Merge v4.4-rc1 into MTD development
[linux-2.6/btrfs-unstable.git] / drivers / mtd / mtdcore.c
blob62f83b05097843806dbe1965713882db07c360ec
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/kconfig.h>
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/partitions.h>
47 #include "mtdcore.h"
49 static struct backing_dev_info mtd_bdi = {
52 #ifdef CONFIG_PM_SLEEP
54 static int mtd_cls_suspend(struct device *dev)
56 struct mtd_info *mtd = dev_get_drvdata(dev);
58 return mtd ? mtd_suspend(mtd) : 0;
61 static int mtd_cls_resume(struct device *dev)
63 struct mtd_info *mtd = dev_get_drvdata(dev);
65 if (mtd)
66 mtd_resume(mtd);
67 return 0;
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
76 static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .pm = MTD_CLS_PM_OPS,
82 static DEFINE_IDR(mtd_idr);
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85 should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 struct mtd_info *__mtd_next_device(int i)
91 return idr_get_next(&mtd_idr, &i);
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
95 static LIST_HEAD(mtd_notifiers);
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
103 static void mtd_release(struct device *dev)
105 struct mtd_info *mtd = dev_get_drvdata(dev);
106 dev_t index = MTD_DEVT(mtd->index);
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
112 static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
115 struct mtd_info *mtd = dev_get_drvdata(dev);
116 char *type;
118 switch (mtd->type) {
119 case MTD_ABSENT:
120 type = "absent";
121 break;
122 case MTD_RAM:
123 type = "ram";
124 break;
125 case MTD_ROM:
126 type = "rom";
127 break;
128 case MTD_NORFLASH:
129 type = "nor";
130 break;
131 case MTD_NANDFLASH:
132 type = "nand";
133 break;
134 case MTD_DATAFLASH:
135 type = "dataflash";
136 break;
137 case MTD_UBIVOLUME:
138 type = "ubi";
139 break;
140 case MTD_MLCNANDFLASH:
141 type = "mlc-nand";
142 break;
143 default:
144 type = "unknown";
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151 static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
154 struct mtd_info *mtd = dev_get_drvdata(dev);
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
161 static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
164 struct mtd_info *mtd = dev_get_drvdata(dev);
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
175 struct mtd_info *mtd = dev_get_drvdata(dev);
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
182 static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
185 struct mtd_info *mtd = dev_get_drvdata(dev);
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
206 struct mtd_info *mtd = dev_get_drvdata(dev);
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
216 struct mtd_info *mtd = dev_get_drvdata(dev);
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 NULL);
224 static ssize_t mtd_name_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
227 struct mtd_info *mtd = dev_get_drvdata(dev);
229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 struct mtd_info *mtd = dev_get_drvdata(dev);
239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 struct device_attribute *attr,
245 char *buf)
247 struct mtd_info *mtd = dev_get_drvdata(dev);
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 struct device_attribute *attr,
254 const char *buf, size_t count)
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257 unsigned int bitflip_threshold;
258 int retval;
260 retval = kstrtouint(buf, 0, &bitflip_threshold);
261 if (retval)
262 return retval;
264 mtd->bitflip_threshold = bitflip_threshold;
265 return count;
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 mtd_bitflip_threshold_show,
269 mtd_bitflip_threshold_store);
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
274 struct mtd_info *mtd = dev_get_drvdata(dev);
276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 mtd_ecc_stats_corrected_show, NULL);
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
322 static struct attribute *mtd_attrs[] = {
323 &dev_attr_type.attr,
324 &dev_attr_flags.attr,
325 &dev_attr_size.attr,
326 &dev_attr_erasesize.attr,
327 &dev_attr_writesize.attr,
328 &dev_attr_subpagesize.attr,
329 &dev_attr_oobsize.attr,
330 &dev_attr_numeraseregions.attr,
331 &dev_attr_name.attr,
332 &dev_attr_ecc_strength.attr,
333 &dev_attr_ecc_step_size.attr,
334 &dev_attr_corrected_bits.attr,
335 &dev_attr_ecc_failures.attr,
336 &dev_attr_bad_blocks.attr,
337 &dev_attr_bbt_blocks.attr,
338 &dev_attr_bitflip_threshold.attr,
339 NULL,
341 ATTRIBUTE_GROUPS(mtd);
343 static struct device_type mtd_devtype = {
344 .name = "mtd",
345 .groups = mtd_groups,
346 .release = mtd_release,
349 #ifndef CONFIG_MMU
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
352 switch (mtd->type) {
353 case MTD_RAM:
354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 case MTD_ROM:
357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 NOMMU_MAP_READ;
359 default:
360 return NOMMU_MAP_COPY;
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
364 #endif
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 void *cmd)
369 struct mtd_info *mtd;
371 mtd = container_of(n, struct mtd_info, reboot_notifier);
372 mtd->_reboot(mtd);
374 return NOTIFY_DONE;
378 * add_mtd_device - register an MTD device
379 * @mtd: pointer to new MTD device info structure
381 * Add a device to the list of MTD devices present in the system, and
382 * notify each currently active MTD 'user' of its arrival. Returns
383 * zero on success or non-zero on failure.
386 int add_mtd_device(struct mtd_info *mtd)
388 struct mtd_notifier *not;
389 int i, error;
392 * May occur, for instance, on buggy drivers which call
393 * mtd_device_parse_register() multiple times on the same master MTD,
394 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
396 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
397 return -EEXIST;
399 mtd->backing_dev_info = &mtd_bdi;
401 BUG_ON(mtd->writesize == 0);
402 mutex_lock(&mtd_table_mutex);
404 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
405 if (i < 0) {
406 error = i;
407 goto fail_locked;
410 mtd->index = i;
411 mtd->usecount = 0;
413 /* default value if not set by driver */
414 if (mtd->bitflip_threshold == 0)
415 mtd->bitflip_threshold = mtd->ecc_strength;
417 if (is_power_of_2(mtd->erasesize))
418 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
419 else
420 mtd->erasesize_shift = 0;
422 if (is_power_of_2(mtd->writesize))
423 mtd->writesize_shift = ffs(mtd->writesize) - 1;
424 else
425 mtd->writesize_shift = 0;
427 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
428 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
430 if (mtd->dev.parent) {
431 if (!mtd->owner && mtd->dev.parent->driver)
432 mtd->owner = mtd->dev.parent->driver->owner;
433 if (!mtd->name)
434 mtd->name = dev_name(mtd->dev.parent);
435 } else {
436 pr_debug("mtd device won't show a device symlink in sysfs\n");
439 /* Some chips always power up locked. Unlock them now */
440 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
441 error = mtd_unlock(mtd, 0, mtd->size);
442 if (error && error != -EOPNOTSUPP)
443 printk(KERN_WARNING
444 "%s: unlock failed, writes may not work\n",
445 mtd->name);
446 /* Ignore unlock failures? */
447 error = 0;
450 /* Caller should have set dev.parent to match the
451 * physical device, if appropriate.
453 mtd->dev.type = &mtd_devtype;
454 mtd->dev.class = &mtd_class;
455 mtd->dev.devt = MTD_DEVT(i);
456 dev_set_name(&mtd->dev, "mtd%d", i);
457 dev_set_drvdata(&mtd->dev, mtd);
458 of_node_get(mtd_get_of_node(mtd));
459 error = device_register(&mtd->dev);
460 if (error)
461 goto fail_added;
463 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
464 "mtd%dro", i);
466 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
467 /* No need to get a refcount on the module containing
468 the notifier, since we hold the mtd_table_mutex */
469 list_for_each_entry(not, &mtd_notifiers, list)
470 not->add(mtd);
472 mutex_unlock(&mtd_table_mutex);
473 /* We _know_ we aren't being removed, because
474 our caller is still holding us here. So none
475 of this try_ nonsense, and no bitching about it
476 either. :) */
477 __module_get(THIS_MODULE);
478 return 0;
480 fail_added:
481 of_node_put(mtd_get_of_node(mtd));
482 idr_remove(&mtd_idr, i);
483 fail_locked:
484 mutex_unlock(&mtd_table_mutex);
485 return error;
489 * del_mtd_device - unregister an MTD device
490 * @mtd: pointer to MTD device info structure
492 * Remove a device from the list of MTD devices present in the system,
493 * and notify each currently active MTD 'user' of its departure.
494 * Returns zero on success or 1 on failure, which currently will happen
495 * if the requested device does not appear to be present in the list.
498 int del_mtd_device(struct mtd_info *mtd)
500 int ret;
501 struct mtd_notifier *not;
503 mutex_lock(&mtd_table_mutex);
505 if (idr_find(&mtd_idr, mtd->index) != mtd) {
506 ret = -ENODEV;
507 goto out_error;
510 /* No need to get a refcount on the module containing
511 the notifier, since we hold the mtd_table_mutex */
512 list_for_each_entry(not, &mtd_notifiers, list)
513 not->remove(mtd);
515 if (mtd->usecount) {
516 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
517 mtd->index, mtd->name, mtd->usecount);
518 ret = -EBUSY;
519 } else {
520 device_unregister(&mtd->dev);
522 idr_remove(&mtd_idr, mtd->index);
523 of_node_put(mtd_get_of_node(mtd));
525 module_put(THIS_MODULE);
526 ret = 0;
529 out_error:
530 mutex_unlock(&mtd_table_mutex);
531 return ret;
534 static int mtd_add_device_partitions(struct mtd_info *mtd,
535 struct mtd_partition *real_parts,
536 int nbparts)
538 int ret;
540 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
541 ret = add_mtd_device(mtd);
542 if (ret)
543 return ret;
546 if (nbparts > 0) {
547 ret = add_mtd_partitions(mtd, real_parts, nbparts);
548 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
549 del_mtd_device(mtd);
550 return ret;
553 return 0;
558 * mtd_device_parse_register - parse partitions and register an MTD device.
560 * @mtd: the MTD device to register
561 * @types: the list of MTD partition probes to try, see
562 * 'parse_mtd_partitions()' for more information
563 * @parser_data: MTD partition parser-specific data
564 * @parts: fallback partition information to register, if parsing fails;
565 * only valid if %nr_parts > %0
566 * @nr_parts: the number of partitions in parts, if zero then the full
567 * MTD device is registered if no partition info is found
569 * This function aggregates MTD partitions parsing (done by
570 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
571 * basically follows the most common pattern found in many MTD drivers:
573 * * It first tries to probe partitions on MTD device @mtd using parsers
574 * specified in @types (if @types is %NULL, then the default list of parsers
575 * is used, see 'parse_mtd_partitions()' for more information). If none are
576 * found this functions tries to fallback to information specified in
577 * @parts/@nr_parts.
578 * * If any partitioning info was found, this function registers the found
579 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
580 * as a whole is registered first.
581 * * If no partitions were found this function just registers the MTD device
582 * @mtd and exits.
584 * Returns zero in case of success and a negative error code in case of failure.
586 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
587 struct mtd_part_parser_data *parser_data,
588 const struct mtd_partition *parts,
589 int nr_parts)
591 int ret;
592 struct mtd_partition *real_parts = NULL;
594 ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
595 if (ret <= 0 && nr_parts && parts) {
596 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
597 GFP_KERNEL);
598 if (!real_parts)
599 ret = -ENOMEM;
600 else
601 ret = nr_parts;
603 /* Didn't come up with either parsed OR fallback partitions */
604 if (ret < 0) {
605 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
606 ret);
607 /* Don't abort on errors; we can still use unpartitioned MTD */
608 ret = 0;
611 ret = mtd_add_device_partitions(mtd, real_parts, ret);
612 if (ret)
613 goto out;
616 * FIXME: some drivers unfortunately call this function more than once.
617 * So we have to check if we've already assigned the reboot notifier.
619 * Generally, we can make multiple calls work for most cases, but it
620 * does cause problems with parse_mtd_partitions() above (e.g.,
621 * cmdlineparts will register partitions more than once).
623 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
624 "MTD already registered\n");
625 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
626 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
627 register_reboot_notifier(&mtd->reboot_notifier);
630 out:
631 kfree(real_parts);
632 return ret;
634 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
637 * mtd_device_unregister - unregister an existing MTD device.
639 * @master: the MTD device to unregister. This will unregister both the master
640 * and any partitions if registered.
642 int mtd_device_unregister(struct mtd_info *master)
644 int err;
646 if (master->_reboot)
647 unregister_reboot_notifier(&master->reboot_notifier);
649 err = del_mtd_partitions(master);
650 if (err)
651 return err;
653 if (!device_is_registered(&master->dev))
654 return 0;
656 return del_mtd_device(master);
658 EXPORT_SYMBOL_GPL(mtd_device_unregister);
661 * register_mtd_user - register a 'user' of MTD devices.
662 * @new: pointer to notifier info structure
664 * Registers a pair of callbacks function to be called upon addition
665 * or removal of MTD devices. Causes the 'add' callback to be immediately
666 * invoked for each MTD device currently present in the system.
668 void register_mtd_user (struct mtd_notifier *new)
670 struct mtd_info *mtd;
672 mutex_lock(&mtd_table_mutex);
674 list_add(&new->list, &mtd_notifiers);
676 __module_get(THIS_MODULE);
678 mtd_for_each_device(mtd)
679 new->add(mtd);
681 mutex_unlock(&mtd_table_mutex);
683 EXPORT_SYMBOL_GPL(register_mtd_user);
686 * unregister_mtd_user - unregister a 'user' of MTD devices.
687 * @old: pointer to notifier info structure
689 * Removes a callback function pair from the list of 'users' to be
690 * notified upon addition or removal of MTD devices. Causes the
691 * 'remove' callback to be immediately invoked for each MTD device
692 * currently present in the system.
694 int unregister_mtd_user (struct mtd_notifier *old)
696 struct mtd_info *mtd;
698 mutex_lock(&mtd_table_mutex);
700 module_put(THIS_MODULE);
702 mtd_for_each_device(mtd)
703 old->remove(mtd);
705 list_del(&old->list);
706 mutex_unlock(&mtd_table_mutex);
707 return 0;
709 EXPORT_SYMBOL_GPL(unregister_mtd_user);
712 * get_mtd_device - obtain a validated handle for an MTD device
713 * @mtd: last known address of the required MTD device
714 * @num: internal device number of the required MTD device
716 * Given a number and NULL address, return the num'th entry in the device
717 * table, if any. Given an address and num == -1, search the device table
718 * for a device with that address and return if it's still present. Given
719 * both, return the num'th driver only if its address matches. Return
720 * error code if not.
722 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
724 struct mtd_info *ret = NULL, *other;
725 int err = -ENODEV;
727 mutex_lock(&mtd_table_mutex);
729 if (num == -1) {
730 mtd_for_each_device(other) {
731 if (other == mtd) {
732 ret = mtd;
733 break;
736 } else if (num >= 0) {
737 ret = idr_find(&mtd_idr, num);
738 if (mtd && mtd != ret)
739 ret = NULL;
742 if (!ret) {
743 ret = ERR_PTR(err);
744 goto out;
747 err = __get_mtd_device(ret);
748 if (err)
749 ret = ERR_PTR(err);
750 out:
751 mutex_unlock(&mtd_table_mutex);
752 return ret;
754 EXPORT_SYMBOL_GPL(get_mtd_device);
757 int __get_mtd_device(struct mtd_info *mtd)
759 int err;
761 if (!try_module_get(mtd->owner))
762 return -ENODEV;
764 if (mtd->_get_device) {
765 err = mtd->_get_device(mtd);
767 if (err) {
768 module_put(mtd->owner);
769 return err;
772 mtd->usecount++;
773 return 0;
775 EXPORT_SYMBOL_GPL(__get_mtd_device);
778 * get_mtd_device_nm - obtain a validated handle for an MTD device by
779 * device name
780 * @name: MTD device name to open
782 * This function returns MTD device description structure in case of
783 * success and an error code in case of failure.
785 struct mtd_info *get_mtd_device_nm(const char *name)
787 int err = -ENODEV;
788 struct mtd_info *mtd = NULL, *other;
790 mutex_lock(&mtd_table_mutex);
792 mtd_for_each_device(other) {
793 if (!strcmp(name, other->name)) {
794 mtd = other;
795 break;
799 if (!mtd)
800 goto out_unlock;
802 err = __get_mtd_device(mtd);
803 if (err)
804 goto out_unlock;
806 mutex_unlock(&mtd_table_mutex);
807 return mtd;
809 out_unlock:
810 mutex_unlock(&mtd_table_mutex);
811 return ERR_PTR(err);
813 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
815 void put_mtd_device(struct mtd_info *mtd)
817 mutex_lock(&mtd_table_mutex);
818 __put_mtd_device(mtd);
819 mutex_unlock(&mtd_table_mutex);
822 EXPORT_SYMBOL_GPL(put_mtd_device);
824 void __put_mtd_device(struct mtd_info *mtd)
826 --mtd->usecount;
827 BUG_ON(mtd->usecount < 0);
829 if (mtd->_put_device)
830 mtd->_put_device(mtd);
832 module_put(mtd->owner);
834 EXPORT_SYMBOL_GPL(__put_mtd_device);
837 * Erase is an asynchronous operation. Device drivers are supposed
838 * to call instr->callback() whenever the operation completes, even
839 * if it completes with a failure.
840 * Callers are supposed to pass a callback function and wait for it
841 * to be called before writing to the block.
843 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
845 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
846 return -EINVAL;
847 if (!(mtd->flags & MTD_WRITEABLE))
848 return -EROFS;
849 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
850 if (!instr->len) {
851 instr->state = MTD_ERASE_DONE;
852 mtd_erase_callback(instr);
853 return 0;
855 return mtd->_erase(mtd, instr);
857 EXPORT_SYMBOL_GPL(mtd_erase);
860 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
862 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
863 void **virt, resource_size_t *phys)
865 *retlen = 0;
866 *virt = NULL;
867 if (phys)
868 *phys = 0;
869 if (!mtd->_point)
870 return -EOPNOTSUPP;
871 if (from < 0 || from >= mtd->size || len > mtd->size - from)
872 return -EINVAL;
873 if (!len)
874 return 0;
875 return mtd->_point(mtd, from, len, retlen, virt, phys);
877 EXPORT_SYMBOL_GPL(mtd_point);
879 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
880 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
882 if (!mtd->_point)
883 return -EOPNOTSUPP;
884 if (from < 0 || from >= mtd->size || len > mtd->size - from)
885 return -EINVAL;
886 if (!len)
887 return 0;
888 return mtd->_unpoint(mtd, from, len);
890 EXPORT_SYMBOL_GPL(mtd_unpoint);
893 * Allow NOMMU mmap() to directly map the device (if not NULL)
894 * - return the address to which the offset maps
895 * - return -ENOSYS to indicate refusal to do the mapping
897 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
898 unsigned long offset, unsigned long flags)
900 if (!mtd->_get_unmapped_area)
901 return -EOPNOTSUPP;
902 if (offset >= mtd->size || len > mtd->size - offset)
903 return -EINVAL;
904 return mtd->_get_unmapped_area(mtd, len, offset, flags);
906 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
908 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
909 u_char *buf)
911 int ret_code;
912 *retlen = 0;
913 if (from < 0 || from >= mtd->size || len > mtd->size - from)
914 return -EINVAL;
915 if (!len)
916 return 0;
919 * In the absence of an error, drivers return a non-negative integer
920 * representing the maximum number of bitflips that were corrected on
921 * any one ecc region (if applicable; zero otherwise).
923 ret_code = mtd->_read(mtd, from, len, retlen, buf);
924 if (unlikely(ret_code < 0))
925 return ret_code;
926 if (mtd->ecc_strength == 0)
927 return 0; /* device lacks ecc */
928 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
930 EXPORT_SYMBOL_GPL(mtd_read);
932 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
933 const u_char *buf)
935 *retlen = 0;
936 if (to < 0 || to >= mtd->size || len > mtd->size - to)
937 return -EINVAL;
938 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
939 return -EROFS;
940 if (!len)
941 return 0;
942 return mtd->_write(mtd, to, len, retlen, buf);
944 EXPORT_SYMBOL_GPL(mtd_write);
947 * In blackbox flight recorder like scenarios we want to make successful writes
948 * in interrupt context. panic_write() is only intended to be called when its
949 * known the kernel is about to panic and we need the write to succeed. Since
950 * the kernel is not going to be running for much longer, this function can
951 * break locks and delay to ensure the write succeeds (but not sleep).
953 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
954 const u_char *buf)
956 *retlen = 0;
957 if (!mtd->_panic_write)
958 return -EOPNOTSUPP;
959 if (to < 0 || to >= mtd->size || len > mtd->size - to)
960 return -EINVAL;
961 if (!(mtd->flags & MTD_WRITEABLE))
962 return -EROFS;
963 if (!len)
964 return 0;
965 return mtd->_panic_write(mtd, to, len, retlen, buf);
967 EXPORT_SYMBOL_GPL(mtd_panic_write);
969 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
971 int ret_code;
972 ops->retlen = ops->oobretlen = 0;
973 if (!mtd->_read_oob)
974 return -EOPNOTSUPP;
976 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
977 * similar to mtd->_read(), returning a non-negative integer
978 * representing max bitflips. In other cases, mtd->_read_oob() may
979 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
981 ret_code = mtd->_read_oob(mtd, from, ops);
982 if (unlikely(ret_code < 0))
983 return ret_code;
984 if (mtd->ecc_strength == 0)
985 return 0; /* device lacks ecc */
986 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
988 EXPORT_SYMBOL_GPL(mtd_read_oob);
991 * Method to access the protection register area, present in some flash
992 * devices. The user data is one time programmable but the factory data is read
993 * only.
995 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
996 struct otp_info *buf)
998 if (!mtd->_get_fact_prot_info)
999 return -EOPNOTSUPP;
1000 if (!len)
1001 return 0;
1002 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1004 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1006 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1007 size_t *retlen, u_char *buf)
1009 *retlen = 0;
1010 if (!mtd->_read_fact_prot_reg)
1011 return -EOPNOTSUPP;
1012 if (!len)
1013 return 0;
1014 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1016 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1018 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1019 struct otp_info *buf)
1021 if (!mtd->_get_user_prot_info)
1022 return -EOPNOTSUPP;
1023 if (!len)
1024 return 0;
1025 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1027 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1029 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1030 size_t *retlen, u_char *buf)
1032 *retlen = 0;
1033 if (!mtd->_read_user_prot_reg)
1034 return -EOPNOTSUPP;
1035 if (!len)
1036 return 0;
1037 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1039 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1041 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1042 size_t *retlen, u_char *buf)
1044 int ret;
1046 *retlen = 0;
1047 if (!mtd->_write_user_prot_reg)
1048 return -EOPNOTSUPP;
1049 if (!len)
1050 return 0;
1051 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1052 if (ret)
1053 return ret;
1056 * If no data could be written at all, we are out of memory and
1057 * must return -ENOSPC.
1059 return (*retlen) ? 0 : -ENOSPC;
1061 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1063 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1065 if (!mtd->_lock_user_prot_reg)
1066 return -EOPNOTSUPP;
1067 if (!len)
1068 return 0;
1069 return mtd->_lock_user_prot_reg(mtd, from, len);
1071 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1073 /* Chip-supported device locking */
1074 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1076 if (!mtd->_lock)
1077 return -EOPNOTSUPP;
1078 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1079 return -EINVAL;
1080 if (!len)
1081 return 0;
1082 return mtd->_lock(mtd, ofs, len);
1084 EXPORT_SYMBOL_GPL(mtd_lock);
1086 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1088 if (!mtd->_unlock)
1089 return -EOPNOTSUPP;
1090 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1091 return -EINVAL;
1092 if (!len)
1093 return 0;
1094 return mtd->_unlock(mtd, ofs, len);
1096 EXPORT_SYMBOL_GPL(mtd_unlock);
1098 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1100 if (!mtd->_is_locked)
1101 return -EOPNOTSUPP;
1102 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1103 return -EINVAL;
1104 if (!len)
1105 return 0;
1106 return mtd->_is_locked(mtd, ofs, len);
1108 EXPORT_SYMBOL_GPL(mtd_is_locked);
1110 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1112 if (ofs < 0 || ofs >= mtd->size)
1113 return -EINVAL;
1114 if (!mtd->_block_isreserved)
1115 return 0;
1116 return mtd->_block_isreserved(mtd, ofs);
1118 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1120 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1122 if (ofs < 0 || ofs >= mtd->size)
1123 return -EINVAL;
1124 if (!mtd->_block_isbad)
1125 return 0;
1126 return mtd->_block_isbad(mtd, ofs);
1128 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1130 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1132 if (!mtd->_block_markbad)
1133 return -EOPNOTSUPP;
1134 if (ofs < 0 || ofs >= mtd->size)
1135 return -EINVAL;
1136 if (!(mtd->flags & MTD_WRITEABLE))
1137 return -EROFS;
1138 return mtd->_block_markbad(mtd, ofs);
1140 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1143 * default_mtd_writev - the default writev method
1144 * @mtd: mtd device description object pointer
1145 * @vecs: the vectors to write
1146 * @count: count of vectors in @vecs
1147 * @to: the MTD device offset to write to
1148 * @retlen: on exit contains the count of bytes written to the MTD device.
1150 * This function returns zero in case of success and a negative error code in
1151 * case of failure.
1153 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1154 unsigned long count, loff_t to, size_t *retlen)
1156 unsigned long i;
1157 size_t totlen = 0, thislen;
1158 int ret = 0;
1160 for (i = 0; i < count; i++) {
1161 if (!vecs[i].iov_len)
1162 continue;
1163 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1164 vecs[i].iov_base);
1165 totlen += thislen;
1166 if (ret || thislen != vecs[i].iov_len)
1167 break;
1168 to += vecs[i].iov_len;
1170 *retlen = totlen;
1171 return ret;
1175 * mtd_writev - the vector-based MTD write method
1176 * @mtd: mtd device description object pointer
1177 * @vecs: the vectors to write
1178 * @count: count of vectors in @vecs
1179 * @to: the MTD device offset to write to
1180 * @retlen: on exit contains the count of bytes written to the MTD device.
1182 * This function returns zero in case of success and a negative error code in
1183 * case of failure.
1185 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1186 unsigned long count, loff_t to, size_t *retlen)
1188 *retlen = 0;
1189 if (!(mtd->flags & MTD_WRITEABLE))
1190 return -EROFS;
1191 if (!mtd->_writev)
1192 return default_mtd_writev(mtd, vecs, count, to, retlen);
1193 return mtd->_writev(mtd, vecs, count, to, retlen);
1195 EXPORT_SYMBOL_GPL(mtd_writev);
1198 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1199 * @mtd: mtd device description object pointer
1200 * @size: a pointer to the ideal or maximum size of the allocation, points
1201 * to the actual allocation size on success.
1203 * This routine attempts to allocate a contiguous kernel buffer up to
1204 * the specified size, backing off the size of the request exponentially
1205 * until the request succeeds or until the allocation size falls below
1206 * the system page size. This attempts to make sure it does not adversely
1207 * impact system performance, so when allocating more than one page, we
1208 * ask the memory allocator to avoid re-trying, swapping, writing back
1209 * or performing I/O.
1211 * Note, this function also makes sure that the allocated buffer is aligned to
1212 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1214 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1215 * to handle smaller (i.e. degraded) buffer allocations under low- or
1216 * fragmented-memory situations where such reduced allocations, from a
1217 * requested ideal, are allowed.
1219 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1221 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1223 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1224 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1225 void *kbuf;
1227 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1229 while (*size > min_alloc) {
1230 kbuf = kmalloc(*size, flags);
1231 if (kbuf)
1232 return kbuf;
1234 *size >>= 1;
1235 *size = ALIGN(*size, mtd->writesize);
1239 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1240 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1242 return kmalloc(*size, GFP_KERNEL);
1244 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1246 #ifdef CONFIG_PROC_FS
1248 /*====================================================================*/
1249 /* Support for /proc/mtd */
1251 static int mtd_proc_show(struct seq_file *m, void *v)
1253 struct mtd_info *mtd;
1255 seq_puts(m, "dev: size erasesize name\n");
1256 mutex_lock(&mtd_table_mutex);
1257 mtd_for_each_device(mtd) {
1258 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1259 mtd->index, (unsigned long long)mtd->size,
1260 mtd->erasesize, mtd->name);
1262 mutex_unlock(&mtd_table_mutex);
1263 return 0;
1266 static int mtd_proc_open(struct inode *inode, struct file *file)
1268 return single_open(file, mtd_proc_show, NULL);
1271 static const struct file_operations mtd_proc_ops = {
1272 .open = mtd_proc_open,
1273 .read = seq_read,
1274 .llseek = seq_lseek,
1275 .release = single_release,
1277 #endif /* CONFIG_PROC_FS */
1279 /*====================================================================*/
1280 /* Init code */
1282 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1284 int ret;
1286 ret = bdi_init(bdi);
1287 if (!ret)
1288 ret = bdi_register(bdi, NULL, "%s", name);
1290 if (ret)
1291 bdi_destroy(bdi);
1293 return ret;
1296 static struct proc_dir_entry *proc_mtd;
1298 static int __init init_mtd(void)
1300 int ret;
1302 ret = class_register(&mtd_class);
1303 if (ret)
1304 goto err_reg;
1306 ret = mtd_bdi_init(&mtd_bdi, "mtd");
1307 if (ret)
1308 goto err_bdi;
1310 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1312 ret = init_mtdchar();
1313 if (ret)
1314 goto out_procfs;
1316 return 0;
1318 out_procfs:
1319 if (proc_mtd)
1320 remove_proc_entry("mtd", NULL);
1321 err_bdi:
1322 class_unregister(&mtd_class);
1323 err_reg:
1324 pr_err("Error registering mtd class or bdi: %d\n", ret);
1325 return ret;
1328 static void __exit cleanup_mtd(void)
1330 cleanup_mtdchar();
1331 if (proc_mtd)
1332 remove_proc_entry("mtd", NULL);
1333 class_unregister(&mtd_class);
1334 bdi_destroy(&mtd_bdi);
1335 idr_destroy(&mtd_idr);
1338 module_init(init_mtd);
1339 module_exit(cleanup_mtd);
1341 MODULE_LICENSE("GPL");
1342 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1343 MODULE_DESCRIPTION("Core MTD registration and access routines");