (hsfsts.hsf_status.flcerr == 1)
2835 /* repeat for some time before giving up */
2836 continue;
2837 else if (hsfsts.hsf_status.flcdone == 0)
2838 return ret_val;
2839 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2842 return 0;
2846 * e1000_valid_led_default_ich8lan - Set the default LED settings
2847 * @hw: pointer to the HW structure
2848 * @data: Pointer to the LED settings
2850 * Reads the LED default settings from the NVM to data. If the NVM LED
2851 * settings is all 0's or F's, set the LED default to a valid LED default
2852 * setting.
2854 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2856 s32 ret_val;
2858 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2859 if (ret_val) {
2860 e_dbg("NVM Read Error\n");
2861 return ret_val;
2864 if (*data == ID_LED_RESERVED_0000 ||
2865 *data == ID_LED_RESERVED_FFFF)
2866 *data = ID_LED_DEFAULT_ICH8LAN;
2868 return 0;
2872 * e1000_id_led_init_pchlan - store LED configurations
2873 * @hw: pointer to the HW structure
2875 * PCH does not control LEDs via the LEDCTL register, rather it uses
2876 * the PHY LED configuration register.
2878 * PCH also does not have an "always on" or "always off" mode which
2879 * complicates the ID feature. Instead of using the "on" mode to indicate
2880 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2881 * use "link_up" mode. The LEDs will still ID on request if there is no
2882 * link based on logic in e1000_led_[on|off]_pchlan().
2884 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2886 struct e1000_mac_info *mac = &hw->mac;
2887 s32 ret_val;
2888 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2889 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2890 u16 data, i, temp, shift;
2892 /* Get default ID LED modes */
2893 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2894 if (ret_val)
2895 goto out;
2897 mac->ledctl_default = er32(LEDCTL);
2898 mac->ledctl_mode1 = mac->ledctl_default;
2899 mac->ledctl_mode2 = mac->ledctl_default;
2901 for (i = 0; i < 4; i++) {
2902 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2903 shift = (i * 5);
2904 switch (temp) {
2905 case ID_LED_ON1_DEF2:
2906 case ID_LED_ON1_ON2:
2907 case ID_LED_ON1_OFF2:
2908 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2909 mac->ledctl_mode1 |= (ledctl_on << shift);
2910 break;
2911 case ID_LED_OFF1_DEF2:
2912 case ID_LED_OFF1_ON2:
2913 case ID_LED_OFF1_OFF2:
2914 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2915 mac->ledctl_mode1 |= (ledctl_off << shift);
2916 break;
2917 default:
2918 /* Do nothing */
2919 break;
2921 switch (temp) {
2922 case ID_LED_DEF1_ON2:
2923 case ID_LED_ON1_ON2:
2924 case ID_LED_OFF1_ON2:
2925 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2926 mac->ledctl_mode2 |= (ledctl_on << shift);
2927 break;
2928 case ID_LED_DEF1_OFF2:
2929 case ID_LED_ON1_OFF2:
2930 case ID_LED_OFF1_OFF2:
2931 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2932 mac->ledctl_mode2 |= (ledctl_off << shift);
2933 break;
2934 default:
2935 /* Do nothing */
2936 break;
2940 out:
2941 return ret_val;
2945 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2946 * @hw: pointer to the HW structure
2948 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2949 * register, so the the bus width is hard coded.
2951 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2953 struct e1000_bus_info *bus = &hw->bus;
2954 s32 ret_val;
2956 ret_val = e1000e_get_bus_info_pcie(hw);
2959 * ICH devices are "PCI Express"-ish. They have
2960 * a configuration space, but do not contain
2961 * PCI Express Capability registers, so bus width
2962 * must be hardcoded.
2964 if (bus->width == e1000_bus_width_unknown)
2965 bus->width = e1000_bus_width_pcie_x1;
2967 return ret_val;
2971 * e1000_reset_hw_ich8lan - Reset the hardware
2972 * @hw: pointer to the HW structure
2974 * Does a full reset of the hardware which includes a reset of the PHY and
2975 * MAC.
2977 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2979 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2980 u16 reg;
2981 u32 ctrl, icr, kab;
2982 s32 ret_val;
2985 * Prevent the PCI-E bus from sticking if there is no TLP connection
2986 * on the last TLP read/write transaction when MAC is reset.
2988 ret_val = e1000e_disable_pcie_master(hw);
2989 if (ret_val)
2990 e_dbg("PCI-E Master disable polling has failed.\n");
2992 e_dbg("Masking off all interrupts\n");
2993 ew32(IMC, 0xffffffff);
2996 * Disable the Transmit and Receive units. Then delay to allow
2997 * any pending transactions to complete before we hit the MAC
2998 * with the global reset.
3000 ew32(RCTL, 0);
3001 ew32(TCTL, E1000_TCTL_PSP);
3002 e1e_flush();
3004 msleep(10);
3006 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3007 if (hw->mac.type == e1000_ich8lan) {
3008 /* Set Tx and Rx buffer allocation to 8k apiece. */
3009 ew32(PBA, E1000_PBA_8K);
3010 /* Set Packet Buffer Size to 16k. */
3011 ew32(PBS, E1000_PBS_16K);
3014 if (hw->mac.type == e1000_pchlan) {
3015 /* Save the NVM K1 bit setting*/
3016 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3017 if (ret_val)
3018 return ret_val;
3020 if (reg & E1000_NVM_K1_ENABLE)
3021 dev_spec->nvm_k1_enabled = true;
3022 else
3023 dev_spec->nvm_k1_enabled = false;
3026 ctrl = er32(CTRL);
3028 if (!e1000_check_reset_block(hw)) {
3030 * Full-chip reset requires MAC and PHY reset at the same
3031 * time to make sure the interface between MAC and the
3032 * external PHY is reset.
3034 ctrl |= E1000_CTRL_PHY_RST;
3037 * Gate automatic PHY configuration by hardware on
3038 * non-managed 82579
3040 if ((hw->mac.type == e1000_pch2lan) &&
3041 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3042 e1000_gate_hw_phy_config_ich8lan(hw, true);
3044 ret_val = e1000_acquire_swflag_ich8lan(hw);
3045 e_dbg("Issuing a global reset to ich8lan\n");
3046 ew32(CTRL, (ctrl | E1000_CTRL_RST));
3047 msleep(20);
3049 if (!ret_val)
3050 e1000_release_swflag_ich8lan(hw);
3052 if (ctrl & E1000_CTRL_PHY_RST) {
3053 ret_val = hw->phy.ops.get_cfg_done(hw);
3054 if (ret_val)
3055 goto out;
3057 ret_val = e1000_post_phy_reset_ich8lan(hw);
3058 if (ret_val)
3059 goto out;
3063 * For PCH, this write will make sure that any noise
3064 * will be detected as a CRC error and be dropped rather than show up
3065 * as a bad packet to the DMA engine.
3067 if (hw->mac.type == e1000_pchlan)
3068 ew32(CRC_OFFSET, 0x65656565);
3070 ew32(IMC, 0xffffffff);
3071 icr = er32(ICR);
3073 kab = er32(KABGTXD);
3074 kab |= E1000_KABGTXD_BGSQLBIAS;
3075 ew32(KABGTXD, kab);
3077 out:
3078 return ret_val;
3082 * e1000_init_hw_ich8lan - Initialize the hardware
3083 * @hw: pointer to the HW structure
3085 * Prepares the hardware for transmit and receive by doing the following:
3086 * - initialize hardware bits
3087 * - initialize LED identification
3088 * - setup receive address registers
3089 * - setup flow control
3090 * - setup transmit descriptors
3091 * - clear statistics
3093 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3095 struct e1000_mac_info *mac = &hw->mac;
3096 u32 ctrl_ext, txdctl, snoop;
3097 s32 ret_val;
3098 u16 i;
3100 e1000_initialize_hw_bits_ich8lan(hw);
3102 /* Initialize identification LED */
3103 ret_val = mac->ops.id_led_init(hw);
3104 if (ret_val)
3105 e_dbg("Error initializing identification LED\n");
3106 /* This is not fatal and we should not stop init due to this */
3108 /* Setup the receive address. */
3109 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3111 /* Zero out the Multicast HASH table */
3112 e_dbg("Zeroing the MTA\n");
3113 for (i = 0; i < mac->mta_reg_count; i++)
3114 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3117 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3118 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
3119 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3121 if (hw->phy.type == e1000_phy_82578) {
3122 hw->phy.ops.read_reg(hw, BM_WUC, &i);
3123 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3124 if (ret_val)
3125 return ret_val;
3128 /* Setup link and flow control */
3129 ret_val = e1000_setup_link_ich8lan(hw);
3131 /* Set the transmit descriptor write-back policy for both queues */
3132 txdctl = er32(TXDCTL(0));
3133 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3134 E1000_TXDCTL_FULL_TX_DESC_WB;
3135 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3136 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3137 ew32(TXDCTL(0), txdctl);
3138 txdctl = er32(TXDCTL(1));
3139 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3140 E1000_TXDCTL_FULL_TX_DESC_WB;
3141 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3142 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3143 ew32(TXDCTL(1), txdctl);
3146 * ICH8 has opposite polarity of no_snoop bits.
3147 * By default, we should use snoop behavior.
3149 if (mac->type == e1000_ich8lan)
3150 snoop = PCIE_ICH8_SNOOP_ALL;
3151 else
3152 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3153 e1000e_set_pcie_no_snoop(hw, snoop);
3155 ctrl_ext = er32(CTRL_EXT);
3156 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3157 ew32(CTRL_EXT, ctrl_ext);
3160 * Clear all of the statistics registers (clear on read). It is
3161 * important that we do this after we have tried to establish link
3162 * because the symbol error count will increment wildly if there
3163 * is no link.
3165 e1000_clear_hw_cntrs_ich8lan(hw);
3167 return 0;
3170 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3171 * @hw: pointer to the HW structure
3173 * Sets/Clears required hardware bits necessary for correctly setting up the
3174 * hardware for transmit and receive.
3176 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3178 u32 reg;
3180 /* Extended Device Control */
3181 reg = er32(CTRL_EXT);
3182 reg |= (1 << 22);
3183 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3184 if (hw->mac.type >= e1000_pchlan)
3185 reg |= E1000_CTRL_EXT_PHYPDEN;
3186 ew32(CTRL_EXT, reg);
3188 /* Transmit Descriptor Control 0 */
3189 reg = er32(TXDCTL(0));
3190 reg |= (1 << 22);
3191 ew32(TXDCTL(0), reg);
3193 /* Transmit Descriptor Control 1 */
3194 reg = er32(TXDCTL(1));
3195 reg |= (1 << 22);
3196 ew32(TXDCTL(1), reg);
3198 /* Transmit Arbitration Control 0 */
3199 reg = er32(TARC(0));
3200 if (hw->mac.type == e1000_ich8lan)
3201 reg |= (1 << 28) | (1 << 29);
3202 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3203 ew32(TARC(0), reg);
3205 /* Transmit Arbitration Control 1 */
3206 reg = er32(TARC(1));
3207 if (er32(TCTL) & E1000_TCTL_MULR)
3208 reg &= ~(1 << 28);
3209 else
3210 reg |= (1 << 28);
3211 reg |= (1 << 24) | (1 << 26) | (1 << 30);
3212 ew32(TARC(1), reg);
3214 /* Device Status */
3215 if (hw->mac.type == e1000_ich8lan) {
3216 reg = er32(STATUS);
3217 reg &= ~(1 << 31);
3218 ew32(STATUS, reg);
3222 * work-around descriptor data corruption issue during nfs v2 udp
3223 * traffic, just disable the nfs filtering capability
3225 reg = er32(RFCTL);
3226 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3227 ew32(RFCTL, reg);
3231 * e1000_setup_link_ich8lan - Setup flow control and link settings
3232 * @hw: pointer to the HW structure
3234 * Determines which flow control settings to use, then configures flow
3235 * control. Calls the appropriate media-specific link configuration
3236 * function. Assuming the adapter has a valid link partner, a valid link
3237 * should be established. Assumes the hardware has previously been reset
3238 * and the transmitter and receiver are not enabled.
3240 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3242 s32 ret_val;
3244 if (e1000_check_reset_block(hw))
3245 return 0;
3248 * ICH parts do not have a word in the NVM to determine
3249 * the default flow control setting, so we explicitly
3250 * set it to full.
3252 if (hw->fc.requested_mode == e1000_fc_default) {
3253 /* Workaround h/w hang when Tx flow control enabled */
3254 if (hw->mac.type == e1000_pchlan)
3255 hw->fc.requested_mode = e1000_fc_rx_pause;
3256 else
3257 hw->fc.requested_mode = e1000_fc_full;
3261 * Save off the requested flow control mode for use later. Depending
3262 * on the link partner's capabilities, we may or may not use this mode.
3264 hw->fc.current_mode = hw->fc.requested_mode;
3266 e_dbg("After fix-ups FlowControl is now = %x\n",
3267 hw->fc.current_mode);
3269 /* Continue to configure the copper link. */
3270 ret_val = e1000_setup_copper_link_ich8lan(hw);
3271 if (ret_val)
3272 return ret_val;
3274 ew32(FCTTV, hw->fc.pause_time);
3275 if ((hw->phy.type == e1000_phy_82578) ||
3276 (hw->phy.type == e1000_phy_82579) ||
3277 (hw->phy.type == e1000_phy_82577)) {
3278 ew32(FCRTV_PCH, hw->fc.refresh_time);
3280 ret_val = hw->phy.ops.write_reg(hw,
3281 PHY_REG(BM_PORT_CTRL_PAGE, 27),
3282 hw->fc.pause_time);
3283 if (ret_val)
3284 return ret_val;
3287 return e1000e_set_fc_watermarks(hw);
3291 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3292 * @hw: pointer to the HW structure
3294 * Configures the kumeran interface to the PHY to wait the appropriate time
3295 * when polling the PHY, then call the generic setup_copper_link to finish
3296 * configuring the copper link.
3298 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3300 u32 ctrl;
3301 s32 ret_val;
3302 u16 reg_data;
3304 ctrl = er32(CTRL);
3305 ctrl |= E1000_CTRL_SLU;
3306 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3307 ew32(CTRL, ctrl);
3310 * Set the mac to wait the maximum time between each iteration
3311 * and increase the max iterations when polling the phy;
3312 * this fixes erroneous timeouts at 10Mbps.
3314 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3315 if (ret_val)
3316 return ret_val;
3317 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3318 &reg_data);
3319 if (ret_val)
3320 return ret_val;
3321 reg_data |= 0x3F;
3322 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3323 reg_data);
3324 if (ret_val)
3325 return ret_val;
3327 switch (hw->phy.type) {
3328 case e1000_phy_igp_3:
3329 ret_val = e1000e_copper_link_setup_igp(hw);
3330 if (ret_val)
3331 return ret_val;
3332 break;
3333 case e1000_phy_bm:
3334 case e1000_phy_82578:
3335 ret_val = e1000e_copper_link_setup_m88(hw);
3336 if (ret_val)
3337 return ret_val;
3338 break;
3339 case e1000_phy_82577:
3340 case e1000_phy_82579:
3341 ret_val = e1000_copper_link_setup_82577(hw);
3342 if (ret_val)
3343 return ret_val;
3344 break;
3345 case e1000_phy_ife:
3346 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
3347 &reg_data);
3348 if (ret_val)
3349 return ret_val;
3351 reg_data &= ~IFE_PMC_AUTO_MDIX;
3353 switch (hw->phy.mdix) {
3354 case 1:
3355 reg_data &= ~IFE_PMC_FORCE_MDIX;
3356 break;
3357 case 2:
3358 reg_data |= IFE_PMC_FORCE_MDIX;
3359 break;
3360 case 0:
3361 default:
3362 reg_data |= IFE_PMC_AUTO_MDIX;
3363 break;
3365 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
3366 reg_data);
3367 if (ret_val)
3368 return ret_val;
3369 break;
3370 default:
3371 break;
3373 return e1000e_setup_copper_link(hw);
3377 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3378 * @hw: pointer to the HW structure
3379 * @speed: pointer to store current link speed
3380 * @duplex: pointer to store the current link duplex
3382 * Calls the generic get_speed_and_duplex to retrieve the current link
3383 * information and then calls the Kumeran lock loss workaround for links at
3384 * gigabit speeds.
3386 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3387 u16 *duplex)
3389 s32 ret_val;
3391 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3392 if (ret_val)
3393 return ret_val;
3395 if ((hw->mac.type == e1000_ich8lan) &&
3396 (hw->phy.type == e1000_phy_igp_3) &&
3397 (*speed == SPEED_1000)) {
3398 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3401 return ret_val;
3405 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3406 * @hw: pointer to the HW structure
3408 * Work-around for 82566 Kumeran PCS lock loss:
3409 * On link status change (i.e. PCI reset, speed change) and link is up and
3410 * speed is gigabit-
3411 * 0) if workaround is optionally disabled do nothing
3412 * 1) wait 1ms for Kumeran link to come up
3413 * 2) check Kumeran Diagnostic register PCS lock loss bit
3414 * 3) if not set the link is locked (all is good), otherwise...
3415 * 4) reset the PHY
3416 * 5) repeat up to 10 times
3417 * Note: this is only called for IGP3 copper when speed is 1gb.
3419 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3421 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3422 u32 phy_ctrl;
3423 s32 ret_val;
3424 u16 i, data;
3425 bool link;
3427 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3428 return 0;
3431 * Make sure link is up before proceeding. If not just return.
3432 * Attempting this while link is negotiating fouled up link
3433 * stability
3435 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3436 if (!link)
3437 return 0;
3439 for (i = 0; i < 10; i++) {
3440 /* read once to clear */
3441 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3442 if (ret_val)
3443 return ret_val;
3444 /* and again to get new status */
3445 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3446 if (ret_val)
3447 return ret_val;
3449 /* check for PCS lock */
3450 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3451 return 0;
3453 /* Issue PHY reset */
3454 e1000_phy_hw_reset(hw);
3455 mdelay(5);
3457 /* Disable GigE link negotiation */
3458 phy_ctrl = er32(PHY_CTRL);
3459 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3460 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3461 ew32(PHY_CTRL, phy_ctrl);
3464 * Call gig speed drop workaround on Gig disable before accessing
3465 * any PHY registers
3467 e1000e_gig_downshift_workaround_ich8lan(hw);
3469 /* unable to acquire PCS lock */
3470 return -E1000_ERR_PHY;
3474 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3475 * @hw: pointer to the HW structure
3476 * @state: boolean value used to set the current Kumeran workaround state
3478 * If ICH8, set the current Kumeran workaround state (enabled - true
3479 * /disabled - false).
3481 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3482 bool state)
3484 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3486 if (hw->mac.type != e1000_ich8lan) {
3487 e_dbg("Workaround applies to ICH8 only.\n");
3488 return;
3491 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3495 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3496 * @hw: pointer to the HW structure
3498 * Workaround for 82566 power-down on D3 entry:
3499 * 1) disable gigabit link
3500 * 2) write VR power-down enable
3501 * 3) read it back
3502 * Continue if successful, else issue LCD reset and repeat
3504 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3506 u32 reg;
3507 u16 data;
3508 u8 retry = 0;
3510 if (hw->phy.type != e1000_phy_igp_3)
3511 return;
3513 /* Try the workaround twice (if needed) */
3514 do {
3515 /* Disable link */
3516 reg = er32(PHY_CTRL);
3517 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3518 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3519 ew32(PHY_CTRL, reg);
3522 * Call gig speed drop workaround on Gig disable before
3523 * accessing any PHY registers
3525 if (hw->mac.type == e1000_ich8lan)
3526 e1000e_gig_downshift_workaround_ich8lan(hw);
3528 /* Write VR power-down enable */
3529 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3530 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3531 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3533 /* Read it back and test */
3534 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3535 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3536 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3537 break;
3539 /* Issue PHY reset and repeat at most one more time */
3540 reg = er32(CTRL);
3541 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3542 retry++;
3543 } while (retry);
3547 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3548 * @hw: pointer to the HW structure
3550 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3551 * LPLU, Gig disable, MDIC PHY reset):
3552 * 1) Set Kumeran Near-end loopback
3553 * 2) Clear Kumeran Near-end loopback
3554 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3556 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3558 s32 ret_val;
3559 u16 reg_data;
3561 if ((hw->mac.type != e1000_ich8lan) ||
3562 (hw->phy.type != e1000_phy_igp_3))
3563 return;
3565 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3566 &reg_data);
3567 if (ret_val)
3568 return;
3569 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3570 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3571 reg_data);
3572 if (ret_val)
3573 return;
3574 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3575 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3576 reg_data);
3580 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3581 * @hw: pointer to the HW structure
3583 * During S0 to Sx transition, it is possible the link remains at gig
3584 * instead of negotiating to a lower speed. Before going to Sx, set
3585 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3586 * to a lower speed.
3588 * Should only be called for applicable parts.
3590 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3592 u32 phy_ctrl;
3593 s32 ret_val;
3595 phy_ctrl = er32(PHY_CTRL);
3596 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3597 ew32(PHY_CTRL, phy_ctrl);
3599 if (hw->mac.type >= e1000_pchlan) {
3600 e1000_oem_bits_config_ich8lan(hw, false);
3601 ret_val = hw->phy.ops.acquire(hw);
3602 if (ret_val)
3603 return;
3604 e1000_write_smbus_addr(hw);
3605 hw->phy.ops.release(hw);
3610 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3611 * @hw: pointer to the HW structure
3613 * Return the LED back to the default configuration.
3615 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3617 if (hw->phy.type == e1000_phy_ife)
3618 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3620 ew32(LEDCTL, hw->mac.ledctl_default);
3621 return 0;
3625 * e1000_led_on_ich8lan - Turn LEDs on
3626 * @hw: pointer to the HW structure
3628 * Turn on the LEDs.
3630 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3632 if (hw->phy.type == e1000_phy_ife)
3633 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3634 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3636 ew32(LEDCTL, hw->mac.ledctl_mode2);
3637 return 0;
3641 * e1000_led_off_ich8lan - Turn LEDs off
3642 * @hw: pointer to the HW structure
3644 * Turn off the LEDs.
3646 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3648 if (hw->phy.type == e1000_phy_ife)
3649 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3650 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3652 ew32(LEDCTL, hw->mac.ledctl_mode1);
3653 return 0;
3657 * e1000_setup_led_pchlan - Configures SW controllable LED
3658 * @hw: pointer to the HW structure
3660 * This prepares the SW controllable LED for use.
3662 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3664 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3665 (u16)hw->mac.ledctl_mode1);
3669 * e1000_cleanup_led_pchlan - Restore the default LED operation
3670 * @hw: pointer to the HW structure
3672 * Return the LED back to the default configuration.
3674 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3676 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3677 (u16)hw->mac.ledctl_default);
3681 * e1000_led_on_pchlan - Turn LEDs on
3682 * @hw: pointer to the HW structure
3684 * Turn on the LEDs.
3686 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3688 u16 data = (u16)hw->mac.ledctl_mode2;
3689 u32 i, led;
3692 * If no link, then turn LED on by setting the invert bit
3693 * for each LED that's mode is "link_up" in ledctl_mode2.
3695 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3696 for (i = 0; i < 3; i++) {
3697 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3698 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3699 E1000_LEDCTL_MODE_LINK_UP)
3700 continue;
3701 if (led & E1000_PHY_LED0_IVRT)
3702 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3703 else
3704 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3708 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3712 * e1000_led_off_pchlan - Turn LEDs off
3713 * @hw: pointer to the HW structure
3715 * Turn off the LEDs.
3717 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3719 u16 data = (u16)hw->mac.ledctl_mode1;
3720 u32 i, led;
3723 * If no link, then turn LED off by clearing the invert bit
3724 * for each LED that's mode is "link_up" in ledctl_mode1.
3726 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3727 for (i = 0; i < 3; i++) {
3728 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3729 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3730 E1000_LEDCTL_MODE_LINK_UP)
3731 continue;
3732 if (led & E1000_PHY_LED0_IVRT)
3733 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3734 else
3735 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3739 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3743 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3744 * @hw: pointer to the HW structure
3746 * Read appropriate register for the config done bit for completion status
3747 * and configure the PHY through s/w for EEPROM-less parts.
3749 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3750 * config done bit, so only an error is logged and continues. If we were
3751 * to return with error, EEPROM-less silicon would not be able to be reset
3752 * or change link.
3754 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3756 s32 ret_val = 0;
3757 u32 bank = 0;
3758 u32 status;
3760 e1000e_get_cfg_done(hw);
3762 /* Wait for indication from h/w that it has completed basic config */
3763 if (hw->mac.type >= e1000_ich10lan) {
3764 e1000_lan_init_done_ich8lan(hw);
3765 } else {
3766 ret_val = e1000e_get_auto_rd_done(hw);
3767 if (ret_val) {
3769 * When auto config read does not complete, do not
3770 * return with an error. This can happen in situations
3771 * where there is no eeprom and prevents getting link.
3773 e_dbg("Auto Read Done did not complete\n");
3774 ret_val = 0;
3778 /* Clear PHY Reset Asserted bit */
3779 status = er32(STATUS);
3780 if (status & E1000_STATUS_PHYRA)
3781 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3782 else
3783 e_dbg("PHY Reset Asserted not set - needs delay\n");
3785 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3786 if (hw->mac.type <= e1000_ich9lan) {
3787 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3788 (hw->phy.type == e1000_phy_igp_3)) {
3789 e1000e_phy_init_script_igp3(hw);
3791 } else {
3792 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3793 /* Maybe we should do a basic PHY config */
3794 e_dbg("EEPROM not present\n");
3795 ret_val = -E1000_ERR_CONFIG;
3799 return ret_val;
3803 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3804 * @hw: pointer to the HW structure
3806 * In the case of a PHY power down to save power, or to turn off link during a
3807 * driver unload, or wake on lan is not enabled, remove the link.
3809 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3811 /* If the management interface is not enabled, then power down */
3812 if (!(hw->mac.ops.check_mng_mode(hw) ||
3813 hw->phy.ops.check_reset_block(hw)))
3814 e1000_power_down_phy_copper(hw);
3818 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3819 * @hw: pointer to the HW structure
3821 * Clears hardware counters specific to the silicon family and calls
3822 * clear_hw_cntrs_generic to clear all general purpose counters.
3824 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3826 u16 phy_data;
3828 e1000e_clear_hw_cntrs_base(hw);
3830 er32(ALGNERRC);
3831 er32(RXERRC);
3832 er32(TNCRS);
3833 er32(CEXTERR);
3834 er32(TSCTC);
3835 er32(TSCTFC);
3837 er32(MGTPRC);
3838 er32(MGTPDC);
3839 er32(MGTPTC);
3841 er32(IAC);
3842 er32(ICRXOC);
3844 /* Clear PHY statistics registers */
3845 if ((hw->phy.type == e1000_phy_82578) ||
3846 (hw->phy.type == e1000_phy_82579) ||
3847 (hw->phy.type == e1000_phy_82577)) {
3848 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3849 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3850 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3851 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3852 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3853 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3854 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3855 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3856 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3857 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3858 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3859 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3860 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3861 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3865 static struct e1000_mac_operations ich8_mac_ops = {
3866 .id_led_init = e1000e_id_led_init,
3867 /* check_mng_mode dependent on mac type */
3868 .check_for_link = e1000_check_for_copper_link_ich8lan,
3869 /* cleanup_led dependent on mac type */
3870 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3871 .get_bus_info = e1000_get_bus_info_ich8lan,
3872 .set_lan_id = e1000_set_lan_id_single_port,
3873 .get_link_up_info = e1000_get_link_up_info_ich8lan,
3874 /* led_on dependent on mac type */
3875 /* led_off dependent on mac type */
3876 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
3877 .reset_hw = e1000_reset_hw_ich8lan,
3878 .init_hw = e1000_init_hw_ich8lan,
3879 .setup_link = e1000_setup_link_ich8lan,
3880 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3881 /* id_led_init dependent on mac type */
3884 static struct e1000_phy_operations ich8_phy_ops = {
3885 .acquire = e1000_acquire_swflag_ich8lan,
3886 .check_reset_block = e1000_check_reset_block_ich8lan,
3887 .commit = NULL,
3888 .get_cfg_done = e1000_get_cfg_done_ich8lan,
3889 .get_cable_length = e1000e_get_cable_length_igp_2,
3890 .read_reg = e1000e_read_phy_reg_igp,
3891 .release = e1000_release_swflag_ich8lan,
3892 .reset = e1000_phy_hw_reset_ich8lan,
3893 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3894 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3895 .write_reg = e1000e_write_phy_reg_igp,
3898 static struct e1000_nvm_operations ich8_nvm_ops = {
3899 .acquire = e1000_acquire_nvm_ich8lan,
3900 .read = e1000_read_nvm_ich8lan,
3901 .release = e1000_release_nvm_ich8lan,
3902 .update = e1000_update_nvm_checksum_ich8lan,
3903 .valid_led_default = e1000_valid_led_default_ich8lan,
3904 .validate = e1000_validate_nvm_checksum_ich8lan,
3905 .write = e1000_write_nvm_ich8lan,
3908 struct e1000_info e1000_ich8_info = {
3909 .mac = e1000_ich8lan,
3910 .flags = FLAG_HAS_WOL
3911 | FLAG_IS_ICH
3912 | FLAG_RX_CSUM_ENABLED
3913 | FLAG_HAS_CTRLEXT_ON_LOAD
3914 | FLAG_HAS_AMT
3915 | FLAG_HAS_FLASH
3916 | FLAG_APME_IN_WUC,
3917 .pba = 8,
3918 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
3919 .get_variants = e1000_get_variants_ich8lan,
3920 .mac_ops = &ich8_mac_ops,
3921 .phy_ops = &ich8_phy_ops,
3922 .nvm_ops = &ich8_nvm_ops,
3925 struct e1000_info e1000_ich9_info = {
3926 .mac = e1000_ich9lan,
3927 .flags = FLAG_HAS_JUMBO_FRAMES
3928 | FLAG_IS_ICH
3929 | FLAG_HAS_WOL
3930 | FLAG_RX_CSUM_ENABLED
3931 | FLAG_HAS_CTRLEXT_ON_LOAD
3932 | FLAG_HAS_AMT
3933 | FLAG_HAS_ERT
3934 | FLAG_HAS_FLASH
3935 | FLAG_APME_IN_WUC,
3936 .pba = 10,
3937 .max_hw_frame_size = DEFAULT_JUMBO,
3938 .get_variants = e1000_get_variants_ich8lan,
3939 .mac_ops = &ich8_mac_ops,
3940 .phy_ops = &ich8_phy_ops,
3941 .nvm_ops = &ich8_nvm_ops,
3944 struct e1000_info e1000_ich10_info = {
3945 .mac = e1000_ich10lan,
3946 .flags = FLAG_HAS_JUMBO_FRAMES
3947 | FLAG_IS_ICH
3948 | FLAG_HAS_WOL
3949 | FLAG_RX_CSUM_ENABLED
3950 | FLAG_HAS_CTRLEXT_ON_LOAD
3951 | FLAG_HAS_AMT
3952 | FLAG_HAS_ERT
3953 | FLAG_HAS_FLASH
3954 | FLAG_APME_IN_WUC,
3955 .pba = 10,
3956 .max_hw_frame_size = DEFAULT_JUMBO,
3957 .get_variants = e1000_get_variants_ich8lan,
3958 .mac_ops = &ich8_mac_ops,
3959 .phy_ops = &ich8_phy_ops,
3960 .nvm_ops = &ich8_nvm_ops,
3963 struct e1000_info e1000_pch_info = {
3964 .mac = e1000_pchlan,
3965 .flags = FLAG_IS_ICH
3966 | FLAG_HAS_WOL
3967 | FLAG_RX_CSUM_ENABLED
3968 | FLAG_HAS_CTRLEXT_ON_LOAD
3969 | FLAG_HAS_AMT
3970 | FLAG_HAS_FLASH
3971 | FLAG_HAS_JUMBO_FRAMES
3972 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3973 | FLAG_APME_IN_WUC,
3974 .flags2 = FLAG2_HAS_PHY_STATS,
3975 .pba = 26,
3976 .max_hw_frame_size = 4096,
3977 .get_variants = e1000_get_variants_ich8lan,
3978 .mac_ops = &ich8_mac_ops,
3979 .phy_ops = &ich8_phy_ops,
3980 .nvm_ops = &ich8_nvm_ops,
3983 struct e1000_info e1000_pch2_info = {
3984 .mac = e1000_pch2lan,
3985 .flags = FLAG_IS_ICH
3986 | FLAG_HAS_WOL
3987 | FLAG_RX_CSUM_ENABLED
3988 | FLAG_HAS_CTRLEXT_ON_LOAD
3989 | FLAG_HAS_AMT
3990 | FLAG_HAS_FLASH
3991 | FLAG_HAS_JUMBO_FRAMES
3992 | FLAG_APME_IN_WUC,
3993 .flags2 = FLAG2_HAS_PHY_STATS
3994 | FLAG2_HAS_EEE,
3995 .pba = 26,
3996 .max_hw_frame_size = DEFAULT_JUMBO,
3997 .get_variants = e1000_get_variants_ich8lan,
3998 .mac_ops = &ich8_mac_ops,
3999 .phy_ops = &ich8_phy_ops,
4000 .nvm_ops = &ich8_nvm_ops,