i40e/i40evf: Add call to u64_stats_init to init
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
blobf4d6d90572d1bf806f84ffc1382d3f3e221ae387
1 /*******************************************************************************
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************/
27 #include <linux/prefetch.h>
28 #include "i40e.h"
29 #include "i40e_prototype.h"
31 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
32 u32 td_tag)
34 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
35 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
36 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
37 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
38 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
42 #define I40E_FD_CLEAN_DELAY 10
43 /**
44 * i40e_program_fdir_filter - Program a Flow Director filter
45 * @fdir_data: Packet data that will be filter parameters
46 * @raw_packet: the pre-allocated packet buffer for FDir
47 * @pf: The pf pointer
48 * @add: True for add/update, False for remove
49 **/
50 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
51 struct i40e_pf *pf, bool add)
53 struct i40e_filter_program_desc *fdir_desc;
54 struct i40e_tx_buffer *tx_buf, *first;
55 struct i40e_tx_desc *tx_desc;
56 struct i40e_ring *tx_ring;
57 unsigned int fpt, dcc;
58 struct i40e_vsi *vsi;
59 struct device *dev;
60 dma_addr_t dma;
61 u32 td_cmd = 0;
62 u16 delay = 0;
63 u16 i;
65 /* find existing FDIR VSI */
66 vsi = NULL;
67 for (i = 0; i < pf->num_alloc_vsi; i++)
68 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
69 vsi = pf->vsi[i];
70 if (!vsi)
71 return -ENOENT;
73 tx_ring = vsi->tx_rings[0];
74 dev = tx_ring->dev;
76 /* we need two descriptors to add/del a filter and we can wait */
77 do {
78 if (I40E_DESC_UNUSED(tx_ring) > 1)
79 break;
80 msleep_interruptible(1);
81 delay++;
82 } while (delay < I40E_FD_CLEAN_DELAY);
84 if (!(I40E_DESC_UNUSED(tx_ring) > 1))
85 return -EAGAIN;
87 dma = dma_map_single(dev, raw_packet,
88 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
89 if (dma_mapping_error(dev, dma))
90 goto dma_fail;
92 /* grab the next descriptor */
93 i = tx_ring->next_to_use;
94 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
95 first = &tx_ring->tx_bi[i];
96 memset(first, 0, sizeof(struct i40e_tx_buffer));
98 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
101 I40E_TXD_FLTR_QW0_QINDEX_MASK;
103 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
104 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
107 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109 /* Use LAN VSI Id if not programmed by user */
110 if (fdir_data->dest_vsi == 0)
111 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
112 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
113 else
114 fpt |= ((u32)fdir_data->dest_vsi <<
115 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
116 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120 if (add)
121 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
122 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
123 else
124 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
125 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
128 I40E_TXD_FLTR_QW1_DEST_MASK;
130 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
131 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133 if (fdir_data->cnt_index != 0) {
134 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
135 dcc |= ((u32)fdir_data->cnt_index <<
136 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
137 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
140 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
141 fdir_desc->rsvd = cpu_to_le32(0);
142 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
143 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145 /* Now program a dummy descriptor */
146 i = tx_ring->next_to_use;
147 tx_desc = I40E_TX_DESC(tx_ring, i);
148 tx_buf = &tx_ring->tx_bi[i];
150 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154 /* record length, and DMA address */
155 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
156 dma_unmap_addr_set(tx_buf, dma, dma);
158 tx_desc->buffer_addr = cpu_to_le64(dma);
159 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
162 tx_buf->raw_buf = (void *)raw_packet;
164 tx_desc->cmd_type_offset_bsz =
165 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167 /* set the timestamp */
168 tx_buf->time_stamp = jiffies;
170 /* Force memory writes to complete before letting h/w
171 * know there are new descriptors to fetch.
173 wmb();
175 /* Mark the data descriptor to be watched */
176 first->next_to_watch = tx_desc;
178 writel(tx_ring->next_to_use, tx_ring->tail);
179 return 0;
181 dma_fail:
182 return -1;
185 #define IP_HEADER_OFFSET 14
186 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
188 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
189 * @vsi: pointer to the targeted VSI
190 * @fd_data: the flow director data required for the FDir descriptor
191 * @add: true adds a filter, false removes it
193 * Returns 0 if the filters were successfully added or removed
195 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
196 struct i40e_fdir_filter *fd_data,
197 bool add)
199 struct i40e_pf *pf = vsi->back;
200 struct udphdr *udp;
201 struct iphdr *ip;
202 bool err = false;
203 u8 *raw_packet;
204 int ret;
205 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
206 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
209 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
210 if (!raw_packet)
211 return -ENOMEM;
212 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
214 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
215 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
216 + sizeof(struct iphdr));
218 ip->daddr = fd_data->dst_ip[0];
219 udp->dest = fd_data->dst_port;
220 ip->saddr = fd_data->src_ip[0];
221 udp->source = fd_data->src_port;
223 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
224 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
225 if (ret) {
226 dev_info(&pf->pdev->dev,
227 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
228 fd_data->pctype, fd_data->fd_id, ret);
229 err = true;
230 } else {
231 if (add)
232 dev_info(&pf->pdev->dev,
233 "Filter OK for PCTYPE %d loc = %d\n",
234 fd_data->pctype, fd_data->fd_id);
235 else
236 dev_info(&pf->pdev->dev,
237 "Filter deleted for PCTYPE %d loc = %d\n",
238 fd_data->pctype, fd_data->fd_id);
240 return err ? -EOPNOTSUPP : 0;
243 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
246 * @vsi: pointer to the targeted VSI
247 * @fd_data: the flow director data required for the FDir descriptor
248 * @add: true adds a filter, false removes it
250 * Returns 0 if the filters were successfully added or removed
252 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
253 struct i40e_fdir_filter *fd_data,
254 bool add)
256 struct i40e_pf *pf = vsi->back;
257 struct tcphdr *tcp;
258 struct iphdr *ip;
259 bool err = false;
260 u8 *raw_packet;
261 int ret;
262 /* Dummy packet */
263 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
264 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
265 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
266 0x0, 0x72, 0, 0, 0, 0};
268 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
269 if (!raw_packet)
270 return -ENOMEM;
271 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
274 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
275 + sizeof(struct iphdr));
277 ip->daddr = fd_data->dst_ip[0];
278 tcp->dest = fd_data->dst_port;
279 ip->saddr = fd_data->src_ip[0];
280 tcp->source = fd_data->src_port;
282 if (add) {
283 pf->fd_tcp_rule++;
284 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
285 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
286 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
288 } else {
289 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
290 (pf->fd_tcp_rule - 1) : 0;
291 if (pf->fd_tcp_rule == 0) {
292 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
293 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
297 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
300 if (ret) {
301 dev_info(&pf->pdev->dev,
302 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303 fd_data->pctype, fd_data->fd_id, ret);
304 err = true;
305 } else {
306 if (add)
307 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308 fd_data->pctype, fd_data->fd_id);
309 else
310 dev_info(&pf->pdev->dev,
311 "Filter deleted for PCTYPE %d loc = %d\n",
312 fd_data->pctype, fd_data->fd_id);
315 return err ? -EOPNOTSUPP : 0;
319 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320 * a specific flow spec
321 * @vsi: pointer to the targeted VSI
322 * @fd_data: the flow director data required for the FDir descriptor
323 * @add: true adds a filter, false removes it
325 * Always returns -EOPNOTSUPP
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328 struct i40e_fdir_filter *fd_data,
329 bool add)
331 return -EOPNOTSUPP;
334 #define I40E_IP_DUMMY_PACKET_LEN 34
336 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337 * a specific flow spec
338 * @vsi: pointer to the targeted VSI
339 * @fd_data: the flow director data required for the FDir descriptor
340 * @add: true adds a filter, false removes it
342 * Returns 0 if the filters were successfully added or removed
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345 struct i40e_fdir_filter *fd_data,
346 bool add)
348 struct i40e_pf *pf = vsi->back;
349 struct iphdr *ip;
350 bool err = false;
351 u8 *raw_packet;
352 int ret;
353 int i;
354 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356 0, 0, 0, 0};
358 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361 if (!raw_packet)
362 return -ENOMEM;
363 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
366 ip->saddr = fd_data->src_ip[0];
367 ip->daddr = fd_data->dst_ip[0];
368 ip->protocol = 0;
370 fd_data->pctype = i;
371 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
373 if (ret) {
374 dev_info(&pf->pdev->dev,
375 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376 fd_data->pctype, fd_data->fd_id, ret);
377 err = true;
378 } else {
379 if (add)
380 dev_info(&pf->pdev->dev,
381 "Filter OK for PCTYPE %d loc = %d\n",
382 fd_data->pctype, fd_data->fd_id);
383 else
384 dev_info(&pf->pdev->dev,
385 "Filter deleted for PCTYPE %d loc = %d\n",
386 fd_data->pctype, fd_data->fd_id);
390 return err ? -EOPNOTSUPP : 0;
394 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395 * @vsi: pointer to the targeted VSI
396 * @cmd: command to get or set RX flow classification rules
397 * @add: true adds a filter, false removes it
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401 struct i40e_fdir_filter *input, bool add)
403 struct i40e_pf *pf = vsi->back;
404 int ret;
406 switch (input->flow_type & ~FLOW_EXT) {
407 case TCP_V4_FLOW:
408 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409 break;
410 case UDP_V4_FLOW:
411 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412 break;
413 case SCTP_V4_FLOW:
414 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415 break;
416 case IPV4_FLOW:
417 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418 break;
419 case IP_USER_FLOW:
420 switch (input->ip4_proto) {
421 case IPPROTO_TCP:
422 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423 break;
424 case IPPROTO_UDP:
425 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426 break;
427 case IPPROTO_SCTP:
428 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429 break;
430 default:
431 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432 break;
434 break;
435 default:
436 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437 input->flow_type);
438 ret = -EINVAL;
441 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442 return ret;
446 * i40e_fd_handle_status - check the Programming Status for FD
447 * @rx_ring: the Rx ring for this descriptor
448 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449 * @prog_id: the id originally used for programming
451 * This is used to verify if the FD programming or invalidation
452 * requested by SW to the HW is successful or not and take actions accordingly.
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455 union i40e_rx_desc *rx_desc, u8 prog_id)
457 struct i40e_pf *pf = rx_ring->vsi->back;
458 struct pci_dev *pdev = pf->pdev;
459 u32 fcnt_prog, fcnt_avail;
460 u32 error;
461 u64 qw;
463 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
467 if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
469 (I40E_DEBUG_FD & pf->hw.debug_mask))
470 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471 rx_desc->wb.qword0.hi_dword.fd_id);
473 pf->fd_add_err++;
474 /* store the current atr filter count */
475 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
477 /* filter programming failed most likely due to table full */
478 fcnt_prog = i40e_get_cur_guaranteed_fd_count(pf);
479 fcnt_avail = pf->fdir_pf_filter_count;
480 /* If ATR is running fcnt_prog can quickly change,
481 * if we are very close to full, it makes sense to disable
482 * FD ATR/SB and then re-enable it when there is room.
484 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
485 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
486 !(pf->auto_disable_flags &
487 I40E_FLAG_FD_SB_ENABLED)) {
488 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
489 pf->auto_disable_flags |=
490 I40E_FLAG_FD_SB_ENABLED;
492 } else {
493 dev_info(&pdev->dev,
494 "FD filter programming failed due to incorrect filter parameters\n");
496 } else if (error ==
497 (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
498 if (I40E_DEBUG_FD & pf->hw.debug_mask)
499 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
500 rx_desc->wb.qword0.hi_dword.fd_id);
505 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
506 * @ring: the ring that owns the buffer
507 * @tx_buffer: the buffer to free
509 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
510 struct i40e_tx_buffer *tx_buffer)
512 if (tx_buffer->skb) {
513 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
514 kfree(tx_buffer->raw_buf);
515 else
516 dev_kfree_skb_any(tx_buffer->skb);
518 if (dma_unmap_len(tx_buffer, len))
519 dma_unmap_single(ring->dev,
520 dma_unmap_addr(tx_buffer, dma),
521 dma_unmap_len(tx_buffer, len),
522 DMA_TO_DEVICE);
523 } else if (dma_unmap_len(tx_buffer, len)) {
524 dma_unmap_page(ring->dev,
525 dma_unmap_addr(tx_buffer, dma),
526 dma_unmap_len(tx_buffer, len),
527 DMA_TO_DEVICE);
529 tx_buffer->next_to_watch = NULL;
530 tx_buffer->skb = NULL;
531 dma_unmap_len_set(tx_buffer, len, 0);
532 /* tx_buffer must be completely set up in the transmit path */
536 * i40e_clean_tx_ring - Free any empty Tx buffers
537 * @tx_ring: ring to be cleaned
539 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
541 unsigned long bi_size;
542 u16 i;
544 /* ring already cleared, nothing to do */
545 if (!tx_ring->tx_bi)
546 return;
548 /* Free all the Tx ring sk_buffs */
549 for (i = 0; i < tx_ring->count; i++)
550 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
552 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
553 memset(tx_ring->tx_bi, 0, bi_size);
555 /* Zero out the descriptor ring */
556 memset(tx_ring->desc, 0, tx_ring->size);
558 tx_ring->next_to_use = 0;
559 tx_ring->next_to_clean = 0;
561 if (!tx_ring->netdev)
562 return;
564 /* cleanup Tx queue statistics */
565 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
566 tx_ring->queue_index));
570 * i40e_free_tx_resources - Free Tx resources per queue
571 * @tx_ring: Tx descriptor ring for a specific queue
573 * Free all transmit software resources
575 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
577 i40e_clean_tx_ring(tx_ring);
578 kfree(tx_ring->tx_bi);
579 tx_ring->tx_bi = NULL;
581 if (tx_ring->desc) {
582 dma_free_coherent(tx_ring->dev, tx_ring->size,
583 tx_ring->desc, tx_ring->dma);
584 tx_ring->desc = NULL;
589 * i40e_get_tx_pending - how many tx descriptors not processed
590 * @tx_ring: the ring of descriptors
592 * Since there is no access to the ring head register
593 * in XL710, we need to use our local copies
595 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
597 u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
598 ? ring->next_to_use
599 : ring->next_to_use + ring->count);
600 return ntu - ring->next_to_clean;
604 * i40e_check_tx_hang - Is there a hang in the Tx queue
605 * @tx_ring: the ring of descriptors
607 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
609 u32 tx_pending = i40e_get_tx_pending(tx_ring);
610 struct i40e_pf *pf = tx_ring->vsi->back;
611 bool ret = false;
613 clear_check_for_tx_hang(tx_ring);
615 /* Check for a hung queue, but be thorough. This verifies
616 * that a transmit has been completed since the previous
617 * check AND there is at least one packet pending. The
618 * ARMED bit is set to indicate a potential hang. The
619 * bit is cleared if a pause frame is received to remove
620 * false hang detection due to PFC or 802.3x frames. By
621 * requiring this to fail twice we avoid races with
622 * PFC clearing the ARMED bit and conditions where we
623 * run the check_tx_hang logic with a transmit completion
624 * pending but without time to complete it yet.
626 if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
627 (tx_pending >= I40E_MIN_DESC_PENDING)) {
628 /* make sure it is true for two checks in a row */
629 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
630 &tx_ring->state);
631 } else if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
632 (tx_pending < I40E_MIN_DESC_PENDING) &&
633 (tx_pending > 0)) {
634 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
635 dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
636 tx_pending, tx_ring->queue_index);
637 pf->tx_sluggish_count++;
638 } else {
639 /* update completed stats and disarm the hang check */
640 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
641 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
644 return ret;
648 * i40e_get_head - Retrieve head from head writeback
649 * @tx_ring: tx ring to fetch head of
651 * Returns value of Tx ring head based on value stored
652 * in head write-back location
654 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
656 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
658 return le32_to_cpu(*(volatile __le32 *)head);
661 #define WB_STRIDE 0x3
664 * i40e_clean_tx_irq - Reclaim resources after transmit completes
665 * @tx_ring: tx ring to clean
666 * @budget: how many cleans we're allowed
668 * Returns true if there's any budget left (e.g. the clean is finished)
670 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
672 u16 i = tx_ring->next_to_clean;
673 struct i40e_tx_buffer *tx_buf;
674 struct i40e_tx_desc *tx_head;
675 struct i40e_tx_desc *tx_desc;
676 unsigned int total_packets = 0;
677 unsigned int total_bytes = 0;
679 tx_buf = &tx_ring->tx_bi[i];
680 tx_desc = I40E_TX_DESC(tx_ring, i);
681 i -= tx_ring->count;
683 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
685 do {
686 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
688 /* if next_to_watch is not set then there is no work pending */
689 if (!eop_desc)
690 break;
692 /* prevent any other reads prior to eop_desc */
693 read_barrier_depends();
695 /* we have caught up to head, no work left to do */
696 if (tx_head == tx_desc)
697 break;
699 /* clear next_to_watch to prevent false hangs */
700 tx_buf->next_to_watch = NULL;
702 /* update the statistics for this packet */
703 total_bytes += tx_buf->bytecount;
704 total_packets += tx_buf->gso_segs;
706 /* free the skb */
707 dev_consume_skb_any(tx_buf->skb);
709 /* unmap skb header data */
710 dma_unmap_single(tx_ring->dev,
711 dma_unmap_addr(tx_buf, dma),
712 dma_unmap_len(tx_buf, len),
713 DMA_TO_DEVICE);
715 /* clear tx_buffer data */
716 tx_buf->skb = NULL;
717 dma_unmap_len_set(tx_buf, len, 0);
719 /* unmap remaining buffers */
720 while (tx_desc != eop_desc) {
722 tx_buf++;
723 tx_desc++;
724 i++;
725 if (unlikely(!i)) {
726 i -= tx_ring->count;
727 tx_buf = tx_ring->tx_bi;
728 tx_desc = I40E_TX_DESC(tx_ring, 0);
731 /* unmap any remaining paged data */
732 if (dma_unmap_len(tx_buf, len)) {
733 dma_unmap_page(tx_ring->dev,
734 dma_unmap_addr(tx_buf, dma),
735 dma_unmap_len(tx_buf, len),
736 DMA_TO_DEVICE);
737 dma_unmap_len_set(tx_buf, len, 0);
741 /* move us one more past the eop_desc for start of next pkt */
742 tx_buf++;
743 tx_desc++;
744 i++;
745 if (unlikely(!i)) {
746 i -= tx_ring->count;
747 tx_buf = tx_ring->tx_bi;
748 tx_desc = I40E_TX_DESC(tx_ring, 0);
751 /* update budget accounting */
752 budget--;
753 } while (likely(budget));
755 i += tx_ring->count;
756 tx_ring->next_to_clean = i;
757 u64_stats_update_begin(&tx_ring->syncp);
758 tx_ring->stats.bytes += total_bytes;
759 tx_ring->stats.packets += total_packets;
760 u64_stats_update_end(&tx_ring->syncp);
761 tx_ring->q_vector->tx.total_bytes += total_bytes;
762 tx_ring->q_vector->tx.total_packets += total_packets;
764 /* check to see if there are any non-cache aligned descriptors
765 * waiting to be written back, and kick the hardware to force
766 * them to be written back in case of napi polling
768 if (budget &&
769 !((i & WB_STRIDE) == WB_STRIDE) &&
770 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
771 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
772 tx_ring->arm_wb = true;
773 else
774 tx_ring->arm_wb = false;
776 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
777 /* schedule immediate reset if we believe we hung */
778 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
779 " VSI <%d>\n"
780 " Tx Queue <%d>\n"
781 " next_to_use <%x>\n"
782 " next_to_clean <%x>\n",
783 tx_ring->vsi->seid,
784 tx_ring->queue_index,
785 tx_ring->next_to_use, i);
786 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
787 " time_stamp <%lx>\n"
788 " jiffies <%lx>\n",
789 tx_ring->tx_bi[i].time_stamp, jiffies);
791 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
793 dev_info(tx_ring->dev,
794 "tx hang detected on queue %d, reset requested\n",
795 tx_ring->queue_index);
797 /* do not fire the reset immediately, wait for the stack to
798 * decide we are truly stuck, also prevents every queue from
799 * simultaneously requesting a reset
802 /* the adapter is about to reset, no point in enabling polling */
803 budget = 1;
806 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
807 tx_ring->queue_index),
808 total_packets, total_bytes);
810 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
811 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
812 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
813 /* Make sure that anybody stopping the queue after this
814 * sees the new next_to_clean.
816 smp_mb();
817 if (__netif_subqueue_stopped(tx_ring->netdev,
818 tx_ring->queue_index) &&
819 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
820 netif_wake_subqueue(tx_ring->netdev,
821 tx_ring->queue_index);
822 ++tx_ring->tx_stats.restart_queue;
826 return !!budget;
830 * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
831 * @vsi: the VSI we care about
832 * @q_vector: the vector on which to force writeback
835 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
837 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
838 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
839 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
840 /* allow 00 to be written to the index */
842 wr32(&vsi->back->hw,
843 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
844 val);
848 * i40e_set_new_dynamic_itr - Find new ITR level
849 * @rc: structure containing ring performance data
851 * Stores a new ITR value based on packets and byte counts during
852 * the last interrupt. The advantage of per interrupt computation
853 * is faster updates and more accurate ITR for the current traffic
854 * pattern. Constants in this function were computed based on
855 * theoretical maximum wire speed and thresholds were set based on
856 * testing data as well as attempting to minimize response time
857 * while increasing bulk throughput.
859 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
861 enum i40e_latency_range new_latency_range = rc->latency_range;
862 u32 new_itr = rc->itr;
863 int bytes_per_int;
865 if (rc->total_packets == 0 || !rc->itr)
866 return;
868 /* simple throttlerate management
869 * 0-10MB/s lowest (100000 ints/s)
870 * 10-20MB/s low (20000 ints/s)
871 * 20-1249MB/s bulk (8000 ints/s)
873 bytes_per_int = rc->total_bytes / rc->itr;
874 switch (rc->itr) {
875 case I40E_LOWEST_LATENCY:
876 if (bytes_per_int > 10)
877 new_latency_range = I40E_LOW_LATENCY;
878 break;
879 case I40E_LOW_LATENCY:
880 if (bytes_per_int > 20)
881 new_latency_range = I40E_BULK_LATENCY;
882 else if (bytes_per_int <= 10)
883 new_latency_range = I40E_LOWEST_LATENCY;
884 break;
885 case I40E_BULK_LATENCY:
886 if (bytes_per_int <= 20)
887 rc->latency_range = I40E_LOW_LATENCY;
888 break;
891 switch (new_latency_range) {
892 case I40E_LOWEST_LATENCY:
893 new_itr = I40E_ITR_100K;
894 break;
895 case I40E_LOW_LATENCY:
896 new_itr = I40E_ITR_20K;
897 break;
898 case I40E_BULK_LATENCY:
899 new_itr = I40E_ITR_8K;
900 break;
901 default:
902 break;
905 if (new_itr != rc->itr) {
906 /* do an exponential smoothing */
907 new_itr = (10 * new_itr * rc->itr) /
908 ((9 * new_itr) + rc->itr);
909 rc->itr = new_itr & I40E_MAX_ITR;
912 rc->total_bytes = 0;
913 rc->total_packets = 0;
917 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
918 * @q_vector: the vector to adjust
920 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
922 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
923 struct i40e_hw *hw = &q_vector->vsi->back->hw;
924 u32 reg_addr;
925 u16 old_itr;
927 reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
928 old_itr = q_vector->rx.itr;
929 i40e_set_new_dynamic_itr(&q_vector->rx);
930 if (old_itr != q_vector->rx.itr)
931 wr32(hw, reg_addr, q_vector->rx.itr);
933 reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
934 old_itr = q_vector->tx.itr;
935 i40e_set_new_dynamic_itr(&q_vector->tx);
936 if (old_itr != q_vector->tx.itr)
937 wr32(hw, reg_addr, q_vector->tx.itr);
941 * i40e_clean_programming_status - clean the programming status descriptor
942 * @rx_ring: the rx ring that has this descriptor
943 * @rx_desc: the rx descriptor written back by HW
945 * Flow director should handle FD_FILTER_STATUS to check its filter programming
946 * status being successful or not and take actions accordingly. FCoE should
947 * handle its context/filter programming/invalidation status and take actions.
950 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
951 union i40e_rx_desc *rx_desc)
953 u64 qw;
954 u8 id;
956 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
957 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
958 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
960 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
961 i40e_fd_handle_status(rx_ring, rx_desc, id);
962 #ifdef I40E_FCOE
963 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
964 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
965 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
966 #endif
970 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
971 * @tx_ring: the tx ring to set up
973 * Return 0 on success, negative on error
975 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
977 struct device *dev = tx_ring->dev;
978 int bi_size;
980 if (!dev)
981 return -ENOMEM;
983 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
984 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
985 if (!tx_ring->tx_bi)
986 goto err;
988 /* round up to nearest 4K */
989 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
990 /* add u32 for head writeback, align after this takes care of
991 * guaranteeing this is at least one cache line in size
993 tx_ring->size += sizeof(u32);
994 tx_ring->size = ALIGN(tx_ring->size, 4096);
995 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
996 &tx_ring->dma, GFP_KERNEL);
997 if (!tx_ring->desc) {
998 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
999 tx_ring->size);
1000 goto err;
1003 tx_ring->next_to_use = 0;
1004 tx_ring->next_to_clean = 0;
1005 return 0;
1007 err:
1008 kfree(tx_ring->tx_bi);
1009 tx_ring->tx_bi = NULL;
1010 return -ENOMEM;
1014 * i40e_clean_rx_ring - Free Rx buffers
1015 * @rx_ring: ring to be cleaned
1017 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1019 struct device *dev = rx_ring->dev;
1020 struct i40e_rx_buffer *rx_bi;
1021 unsigned long bi_size;
1022 u16 i;
1024 /* ring already cleared, nothing to do */
1025 if (!rx_ring->rx_bi)
1026 return;
1028 /* Free all the Rx ring sk_buffs */
1029 for (i = 0; i < rx_ring->count; i++) {
1030 rx_bi = &rx_ring->rx_bi[i];
1031 if (rx_bi->dma) {
1032 dma_unmap_single(dev,
1033 rx_bi->dma,
1034 rx_ring->rx_buf_len,
1035 DMA_FROM_DEVICE);
1036 rx_bi->dma = 0;
1038 if (rx_bi->skb) {
1039 dev_kfree_skb(rx_bi->skb);
1040 rx_bi->skb = NULL;
1042 if (rx_bi->page) {
1043 if (rx_bi->page_dma) {
1044 dma_unmap_page(dev,
1045 rx_bi->page_dma,
1046 PAGE_SIZE / 2,
1047 DMA_FROM_DEVICE);
1048 rx_bi->page_dma = 0;
1050 __free_page(rx_bi->page);
1051 rx_bi->page = NULL;
1052 rx_bi->page_offset = 0;
1056 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1057 memset(rx_ring->rx_bi, 0, bi_size);
1059 /* Zero out the descriptor ring */
1060 memset(rx_ring->desc, 0, rx_ring->size);
1062 rx_ring->next_to_clean = 0;
1063 rx_ring->next_to_use = 0;
1067 * i40e_free_rx_resources - Free Rx resources
1068 * @rx_ring: ring to clean the resources from
1070 * Free all receive software resources
1072 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1074 i40e_clean_rx_ring(rx_ring);
1075 kfree(rx_ring->rx_bi);
1076 rx_ring->rx_bi = NULL;
1078 if (rx_ring->desc) {
1079 dma_free_coherent(rx_ring->dev, rx_ring->size,
1080 rx_ring->desc, rx_ring->dma);
1081 rx_ring->desc = NULL;
1086 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1087 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1089 * Returns 0 on success, negative on failure
1091 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1093 struct device *dev = rx_ring->dev;
1094 int bi_size;
1096 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1097 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1098 if (!rx_ring->rx_bi)
1099 goto err;
1101 u64_stats_init(rx_ring->syncp);
1103 /* Round up to nearest 4K */
1104 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1105 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1106 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1107 rx_ring->size = ALIGN(rx_ring->size, 4096);
1108 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1109 &rx_ring->dma, GFP_KERNEL);
1111 if (!rx_ring->desc) {
1112 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1113 rx_ring->size);
1114 goto err;
1117 rx_ring->next_to_clean = 0;
1118 rx_ring->next_to_use = 0;
1120 return 0;
1121 err:
1122 kfree(rx_ring->rx_bi);
1123 rx_ring->rx_bi = NULL;
1124 return -ENOMEM;
1128 * i40e_release_rx_desc - Store the new tail and head values
1129 * @rx_ring: ring to bump
1130 * @val: new head index
1132 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1134 rx_ring->next_to_use = val;
1135 /* Force memory writes to complete before letting h/w
1136 * know there are new descriptors to fetch. (Only
1137 * applicable for weak-ordered memory model archs,
1138 * such as IA-64).
1140 wmb();
1141 writel(val, rx_ring->tail);
1145 * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
1146 * @rx_ring: ring to place buffers on
1147 * @cleaned_count: number of buffers to replace
1149 void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1151 u16 i = rx_ring->next_to_use;
1152 union i40e_rx_desc *rx_desc;
1153 struct i40e_rx_buffer *bi;
1154 struct sk_buff *skb;
1156 /* do nothing if no valid netdev defined */
1157 if (!rx_ring->netdev || !cleaned_count)
1158 return;
1160 while (cleaned_count--) {
1161 rx_desc = I40E_RX_DESC(rx_ring, i);
1162 bi = &rx_ring->rx_bi[i];
1163 skb = bi->skb;
1165 if (!skb) {
1166 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1167 rx_ring->rx_buf_len);
1168 if (!skb) {
1169 rx_ring->rx_stats.alloc_buff_failed++;
1170 goto no_buffers;
1172 /* initialize queue mapping */
1173 skb_record_rx_queue(skb, rx_ring->queue_index);
1174 bi->skb = skb;
1177 if (!bi->dma) {
1178 bi->dma = dma_map_single(rx_ring->dev,
1179 skb->data,
1180 rx_ring->rx_buf_len,
1181 DMA_FROM_DEVICE);
1182 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1183 rx_ring->rx_stats.alloc_buff_failed++;
1184 bi->dma = 0;
1185 goto no_buffers;
1189 if (ring_is_ps_enabled(rx_ring)) {
1190 if (!bi->page) {
1191 bi->page = alloc_page(GFP_ATOMIC);
1192 if (!bi->page) {
1193 rx_ring->rx_stats.alloc_page_failed++;
1194 goto no_buffers;
1198 if (!bi->page_dma) {
1199 /* use a half page if we're re-using */
1200 bi->page_offset ^= PAGE_SIZE / 2;
1201 bi->page_dma = dma_map_page(rx_ring->dev,
1202 bi->page,
1203 bi->page_offset,
1204 PAGE_SIZE / 2,
1205 DMA_FROM_DEVICE);
1206 if (dma_mapping_error(rx_ring->dev,
1207 bi->page_dma)) {
1208 rx_ring->rx_stats.alloc_page_failed++;
1209 bi->page_dma = 0;
1210 goto no_buffers;
1214 /* Refresh the desc even if buffer_addrs didn't change
1215 * because each write-back erases this info.
1217 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1218 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1219 } else {
1220 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1221 rx_desc->read.hdr_addr = 0;
1223 i++;
1224 if (i == rx_ring->count)
1225 i = 0;
1228 no_buffers:
1229 if (rx_ring->next_to_use != i)
1230 i40e_release_rx_desc(rx_ring, i);
1234 * i40e_receive_skb - Send a completed packet up the stack
1235 * @rx_ring: rx ring in play
1236 * @skb: packet to send up
1237 * @vlan_tag: vlan tag for packet
1239 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1240 struct sk_buff *skb, u16 vlan_tag)
1242 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1243 struct i40e_vsi *vsi = rx_ring->vsi;
1244 u64 flags = vsi->back->flags;
1246 if (vlan_tag & VLAN_VID_MASK)
1247 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1249 if (flags & I40E_FLAG_IN_NETPOLL)
1250 netif_rx(skb);
1251 else
1252 napi_gro_receive(&q_vector->napi, skb);
1256 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1257 * @vsi: the VSI we care about
1258 * @skb: skb currently being received and modified
1259 * @rx_status: status value of last descriptor in packet
1260 * @rx_error: error value of last descriptor in packet
1261 * @rx_ptype: ptype value of last descriptor in packet
1263 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1264 struct sk_buff *skb,
1265 u32 rx_status,
1266 u32 rx_error,
1267 u16 rx_ptype)
1269 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1270 bool ipv4 = false, ipv6 = false;
1271 bool ipv4_tunnel, ipv6_tunnel;
1272 __wsum rx_udp_csum;
1273 struct iphdr *iph;
1274 __sum16 csum;
1276 ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1277 (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1278 ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1279 (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1281 skb->ip_summed = CHECKSUM_NONE;
1283 /* Rx csum enabled and ip headers found? */
1284 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1285 return;
1287 /* did the hardware decode the packet and checksum? */
1288 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1289 return;
1291 /* both known and outer_ip must be set for the below code to work */
1292 if (!(decoded.known && decoded.outer_ip))
1293 return;
1295 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1296 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1297 ipv4 = true;
1298 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1299 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1300 ipv6 = true;
1302 if (ipv4 &&
1303 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1304 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1305 goto checksum_fail;
1307 /* likely incorrect csum if alternate IP extension headers found */
1308 if (ipv6 &&
1309 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1310 /* don't increment checksum err here, non-fatal err */
1311 return;
1313 /* there was some L4 error, count error and punt packet to the stack */
1314 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1315 goto checksum_fail;
1317 /* handle packets that were not able to be checksummed due
1318 * to arrival speed, in this case the stack can compute
1319 * the csum.
1321 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1322 return;
1324 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1325 * it in the driver, hardware does not do it for us.
1326 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1327 * so the total length of IPv4 header is IHL*4 bytes
1328 * The UDP_0 bit *may* bet set if the *inner* header is UDP
1330 if (ipv4_tunnel) {
1331 skb->transport_header = skb->mac_header +
1332 sizeof(struct ethhdr) +
1333 (ip_hdr(skb)->ihl * 4);
1335 /* Add 4 bytes for VLAN tagged packets */
1336 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1337 skb->protocol == htons(ETH_P_8021AD))
1338 ? VLAN_HLEN : 0;
1340 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1341 (udp_hdr(skb)->check != 0)) {
1342 rx_udp_csum = udp_csum(skb);
1343 iph = ip_hdr(skb);
1344 csum = csum_tcpudp_magic(
1345 iph->saddr, iph->daddr,
1346 (skb->len - skb_transport_offset(skb)),
1347 IPPROTO_UDP, rx_udp_csum);
1349 if (udp_hdr(skb)->check != csum)
1350 goto checksum_fail;
1352 } /* else its GRE and so no outer UDP header */
1355 skb->ip_summed = CHECKSUM_UNNECESSARY;
1356 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1358 return;
1360 checksum_fail:
1361 vsi->back->hw_csum_rx_error++;
1365 * i40e_rx_hash - returns the hash value from the Rx descriptor
1366 * @ring: descriptor ring
1367 * @rx_desc: specific descriptor
1369 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1370 union i40e_rx_desc *rx_desc)
1372 const __le64 rss_mask =
1373 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1374 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1376 if ((ring->netdev->features & NETIF_F_RXHASH) &&
1377 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1378 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1379 else
1380 return 0;
1384 * i40e_ptype_to_hash - get a hash type
1385 * @ptype: the ptype value from the descriptor
1387 * Returns a hash type to be used by skb_set_hash
1389 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1391 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1393 if (!decoded.known)
1394 return PKT_HASH_TYPE_NONE;
1396 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1397 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1398 return PKT_HASH_TYPE_L4;
1399 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1400 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1401 return PKT_HASH_TYPE_L3;
1402 else
1403 return PKT_HASH_TYPE_L2;
1407 * i40e_clean_rx_irq - Reclaim resources after receive completes
1408 * @rx_ring: rx ring to clean
1409 * @budget: how many cleans we're allowed
1411 * Returns true if there's any budget left (e.g. the clean is finished)
1413 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1415 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1416 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1417 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1418 const int current_node = numa_node_id();
1419 struct i40e_vsi *vsi = rx_ring->vsi;
1420 u16 i = rx_ring->next_to_clean;
1421 union i40e_rx_desc *rx_desc;
1422 u32 rx_error, rx_status;
1423 u8 rx_ptype;
1424 u64 qword;
1426 if (budget <= 0)
1427 return 0;
1429 rx_desc = I40E_RX_DESC(rx_ring, i);
1430 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1431 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1432 I40E_RXD_QW1_STATUS_SHIFT;
1434 while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1435 union i40e_rx_desc *next_rxd;
1436 struct i40e_rx_buffer *rx_bi;
1437 struct sk_buff *skb;
1438 u16 vlan_tag;
1439 if (i40e_rx_is_programming_status(qword)) {
1440 i40e_clean_programming_status(rx_ring, rx_desc);
1441 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1442 goto next_desc;
1444 rx_bi = &rx_ring->rx_bi[i];
1445 skb = rx_bi->skb;
1446 prefetch(skb->data);
1448 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1449 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1450 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1451 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1452 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1453 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1455 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1456 I40E_RXD_QW1_ERROR_SHIFT;
1457 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1458 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1460 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1461 I40E_RXD_QW1_PTYPE_SHIFT;
1462 rx_bi->skb = NULL;
1464 /* This memory barrier is needed to keep us from reading
1465 * any other fields out of the rx_desc until we know the
1466 * STATUS_DD bit is set
1468 rmb();
1470 /* Get the header and possibly the whole packet
1471 * If this is an skb from previous receive dma will be 0
1473 if (rx_bi->dma) {
1474 u16 len;
1476 if (rx_hbo)
1477 len = I40E_RX_HDR_SIZE;
1478 else if (rx_sph)
1479 len = rx_header_len;
1480 else if (rx_packet_len)
1481 len = rx_packet_len; /* 1buf/no split found */
1482 else
1483 len = rx_header_len; /* split always mode */
1485 skb_put(skb, len);
1486 dma_unmap_single(rx_ring->dev,
1487 rx_bi->dma,
1488 rx_ring->rx_buf_len,
1489 DMA_FROM_DEVICE);
1490 rx_bi->dma = 0;
1493 /* Get the rest of the data if this was a header split */
1494 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
1496 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1497 rx_bi->page,
1498 rx_bi->page_offset,
1499 rx_packet_len);
1501 skb->len += rx_packet_len;
1502 skb->data_len += rx_packet_len;
1503 skb->truesize += rx_packet_len;
1505 if ((page_count(rx_bi->page) == 1) &&
1506 (page_to_nid(rx_bi->page) == current_node))
1507 get_page(rx_bi->page);
1508 else
1509 rx_bi->page = NULL;
1511 dma_unmap_page(rx_ring->dev,
1512 rx_bi->page_dma,
1513 PAGE_SIZE / 2,
1514 DMA_FROM_DEVICE);
1515 rx_bi->page_dma = 0;
1517 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1519 if (unlikely(
1520 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1521 struct i40e_rx_buffer *next_buffer;
1523 next_buffer = &rx_ring->rx_bi[i];
1525 if (ring_is_ps_enabled(rx_ring)) {
1526 rx_bi->skb = next_buffer->skb;
1527 rx_bi->dma = next_buffer->dma;
1528 next_buffer->skb = skb;
1529 next_buffer->dma = 0;
1531 rx_ring->rx_stats.non_eop_descs++;
1532 goto next_desc;
1535 /* ERR_MASK will only have valid bits if EOP set */
1536 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1537 dev_kfree_skb_any(skb);
1538 /* TODO: shouldn't we increment a counter indicating the
1539 * drop?
1541 goto next_desc;
1544 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1545 i40e_ptype_to_hash(rx_ptype));
1546 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1547 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1548 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1549 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1550 rx_ring->last_rx_timestamp = jiffies;
1553 /* probably a little skewed due to removing CRC */
1554 total_rx_bytes += skb->len;
1555 total_rx_packets++;
1557 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1559 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1561 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1562 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1563 : 0;
1564 #ifdef I40E_FCOE
1565 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1566 dev_kfree_skb_any(skb);
1567 goto next_desc;
1569 #endif
1570 i40e_receive_skb(rx_ring, skb, vlan_tag);
1572 rx_ring->netdev->last_rx = jiffies;
1573 budget--;
1574 next_desc:
1575 rx_desc->wb.qword1.status_error_len = 0;
1576 if (!budget)
1577 break;
1579 cleaned_count++;
1580 /* return some buffers to hardware, one at a time is too slow */
1581 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1582 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1583 cleaned_count = 0;
1586 /* use prefetched values */
1587 rx_desc = next_rxd;
1588 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1589 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1590 I40E_RXD_QW1_STATUS_SHIFT;
1593 rx_ring->next_to_clean = i;
1594 u64_stats_update_begin(&rx_ring->syncp);
1595 rx_ring->stats.packets += total_rx_packets;
1596 rx_ring->stats.bytes += total_rx_bytes;
1597 u64_stats_update_end(&rx_ring->syncp);
1598 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1599 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1601 if (cleaned_count)
1602 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1604 return budget > 0;
1608 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1609 * @napi: napi struct with our devices info in it
1610 * @budget: amount of work driver is allowed to do this pass, in packets
1612 * This function will clean all queues associated with a q_vector.
1614 * Returns the amount of work done
1616 int i40e_napi_poll(struct napi_struct *napi, int budget)
1618 struct i40e_q_vector *q_vector =
1619 container_of(napi, struct i40e_q_vector, napi);
1620 struct i40e_vsi *vsi = q_vector->vsi;
1621 struct i40e_ring *ring;
1622 bool clean_complete = true;
1623 bool arm_wb = false;
1624 int budget_per_ring;
1626 if (test_bit(__I40E_DOWN, &vsi->state)) {
1627 napi_complete(napi);
1628 return 0;
1631 /* Since the actual Tx work is minimal, we can give the Tx a larger
1632 * budget and be more aggressive about cleaning up the Tx descriptors.
1634 i40e_for_each_ring(ring, q_vector->tx) {
1635 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1636 arm_wb |= ring->arm_wb;
1639 /* We attempt to distribute budget to each Rx queue fairly, but don't
1640 * allow the budget to go below 1 because that would exit polling early.
1642 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1644 i40e_for_each_ring(ring, q_vector->rx)
1645 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1647 /* If work not completed, return budget and polling will return */
1648 if (!clean_complete) {
1649 if (arm_wb)
1650 i40e_force_wb(vsi, q_vector);
1651 return budget;
1654 /* Work is done so exit the polling mode and re-enable the interrupt */
1655 napi_complete(napi);
1656 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1657 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1658 i40e_update_dynamic_itr(q_vector);
1660 if (!test_bit(__I40E_DOWN, &vsi->state)) {
1661 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1662 i40e_irq_dynamic_enable(vsi,
1663 q_vector->v_idx + vsi->base_vector);
1664 } else {
1665 struct i40e_hw *hw = &vsi->back->hw;
1666 /* We re-enable the queue 0 cause, but
1667 * don't worry about dynamic_enable
1668 * because we left it on for the other
1669 * possible interrupts during napi
1671 u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1672 qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1673 wr32(hw, I40E_QINT_RQCTL(0), qval);
1675 qval = rd32(hw, I40E_QINT_TQCTL(0));
1676 qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1677 wr32(hw, I40E_QINT_TQCTL(0), qval);
1679 i40e_irq_dynamic_enable_icr0(vsi->back);
1683 return 0;
1687 * i40e_atr - Add a Flow Director ATR filter
1688 * @tx_ring: ring to add programming descriptor to
1689 * @skb: send buffer
1690 * @flags: send flags
1691 * @protocol: wire protocol
1693 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1694 u32 flags, __be16 protocol)
1696 struct i40e_filter_program_desc *fdir_desc;
1697 struct i40e_pf *pf = tx_ring->vsi->back;
1698 union {
1699 unsigned char *network;
1700 struct iphdr *ipv4;
1701 struct ipv6hdr *ipv6;
1702 } hdr;
1703 struct tcphdr *th;
1704 unsigned int hlen;
1705 u32 flex_ptype, dtype_cmd;
1706 u16 i;
1708 /* make sure ATR is enabled */
1709 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1710 return;
1712 /* if sampling is disabled do nothing */
1713 if (!tx_ring->atr_sample_rate)
1714 return;
1716 /* snag network header to get L4 type and address */
1717 hdr.network = skb_network_header(skb);
1719 /* Currently only IPv4/IPv6 with TCP is supported */
1720 if (protocol == htons(ETH_P_IP)) {
1721 if (hdr.ipv4->protocol != IPPROTO_TCP)
1722 return;
1724 /* access ihl as a u8 to avoid unaligned access on ia64 */
1725 hlen = (hdr.network[0] & 0x0F) << 2;
1726 } else if (protocol == htons(ETH_P_IPV6)) {
1727 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1728 return;
1730 hlen = sizeof(struct ipv6hdr);
1731 } else {
1732 return;
1735 th = (struct tcphdr *)(hdr.network + hlen);
1737 /* Due to lack of space, no more new filters can be programmed */
1738 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1739 return;
1741 tx_ring->atr_count++;
1743 /* sample on all syn/fin/rst packets or once every atr sample rate */
1744 if (!th->fin &&
1745 !th->syn &&
1746 !th->rst &&
1747 (tx_ring->atr_count < tx_ring->atr_sample_rate))
1748 return;
1750 tx_ring->atr_count = 0;
1752 /* grab the next descriptor */
1753 i = tx_ring->next_to_use;
1754 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1756 i++;
1757 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1759 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1760 I40E_TXD_FLTR_QW0_QINDEX_MASK;
1761 flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1762 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1763 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1764 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1765 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1767 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1769 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1771 dtype_cmd |= (th->fin || th->rst) ?
1772 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1773 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1774 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1775 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1777 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1778 I40E_TXD_FLTR_QW1_DEST_SHIFT;
1780 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1781 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1783 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
1784 dtype_cmd |=
1785 ((u32)pf->fd_atr_cnt_idx << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
1786 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
1788 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
1789 fdir_desc->rsvd = cpu_to_le32(0);
1790 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
1791 fdir_desc->fd_id = cpu_to_le32(0);
1795 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1796 * @skb: send buffer
1797 * @tx_ring: ring to send buffer on
1798 * @flags: the tx flags to be set
1800 * Checks the skb and set up correspondingly several generic transmit flags
1801 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1803 * Returns error code indicate the frame should be dropped upon error and the
1804 * otherwise returns 0 to indicate the flags has been set properly.
1806 #ifdef I40E_FCOE
1807 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1808 struct i40e_ring *tx_ring,
1809 u32 *flags)
1810 #else
1811 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1812 struct i40e_ring *tx_ring,
1813 u32 *flags)
1814 #endif
1816 __be16 protocol = skb->protocol;
1817 u32 tx_flags = 0;
1819 /* if we have a HW VLAN tag being added, default to the HW one */
1820 if (skb_vlan_tag_present(skb)) {
1821 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1822 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1823 /* else if it is a SW VLAN, check the next protocol and store the tag */
1824 } else if (protocol == htons(ETH_P_8021Q)) {
1825 struct vlan_hdr *vhdr, _vhdr;
1826 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1827 if (!vhdr)
1828 return -EINVAL;
1830 protocol = vhdr->h_vlan_encapsulated_proto;
1831 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1832 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1835 /* Insert 802.1p priority into VLAN header */
1836 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1837 (skb->priority != TC_PRIO_CONTROL)) {
1838 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1839 tx_flags |= (skb->priority & 0x7) <<
1840 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1841 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1842 struct vlan_ethhdr *vhdr;
1843 int rc;
1845 rc = skb_cow_head(skb, 0);
1846 if (rc < 0)
1847 return rc;
1848 vhdr = (struct vlan_ethhdr *)skb->data;
1849 vhdr->h_vlan_TCI = htons(tx_flags >>
1850 I40E_TX_FLAGS_VLAN_SHIFT);
1851 } else {
1852 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1855 *flags = tx_flags;
1856 return 0;
1860 * i40e_tso - set up the tso context descriptor
1861 * @tx_ring: ptr to the ring to send
1862 * @skb: ptr to the skb we're sending
1863 * @tx_flags: the collected send information
1864 * @protocol: the send protocol
1865 * @hdr_len: ptr to the size of the packet header
1866 * @cd_tunneling: ptr to context descriptor bits
1868 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1870 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1871 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1872 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1874 u32 cd_cmd, cd_tso_len, cd_mss;
1875 struct ipv6hdr *ipv6h;
1876 struct tcphdr *tcph;
1877 struct iphdr *iph;
1878 u32 l4len;
1879 int err;
1881 if (!skb_is_gso(skb))
1882 return 0;
1884 err = skb_cow_head(skb, 0);
1885 if (err < 0)
1886 return err;
1888 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1889 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1891 if (iph->version == 4) {
1892 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1893 iph->tot_len = 0;
1894 iph->check = 0;
1895 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1896 0, IPPROTO_TCP, 0);
1897 } else if (ipv6h->version == 6) {
1898 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1899 ipv6h->payload_len = 0;
1900 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1901 0, IPPROTO_TCP, 0);
1904 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1905 *hdr_len = (skb->encapsulation
1906 ? (skb_inner_transport_header(skb) - skb->data)
1907 : skb_transport_offset(skb)) + l4len;
1909 /* find the field values */
1910 cd_cmd = I40E_TX_CTX_DESC_TSO;
1911 cd_tso_len = skb->len - *hdr_len;
1912 cd_mss = skb_shinfo(skb)->gso_size;
1913 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1914 ((u64)cd_tso_len <<
1915 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1916 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1917 return 1;
1921 * i40e_tsyn - set up the tsyn context descriptor
1922 * @tx_ring: ptr to the ring to send
1923 * @skb: ptr to the skb we're sending
1924 * @tx_flags: the collected send information
1926 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
1928 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
1929 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
1931 struct i40e_pf *pf;
1933 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1934 return 0;
1936 /* Tx timestamps cannot be sampled when doing TSO */
1937 if (tx_flags & I40E_TX_FLAGS_TSO)
1938 return 0;
1940 /* only timestamp the outbound packet if the user has requested it and
1941 * we are not already transmitting a packet to be timestamped
1943 pf = i40e_netdev_to_pf(tx_ring->netdev);
1944 if (!(pf->flags & I40E_FLAG_PTP))
1945 return 0;
1947 if (pf->ptp_tx &&
1948 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
1949 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1950 pf->ptp_tx_skb = skb_get(skb);
1951 } else {
1952 return 0;
1955 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
1956 I40E_TXD_CTX_QW1_CMD_SHIFT;
1958 return 1;
1962 * i40e_tx_enable_csum - Enable Tx checksum offloads
1963 * @skb: send buffer
1964 * @tx_flags: Tx flags currently set
1965 * @td_cmd: Tx descriptor command bits to set
1966 * @td_offset: Tx descriptor header offsets to set
1967 * @cd_tunneling: ptr to context desc bits
1969 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1970 u32 *td_cmd, u32 *td_offset,
1971 struct i40e_ring *tx_ring,
1972 u32 *cd_tunneling)
1974 struct ipv6hdr *this_ipv6_hdr;
1975 unsigned int this_tcp_hdrlen;
1976 struct iphdr *this_ip_hdr;
1977 u32 network_hdr_len;
1978 u8 l4_hdr = 0;
1980 if (skb->encapsulation) {
1981 network_hdr_len = skb_inner_network_header_len(skb);
1982 this_ip_hdr = inner_ip_hdr(skb);
1983 this_ipv6_hdr = inner_ipv6_hdr(skb);
1984 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1986 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1988 if (tx_flags & I40E_TX_FLAGS_TSO) {
1989 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1990 ip_hdr(skb)->check = 0;
1991 } else {
1992 *cd_tunneling |=
1993 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1995 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1996 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1997 if (tx_flags & I40E_TX_FLAGS_TSO)
1998 ip_hdr(skb)->check = 0;
2001 /* Now set the ctx descriptor fields */
2002 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2003 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
2004 I40E_TXD_CTX_UDP_TUNNELING |
2005 ((skb_inner_network_offset(skb) -
2006 skb_transport_offset(skb)) >> 1) <<
2007 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2008 if (this_ip_hdr->version == 6) {
2009 tx_flags &= ~I40E_TX_FLAGS_IPV4;
2010 tx_flags |= I40E_TX_FLAGS_IPV6;
2012 } else {
2013 network_hdr_len = skb_network_header_len(skb);
2014 this_ip_hdr = ip_hdr(skb);
2015 this_ipv6_hdr = ipv6_hdr(skb);
2016 this_tcp_hdrlen = tcp_hdrlen(skb);
2019 /* Enable IP checksum offloads */
2020 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2021 l4_hdr = this_ip_hdr->protocol;
2022 /* the stack computes the IP header already, the only time we
2023 * need the hardware to recompute it is in the case of TSO.
2025 if (tx_flags & I40E_TX_FLAGS_TSO) {
2026 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2027 this_ip_hdr->check = 0;
2028 } else {
2029 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2031 /* Now set the td_offset for IP header length */
2032 *td_offset = (network_hdr_len >> 2) <<
2033 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2034 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2035 l4_hdr = this_ipv6_hdr->nexthdr;
2036 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2037 /* Now set the td_offset for IP header length */
2038 *td_offset = (network_hdr_len >> 2) <<
2039 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2041 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2042 *td_offset |= (skb_network_offset(skb) >> 1) <<
2043 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2045 /* Enable L4 checksum offloads */
2046 switch (l4_hdr) {
2047 case IPPROTO_TCP:
2048 /* enable checksum offloads */
2049 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2050 *td_offset |= (this_tcp_hdrlen >> 2) <<
2051 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2052 break;
2053 case IPPROTO_SCTP:
2054 /* enable SCTP checksum offload */
2055 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2056 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2057 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2058 break;
2059 case IPPROTO_UDP:
2060 /* enable UDP checksum offload */
2061 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2062 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2063 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2064 break;
2065 default:
2066 break;
2071 * i40e_create_tx_ctx Build the Tx context descriptor
2072 * @tx_ring: ring to create the descriptor on
2073 * @cd_type_cmd_tso_mss: Quad Word 1
2074 * @cd_tunneling: Quad Word 0 - bits 0-31
2075 * @cd_l2tag2: Quad Word 0 - bits 32-63
2077 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2078 const u64 cd_type_cmd_tso_mss,
2079 const u32 cd_tunneling, const u32 cd_l2tag2)
2081 struct i40e_tx_context_desc *context_desc;
2082 int i = tx_ring->next_to_use;
2084 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2085 !cd_tunneling && !cd_l2tag2)
2086 return;
2088 /* grab the next descriptor */
2089 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2091 i++;
2092 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2094 /* cpu_to_le32 and assign to struct fields */
2095 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2096 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2097 context_desc->rsvd = cpu_to_le16(0);
2098 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2102 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2103 * @tx_ring: the ring to be checked
2104 * @size: the size buffer we want to assure is available
2106 * Returns -EBUSY if a stop is needed, else 0
2108 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2110 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2111 /* Memory barrier before checking head and tail */
2112 smp_mb();
2114 /* Check again in a case another CPU has just made room available. */
2115 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2116 return -EBUSY;
2118 /* A reprieve! - use start_queue because it doesn't call schedule */
2119 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2120 ++tx_ring->tx_stats.restart_queue;
2121 return 0;
2125 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2126 * @tx_ring: the ring to be checked
2127 * @size: the size buffer we want to assure is available
2129 * Returns 0 if stop is not needed
2131 #ifdef I40E_FCOE
2132 int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2133 #else
2134 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2135 #endif
2137 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2138 return 0;
2139 return __i40e_maybe_stop_tx(tx_ring, size);
2143 * i40e_tx_map - Build the Tx descriptor
2144 * @tx_ring: ring to send buffer on
2145 * @skb: send buffer
2146 * @first: first buffer info buffer to use
2147 * @tx_flags: collected send information
2148 * @hdr_len: size of the packet header
2149 * @td_cmd: the command field in the descriptor
2150 * @td_offset: offset for checksum or crc
2152 #ifdef I40E_FCOE
2153 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2154 struct i40e_tx_buffer *first, u32 tx_flags,
2155 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2156 #else
2157 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2158 struct i40e_tx_buffer *first, u32 tx_flags,
2159 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2160 #endif
2162 unsigned int data_len = skb->data_len;
2163 unsigned int size = skb_headlen(skb);
2164 struct skb_frag_struct *frag;
2165 struct i40e_tx_buffer *tx_bi;
2166 struct i40e_tx_desc *tx_desc;
2167 u16 i = tx_ring->next_to_use;
2168 u32 td_tag = 0;
2169 dma_addr_t dma;
2170 u16 gso_segs;
2172 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2173 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2174 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2175 I40E_TX_FLAGS_VLAN_SHIFT;
2178 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2179 gso_segs = skb_shinfo(skb)->gso_segs;
2180 else
2181 gso_segs = 1;
2183 /* multiply data chunks by size of headers */
2184 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2185 first->gso_segs = gso_segs;
2186 first->skb = skb;
2187 first->tx_flags = tx_flags;
2189 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2191 tx_desc = I40E_TX_DESC(tx_ring, i);
2192 tx_bi = first;
2194 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2195 if (dma_mapping_error(tx_ring->dev, dma))
2196 goto dma_error;
2198 /* record length, and DMA address */
2199 dma_unmap_len_set(tx_bi, len, size);
2200 dma_unmap_addr_set(tx_bi, dma, dma);
2202 tx_desc->buffer_addr = cpu_to_le64(dma);
2204 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2205 tx_desc->cmd_type_offset_bsz =
2206 build_ctob(td_cmd, td_offset,
2207 I40E_MAX_DATA_PER_TXD, td_tag);
2209 tx_desc++;
2210 i++;
2211 if (i == tx_ring->count) {
2212 tx_desc = I40E_TX_DESC(tx_ring, 0);
2213 i = 0;
2216 dma += I40E_MAX_DATA_PER_TXD;
2217 size -= I40E_MAX_DATA_PER_TXD;
2219 tx_desc->buffer_addr = cpu_to_le64(dma);
2222 if (likely(!data_len))
2223 break;
2225 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2226 size, td_tag);
2228 tx_desc++;
2229 i++;
2230 if (i == tx_ring->count) {
2231 tx_desc = I40E_TX_DESC(tx_ring, 0);
2232 i = 0;
2235 size = skb_frag_size(frag);
2236 data_len -= size;
2238 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2239 DMA_TO_DEVICE);
2241 tx_bi = &tx_ring->tx_bi[i];
2244 /* Place RS bit on last descriptor of any packet that spans across the
2245 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2247 if (((i & WB_STRIDE) != WB_STRIDE) &&
2248 (first <= &tx_ring->tx_bi[i]) &&
2249 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2250 tx_desc->cmd_type_offset_bsz =
2251 build_ctob(td_cmd, td_offset, size, td_tag) |
2252 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2253 I40E_TXD_QW1_CMD_SHIFT);
2254 } else {
2255 tx_desc->cmd_type_offset_bsz =
2256 build_ctob(td_cmd, td_offset, size, td_tag) |
2257 cpu_to_le64((u64)I40E_TXD_CMD <<
2258 I40E_TXD_QW1_CMD_SHIFT);
2261 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2262 tx_ring->queue_index),
2263 first->bytecount);
2265 /* set the timestamp */
2266 first->time_stamp = jiffies;
2268 /* Force memory writes to complete before letting h/w
2269 * know there are new descriptors to fetch. (Only
2270 * applicable for weak-ordered memory model archs,
2271 * such as IA-64).
2273 wmb();
2275 /* set next_to_watch value indicating a packet is present */
2276 first->next_to_watch = tx_desc;
2278 i++;
2279 if (i == tx_ring->count)
2280 i = 0;
2282 tx_ring->next_to_use = i;
2284 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2285 /* notify HW of packet */
2286 if (!skb->xmit_more ||
2287 netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2288 tx_ring->queue_index)))
2289 writel(i, tx_ring->tail);
2291 return;
2293 dma_error:
2294 dev_info(tx_ring->dev, "TX DMA map failed\n");
2296 /* clear dma mappings for failed tx_bi map */
2297 for (;;) {
2298 tx_bi = &tx_ring->tx_bi[i];
2299 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2300 if (tx_bi == first)
2301 break;
2302 if (i == 0)
2303 i = tx_ring->count;
2304 i--;
2307 tx_ring->next_to_use = i;
2311 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2312 * @skb: send buffer
2313 * @tx_ring: ring to send buffer on
2315 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2316 * there is not enough descriptors available in this ring since we need at least
2317 * one descriptor.
2319 #ifdef I40E_FCOE
2320 int i40e_xmit_descriptor_count(struct sk_buff *skb,
2321 struct i40e_ring *tx_ring)
2322 #else
2323 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2324 struct i40e_ring *tx_ring)
2325 #endif
2327 unsigned int f;
2328 int count = 0;
2330 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2331 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2332 * + 4 desc gap to avoid the cache line where head is,
2333 * + 1 desc for context descriptor,
2334 * otherwise try next time
2336 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2337 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2339 count += TXD_USE_COUNT(skb_headlen(skb));
2340 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2341 tx_ring->tx_stats.tx_busy++;
2342 return 0;
2344 return count;
2348 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2349 * @skb: send buffer
2350 * @tx_ring: ring to send buffer on
2352 * Returns NETDEV_TX_OK if sent, else an error code
2354 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2355 struct i40e_ring *tx_ring)
2357 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2358 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2359 struct i40e_tx_buffer *first;
2360 u32 td_offset = 0;
2361 u32 tx_flags = 0;
2362 __be16 protocol;
2363 u32 td_cmd = 0;
2364 u8 hdr_len = 0;
2365 int tsyn;
2366 int tso;
2367 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2368 return NETDEV_TX_BUSY;
2370 /* prepare the xmit flags */
2371 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2372 goto out_drop;
2374 /* obtain protocol of skb */
2375 protocol = vlan_get_protocol(skb);
2377 /* record the location of the first descriptor for this packet */
2378 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2380 /* setup IPv4/IPv6 offloads */
2381 if (protocol == htons(ETH_P_IP))
2382 tx_flags |= I40E_TX_FLAGS_IPV4;
2383 else if (protocol == htons(ETH_P_IPV6))
2384 tx_flags |= I40E_TX_FLAGS_IPV6;
2386 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2387 &cd_type_cmd_tso_mss, &cd_tunneling);
2389 if (tso < 0)
2390 goto out_drop;
2391 else if (tso)
2392 tx_flags |= I40E_TX_FLAGS_TSO;
2394 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2396 if (tsyn)
2397 tx_flags |= I40E_TX_FLAGS_TSYN;
2399 skb_tx_timestamp(skb);
2401 /* always enable CRC insertion offload */
2402 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2404 /* Always offload the checksum, since it's in the data descriptor */
2405 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2406 tx_flags |= I40E_TX_FLAGS_CSUM;
2408 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2409 tx_ring, &cd_tunneling);
2412 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2413 cd_tunneling, cd_l2tag2);
2415 /* Add Flow Director ATR if it's enabled.
2417 * NOTE: this must always be directly before the data descriptor.
2419 i40e_atr(tx_ring, skb, tx_flags, protocol);
2421 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2422 td_cmd, td_offset);
2424 return NETDEV_TX_OK;
2426 out_drop:
2427 dev_kfree_skb_any(skb);
2428 return NETDEV_TX_OK;
2432 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2433 * @skb: send buffer
2434 * @netdev: network interface device structure
2436 * Returns NETDEV_TX_OK if sent, else an error code
2438 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2440 struct i40e_netdev_priv *np = netdev_priv(netdev);
2441 struct i40e_vsi *vsi = np->vsi;
2442 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2444 /* hardware can't handle really short frames, hardware padding works
2445 * beyond this point
2447 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2448 return NETDEV_TX_OK;
2450 return i40e_xmit_frame_ring(skb, tx_ring);