zram: add dynamic device add/remove functionality
[linux-2.6/btrfs-unstable.git] / mm / filemap.c
blob8d17ceea8dbeb1f641687407f2a27ebbff480533
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
43 * FIXME: remove all knowledge of the buffer layer from the core VM
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 #include <asm/mman.h>
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * Lock ordering:
64 * ->i_mmap_rwsem (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
69 * ->i_mutex
70 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 * ->mmap_sem
73 * ->i_mmap_rwsem
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_rwsem
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * ->i_mmap_rwsem
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
120 VM_BUG_ON(!PageLocked(page));
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124 if (shadow) {
125 mapping->nrshadows++;
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
132 smp_wmb();
134 mapping->nrpages--;
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
161 * Track node that only contains shadow entries.
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe. The caller must hold the mapping's tree_lock.
179 void __delete_from_page_cache(struct page *page, void *shadow)
181 struct address_space *mapping = page->mapping;
183 trace_mm_filemap_delete_from_page_cache(page);
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
192 cleancache_invalidate_page(mapping, page);
194 page_cache_tree_delete(mapping, page, shadow);
196 page->mapping = NULL;
197 /* Leave page->index set: truncation lookup relies upon it */
199 /* hugetlb pages do not participate in page cache accounting. */
200 if (!PageHuge(page))
201 __dec_zone_page_state(page, NR_FILE_PAGES);
202 if (PageSwapBacked(page))
203 __dec_zone_page_state(page, NR_SHMEM);
204 BUG_ON(page_mapped(page));
207 * At this point page must be either written or cleaned by truncate.
208 * Dirty page here signals a bug and loss of unwritten data.
210 * This fixes dirty accounting after removing the page entirely but
211 * leaves PageDirty set: it has no effect for truncated page and
212 * anyway will be cleared before returning page into buddy allocator.
214 if (WARN_ON_ONCE(PageDirty(page)))
215 account_page_cleaned(page, mapping);
219 * delete_from_page_cache - delete page from page cache
220 * @page: the page which the kernel is trying to remove from page cache
222 * This must be called only on pages that have been verified to be in the page
223 * cache and locked. It will never put the page into the free list, the caller
224 * has a reference on the page.
226 void delete_from_page_cache(struct page *page)
228 struct address_space *mapping = page->mapping;
229 void (*freepage)(struct page *);
231 BUG_ON(!PageLocked(page));
233 freepage = mapping->a_ops->freepage;
234 spin_lock_irq(&mapping->tree_lock);
235 __delete_from_page_cache(page, NULL);
236 spin_unlock_irq(&mapping->tree_lock);
238 if (freepage)
239 freepage(page);
240 page_cache_release(page);
242 EXPORT_SYMBOL(delete_from_page_cache);
244 static int filemap_check_errors(struct address_space *mapping)
246 int ret = 0;
247 /* Check for outstanding write errors */
248 if (test_bit(AS_ENOSPC, &mapping->flags) &&
249 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250 ret = -ENOSPC;
251 if (test_bit(AS_EIO, &mapping->flags) &&
252 test_and_clear_bit(AS_EIO, &mapping->flags))
253 ret = -EIO;
254 return ret;
258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259 * @mapping: address space structure to write
260 * @start: offset in bytes where the range starts
261 * @end: offset in bytes where the range ends (inclusive)
262 * @sync_mode: enable synchronous operation
264 * Start writeback against all of a mapping's dirty pages that lie
265 * within the byte offsets <start, end> inclusive.
267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268 * opposed to a regular memory cleansing writeback. The difference between
269 * these two operations is that if a dirty page/buffer is encountered, it must
270 * be waited upon, and not just skipped over.
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273 loff_t end, int sync_mode)
275 int ret;
276 struct writeback_control wbc = {
277 .sync_mode = sync_mode,
278 .nr_to_write = LONG_MAX,
279 .range_start = start,
280 .range_end = end,
283 if (!mapping_cap_writeback_dirty(mapping))
284 return 0;
286 ret = do_writepages(mapping, &wbc);
287 return ret;
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291 int sync_mode)
293 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
296 int filemap_fdatawrite(struct address_space *mapping)
298 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
300 EXPORT_SYMBOL(filemap_fdatawrite);
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303 loff_t end)
305 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
310 * filemap_flush - mostly a non-blocking flush
311 * @mapping: target address_space
313 * This is a mostly non-blocking flush. Not suitable for data-integrity
314 * purposes - I/O may not be started against all dirty pages.
316 int filemap_flush(struct address_space *mapping)
318 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
320 EXPORT_SYMBOL(filemap_flush);
323 * filemap_fdatawait_range - wait for writeback to complete
324 * @mapping: address space structure to wait for
325 * @start_byte: offset in bytes where the range starts
326 * @end_byte: offset in bytes where the range ends (inclusive)
328 * Walk the list of under-writeback pages of the given address space
329 * in the given range and wait for all of them.
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332 loff_t end_byte)
334 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336 struct pagevec pvec;
337 int nr_pages;
338 int ret2, ret = 0;
340 if (end_byte < start_byte)
341 goto out;
343 pagevec_init(&pvec, 0);
344 while ((index <= end) &&
345 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346 PAGECACHE_TAG_WRITEBACK,
347 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348 unsigned i;
350 for (i = 0; i < nr_pages; i++) {
351 struct page *page = pvec.pages[i];
353 /* until radix tree lookup accepts end_index */
354 if (page->index > end)
355 continue;
357 wait_on_page_writeback(page);
358 if (TestClearPageError(page))
359 ret = -EIO;
361 pagevec_release(&pvec);
362 cond_resched();
364 out:
365 ret2 = filemap_check_errors(mapping);
366 if (!ret)
367 ret = ret2;
369 return ret;
371 EXPORT_SYMBOL(filemap_fdatawait_range);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space *mapping)
382 loff_t i_size = i_size_read(mapping->host);
384 if (i_size == 0)
385 return 0;
387 return filemap_fdatawait_range(mapping, 0, i_size - 1);
389 EXPORT_SYMBOL(filemap_fdatawait);
391 int filemap_write_and_wait(struct address_space *mapping)
393 int err = 0;
395 if (mapping->nrpages) {
396 err = filemap_fdatawrite(mapping);
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
403 if (err != -EIO) {
404 int err2 = filemap_fdatawait(mapping);
405 if (!err)
406 err = err2;
408 } else {
409 err = filemap_check_errors(mapping);
411 return err;
413 EXPORT_SYMBOL(filemap_write_and_wait);
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
421 * Write out and wait upon file offsets lstart->lend, inclusive.
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 loff_t lstart, loff_t lend)
429 int err = 0;
431 if (mapping->nrpages) {
432 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 WB_SYNC_ALL);
434 /* See comment of filemap_write_and_wait() */
435 if (err != -EIO) {
436 int err2 = filemap_fdatawait_range(mapping,
437 lstart, lend);
438 if (!err)
439 err = err2;
441 } else {
442 err = filemap_check_errors(mapping);
444 return err;
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
449 * replace_page_cache_page - replace a pagecache page with a new one
450 * @old: page to be replaced
451 * @new: page to replace with
452 * @gfp_mask: allocation mode
454 * This function replaces a page in the pagecache with a new one. On
455 * success it acquires the pagecache reference for the new page and
456 * drops it for the old page. Both the old and new pages must be
457 * locked. This function does not add the new page to the LRU, the
458 * caller must do that.
460 * The remove + add is atomic. The only way this function can fail is
461 * memory allocation failure.
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
465 int error;
467 VM_BUG_ON_PAGE(!PageLocked(old), old);
468 VM_BUG_ON_PAGE(!PageLocked(new), new);
469 VM_BUG_ON_PAGE(new->mapping, new);
471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 if (!error) {
473 struct address_space *mapping = old->mapping;
474 void (*freepage)(struct page *);
476 pgoff_t offset = old->index;
477 freepage = mapping->a_ops->freepage;
479 page_cache_get(new);
480 new->mapping = mapping;
481 new->index = offset;
483 spin_lock_irq(&mapping->tree_lock);
484 __delete_from_page_cache(old, NULL);
485 error = radix_tree_insert(&mapping->page_tree, offset, new);
486 BUG_ON(error);
487 mapping->nrpages++;
490 * hugetlb pages do not participate in page cache accounting.
492 if (!PageHuge(new))
493 __inc_zone_page_state(new, NR_FILE_PAGES);
494 if (PageSwapBacked(new))
495 __inc_zone_page_state(new, NR_SHMEM);
496 spin_unlock_irq(&mapping->tree_lock);
497 mem_cgroup_migrate(old, new, true);
498 radix_tree_preload_end();
499 if (freepage)
500 freepage(old);
501 page_cache_release(old);
504 return error;
506 EXPORT_SYMBOL_GPL(replace_page_cache_page);
508 static int page_cache_tree_insert(struct address_space *mapping,
509 struct page *page, void **shadowp)
511 struct radix_tree_node *node;
512 void **slot;
513 int error;
515 error = __radix_tree_create(&mapping->page_tree, page->index,
516 &node, &slot);
517 if (error)
518 return error;
519 if (*slot) {
520 void *p;
522 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
523 if (!radix_tree_exceptional_entry(p))
524 return -EEXIST;
525 if (shadowp)
526 *shadowp = p;
527 mapping->nrshadows--;
528 if (node)
529 workingset_node_shadows_dec(node);
531 radix_tree_replace_slot(slot, page);
532 mapping->nrpages++;
533 if (node) {
534 workingset_node_pages_inc(node);
536 * Don't track node that contains actual pages.
538 * Avoid acquiring the list_lru lock if already
539 * untracked. The list_empty() test is safe as
540 * node->private_list is protected by
541 * mapping->tree_lock.
543 if (!list_empty(&node->private_list))
544 list_lru_del(&workingset_shadow_nodes,
545 &node->private_list);
547 return 0;
550 static int __add_to_page_cache_locked(struct page *page,
551 struct address_space *mapping,
552 pgoff_t offset, gfp_t gfp_mask,
553 void **shadowp)
555 int huge = PageHuge(page);
556 struct mem_cgroup *memcg;
557 int error;
559 VM_BUG_ON_PAGE(!PageLocked(page), page);
560 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
562 if (!huge) {
563 error = mem_cgroup_try_charge(page, current->mm,
564 gfp_mask, &memcg);
565 if (error)
566 return error;
569 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
570 if (error) {
571 if (!huge)
572 mem_cgroup_cancel_charge(page, memcg);
573 return error;
576 page_cache_get(page);
577 page->mapping = mapping;
578 page->index = offset;
580 spin_lock_irq(&mapping->tree_lock);
581 error = page_cache_tree_insert(mapping, page, shadowp);
582 radix_tree_preload_end();
583 if (unlikely(error))
584 goto err_insert;
586 /* hugetlb pages do not participate in page cache accounting. */
587 if (!huge)
588 __inc_zone_page_state(page, NR_FILE_PAGES);
589 spin_unlock_irq(&mapping->tree_lock);
590 if (!huge)
591 mem_cgroup_commit_charge(page, memcg, false);
592 trace_mm_filemap_add_to_page_cache(page);
593 return 0;
594 err_insert:
595 page->mapping = NULL;
596 /* Leave page->index set: truncation relies upon it */
597 spin_unlock_irq(&mapping->tree_lock);
598 if (!huge)
599 mem_cgroup_cancel_charge(page, memcg);
600 page_cache_release(page);
601 return error;
605 * add_to_page_cache_locked - add a locked page to the pagecache
606 * @page: page to add
607 * @mapping: the page's address_space
608 * @offset: page index
609 * @gfp_mask: page allocation mode
611 * This function is used to add a page to the pagecache. It must be locked.
612 * This function does not add the page to the LRU. The caller must do that.
614 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
615 pgoff_t offset, gfp_t gfp_mask)
617 return __add_to_page_cache_locked(page, mapping, offset,
618 gfp_mask, NULL);
620 EXPORT_SYMBOL(add_to_page_cache_locked);
622 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
623 pgoff_t offset, gfp_t gfp_mask)
625 void *shadow = NULL;
626 int ret;
628 __set_page_locked(page);
629 ret = __add_to_page_cache_locked(page, mapping, offset,
630 gfp_mask, &shadow);
631 if (unlikely(ret))
632 __clear_page_locked(page);
633 else {
635 * The page might have been evicted from cache only
636 * recently, in which case it should be activated like
637 * any other repeatedly accessed page.
639 if (shadow && workingset_refault(shadow)) {
640 SetPageActive(page);
641 workingset_activation(page);
642 } else
643 ClearPageActive(page);
644 lru_cache_add(page);
646 return ret;
648 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
650 #ifdef CONFIG_NUMA
651 struct page *__page_cache_alloc(gfp_t gfp)
653 int n;
654 struct page *page;
656 if (cpuset_do_page_mem_spread()) {
657 unsigned int cpuset_mems_cookie;
658 do {
659 cpuset_mems_cookie = read_mems_allowed_begin();
660 n = cpuset_mem_spread_node();
661 page = alloc_pages_exact_node(n, gfp, 0);
662 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
664 return page;
666 return alloc_pages(gfp, 0);
668 EXPORT_SYMBOL(__page_cache_alloc);
669 #endif
672 * In order to wait for pages to become available there must be
673 * waitqueues associated with pages. By using a hash table of
674 * waitqueues where the bucket discipline is to maintain all
675 * waiters on the same queue and wake all when any of the pages
676 * become available, and for the woken contexts to check to be
677 * sure the appropriate page became available, this saves space
678 * at a cost of "thundering herd" phenomena during rare hash
679 * collisions.
681 wait_queue_head_t *page_waitqueue(struct page *page)
683 const struct zone *zone = page_zone(page);
685 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
687 EXPORT_SYMBOL(page_waitqueue);
689 void wait_on_page_bit(struct page *page, int bit_nr)
691 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693 if (test_bit(bit_nr, &page->flags))
694 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
695 TASK_UNINTERRUPTIBLE);
697 EXPORT_SYMBOL(wait_on_page_bit);
699 int wait_on_page_bit_killable(struct page *page, int bit_nr)
701 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703 if (!test_bit(bit_nr, &page->flags))
704 return 0;
706 return __wait_on_bit(page_waitqueue(page), &wait,
707 bit_wait_io, TASK_KILLABLE);
710 int wait_on_page_bit_killable_timeout(struct page *page,
711 int bit_nr, unsigned long timeout)
713 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
715 wait.key.timeout = jiffies + timeout;
716 if (!test_bit(bit_nr, &page->flags))
717 return 0;
718 return __wait_on_bit(page_waitqueue(page), &wait,
719 bit_wait_io_timeout, TASK_KILLABLE);
721 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
724 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
725 * @page: Page defining the wait queue of interest
726 * @waiter: Waiter to add to the queue
728 * Add an arbitrary @waiter to the wait queue for the nominated @page.
730 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
732 wait_queue_head_t *q = page_waitqueue(page);
733 unsigned long flags;
735 spin_lock_irqsave(&q->lock, flags);
736 __add_wait_queue(q, waiter);
737 spin_unlock_irqrestore(&q->lock, flags);
739 EXPORT_SYMBOL_GPL(add_page_wait_queue);
742 * unlock_page - unlock a locked page
743 * @page: the page
745 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
746 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
747 * mechanism between PageLocked pages and PageWriteback pages is shared.
748 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
750 * The mb is necessary to enforce ordering between the clear_bit and the read
751 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
753 void unlock_page(struct page *page)
755 VM_BUG_ON_PAGE(!PageLocked(page), page);
756 clear_bit_unlock(PG_locked, &page->flags);
757 smp_mb__after_atomic();
758 wake_up_page(page, PG_locked);
760 EXPORT_SYMBOL(unlock_page);
763 * end_page_writeback - end writeback against a page
764 * @page: the page
766 void end_page_writeback(struct page *page)
769 * TestClearPageReclaim could be used here but it is an atomic
770 * operation and overkill in this particular case. Failing to
771 * shuffle a page marked for immediate reclaim is too mild to
772 * justify taking an atomic operation penalty at the end of
773 * ever page writeback.
775 if (PageReclaim(page)) {
776 ClearPageReclaim(page);
777 rotate_reclaimable_page(page);
780 if (!test_clear_page_writeback(page))
781 BUG();
783 smp_mb__after_atomic();
784 wake_up_page(page, PG_writeback);
786 EXPORT_SYMBOL(end_page_writeback);
789 * After completing I/O on a page, call this routine to update the page
790 * flags appropriately
792 void page_endio(struct page *page, int rw, int err)
794 if (rw == READ) {
795 if (!err) {
796 SetPageUptodate(page);
797 } else {
798 ClearPageUptodate(page);
799 SetPageError(page);
801 unlock_page(page);
802 } else { /* rw == WRITE */
803 if (err) {
804 SetPageError(page);
805 if (page->mapping)
806 mapping_set_error(page->mapping, err);
808 end_page_writeback(page);
811 EXPORT_SYMBOL_GPL(page_endio);
814 * __lock_page - get a lock on the page, assuming we need to sleep to get it
815 * @page: the page to lock
817 void __lock_page(struct page *page)
819 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
821 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
822 TASK_UNINTERRUPTIBLE);
824 EXPORT_SYMBOL(__lock_page);
826 int __lock_page_killable(struct page *page)
828 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
830 return __wait_on_bit_lock(page_waitqueue(page), &wait,
831 bit_wait_io, TASK_KILLABLE);
833 EXPORT_SYMBOL_GPL(__lock_page_killable);
836 * Return values:
837 * 1 - page is locked; mmap_sem is still held.
838 * 0 - page is not locked.
839 * mmap_sem has been released (up_read()), unless flags had both
840 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
841 * which case mmap_sem is still held.
843 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
844 * with the page locked and the mmap_sem unperturbed.
846 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
847 unsigned int flags)
849 if (flags & FAULT_FLAG_ALLOW_RETRY) {
851 * CAUTION! In this case, mmap_sem is not released
852 * even though return 0.
854 if (flags & FAULT_FLAG_RETRY_NOWAIT)
855 return 0;
857 up_read(&mm->mmap_sem);
858 if (flags & FAULT_FLAG_KILLABLE)
859 wait_on_page_locked_killable(page);
860 else
861 wait_on_page_locked(page);
862 return 0;
863 } else {
864 if (flags & FAULT_FLAG_KILLABLE) {
865 int ret;
867 ret = __lock_page_killable(page);
868 if (ret) {
869 up_read(&mm->mmap_sem);
870 return 0;
872 } else
873 __lock_page(page);
874 return 1;
879 * page_cache_next_hole - find the next hole (not-present entry)
880 * @mapping: mapping
881 * @index: index
882 * @max_scan: maximum range to search
884 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
885 * lowest indexed hole.
887 * Returns: the index of the hole if found, otherwise returns an index
888 * outside of the set specified (in which case 'return - index >=
889 * max_scan' will be true). In rare cases of index wrap-around, 0 will
890 * be returned.
892 * page_cache_next_hole may be called under rcu_read_lock. However,
893 * like radix_tree_gang_lookup, this will not atomically search a
894 * snapshot of the tree at a single point in time. For example, if a
895 * hole is created at index 5, then subsequently a hole is created at
896 * index 10, page_cache_next_hole covering both indexes may return 10
897 * if called under rcu_read_lock.
899 pgoff_t page_cache_next_hole(struct address_space *mapping,
900 pgoff_t index, unsigned long max_scan)
902 unsigned long i;
904 for (i = 0; i < max_scan; i++) {
905 struct page *page;
907 page = radix_tree_lookup(&mapping->page_tree, index);
908 if (!page || radix_tree_exceptional_entry(page))
909 break;
910 index++;
911 if (index == 0)
912 break;
915 return index;
917 EXPORT_SYMBOL(page_cache_next_hole);
920 * page_cache_prev_hole - find the prev hole (not-present entry)
921 * @mapping: mapping
922 * @index: index
923 * @max_scan: maximum range to search
925 * Search backwards in the range [max(index-max_scan+1, 0), index] for
926 * the first hole.
928 * Returns: the index of the hole if found, otherwise returns an index
929 * outside of the set specified (in which case 'index - return >=
930 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
931 * will be returned.
933 * page_cache_prev_hole may be called under rcu_read_lock. However,
934 * like radix_tree_gang_lookup, this will not atomically search a
935 * snapshot of the tree at a single point in time. For example, if a
936 * hole is created at index 10, then subsequently a hole is created at
937 * index 5, page_cache_prev_hole covering both indexes may return 5 if
938 * called under rcu_read_lock.
940 pgoff_t page_cache_prev_hole(struct address_space *mapping,
941 pgoff_t index, unsigned long max_scan)
943 unsigned long i;
945 for (i = 0; i < max_scan; i++) {
946 struct page *page;
948 page = radix_tree_lookup(&mapping->page_tree, index);
949 if (!page || radix_tree_exceptional_entry(page))
950 break;
951 index--;
952 if (index == ULONG_MAX)
953 break;
956 return index;
958 EXPORT_SYMBOL(page_cache_prev_hole);
961 * find_get_entry - find and get a page cache entry
962 * @mapping: the address_space to search
963 * @offset: the page cache index
965 * Looks up the page cache slot at @mapping & @offset. If there is a
966 * page cache page, it is returned with an increased refcount.
968 * If the slot holds a shadow entry of a previously evicted page, or a
969 * swap entry from shmem/tmpfs, it is returned.
971 * Otherwise, %NULL is returned.
973 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
975 void **pagep;
976 struct page *page;
978 rcu_read_lock();
979 repeat:
980 page = NULL;
981 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
982 if (pagep) {
983 page = radix_tree_deref_slot(pagep);
984 if (unlikely(!page))
985 goto out;
986 if (radix_tree_exception(page)) {
987 if (radix_tree_deref_retry(page))
988 goto repeat;
990 * A shadow entry of a recently evicted page,
991 * or a swap entry from shmem/tmpfs. Return
992 * it without attempting to raise page count.
994 goto out;
996 if (!page_cache_get_speculative(page))
997 goto repeat;
1000 * Has the page moved?
1001 * This is part of the lockless pagecache protocol. See
1002 * include/linux/pagemap.h for details.
1004 if (unlikely(page != *pagep)) {
1005 page_cache_release(page);
1006 goto repeat;
1009 out:
1010 rcu_read_unlock();
1012 return page;
1014 EXPORT_SYMBOL(find_get_entry);
1017 * find_lock_entry - locate, pin and lock a page cache entry
1018 * @mapping: the address_space to search
1019 * @offset: the page cache index
1021 * Looks up the page cache slot at @mapping & @offset. If there is a
1022 * page cache page, it is returned locked and with an increased
1023 * refcount.
1025 * If the slot holds a shadow entry of a previously evicted page, or a
1026 * swap entry from shmem/tmpfs, it is returned.
1028 * Otherwise, %NULL is returned.
1030 * find_lock_entry() may sleep.
1032 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1034 struct page *page;
1036 repeat:
1037 page = find_get_entry(mapping, offset);
1038 if (page && !radix_tree_exception(page)) {
1039 lock_page(page);
1040 /* Has the page been truncated? */
1041 if (unlikely(page->mapping != mapping)) {
1042 unlock_page(page);
1043 page_cache_release(page);
1044 goto repeat;
1046 VM_BUG_ON_PAGE(page->index != offset, page);
1048 return page;
1050 EXPORT_SYMBOL(find_lock_entry);
1053 * pagecache_get_page - find and get a page reference
1054 * @mapping: the address_space to search
1055 * @offset: the page index
1056 * @fgp_flags: PCG flags
1057 * @gfp_mask: gfp mask to use for the page cache data page allocation
1059 * Looks up the page cache slot at @mapping & @offset.
1061 * PCG flags modify how the page is returned.
1063 * FGP_ACCESSED: the page will be marked accessed
1064 * FGP_LOCK: Page is return locked
1065 * FGP_CREAT: If page is not present then a new page is allocated using
1066 * @gfp_mask and added to the page cache and the VM's LRU
1067 * list. The page is returned locked and with an increased
1068 * refcount. Otherwise, %NULL is returned.
1070 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1071 * if the GFP flags specified for FGP_CREAT are atomic.
1073 * If there is a page cache page, it is returned with an increased refcount.
1075 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1076 int fgp_flags, gfp_t gfp_mask)
1078 struct page *page;
1080 repeat:
1081 page = find_get_entry(mapping, offset);
1082 if (radix_tree_exceptional_entry(page))
1083 page = NULL;
1084 if (!page)
1085 goto no_page;
1087 if (fgp_flags & FGP_LOCK) {
1088 if (fgp_flags & FGP_NOWAIT) {
1089 if (!trylock_page(page)) {
1090 page_cache_release(page);
1091 return NULL;
1093 } else {
1094 lock_page(page);
1097 /* Has the page been truncated? */
1098 if (unlikely(page->mapping != mapping)) {
1099 unlock_page(page);
1100 page_cache_release(page);
1101 goto repeat;
1103 VM_BUG_ON_PAGE(page->index != offset, page);
1106 if (page && (fgp_flags & FGP_ACCESSED))
1107 mark_page_accessed(page);
1109 no_page:
1110 if (!page && (fgp_flags & FGP_CREAT)) {
1111 int err;
1112 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1113 gfp_mask |= __GFP_WRITE;
1114 if (fgp_flags & FGP_NOFS)
1115 gfp_mask &= ~__GFP_FS;
1117 page = __page_cache_alloc(gfp_mask);
1118 if (!page)
1119 return NULL;
1121 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1122 fgp_flags |= FGP_LOCK;
1124 /* Init accessed so avoid atomic mark_page_accessed later */
1125 if (fgp_flags & FGP_ACCESSED)
1126 __SetPageReferenced(page);
1128 err = add_to_page_cache_lru(page, mapping, offset,
1129 gfp_mask & GFP_RECLAIM_MASK);
1130 if (unlikely(err)) {
1131 page_cache_release(page);
1132 page = NULL;
1133 if (err == -EEXIST)
1134 goto repeat;
1138 return page;
1140 EXPORT_SYMBOL(pagecache_get_page);
1143 * find_get_entries - gang pagecache lookup
1144 * @mapping: The address_space to search
1145 * @start: The starting page cache index
1146 * @nr_entries: The maximum number of entries
1147 * @entries: Where the resulting entries are placed
1148 * @indices: The cache indices corresponding to the entries in @entries
1150 * find_get_entries() will search for and return a group of up to
1151 * @nr_entries entries in the mapping. The entries are placed at
1152 * @entries. find_get_entries() takes a reference against any actual
1153 * pages it returns.
1155 * The search returns a group of mapping-contiguous page cache entries
1156 * with ascending indexes. There may be holes in the indices due to
1157 * not-present pages.
1159 * Any shadow entries of evicted pages, or swap entries from
1160 * shmem/tmpfs, are included in the returned array.
1162 * find_get_entries() returns the number of pages and shadow entries
1163 * which were found.
1165 unsigned find_get_entries(struct address_space *mapping,
1166 pgoff_t start, unsigned int nr_entries,
1167 struct page **entries, pgoff_t *indices)
1169 void **slot;
1170 unsigned int ret = 0;
1171 struct radix_tree_iter iter;
1173 if (!nr_entries)
1174 return 0;
1176 rcu_read_lock();
1177 restart:
1178 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1179 struct page *page;
1180 repeat:
1181 page = radix_tree_deref_slot(slot);
1182 if (unlikely(!page))
1183 continue;
1184 if (radix_tree_exception(page)) {
1185 if (radix_tree_deref_retry(page))
1186 goto restart;
1188 * A shadow entry of a recently evicted page,
1189 * or a swap entry from shmem/tmpfs. Return
1190 * it without attempting to raise page count.
1192 goto export;
1194 if (!page_cache_get_speculative(page))
1195 goto repeat;
1197 /* Has the page moved? */
1198 if (unlikely(page != *slot)) {
1199 page_cache_release(page);
1200 goto repeat;
1202 export:
1203 indices[ret] = iter.index;
1204 entries[ret] = page;
1205 if (++ret == nr_entries)
1206 break;
1208 rcu_read_unlock();
1209 return ret;
1213 * find_get_pages - gang pagecache lookup
1214 * @mapping: The address_space to search
1215 * @start: The starting page index
1216 * @nr_pages: The maximum number of pages
1217 * @pages: Where the resulting pages are placed
1219 * find_get_pages() will search for and return a group of up to
1220 * @nr_pages pages in the mapping. The pages are placed at @pages.
1221 * find_get_pages() takes a reference against the returned pages.
1223 * The search returns a group of mapping-contiguous pages with ascending
1224 * indexes. There may be holes in the indices due to not-present pages.
1226 * find_get_pages() returns the number of pages which were found.
1228 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1229 unsigned int nr_pages, struct page **pages)
1231 struct radix_tree_iter iter;
1232 void **slot;
1233 unsigned ret = 0;
1235 if (unlikely(!nr_pages))
1236 return 0;
1238 rcu_read_lock();
1239 restart:
1240 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1241 struct page *page;
1242 repeat:
1243 page = radix_tree_deref_slot(slot);
1244 if (unlikely(!page))
1245 continue;
1247 if (radix_tree_exception(page)) {
1248 if (radix_tree_deref_retry(page)) {
1250 * Transient condition which can only trigger
1251 * when entry at index 0 moves out of or back
1252 * to root: none yet gotten, safe to restart.
1254 WARN_ON(iter.index);
1255 goto restart;
1258 * A shadow entry of a recently evicted page,
1259 * or a swap entry from shmem/tmpfs. Skip
1260 * over it.
1262 continue;
1265 if (!page_cache_get_speculative(page))
1266 goto repeat;
1268 /* Has the page moved? */
1269 if (unlikely(page != *slot)) {
1270 page_cache_release(page);
1271 goto repeat;
1274 pages[ret] = page;
1275 if (++ret == nr_pages)
1276 break;
1279 rcu_read_unlock();
1280 return ret;
1284 * find_get_pages_contig - gang contiguous pagecache lookup
1285 * @mapping: The address_space to search
1286 * @index: The starting page index
1287 * @nr_pages: The maximum number of pages
1288 * @pages: Where the resulting pages are placed
1290 * find_get_pages_contig() works exactly like find_get_pages(), except
1291 * that the returned number of pages are guaranteed to be contiguous.
1293 * find_get_pages_contig() returns the number of pages which were found.
1295 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1296 unsigned int nr_pages, struct page **pages)
1298 struct radix_tree_iter iter;
1299 void **slot;
1300 unsigned int ret = 0;
1302 if (unlikely(!nr_pages))
1303 return 0;
1305 rcu_read_lock();
1306 restart:
1307 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1308 struct page *page;
1309 repeat:
1310 page = radix_tree_deref_slot(slot);
1311 /* The hole, there no reason to continue */
1312 if (unlikely(!page))
1313 break;
1315 if (radix_tree_exception(page)) {
1316 if (radix_tree_deref_retry(page)) {
1318 * Transient condition which can only trigger
1319 * when entry at index 0 moves out of or back
1320 * to root: none yet gotten, safe to restart.
1322 goto restart;
1325 * A shadow entry of a recently evicted page,
1326 * or a swap entry from shmem/tmpfs. Stop
1327 * looking for contiguous pages.
1329 break;
1332 if (!page_cache_get_speculative(page))
1333 goto repeat;
1335 /* Has the page moved? */
1336 if (unlikely(page != *slot)) {
1337 page_cache_release(page);
1338 goto repeat;
1342 * must check mapping and index after taking the ref.
1343 * otherwise we can get both false positives and false
1344 * negatives, which is just confusing to the caller.
1346 if (page->mapping == NULL || page->index != iter.index) {
1347 page_cache_release(page);
1348 break;
1351 pages[ret] = page;
1352 if (++ret == nr_pages)
1353 break;
1355 rcu_read_unlock();
1356 return ret;
1358 EXPORT_SYMBOL(find_get_pages_contig);
1361 * find_get_pages_tag - find and return pages that match @tag
1362 * @mapping: the address_space to search
1363 * @index: the starting page index
1364 * @tag: the tag index
1365 * @nr_pages: the maximum number of pages
1366 * @pages: where the resulting pages are placed
1368 * Like find_get_pages, except we only return pages which are tagged with
1369 * @tag. We update @index to index the next page for the traversal.
1371 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1372 int tag, unsigned int nr_pages, struct page **pages)
1374 struct radix_tree_iter iter;
1375 void **slot;
1376 unsigned ret = 0;
1378 if (unlikely(!nr_pages))
1379 return 0;
1381 rcu_read_lock();
1382 restart:
1383 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1384 &iter, *index, tag) {
1385 struct page *page;
1386 repeat:
1387 page = radix_tree_deref_slot(slot);
1388 if (unlikely(!page))
1389 continue;
1391 if (radix_tree_exception(page)) {
1392 if (radix_tree_deref_retry(page)) {
1394 * Transient condition which can only trigger
1395 * when entry at index 0 moves out of or back
1396 * to root: none yet gotten, safe to restart.
1398 goto restart;
1401 * A shadow entry of a recently evicted page.
1403 * Those entries should never be tagged, but
1404 * this tree walk is lockless and the tags are
1405 * looked up in bulk, one radix tree node at a
1406 * time, so there is a sizable window for page
1407 * reclaim to evict a page we saw tagged.
1409 * Skip over it.
1411 continue;
1414 if (!page_cache_get_speculative(page))
1415 goto repeat;
1417 /* Has the page moved? */
1418 if (unlikely(page != *slot)) {
1419 page_cache_release(page);
1420 goto repeat;
1423 pages[ret] = page;
1424 if (++ret == nr_pages)
1425 break;
1428 rcu_read_unlock();
1430 if (ret)
1431 *index = pages[ret - 1]->index + 1;
1433 return ret;
1435 EXPORT_SYMBOL(find_get_pages_tag);
1438 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1439 * a _large_ part of the i/o request. Imagine the worst scenario:
1441 * ---R__________________________________________B__________
1442 * ^ reading here ^ bad block(assume 4k)
1444 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1445 * => failing the whole request => read(R) => read(R+1) =>
1446 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1447 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1448 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1450 * It is going insane. Fix it by quickly scaling down the readahead size.
1452 static void shrink_readahead_size_eio(struct file *filp,
1453 struct file_ra_state *ra)
1455 ra->ra_pages /= 4;
1459 * do_generic_file_read - generic file read routine
1460 * @filp: the file to read
1461 * @ppos: current file position
1462 * @iter: data destination
1463 * @written: already copied
1465 * This is a generic file read routine, and uses the
1466 * mapping->a_ops->readpage() function for the actual low-level stuff.
1468 * This is really ugly. But the goto's actually try to clarify some
1469 * of the logic when it comes to error handling etc.
1471 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1472 struct iov_iter *iter, ssize_t written)
1474 struct address_space *mapping = filp->f_mapping;
1475 struct inode *inode = mapping->host;
1476 struct file_ra_state *ra = &filp->f_ra;
1477 pgoff_t index;
1478 pgoff_t last_index;
1479 pgoff_t prev_index;
1480 unsigned long offset; /* offset into pagecache page */
1481 unsigned int prev_offset;
1482 int error = 0;
1484 index = *ppos >> PAGE_CACHE_SHIFT;
1485 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1486 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1487 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1488 offset = *ppos & ~PAGE_CACHE_MASK;
1490 for (;;) {
1491 struct page *page;
1492 pgoff_t end_index;
1493 loff_t isize;
1494 unsigned long nr, ret;
1496 cond_resched();
1497 find_page:
1498 page = find_get_page(mapping, index);
1499 if (!page) {
1500 page_cache_sync_readahead(mapping,
1501 ra, filp,
1502 index, last_index - index);
1503 page = find_get_page(mapping, index);
1504 if (unlikely(page == NULL))
1505 goto no_cached_page;
1507 if (PageReadahead(page)) {
1508 page_cache_async_readahead(mapping,
1509 ra, filp, page,
1510 index, last_index - index);
1512 if (!PageUptodate(page)) {
1513 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1514 !mapping->a_ops->is_partially_uptodate)
1515 goto page_not_up_to_date;
1516 if (!trylock_page(page))
1517 goto page_not_up_to_date;
1518 /* Did it get truncated before we got the lock? */
1519 if (!page->mapping)
1520 goto page_not_up_to_date_locked;
1521 if (!mapping->a_ops->is_partially_uptodate(page,
1522 offset, iter->count))
1523 goto page_not_up_to_date_locked;
1524 unlock_page(page);
1526 page_ok:
1528 * i_size must be checked after we know the page is Uptodate.
1530 * Checking i_size after the check allows us to calculate
1531 * the correct value for "nr", which means the zero-filled
1532 * part of the page is not copied back to userspace (unless
1533 * another truncate extends the file - this is desired though).
1536 isize = i_size_read(inode);
1537 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1538 if (unlikely(!isize || index > end_index)) {
1539 page_cache_release(page);
1540 goto out;
1543 /* nr is the maximum number of bytes to copy from this page */
1544 nr = PAGE_CACHE_SIZE;
1545 if (index == end_index) {
1546 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1547 if (nr <= offset) {
1548 page_cache_release(page);
1549 goto out;
1552 nr = nr - offset;
1554 /* If users can be writing to this page using arbitrary
1555 * virtual addresses, take care about potential aliasing
1556 * before reading the page on the kernel side.
1558 if (mapping_writably_mapped(mapping))
1559 flush_dcache_page(page);
1562 * When a sequential read accesses a page several times,
1563 * only mark it as accessed the first time.
1565 if (prev_index != index || offset != prev_offset)
1566 mark_page_accessed(page);
1567 prev_index = index;
1570 * Ok, we have the page, and it's up-to-date, so
1571 * now we can copy it to user space...
1574 ret = copy_page_to_iter(page, offset, nr, iter);
1575 offset += ret;
1576 index += offset >> PAGE_CACHE_SHIFT;
1577 offset &= ~PAGE_CACHE_MASK;
1578 prev_offset = offset;
1580 page_cache_release(page);
1581 written += ret;
1582 if (!iov_iter_count(iter))
1583 goto out;
1584 if (ret < nr) {
1585 error = -EFAULT;
1586 goto out;
1588 continue;
1590 page_not_up_to_date:
1591 /* Get exclusive access to the page ... */
1592 error = lock_page_killable(page);
1593 if (unlikely(error))
1594 goto readpage_error;
1596 page_not_up_to_date_locked:
1597 /* Did it get truncated before we got the lock? */
1598 if (!page->mapping) {
1599 unlock_page(page);
1600 page_cache_release(page);
1601 continue;
1604 /* Did somebody else fill it already? */
1605 if (PageUptodate(page)) {
1606 unlock_page(page);
1607 goto page_ok;
1610 readpage:
1612 * A previous I/O error may have been due to temporary
1613 * failures, eg. multipath errors.
1614 * PG_error will be set again if readpage fails.
1616 ClearPageError(page);
1617 /* Start the actual read. The read will unlock the page. */
1618 error = mapping->a_ops->readpage(filp, page);
1620 if (unlikely(error)) {
1621 if (error == AOP_TRUNCATED_PAGE) {
1622 page_cache_release(page);
1623 error = 0;
1624 goto find_page;
1626 goto readpage_error;
1629 if (!PageUptodate(page)) {
1630 error = lock_page_killable(page);
1631 if (unlikely(error))
1632 goto readpage_error;
1633 if (!PageUptodate(page)) {
1634 if (page->mapping == NULL) {
1636 * invalidate_mapping_pages got it
1638 unlock_page(page);
1639 page_cache_release(page);
1640 goto find_page;
1642 unlock_page(page);
1643 shrink_readahead_size_eio(filp, ra);
1644 error = -EIO;
1645 goto readpage_error;
1647 unlock_page(page);
1650 goto page_ok;
1652 readpage_error:
1653 /* UHHUH! A synchronous read error occurred. Report it */
1654 page_cache_release(page);
1655 goto out;
1657 no_cached_page:
1659 * Ok, it wasn't cached, so we need to create a new
1660 * page..
1662 page = page_cache_alloc_cold(mapping);
1663 if (!page) {
1664 error = -ENOMEM;
1665 goto out;
1667 error = add_to_page_cache_lru(page, mapping, index,
1668 GFP_KERNEL & mapping_gfp_mask(mapping));
1669 if (error) {
1670 page_cache_release(page);
1671 if (error == -EEXIST) {
1672 error = 0;
1673 goto find_page;
1675 goto out;
1677 goto readpage;
1680 out:
1681 ra->prev_pos = prev_index;
1682 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1683 ra->prev_pos |= prev_offset;
1685 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1686 file_accessed(filp);
1687 return written ? written : error;
1691 * generic_file_read_iter - generic filesystem read routine
1692 * @iocb: kernel I/O control block
1693 * @iter: destination for the data read
1695 * This is the "read_iter()" routine for all filesystems
1696 * that can use the page cache directly.
1698 ssize_t
1699 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1701 struct file *file = iocb->ki_filp;
1702 ssize_t retval = 0;
1703 loff_t *ppos = &iocb->ki_pos;
1704 loff_t pos = *ppos;
1706 if (iocb->ki_flags & IOCB_DIRECT) {
1707 struct address_space *mapping = file->f_mapping;
1708 struct inode *inode = mapping->host;
1709 size_t count = iov_iter_count(iter);
1710 loff_t size;
1712 if (!count)
1713 goto out; /* skip atime */
1714 size = i_size_read(inode);
1715 retval = filemap_write_and_wait_range(mapping, pos,
1716 pos + count - 1);
1717 if (!retval) {
1718 struct iov_iter data = *iter;
1719 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1722 if (retval > 0) {
1723 *ppos = pos + retval;
1724 iov_iter_advance(iter, retval);
1728 * Btrfs can have a short DIO read if we encounter
1729 * compressed extents, so if there was an error, or if
1730 * we've already read everything we wanted to, or if
1731 * there was a short read because we hit EOF, go ahead
1732 * and return. Otherwise fallthrough to buffered io for
1733 * the rest of the read. Buffered reads will not work for
1734 * DAX files, so don't bother trying.
1736 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1737 IS_DAX(inode)) {
1738 file_accessed(file);
1739 goto out;
1743 retval = do_generic_file_read(file, ppos, iter, retval);
1744 out:
1745 return retval;
1747 EXPORT_SYMBOL(generic_file_read_iter);
1749 #ifdef CONFIG_MMU
1751 * page_cache_read - adds requested page to the page cache if not already there
1752 * @file: file to read
1753 * @offset: page index
1755 * This adds the requested page to the page cache if it isn't already there,
1756 * and schedules an I/O to read in its contents from disk.
1758 static int page_cache_read(struct file *file, pgoff_t offset)
1760 struct address_space *mapping = file->f_mapping;
1761 struct page *page;
1762 int ret;
1764 do {
1765 page = page_cache_alloc_cold(mapping);
1766 if (!page)
1767 return -ENOMEM;
1769 ret = add_to_page_cache_lru(page, mapping, offset,
1770 GFP_KERNEL & mapping_gfp_mask(mapping));
1771 if (ret == 0)
1772 ret = mapping->a_ops->readpage(file, page);
1773 else if (ret == -EEXIST)
1774 ret = 0; /* losing race to add is OK */
1776 page_cache_release(page);
1778 } while (ret == AOP_TRUNCATED_PAGE);
1780 return ret;
1783 #define MMAP_LOTSAMISS (100)
1786 * Synchronous readahead happens when we don't even find
1787 * a page in the page cache at all.
1789 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1790 struct file_ra_state *ra,
1791 struct file *file,
1792 pgoff_t offset)
1794 unsigned long ra_pages;
1795 struct address_space *mapping = file->f_mapping;
1797 /* If we don't want any read-ahead, don't bother */
1798 if (vma->vm_flags & VM_RAND_READ)
1799 return;
1800 if (!ra->ra_pages)
1801 return;
1803 if (vma->vm_flags & VM_SEQ_READ) {
1804 page_cache_sync_readahead(mapping, ra, file, offset,
1805 ra->ra_pages);
1806 return;
1809 /* Avoid banging the cache line if not needed */
1810 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1811 ra->mmap_miss++;
1814 * Do we miss much more than hit in this file? If so,
1815 * stop bothering with read-ahead. It will only hurt.
1817 if (ra->mmap_miss > MMAP_LOTSAMISS)
1818 return;
1821 * mmap read-around
1823 ra_pages = max_sane_readahead(ra->ra_pages);
1824 ra->start = max_t(long, 0, offset - ra_pages / 2);
1825 ra->size = ra_pages;
1826 ra->async_size = ra_pages / 4;
1827 ra_submit(ra, mapping, file);
1831 * Asynchronous readahead happens when we find the page and PG_readahead,
1832 * so we want to possibly extend the readahead further..
1834 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1835 struct file_ra_state *ra,
1836 struct file *file,
1837 struct page *page,
1838 pgoff_t offset)
1840 struct address_space *mapping = file->f_mapping;
1842 /* If we don't want any read-ahead, don't bother */
1843 if (vma->vm_flags & VM_RAND_READ)
1844 return;
1845 if (ra->mmap_miss > 0)
1846 ra->mmap_miss--;
1847 if (PageReadahead(page))
1848 page_cache_async_readahead(mapping, ra, file,
1849 page, offset, ra->ra_pages);
1853 * filemap_fault - read in file data for page fault handling
1854 * @vma: vma in which the fault was taken
1855 * @vmf: struct vm_fault containing details of the fault
1857 * filemap_fault() is invoked via the vma operations vector for a
1858 * mapped memory region to read in file data during a page fault.
1860 * The goto's are kind of ugly, but this streamlines the normal case of having
1861 * it in the page cache, and handles the special cases reasonably without
1862 * having a lot of duplicated code.
1864 * vma->vm_mm->mmap_sem must be held on entry.
1866 * If our return value has VM_FAULT_RETRY set, it's because
1867 * lock_page_or_retry() returned 0.
1868 * The mmap_sem has usually been released in this case.
1869 * See __lock_page_or_retry() for the exception.
1871 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1872 * has not been released.
1874 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1876 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1878 int error;
1879 struct file *file = vma->vm_file;
1880 struct address_space *mapping = file->f_mapping;
1881 struct file_ra_state *ra = &file->f_ra;
1882 struct inode *inode = mapping->host;
1883 pgoff_t offset = vmf->pgoff;
1884 struct page *page;
1885 loff_t size;
1886 int ret = 0;
1888 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1889 if (offset >= size >> PAGE_CACHE_SHIFT)
1890 return VM_FAULT_SIGBUS;
1893 * Do we have something in the page cache already?
1895 page = find_get_page(mapping, offset);
1896 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1898 * We found the page, so try async readahead before
1899 * waiting for the lock.
1901 do_async_mmap_readahead(vma, ra, file, page, offset);
1902 } else if (!page) {
1903 /* No page in the page cache at all */
1904 do_sync_mmap_readahead(vma, ra, file, offset);
1905 count_vm_event(PGMAJFAULT);
1906 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1907 ret = VM_FAULT_MAJOR;
1908 retry_find:
1909 page = find_get_page(mapping, offset);
1910 if (!page)
1911 goto no_cached_page;
1914 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1915 page_cache_release(page);
1916 return ret | VM_FAULT_RETRY;
1919 /* Did it get truncated? */
1920 if (unlikely(page->mapping != mapping)) {
1921 unlock_page(page);
1922 put_page(page);
1923 goto retry_find;
1925 VM_BUG_ON_PAGE(page->index != offset, page);
1928 * We have a locked page in the page cache, now we need to check
1929 * that it's up-to-date. If not, it is going to be due to an error.
1931 if (unlikely(!PageUptodate(page)))
1932 goto page_not_uptodate;
1935 * Found the page and have a reference on it.
1936 * We must recheck i_size under page lock.
1938 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1939 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1940 unlock_page(page);
1941 page_cache_release(page);
1942 return VM_FAULT_SIGBUS;
1945 vmf->page = page;
1946 return ret | VM_FAULT_LOCKED;
1948 no_cached_page:
1950 * We're only likely to ever get here if MADV_RANDOM is in
1951 * effect.
1953 error = page_cache_read(file, offset);
1956 * The page we want has now been added to the page cache.
1957 * In the unlikely event that someone removed it in the
1958 * meantime, we'll just come back here and read it again.
1960 if (error >= 0)
1961 goto retry_find;
1964 * An error return from page_cache_read can result if the
1965 * system is low on memory, or a problem occurs while trying
1966 * to schedule I/O.
1968 if (error == -ENOMEM)
1969 return VM_FAULT_OOM;
1970 return VM_FAULT_SIGBUS;
1972 page_not_uptodate:
1974 * Umm, take care of errors if the page isn't up-to-date.
1975 * Try to re-read it _once_. We do this synchronously,
1976 * because there really aren't any performance issues here
1977 * and we need to check for errors.
1979 ClearPageError(page);
1980 error = mapping->a_ops->readpage(file, page);
1981 if (!error) {
1982 wait_on_page_locked(page);
1983 if (!PageUptodate(page))
1984 error = -EIO;
1986 page_cache_release(page);
1988 if (!error || error == AOP_TRUNCATED_PAGE)
1989 goto retry_find;
1991 /* Things didn't work out. Return zero to tell the mm layer so. */
1992 shrink_readahead_size_eio(file, ra);
1993 return VM_FAULT_SIGBUS;
1995 EXPORT_SYMBOL(filemap_fault);
1997 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1999 struct radix_tree_iter iter;
2000 void **slot;
2001 struct file *file = vma->vm_file;
2002 struct address_space *mapping = file->f_mapping;
2003 loff_t size;
2004 struct page *page;
2005 unsigned long address = (unsigned long) vmf->virtual_address;
2006 unsigned long addr;
2007 pte_t *pte;
2009 rcu_read_lock();
2010 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2011 if (iter.index > vmf->max_pgoff)
2012 break;
2013 repeat:
2014 page = radix_tree_deref_slot(slot);
2015 if (unlikely(!page))
2016 goto next;
2017 if (radix_tree_exception(page)) {
2018 if (radix_tree_deref_retry(page))
2019 break;
2020 else
2021 goto next;
2024 if (!page_cache_get_speculative(page))
2025 goto repeat;
2027 /* Has the page moved? */
2028 if (unlikely(page != *slot)) {
2029 page_cache_release(page);
2030 goto repeat;
2033 if (!PageUptodate(page) ||
2034 PageReadahead(page) ||
2035 PageHWPoison(page))
2036 goto skip;
2037 if (!trylock_page(page))
2038 goto skip;
2040 if (page->mapping != mapping || !PageUptodate(page))
2041 goto unlock;
2043 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2044 if (page->index >= size >> PAGE_CACHE_SHIFT)
2045 goto unlock;
2047 pte = vmf->pte + page->index - vmf->pgoff;
2048 if (!pte_none(*pte))
2049 goto unlock;
2051 if (file->f_ra.mmap_miss > 0)
2052 file->f_ra.mmap_miss--;
2053 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2054 do_set_pte(vma, addr, page, pte, false, false);
2055 unlock_page(page);
2056 goto next;
2057 unlock:
2058 unlock_page(page);
2059 skip:
2060 page_cache_release(page);
2061 next:
2062 if (iter.index == vmf->max_pgoff)
2063 break;
2065 rcu_read_unlock();
2067 EXPORT_SYMBOL(filemap_map_pages);
2069 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2071 struct page *page = vmf->page;
2072 struct inode *inode = file_inode(vma->vm_file);
2073 int ret = VM_FAULT_LOCKED;
2075 sb_start_pagefault(inode->i_sb);
2076 file_update_time(vma->vm_file);
2077 lock_page(page);
2078 if (page->mapping != inode->i_mapping) {
2079 unlock_page(page);
2080 ret = VM_FAULT_NOPAGE;
2081 goto out;
2084 * We mark the page dirty already here so that when freeze is in
2085 * progress, we are guaranteed that writeback during freezing will
2086 * see the dirty page and writeprotect it again.
2088 set_page_dirty(page);
2089 wait_for_stable_page(page);
2090 out:
2091 sb_end_pagefault(inode->i_sb);
2092 return ret;
2094 EXPORT_SYMBOL(filemap_page_mkwrite);
2096 const struct vm_operations_struct generic_file_vm_ops = {
2097 .fault = filemap_fault,
2098 .map_pages = filemap_map_pages,
2099 .page_mkwrite = filemap_page_mkwrite,
2102 /* This is used for a general mmap of a disk file */
2104 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2106 struct address_space *mapping = file->f_mapping;
2108 if (!mapping->a_ops->readpage)
2109 return -ENOEXEC;
2110 file_accessed(file);
2111 vma->vm_ops = &generic_file_vm_ops;
2112 return 0;
2116 * This is for filesystems which do not implement ->writepage.
2118 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2120 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2121 return -EINVAL;
2122 return generic_file_mmap(file, vma);
2124 #else
2125 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2127 return -ENOSYS;
2129 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2131 return -ENOSYS;
2133 #endif /* CONFIG_MMU */
2135 EXPORT_SYMBOL(generic_file_mmap);
2136 EXPORT_SYMBOL(generic_file_readonly_mmap);
2138 static struct page *wait_on_page_read(struct page *page)
2140 if (!IS_ERR(page)) {
2141 wait_on_page_locked(page);
2142 if (!PageUptodate(page)) {
2143 page_cache_release(page);
2144 page = ERR_PTR(-EIO);
2147 return page;
2150 static struct page *__read_cache_page(struct address_space *mapping,
2151 pgoff_t index,
2152 int (*filler)(void *, struct page *),
2153 void *data,
2154 gfp_t gfp)
2156 struct page *page;
2157 int err;
2158 repeat:
2159 page = find_get_page(mapping, index);
2160 if (!page) {
2161 page = __page_cache_alloc(gfp | __GFP_COLD);
2162 if (!page)
2163 return ERR_PTR(-ENOMEM);
2164 err = add_to_page_cache_lru(page, mapping, index, gfp);
2165 if (unlikely(err)) {
2166 page_cache_release(page);
2167 if (err == -EEXIST)
2168 goto repeat;
2169 /* Presumably ENOMEM for radix tree node */
2170 return ERR_PTR(err);
2172 err = filler(data, page);
2173 if (err < 0) {
2174 page_cache_release(page);
2175 page = ERR_PTR(err);
2176 } else {
2177 page = wait_on_page_read(page);
2180 return page;
2183 static struct page *do_read_cache_page(struct address_space *mapping,
2184 pgoff_t index,
2185 int (*filler)(void *, struct page *),
2186 void *data,
2187 gfp_t gfp)
2190 struct page *page;
2191 int err;
2193 retry:
2194 page = __read_cache_page(mapping, index, filler, data, gfp);
2195 if (IS_ERR(page))
2196 return page;
2197 if (PageUptodate(page))
2198 goto out;
2200 lock_page(page);
2201 if (!page->mapping) {
2202 unlock_page(page);
2203 page_cache_release(page);
2204 goto retry;
2206 if (PageUptodate(page)) {
2207 unlock_page(page);
2208 goto out;
2210 err = filler(data, page);
2211 if (err < 0) {
2212 page_cache_release(page);
2213 return ERR_PTR(err);
2214 } else {
2215 page = wait_on_page_read(page);
2216 if (IS_ERR(page))
2217 return page;
2219 out:
2220 mark_page_accessed(page);
2221 return page;
2225 * read_cache_page - read into page cache, fill it if needed
2226 * @mapping: the page's address_space
2227 * @index: the page index
2228 * @filler: function to perform the read
2229 * @data: first arg to filler(data, page) function, often left as NULL
2231 * Read into the page cache. If a page already exists, and PageUptodate() is
2232 * not set, try to fill the page and wait for it to become unlocked.
2234 * If the page does not get brought uptodate, return -EIO.
2236 struct page *read_cache_page(struct address_space *mapping,
2237 pgoff_t index,
2238 int (*filler)(void *, struct page *),
2239 void *data)
2241 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2243 EXPORT_SYMBOL(read_cache_page);
2246 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2247 * @mapping: the page's address_space
2248 * @index: the page index
2249 * @gfp: the page allocator flags to use if allocating
2251 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2252 * any new page allocations done using the specified allocation flags.
2254 * If the page does not get brought uptodate, return -EIO.
2256 struct page *read_cache_page_gfp(struct address_space *mapping,
2257 pgoff_t index,
2258 gfp_t gfp)
2260 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2262 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2264 EXPORT_SYMBOL(read_cache_page_gfp);
2267 * Performs necessary checks before doing a write
2269 * Can adjust writing position or amount of bytes to write.
2270 * Returns appropriate error code that caller should return or
2271 * zero in case that write should be allowed.
2273 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2275 struct file *file = iocb->ki_filp;
2276 struct inode *inode = file->f_mapping->host;
2277 unsigned long limit = rlimit(RLIMIT_FSIZE);
2278 loff_t pos;
2280 if (!iov_iter_count(from))
2281 return 0;
2283 /* FIXME: this is for backwards compatibility with 2.4 */
2284 if (iocb->ki_flags & IOCB_APPEND)
2285 iocb->ki_pos = i_size_read(inode);
2287 pos = iocb->ki_pos;
2289 if (limit != RLIM_INFINITY) {
2290 if (iocb->ki_pos >= limit) {
2291 send_sig(SIGXFSZ, current, 0);
2292 return -EFBIG;
2294 iov_iter_truncate(from, limit - (unsigned long)pos);
2298 * LFS rule
2300 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2301 !(file->f_flags & O_LARGEFILE))) {
2302 if (pos >= MAX_NON_LFS)
2303 return -EFBIG;
2304 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2308 * Are we about to exceed the fs block limit ?
2310 * If we have written data it becomes a short write. If we have
2311 * exceeded without writing data we send a signal and return EFBIG.
2312 * Linus frestrict idea will clean these up nicely..
2314 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2315 return -EFBIG;
2317 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2318 return iov_iter_count(from);
2320 EXPORT_SYMBOL(generic_write_checks);
2322 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2323 loff_t pos, unsigned len, unsigned flags,
2324 struct page **pagep, void **fsdata)
2326 const struct address_space_operations *aops = mapping->a_ops;
2328 return aops->write_begin(file, mapping, pos, len, flags,
2329 pagep, fsdata);
2331 EXPORT_SYMBOL(pagecache_write_begin);
2333 int pagecache_write_end(struct file *file, struct address_space *mapping,
2334 loff_t pos, unsigned len, unsigned copied,
2335 struct page *page, void *fsdata)
2337 const struct address_space_operations *aops = mapping->a_ops;
2339 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2341 EXPORT_SYMBOL(pagecache_write_end);
2343 ssize_t
2344 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2346 struct file *file = iocb->ki_filp;
2347 struct address_space *mapping = file->f_mapping;
2348 struct inode *inode = mapping->host;
2349 ssize_t written;
2350 size_t write_len;
2351 pgoff_t end;
2352 struct iov_iter data;
2354 write_len = iov_iter_count(from);
2355 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2357 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2358 if (written)
2359 goto out;
2362 * After a write we want buffered reads to be sure to go to disk to get
2363 * the new data. We invalidate clean cached page from the region we're
2364 * about to write. We do this *before* the write so that we can return
2365 * without clobbering -EIOCBQUEUED from ->direct_IO().
2367 if (mapping->nrpages) {
2368 written = invalidate_inode_pages2_range(mapping,
2369 pos >> PAGE_CACHE_SHIFT, end);
2371 * If a page can not be invalidated, return 0 to fall back
2372 * to buffered write.
2374 if (written) {
2375 if (written == -EBUSY)
2376 return 0;
2377 goto out;
2381 data = *from;
2382 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2385 * Finally, try again to invalidate clean pages which might have been
2386 * cached by non-direct readahead, or faulted in by get_user_pages()
2387 * if the source of the write was an mmap'ed region of the file
2388 * we're writing. Either one is a pretty crazy thing to do,
2389 * so we don't support it 100%. If this invalidation
2390 * fails, tough, the write still worked...
2392 if (mapping->nrpages) {
2393 invalidate_inode_pages2_range(mapping,
2394 pos >> PAGE_CACHE_SHIFT, end);
2397 if (written > 0) {
2398 pos += written;
2399 iov_iter_advance(from, written);
2400 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2401 i_size_write(inode, pos);
2402 mark_inode_dirty(inode);
2404 iocb->ki_pos = pos;
2406 out:
2407 return written;
2409 EXPORT_SYMBOL(generic_file_direct_write);
2412 * Find or create a page at the given pagecache position. Return the locked
2413 * page. This function is specifically for buffered writes.
2415 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2416 pgoff_t index, unsigned flags)
2418 struct page *page;
2419 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2421 if (flags & AOP_FLAG_NOFS)
2422 fgp_flags |= FGP_NOFS;
2424 page = pagecache_get_page(mapping, index, fgp_flags,
2425 mapping_gfp_mask(mapping));
2426 if (page)
2427 wait_for_stable_page(page);
2429 return page;
2431 EXPORT_SYMBOL(grab_cache_page_write_begin);
2433 ssize_t generic_perform_write(struct file *file,
2434 struct iov_iter *i, loff_t pos)
2436 struct address_space *mapping = file->f_mapping;
2437 const struct address_space_operations *a_ops = mapping->a_ops;
2438 long status = 0;
2439 ssize_t written = 0;
2440 unsigned int flags = 0;
2443 * Copies from kernel address space cannot fail (NFSD is a big user).
2445 if (!iter_is_iovec(i))
2446 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2448 do {
2449 struct page *page;
2450 unsigned long offset; /* Offset into pagecache page */
2451 unsigned long bytes; /* Bytes to write to page */
2452 size_t copied; /* Bytes copied from user */
2453 void *fsdata;
2455 offset = (pos & (PAGE_CACHE_SIZE - 1));
2456 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2457 iov_iter_count(i));
2459 again:
2461 * Bring in the user page that we will copy from _first_.
2462 * Otherwise there's a nasty deadlock on copying from the
2463 * same page as we're writing to, without it being marked
2464 * up-to-date.
2466 * Not only is this an optimisation, but it is also required
2467 * to check that the address is actually valid, when atomic
2468 * usercopies are used, below.
2470 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2471 status = -EFAULT;
2472 break;
2475 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2476 &page, &fsdata);
2477 if (unlikely(status < 0))
2478 break;
2480 if (mapping_writably_mapped(mapping))
2481 flush_dcache_page(page);
2483 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2484 flush_dcache_page(page);
2486 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2487 page, fsdata);
2488 if (unlikely(status < 0))
2489 break;
2490 copied = status;
2492 cond_resched();
2494 iov_iter_advance(i, copied);
2495 if (unlikely(copied == 0)) {
2497 * If we were unable to copy any data at all, we must
2498 * fall back to a single segment length write.
2500 * If we didn't fallback here, we could livelock
2501 * because not all segments in the iov can be copied at
2502 * once without a pagefault.
2504 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2505 iov_iter_single_seg_count(i));
2506 goto again;
2508 pos += copied;
2509 written += copied;
2511 balance_dirty_pages_ratelimited(mapping);
2512 if (fatal_signal_pending(current)) {
2513 status = -EINTR;
2514 break;
2516 } while (iov_iter_count(i));
2518 return written ? written : status;
2520 EXPORT_SYMBOL(generic_perform_write);
2523 * __generic_file_write_iter - write data to a file
2524 * @iocb: IO state structure (file, offset, etc.)
2525 * @from: iov_iter with data to write
2527 * This function does all the work needed for actually writing data to a
2528 * file. It does all basic checks, removes SUID from the file, updates
2529 * modification times and calls proper subroutines depending on whether we
2530 * do direct IO or a standard buffered write.
2532 * It expects i_mutex to be grabbed unless we work on a block device or similar
2533 * object which does not need locking at all.
2535 * This function does *not* take care of syncing data in case of O_SYNC write.
2536 * A caller has to handle it. This is mainly due to the fact that we want to
2537 * avoid syncing under i_mutex.
2539 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2541 struct file *file = iocb->ki_filp;
2542 struct address_space * mapping = file->f_mapping;
2543 struct inode *inode = mapping->host;
2544 ssize_t written = 0;
2545 ssize_t err;
2546 ssize_t status;
2548 /* We can write back this queue in page reclaim */
2549 current->backing_dev_info = inode_to_bdi(inode);
2550 err = file_remove_suid(file);
2551 if (err)
2552 goto out;
2554 err = file_update_time(file);
2555 if (err)
2556 goto out;
2558 if (iocb->ki_flags & IOCB_DIRECT) {
2559 loff_t pos, endbyte;
2561 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2563 * If the write stopped short of completing, fall back to
2564 * buffered writes. Some filesystems do this for writes to
2565 * holes, for example. For DAX files, a buffered write will
2566 * not succeed (even if it did, DAX does not handle dirty
2567 * page-cache pages correctly).
2569 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2570 goto out;
2572 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2574 * If generic_perform_write() returned a synchronous error
2575 * then we want to return the number of bytes which were
2576 * direct-written, or the error code if that was zero. Note
2577 * that this differs from normal direct-io semantics, which
2578 * will return -EFOO even if some bytes were written.
2580 if (unlikely(status < 0)) {
2581 err = status;
2582 goto out;
2585 * We need to ensure that the page cache pages are written to
2586 * disk and invalidated to preserve the expected O_DIRECT
2587 * semantics.
2589 endbyte = pos + status - 1;
2590 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2591 if (err == 0) {
2592 iocb->ki_pos = endbyte + 1;
2593 written += status;
2594 invalidate_mapping_pages(mapping,
2595 pos >> PAGE_CACHE_SHIFT,
2596 endbyte >> PAGE_CACHE_SHIFT);
2597 } else {
2599 * We don't know how much we wrote, so just return
2600 * the number of bytes which were direct-written
2603 } else {
2604 written = generic_perform_write(file, from, iocb->ki_pos);
2605 if (likely(written > 0))
2606 iocb->ki_pos += written;
2608 out:
2609 current->backing_dev_info = NULL;
2610 return written ? written : err;
2612 EXPORT_SYMBOL(__generic_file_write_iter);
2615 * generic_file_write_iter - write data to a file
2616 * @iocb: IO state structure
2617 * @from: iov_iter with data to write
2619 * This is a wrapper around __generic_file_write_iter() to be used by most
2620 * filesystems. It takes care of syncing the file in case of O_SYNC file
2621 * and acquires i_mutex as needed.
2623 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2625 struct file *file = iocb->ki_filp;
2626 struct inode *inode = file->f_mapping->host;
2627 ssize_t ret;
2629 mutex_lock(&inode->i_mutex);
2630 ret = generic_write_checks(iocb, from);
2631 if (ret > 0)
2632 ret = __generic_file_write_iter(iocb, from);
2633 mutex_unlock(&inode->i_mutex);
2635 if (ret > 0) {
2636 ssize_t err;
2638 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2639 if (err < 0)
2640 ret = err;
2642 return ret;
2644 EXPORT_SYMBOL(generic_file_write_iter);
2647 * try_to_release_page() - release old fs-specific metadata on a page
2649 * @page: the page which the kernel is trying to free
2650 * @gfp_mask: memory allocation flags (and I/O mode)
2652 * The address_space is to try to release any data against the page
2653 * (presumably at page->private). If the release was successful, return `1'.
2654 * Otherwise return zero.
2656 * This may also be called if PG_fscache is set on a page, indicating that the
2657 * page is known to the local caching routines.
2659 * The @gfp_mask argument specifies whether I/O may be performed to release
2660 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2663 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2665 struct address_space * const mapping = page->mapping;
2667 BUG_ON(!PageLocked(page));
2668 if (PageWriteback(page))
2669 return 0;
2671 if (mapping && mapping->a_ops->releasepage)
2672 return mapping->a_ops->releasepage(page, gfp_mask);
2673 return try_to_free_buffers(page);
2676 EXPORT_SYMBOL(try_to_release_page);