net: Preserve ooo_okay when copying skb header
[linux-2.6/btrfs-unstable.git] / net / core / skbuff.c
blobe27334ec367a59a7341fe3083c0764490dd8ce98
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
72 #include "kmap_skb.h"
74 static struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
80 put_page(buf->page);
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 get_page(buf->page);
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 return 1;
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here, skb->len, sz, skb->head, skb->data,
126 (unsigned long)skb->tail, (unsigned long)skb->end,
127 skb->dev ? skb->dev->name : "<NULL>");
128 BUG();
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
137 * Out of line support code for skb_push(). Not user callable.
140 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185 prefetchw(skb);
187 size = SKB_DATA_ALIGN(size);
188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 gfp_mask, node);
190 if (!data)
191 goto nodata;
192 prefetchw(data + size);
195 * Only clear those fields we need to clear, not those that we will
196 * actually initialise below. Hence, don't put any more fields after
197 * the tail pointer in struct sk_buff!
199 memset(skb, 0, offsetof(struct sk_buff, tail));
200 skb->truesize = size + sizeof(struct sk_buff);
201 atomic_set(&skb->users, 1);
202 skb->head = data;
203 skb->data = data;
204 skb_reset_tail_pointer(skb);
205 skb->end = skb->tail + size;
206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
207 skb->mac_header = ~0U;
208 #endif
210 /* make sure we initialize shinfo sequentially */
211 shinfo = skb_shinfo(skb);
212 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
213 atomic_set(&shinfo->dataref, 1);
214 kmemcheck_annotate_variable(shinfo->destructor_arg);
216 if (fclone) {
217 struct sk_buff *child = skb + 1;
218 atomic_t *fclone_ref = (atomic_t *) (child + 1);
220 kmemcheck_annotate_bitfield(child, flags1);
221 kmemcheck_annotate_bitfield(child, flags2);
222 skb->fclone = SKB_FCLONE_ORIG;
223 atomic_set(fclone_ref, 1);
225 child->fclone = SKB_FCLONE_UNAVAILABLE;
227 out:
228 return skb;
229 nodata:
230 kmem_cache_free(cache, skb);
231 skb = NULL;
232 goto out;
234 EXPORT_SYMBOL(__alloc_skb);
237 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
238 * @dev: network device to receive on
239 * @length: length to allocate
240 * @gfp_mask: get_free_pages mask, passed to alloc_skb
242 * Allocate a new &sk_buff and assign it a usage count of one. The
243 * buffer has unspecified headroom built in. Users should allocate
244 * the headroom they think they need without accounting for the
245 * built in space. The built in space is used for optimisations.
247 * %NULL is returned if there is no free memory.
249 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
250 unsigned int length, gfp_t gfp_mask)
252 struct sk_buff *skb;
254 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
255 if (likely(skb)) {
256 skb_reserve(skb, NET_SKB_PAD);
257 skb->dev = dev;
259 return skb;
261 EXPORT_SYMBOL(__netdev_alloc_skb);
263 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
264 int size)
266 skb_fill_page_desc(skb, i, page, off, size);
267 skb->len += size;
268 skb->data_len += size;
269 skb->truesize += size;
271 EXPORT_SYMBOL(skb_add_rx_frag);
274 * dev_alloc_skb - allocate an skbuff for receiving
275 * @length: length to allocate
277 * Allocate a new &sk_buff and assign it a usage count of one. The
278 * buffer has unspecified headroom built in. Users should allocate
279 * the headroom they think they need without accounting for the
280 * built in space. The built in space is used for optimisations.
282 * %NULL is returned if there is no free memory. Although this function
283 * allocates memory it can be called from an interrupt.
285 struct sk_buff *dev_alloc_skb(unsigned int length)
288 * There is more code here than it seems:
289 * __dev_alloc_skb is an inline
291 return __dev_alloc_skb(length, GFP_ATOMIC);
293 EXPORT_SYMBOL(dev_alloc_skb);
295 static void skb_drop_list(struct sk_buff **listp)
297 struct sk_buff *list = *listp;
299 *listp = NULL;
301 do {
302 struct sk_buff *this = list;
303 list = list->next;
304 kfree_skb(this);
305 } while (list);
308 static inline void skb_drop_fraglist(struct sk_buff *skb)
310 skb_drop_list(&skb_shinfo(skb)->frag_list);
313 static void skb_clone_fraglist(struct sk_buff *skb)
315 struct sk_buff *list;
317 skb_walk_frags(skb, list)
318 skb_get(list);
321 static void skb_release_data(struct sk_buff *skb)
323 if (!skb->cloned ||
324 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
325 &skb_shinfo(skb)->dataref)) {
326 if (skb_shinfo(skb)->nr_frags) {
327 int i;
328 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
329 put_page(skb_shinfo(skb)->frags[i].page);
333 * If skb buf is from userspace, we need to notify the caller
334 * the lower device DMA has done;
336 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
337 struct ubuf_info *uarg;
339 uarg = skb_shinfo(skb)->destructor_arg;
340 if (uarg->callback)
341 uarg->callback(uarg);
344 if (skb_has_frag_list(skb))
345 skb_drop_fraglist(skb);
347 kfree(skb->head);
352 * Free an skbuff by memory without cleaning the state.
354 static void kfree_skbmem(struct sk_buff *skb)
356 struct sk_buff *other;
357 atomic_t *fclone_ref;
359 switch (skb->fclone) {
360 case SKB_FCLONE_UNAVAILABLE:
361 kmem_cache_free(skbuff_head_cache, skb);
362 break;
364 case SKB_FCLONE_ORIG:
365 fclone_ref = (atomic_t *) (skb + 2);
366 if (atomic_dec_and_test(fclone_ref))
367 kmem_cache_free(skbuff_fclone_cache, skb);
368 break;
370 case SKB_FCLONE_CLONE:
371 fclone_ref = (atomic_t *) (skb + 1);
372 other = skb - 1;
374 /* The clone portion is available for
375 * fast-cloning again.
377 skb->fclone = SKB_FCLONE_UNAVAILABLE;
379 if (atomic_dec_and_test(fclone_ref))
380 kmem_cache_free(skbuff_fclone_cache, other);
381 break;
385 static void skb_release_head_state(struct sk_buff *skb)
387 skb_dst_drop(skb);
388 #ifdef CONFIG_XFRM
389 secpath_put(skb->sp);
390 #endif
391 if (skb->destructor) {
392 WARN_ON(in_irq());
393 skb->destructor(skb);
395 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
396 nf_conntrack_put(skb->nfct);
397 #endif
398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
399 nf_conntrack_put_reasm(skb->nfct_reasm);
400 #endif
401 #ifdef CONFIG_BRIDGE_NETFILTER
402 nf_bridge_put(skb->nf_bridge);
403 #endif
404 /* XXX: IS this still necessary? - JHS */
405 #ifdef CONFIG_NET_SCHED
406 skb->tc_index = 0;
407 #ifdef CONFIG_NET_CLS_ACT
408 skb->tc_verd = 0;
409 #endif
410 #endif
413 /* Free everything but the sk_buff shell. */
414 static void skb_release_all(struct sk_buff *skb)
416 skb_release_head_state(skb);
417 skb_release_data(skb);
421 * __kfree_skb - private function
422 * @skb: buffer
424 * Free an sk_buff. Release anything attached to the buffer.
425 * Clean the state. This is an internal helper function. Users should
426 * always call kfree_skb
429 void __kfree_skb(struct sk_buff *skb)
431 skb_release_all(skb);
432 kfree_skbmem(skb);
434 EXPORT_SYMBOL(__kfree_skb);
437 * kfree_skb - free an sk_buff
438 * @skb: buffer to free
440 * Drop a reference to the buffer and free it if the usage count has
441 * hit zero.
443 void kfree_skb(struct sk_buff *skb)
445 if (unlikely(!skb))
446 return;
447 if (likely(atomic_read(&skb->users) == 1))
448 smp_rmb();
449 else if (likely(!atomic_dec_and_test(&skb->users)))
450 return;
451 trace_kfree_skb(skb, __builtin_return_address(0));
452 __kfree_skb(skb);
454 EXPORT_SYMBOL(kfree_skb);
457 * consume_skb - free an skbuff
458 * @skb: buffer to free
460 * Drop a ref to the buffer and free it if the usage count has hit zero
461 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
462 * is being dropped after a failure and notes that
464 void consume_skb(struct sk_buff *skb)
466 if (unlikely(!skb))
467 return;
468 if (likely(atomic_read(&skb->users) == 1))
469 smp_rmb();
470 else if (likely(!atomic_dec_and_test(&skb->users)))
471 return;
472 trace_consume_skb(skb);
473 __kfree_skb(skb);
475 EXPORT_SYMBOL(consume_skb);
478 * skb_recycle_check - check if skb can be reused for receive
479 * @skb: buffer
480 * @skb_size: minimum receive buffer size
482 * Checks that the skb passed in is not shared or cloned, and
483 * that it is linear and its head portion at least as large as
484 * skb_size so that it can be recycled as a receive buffer.
485 * If these conditions are met, this function does any necessary
486 * reference count dropping and cleans up the skbuff as if it
487 * just came from __alloc_skb().
489 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
491 struct skb_shared_info *shinfo;
493 if (irqs_disabled())
494 return false;
496 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
497 return false;
499 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
500 return false;
502 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
503 if (skb_end_pointer(skb) - skb->head < skb_size)
504 return false;
506 if (skb_shared(skb) || skb_cloned(skb))
507 return false;
509 skb_release_head_state(skb);
511 shinfo = skb_shinfo(skb);
512 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
513 atomic_set(&shinfo->dataref, 1);
515 memset(skb, 0, offsetof(struct sk_buff, tail));
516 skb->data = skb->head + NET_SKB_PAD;
517 skb_reset_tail_pointer(skb);
519 return true;
521 EXPORT_SYMBOL(skb_recycle_check);
523 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
525 new->tstamp = old->tstamp;
526 new->dev = old->dev;
527 new->transport_header = old->transport_header;
528 new->network_header = old->network_header;
529 new->mac_header = old->mac_header;
530 skb_dst_copy(new, old);
531 new->rxhash = old->rxhash;
532 new->ooo_okay = old->ooo_okay;
533 new->l4_rxhash = old->l4_rxhash;
534 #ifdef CONFIG_XFRM
535 new->sp = secpath_get(old->sp);
536 #endif
537 memcpy(new->cb, old->cb, sizeof(old->cb));
538 new->csum = old->csum;
539 new->local_df = old->local_df;
540 new->pkt_type = old->pkt_type;
541 new->ip_summed = old->ip_summed;
542 skb_copy_queue_mapping(new, old);
543 new->priority = old->priority;
544 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
545 new->ipvs_property = old->ipvs_property;
546 #endif
547 new->protocol = old->protocol;
548 new->mark = old->mark;
549 new->skb_iif = old->skb_iif;
550 __nf_copy(new, old);
551 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
552 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
553 new->nf_trace = old->nf_trace;
554 #endif
555 #ifdef CONFIG_NET_SCHED
556 new->tc_index = old->tc_index;
557 #ifdef CONFIG_NET_CLS_ACT
558 new->tc_verd = old->tc_verd;
559 #endif
560 #endif
561 new->vlan_tci = old->vlan_tci;
563 skb_copy_secmark(new, old);
567 * You should not add any new code to this function. Add it to
568 * __copy_skb_header above instead.
570 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
572 #define C(x) n->x = skb->x
574 n->next = n->prev = NULL;
575 n->sk = NULL;
576 __copy_skb_header(n, skb);
578 C(len);
579 C(data_len);
580 C(mac_len);
581 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
582 n->cloned = 1;
583 n->nohdr = 0;
584 n->destructor = NULL;
585 C(tail);
586 C(end);
587 C(head);
588 C(data);
589 C(truesize);
590 atomic_set(&n->users, 1);
592 atomic_inc(&(skb_shinfo(skb)->dataref));
593 skb->cloned = 1;
595 return n;
596 #undef C
600 * skb_morph - morph one skb into another
601 * @dst: the skb to receive the contents
602 * @src: the skb to supply the contents
604 * This is identical to skb_clone except that the target skb is
605 * supplied by the user.
607 * The target skb is returned upon exit.
609 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
611 skb_release_all(dst);
612 return __skb_clone(dst, src);
614 EXPORT_SYMBOL_GPL(skb_morph);
616 /* skb frags copy userspace buffers to kernel */
617 static int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
619 int i;
620 int num_frags = skb_shinfo(skb)->nr_frags;
621 struct page *page, *head = NULL;
622 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
624 for (i = 0; i < num_frags; i++) {
625 u8 *vaddr;
626 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
628 page = alloc_page(GFP_ATOMIC);
629 if (!page) {
630 while (head) {
631 struct page *next = (struct page *)head->private;
632 put_page(head);
633 head = next;
635 return -ENOMEM;
637 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
638 memcpy(page_address(page),
639 vaddr + f->page_offset, f->size);
640 kunmap_skb_frag(vaddr);
641 page->private = (unsigned long)head;
642 head = page;
645 /* skb frags release userspace buffers */
646 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
647 put_page(skb_shinfo(skb)->frags[i].page);
649 uarg->callback(uarg);
651 /* skb frags point to kernel buffers */
652 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
653 skb_shinfo(skb)->frags[i - 1].page_offset = 0;
654 skb_shinfo(skb)->frags[i - 1].page = head;
655 head = (struct page *)head->private;
657 return 0;
662 * skb_clone - duplicate an sk_buff
663 * @skb: buffer to clone
664 * @gfp_mask: allocation priority
666 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
667 * copies share the same packet data but not structure. The new
668 * buffer has a reference count of 1. If the allocation fails the
669 * function returns %NULL otherwise the new buffer is returned.
671 * If this function is called from an interrupt gfp_mask() must be
672 * %GFP_ATOMIC.
675 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
677 struct sk_buff *n;
679 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
680 if (skb_copy_ubufs(skb, gfp_mask))
681 return NULL;
682 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
685 n = skb + 1;
686 if (skb->fclone == SKB_FCLONE_ORIG &&
687 n->fclone == SKB_FCLONE_UNAVAILABLE) {
688 atomic_t *fclone_ref = (atomic_t *) (n + 1);
689 n->fclone = SKB_FCLONE_CLONE;
690 atomic_inc(fclone_ref);
691 } else {
692 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
693 if (!n)
694 return NULL;
696 kmemcheck_annotate_bitfield(n, flags1);
697 kmemcheck_annotate_bitfield(n, flags2);
698 n->fclone = SKB_FCLONE_UNAVAILABLE;
701 return __skb_clone(n, skb);
703 EXPORT_SYMBOL(skb_clone);
705 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
707 #ifndef NET_SKBUFF_DATA_USES_OFFSET
709 * Shift between the two data areas in bytes
711 unsigned long offset = new->data - old->data;
712 #endif
714 __copy_skb_header(new, old);
716 #ifndef NET_SKBUFF_DATA_USES_OFFSET
717 /* {transport,network,mac}_header are relative to skb->head */
718 new->transport_header += offset;
719 new->network_header += offset;
720 if (skb_mac_header_was_set(new))
721 new->mac_header += offset;
722 #endif
723 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
724 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
725 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
729 * skb_copy - create private copy of an sk_buff
730 * @skb: buffer to copy
731 * @gfp_mask: allocation priority
733 * Make a copy of both an &sk_buff and its data. This is used when the
734 * caller wishes to modify the data and needs a private copy of the
735 * data to alter. Returns %NULL on failure or the pointer to the buffer
736 * on success. The returned buffer has a reference count of 1.
738 * As by-product this function converts non-linear &sk_buff to linear
739 * one, so that &sk_buff becomes completely private and caller is allowed
740 * to modify all the data of returned buffer. This means that this
741 * function is not recommended for use in circumstances when only
742 * header is going to be modified. Use pskb_copy() instead.
745 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
747 int headerlen = skb_headroom(skb);
748 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
749 struct sk_buff *n = alloc_skb(size, gfp_mask);
751 if (!n)
752 return NULL;
754 /* Set the data pointer */
755 skb_reserve(n, headerlen);
756 /* Set the tail pointer and length */
757 skb_put(n, skb->len);
759 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
760 BUG();
762 copy_skb_header(n, skb);
763 return n;
765 EXPORT_SYMBOL(skb_copy);
768 * pskb_copy - create copy of an sk_buff with private head.
769 * @skb: buffer to copy
770 * @gfp_mask: allocation priority
772 * Make a copy of both an &sk_buff and part of its data, located
773 * in header. Fragmented data remain shared. This is used when
774 * the caller wishes to modify only header of &sk_buff and needs
775 * private copy of the header to alter. Returns %NULL on failure
776 * or the pointer to the buffer on success.
777 * The returned buffer has a reference count of 1.
780 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
782 unsigned int size = skb_end_pointer(skb) - skb->head;
783 struct sk_buff *n = alloc_skb(size, gfp_mask);
785 if (!n)
786 goto out;
788 /* Set the data pointer */
789 skb_reserve(n, skb_headroom(skb));
790 /* Set the tail pointer and length */
791 skb_put(n, skb_headlen(skb));
792 /* Copy the bytes */
793 skb_copy_from_linear_data(skb, n->data, n->len);
795 n->truesize += skb->data_len;
796 n->data_len = skb->data_len;
797 n->len = skb->len;
799 if (skb_shinfo(skb)->nr_frags) {
800 int i;
802 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
803 if (skb_copy_ubufs(skb, gfp_mask)) {
804 kfree_skb(n);
805 n = NULL;
806 goto out;
808 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
810 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
811 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
812 get_page(skb_shinfo(n)->frags[i].page);
814 skb_shinfo(n)->nr_frags = i;
817 if (skb_has_frag_list(skb)) {
818 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
819 skb_clone_fraglist(n);
822 copy_skb_header(n, skb);
823 out:
824 return n;
826 EXPORT_SYMBOL(pskb_copy);
829 * pskb_expand_head - reallocate header of &sk_buff
830 * @skb: buffer to reallocate
831 * @nhead: room to add at head
832 * @ntail: room to add at tail
833 * @gfp_mask: allocation priority
835 * Expands (or creates identical copy, if &nhead and &ntail are zero)
836 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
837 * reference count of 1. Returns zero in the case of success or error,
838 * if expansion failed. In the last case, &sk_buff is not changed.
840 * All the pointers pointing into skb header may change and must be
841 * reloaded after call to this function.
844 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
845 gfp_t gfp_mask)
847 int i;
848 u8 *data;
849 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
850 long off;
851 bool fastpath;
853 BUG_ON(nhead < 0);
855 if (skb_shared(skb))
856 BUG();
858 size = SKB_DATA_ALIGN(size);
860 /* Check if we can avoid taking references on fragments if we own
861 * the last reference on skb->head. (see skb_release_data())
863 if (!skb->cloned)
864 fastpath = true;
865 else {
866 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
867 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
870 if (fastpath &&
871 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
872 memmove(skb->head + size, skb_shinfo(skb),
873 offsetof(struct skb_shared_info,
874 frags[skb_shinfo(skb)->nr_frags]));
875 memmove(skb->head + nhead, skb->head,
876 skb_tail_pointer(skb) - skb->head);
877 off = nhead;
878 goto adjust_others;
881 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
882 if (!data)
883 goto nodata;
885 /* Copy only real data... and, alas, header. This should be
886 * optimized for the cases when header is void.
888 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
890 memcpy((struct skb_shared_info *)(data + size),
891 skb_shinfo(skb),
892 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
894 if (fastpath) {
895 kfree(skb->head);
896 } else {
897 /* copy this zero copy skb frags */
898 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
899 if (skb_copy_ubufs(skb, gfp_mask))
900 goto nofrags;
901 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
903 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
904 get_page(skb_shinfo(skb)->frags[i].page);
906 if (skb_has_frag_list(skb))
907 skb_clone_fraglist(skb);
909 skb_release_data(skb);
911 off = (data + nhead) - skb->head;
913 skb->head = data;
914 adjust_others:
915 skb->data += off;
916 #ifdef NET_SKBUFF_DATA_USES_OFFSET
917 skb->end = size;
918 off = nhead;
919 #else
920 skb->end = skb->head + size;
921 #endif
922 /* {transport,network,mac}_header and tail are relative to skb->head */
923 skb->tail += off;
924 skb->transport_header += off;
925 skb->network_header += off;
926 if (skb_mac_header_was_set(skb))
927 skb->mac_header += off;
928 /* Only adjust this if it actually is csum_start rather than csum */
929 if (skb->ip_summed == CHECKSUM_PARTIAL)
930 skb->csum_start += nhead;
931 skb->cloned = 0;
932 skb->hdr_len = 0;
933 skb->nohdr = 0;
934 atomic_set(&skb_shinfo(skb)->dataref, 1);
935 return 0;
937 nofrags:
938 kfree(data);
939 nodata:
940 return -ENOMEM;
942 EXPORT_SYMBOL(pskb_expand_head);
944 /* Make private copy of skb with writable head and some headroom */
946 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
948 struct sk_buff *skb2;
949 int delta = headroom - skb_headroom(skb);
951 if (delta <= 0)
952 skb2 = pskb_copy(skb, GFP_ATOMIC);
953 else {
954 skb2 = skb_clone(skb, GFP_ATOMIC);
955 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
956 GFP_ATOMIC)) {
957 kfree_skb(skb2);
958 skb2 = NULL;
961 return skb2;
963 EXPORT_SYMBOL(skb_realloc_headroom);
966 * skb_copy_expand - copy and expand sk_buff
967 * @skb: buffer to copy
968 * @newheadroom: new free bytes at head
969 * @newtailroom: new free bytes at tail
970 * @gfp_mask: allocation priority
972 * Make a copy of both an &sk_buff and its data and while doing so
973 * allocate additional space.
975 * This is used when the caller wishes to modify the data and needs a
976 * private copy of the data to alter as well as more space for new fields.
977 * Returns %NULL on failure or the pointer to the buffer
978 * on success. The returned buffer has a reference count of 1.
980 * You must pass %GFP_ATOMIC as the allocation priority if this function
981 * is called from an interrupt.
983 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
984 int newheadroom, int newtailroom,
985 gfp_t gfp_mask)
988 * Allocate the copy buffer
990 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
991 gfp_mask);
992 int oldheadroom = skb_headroom(skb);
993 int head_copy_len, head_copy_off;
994 int off;
996 if (!n)
997 return NULL;
999 skb_reserve(n, newheadroom);
1001 /* Set the tail pointer and length */
1002 skb_put(n, skb->len);
1004 head_copy_len = oldheadroom;
1005 head_copy_off = 0;
1006 if (newheadroom <= head_copy_len)
1007 head_copy_len = newheadroom;
1008 else
1009 head_copy_off = newheadroom - head_copy_len;
1011 /* Copy the linear header and data. */
1012 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1013 skb->len + head_copy_len))
1014 BUG();
1016 copy_skb_header(n, skb);
1018 off = newheadroom - oldheadroom;
1019 if (n->ip_summed == CHECKSUM_PARTIAL)
1020 n->csum_start += off;
1021 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1022 n->transport_header += off;
1023 n->network_header += off;
1024 if (skb_mac_header_was_set(skb))
1025 n->mac_header += off;
1026 #endif
1028 return n;
1030 EXPORT_SYMBOL(skb_copy_expand);
1033 * skb_pad - zero pad the tail of an skb
1034 * @skb: buffer to pad
1035 * @pad: space to pad
1037 * Ensure that a buffer is followed by a padding area that is zero
1038 * filled. Used by network drivers which may DMA or transfer data
1039 * beyond the buffer end onto the wire.
1041 * May return error in out of memory cases. The skb is freed on error.
1044 int skb_pad(struct sk_buff *skb, int pad)
1046 int err;
1047 int ntail;
1049 /* If the skbuff is non linear tailroom is always zero.. */
1050 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1051 memset(skb->data+skb->len, 0, pad);
1052 return 0;
1055 ntail = skb->data_len + pad - (skb->end - skb->tail);
1056 if (likely(skb_cloned(skb) || ntail > 0)) {
1057 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1058 if (unlikely(err))
1059 goto free_skb;
1062 /* FIXME: The use of this function with non-linear skb's really needs
1063 * to be audited.
1065 err = skb_linearize(skb);
1066 if (unlikely(err))
1067 goto free_skb;
1069 memset(skb->data + skb->len, 0, pad);
1070 return 0;
1072 free_skb:
1073 kfree_skb(skb);
1074 return err;
1076 EXPORT_SYMBOL(skb_pad);
1079 * skb_put - add data to a buffer
1080 * @skb: buffer to use
1081 * @len: amount of data to add
1083 * This function extends the used data area of the buffer. If this would
1084 * exceed the total buffer size the kernel will panic. A pointer to the
1085 * first byte of the extra data is returned.
1087 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1089 unsigned char *tmp = skb_tail_pointer(skb);
1090 SKB_LINEAR_ASSERT(skb);
1091 skb->tail += len;
1092 skb->len += len;
1093 if (unlikely(skb->tail > skb->end))
1094 skb_over_panic(skb, len, __builtin_return_address(0));
1095 return tmp;
1097 EXPORT_SYMBOL(skb_put);
1100 * skb_push - add data to the start of a buffer
1101 * @skb: buffer to use
1102 * @len: amount of data to add
1104 * This function extends the used data area of the buffer at the buffer
1105 * start. If this would exceed the total buffer headroom the kernel will
1106 * panic. A pointer to the first byte of the extra data is returned.
1108 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1110 skb->data -= len;
1111 skb->len += len;
1112 if (unlikely(skb->data<skb->head))
1113 skb_under_panic(skb, len, __builtin_return_address(0));
1114 return skb->data;
1116 EXPORT_SYMBOL(skb_push);
1119 * skb_pull - remove data from the start of a buffer
1120 * @skb: buffer to use
1121 * @len: amount of data to remove
1123 * This function removes data from the start of a buffer, returning
1124 * the memory to the headroom. A pointer to the next data in the buffer
1125 * is returned. Once the data has been pulled future pushes will overwrite
1126 * the old data.
1128 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1130 return skb_pull_inline(skb, len);
1132 EXPORT_SYMBOL(skb_pull);
1135 * skb_trim - remove end from a buffer
1136 * @skb: buffer to alter
1137 * @len: new length
1139 * Cut the length of a buffer down by removing data from the tail. If
1140 * the buffer is already under the length specified it is not modified.
1141 * The skb must be linear.
1143 void skb_trim(struct sk_buff *skb, unsigned int len)
1145 if (skb->len > len)
1146 __skb_trim(skb, len);
1148 EXPORT_SYMBOL(skb_trim);
1150 /* Trims skb to length len. It can change skb pointers.
1153 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1155 struct sk_buff **fragp;
1156 struct sk_buff *frag;
1157 int offset = skb_headlen(skb);
1158 int nfrags = skb_shinfo(skb)->nr_frags;
1159 int i;
1160 int err;
1162 if (skb_cloned(skb) &&
1163 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1164 return err;
1166 i = 0;
1167 if (offset >= len)
1168 goto drop_pages;
1170 for (; i < nfrags; i++) {
1171 int end = offset + skb_shinfo(skb)->frags[i].size;
1173 if (end < len) {
1174 offset = end;
1175 continue;
1178 skb_shinfo(skb)->frags[i++].size = len - offset;
1180 drop_pages:
1181 skb_shinfo(skb)->nr_frags = i;
1183 for (; i < nfrags; i++)
1184 put_page(skb_shinfo(skb)->frags[i].page);
1186 if (skb_has_frag_list(skb))
1187 skb_drop_fraglist(skb);
1188 goto done;
1191 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1192 fragp = &frag->next) {
1193 int end = offset + frag->len;
1195 if (skb_shared(frag)) {
1196 struct sk_buff *nfrag;
1198 nfrag = skb_clone(frag, GFP_ATOMIC);
1199 if (unlikely(!nfrag))
1200 return -ENOMEM;
1202 nfrag->next = frag->next;
1203 kfree_skb(frag);
1204 frag = nfrag;
1205 *fragp = frag;
1208 if (end < len) {
1209 offset = end;
1210 continue;
1213 if (end > len &&
1214 unlikely((err = pskb_trim(frag, len - offset))))
1215 return err;
1217 if (frag->next)
1218 skb_drop_list(&frag->next);
1219 break;
1222 done:
1223 if (len > skb_headlen(skb)) {
1224 skb->data_len -= skb->len - len;
1225 skb->len = len;
1226 } else {
1227 skb->len = len;
1228 skb->data_len = 0;
1229 skb_set_tail_pointer(skb, len);
1232 return 0;
1234 EXPORT_SYMBOL(___pskb_trim);
1237 * __pskb_pull_tail - advance tail of skb header
1238 * @skb: buffer to reallocate
1239 * @delta: number of bytes to advance tail
1241 * The function makes a sense only on a fragmented &sk_buff,
1242 * it expands header moving its tail forward and copying necessary
1243 * data from fragmented part.
1245 * &sk_buff MUST have reference count of 1.
1247 * Returns %NULL (and &sk_buff does not change) if pull failed
1248 * or value of new tail of skb in the case of success.
1250 * All the pointers pointing into skb header may change and must be
1251 * reloaded after call to this function.
1254 /* Moves tail of skb head forward, copying data from fragmented part,
1255 * when it is necessary.
1256 * 1. It may fail due to malloc failure.
1257 * 2. It may change skb pointers.
1259 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1261 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1263 /* If skb has not enough free space at tail, get new one
1264 * plus 128 bytes for future expansions. If we have enough
1265 * room at tail, reallocate without expansion only if skb is cloned.
1267 int i, k, eat = (skb->tail + delta) - skb->end;
1269 if (eat > 0 || skb_cloned(skb)) {
1270 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1271 GFP_ATOMIC))
1272 return NULL;
1275 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1276 BUG();
1278 /* Optimization: no fragments, no reasons to preestimate
1279 * size of pulled pages. Superb.
1281 if (!skb_has_frag_list(skb))
1282 goto pull_pages;
1284 /* Estimate size of pulled pages. */
1285 eat = delta;
1286 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1287 if (skb_shinfo(skb)->frags[i].size >= eat)
1288 goto pull_pages;
1289 eat -= skb_shinfo(skb)->frags[i].size;
1292 /* If we need update frag list, we are in troubles.
1293 * Certainly, it possible to add an offset to skb data,
1294 * but taking into account that pulling is expected to
1295 * be very rare operation, it is worth to fight against
1296 * further bloating skb head and crucify ourselves here instead.
1297 * Pure masohism, indeed. 8)8)
1299 if (eat) {
1300 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1301 struct sk_buff *clone = NULL;
1302 struct sk_buff *insp = NULL;
1304 do {
1305 BUG_ON(!list);
1307 if (list->len <= eat) {
1308 /* Eaten as whole. */
1309 eat -= list->len;
1310 list = list->next;
1311 insp = list;
1312 } else {
1313 /* Eaten partially. */
1315 if (skb_shared(list)) {
1316 /* Sucks! We need to fork list. :-( */
1317 clone = skb_clone(list, GFP_ATOMIC);
1318 if (!clone)
1319 return NULL;
1320 insp = list->next;
1321 list = clone;
1322 } else {
1323 /* This may be pulled without
1324 * problems. */
1325 insp = list;
1327 if (!pskb_pull(list, eat)) {
1328 kfree_skb(clone);
1329 return NULL;
1331 break;
1333 } while (eat);
1335 /* Free pulled out fragments. */
1336 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1337 skb_shinfo(skb)->frag_list = list->next;
1338 kfree_skb(list);
1340 /* And insert new clone at head. */
1341 if (clone) {
1342 clone->next = list;
1343 skb_shinfo(skb)->frag_list = clone;
1346 /* Success! Now we may commit changes to skb data. */
1348 pull_pages:
1349 eat = delta;
1350 k = 0;
1351 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1352 if (skb_shinfo(skb)->frags[i].size <= eat) {
1353 put_page(skb_shinfo(skb)->frags[i].page);
1354 eat -= skb_shinfo(skb)->frags[i].size;
1355 } else {
1356 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1357 if (eat) {
1358 skb_shinfo(skb)->frags[k].page_offset += eat;
1359 skb_shinfo(skb)->frags[k].size -= eat;
1360 eat = 0;
1362 k++;
1365 skb_shinfo(skb)->nr_frags = k;
1367 skb->tail += delta;
1368 skb->data_len -= delta;
1370 return skb_tail_pointer(skb);
1372 EXPORT_SYMBOL(__pskb_pull_tail);
1375 * skb_copy_bits - copy bits from skb to kernel buffer
1376 * @skb: source skb
1377 * @offset: offset in source
1378 * @to: destination buffer
1379 * @len: number of bytes to copy
1381 * Copy the specified number of bytes from the source skb to the
1382 * destination buffer.
1384 * CAUTION ! :
1385 * If its prototype is ever changed,
1386 * check arch/{*}/net/{*}.S files,
1387 * since it is called from BPF assembly code.
1389 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1391 int start = skb_headlen(skb);
1392 struct sk_buff *frag_iter;
1393 int i, copy;
1395 if (offset > (int)skb->len - len)
1396 goto fault;
1398 /* Copy header. */
1399 if ((copy = start - offset) > 0) {
1400 if (copy > len)
1401 copy = len;
1402 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1403 if ((len -= copy) == 0)
1404 return 0;
1405 offset += copy;
1406 to += copy;
1409 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1410 int end;
1412 WARN_ON(start > offset + len);
1414 end = start + skb_shinfo(skb)->frags[i].size;
1415 if ((copy = end - offset) > 0) {
1416 u8 *vaddr;
1418 if (copy > len)
1419 copy = len;
1421 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1422 memcpy(to,
1423 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1424 offset - start, copy);
1425 kunmap_skb_frag(vaddr);
1427 if ((len -= copy) == 0)
1428 return 0;
1429 offset += copy;
1430 to += copy;
1432 start = end;
1435 skb_walk_frags(skb, frag_iter) {
1436 int end;
1438 WARN_ON(start > offset + len);
1440 end = start + frag_iter->len;
1441 if ((copy = end - offset) > 0) {
1442 if (copy > len)
1443 copy = len;
1444 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1445 goto fault;
1446 if ((len -= copy) == 0)
1447 return 0;
1448 offset += copy;
1449 to += copy;
1451 start = end;
1454 if (!len)
1455 return 0;
1457 fault:
1458 return -EFAULT;
1460 EXPORT_SYMBOL(skb_copy_bits);
1463 * Callback from splice_to_pipe(), if we need to release some pages
1464 * at the end of the spd in case we error'ed out in filling the pipe.
1466 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1468 put_page(spd->pages[i]);
1471 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1472 unsigned int *offset,
1473 struct sk_buff *skb, struct sock *sk)
1475 struct page *p = sk->sk_sndmsg_page;
1476 unsigned int off;
1478 if (!p) {
1479 new_page:
1480 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1481 if (!p)
1482 return NULL;
1484 off = sk->sk_sndmsg_off = 0;
1485 /* hold one ref to this page until it's full */
1486 } else {
1487 unsigned int mlen;
1489 off = sk->sk_sndmsg_off;
1490 mlen = PAGE_SIZE - off;
1491 if (mlen < 64 && mlen < *len) {
1492 put_page(p);
1493 goto new_page;
1496 *len = min_t(unsigned int, *len, mlen);
1499 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1500 sk->sk_sndmsg_off += *len;
1501 *offset = off;
1502 get_page(p);
1504 return p;
1508 * Fill page/offset/length into spd, if it can hold more pages.
1510 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1511 struct pipe_inode_info *pipe, struct page *page,
1512 unsigned int *len, unsigned int offset,
1513 struct sk_buff *skb, int linear,
1514 struct sock *sk)
1516 if (unlikely(spd->nr_pages == pipe->buffers))
1517 return 1;
1519 if (linear) {
1520 page = linear_to_page(page, len, &offset, skb, sk);
1521 if (!page)
1522 return 1;
1523 } else
1524 get_page(page);
1526 spd->pages[spd->nr_pages] = page;
1527 spd->partial[spd->nr_pages].len = *len;
1528 spd->partial[spd->nr_pages].offset = offset;
1529 spd->nr_pages++;
1531 return 0;
1534 static inline void __segment_seek(struct page **page, unsigned int *poff,
1535 unsigned int *plen, unsigned int off)
1537 unsigned long n;
1539 *poff += off;
1540 n = *poff / PAGE_SIZE;
1541 if (n)
1542 *page = nth_page(*page, n);
1544 *poff = *poff % PAGE_SIZE;
1545 *plen -= off;
1548 static inline int __splice_segment(struct page *page, unsigned int poff,
1549 unsigned int plen, unsigned int *off,
1550 unsigned int *len, struct sk_buff *skb,
1551 struct splice_pipe_desc *spd, int linear,
1552 struct sock *sk,
1553 struct pipe_inode_info *pipe)
1555 if (!*len)
1556 return 1;
1558 /* skip this segment if already processed */
1559 if (*off >= plen) {
1560 *off -= plen;
1561 return 0;
1564 /* ignore any bits we already processed */
1565 if (*off) {
1566 __segment_seek(&page, &poff, &plen, *off);
1567 *off = 0;
1570 do {
1571 unsigned int flen = min(*len, plen);
1573 /* the linear region may spread across several pages */
1574 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1576 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1577 return 1;
1579 __segment_seek(&page, &poff, &plen, flen);
1580 *len -= flen;
1582 } while (*len && plen);
1584 return 0;
1588 * Map linear and fragment data from the skb to spd. It reports failure if the
1589 * pipe is full or if we already spliced the requested length.
1591 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1592 unsigned int *offset, unsigned int *len,
1593 struct splice_pipe_desc *spd, struct sock *sk)
1595 int seg;
1598 * map the linear part
1600 if (__splice_segment(virt_to_page(skb->data),
1601 (unsigned long) skb->data & (PAGE_SIZE - 1),
1602 skb_headlen(skb),
1603 offset, len, skb, spd, 1, sk, pipe))
1604 return 1;
1607 * then map the fragments
1609 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1610 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1612 if (__splice_segment(f->page, f->page_offset, f->size,
1613 offset, len, skb, spd, 0, sk, pipe))
1614 return 1;
1617 return 0;
1621 * Map data from the skb to a pipe. Should handle both the linear part,
1622 * the fragments, and the frag list. It does NOT handle frag lists within
1623 * the frag list, if such a thing exists. We'd probably need to recurse to
1624 * handle that cleanly.
1626 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1627 struct pipe_inode_info *pipe, unsigned int tlen,
1628 unsigned int flags)
1630 struct partial_page partial[PIPE_DEF_BUFFERS];
1631 struct page *pages[PIPE_DEF_BUFFERS];
1632 struct splice_pipe_desc spd = {
1633 .pages = pages,
1634 .partial = partial,
1635 .flags = flags,
1636 .ops = &sock_pipe_buf_ops,
1637 .spd_release = sock_spd_release,
1639 struct sk_buff *frag_iter;
1640 struct sock *sk = skb->sk;
1641 int ret = 0;
1643 if (splice_grow_spd(pipe, &spd))
1644 return -ENOMEM;
1647 * __skb_splice_bits() only fails if the output has no room left,
1648 * so no point in going over the frag_list for the error case.
1650 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1651 goto done;
1652 else if (!tlen)
1653 goto done;
1656 * now see if we have a frag_list to map
1658 skb_walk_frags(skb, frag_iter) {
1659 if (!tlen)
1660 break;
1661 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1662 break;
1665 done:
1666 if (spd.nr_pages) {
1668 * Drop the socket lock, otherwise we have reverse
1669 * locking dependencies between sk_lock and i_mutex
1670 * here as compared to sendfile(). We enter here
1671 * with the socket lock held, and splice_to_pipe() will
1672 * grab the pipe inode lock. For sendfile() emulation,
1673 * we call into ->sendpage() with the i_mutex lock held
1674 * and networking will grab the socket lock.
1676 release_sock(sk);
1677 ret = splice_to_pipe(pipe, &spd);
1678 lock_sock(sk);
1681 splice_shrink_spd(pipe, &spd);
1682 return ret;
1686 * skb_store_bits - store bits from kernel buffer to skb
1687 * @skb: destination buffer
1688 * @offset: offset in destination
1689 * @from: source buffer
1690 * @len: number of bytes to copy
1692 * Copy the specified number of bytes from the source buffer to the
1693 * destination skb. This function handles all the messy bits of
1694 * traversing fragment lists and such.
1697 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1699 int start = skb_headlen(skb);
1700 struct sk_buff *frag_iter;
1701 int i, copy;
1703 if (offset > (int)skb->len - len)
1704 goto fault;
1706 if ((copy = start - offset) > 0) {
1707 if (copy > len)
1708 copy = len;
1709 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1710 if ((len -= copy) == 0)
1711 return 0;
1712 offset += copy;
1713 from += copy;
1716 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1717 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1718 int end;
1720 WARN_ON(start > offset + len);
1722 end = start + frag->size;
1723 if ((copy = end - offset) > 0) {
1724 u8 *vaddr;
1726 if (copy > len)
1727 copy = len;
1729 vaddr = kmap_skb_frag(frag);
1730 memcpy(vaddr + frag->page_offset + offset - start,
1731 from, copy);
1732 kunmap_skb_frag(vaddr);
1734 if ((len -= copy) == 0)
1735 return 0;
1736 offset += copy;
1737 from += copy;
1739 start = end;
1742 skb_walk_frags(skb, frag_iter) {
1743 int end;
1745 WARN_ON(start > offset + len);
1747 end = start + frag_iter->len;
1748 if ((copy = end - offset) > 0) {
1749 if (copy > len)
1750 copy = len;
1751 if (skb_store_bits(frag_iter, offset - start,
1752 from, copy))
1753 goto fault;
1754 if ((len -= copy) == 0)
1755 return 0;
1756 offset += copy;
1757 from += copy;
1759 start = end;
1761 if (!len)
1762 return 0;
1764 fault:
1765 return -EFAULT;
1767 EXPORT_SYMBOL(skb_store_bits);
1769 /* Checksum skb data. */
1771 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1772 int len, __wsum csum)
1774 int start = skb_headlen(skb);
1775 int i, copy = start - offset;
1776 struct sk_buff *frag_iter;
1777 int pos = 0;
1779 /* Checksum header. */
1780 if (copy > 0) {
1781 if (copy > len)
1782 copy = len;
1783 csum = csum_partial(skb->data + offset, copy, csum);
1784 if ((len -= copy) == 0)
1785 return csum;
1786 offset += copy;
1787 pos = copy;
1790 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1791 int end;
1793 WARN_ON(start > offset + len);
1795 end = start + skb_shinfo(skb)->frags[i].size;
1796 if ((copy = end - offset) > 0) {
1797 __wsum csum2;
1798 u8 *vaddr;
1799 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1801 if (copy > len)
1802 copy = len;
1803 vaddr = kmap_skb_frag(frag);
1804 csum2 = csum_partial(vaddr + frag->page_offset +
1805 offset - start, copy, 0);
1806 kunmap_skb_frag(vaddr);
1807 csum = csum_block_add(csum, csum2, pos);
1808 if (!(len -= copy))
1809 return csum;
1810 offset += copy;
1811 pos += copy;
1813 start = end;
1816 skb_walk_frags(skb, frag_iter) {
1817 int end;
1819 WARN_ON(start > offset + len);
1821 end = start + frag_iter->len;
1822 if ((copy = end - offset) > 0) {
1823 __wsum csum2;
1824 if (copy > len)
1825 copy = len;
1826 csum2 = skb_checksum(frag_iter, offset - start,
1827 copy, 0);
1828 csum = csum_block_add(csum, csum2, pos);
1829 if ((len -= copy) == 0)
1830 return csum;
1831 offset += copy;
1832 pos += copy;
1834 start = end;
1836 BUG_ON(len);
1838 return csum;
1840 EXPORT_SYMBOL(skb_checksum);
1842 /* Both of above in one bottle. */
1844 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1845 u8 *to, int len, __wsum csum)
1847 int start = skb_headlen(skb);
1848 int i, copy = start - offset;
1849 struct sk_buff *frag_iter;
1850 int pos = 0;
1852 /* Copy header. */
1853 if (copy > 0) {
1854 if (copy > len)
1855 copy = len;
1856 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1857 copy, csum);
1858 if ((len -= copy) == 0)
1859 return csum;
1860 offset += copy;
1861 to += copy;
1862 pos = copy;
1865 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1866 int end;
1868 WARN_ON(start > offset + len);
1870 end = start + skb_shinfo(skb)->frags[i].size;
1871 if ((copy = end - offset) > 0) {
1872 __wsum csum2;
1873 u8 *vaddr;
1874 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1876 if (copy > len)
1877 copy = len;
1878 vaddr = kmap_skb_frag(frag);
1879 csum2 = csum_partial_copy_nocheck(vaddr +
1880 frag->page_offset +
1881 offset - start, to,
1882 copy, 0);
1883 kunmap_skb_frag(vaddr);
1884 csum = csum_block_add(csum, csum2, pos);
1885 if (!(len -= copy))
1886 return csum;
1887 offset += copy;
1888 to += copy;
1889 pos += copy;
1891 start = end;
1894 skb_walk_frags(skb, frag_iter) {
1895 __wsum csum2;
1896 int end;
1898 WARN_ON(start > offset + len);
1900 end = start + frag_iter->len;
1901 if ((copy = end - offset) > 0) {
1902 if (copy > len)
1903 copy = len;
1904 csum2 = skb_copy_and_csum_bits(frag_iter,
1905 offset - start,
1906 to, copy, 0);
1907 csum = csum_block_add(csum, csum2, pos);
1908 if ((len -= copy) == 0)
1909 return csum;
1910 offset += copy;
1911 to += copy;
1912 pos += copy;
1914 start = end;
1916 BUG_ON(len);
1917 return csum;
1919 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1921 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1923 __wsum csum;
1924 long csstart;
1926 if (skb->ip_summed == CHECKSUM_PARTIAL)
1927 csstart = skb_checksum_start_offset(skb);
1928 else
1929 csstart = skb_headlen(skb);
1931 BUG_ON(csstart > skb_headlen(skb));
1933 skb_copy_from_linear_data(skb, to, csstart);
1935 csum = 0;
1936 if (csstart != skb->len)
1937 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1938 skb->len - csstart, 0);
1940 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1941 long csstuff = csstart + skb->csum_offset;
1943 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1946 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1949 * skb_dequeue - remove from the head of the queue
1950 * @list: list to dequeue from
1952 * Remove the head of the list. The list lock is taken so the function
1953 * may be used safely with other locking list functions. The head item is
1954 * returned or %NULL if the list is empty.
1957 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1959 unsigned long flags;
1960 struct sk_buff *result;
1962 spin_lock_irqsave(&list->lock, flags);
1963 result = __skb_dequeue(list);
1964 spin_unlock_irqrestore(&list->lock, flags);
1965 return result;
1967 EXPORT_SYMBOL(skb_dequeue);
1970 * skb_dequeue_tail - remove from the tail of the queue
1971 * @list: list to dequeue from
1973 * Remove the tail of the list. The list lock is taken so the function
1974 * may be used safely with other locking list functions. The tail item is
1975 * returned or %NULL if the list is empty.
1977 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1979 unsigned long flags;
1980 struct sk_buff *result;
1982 spin_lock_irqsave(&list->lock, flags);
1983 result = __skb_dequeue_tail(list);
1984 spin_unlock_irqrestore(&list->lock, flags);
1985 return result;
1987 EXPORT_SYMBOL(skb_dequeue_tail);
1990 * skb_queue_purge - empty a list
1991 * @list: list to empty
1993 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1994 * the list and one reference dropped. This function takes the list
1995 * lock and is atomic with respect to other list locking functions.
1997 void skb_queue_purge(struct sk_buff_head *list)
1999 struct sk_buff *skb;
2000 while ((skb = skb_dequeue(list)) != NULL)
2001 kfree_skb(skb);
2003 EXPORT_SYMBOL(skb_queue_purge);
2006 * skb_queue_head - queue a buffer at the list head
2007 * @list: list to use
2008 * @newsk: buffer to queue
2010 * Queue a buffer at the start of the list. This function takes the
2011 * list lock and can be used safely with other locking &sk_buff functions
2012 * safely.
2014 * A buffer cannot be placed on two lists at the same time.
2016 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2018 unsigned long flags;
2020 spin_lock_irqsave(&list->lock, flags);
2021 __skb_queue_head(list, newsk);
2022 spin_unlock_irqrestore(&list->lock, flags);
2024 EXPORT_SYMBOL(skb_queue_head);
2027 * skb_queue_tail - queue a buffer at the list tail
2028 * @list: list to use
2029 * @newsk: buffer to queue
2031 * Queue a buffer at the tail of the list. This function takes the
2032 * list lock and can be used safely with other locking &sk_buff functions
2033 * safely.
2035 * A buffer cannot be placed on two lists at the same time.
2037 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2039 unsigned long flags;
2041 spin_lock_irqsave(&list->lock, flags);
2042 __skb_queue_tail(list, newsk);
2043 spin_unlock_irqrestore(&list->lock, flags);
2045 EXPORT_SYMBOL(skb_queue_tail);
2048 * skb_unlink - remove a buffer from a list
2049 * @skb: buffer to remove
2050 * @list: list to use
2052 * Remove a packet from a list. The list locks are taken and this
2053 * function is atomic with respect to other list locked calls
2055 * You must know what list the SKB is on.
2057 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2059 unsigned long flags;
2061 spin_lock_irqsave(&list->lock, flags);
2062 __skb_unlink(skb, list);
2063 spin_unlock_irqrestore(&list->lock, flags);
2065 EXPORT_SYMBOL(skb_unlink);
2068 * skb_append - append a buffer
2069 * @old: buffer to insert after
2070 * @newsk: buffer to insert
2071 * @list: list to use
2073 * Place a packet after a given packet in a list. The list locks are taken
2074 * and this function is atomic with respect to other list locked calls.
2075 * A buffer cannot be placed on two lists at the same time.
2077 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2079 unsigned long flags;
2081 spin_lock_irqsave(&list->lock, flags);
2082 __skb_queue_after(list, old, newsk);
2083 spin_unlock_irqrestore(&list->lock, flags);
2085 EXPORT_SYMBOL(skb_append);
2088 * skb_insert - insert a buffer
2089 * @old: buffer to insert before
2090 * @newsk: buffer to insert
2091 * @list: list to use
2093 * Place a packet before a given packet in a list. The list locks are
2094 * taken and this function is atomic with respect to other list locked
2095 * calls.
2097 * A buffer cannot be placed on two lists at the same time.
2099 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2101 unsigned long flags;
2103 spin_lock_irqsave(&list->lock, flags);
2104 __skb_insert(newsk, old->prev, old, list);
2105 spin_unlock_irqrestore(&list->lock, flags);
2107 EXPORT_SYMBOL(skb_insert);
2109 static inline void skb_split_inside_header(struct sk_buff *skb,
2110 struct sk_buff* skb1,
2111 const u32 len, const int pos)
2113 int i;
2115 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2116 pos - len);
2117 /* And move data appendix as is. */
2118 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2119 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2121 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2122 skb_shinfo(skb)->nr_frags = 0;
2123 skb1->data_len = skb->data_len;
2124 skb1->len += skb1->data_len;
2125 skb->data_len = 0;
2126 skb->len = len;
2127 skb_set_tail_pointer(skb, len);
2130 static inline void skb_split_no_header(struct sk_buff *skb,
2131 struct sk_buff* skb1,
2132 const u32 len, int pos)
2134 int i, k = 0;
2135 const int nfrags = skb_shinfo(skb)->nr_frags;
2137 skb_shinfo(skb)->nr_frags = 0;
2138 skb1->len = skb1->data_len = skb->len - len;
2139 skb->len = len;
2140 skb->data_len = len - pos;
2142 for (i = 0; i < nfrags; i++) {
2143 int size = skb_shinfo(skb)->frags[i].size;
2145 if (pos + size > len) {
2146 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2148 if (pos < len) {
2149 /* Split frag.
2150 * We have two variants in this case:
2151 * 1. Move all the frag to the second
2152 * part, if it is possible. F.e.
2153 * this approach is mandatory for TUX,
2154 * where splitting is expensive.
2155 * 2. Split is accurately. We make this.
2157 get_page(skb_shinfo(skb)->frags[i].page);
2158 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2159 skb_shinfo(skb1)->frags[0].size -= len - pos;
2160 skb_shinfo(skb)->frags[i].size = len - pos;
2161 skb_shinfo(skb)->nr_frags++;
2163 k++;
2164 } else
2165 skb_shinfo(skb)->nr_frags++;
2166 pos += size;
2168 skb_shinfo(skb1)->nr_frags = k;
2172 * skb_split - Split fragmented skb to two parts at length len.
2173 * @skb: the buffer to split
2174 * @skb1: the buffer to receive the second part
2175 * @len: new length for skb
2177 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2179 int pos = skb_headlen(skb);
2181 if (len < pos) /* Split line is inside header. */
2182 skb_split_inside_header(skb, skb1, len, pos);
2183 else /* Second chunk has no header, nothing to copy. */
2184 skb_split_no_header(skb, skb1, len, pos);
2186 EXPORT_SYMBOL(skb_split);
2188 /* Shifting from/to a cloned skb is a no-go.
2190 * Caller cannot keep skb_shinfo related pointers past calling here!
2192 static int skb_prepare_for_shift(struct sk_buff *skb)
2194 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2198 * skb_shift - Shifts paged data partially from skb to another
2199 * @tgt: buffer into which tail data gets added
2200 * @skb: buffer from which the paged data comes from
2201 * @shiftlen: shift up to this many bytes
2203 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2204 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2205 * It's up to caller to free skb if everything was shifted.
2207 * If @tgt runs out of frags, the whole operation is aborted.
2209 * Skb cannot include anything else but paged data while tgt is allowed
2210 * to have non-paged data as well.
2212 * TODO: full sized shift could be optimized but that would need
2213 * specialized skb free'er to handle frags without up-to-date nr_frags.
2215 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2217 int from, to, merge, todo;
2218 struct skb_frag_struct *fragfrom, *fragto;
2220 BUG_ON(shiftlen > skb->len);
2221 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2223 todo = shiftlen;
2224 from = 0;
2225 to = skb_shinfo(tgt)->nr_frags;
2226 fragfrom = &skb_shinfo(skb)->frags[from];
2228 /* Actual merge is delayed until the point when we know we can
2229 * commit all, so that we don't have to undo partial changes
2231 if (!to ||
2232 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2233 merge = -1;
2234 } else {
2235 merge = to - 1;
2237 todo -= fragfrom->size;
2238 if (todo < 0) {
2239 if (skb_prepare_for_shift(skb) ||
2240 skb_prepare_for_shift(tgt))
2241 return 0;
2243 /* All previous frag pointers might be stale! */
2244 fragfrom = &skb_shinfo(skb)->frags[from];
2245 fragto = &skb_shinfo(tgt)->frags[merge];
2247 fragto->size += shiftlen;
2248 fragfrom->size -= shiftlen;
2249 fragfrom->page_offset += shiftlen;
2251 goto onlymerged;
2254 from++;
2257 /* Skip full, not-fitting skb to avoid expensive operations */
2258 if ((shiftlen == skb->len) &&
2259 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2260 return 0;
2262 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2263 return 0;
2265 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2266 if (to == MAX_SKB_FRAGS)
2267 return 0;
2269 fragfrom = &skb_shinfo(skb)->frags[from];
2270 fragto = &skb_shinfo(tgt)->frags[to];
2272 if (todo >= fragfrom->size) {
2273 *fragto = *fragfrom;
2274 todo -= fragfrom->size;
2275 from++;
2276 to++;
2278 } else {
2279 get_page(fragfrom->page);
2280 fragto->page = fragfrom->page;
2281 fragto->page_offset = fragfrom->page_offset;
2282 fragto->size = todo;
2284 fragfrom->page_offset += todo;
2285 fragfrom->size -= todo;
2286 todo = 0;
2288 to++;
2289 break;
2293 /* Ready to "commit" this state change to tgt */
2294 skb_shinfo(tgt)->nr_frags = to;
2296 if (merge >= 0) {
2297 fragfrom = &skb_shinfo(skb)->frags[0];
2298 fragto = &skb_shinfo(tgt)->frags[merge];
2300 fragto->size += fragfrom->size;
2301 put_page(fragfrom->page);
2304 /* Reposition in the original skb */
2305 to = 0;
2306 while (from < skb_shinfo(skb)->nr_frags)
2307 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2308 skb_shinfo(skb)->nr_frags = to;
2310 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2312 onlymerged:
2313 /* Most likely the tgt won't ever need its checksum anymore, skb on
2314 * the other hand might need it if it needs to be resent
2316 tgt->ip_summed = CHECKSUM_PARTIAL;
2317 skb->ip_summed = CHECKSUM_PARTIAL;
2319 /* Yak, is it really working this way? Some helper please? */
2320 skb->len -= shiftlen;
2321 skb->data_len -= shiftlen;
2322 skb->truesize -= shiftlen;
2323 tgt->len += shiftlen;
2324 tgt->data_len += shiftlen;
2325 tgt->truesize += shiftlen;
2327 return shiftlen;
2331 * skb_prepare_seq_read - Prepare a sequential read of skb data
2332 * @skb: the buffer to read
2333 * @from: lower offset of data to be read
2334 * @to: upper offset of data to be read
2335 * @st: state variable
2337 * Initializes the specified state variable. Must be called before
2338 * invoking skb_seq_read() for the first time.
2340 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2341 unsigned int to, struct skb_seq_state *st)
2343 st->lower_offset = from;
2344 st->upper_offset = to;
2345 st->root_skb = st->cur_skb = skb;
2346 st->frag_idx = st->stepped_offset = 0;
2347 st->frag_data = NULL;
2349 EXPORT_SYMBOL(skb_prepare_seq_read);
2352 * skb_seq_read - Sequentially read skb data
2353 * @consumed: number of bytes consumed by the caller so far
2354 * @data: destination pointer for data to be returned
2355 * @st: state variable
2357 * Reads a block of skb data at &consumed relative to the
2358 * lower offset specified to skb_prepare_seq_read(). Assigns
2359 * the head of the data block to &data and returns the length
2360 * of the block or 0 if the end of the skb data or the upper
2361 * offset has been reached.
2363 * The caller is not required to consume all of the data
2364 * returned, i.e. &consumed is typically set to the number
2365 * of bytes already consumed and the next call to
2366 * skb_seq_read() will return the remaining part of the block.
2368 * Note 1: The size of each block of data returned can be arbitrary,
2369 * this limitation is the cost for zerocopy seqeuental
2370 * reads of potentially non linear data.
2372 * Note 2: Fragment lists within fragments are not implemented
2373 * at the moment, state->root_skb could be replaced with
2374 * a stack for this purpose.
2376 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2377 struct skb_seq_state *st)
2379 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2380 skb_frag_t *frag;
2382 if (unlikely(abs_offset >= st->upper_offset))
2383 return 0;
2385 next_skb:
2386 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2388 if (abs_offset < block_limit && !st->frag_data) {
2389 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2390 return block_limit - abs_offset;
2393 if (st->frag_idx == 0 && !st->frag_data)
2394 st->stepped_offset += skb_headlen(st->cur_skb);
2396 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2397 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2398 block_limit = frag->size + st->stepped_offset;
2400 if (abs_offset < block_limit) {
2401 if (!st->frag_data)
2402 st->frag_data = kmap_skb_frag(frag);
2404 *data = (u8 *) st->frag_data + frag->page_offset +
2405 (abs_offset - st->stepped_offset);
2407 return block_limit - abs_offset;
2410 if (st->frag_data) {
2411 kunmap_skb_frag(st->frag_data);
2412 st->frag_data = NULL;
2415 st->frag_idx++;
2416 st->stepped_offset += frag->size;
2419 if (st->frag_data) {
2420 kunmap_skb_frag(st->frag_data);
2421 st->frag_data = NULL;
2424 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2425 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2426 st->frag_idx = 0;
2427 goto next_skb;
2428 } else if (st->cur_skb->next) {
2429 st->cur_skb = st->cur_skb->next;
2430 st->frag_idx = 0;
2431 goto next_skb;
2434 return 0;
2436 EXPORT_SYMBOL(skb_seq_read);
2439 * skb_abort_seq_read - Abort a sequential read of skb data
2440 * @st: state variable
2442 * Must be called if skb_seq_read() was not called until it
2443 * returned 0.
2445 void skb_abort_seq_read(struct skb_seq_state *st)
2447 if (st->frag_data)
2448 kunmap_skb_frag(st->frag_data);
2450 EXPORT_SYMBOL(skb_abort_seq_read);
2452 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2454 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2455 struct ts_config *conf,
2456 struct ts_state *state)
2458 return skb_seq_read(offset, text, TS_SKB_CB(state));
2461 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2463 skb_abort_seq_read(TS_SKB_CB(state));
2467 * skb_find_text - Find a text pattern in skb data
2468 * @skb: the buffer to look in
2469 * @from: search offset
2470 * @to: search limit
2471 * @config: textsearch configuration
2472 * @state: uninitialized textsearch state variable
2474 * Finds a pattern in the skb data according to the specified
2475 * textsearch configuration. Use textsearch_next() to retrieve
2476 * subsequent occurrences of the pattern. Returns the offset
2477 * to the first occurrence or UINT_MAX if no match was found.
2479 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2480 unsigned int to, struct ts_config *config,
2481 struct ts_state *state)
2483 unsigned int ret;
2485 config->get_next_block = skb_ts_get_next_block;
2486 config->finish = skb_ts_finish;
2488 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2490 ret = textsearch_find(config, state);
2491 return (ret <= to - from ? ret : UINT_MAX);
2493 EXPORT_SYMBOL(skb_find_text);
2496 * skb_append_datato_frags: - append the user data to a skb
2497 * @sk: sock structure
2498 * @skb: skb structure to be appened with user data.
2499 * @getfrag: call back function to be used for getting the user data
2500 * @from: pointer to user message iov
2501 * @length: length of the iov message
2503 * Description: This procedure append the user data in the fragment part
2504 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2506 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2507 int (*getfrag)(void *from, char *to, int offset,
2508 int len, int odd, struct sk_buff *skb),
2509 void *from, int length)
2511 int frg_cnt = 0;
2512 skb_frag_t *frag = NULL;
2513 struct page *page = NULL;
2514 int copy, left;
2515 int offset = 0;
2516 int ret;
2518 do {
2519 /* Return error if we don't have space for new frag */
2520 frg_cnt = skb_shinfo(skb)->nr_frags;
2521 if (frg_cnt >= MAX_SKB_FRAGS)
2522 return -EFAULT;
2524 /* allocate a new page for next frag */
2525 page = alloc_pages(sk->sk_allocation, 0);
2527 /* If alloc_page fails just return failure and caller will
2528 * free previous allocated pages by doing kfree_skb()
2530 if (page == NULL)
2531 return -ENOMEM;
2533 /* initialize the next frag */
2534 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2535 skb->truesize += PAGE_SIZE;
2536 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2538 /* get the new initialized frag */
2539 frg_cnt = skb_shinfo(skb)->nr_frags;
2540 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2542 /* copy the user data to page */
2543 left = PAGE_SIZE - frag->page_offset;
2544 copy = (length > left)? left : length;
2546 ret = getfrag(from, (page_address(frag->page) +
2547 frag->page_offset + frag->size),
2548 offset, copy, 0, skb);
2549 if (ret < 0)
2550 return -EFAULT;
2552 /* copy was successful so update the size parameters */
2553 frag->size += copy;
2554 skb->len += copy;
2555 skb->data_len += copy;
2556 offset += copy;
2557 length -= copy;
2559 } while (length > 0);
2561 return 0;
2563 EXPORT_SYMBOL(skb_append_datato_frags);
2566 * skb_pull_rcsum - pull skb and update receive checksum
2567 * @skb: buffer to update
2568 * @len: length of data pulled
2570 * This function performs an skb_pull on the packet and updates
2571 * the CHECKSUM_COMPLETE checksum. It should be used on
2572 * receive path processing instead of skb_pull unless you know
2573 * that the checksum difference is zero (e.g., a valid IP header)
2574 * or you are setting ip_summed to CHECKSUM_NONE.
2576 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2578 BUG_ON(len > skb->len);
2579 skb->len -= len;
2580 BUG_ON(skb->len < skb->data_len);
2581 skb_postpull_rcsum(skb, skb->data, len);
2582 return skb->data += len;
2584 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2587 * skb_segment - Perform protocol segmentation on skb.
2588 * @skb: buffer to segment
2589 * @features: features for the output path (see dev->features)
2591 * This function performs segmentation on the given skb. It returns
2592 * a pointer to the first in a list of new skbs for the segments.
2593 * In case of error it returns ERR_PTR(err).
2595 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2597 struct sk_buff *segs = NULL;
2598 struct sk_buff *tail = NULL;
2599 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2600 unsigned int mss = skb_shinfo(skb)->gso_size;
2601 unsigned int doffset = skb->data - skb_mac_header(skb);
2602 unsigned int offset = doffset;
2603 unsigned int headroom;
2604 unsigned int len;
2605 int sg = !!(features & NETIF_F_SG);
2606 int nfrags = skb_shinfo(skb)->nr_frags;
2607 int err = -ENOMEM;
2608 int i = 0;
2609 int pos;
2611 __skb_push(skb, doffset);
2612 headroom = skb_headroom(skb);
2613 pos = skb_headlen(skb);
2615 do {
2616 struct sk_buff *nskb;
2617 skb_frag_t *frag;
2618 int hsize;
2619 int size;
2621 len = skb->len - offset;
2622 if (len > mss)
2623 len = mss;
2625 hsize = skb_headlen(skb) - offset;
2626 if (hsize < 0)
2627 hsize = 0;
2628 if (hsize > len || !sg)
2629 hsize = len;
2631 if (!hsize && i >= nfrags) {
2632 BUG_ON(fskb->len != len);
2634 pos += len;
2635 nskb = skb_clone(fskb, GFP_ATOMIC);
2636 fskb = fskb->next;
2638 if (unlikely(!nskb))
2639 goto err;
2641 hsize = skb_end_pointer(nskb) - nskb->head;
2642 if (skb_cow_head(nskb, doffset + headroom)) {
2643 kfree_skb(nskb);
2644 goto err;
2647 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2648 hsize;
2649 skb_release_head_state(nskb);
2650 __skb_push(nskb, doffset);
2651 } else {
2652 nskb = alloc_skb(hsize + doffset + headroom,
2653 GFP_ATOMIC);
2655 if (unlikely(!nskb))
2656 goto err;
2658 skb_reserve(nskb, headroom);
2659 __skb_put(nskb, doffset);
2662 if (segs)
2663 tail->next = nskb;
2664 else
2665 segs = nskb;
2666 tail = nskb;
2668 __copy_skb_header(nskb, skb);
2669 nskb->mac_len = skb->mac_len;
2671 /* nskb and skb might have different headroom */
2672 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2673 nskb->csum_start += skb_headroom(nskb) - headroom;
2675 skb_reset_mac_header(nskb);
2676 skb_set_network_header(nskb, skb->mac_len);
2677 nskb->transport_header = (nskb->network_header +
2678 skb_network_header_len(skb));
2679 skb_copy_from_linear_data(skb, nskb->data, doffset);
2681 if (fskb != skb_shinfo(skb)->frag_list)
2682 continue;
2684 if (!sg) {
2685 nskb->ip_summed = CHECKSUM_NONE;
2686 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2687 skb_put(nskb, len),
2688 len, 0);
2689 continue;
2692 frag = skb_shinfo(nskb)->frags;
2694 skb_copy_from_linear_data_offset(skb, offset,
2695 skb_put(nskb, hsize), hsize);
2697 while (pos < offset + len && i < nfrags) {
2698 *frag = skb_shinfo(skb)->frags[i];
2699 get_page(frag->page);
2700 size = frag->size;
2702 if (pos < offset) {
2703 frag->page_offset += offset - pos;
2704 frag->size -= offset - pos;
2707 skb_shinfo(nskb)->nr_frags++;
2709 if (pos + size <= offset + len) {
2710 i++;
2711 pos += size;
2712 } else {
2713 frag->size -= pos + size - (offset + len);
2714 goto skip_fraglist;
2717 frag++;
2720 if (pos < offset + len) {
2721 struct sk_buff *fskb2 = fskb;
2723 BUG_ON(pos + fskb->len != offset + len);
2725 pos += fskb->len;
2726 fskb = fskb->next;
2728 if (fskb2->next) {
2729 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2730 if (!fskb2)
2731 goto err;
2732 } else
2733 skb_get(fskb2);
2735 SKB_FRAG_ASSERT(nskb);
2736 skb_shinfo(nskb)->frag_list = fskb2;
2739 skip_fraglist:
2740 nskb->data_len = len - hsize;
2741 nskb->len += nskb->data_len;
2742 nskb->truesize += nskb->data_len;
2743 } while ((offset += len) < skb->len);
2745 return segs;
2747 err:
2748 while ((skb = segs)) {
2749 segs = skb->next;
2750 kfree_skb(skb);
2752 return ERR_PTR(err);
2754 EXPORT_SYMBOL_GPL(skb_segment);
2756 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2758 struct sk_buff *p = *head;
2759 struct sk_buff *nskb;
2760 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2761 struct skb_shared_info *pinfo = skb_shinfo(p);
2762 unsigned int headroom;
2763 unsigned int len = skb_gro_len(skb);
2764 unsigned int offset = skb_gro_offset(skb);
2765 unsigned int headlen = skb_headlen(skb);
2767 if (p->len + len >= 65536)
2768 return -E2BIG;
2770 if (pinfo->frag_list)
2771 goto merge;
2772 else if (headlen <= offset) {
2773 skb_frag_t *frag;
2774 skb_frag_t *frag2;
2775 int i = skbinfo->nr_frags;
2776 int nr_frags = pinfo->nr_frags + i;
2778 offset -= headlen;
2780 if (nr_frags > MAX_SKB_FRAGS)
2781 return -E2BIG;
2783 pinfo->nr_frags = nr_frags;
2784 skbinfo->nr_frags = 0;
2786 frag = pinfo->frags + nr_frags;
2787 frag2 = skbinfo->frags + i;
2788 do {
2789 *--frag = *--frag2;
2790 } while (--i);
2792 frag->page_offset += offset;
2793 frag->size -= offset;
2795 skb->truesize -= skb->data_len;
2796 skb->len -= skb->data_len;
2797 skb->data_len = 0;
2799 NAPI_GRO_CB(skb)->free = 1;
2800 goto done;
2801 } else if (skb_gro_len(p) != pinfo->gso_size)
2802 return -E2BIG;
2804 headroom = skb_headroom(p);
2805 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2806 if (unlikely(!nskb))
2807 return -ENOMEM;
2809 __copy_skb_header(nskb, p);
2810 nskb->mac_len = p->mac_len;
2812 skb_reserve(nskb, headroom);
2813 __skb_put(nskb, skb_gro_offset(p));
2815 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2816 skb_set_network_header(nskb, skb_network_offset(p));
2817 skb_set_transport_header(nskb, skb_transport_offset(p));
2819 __skb_pull(p, skb_gro_offset(p));
2820 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2821 p->data - skb_mac_header(p));
2823 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2824 skb_shinfo(nskb)->frag_list = p;
2825 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2826 pinfo->gso_size = 0;
2827 skb_header_release(p);
2828 nskb->prev = p;
2830 nskb->data_len += p->len;
2831 nskb->truesize += p->len;
2832 nskb->len += p->len;
2834 *head = nskb;
2835 nskb->next = p->next;
2836 p->next = NULL;
2838 p = nskb;
2840 merge:
2841 if (offset > headlen) {
2842 unsigned int eat = offset - headlen;
2844 skbinfo->frags[0].page_offset += eat;
2845 skbinfo->frags[0].size -= eat;
2846 skb->data_len -= eat;
2847 skb->len -= eat;
2848 offset = headlen;
2851 __skb_pull(skb, offset);
2853 p->prev->next = skb;
2854 p->prev = skb;
2855 skb_header_release(skb);
2857 done:
2858 NAPI_GRO_CB(p)->count++;
2859 p->data_len += len;
2860 p->truesize += len;
2861 p->len += len;
2863 NAPI_GRO_CB(skb)->same_flow = 1;
2864 return 0;
2866 EXPORT_SYMBOL_GPL(skb_gro_receive);
2868 void __init skb_init(void)
2870 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2871 sizeof(struct sk_buff),
2873 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2874 NULL);
2875 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2876 (2*sizeof(struct sk_buff)) +
2877 sizeof(atomic_t),
2879 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2880 NULL);
2884 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2885 * @skb: Socket buffer containing the buffers to be mapped
2886 * @sg: The scatter-gather list to map into
2887 * @offset: The offset into the buffer's contents to start mapping
2888 * @len: Length of buffer space to be mapped
2890 * Fill the specified scatter-gather list with mappings/pointers into a
2891 * region of the buffer space attached to a socket buffer.
2893 static int
2894 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2896 int start = skb_headlen(skb);
2897 int i, copy = start - offset;
2898 struct sk_buff *frag_iter;
2899 int elt = 0;
2901 if (copy > 0) {
2902 if (copy > len)
2903 copy = len;
2904 sg_set_buf(sg, skb->data + offset, copy);
2905 elt++;
2906 if ((len -= copy) == 0)
2907 return elt;
2908 offset += copy;
2911 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2912 int end;
2914 WARN_ON(start > offset + len);
2916 end = start + skb_shinfo(skb)->frags[i].size;
2917 if ((copy = end - offset) > 0) {
2918 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2920 if (copy > len)
2921 copy = len;
2922 sg_set_page(&sg[elt], frag->page, copy,
2923 frag->page_offset+offset-start);
2924 elt++;
2925 if (!(len -= copy))
2926 return elt;
2927 offset += copy;
2929 start = end;
2932 skb_walk_frags(skb, frag_iter) {
2933 int end;
2935 WARN_ON(start > offset + len);
2937 end = start + frag_iter->len;
2938 if ((copy = end - offset) > 0) {
2939 if (copy > len)
2940 copy = len;
2941 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2942 copy);
2943 if ((len -= copy) == 0)
2944 return elt;
2945 offset += copy;
2947 start = end;
2949 BUG_ON(len);
2950 return elt;
2953 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2955 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2957 sg_mark_end(&sg[nsg - 1]);
2959 return nsg;
2961 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2964 * skb_cow_data - Check that a socket buffer's data buffers are writable
2965 * @skb: The socket buffer to check.
2966 * @tailbits: Amount of trailing space to be added
2967 * @trailer: Returned pointer to the skb where the @tailbits space begins
2969 * Make sure that the data buffers attached to a socket buffer are
2970 * writable. If they are not, private copies are made of the data buffers
2971 * and the socket buffer is set to use these instead.
2973 * If @tailbits is given, make sure that there is space to write @tailbits
2974 * bytes of data beyond current end of socket buffer. @trailer will be
2975 * set to point to the skb in which this space begins.
2977 * The number of scatterlist elements required to completely map the
2978 * COW'd and extended socket buffer will be returned.
2980 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2982 int copyflag;
2983 int elt;
2984 struct sk_buff *skb1, **skb_p;
2986 /* If skb is cloned or its head is paged, reallocate
2987 * head pulling out all the pages (pages are considered not writable
2988 * at the moment even if they are anonymous).
2990 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2991 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2992 return -ENOMEM;
2994 /* Easy case. Most of packets will go this way. */
2995 if (!skb_has_frag_list(skb)) {
2996 /* A little of trouble, not enough of space for trailer.
2997 * This should not happen, when stack is tuned to generate
2998 * good frames. OK, on miss we reallocate and reserve even more
2999 * space, 128 bytes is fair. */
3001 if (skb_tailroom(skb) < tailbits &&
3002 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3003 return -ENOMEM;
3005 /* Voila! */
3006 *trailer = skb;
3007 return 1;
3010 /* Misery. We are in troubles, going to mincer fragments... */
3012 elt = 1;
3013 skb_p = &skb_shinfo(skb)->frag_list;
3014 copyflag = 0;
3016 while ((skb1 = *skb_p) != NULL) {
3017 int ntail = 0;
3019 /* The fragment is partially pulled by someone,
3020 * this can happen on input. Copy it and everything
3021 * after it. */
3023 if (skb_shared(skb1))
3024 copyflag = 1;
3026 /* If the skb is the last, worry about trailer. */
3028 if (skb1->next == NULL && tailbits) {
3029 if (skb_shinfo(skb1)->nr_frags ||
3030 skb_has_frag_list(skb1) ||
3031 skb_tailroom(skb1) < tailbits)
3032 ntail = tailbits + 128;
3035 if (copyflag ||
3036 skb_cloned(skb1) ||
3037 ntail ||
3038 skb_shinfo(skb1)->nr_frags ||
3039 skb_has_frag_list(skb1)) {
3040 struct sk_buff *skb2;
3042 /* Fuck, we are miserable poor guys... */
3043 if (ntail == 0)
3044 skb2 = skb_copy(skb1, GFP_ATOMIC);
3045 else
3046 skb2 = skb_copy_expand(skb1,
3047 skb_headroom(skb1),
3048 ntail,
3049 GFP_ATOMIC);
3050 if (unlikely(skb2 == NULL))
3051 return -ENOMEM;
3053 if (skb1->sk)
3054 skb_set_owner_w(skb2, skb1->sk);
3056 /* Looking around. Are we still alive?
3057 * OK, link new skb, drop old one */
3059 skb2->next = skb1->next;
3060 *skb_p = skb2;
3061 kfree_skb(skb1);
3062 skb1 = skb2;
3064 elt++;
3065 *trailer = skb1;
3066 skb_p = &skb1->next;
3069 return elt;
3071 EXPORT_SYMBOL_GPL(skb_cow_data);
3073 static void sock_rmem_free(struct sk_buff *skb)
3075 struct sock *sk = skb->sk;
3077 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3081 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3083 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3085 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3086 (unsigned)sk->sk_rcvbuf)
3087 return -ENOMEM;
3089 skb_orphan(skb);
3090 skb->sk = sk;
3091 skb->destructor = sock_rmem_free;
3092 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3094 /* before exiting rcu section, make sure dst is refcounted */
3095 skb_dst_force(skb);
3097 skb_queue_tail(&sk->sk_error_queue, skb);
3098 if (!sock_flag(sk, SOCK_DEAD))
3099 sk->sk_data_ready(sk, skb->len);
3100 return 0;
3102 EXPORT_SYMBOL(sock_queue_err_skb);
3104 void skb_tstamp_tx(struct sk_buff *orig_skb,
3105 struct skb_shared_hwtstamps *hwtstamps)
3107 struct sock *sk = orig_skb->sk;
3108 struct sock_exterr_skb *serr;
3109 struct sk_buff *skb;
3110 int err;
3112 if (!sk)
3113 return;
3115 skb = skb_clone(orig_skb, GFP_ATOMIC);
3116 if (!skb)
3117 return;
3119 if (hwtstamps) {
3120 *skb_hwtstamps(skb) =
3121 *hwtstamps;
3122 } else {
3124 * no hardware time stamps available,
3125 * so keep the shared tx_flags and only
3126 * store software time stamp
3128 skb->tstamp = ktime_get_real();
3131 serr = SKB_EXT_ERR(skb);
3132 memset(serr, 0, sizeof(*serr));
3133 serr->ee.ee_errno = ENOMSG;
3134 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3136 err = sock_queue_err_skb(sk, skb);
3138 if (err)
3139 kfree_skb(skb);
3141 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3145 * skb_partial_csum_set - set up and verify partial csum values for packet
3146 * @skb: the skb to set
3147 * @start: the number of bytes after skb->data to start checksumming.
3148 * @off: the offset from start to place the checksum.
3150 * For untrusted partially-checksummed packets, we need to make sure the values
3151 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3153 * This function checks and sets those values and skb->ip_summed: if this
3154 * returns false you should drop the packet.
3156 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3158 if (unlikely(start > skb_headlen(skb)) ||
3159 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3160 if (net_ratelimit())
3161 printk(KERN_WARNING
3162 "bad partial csum: csum=%u/%u len=%u\n",
3163 start, off, skb_headlen(skb));
3164 return false;
3166 skb->ip_summed = CHECKSUM_PARTIAL;
3167 skb->csum_start = skb_headroom(skb) + start;
3168 skb->csum_offset = off;
3169 return true;
3171 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3173 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3175 if (net_ratelimit())
3176 pr_warning("%s: received packets cannot be forwarded"
3177 " while LRO is enabled\n", skb->dev->name);
3179 EXPORT_SYMBOL(__skb_warn_lro_forwarding);