Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net into net
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
blob39c6c55246331bd4ef9b2d380f213112f8a82072
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif
50 #include "stmmac.h"
52 #undef STMMAC_DEBUG
53 /*#define STMMAC_DEBUG*/
54 #ifdef STMMAC_DEBUG
55 #define DBG(nlevel, klevel, fmt, args...) \
56 ((void)(netif_msg_##nlevel(priv) && \
57 printk(KERN_##klevel fmt, ## args)))
58 #else
59 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
60 #endif
62 #undef STMMAC_RX_DEBUG
63 /*#define STMMAC_RX_DEBUG*/
64 #ifdef STMMAC_RX_DEBUG
65 #define RX_DBG(fmt, args...) printk(fmt, ## args)
66 #else
67 #define RX_DBG(fmt, args...) do { } while (0)
68 #endif
70 #undef STMMAC_XMIT_DEBUG
71 /*#define STMMAC_XMIT_DEBUG*/
72 #ifdef STMMAC_XMIT_DEBUG
73 #define TX_DBG(fmt, args...) printk(fmt, ## args)
74 #else
75 #define TX_DBG(fmt, args...) do { } while (0)
76 #endif
78 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
79 #define JUMBO_LEN 9000
81 /* Module parameters */
82 #define TX_TIMEO 5000 /* default 5 seconds */
83 static int watchdog = TX_TIMEO;
84 module_param(watchdog, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
87 static int debug = -1; /* -1: default, 0: no output, 16: all */
88 module_param(debug, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
91 int phyaddr = -1;
92 module_param(phyaddr, int, S_IRUGO);
93 MODULE_PARM_DESC(phyaddr, "Physical device address");
95 #define DMA_TX_SIZE 256
96 static int dma_txsize = DMA_TX_SIZE;
97 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
100 #define DMA_RX_SIZE 256
101 static int dma_rxsize = DMA_RX_SIZE;
102 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
103 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
105 static int flow_ctrl = FLOW_OFF;
106 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
109 static int pause = PAUSE_TIME;
110 module_param(pause, int, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
113 #define TC_DEFAULT 64
114 static int tc = TC_DEFAULT;
115 module_param(tc, int, S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(tc, "DMA threshold control value");
118 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
119 static int buf_sz = DMA_BUFFER_SIZE;
120 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
121 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
123 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
124 NETIF_MSG_LINK | NETIF_MSG_IFUP |
125 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
127 #define STMMAC_DEFAULT_LPI_TIMER 1000
128 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
129 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
131 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
133 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
135 #ifdef CONFIG_STMMAC_DEBUG_FS
136 static int stmmac_init_fs(struct net_device *dev);
137 static void stmmac_exit_fs(void);
138 #endif
140 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
143 * stmmac_verify_args - verify the driver parameters.
144 * Description: it verifies if some wrong parameter is passed to the driver.
145 * Note that wrong parameters are replaced with the default values.
147 static void stmmac_verify_args(void)
149 if (unlikely(watchdog < 0))
150 watchdog = TX_TIMEO;
151 if (unlikely(dma_rxsize < 0))
152 dma_rxsize = DMA_RX_SIZE;
153 if (unlikely(dma_txsize < 0))
154 dma_txsize = DMA_TX_SIZE;
155 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
156 buf_sz = DMA_BUFFER_SIZE;
157 if (unlikely(flow_ctrl > 1))
158 flow_ctrl = FLOW_AUTO;
159 else if (likely(flow_ctrl < 0))
160 flow_ctrl = FLOW_OFF;
161 if (unlikely((pause < 0) || (pause > 0xffff)))
162 pause = PAUSE_TIME;
163 if (eee_timer < 0)
164 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
167 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
169 u32 clk_rate;
171 clk_rate = clk_get_rate(priv->stmmac_clk);
173 /* Platform provided default clk_csr would be assumed valid
174 * for all other cases except for the below mentioned ones. */
175 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176 if (clk_rate < CSR_F_35M)
177 priv->clk_csr = STMMAC_CSR_20_35M;
178 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179 priv->clk_csr = STMMAC_CSR_35_60M;
180 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181 priv->clk_csr = STMMAC_CSR_60_100M;
182 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183 priv->clk_csr = STMMAC_CSR_100_150M;
184 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185 priv->clk_csr = STMMAC_CSR_150_250M;
186 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187 priv->clk_csr = STMMAC_CSR_250_300M;
188 } /* For values higher than the IEEE 802.3 specified frequency
189 * we can not estimate the proper divider as it is not known
190 * the frequency of clk_csr_i. So we do not change the default
191 * divider. */
194 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
195 static void print_pkt(unsigned char *buf, int len)
197 int j;
198 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
199 for (j = 0; j < len; j++) {
200 if ((j % 16) == 0)
201 pr_info("\n %03x:", j);
202 pr_info(" %02x", buf[j]);
204 pr_info("\n");
206 #endif
208 /* minimum number of free TX descriptors required to wake up TX process */
209 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
211 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
213 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
216 /* On some ST platforms, some HW system configuraton registers have to be
217 * set according to the link speed negotiated.
219 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
221 struct phy_device *phydev = priv->phydev;
223 if (likely(priv->plat->fix_mac_speed))
224 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
225 phydev->speed);
228 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
230 /* Check and enter in LPI mode */
231 if ((priv->dirty_tx == priv->cur_tx) &&
232 (priv->tx_path_in_lpi_mode == false))
233 priv->hw->mac->set_eee_mode(priv->ioaddr);
236 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
238 /* Exit and disable EEE in case of we are are in LPI state. */
239 priv->hw->mac->reset_eee_mode(priv->ioaddr);
240 del_timer_sync(&priv->eee_ctrl_timer);
241 priv->tx_path_in_lpi_mode = false;
245 * stmmac_eee_ctrl_timer
246 * @arg : data hook
247 * Description:
248 * If there is no data transfer and if we are not in LPI state,
249 * then MAC Transmitter can be moved to LPI state.
251 static void stmmac_eee_ctrl_timer(unsigned long arg)
253 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
255 stmmac_enable_eee_mode(priv);
256 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
260 * stmmac_eee_init
261 * @priv: private device pointer
262 * Description:
263 * If the EEE support has been enabled while configuring the driver,
264 * if the GMAC actually supports the EEE (from the HW cap reg) and the
265 * phy can also manage EEE, so enable the LPI state and start the timer
266 * to verify if the tx path can enter in LPI state.
268 bool stmmac_eee_init(struct stmmac_priv *priv)
270 bool ret = false;
272 /* MAC core supports the EEE feature. */
273 if (priv->dma_cap.eee) {
274 /* Check if the PHY supports EEE */
275 if (phy_init_eee(priv->phydev, 1))
276 goto out;
278 priv->eee_active = 1;
279 init_timer(&priv->eee_ctrl_timer);
280 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
281 priv->eee_ctrl_timer.data = (unsigned long)priv;
282 priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
283 add_timer(&priv->eee_ctrl_timer);
285 priv->hw->mac->set_eee_timer(priv->ioaddr,
286 STMMAC_DEFAULT_LIT_LS_TIMER,
287 priv->tx_lpi_timer);
289 pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
291 ret = true;
293 out:
294 return ret;
297 static void stmmac_eee_adjust(struct stmmac_priv *priv)
299 /* When the EEE has been already initialised we have to
300 * modify the PLS bit in the LPI ctrl & status reg according
301 * to the PHY link status. For this reason.
303 if (priv->eee_enabled)
304 priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
308 * stmmac_adjust_link
309 * @dev: net device structure
310 * Description: it adjusts the link parameters.
312 static void stmmac_adjust_link(struct net_device *dev)
314 struct stmmac_priv *priv = netdev_priv(dev);
315 struct phy_device *phydev = priv->phydev;
316 unsigned long flags;
317 int new_state = 0;
318 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
320 if (phydev == NULL)
321 return;
323 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
324 phydev->addr, phydev->link);
326 spin_lock_irqsave(&priv->lock, flags);
328 if (phydev->link) {
329 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
331 /* Now we make sure that we can be in full duplex mode.
332 * If not, we operate in half-duplex mode. */
333 if (phydev->duplex != priv->oldduplex) {
334 new_state = 1;
335 if (!(phydev->duplex))
336 ctrl &= ~priv->hw->link.duplex;
337 else
338 ctrl |= priv->hw->link.duplex;
339 priv->oldduplex = phydev->duplex;
341 /* Flow Control operation */
342 if (phydev->pause)
343 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
344 fc, pause_time);
346 if (phydev->speed != priv->speed) {
347 new_state = 1;
348 switch (phydev->speed) {
349 case 1000:
350 if (likely(priv->plat->has_gmac))
351 ctrl &= ~priv->hw->link.port;
352 stmmac_hw_fix_mac_speed(priv);
353 break;
354 case 100:
355 case 10:
356 if (priv->plat->has_gmac) {
357 ctrl |= priv->hw->link.port;
358 if (phydev->speed == SPEED_100) {
359 ctrl |= priv->hw->link.speed;
360 } else {
361 ctrl &= ~(priv->hw->link.speed);
363 } else {
364 ctrl &= ~priv->hw->link.port;
366 stmmac_hw_fix_mac_speed(priv);
367 break;
368 default:
369 if (netif_msg_link(priv))
370 pr_warning("%s: Speed (%d) is not 10"
371 " or 100!\n", dev->name, phydev->speed);
372 break;
375 priv->speed = phydev->speed;
378 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
380 if (!priv->oldlink) {
381 new_state = 1;
382 priv->oldlink = 1;
384 } else if (priv->oldlink) {
385 new_state = 1;
386 priv->oldlink = 0;
387 priv->speed = 0;
388 priv->oldduplex = -1;
391 if (new_state && netif_msg_link(priv))
392 phy_print_status(phydev);
394 stmmac_eee_adjust(priv);
396 spin_unlock_irqrestore(&priv->lock, flags);
398 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
402 * stmmac_init_phy - PHY initialization
403 * @dev: net device structure
404 * Description: it initializes the driver's PHY state, and attaches the PHY
405 * to the mac driver.
406 * Return value:
407 * 0 on success
409 static int stmmac_init_phy(struct net_device *dev)
411 struct stmmac_priv *priv = netdev_priv(dev);
412 struct phy_device *phydev;
413 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
414 char bus_id[MII_BUS_ID_SIZE];
415 int interface = priv->plat->interface;
416 priv->oldlink = 0;
417 priv->speed = 0;
418 priv->oldduplex = -1;
420 if (priv->plat->phy_bus_name)
421 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
422 priv->plat->phy_bus_name, priv->plat->bus_id);
423 else
424 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
425 priv->plat->bus_id);
427 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
428 priv->plat->phy_addr);
429 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
431 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
433 if (IS_ERR(phydev)) {
434 pr_err("%s: Could not attach to PHY\n", dev->name);
435 return PTR_ERR(phydev);
438 /* Stop Advertising 1000BASE Capability if interface is not GMII */
439 if ((interface == PHY_INTERFACE_MODE_MII) ||
440 (interface == PHY_INTERFACE_MODE_RMII))
441 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
442 SUPPORTED_1000baseT_Full);
445 * Broken HW is sometimes missing the pull-up resistor on the
446 * MDIO line, which results in reads to non-existent devices returning
447 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
448 * device as well.
449 * Note: phydev->phy_id is the result of reading the UID PHY registers.
451 if (phydev->phy_id == 0) {
452 phy_disconnect(phydev);
453 return -ENODEV;
455 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
456 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
458 priv->phydev = phydev;
460 return 0;
464 * display_ring
465 * @p: pointer to the ring.
466 * @size: size of the ring.
467 * Description: display all the descriptors within the ring.
469 static void display_ring(struct dma_desc *p, int size)
471 struct tmp_s {
472 u64 a;
473 unsigned int b;
474 unsigned int c;
476 int i;
477 for (i = 0; i < size; i++) {
478 struct tmp_s *x = (struct tmp_s *)(p + i);
479 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
480 i, (unsigned int)virt_to_phys(&p[i]),
481 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
482 x->b, x->c);
483 pr_info("\n");
487 static int stmmac_set_bfsize(int mtu, int bufsize)
489 int ret = bufsize;
491 if (mtu >= BUF_SIZE_4KiB)
492 ret = BUF_SIZE_8KiB;
493 else if (mtu >= BUF_SIZE_2KiB)
494 ret = BUF_SIZE_4KiB;
495 else if (mtu >= DMA_BUFFER_SIZE)
496 ret = BUF_SIZE_2KiB;
497 else
498 ret = DMA_BUFFER_SIZE;
500 return ret;
504 * init_dma_desc_rings - init the RX/TX descriptor rings
505 * @dev: net device structure
506 * Description: this function initializes the DMA RX/TX descriptors
507 * and allocates the socket buffers. It suppors the chained and ring
508 * modes.
510 static void init_dma_desc_rings(struct net_device *dev)
512 int i;
513 struct stmmac_priv *priv = netdev_priv(dev);
514 struct sk_buff *skb;
515 unsigned int txsize = priv->dma_tx_size;
516 unsigned int rxsize = priv->dma_rx_size;
517 unsigned int bfsize;
518 int dis_ic = 0;
519 int des3_as_data_buf = 0;
521 /* Set the max buffer size according to the DESC mode
522 * and the MTU. Note that RING mode allows 16KiB bsize. */
523 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
525 if (bfsize == BUF_SIZE_16KiB)
526 des3_as_data_buf = 1;
527 else
528 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
530 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
531 txsize, rxsize, bfsize);
533 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
534 GFP_KERNEL);
535 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
536 GFP_KERNEL);
537 priv->dma_rx =
538 (struct dma_desc *)dma_alloc_coherent(priv->device,
539 rxsize *
540 sizeof(struct dma_desc),
541 &priv->dma_rx_phy,
542 GFP_KERNEL);
543 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
544 GFP_KERNEL);
545 priv->dma_tx =
546 (struct dma_desc *)dma_alloc_coherent(priv->device,
547 txsize *
548 sizeof(struct dma_desc),
549 &priv->dma_tx_phy,
550 GFP_KERNEL);
552 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
553 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
554 return;
557 DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
558 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
559 dev->name, priv->dma_rx, priv->dma_tx,
560 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
562 /* RX INITIALIZATION */
563 DBG(probe, INFO, "stmmac: SKB addresses:\n"
564 "skb\t\tskb data\tdma data\n");
566 for (i = 0; i < rxsize; i++) {
567 struct dma_desc *p = priv->dma_rx + i;
569 skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
570 GFP_KERNEL);
571 if (unlikely(skb == NULL)) {
572 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
573 break;
575 skb_reserve(skb, NET_IP_ALIGN);
576 priv->rx_skbuff[i] = skb;
577 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
578 bfsize, DMA_FROM_DEVICE);
580 p->des2 = priv->rx_skbuff_dma[i];
582 priv->hw->ring->init_desc3(des3_as_data_buf, p);
584 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
585 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
587 priv->cur_rx = 0;
588 priv->dirty_rx = (unsigned int)(i - rxsize);
589 priv->dma_buf_sz = bfsize;
590 buf_sz = bfsize;
592 /* TX INITIALIZATION */
593 for (i = 0; i < txsize; i++) {
594 priv->tx_skbuff[i] = NULL;
595 priv->dma_tx[i].des2 = 0;
598 /* In case of Chained mode this sets the des3 to the next
599 * element in the chain */
600 priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
601 priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
603 priv->dirty_tx = 0;
604 priv->cur_tx = 0;
606 if (priv->use_riwt)
607 dis_ic = 1;
608 /* Clear the Rx/Tx descriptors */
609 priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
610 priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
612 if (netif_msg_hw(priv)) {
613 pr_info("RX descriptor ring:\n");
614 display_ring(priv->dma_rx, rxsize);
615 pr_info("TX descriptor ring:\n");
616 display_ring(priv->dma_tx, txsize);
620 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
622 int i;
624 for (i = 0; i < priv->dma_rx_size; i++) {
625 if (priv->rx_skbuff[i]) {
626 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
627 priv->dma_buf_sz, DMA_FROM_DEVICE);
628 dev_kfree_skb_any(priv->rx_skbuff[i]);
630 priv->rx_skbuff[i] = NULL;
634 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
636 int i;
638 for (i = 0; i < priv->dma_tx_size; i++) {
639 if (priv->tx_skbuff[i] != NULL) {
640 struct dma_desc *p = priv->dma_tx + i;
641 if (p->des2)
642 dma_unmap_single(priv->device, p->des2,
643 priv->hw->desc->get_tx_len(p),
644 DMA_TO_DEVICE);
645 dev_kfree_skb_any(priv->tx_skbuff[i]);
646 priv->tx_skbuff[i] = NULL;
651 static void free_dma_desc_resources(struct stmmac_priv *priv)
653 /* Release the DMA TX/RX socket buffers */
654 dma_free_rx_skbufs(priv);
655 dma_free_tx_skbufs(priv);
657 /* Free the region of consistent memory previously allocated for
658 * the DMA */
659 dma_free_coherent(priv->device,
660 priv->dma_tx_size * sizeof(struct dma_desc),
661 priv->dma_tx, priv->dma_tx_phy);
662 dma_free_coherent(priv->device,
663 priv->dma_rx_size * sizeof(struct dma_desc),
664 priv->dma_rx, priv->dma_rx_phy);
665 kfree(priv->rx_skbuff_dma);
666 kfree(priv->rx_skbuff);
667 kfree(priv->tx_skbuff);
671 * stmmac_dma_operation_mode - HW DMA operation mode
672 * @priv : pointer to the private device structure.
673 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
674 * or Store-And-Forward capability.
676 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
678 if (likely(priv->plat->force_sf_dma_mode ||
679 ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
681 * In case of GMAC, SF mode can be enabled
682 * to perform the TX COE in HW. This depends on:
683 * 1) TX COE if actually supported
684 * 2) There is no bugged Jumbo frame support
685 * that needs to not insert csum in the TDES.
687 priv->hw->dma->dma_mode(priv->ioaddr,
688 SF_DMA_MODE, SF_DMA_MODE);
689 tc = SF_DMA_MODE;
690 } else
691 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
695 * stmmac_tx_clean:
696 * @priv: private data pointer
697 * Description: it reclaims resources after transmission completes.
699 static void stmmac_tx_clean(struct stmmac_priv *priv)
701 unsigned int txsize = priv->dma_tx_size;
703 spin_lock(&priv->tx_lock);
705 priv->xstats.tx_clean++;
707 while (priv->dirty_tx != priv->cur_tx) {
708 int last;
709 unsigned int entry = priv->dirty_tx % txsize;
710 struct sk_buff *skb = priv->tx_skbuff[entry];
711 struct dma_desc *p = priv->dma_tx + entry;
713 /* Check if the descriptor is owned by the DMA. */
714 if (priv->hw->desc->get_tx_owner(p))
715 break;
717 /* Verify tx error by looking at the last segment */
718 last = priv->hw->desc->get_tx_ls(p);
719 if (likely(last)) {
720 int tx_error =
721 priv->hw->desc->tx_status(&priv->dev->stats,
722 &priv->xstats, p,
723 priv->ioaddr);
724 if (likely(tx_error == 0)) {
725 priv->dev->stats.tx_packets++;
726 priv->xstats.tx_pkt_n++;
727 } else
728 priv->dev->stats.tx_errors++;
730 TX_DBG("%s: curr %d, dirty %d\n", __func__,
731 priv->cur_tx, priv->dirty_tx);
733 if (likely(p->des2))
734 dma_unmap_single(priv->device, p->des2,
735 priv->hw->desc->get_tx_len(p),
736 DMA_TO_DEVICE);
737 priv->hw->ring->clean_desc3(p);
739 if (likely(skb != NULL)) {
740 dev_kfree_skb(skb);
741 priv->tx_skbuff[entry] = NULL;
744 priv->hw->desc->release_tx_desc(p);
746 priv->dirty_tx++;
748 if (unlikely(netif_queue_stopped(priv->dev) &&
749 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
750 netif_tx_lock(priv->dev);
751 if (netif_queue_stopped(priv->dev) &&
752 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
753 TX_DBG("%s: restart transmit\n", __func__);
754 netif_wake_queue(priv->dev);
756 netif_tx_unlock(priv->dev);
759 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
760 stmmac_enable_eee_mode(priv);
761 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
763 spin_unlock(&priv->tx_lock);
766 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
768 priv->hw->dma->enable_dma_irq(priv->ioaddr);
771 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
773 priv->hw->dma->disable_dma_irq(priv->ioaddr);
778 * stmmac_tx_err:
779 * @priv: pointer to the private device structure
780 * Description: it cleans the descriptors and restarts the transmission
781 * in case of errors.
783 static void stmmac_tx_err(struct stmmac_priv *priv)
785 netif_stop_queue(priv->dev);
787 priv->hw->dma->stop_tx(priv->ioaddr);
788 dma_free_tx_skbufs(priv);
789 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
790 priv->dirty_tx = 0;
791 priv->cur_tx = 0;
792 priv->hw->dma->start_tx(priv->ioaddr);
794 priv->dev->stats.tx_errors++;
795 netif_wake_queue(priv->dev);
798 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
800 int status;
802 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
803 if (likely((status & handle_rx)) || (status & handle_tx)) {
804 if (likely(napi_schedule_prep(&priv->napi))) {
805 stmmac_disable_dma_irq(priv);
806 __napi_schedule(&priv->napi);
809 if (unlikely(status & tx_hard_error_bump_tc)) {
810 /* Try to bump up the dma threshold on this failure */
811 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
812 tc += 64;
813 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
814 priv->xstats.threshold = tc;
816 } else if (unlikely(status == tx_hard_error))
817 stmmac_tx_err(priv);
820 static void stmmac_mmc_setup(struct stmmac_priv *priv)
822 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
823 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
825 /* Mask MMC irq, counters are managed in SW and registers
826 * are cleared on each READ eventually. */
827 dwmac_mmc_intr_all_mask(priv->ioaddr);
829 if (priv->dma_cap.rmon) {
830 dwmac_mmc_ctrl(priv->ioaddr, mode);
831 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
832 } else
833 pr_info(" No MAC Management Counters available\n");
836 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
838 u32 hwid = priv->hw->synopsys_uid;
840 /* Only check valid Synopsys Id because old MAC chips
841 * have no HW registers where get the ID */
842 if (likely(hwid)) {
843 u32 uid = ((hwid & 0x0000ff00) >> 8);
844 u32 synid = (hwid & 0x000000ff);
846 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
847 uid, synid);
849 return synid;
851 return 0;
855 * stmmac_selec_desc_mode
856 * @priv : private structure
857 * Description: select the Enhanced/Alternate or Normal descriptors
859 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
861 if (priv->plat->enh_desc) {
862 pr_info(" Enhanced/Alternate descriptors\n");
863 priv->hw->desc = &enh_desc_ops;
864 } else {
865 pr_info(" Normal descriptors\n");
866 priv->hw->desc = &ndesc_ops;
871 * stmmac_get_hw_features
872 * @priv : private device pointer
873 * Description:
874 * new GMAC chip generations have a new register to indicate the
875 * presence of the optional feature/functions.
876 * This can be also used to override the value passed through the
877 * platform and necessary for old MAC10/100 and GMAC chips.
879 static int stmmac_get_hw_features(struct stmmac_priv *priv)
881 u32 hw_cap = 0;
883 if (priv->hw->dma->get_hw_feature) {
884 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
886 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
887 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
888 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
889 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
890 priv->dma_cap.multi_addr =
891 (hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
892 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
893 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
894 priv->dma_cap.pmt_remote_wake_up =
895 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
896 priv->dma_cap.pmt_magic_frame =
897 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
898 /* MMC */
899 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
900 /* IEEE 1588-2002*/
901 priv->dma_cap.time_stamp =
902 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
903 /* IEEE 1588-2008*/
904 priv->dma_cap.atime_stamp =
905 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
906 /* 802.3az - Energy-Efficient Ethernet (EEE) */
907 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
908 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
909 /* TX and RX csum */
910 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
911 priv->dma_cap.rx_coe_type1 =
912 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
913 priv->dma_cap.rx_coe_type2 =
914 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
915 priv->dma_cap.rxfifo_over_2048 =
916 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
917 /* TX and RX number of channels */
918 priv->dma_cap.number_rx_channel =
919 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
920 priv->dma_cap.number_tx_channel =
921 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
922 /* Alternate (enhanced) DESC mode*/
923 priv->dma_cap.enh_desc =
924 (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
927 return hw_cap;
930 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
932 /* verify if the MAC address is valid, in case of failures it
933 * generates a random MAC address */
934 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
935 priv->hw->mac->get_umac_addr((void __iomem *)
936 priv->dev->base_addr,
937 priv->dev->dev_addr, 0);
938 if (!is_valid_ether_addr(priv->dev->dev_addr))
939 eth_hw_addr_random(priv->dev);
941 pr_warning("%s: device MAC address %pM\n", priv->dev->name,
942 priv->dev->dev_addr);
945 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
947 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
948 int mixed_burst = 0;
950 /* Some DMA parameters can be passed from the platform;
951 * in case of these are not passed we keep a default
952 * (good for all the chips) and init the DMA! */
953 if (priv->plat->dma_cfg) {
954 pbl = priv->plat->dma_cfg->pbl;
955 fixed_burst = priv->plat->dma_cfg->fixed_burst;
956 mixed_burst = priv->plat->dma_cfg->mixed_burst;
957 burst_len = priv->plat->dma_cfg->burst_len;
960 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
961 burst_len, priv->dma_tx_phy,
962 priv->dma_rx_phy);
966 * stmmac_tx_timer:
967 * @data: data pointer
968 * Description:
969 * This is the timer handler to directly invoke the stmmac_tx_clean.
971 static void stmmac_tx_timer(unsigned long data)
973 struct stmmac_priv *priv = (struct stmmac_priv *)data;
975 stmmac_tx_clean(priv);
979 * stmmac_tx_timer:
980 * @priv: private data structure
981 * Description:
982 * This inits the transmit coalesce parameters: i.e. timer rate,
983 * timer handler and default threshold used for enabling the
984 * interrupt on completion bit.
986 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
988 priv->tx_coal_frames = STMMAC_TX_FRAMES;
989 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
990 init_timer(&priv->txtimer);
991 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
992 priv->txtimer.data = (unsigned long)priv;
993 priv->txtimer.function = stmmac_tx_timer;
994 add_timer(&priv->txtimer);
998 * stmmac_open - open entry point of the driver
999 * @dev : pointer to the device structure.
1000 * Description:
1001 * This function is the open entry point of the driver.
1002 * Return value:
1003 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1004 * file on failure.
1006 static int stmmac_open(struct net_device *dev)
1008 struct stmmac_priv *priv = netdev_priv(dev);
1009 int ret;
1011 clk_prepare_enable(priv->stmmac_clk);
1013 stmmac_check_ether_addr(priv);
1015 ret = stmmac_init_phy(dev);
1016 if (unlikely(ret)) {
1017 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1018 goto open_error;
1021 /* Create and initialize the TX/RX descriptors chains. */
1022 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1023 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1024 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1025 init_dma_desc_rings(dev);
1027 /* DMA initialization and SW reset */
1028 ret = stmmac_init_dma_engine(priv);
1029 if (ret < 0) {
1030 pr_err("%s: DMA initialization failed\n", __func__);
1031 goto open_error;
1034 /* Copy the MAC addr into the HW */
1035 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1037 /* If required, perform hw setup of the bus. */
1038 if (priv->plat->bus_setup)
1039 priv->plat->bus_setup(priv->ioaddr);
1041 /* Initialize the MAC Core */
1042 priv->hw->mac->core_init(priv->ioaddr);
1044 /* Request the IRQ lines */
1045 ret = request_irq(dev->irq, stmmac_interrupt,
1046 IRQF_SHARED, dev->name, dev);
1047 if (unlikely(ret < 0)) {
1048 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1049 __func__, dev->irq, ret);
1050 goto open_error;
1053 /* Request the Wake IRQ in case of another line is used for WoL */
1054 if (priv->wol_irq != dev->irq) {
1055 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1056 IRQF_SHARED, dev->name, dev);
1057 if (unlikely(ret < 0)) {
1058 pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1059 "(error: %d)\n", __func__, priv->wol_irq, ret);
1060 goto open_error_wolirq;
1064 /* Request the IRQ lines */
1065 if (priv->lpi_irq != -ENXIO) {
1066 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1067 dev->name, dev);
1068 if (unlikely(ret < 0)) {
1069 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1070 __func__, priv->lpi_irq, ret);
1071 goto open_error_lpiirq;
1075 /* Enable the MAC Rx/Tx */
1076 stmmac_set_mac(priv->ioaddr, true);
1078 /* Set the HW DMA mode and the COE */
1079 stmmac_dma_operation_mode(priv);
1081 /* Extra statistics */
1082 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1083 priv->xstats.threshold = tc;
1085 stmmac_mmc_setup(priv);
1087 #ifdef CONFIG_STMMAC_DEBUG_FS
1088 ret = stmmac_init_fs(dev);
1089 if (ret < 0)
1090 pr_warning("%s: failed debugFS registration\n", __func__);
1091 #endif
1092 /* Start the ball rolling... */
1093 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1094 priv->hw->dma->start_tx(priv->ioaddr);
1095 priv->hw->dma->start_rx(priv->ioaddr);
1097 /* Dump DMA/MAC registers */
1098 if (netif_msg_hw(priv)) {
1099 priv->hw->mac->dump_regs(priv->ioaddr);
1100 priv->hw->dma->dump_regs(priv->ioaddr);
1103 if (priv->phydev)
1104 phy_start(priv->phydev);
1106 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
1107 priv->eee_enabled = stmmac_eee_init(priv);
1109 stmmac_init_tx_coalesce(priv);
1111 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1112 priv->rx_riwt = MAX_DMA_RIWT;
1113 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1116 napi_enable(&priv->napi);
1117 netif_start_queue(dev);
1119 return 0;
1121 open_error_lpiirq:
1122 if (priv->wol_irq != dev->irq)
1123 free_irq(priv->wol_irq, dev);
1125 open_error_wolirq:
1126 free_irq(dev->irq, dev);
1128 open_error:
1129 if (priv->phydev)
1130 phy_disconnect(priv->phydev);
1132 clk_disable_unprepare(priv->stmmac_clk);
1134 return ret;
1138 * stmmac_release - close entry point of the driver
1139 * @dev : device pointer.
1140 * Description:
1141 * This is the stop entry point of the driver.
1143 static int stmmac_release(struct net_device *dev)
1145 struct stmmac_priv *priv = netdev_priv(dev);
1147 if (priv->eee_enabled)
1148 del_timer_sync(&priv->eee_ctrl_timer);
1150 /* Stop and disconnect the PHY */
1151 if (priv->phydev) {
1152 phy_stop(priv->phydev);
1153 phy_disconnect(priv->phydev);
1154 priv->phydev = NULL;
1157 netif_stop_queue(dev);
1159 napi_disable(&priv->napi);
1161 del_timer_sync(&priv->txtimer);
1163 /* Free the IRQ lines */
1164 free_irq(dev->irq, dev);
1165 if (priv->wol_irq != dev->irq)
1166 free_irq(priv->wol_irq, dev);
1167 if (priv->lpi_irq != -ENXIO)
1168 free_irq(priv->lpi_irq, dev);
1170 /* Stop TX/RX DMA and clear the descriptors */
1171 priv->hw->dma->stop_tx(priv->ioaddr);
1172 priv->hw->dma->stop_rx(priv->ioaddr);
1174 /* Release and free the Rx/Tx resources */
1175 free_dma_desc_resources(priv);
1177 /* Disable the MAC Rx/Tx */
1178 stmmac_set_mac(priv->ioaddr, false);
1180 netif_carrier_off(dev);
1182 #ifdef CONFIG_STMMAC_DEBUG_FS
1183 stmmac_exit_fs();
1184 #endif
1185 clk_disable_unprepare(priv->stmmac_clk);
1187 return 0;
1191 * stmmac_xmit:
1192 * @skb : the socket buffer
1193 * @dev : device pointer
1194 * Description : Tx entry point of the driver.
1196 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1198 struct stmmac_priv *priv = netdev_priv(dev);
1199 unsigned int txsize = priv->dma_tx_size;
1200 unsigned int entry;
1201 int i, csum_insertion = 0;
1202 int nfrags = skb_shinfo(skb)->nr_frags;
1203 struct dma_desc *desc, *first;
1204 unsigned int nopaged_len = skb_headlen(skb);
1206 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1207 if (!netif_queue_stopped(dev)) {
1208 netif_stop_queue(dev);
1209 /* This is a hard error, log it. */
1210 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1211 __func__);
1213 return NETDEV_TX_BUSY;
1216 spin_lock(&priv->tx_lock);
1218 if (priv->tx_path_in_lpi_mode)
1219 stmmac_disable_eee_mode(priv);
1221 entry = priv->cur_tx % txsize;
1223 #ifdef STMMAC_XMIT_DEBUG
1224 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1225 pr_debug("stmmac xmit: [entry %d]\n"
1226 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1227 "\tn_frags: %d - ip_summed: %d - %s gso\n"
1228 "\ttx_count_frames %d\n", entry,
1229 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1230 !skb_is_gso(skb) ? "isn't" : "is",
1231 priv->tx_count_frames);
1232 #endif
1234 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1236 desc = priv->dma_tx + entry;
1237 first = desc;
1239 #ifdef STMMAC_XMIT_DEBUG
1240 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1241 pr_debug("\tskb len: %d, nopaged_len: %d,\n"
1242 "\t\tn_frags: %d, ip_summed: %d\n",
1243 skb->len, nopaged_len, nfrags, skb->ip_summed);
1244 #endif
1245 priv->tx_skbuff[entry] = skb;
1247 if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1248 entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1249 desc = priv->dma_tx + entry;
1250 } else {
1251 desc->des2 = dma_map_single(priv->device, skb->data,
1252 nopaged_len, DMA_TO_DEVICE);
1253 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1254 csum_insertion);
1257 for (i = 0; i < nfrags; i++) {
1258 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1259 int len = skb_frag_size(frag);
1261 entry = (++priv->cur_tx) % txsize;
1262 desc = priv->dma_tx + entry;
1264 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1265 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1266 DMA_TO_DEVICE);
1267 priv->tx_skbuff[entry] = NULL;
1268 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1269 wmb();
1270 priv->hw->desc->set_tx_owner(desc);
1271 wmb();
1274 /* Finalize the latest segment. */
1275 priv->hw->desc->close_tx_desc(desc);
1277 wmb();
1278 /* According to the coalesce parameter the IC bit for the latest
1279 * segment could be reset and the timer re-started to invoke the
1280 * stmmac_tx function. This approach takes care about the fragments.
1282 priv->tx_count_frames += nfrags + 1;
1283 if (priv->tx_coal_frames > priv->tx_count_frames) {
1284 priv->hw->desc->clear_tx_ic(desc);
1285 priv->xstats.tx_reset_ic_bit++;
1286 TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
1287 priv->tx_count_frames);
1288 mod_timer(&priv->txtimer,
1289 STMMAC_COAL_TIMER(priv->tx_coal_timer));
1290 } else
1291 priv->tx_count_frames = 0;
1293 /* To avoid raise condition */
1294 priv->hw->desc->set_tx_owner(first);
1295 wmb();
1297 priv->cur_tx++;
1299 #ifdef STMMAC_XMIT_DEBUG
1300 if (netif_msg_pktdata(priv)) {
1301 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1302 "first=%p, nfrags=%d\n",
1303 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1304 entry, first, nfrags);
1305 display_ring(priv->dma_tx, txsize);
1306 pr_info(">>> frame to be transmitted: ");
1307 print_pkt(skb->data, skb->len);
1309 #endif
1310 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1311 TX_DBG("%s: stop transmitted packets\n", __func__);
1312 netif_stop_queue(dev);
1315 dev->stats.tx_bytes += skb->len;
1317 skb_tx_timestamp(skb);
1319 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1321 spin_unlock(&priv->tx_lock);
1323 return NETDEV_TX_OK;
1326 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1328 unsigned int rxsize = priv->dma_rx_size;
1329 int bfsize = priv->dma_buf_sz;
1330 struct dma_desc *p = priv->dma_rx;
1332 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1333 unsigned int entry = priv->dirty_rx % rxsize;
1334 if (likely(priv->rx_skbuff[entry] == NULL)) {
1335 struct sk_buff *skb;
1337 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1339 if (unlikely(skb == NULL))
1340 break;
1342 priv->rx_skbuff[entry] = skb;
1343 priv->rx_skbuff_dma[entry] =
1344 dma_map_single(priv->device, skb->data, bfsize,
1345 DMA_FROM_DEVICE);
1347 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1349 if (unlikely(priv->plat->has_gmac))
1350 priv->hw->ring->refill_desc3(bfsize, p + entry);
1352 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1354 wmb();
1355 priv->hw->desc->set_rx_owner(p + entry);
1356 wmb();
1360 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1362 unsigned int rxsize = priv->dma_rx_size;
1363 unsigned int entry = priv->cur_rx % rxsize;
1364 unsigned int next_entry;
1365 unsigned int count = 0;
1366 struct dma_desc *p = priv->dma_rx + entry;
1367 struct dma_desc *p_next;
1369 #ifdef STMMAC_RX_DEBUG
1370 if (netif_msg_hw(priv)) {
1371 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1372 display_ring(priv->dma_rx, rxsize);
1374 #endif
1375 while (!priv->hw->desc->get_rx_owner(p)) {
1376 int status;
1378 if (count >= limit)
1379 break;
1381 count++;
1383 next_entry = (++priv->cur_rx) % rxsize;
1384 p_next = priv->dma_rx + next_entry;
1385 prefetch(p_next);
1387 /* read the status of the incoming frame */
1388 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1389 &priv->xstats, p));
1390 if (unlikely(status == discard_frame))
1391 priv->dev->stats.rx_errors++;
1392 else {
1393 struct sk_buff *skb;
1394 int frame_len;
1396 frame_len = priv->hw->desc->get_rx_frame_len(p,
1397 priv->plat->rx_coe);
1398 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1399 * Type frames (LLC/LLC-SNAP) */
1400 if (unlikely(status != llc_snap))
1401 frame_len -= ETH_FCS_LEN;
1402 #ifdef STMMAC_RX_DEBUG
1403 if (frame_len > ETH_FRAME_LEN)
1404 pr_debug("\tRX frame size %d, COE status: %d\n",
1405 frame_len, status);
1407 if (netif_msg_hw(priv))
1408 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1409 p, entry, p->des2);
1410 #endif
1411 skb = priv->rx_skbuff[entry];
1412 if (unlikely(!skb)) {
1413 pr_err("%s: Inconsistent Rx descriptor chain\n",
1414 priv->dev->name);
1415 priv->dev->stats.rx_dropped++;
1416 break;
1418 prefetch(skb->data - NET_IP_ALIGN);
1419 priv->rx_skbuff[entry] = NULL;
1421 skb_put(skb, frame_len);
1422 dma_unmap_single(priv->device,
1423 priv->rx_skbuff_dma[entry],
1424 priv->dma_buf_sz, DMA_FROM_DEVICE);
1425 #ifdef STMMAC_RX_DEBUG
1426 if (netif_msg_pktdata(priv)) {
1427 pr_info(" frame received (%dbytes)", frame_len);
1428 print_pkt(skb->data, frame_len);
1430 #endif
1431 skb->protocol = eth_type_trans(skb, priv->dev);
1433 if (unlikely(!priv->plat->rx_coe))
1434 skb_checksum_none_assert(skb);
1435 else
1436 skb->ip_summed = CHECKSUM_UNNECESSARY;
1438 napi_gro_receive(&priv->napi, skb);
1440 priv->dev->stats.rx_packets++;
1441 priv->dev->stats.rx_bytes += frame_len;
1443 entry = next_entry;
1444 p = p_next; /* use prefetched values */
1447 stmmac_rx_refill(priv);
1449 priv->xstats.rx_pkt_n += count;
1451 return count;
1455 * stmmac_poll - stmmac poll method (NAPI)
1456 * @napi : pointer to the napi structure.
1457 * @budget : maximum number of packets that the current CPU can receive from
1458 * all interfaces.
1459 * Description :
1460 * To look at the incoming frames and clear the tx resources.
1462 static int stmmac_poll(struct napi_struct *napi, int budget)
1464 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1465 int work_done = 0;
1467 priv->xstats.napi_poll++;
1468 stmmac_tx_clean(priv);
1470 work_done = stmmac_rx(priv, budget);
1471 if (work_done < budget) {
1472 napi_complete(napi);
1473 stmmac_enable_dma_irq(priv);
1475 return work_done;
1479 * stmmac_tx_timeout
1480 * @dev : Pointer to net device structure
1481 * Description: this function is called when a packet transmission fails to
1482 * complete within a reasonable time. The driver will mark the error in the
1483 * netdev structure and arrange for the device to be reset to a sane state
1484 * in order to transmit a new packet.
1486 static void stmmac_tx_timeout(struct net_device *dev)
1488 struct stmmac_priv *priv = netdev_priv(dev);
1490 /* Clear Tx resources and restart transmitting again */
1491 stmmac_tx_err(priv);
1494 /* Configuration changes (passed on by ifconfig) */
1495 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1497 if (dev->flags & IFF_UP) /* can't act on a running interface */
1498 return -EBUSY;
1500 /* Don't allow changing the I/O address */
1501 if (map->base_addr != dev->base_addr) {
1502 pr_warning("%s: can't change I/O address\n", dev->name);
1503 return -EOPNOTSUPP;
1506 /* Don't allow changing the IRQ */
1507 if (map->irq != dev->irq) {
1508 pr_warning("%s: can't change IRQ number %d\n",
1509 dev->name, dev->irq);
1510 return -EOPNOTSUPP;
1513 /* ignore other fields */
1514 return 0;
1518 * stmmac_set_rx_mode - entry point for multicast addressing
1519 * @dev : pointer to the device structure
1520 * Description:
1521 * This function is a driver entry point which gets called by the kernel
1522 * whenever multicast addresses must be enabled/disabled.
1523 * Return value:
1524 * void.
1526 static void stmmac_set_rx_mode(struct net_device *dev)
1528 struct stmmac_priv *priv = netdev_priv(dev);
1530 spin_lock(&priv->lock);
1531 priv->hw->mac->set_filter(dev, priv->synopsys_id);
1532 spin_unlock(&priv->lock);
1536 * stmmac_change_mtu - entry point to change MTU size for the device.
1537 * @dev : device pointer.
1538 * @new_mtu : the new MTU size for the device.
1539 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1540 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1541 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1542 * Return value:
1543 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1544 * file on failure.
1546 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1548 struct stmmac_priv *priv = netdev_priv(dev);
1549 int max_mtu;
1551 if (netif_running(dev)) {
1552 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1553 return -EBUSY;
1556 if (priv->plat->enh_desc)
1557 max_mtu = JUMBO_LEN;
1558 else
1559 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1561 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1562 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1563 return -EINVAL;
1566 dev->mtu = new_mtu;
1567 netdev_update_features(dev);
1569 return 0;
1572 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1573 netdev_features_t features)
1575 struct stmmac_priv *priv = netdev_priv(dev);
1577 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1578 features &= ~NETIF_F_RXCSUM;
1579 else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
1580 features &= ~NETIF_F_IPV6_CSUM;
1581 if (!priv->plat->tx_coe)
1582 features &= ~NETIF_F_ALL_CSUM;
1584 /* Some GMAC devices have a bugged Jumbo frame support that
1585 * needs to have the Tx COE disabled for oversized frames
1586 * (due to limited buffer sizes). In this case we disable
1587 * the TX csum insertionin the TDES and not use SF. */
1588 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1589 features &= ~NETIF_F_ALL_CSUM;
1591 return features;
1594 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1596 struct net_device *dev = (struct net_device *)dev_id;
1597 struct stmmac_priv *priv = netdev_priv(dev);
1599 if (unlikely(!dev)) {
1600 pr_err("%s: invalid dev pointer\n", __func__);
1601 return IRQ_NONE;
1604 /* To handle GMAC own interrupts */
1605 if (priv->plat->has_gmac) {
1606 int status = priv->hw->mac->host_irq_status((void __iomem *)
1607 dev->base_addr);
1608 if (unlikely(status)) {
1609 if (status & core_mmc_tx_irq)
1610 priv->xstats.mmc_tx_irq_n++;
1611 if (status & core_mmc_rx_irq)
1612 priv->xstats.mmc_rx_irq_n++;
1613 if (status & core_mmc_rx_csum_offload_irq)
1614 priv->xstats.mmc_rx_csum_offload_irq_n++;
1615 if (status & core_irq_receive_pmt_irq)
1616 priv->xstats.irq_receive_pmt_irq_n++;
1618 /* For LPI we need to save the tx status */
1619 if (status & core_irq_tx_path_in_lpi_mode) {
1620 priv->xstats.irq_tx_path_in_lpi_mode_n++;
1621 priv->tx_path_in_lpi_mode = true;
1623 if (status & core_irq_tx_path_exit_lpi_mode) {
1624 priv->xstats.irq_tx_path_exit_lpi_mode_n++;
1625 priv->tx_path_in_lpi_mode = false;
1627 if (status & core_irq_rx_path_in_lpi_mode)
1628 priv->xstats.irq_rx_path_in_lpi_mode_n++;
1629 if (status & core_irq_rx_path_exit_lpi_mode)
1630 priv->xstats.irq_rx_path_exit_lpi_mode_n++;
1634 /* To handle DMA interrupts */
1635 stmmac_dma_interrupt(priv);
1637 return IRQ_HANDLED;
1640 #ifdef CONFIG_NET_POLL_CONTROLLER
1641 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1642 * to allow network I/O with interrupts disabled. */
1643 static void stmmac_poll_controller(struct net_device *dev)
1645 disable_irq(dev->irq);
1646 stmmac_interrupt(dev->irq, dev);
1647 enable_irq(dev->irq);
1649 #endif
1652 * stmmac_ioctl - Entry point for the Ioctl
1653 * @dev: Device pointer.
1654 * @rq: An IOCTL specefic structure, that can contain a pointer to
1655 * a proprietary structure used to pass information to the driver.
1656 * @cmd: IOCTL command
1657 * Description:
1658 * Currently there are no special functionality supported in IOCTL, just the
1659 * phy_mii_ioctl(...) can be invoked.
1661 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1663 struct stmmac_priv *priv = netdev_priv(dev);
1664 int ret;
1666 if (!netif_running(dev))
1667 return -EINVAL;
1669 if (!priv->phydev)
1670 return -EINVAL;
1672 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1674 return ret;
1677 #ifdef CONFIG_STMMAC_DEBUG_FS
1678 static struct dentry *stmmac_fs_dir;
1679 static struct dentry *stmmac_rings_status;
1680 static struct dentry *stmmac_dma_cap;
1682 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1684 struct tmp_s {
1685 u64 a;
1686 unsigned int b;
1687 unsigned int c;
1689 int i;
1690 struct net_device *dev = seq->private;
1691 struct stmmac_priv *priv = netdev_priv(dev);
1693 seq_printf(seq, "=======================\n");
1694 seq_printf(seq, " RX descriptor ring\n");
1695 seq_printf(seq, "=======================\n");
1697 for (i = 0; i < priv->dma_rx_size; i++) {
1698 struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1699 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1700 i, (unsigned int)(x->a),
1701 (unsigned int)((x->a) >> 32), x->b, x->c);
1702 seq_printf(seq, "\n");
1705 seq_printf(seq, "\n");
1706 seq_printf(seq, "=======================\n");
1707 seq_printf(seq, " TX descriptor ring\n");
1708 seq_printf(seq, "=======================\n");
1710 for (i = 0; i < priv->dma_tx_size; i++) {
1711 struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1712 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1713 i, (unsigned int)(x->a),
1714 (unsigned int)((x->a) >> 32), x->b, x->c);
1715 seq_printf(seq, "\n");
1718 return 0;
1721 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1723 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1726 static const struct file_operations stmmac_rings_status_fops = {
1727 .owner = THIS_MODULE,
1728 .open = stmmac_sysfs_ring_open,
1729 .read = seq_read,
1730 .llseek = seq_lseek,
1731 .release = single_release,
1734 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1736 struct net_device *dev = seq->private;
1737 struct stmmac_priv *priv = netdev_priv(dev);
1739 if (!priv->hw_cap_support) {
1740 seq_printf(seq, "DMA HW features not supported\n");
1741 return 0;
1744 seq_printf(seq, "==============================\n");
1745 seq_printf(seq, "\tDMA HW features\n");
1746 seq_printf(seq, "==============================\n");
1748 seq_printf(seq, "\t10/100 Mbps %s\n",
1749 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1750 seq_printf(seq, "\t1000 Mbps %s\n",
1751 (priv->dma_cap.mbps_1000) ? "Y" : "N");
1752 seq_printf(seq, "\tHalf duple %s\n",
1753 (priv->dma_cap.half_duplex) ? "Y" : "N");
1754 seq_printf(seq, "\tHash Filter: %s\n",
1755 (priv->dma_cap.hash_filter) ? "Y" : "N");
1756 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1757 (priv->dma_cap.multi_addr) ? "Y" : "N");
1758 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1759 (priv->dma_cap.pcs) ? "Y" : "N");
1760 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1761 (priv->dma_cap.sma_mdio) ? "Y" : "N");
1762 seq_printf(seq, "\tPMT Remote wake up: %s\n",
1763 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1764 seq_printf(seq, "\tPMT Magic Frame: %s\n",
1765 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1766 seq_printf(seq, "\tRMON module: %s\n",
1767 (priv->dma_cap.rmon) ? "Y" : "N");
1768 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1769 (priv->dma_cap.time_stamp) ? "Y" : "N");
1770 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1771 (priv->dma_cap.atime_stamp) ? "Y" : "N");
1772 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1773 (priv->dma_cap.eee) ? "Y" : "N");
1774 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1775 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1776 (priv->dma_cap.tx_coe) ? "Y" : "N");
1777 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1778 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1779 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1780 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1781 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1782 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1783 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1784 priv->dma_cap.number_rx_channel);
1785 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1786 priv->dma_cap.number_tx_channel);
1787 seq_printf(seq, "\tEnhanced descriptors: %s\n",
1788 (priv->dma_cap.enh_desc) ? "Y" : "N");
1790 return 0;
1793 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1795 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1798 static const struct file_operations stmmac_dma_cap_fops = {
1799 .owner = THIS_MODULE,
1800 .open = stmmac_sysfs_dma_cap_open,
1801 .read = seq_read,
1802 .llseek = seq_lseek,
1803 .release = single_release,
1806 static int stmmac_init_fs(struct net_device *dev)
1808 /* Create debugfs entries */
1809 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1811 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1812 pr_err("ERROR %s, debugfs create directory failed\n",
1813 STMMAC_RESOURCE_NAME);
1815 return -ENOMEM;
1818 /* Entry to report DMA RX/TX rings */
1819 stmmac_rings_status = debugfs_create_file("descriptors_status",
1820 S_IRUGO, stmmac_fs_dir, dev,
1821 &stmmac_rings_status_fops);
1823 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1824 pr_info("ERROR creating stmmac ring debugfs file\n");
1825 debugfs_remove(stmmac_fs_dir);
1827 return -ENOMEM;
1830 /* Entry to report the DMA HW features */
1831 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1832 dev, &stmmac_dma_cap_fops);
1834 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1835 pr_info("ERROR creating stmmac MMC debugfs file\n");
1836 debugfs_remove(stmmac_rings_status);
1837 debugfs_remove(stmmac_fs_dir);
1839 return -ENOMEM;
1842 return 0;
1845 static void stmmac_exit_fs(void)
1847 debugfs_remove(stmmac_rings_status);
1848 debugfs_remove(stmmac_dma_cap);
1849 debugfs_remove(stmmac_fs_dir);
1851 #endif /* CONFIG_STMMAC_DEBUG_FS */
1853 static const struct net_device_ops stmmac_netdev_ops = {
1854 .ndo_open = stmmac_open,
1855 .ndo_start_xmit = stmmac_xmit,
1856 .ndo_stop = stmmac_release,
1857 .ndo_change_mtu = stmmac_change_mtu,
1858 .ndo_fix_features = stmmac_fix_features,
1859 .ndo_set_rx_mode = stmmac_set_rx_mode,
1860 .ndo_tx_timeout = stmmac_tx_timeout,
1861 .ndo_do_ioctl = stmmac_ioctl,
1862 .ndo_set_config = stmmac_config,
1863 #ifdef CONFIG_NET_POLL_CONTROLLER
1864 .ndo_poll_controller = stmmac_poll_controller,
1865 #endif
1866 .ndo_set_mac_address = eth_mac_addr,
1870 * stmmac_hw_init - Init the MAC device
1871 * @priv : pointer to the private device structure.
1872 * Description: this function detects which MAC device
1873 * (GMAC/MAC10-100) has to attached, checks the HW capability
1874 * (if supported) and sets the driver's features (for example
1875 * to use the ring or chaine mode or support the normal/enh
1876 * descriptor structure).
1878 static int stmmac_hw_init(struct stmmac_priv *priv)
1880 int ret = 0;
1881 struct mac_device_info *mac;
1883 /* Identify the MAC HW device */
1884 if (priv->plat->has_gmac) {
1885 priv->dev->priv_flags |= IFF_UNICAST_FLT;
1886 mac = dwmac1000_setup(priv->ioaddr);
1887 } else {
1888 mac = dwmac100_setup(priv->ioaddr);
1890 if (!mac)
1891 return -ENOMEM;
1893 priv->hw = mac;
1895 /* To use the chained or ring mode */
1896 priv->hw->ring = &ring_mode_ops;
1898 /* Get and dump the chip ID */
1899 priv->synopsys_id = stmmac_get_synopsys_id(priv);
1901 /* Get the HW capability (new GMAC newer than 3.50a) */
1902 priv->hw_cap_support = stmmac_get_hw_features(priv);
1903 if (priv->hw_cap_support) {
1904 pr_info(" DMA HW capability register supported");
1906 /* We can override some gmac/dma configuration fields: e.g.
1907 * enh_desc, tx_coe (e.g. that are passed through the
1908 * platform) with the values from the HW capability
1909 * register (if supported).
1911 priv->plat->enh_desc = priv->dma_cap.enh_desc;
1912 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1914 priv->plat->tx_coe = priv->dma_cap.tx_coe;
1916 if (priv->dma_cap.rx_coe_type2)
1917 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
1918 else if (priv->dma_cap.rx_coe_type1)
1919 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
1921 } else
1922 pr_info(" No HW DMA feature register supported");
1924 /* Select the enhnaced/normal descriptor structures */
1925 stmmac_selec_desc_mode(priv);
1927 /* Enable the IPC (Checksum Offload) and check if the feature has been
1928 * enabled during the core configuration. */
1929 ret = priv->hw->mac->rx_ipc(priv->ioaddr);
1930 if (!ret) {
1931 pr_warning(" RX IPC Checksum Offload not configured.\n");
1932 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1935 if (priv->plat->rx_coe)
1936 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1937 priv->plat->rx_coe);
1938 if (priv->plat->tx_coe)
1939 pr_info(" TX Checksum insertion supported\n");
1941 if (priv->plat->pmt) {
1942 pr_info(" Wake-Up On Lan supported\n");
1943 device_set_wakeup_capable(priv->device, 1);
1946 return ret;
1950 * stmmac_dvr_probe
1951 * @device: device pointer
1952 * @plat_dat: platform data pointer
1953 * @addr: iobase memory address
1954 * Description: this is the main probe function used to
1955 * call the alloc_etherdev, allocate the priv structure.
1957 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1958 struct plat_stmmacenet_data *plat_dat,
1959 void __iomem *addr)
1961 int ret = 0;
1962 struct net_device *ndev = NULL;
1963 struct stmmac_priv *priv;
1965 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1966 if (!ndev)
1967 return NULL;
1969 SET_NETDEV_DEV(ndev, device);
1971 priv = netdev_priv(ndev);
1972 priv->device = device;
1973 priv->dev = ndev;
1975 ether_setup(ndev);
1977 stmmac_set_ethtool_ops(ndev);
1978 priv->pause = pause;
1979 priv->plat = plat_dat;
1980 priv->ioaddr = addr;
1981 priv->dev->base_addr = (unsigned long)addr;
1983 /* Verify driver arguments */
1984 stmmac_verify_args();
1986 /* Override with kernel parameters if supplied XXX CRS XXX
1987 * this needs to have multiple instances */
1988 if ((phyaddr >= 0) && (phyaddr <= 31))
1989 priv->plat->phy_addr = phyaddr;
1991 /* Init MAC and get the capabilities */
1992 stmmac_hw_init(priv);
1994 ndev->netdev_ops = &stmmac_netdev_ops;
1996 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1997 NETIF_F_RXCSUM;
1998 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1999 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2000 #ifdef STMMAC_VLAN_TAG_USED
2001 /* Both mac100 and gmac support receive VLAN tag detection */
2002 ndev->features |= NETIF_F_HW_VLAN_RX;
2003 #endif
2004 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2006 if (flow_ctrl)
2007 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2009 /* Rx Watchdog is available in the COREs newer than the 3.40.
2010 * In some case, for example on bugged HW this feature
2011 * has to be disable and this can be done by passing the
2012 * riwt_off field from the platform.
2014 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2015 priv->use_riwt = 1;
2016 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2019 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2021 spin_lock_init(&priv->lock);
2022 spin_lock_init(&priv->tx_lock);
2024 ret = register_netdev(ndev);
2025 if (ret) {
2026 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2027 goto error_netdev_register;
2030 priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2031 if (IS_ERR(priv->stmmac_clk)) {
2032 pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2033 goto error_clk_get;
2036 /* If a specific clk_csr value is passed from the platform
2037 * this means that the CSR Clock Range selection cannot be
2038 * changed at run-time and it is fixed. Viceversa the driver'll try to
2039 * set the MDC clock dynamically according to the csr actual
2040 * clock input.
2042 if (!priv->plat->clk_csr)
2043 stmmac_clk_csr_set(priv);
2044 else
2045 priv->clk_csr = priv->plat->clk_csr;
2047 /* MDIO bus Registration */
2048 ret = stmmac_mdio_register(ndev);
2049 if (ret < 0) {
2050 pr_debug("%s: MDIO bus (id: %d) registration failed",
2051 __func__, priv->plat->bus_id);
2052 goto error_mdio_register;
2055 return priv;
2057 error_mdio_register:
2058 clk_put(priv->stmmac_clk);
2059 error_clk_get:
2060 unregister_netdev(ndev);
2061 error_netdev_register:
2062 netif_napi_del(&priv->napi);
2063 free_netdev(ndev);
2065 return NULL;
2069 * stmmac_dvr_remove
2070 * @ndev: net device pointer
2071 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2072 * changes the link status, releases the DMA descriptor rings.
2074 int stmmac_dvr_remove(struct net_device *ndev)
2076 struct stmmac_priv *priv = netdev_priv(ndev);
2078 pr_info("%s:\n\tremoving driver", __func__);
2080 priv->hw->dma->stop_rx(priv->ioaddr);
2081 priv->hw->dma->stop_tx(priv->ioaddr);
2083 stmmac_set_mac(priv->ioaddr, false);
2084 stmmac_mdio_unregister(ndev);
2085 netif_carrier_off(ndev);
2086 unregister_netdev(ndev);
2087 free_netdev(ndev);
2089 return 0;
2092 #ifdef CONFIG_PM
2093 int stmmac_suspend(struct net_device *ndev)
2095 struct stmmac_priv *priv = netdev_priv(ndev);
2096 int dis_ic = 0;
2097 unsigned long flags;
2099 if (!ndev || !netif_running(ndev))
2100 return 0;
2102 if (priv->phydev)
2103 phy_stop(priv->phydev);
2105 spin_lock_irqsave(&priv->lock, flags);
2107 netif_device_detach(ndev);
2108 netif_stop_queue(ndev);
2110 if (priv->use_riwt)
2111 dis_ic = 1;
2113 napi_disable(&priv->napi);
2115 /* Stop TX/RX DMA */
2116 priv->hw->dma->stop_tx(priv->ioaddr);
2117 priv->hw->dma->stop_rx(priv->ioaddr);
2118 /* Clear the Rx/Tx descriptors */
2119 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2120 dis_ic);
2121 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2123 /* Enable Power down mode by programming the PMT regs */
2124 if (device_may_wakeup(priv->device))
2125 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2126 else {
2127 stmmac_set_mac(priv->ioaddr, false);
2128 /* Disable clock in case of PWM is off */
2129 clk_disable_unprepare(priv->stmmac_clk);
2131 spin_unlock_irqrestore(&priv->lock, flags);
2132 return 0;
2135 int stmmac_resume(struct net_device *ndev)
2137 struct stmmac_priv *priv = netdev_priv(ndev);
2138 unsigned long flags;
2140 if (!netif_running(ndev))
2141 return 0;
2143 spin_lock_irqsave(&priv->lock, flags);
2145 /* Power Down bit, into the PM register, is cleared
2146 * automatically as soon as a magic packet or a Wake-up frame
2147 * is received. Anyway, it's better to manually clear
2148 * this bit because it can generate problems while resuming
2149 * from another devices (e.g. serial console). */
2150 if (device_may_wakeup(priv->device))
2151 priv->hw->mac->pmt(priv->ioaddr, 0);
2152 else
2153 /* enable the clk prevously disabled */
2154 clk_prepare_enable(priv->stmmac_clk);
2156 netif_device_attach(ndev);
2158 /* Enable the MAC and DMA */
2159 stmmac_set_mac(priv->ioaddr, true);
2160 priv->hw->dma->start_tx(priv->ioaddr);
2161 priv->hw->dma->start_rx(priv->ioaddr);
2163 napi_enable(&priv->napi);
2165 netif_start_queue(ndev);
2167 spin_unlock_irqrestore(&priv->lock, flags);
2169 if (priv->phydev)
2170 phy_start(priv->phydev);
2172 return 0;
2175 int stmmac_freeze(struct net_device *ndev)
2177 if (!ndev || !netif_running(ndev))
2178 return 0;
2180 return stmmac_release(ndev);
2183 int stmmac_restore(struct net_device *ndev)
2185 if (!ndev || !netif_running(ndev))
2186 return 0;
2188 return stmmac_open(ndev);
2190 #endif /* CONFIG_PM */
2192 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2193 * depending on the configuration selected.
2195 static int __init stmmac_init(void)
2197 int ret;
2199 ret = stmmac_register_platform();
2200 if (ret)
2201 goto err;
2202 ret = stmmac_register_pci();
2203 if (ret)
2204 goto err_pci;
2205 return 0;
2206 err_pci:
2207 stmmac_unregister_platform();
2208 err:
2209 pr_err("stmmac: driver registration failed\n");
2210 return ret;
2213 static void __exit stmmac_exit(void)
2215 stmmac_unregister_platform();
2216 stmmac_unregister_pci();
2219 module_init(stmmac_init);
2220 module_exit(stmmac_exit);
2222 #ifndef MODULE
2223 static int __init stmmac_cmdline_opt(char *str)
2225 char *opt;
2227 if (!str || !*str)
2228 return -EINVAL;
2229 while ((opt = strsep(&str, ",")) != NULL) {
2230 if (!strncmp(opt, "debug:", 6)) {
2231 if (kstrtoint(opt + 6, 0, &debug))
2232 goto err;
2233 } else if (!strncmp(opt, "phyaddr:", 8)) {
2234 if (kstrtoint(opt + 8, 0, &phyaddr))
2235 goto err;
2236 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2237 if (kstrtoint(opt + 11, 0, &dma_txsize))
2238 goto err;
2239 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2240 if (kstrtoint(opt + 11, 0, &dma_rxsize))
2241 goto err;
2242 } else if (!strncmp(opt, "buf_sz:", 7)) {
2243 if (kstrtoint(opt + 7, 0, &buf_sz))
2244 goto err;
2245 } else if (!strncmp(opt, "tc:", 3)) {
2246 if (kstrtoint(opt + 3, 0, &tc))
2247 goto err;
2248 } else if (!strncmp(opt, "watchdog:", 9)) {
2249 if (kstrtoint(opt + 9, 0, &watchdog))
2250 goto err;
2251 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2252 if (kstrtoint(opt + 10, 0, &flow_ctrl))
2253 goto err;
2254 } else if (!strncmp(opt, "pause:", 6)) {
2255 if (kstrtoint(opt + 6, 0, &pause))
2256 goto err;
2257 } else if (!strncmp(opt, "eee_timer:", 10)) {
2258 if (kstrtoint(opt + 10, 0, &eee_timer))
2259 goto err;
2262 return 0;
2264 err:
2265 pr_err("%s: ERROR broken module parameter conversion", __func__);
2266 return -EINVAL;
2269 __setup("stmmaceth=", stmmac_cmdline_opt);
2270 #endif
2272 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2273 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2274 MODULE_LICENSE("GPL");