powerpc/mm: Use the correct mask value when looking at pgtable address
[linux-2.6/btrfs-unstable.git] / drivers / md / md.c
blob4c74424c78b049068c0f118de398640781796c1b
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
107 static inline int speed_max(struct mddev *mddev)
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
113 static struct ctl_table_header *raid_table_header;
115 static ctl_table raid_table[] = {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
133 static ctl_table raid_dir_table[] = {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
143 static ctl_table raid_root_table[] = {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
153 static const struct block_device_operations md_fops;
155 static int start_readonly;
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
164 struct bio *b;
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
186 void md_trim_bio(struct bio *bio, int offset, int size)
188 /* 'bio' is a cloned bio which we need to trim to match
189 * the given offset and size.
190 * This requires adjusting bi_sector, bi_size, and bi_io_vec
192 int i;
193 struct bio_vec *bvec;
194 int sofar = 0;
196 size <<= 9;
197 if (offset == 0 && size == bio->bi_size)
198 return;
200 bio->bi_sector += offset;
201 bio->bi_size = size;
202 offset <<= 9;
203 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
205 while (bio->bi_idx < bio->bi_vcnt &&
206 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
207 /* remove this whole bio_vec */
208 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
209 bio->bi_idx++;
211 if (bio->bi_idx < bio->bi_vcnt) {
212 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
213 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
215 /* avoid any complications with bi_idx being non-zero*/
216 if (bio->bi_idx) {
217 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
218 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
219 bio->bi_vcnt -= bio->bi_idx;
220 bio->bi_idx = 0;
222 /* Make sure vcnt and last bv are not too big */
223 bio_for_each_segment(bvec, bio, i) {
224 if (sofar + bvec->bv_len > size)
225 bvec->bv_len = size - sofar;
226 if (bvec->bv_len == 0) {
227 bio->bi_vcnt = i;
228 break;
230 sofar += bvec->bv_len;
233 EXPORT_SYMBOL_GPL(md_trim_bio);
236 * We have a system wide 'event count' that is incremented
237 * on any 'interesting' event, and readers of /proc/mdstat
238 * can use 'poll' or 'select' to find out when the event
239 * count increases.
241 * Events are:
242 * start array, stop array, error, add device, remove device,
243 * start build, activate spare
245 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
246 static atomic_t md_event_count;
247 void md_new_event(struct mddev *mddev)
249 atomic_inc(&md_event_count);
250 wake_up(&md_event_waiters);
252 EXPORT_SYMBOL_GPL(md_new_event);
254 /* Alternate version that can be called from interrupts
255 * when calling sysfs_notify isn't needed.
257 static void md_new_event_inintr(struct mddev *mddev)
259 atomic_inc(&md_event_count);
260 wake_up(&md_event_waiters);
264 * Enables to iterate over all existing md arrays
265 * all_mddevs_lock protects this list.
267 static LIST_HEAD(all_mddevs);
268 static DEFINE_SPINLOCK(all_mddevs_lock);
272 * iterates through all used mddevs in the system.
273 * We take care to grab the all_mddevs_lock whenever navigating
274 * the list, and to always hold a refcount when unlocked.
275 * Any code which breaks out of this loop while own
276 * a reference to the current mddev and must mddev_put it.
278 #define for_each_mddev(_mddev,_tmp) \
280 for (({ spin_lock(&all_mddevs_lock); \
281 _tmp = all_mddevs.next; \
282 _mddev = NULL;}); \
283 ({ if (_tmp != &all_mddevs) \
284 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
285 spin_unlock(&all_mddevs_lock); \
286 if (_mddev) mddev_put(_mddev); \
287 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
288 _tmp != &all_mddevs;}); \
289 ({ spin_lock(&all_mddevs_lock); \
290 _tmp = _tmp->next;}) \
294 /* Rather than calling directly into the personality make_request function,
295 * IO requests come here first so that we can check if the device is
296 * being suspended pending a reconfiguration.
297 * We hold a refcount over the call to ->make_request. By the time that
298 * call has finished, the bio has been linked into some internal structure
299 * and so is visible to ->quiesce(), so we don't need the refcount any more.
301 static void md_make_request(struct request_queue *q, struct bio *bio)
303 const int rw = bio_data_dir(bio);
304 struct mddev *mddev = q->queuedata;
305 int cpu;
306 unsigned int sectors;
308 if (mddev == NULL || mddev->pers == NULL
309 || !mddev->ready) {
310 bio_io_error(bio);
311 return;
313 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
314 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
315 return;
317 smp_rmb(); /* Ensure implications of 'active' are visible */
318 rcu_read_lock();
319 if (mddev->suspended) {
320 DEFINE_WAIT(__wait);
321 for (;;) {
322 prepare_to_wait(&mddev->sb_wait, &__wait,
323 TASK_UNINTERRUPTIBLE);
324 if (!mddev->suspended)
325 break;
326 rcu_read_unlock();
327 schedule();
328 rcu_read_lock();
330 finish_wait(&mddev->sb_wait, &__wait);
332 atomic_inc(&mddev->active_io);
333 rcu_read_unlock();
336 * save the sectors now since our bio can
337 * go away inside make_request
339 sectors = bio_sectors(bio);
340 mddev->pers->make_request(mddev, bio);
342 cpu = part_stat_lock();
343 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
344 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
345 part_stat_unlock();
347 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
348 wake_up(&mddev->sb_wait);
351 /* mddev_suspend makes sure no new requests are submitted
352 * to the device, and that any requests that have been submitted
353 * are completely handled.
354 * Once ->stop is called and completes, the module will be completely
355 * unused.
357 void mddev_suspend(struct mddev *mddev)
359 BUG_ON(mddev->suspended);
360 mddev->suspended = 1;
361 synchronize_rcu();
362 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
363 mddev->pers->quiesce(mddev, 1);
365 del_timer_sync(&mddev->safemode_timer);
367 EXPORT_SYMBOL_GPL(mddev_suspend);
369 void mddev_resume(struct mddev *mddev)
371 mddev->suspended = 0;
372 wake_up(&mddev->sb_wait);
373 mddev->pers->quiesce(mddev, 0);
375 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
376 md_wakeup_thread(mddev->thread);
377 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
379 EXPORT_SYMBOL_GPL(mddev_resume);
381 int mddev_congested(struct mddev *mddev, int bits)
383 return mddev->suspended;
385 EXPORT_SYMBOL(mddev_congested);
388 * Generic flush handling for md
391 static void md_end_flush(struct bio *bio, int err)
393 struct md_rdev *rdev = bio->bi_private;
394 struct mddev *mddev = rdev->mddev;
396 rdev_dec_pending(rdev, mddev);
398 if (atomic_dec_and_test(&mddev->flush_pending)) {
399 /* The pre-request flush has finished */
400 queue_work(md_wq, &mddev->flush_work);
402 bio_put(bio);
405 static void md_submit_flush_data(struct work_struct *ws);
407 static void submit_flushes(struct work_struct *ws)
409 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
410 struct md_rdev *rdev;
412 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
413 atomic_set(&mddev->flush_pending, 1);
414 rcu_read_lock();
415 rdev_for_each_rcu(rdev, mddev)
416 if (rdev->raid_disk >= 0 &&
417 !test_bit(Faulty, &rdev->flags)) {
418 /* Take two references, one is dropped
419 * when request finishes, one after
420 * we reclaim rcu_read_lock
422 struct bio *bi;
423 atomic_inc(&rdev->nr_pending);
424 atomic_inc(&rdev->nr_pending);
425 rcu_read_unlock();
426 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
427 bi->bi_end_io = md_end_flush;
428 bi->bi_private = rdev;
429 bi->bi_bdev = rdev->bdev;
430 atomic_inc(&mddev->flush_pending);
431 submit_bio(WRITE_FLUSH, bi);
432 rcu_read_lock();
433 rdev_dec_pending(rdev, mddev);
435 rcu_read_unlock();
436 if (atomic_dec_and_test(&mddev->flush_pending))
437 queue_work(md_wq, &mddev->flush_work);
440 static void md_submit_flush_data(struct work_struct *ws)
442 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
443 struct bio *bio = mddev->flush_bio;
445 if (bio->bi_size == 0)
446 /* an empty barrier - all done */
447 bio_endio(bio, 0);
448 else {
449 bio->bi_rw &= ~REQ_FLUSH;
450 mddev->pers->make_request(mddev, bio);
453 mddev->flush_bio = NULL;
454 wake_up(&mddev->sb_wait);
457 void md_flush_request(struct mddev *mddev, struct bio *bio)
459 spin_lock_irq(&mddev->write_lock);
460 wait_event_lock_irq(mddev->sb_wait,
461 !mddev->flush_bio,
462 mddev->write_lock);
463 mddev->flush_bio = bio;
464 spin_unlock_irq(&mddev->write_lock);
466 INIT_WORK(&mddev->flush_work, submit_flushes);
467 queue_work(md_wq, &mddev->flush_work);
469 EXPORT_SYMBOL(md_flush_request);
471 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
473 struct mddev *mddev = cb->data;
474 md_wakeup_thread(mddev->thread);
475 kfree(cb);
477 EXPORT_SYMBOL(md_unplug);
479 static inline struct mddev *mddev_get(struct mddev *mddev)
481 atomic_inc(&mddev->active);
482 return mddev;
485 static void mddev_delayed_delete(struct work_struct *ws);
487 static void mddev_put(struct mddev *mddev)
489 struct bio_set *bs = NULL;
491 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
492 return;
493 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
494 mddev->ctime == 0 && !mddev->hold_active) {
495 /* Array is not configured at all, and not held active,
496 * so destroy it */
497 list_del_init(&mddev->all_mddevs);
498 bs = mddev->bio_set;
499 mddev->bio_set = NULL;
500 if (mddev->gendisk) {
501 /* We did a probe so need to clean up. Call
502 * queue_work inside the spinlock so that
503 * flush_workqueue() after mddev_find will
504 * succeed in waiting for the work to be done.
506 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
507 queue_work(md_misc_wq, &mddev->del_work);
508 } else
509 kfree(mddev);
511 spin_unlock(&all_mddevs_lock);
512 if (bs)
513 bioset_free(bs);
516 void mddev_init(struct mddev *mddev)
518 mutex_init(&mddev->open_mutex);
519 mutex_init(&mddev->reconfig_mutex);
520 mutex_init(&mddev->bitmap_info.mutex);
521 INIT_LIST_HEAD(&mddev->disks);
522 INIT_LIST_HEAD(&mddev->all_mddevs);
523 init_timer(&mddev->safemode_timer);
524 atomic_set(&mddev->active, 1);
525 atomic_set(&mddev->openers, 0);
526 atomic_set(&mddev->active_io, 0);
527 spin_lock_init(&mddev->write_lock);
528 atomic_set(&mddev->flush_pending, 0);
529 init_waitqueue_head(&mddev->sb_wait);
530 init_waitqueue_head(&mddev->recovery_wait);
531 mddev->reshape_position = MaxSector;
532 mddev->reshape_backwards = 0;
533 mddev->resync_min = 0;
534 mddev->resync_max = MaxSector;
535 mddev->level = LEVEL_NONE;
537 EXPORT_SYMBOL_GPL(mddev_init);
539 static struct mddev * mddev_find(dev_t unit)
541 struct mddev *mddev, *new = NULL;
543 if (unit && MAJOR(unit) != MD_MAJOR)
544 unit &= ~((1<<MdpMinorShift)-1);
546 retry:
547 spin_lock(&all_mddevs_lock);
549 if (unit) {
550 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
551 if (mddev->unit == unit) {
552 mddev_get(mddev);
553 spin_unlock(&all_mddevs_lock);
554 kfree(new);
555 return mddev;
558 if (new) {
559 list_add(&new->all_mddevs, &all_mddevs);
560 spin_unlock(&all_mddevs_lock);
561 new->hold_active = UNTIL_IOCTL;
562 return new;
564 } else if (new) {
565 /* find an unused unit number */
566 static int next_minor = 512;
567 int start = next_minor;
568 int is_free = 0;
569 int dev = 0;
570 while (!is_free) {
571 dev = MKDEV(MD_MAJOR, next_minor);
572 next_minor++;
573 if (next_minor > MINORMASK)
574 next_minor = 0;
575 if (next_minor == start) {
576 /* Oh dear, all in use. */
577 spin_unlock(&all_mddevs_lock);
578 kfree(new);
579 return NULL;
582 is_free = 1;
583 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
584 if (mddev->unit == dev) {
585 is_free = 0;
586 break;
589 new->unit = dev;
590 new->md_minor = MINOR(dev);
591 new->hold_active = UNTIL_STOP;
592 list_add(&new->all_mddevs, &all_mddevs);
593 spin_unlock(&all_mddevs_lock);
594 return new;
596 spin_unlock(&all_mddevs_lock);
598 new = kzalloc(sizeof(*new), GFP_KERNEL);
599 if (!new)
600 return NULL;
602 new->unit = unit;
603 if (MAJOR(unit) == MD_MAJOR)
604 new->md_minor = MINOR(unit);
605 else
606 new->md_minor = MINOR(unit) >> MdpMinorShift;
608 mddev_init(new);
610 goto retry;
613 static inline int mddev_lock(struct mddev * mddev)
615 return mutex_lock_interruptible(&mddev->reconfig_mutex);
618 static inline int mddev_is_locked(struct mddev *mddev)
620 return mutex_is_locked(&mddev->reconfig_mutex);
623 static inline int mddev_trylock(struct mddev * mddev)
625 return mutex_trylock(&mddev->reconfig_mutex);
628 static struct attribute_group md_redundancy_group;
630 static void mddev_unlock(struct mddev * mddev)
632 if (mddev->to_remove) {
633 /* These cannot be removed under reconfig_mutex as
634 * an access to the files will try to take reconfig_mutex
635 * while holding the file unremovable, which leads to
636 * a deadlock.
637 * So hold set sysfs_active while the remove in happeing,
638 * and anything else which might set ->to_remove or my
639 * otherwise change the sysfs namespace will fail with
640 * -EBUSY if sysfs_active is still set.
641 * We set sysfs_active under reconfig_mutex and elsewhere
642 * test it under the same mutex to ensure its correct value
643 * is seen.
645 struct attribute_group *to_remove = mddev->to_remove;
646 mddev->to_remove = NULL;
647 mddev->sysfs_active = 1;
648 mutex_unlock(&mddev->reconfig_mutex);
650 if (mddev->kobj.sd) {
651 if (to_remove != &md_redundancy_group)
652 sysfs_remove_group(&mddev->kobj, to_remove);
653 if (mddev->pers == NULL ||
654 mddev->pers->sync_request == NULL) {
655 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
656 if (mddev->sysfs_action)
657 sysfs_put(mddev->sysfs_action);
658 mddev->sysfs_action = NULL;
661 mddev->sysfs_active = 0;
662 } else
663 mutex_unlock(&mddev->reconfig_mutex);
665 /* As we've dropped the mutex we need a spinlock to
666 * make sure the thread doesn't disappear
668 spin_lock(&pers_lock);
669 md_wakeup_thread(mddev->thread);
670 spin_unlock(&pers_lock);
673 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
675 struct md_rdev *rdev;
677 rdev_for_each(rdev, mddev)
678 if (rdev->desc_nr == nr)
679 return rdev;
681 return NULL;
684 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
686 struct md_rdev *rdev;
688 rdev_for_each_rcu(rdev, mddev)
689 if (rdev->desc_nr == nr)
690 return rdev;
692 return NULL;
695 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
697 struct md_rdev *rdev;
699 rdev_for_each(rdev, mddev)
700 if (rdev->bdev->bd_dev == dev)
701 return rdev;
703 return NULL;
706 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
708 struct md_rdev *rdev;
710 rdev_for_each_rcu(rdev, mddev)
711 if (rdev->bdev->bd_dev == dev)
712 return rdev;
714 return NULL;
717 static struct md_personality *find_pers(int level, char *clevel)
719 struct md_personality *pers;
720 list_for_each_entry(pers, &pers_list, list) {
721 if (level != LEVEL_NONE && pers->level == level)
722 return pers;
723 if (strcmp(pers->name, clevel)==0)
724 return pers;
726 return NULL;
729 /* return the offset of the super block in 512byte sectors */
730 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
732 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
733 return MD_NEW_SIZE_SECTORS(num_sectors);
736 static int alloc_disk_sb(struct md_rdev * rdev)
738 if (rdev->sb_page)
739 MD_BUG();
741 rdev->sb_page = alloc_page(GFP_KERNEL);
742 if (!rdev->sb_page) {
743 printk(KERN_ALERT "md: out of memory.\n");
744 return -ENOMEM;
747 return 0;
750 void md_rdev_clear(struct md_rdev *rdev)
752 if (rdev->sb_page) {
753 put_page(rdev->sb_page);
754 rdev->sb_loaded = 0;
755 rdev->sb_page = NULL;
756 rdev->sb_start = 0;
757 rdev->sectors = 0;
759 if (rdev->bb_page) {
760 put_page(rdev->bb_page);
761 rdev->bb_page = NULL;
763 kfree(rdev->badblocks.page);
764 rdev->badblocks.page = NULL;
766 EXPORT_SYMBOL_GPL(md_rdev_clear);
768 static void super_written(struct bio *bio, int error)
770 struct md_rdev *rdev = bio->bi_private;
771 struct mddev *mddev = rdev->mddev;
773 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
774 printk("md: super_written gets error=%d, uptodate=%d\n",
775 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
776 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
777 md_error(mddev, rdev);
780 if (atomic_dec_and_test(&mddev->pending_writes))
781 wake_up(&mddev->sb_wait);
782 bio_put(bio);
785 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
786 sector_t sector, int size, struct page *page)
788 /* write first size bytes of page to sector of rdev
789 * Increment mddev->pending_writes before returning
790 * and decrement it on completion, waking up sb_wait
791 * if zero is reached.
792 * If an error occurred, call md_error
794 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
796 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
797 bio->bi_sector = sector;
798 bio_add_page(bio, page, size, 0);
799 bio->bi_private = rdev;
800 bio->bi_end_io = super_written;
802 atomic_inc(&mddev->pending_writes);
803 submit_bio(WRITE_FLUSH_FUA, bio);
806 void md_super_wait(struct mddev *mddev)
808 /* wait for all superblock writes that were scheduled to complete */
809 DEFINE_WAIT(wq);
810 for(;;) {
811 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
812 if (atomic_read(&mddev->pending_writes)==0)
813 break;
814 schedule();
816 finish_wait(&mddev->sb_wait, &wq);
819 static void bi_complete(struct bio *bio, int error)
821 complete((struct completion*)bio->bi_private);
824 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
825 struct page *page, int rw, bool metadata_op)
827 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
828 struct completion event;
829 int ret;
831 rw |= REQ_SYNC;
833 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
834 rdev->meta_bdev : rdev->bdev;
835 if (metadata_op)
836 bio->bi_sector = sector + rdev->sb_start;
837 else if (rdev->mddev->reshape_position != MaxSector &&
838 (rdev->mddev->reshape_backwards ==
839 (sector >= rdev->mddev->reshape_position)))
840 bio->bi_sector = sector + rdev->new_data_offset;
841 else
842 bio->bi_sector = sector + rdev->data_offset;
843 bio_add_page(bio, page, size, 0);
844 init_completion(&event);
845 bio->bi_private = &event;
846 bio->bi_end_io = bi_complete;
847 submit_bio(rw, bio);
848 wait_for_completion(&event);
850 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
851 bio_put(bio);
852 return ret;
854 EXPORT_SYMBOL_GPL(sync_page_io);
856 static int read_disk_sb(struct md_rdev * rdev, int size)
858 char b[BDEVNAME_SIZE];
859 if (!rdev->sb_page) {
860 MD_BUG();
861 return -EINVAL;
863 if (rdev->sb_loaded)
864 return 0;
867 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
868 goto fail;
869 rdev->sb_loaded = 1;
870 return 0;
872 fail:
873 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
874 bdevname(rdev->bdev,b));
875 return -EINVAL;
878 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 return sb1->set_uuid0 == sb2->set_uuid0 &&
881 sb1->set_uuid1 == sb2->set_uuid1 &&
882 sb1->set_uuid2 == sb2->set_uuid2 &&
883 sb1->set_uuid3 == sb2->set_uuid3;
886 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
888 int ret;
889 mdp_super_t *tmp1, *tmp2;
891 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
892 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
894 if (!tmp1 || !tmp2) {
895 ret = 0;
896 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
897 goto abort;
900 *tmp1 = *sb1;
901 *tmp2 = *sb2;
904 * nr_disks is not constant
906 tmp1->nr_disks = 0;
907 tmp2->nr_disks = 0;
909 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
910 abort:
911 kfree(tmp1);
912 kfree(tmp2);
913 return ret;
917 static u32 md_csum_fold(u32 csum)
919 csum = (csum & 0xffff) + (csum >> 16);
920 return (csum & 0xffff) + (csum >> 16);
923 static unsigned int calc_sb_csum(mdp_super_t * sb)
925 u64 newcsum = 0;
926 u32 *sb32 = (u32*)sb;
927 int i;
928 unsigned int disk_csum, csum;
930 disk_csum = sb->sb_csum;
931 sb->sb_csum = 0;
933 for (i = 0; i < MD_SB_BYTES/4 ; i++)
934 newcsum += sb32[i];
935 csum = (newcsum & 0xffffffff) + (newcsum>>32);
938 #ifdef CONFIG_ALPHA
939 /* This used to use csum_partial, which was wrong for several
940 * reasons including that different results are returned on
941 * different architectures. It isn't critical that we get exactly
942 * the same return value as before (we always csum_fold before
943 * testing, and that removes any differences). However as we
944 * know that csum_partial always returned a 16bit value on
945 * alphas, do a fold to maximise conformity to previous behaviour.
947 sb->sb_csum = md_csum_fold(disk_csum);
948 #else
949 sb->sb_csum = disk_csum;
950 #endif
951 return csum;
956 * Handle superblock details.
957 * We want to be able to handle multiple superblock formats
958 * so we have a common interface to them all, and an array of
959 * different handlers.
960 * We rely on user-space to write the initial superblock, and support
961 * reading and updating of superblocks.
962 * Interface methods are:
963 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
964 * loads and validates a superblock on dev.
965 * if refdev != NULL, compare superblocks on both devices
966 * Return:
967 * 0 - dev has a superblock that is compatible with refdev
968 * 1 - dev has a superblock that is compatible and newer than refdev
969 * so dev should be used as the refdev in future
970 * -EINVAL superblock incompatible or invalid
971 * -othererror e.g. -EIO
973 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
974 * Verify that dev is acceptable into mddev.
975 * The first time, mddev->raid_disks will be 0, and data from
976 * dev should be merged in. Subsequent calls check that dev
977 * is new enough. Return 0 or -EINVAL
979 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
980 * Update the superblock for rdev with data in mddev
981 * This does not write to disc.
985 struct super_type {
986 char *name;
987 struct module *owner;
988 int (*load_super)(struct md_rdev *rdev,
989 struct md_rdev *refdev,
990 int minor_version);
991 int (*validate_super)(struct mddev *mddev,
992 struct md_rdev *rdev);
993 void (*sync_super)(struct mddev *mddev,
994 struct md_rdev *rdev);
995 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
996 sector_t num_sectors);
997 int (*allow_new_offset)(struct md_rdev *rdev,
998 unsigned long long new_offset);
1002 * Check that the given mddev has no bitmap.
1004 * This function is called from the run method of all personalities that do not
1005 * support bitmaps. It prints an error message and returns non-zero if mddev
1006 * has a bitmap. Otherwise, it returns 0.
1009 int md_check_no_bitmap(struct mddev *mddev)
1011 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1012 return 0;
1013 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1014 mdname(mddev), mddev->pers->name);
1015 return 1;
1017 EXPORT_SYMBOL(md_check_no_bitmap);
1020 * load_super for 0.90.0
1022 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1024 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1025 mdp_super_t *sb;
1026 int ret;
1029 * Calculate the position of the superblock (512byte sectors),
1030 * it's at the end of the disk.
1032 * It also happens to be a multiple of 4Kb.
1034 rdev->sb_start = calc_dev_sboffset(rdev);
1036 ret = read_disk_sb(rdev, MD_SB_BYTES);
1037 if (ret) return ret;
1039 ret = -EINVAL;
1041 bdevname(rdev->bdev, b);
1042 sb = page_address(rdev->sb_page);
1044 if (sb->md_magic != MD_SB_MAGIC) {
1045 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1047 goto abort;
1050 if (sb->major_version != 0 ||
1051 sb->minor_version < 90 ||
1052 sb->minor_version > 91) {
1053 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1054 sb->major_version, sb->minor_version,
1056 goto abort;
1059 if (sb->raid_disks <= 0)
1060 goto abort;
1062 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1063 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1065 goto abort;
1068 rdev->preferred_minor = sb->md_minor;
1069 rdev->data_offset = 0;
1070 rdev->new_data_offset = 0;
1071 rdev->sb_size = MD_SB_BYTES;
1072 rdev->badblocks.shift = -1;
1074 if (sb->level == LEVEL_MULTIPATH)
1075 rdev->desc_nr = -1;
1076 else
1077 rdev->desc_nr = sb->this_disk.number;
1079 if (!refdev) {
1080 ret = 1;
1081 } else {
1082 __u64 ev1, ev2;
1083 mdp_super_t *refsb = page_address(refdev->sb_page);
1084 if (!uuid_equal(refsb, sb)) {
1085 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1086 b, bdevname(refdev->bdev,b2));
1087 goto abort;
1089 if (!sb_equal(refsb, sb)) {
1090 printk(KERN_WARNING "md: %s has same UUID"
1091 " but different superblock to %s\n",
1092 b, bdevname(refdev->bdev, b2));
1093 goto abort;
1095 ev1 = md_event(sb);
1096 ev2 = md_event(refsb);
1097 if (ev1 > ev2)
1098 ret = 1;
1099 else
1100 ret = 0;
1102 rdev->sectors = rdev->sb_start;
1103 /* Limit to 4TB as metadata cannot record more than that.
1104 * (not needed for Linear and RAID0 as metadata doesn't
1105 * record this size)
1107 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1108 rdev->sectors = (2ULL << 32) - 2;
1110 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1111 /* "this cannot possibly happen" ... */
1112 ret = -EINVAL;
1114 abort:
1115 return ret;
1119 * validate_super for 0.90.0
1121 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1123 mdp_disk_t *desc;
1124 mdp_super_t *sb = page_address(rdev->sb_page);
1125 __u64 ev1 = md_event(sb);
1127 rdev->raid_disk = -1;
1128 clear_bit(Faulty, &rdev->flags);
1129 clear_bit(In_sync, &rdev->flags);
1130 clear_bit(WriteMostly, &rdev->flags);
1132 if (mddev->raid_disks == 0) {
1133 mddev->major_version = 0;
1134 mddev->minor_version = sb->minor_version;
1135 mddev->patch_version = sb->patch_version;
1136 mddev->external = 0;
1137 mddev->chunk_sectors = sb->chunk_size >> 9;
1138 mddev->ctime = sb->ctime;
1139 mddev->utime = sb->utime;
1140 mddev->level = sb->level;
1141 mddev->clevel[0] = 0;
1142 mddev->layout = sb->layout;
1143 mddev->raid_disks = sb->raid_disks;
1144 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1145 mddev->events = ev1;
1146 mddev->bitmap_info.offset = 0;
1147 mddev->bitmap_info.space = 0;
1148 /* bitmap can use 60 K after the 4K superblocks */
1149 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1150 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1151 mddev->reshape_backwards = 0;
1153 if (mddev->minor_version >= 91) {
1154 mddev->reshape_position = sb->reshape_position;
1155 mddev->delta_disks = sb->delta_disks;
1156 mddev->new_level = sb->new_level;
1157 mddev->new_layout = sb->new_layout;
1158 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1159 if (mddev->delta_disks < 0)
1160 mddev->reshape_backwards = 1;
1161 } else {
1162 mddev->reshape_position = MaxSector;
1163 mddev->delta_disks = 0;
1164 mddev->new_level = mddev->level;
1165 mddev->new_layout = mddev->layout;
1166 mddev->new_chunk_sectors = mddev->chunk_sectors;
1169 if (sb->state & (1<<MD_SB_CLEAN))
1170 mddev->recovery_cp = MaxSector;
1171 else {
1172 if (sb->events_hi == sb->cp_events_hi &&
1173 sb->events_lo == sb->cp_events_lo) {
1174 mddev->recovery_cp = sb->recovery_cp;
1175 } else
1176 mddev->recovery_cp = 0;
1179 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1180 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1181 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1182 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1184 mddev->max_disks = MD_SB_DISKS;
1186 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1187 mddev->bitmap_info.file == NULL) {
1188 mddev->bitmap_info.offset =
1189 mddev->bitmap_info.default_offset;
1190 mddev->bitmap_info.space =
1191 mddev->bitmap_info.space;
1194 } else if (mddev->pers == NULL) {
1195 /* Insist on good event counter while assembling, except
1196 * for spares (which don't need an event count) */
1197 ++ev1;
1198 if (sb->disks[rdev->desc_nr].state & (
1199 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1200 if (ev1 < mddev->events)
1201 return -EINVAL;
1202 } else if (mddev->bitmap) {
1203 /* if adding to array with a bitmap, then we can accept an
1204 * older device ... but not too old.
1206 if (ev1 < mddev->bitmap->events_cleared)
1207 return 0;
1208 } else {
1209 if (ev1 < mddev->events)
1210 /* just a hot-add of a new device, leave raid_disk at -1 */
1211 return 0;
1214 if (mddev->level != LEVEL_MULTIPATH) {
1215 desc = sb->disks + rdev->desc_nr;
1217 if (desc->state & (1<<MD_DISK_FAULTY))
1218 set_bit(Faulty, &rdev->flags);
1219 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1220 desc->raid_disk < mddev->raid_disks */) {
1221 set_bit(In_sync, &rdev->flags);
1222 rdev->raid_disk = desc->raid_disk;
1223 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1224 /* active but not in sync implies recovery up to
1225 * reshape position. We don't know exactly where
1226 * that is, so set to zero for now */
1227 if (mddev->minor_version >= 91) {
1228 rdev->recovery_offset = 0;
1229 rdev->raid_disk = desc->raid_disk;
1232 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1233 set_bit(WriteMostly, &rdev->flags);
1234 } else /* MULTIPATH are always insync */
1235 set_bit(In_sync, &rdev->flags);
1236 return 0;
1240 * sync_super for 0.90.0
1242 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1244 mdp_super_t *sb;
1245 struct md_rdev *rdev2;
1246 int next_spare = mddev->raid_disks;
1249 /* make rdev->sb match mddev data..
1251 * 1/ zero out disks
1252 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1253 * 3/ any empty disks < next_spare become removed
1255 * disks[0] gets initialised to REMOVED because
1256 * we cannot be sure from other fields if it has
1257 * been initialised or not.
1259 int i;
1260 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1262 rdev->sb_size = MD_SB_BYTES;
1264 sb = page_address(rdev->sb_page);
1266 memset(sb, 0, sizeof(*sb));
1268 sb->md_magic = MD_SB_MAGIC;
1269 sb->major_version = mddev->major_version;
1270 sb->patch_version = mddev->patch_version;
1271 sb->gvalid_words = 0; /* ignored */
1272 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1273 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1274 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1275 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1277 sb->ctime = mddev->ctime;
1278 sb->level = mddev->level;
1279 sb->size = mddev->dev_sectors / 2;
1280 sb->raid_disks = mddev->raid_disks;
1281 sb->md_minor = mddev->md_minor;
1282 sb->not_persistent = 0;
1283 sb->utime = mddev->utime;
1284 sb->state = 0;
1285 sb->events_hi = (mddev->events>>32);
1286 sb->events_lo = (u32)mddev->events;
1288 if (mddev->reshape_position == MaxSector)
1289 sb->minor_version = 90;
1290 else {
1291 sb->minor_version = 91;
1292 sb->reshape_position = mddev->reshape_position;
1293 sb->new_level = mddev->new_level;
1294 sb->delta_disks = mddev->delta_disks;
1295 sb->new_layout = mddev->new_layout;
1296 sb->new_chunk = mddev->new_chunk_sectors << 9;
1298 mddev->minor_version = sb->minor_version;
1299 if (mddev->in_sync)
1301 sb->recovery_cp = mddev->recovery_cp;
1302 sb->cp_events_hi = (mddev->events>>32);
1303 sb->cp_events_lo = (u32)mddev->events;
1304 if (mddev->recovery_cp == MaxSector)
1305 sb->state = (1<< MD_SB_CLEAN);
1306 } else
1307 sb->recovery_cp = 0;
1309 sb->layout = mddev->layout;
1310 sb->chunk_size = mddev->chunk_sectors << 9;
1312 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1313 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1315 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1316 rdev_for_each(rdev2, mddev) {
1317 mdp_disk_t *d;
1318 int desc_nr;
1319 int is_active = test_bit(In_sync, &rdev2->flags);
1321 if (rdev2->raid_disk >= 0 &&
1322 sb->minor_version >= 91)
1323 /* we have nowhere to store the recovery_offset,
1324 * but if it is not below the reshape_position,
1325 * we can piggy-back on that.
1327 is_active = 1;
1328 if (rdev2->raid_disk < 0 ||
1329 test_bit(Faulty, &rdev2->flags))
1330 is_active = 0;
1331 if (is_active)
1332 desc_nr = rdev2->raid_disk;
1333 else
1334 desc_nr = next_spare++;
1335 rdev2->desc_nr = desc_nr;
1336 d = &sb->disks[rdev2->desc_nr];
1337 nr_disks++;
1338 d->number = rdev2->desc_nr;
1339 d->major = MAJOR(rdev2->bdev->bd_dev);
1340 d->minor = MINOR(rdev2->bdev->bd_dev);
1341 if (is_active)
1342 d->raid_disk = rdev2->raid_disk;
1343 else
1344 d->raid_disk = rdev2->desc_nr; /* compatibility */
1345 if (test_bit(Faulty, &rdev2->flags))
1346 d->state = (1<<MD_DISK_FAULTY);
1347 else if (is_active) {
1348 d->state = (1<<MD_DISK_ACTIVE);
1349 if (test_bit(In_sync, &rdev2->flags))
1350 d->state |= (1<<MD_DISK_SYNC);
1351 active++;
1352 working++;
1353 } else {
1354 d->state = 0;
1355 spare++;
1356 working++;
1358 if (test_bit(WriteMostly, &rdev2->flags))
1359 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1361 /* now set the "removed" and "faulty" bits on any missing devices */
1362 for (i=0 ; i < mddev->raid_disks ; i++) {
1363 mdp_disk_t *d = &sb->disks[i];
1364 if (d->state == 0 && d->number == 0) {
1365 d->number = i;
1366 d->raid_disk = i;
1367 d->state = (1<<MD_DISK_REMOVED);
1368 d->state |= (1<<MD_DISK_FAULTY);
1369 failed++;
1372 sb->nr_disks = nr_disks;
1373 sb->active_disks = active;
1374 sb->working_disks = working;
1375 sb->failed_disks = failed;
1376 sb->spare_disks = spare;
1378 sb->this_disk = sb->disks[rdev->desc_nr];
1379 sb->sb_csum = calc_sb_csum(sb);
1383 * rdev_size_change for 0.90.0
1385 static unsigned long long
1386 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1388 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1389 return 0; /* component must fit device */
1390 if (rdev->mddev->bitmap_info.offset)
1391 return 0; /* can't move bitmap */
1392 rdev->sb_start = calc_dev_sboffset(rdev);
1393 if (!num_sectors || num_sectors > rdev->sb_start)
1394 num_sectors = rdev->sb_start;
1395 /* Limit to 4TB as metadata cannot record more than that.
1396 * 4TB == 2^32 KB, or 2*2^32 sectors.
1398 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1399 num_sectors = (2ULL << 32) - 2;
1400 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1401 rdev->sb_page);
1402 md_super_wait(rdev->mddev);
1403 return num_sectors;
1406 static int
1407 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1409 /* non-zero offset changes not possible with v0.90 */
1410 return new_offset == 0;
1414 * version 1 superblock
1417 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1419 __le32 disk_csum;
1420 u32 csum;
1421 unsigned long long newcsum;
1422 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1423 __le32 *isuper = (__le32*)sb;
1425 disk_csum = sb->sb_csum;
1426 sb->sb_csum = 0;
1427 newcsum = 0;
1428 for (; size >= 4; size -= 4)
1429 newcsum += le32_to_cpu(*isuper++);
1431 if (size == 2)
1432 newcsum += le16_to_cpu(*(__le16*) isuper);
1434 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1435 sb->sb_csum = disk_csum;
1436 return cpu_to_le32(csum);
1439 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1440 int acknowledged);
1441 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1443 struct mdp_superblock_1 *sb;
1444 int ret;
1445 sector_t sb_start;
1446 sector_t sectors;
1447 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1448 int bmask;
1451 * Calculate the position of the superblock in 512byte sectors.
1452 * It is always aligned to a 4K boundary and
1453 * depeding on minor_version, it can be:
1454 * 0: At least 8K, but less than 12K, from end of device
1455 * 1: At start of device
1456 * 2: 4K from start of device.
1458 switch(minor_version) {
1459 case 0:
1460 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1461 sb_start -= 8*2;
1462 sb_start &= ~(sector_t)(4*2-1);
1463 break;
1464 case 1:
1465 sb_start = 0;
1466 break;
1467 case 2:
1468 sb_start = 8;
1469 break;
1470 default:
1471 return -EINVAL;
1473 rdev->sb_start = sb_start;
1475 /* superblock is rarely larger than 1K, but it can be larger,
1476 * and it is safe to read 4k, so we do that
1478 ret = read_disk_sb(rdev, 4096);
1479 if (ret) return ret;
1482 sb = page_address(rdev->sb_page);
1484 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1485 sb->major_version != cpu_to_le32(1) ||
1486 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1487 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1488 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1489 return -EINVAL;
1491 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1492 printk("md: invalid superblock checksum on %s\n",
1493 bdevname(rdev->bdev,b));
1494 return -EINVAL;
1496 if (le64_to_cpu(sb->data_size) < 10) {
1497 printk("md: data_size too small on %s\n",
1498 bdevname(rdev->bdev,b));
1499 return -EINVAL;
1501 if (sb->pad0 ||
1502 sb->pad3[0] ||
1503 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1504 /* Some padding is non-zero, might be a new feature */
1505 return -EINVAL;
1507 rdev->preferred_minor = 0xffff;
1508 rdev->data_offset = le64_to_cpu(sb->data_offset);
1509 rdev->new_data_offset = rdev->data_offset;
1510 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1511 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1512 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1513 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1515 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1516 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1517 if (rdev->sb_size & bmask)
1518 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1520 if (minor_version
1521 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1522 return -EINVAL;
1523 if (minor_version
1524 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1525 return -EINVAL;
1527 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1528 rdev->desc_nr = -1;
1529 else
1530 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1532 if (!rdev->bb_page) {
1533 rdev->bb_page = alloc_page(GFP_KERNEL);
1534 if (!rdev->bb_page)
1535 return -ENOMEM;
1537 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1538 rdev->badblocks.count == 0) {
1539 /* need to load the bad block list.
1540 * Currently we limit it to one page.
1542 s32 offset;
1543 sector_t bb_sector;
1544 u64 *bbp;
1545 int i;
1546 int sectors = le16_to_cpu(sb->bblog_size);
1547 if (sectors > (PAGE_SIZE / 512))
1548 return -EINVAL;
1549 offset = le32_to_cpu(sb->bblog_offset);
1550 if (offset == 0)
1551 return -EINVAL;
1552 bb_sector = (long long)offset;
1553 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1554 rdev->bb_page, READ, true))
1555 return -EIO;
1556 bbp = (u64 *)page_address(rdev->bb_page);
1557 rdev->badblocks.shift = sb->bblog_shift;
1558 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1559 u64 bb = le64_to_cpu(*bbp);
1560 int count = bb & (0x3ff);
1561 u64 sector = bb >> 10;
1562 sector <<= sb->bblog_shift;
1563 count <<= sb->bblog_shift;
1564 if (bb + 1 == 0)
1565 break;
1566 if (md_set_badblocks(&rdev->badblocks,
1567 sector, count, 1) == 0)
1568 return -EINVAL;
1570 } else if (sb->bblog_offset != 0)
1571 rdev->badblocks.shift = 0;
1573 if (!refdev) {
1574 ret = 1;
1575 } else {
1576 __u64 ev1, ev2;
1577 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1579 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1580 sb->level != refsb->level ||
1581 sb->layout != refsb->layout ||
1582 sb->chunksize != refsb->chunksize) {
1583 printk(KERN_WARNING "md: %s has strangely different"
1584 " superblock to %s\n",
1585 bdevname(rdev->bdev,b),
1586 bdevname(refdev->bdev,b2));
1587 return -EINVAL;
1589 ev1 = le64_to_cpu(sb->events);
1590 ev2 = le64_to_cpu(refsb->events);
1592 if (ev1 > ev2)
1593 ret = 1;
1594 else
1595 ret = 0;
1597 if (minor_version) {
1598 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1599 sectors -= rdev->data_offset;
1600 } else
1601 sectors = rdev->sb_start;
1602 if (sectors < le64_to_cpu(sb->data_size))
1603 return -EINVAL;
1604 rdev->sectors = le64_to_cpu(sb->data_size);
1605 return ret;
1608 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1610 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1611 __u64 ev1 = le64_to_cpu(sb->events);
1613 rdev->raid_disk = -1;
1614 clear_bit(Faulty, &rdev->flags);
1615 clear_bit(In_sync, &rdev->flags);
1616 clear_bit(WriteMostly, &rdev->flags);
1618 if (mddev->raid_disks == 0) {
1619 mddev->major_version = 1;
1620 mddev->patch_version = 0;
1621 mddev->external = 0;
1622 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1623 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1624 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1625 mddev->level = le32_to_cpu(sb->level);
1626 mddev->clevel[0] = 0;
1627 mddev->layout = le32_to_cpu(sb->layout);
1628 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1629 mddev->dev_sectors = le64_to_cpu(sb->size);
1630 mddev->events = ev1;
1631 mddev->bitmap_info.offset = 0;
1632 mddev->bitmap_info.space = 0;
1633 /* Default location for bitmap is 1K after superblock
1634 * using 3K - total of 4K
1636 mddev->bitmap_info.default_offset = 1024 >> 9;
1637 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1638 mddev->reshape_backwards = 0;
1640 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1641 memcpy(mddev->uuid, sb->set_uuid, 16);
1643 mddev->max_disks = (4096-256)/2;
1645 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1646 mddev->bitmap_info.file == NULL) {
1647 mddev->bitmap_info.offset =
1648 (__s32)le32_to_cpu(sb->bitmap_offset);
1649 /* Metadata doesn't record how much space is available.
1650 * For 1.0, we assume we can use up to the superblock
1651 * if before, else to 4K beyond superblock.
1652 * For others, assume no change is possible.
1654 if (mddev->minor_version > 0)
1655 mddev->bitmap_info.space = 0;
1656 else if (mddev->bitmap_info.offset > 0)
1657 mddev->bitmap_info.space =
1658 8 - mddev->bitmap_info.offset;
1659 else
1660 mddev->bitmap_info.space =
1661 -mddev->bitmap_info.offset;
1664 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1665 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1666 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1667 mddev->new_level = le32_to_cpu(sb->new_level);
1668 mddev->new_layout = le32_to_cpu(sb->new_layout);
1669 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1670 if (mddev->delta_disks < 0 ||
1671 (mddev->delta_disks == 0 &&
1672 (le32_to_cpu(sb->feature_map)
1673 & MD_FEATURE_RESHAPE_BACKWARDS)))
1674 mddev->reshape_backwards = 1;
1675 } else {
1676 mddev->reshape_position = MaxSector;
1677 mddev->delta_disks = 0;
1678 mddev->new_level = mddev->level;
1679 mddev->new_layout = mddev->layout;
1680 mddev->new_chunk_sectors = mddev->chunk_sectors;
1683 } else if (mddev->pers == NULL) {
1684 /* Insist of good event counter while assembling, except for
1685 * spares (which don't need an event count) */
1686 ++ev1;
1687 if (rdev->desc_nr >= 0 &&
1688 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1689 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1690 if (ev1 < mddev->events)
1691 return -EINVAL;
1692 } else if (mddev->bitmap) {
1693 /* If adding to array with a bitmap, then we can accept an
1694 * older device, but not too old.
1696 if (ev1 < mddev->bitmap->events_cleared)
1697 return 0;
1698 } else {
1699 if (ev1 < mddev->events)
1700 /* just a hot-add of a new device, leave raid_disk at -1 */
1701 return 0;
1703 if (mddev->level != LEVEL_MULTIPATH) {
1704 int role;
1705 if (rdev->desc_nr < 0 ||
1706 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1707 role = 0xffff;
1708 rdev->desc_nr = -1;
1709 } else
1710 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1711 switch(role) {
1712 case 0xffff: /* spare */
1713 break;
1714 case 0xfffe: /* faulty */
1715 set_bit(Faulty, &rdev->flags);
1716 break;
1717 default:
1718 if ((le32_to_cpu(sb->feature_map) &
1719 MD_FEATURE_RECOVERY_OFFSET))
1720 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1721 else
1722 set_bit(In_sync, &rdev->flags);
1723 rdev->raid_disk = role;
1724 break;
1726 if (sb->devflags & WriteMostly1)
1727 set_bit(WriteMostly, &rdev->flags);
1728 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1729 set_bit(Replacement, &rdev->flags);
1730 } else /* MULTIPATH are always insync */
1731 set_bit(In_sync, &rdev->flags);
1733 return 0;
1736 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1738 struct mdp_superblock_1 *sb;
1739 struct md_rdev *rdev2;
1740 int max_dev, i;
1741 /* make rdev->sb match mddev and rdev data. */
1743 sb = page_address(rdev->sb_page);
1745 sb->feature_map = 0;
1746 sb->pad0 = 0;
1747 sb->recovery_offset = cpu_to_le64(0);
1748 memset(sb->pad3, 0, sizeof(sb->pad3));
1750 sb->utime = cpu_to_le64((__u64)mddev->utime);
1751 sb->events = cpu_to_le64(mddev->events);
1752 if (mddev->in_sync)
1753 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1754 else
1755 sb->resync_offset = cpu_to_le64(0);
1757 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1759 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1760 sb->size = cpu_to_le64(mddev->dev_sectors);
1761 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1762 sb->level = cpu_to_le32(mddev->level);
1763 sb->layout = cpu_to_le32(mddev->layout);
1765 if (test_bit(WriteMostly, &rdev->flags))
1766 sb->devflags |= WriteMostly1;
1767 else
1768 sb->devflags &= ~WriteMostly1;
1769 sb->data_offset = cpu_to_le64(rdev->data_offset);
1770 sb->data_size = cpu_to_le64(rdev->sectors);
1772 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1773 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1774 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1777 if (rdev->raid_disk >= 0 &&
1778 !test_bit(In_sync, &rdev->flags)) {
1779 sb->feature_map |=
1780 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1781 sb->recovery_offset =
1782 cpu_to_le64(rdev->recovery_offset);
1784 if (test_bit(Replacement, &rdev->flags))
1785 sb->feature_map |=
1786 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1788 if (mddev->reshape_position != MaxSector) {
1789 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1790 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1791 sb->new_layout = cpu_to_le32(mddev->new_layout);
1792 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1793 sb->new_level = cpu_to_le32(mddev->new_level);
1794 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1795 if (mddev->delta_disks == 0 &&
1796 mddev->reshape_backwards)
1797 sb->feature_map
1798 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1799 if (rdev->new_data_offset != rdev->data_offset) {
1800 sb->feature_map
1801 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1802 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1803 - rdev->data_offset));
1807 if (rdev->badblocks.count == 0)
1808 /* Nothing to do for bad blocks*/ ;
1809 else if (sb->bblog_offset == 0)
1810 /* Cannot record bad blocks on this device */
1811 md_error(mddev, rdev);
1812 else {
1813 struct badblocks *bb = &rdev->badblocks;
1814 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1815 u64 *p = bb->page;
1816 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1817 if (bb->changed) {
1818 unsigned seq;
1820 retry:
1821 seq = read_seqbegin(&bb->lock);
1823 memset(bbp, 0xff, PAGE_SIZE);
1825 for (i = 0 ; i < bb->count ; i++) {
1826 u64 internal_bb = p[i];
1827 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1828 | BB_LEN(internal_bb));
1829 bbp[i] = cpu_to_le64(store_bb);
1831 bb->changed = 0;
1832 if (read_seqretry(&bb->lock, seq))
1833 goto retry;
1835 bb->sector = (rdev->sb_start +
1836 (int)le32_to_cpu(sb->bblog_offset));
1837 bb->size = le16_to_cpu(sb->bblog_size);
1841 max_dev = 0;
1842 rdev_for_each(rdev2, mddev)
1843 if (rdev2->desc_nr+1 > max_dev)
1844 max_dev = rdev2->desc_nr+1;
1846 if (max_dev > le32_to_cpu(sb->max_dev)) {
1847 int bmask;
1848 sb->max_dev = cpu_to_le32(max_dev);
1849 rdev->sb_size = max_dev * 2 + 256;
1850 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1851 if (rdev->sb_size & bmask)
1852 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1853 } else
1854 max_dev = le32_to_cpu(sb->max_dev);
1856 for (i=0; i<max_dev;i++)
1857 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1859 rdev_for_each(rdev2, mddev) {
1860 i = rdev2->desc_nr;
1861 if (test_bit(Faulty, &rdev2->flags))
1862 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1863 else if (test_bit(In_sync, &rdev2->flags))
1864 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1865 else if (rdev2->raid_disk >= 0)
1866 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1867 else
1868 sb->dev_roles[i] = cpu_to_le16(0xffff);
1871 sb->sb_csum = calc_sb_1_csum(sb);
1874 static unsigned long long
1875 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1877 struct mdp_superblock_1 *sb;
1878 sector_t max_sectors;
1879 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1880 return 0; /* component must fit device */
1881 if (rdev->data_offset != rdev->new_data_offset)
1882 return 0; /* too confusing */
1883 if (rdev->sb_start < rdev->data_offset) {
1884 /* minor versions 1 and 2; superblock before data */
1885 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1886 max_sectors -= rdev->data_offset;
1887 if (!num_sectors || num_sectors > max_sectors)
1888 num_sectors = max_sectors;
1889 } else if (rdev->mddev->bitmap_info.offset) {
1890 /* minor version 0 with bitmap we can't move */
1891 return 0;
1892 } else {
1893 /* minor version 0; superblock after data */
1894 sector_t sb_start;
1895 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1896 sb_start &= ~(sector_t)(4*2 - 1);
1897 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1898 if (!num_sectors || num_sectors > max_sectors)
1899 num_sectors = max_sectors;
1900 rdev->sb_start = sb_start;
1902 sb = page_address(rdev->sb_page);
1903 sb->data_size = cpu_to_le64(num_sectors);
1904 sb->super_offset = rdev->sb_start;
1905 sb->sb_csum = calc_sb_1_csum(sb);
1906 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1907 rdev->sb_page);
1908 md_super_wait(rdev->mddev);
1909 return num_sectors;
1913 static int
1914 super_1_allow_new_offset(struct md_rdev *rdev,
1915 unsigned long long new_offset)
1917 /* All necessary checks on new >= old have been done */
1918 struct bitmap *bitmap;
1919 if (new_offset >= rdev->data_offset)
1920 return 1;
1922 /* with 1.0 metadata, there is no metadata to tread on
1923 * so we can always move back */
1924 if (rdev->mddev->minor_version == 0)
1925 return 1;
1927 /* otherwise we must be sure not to step on
1928 * any metadata, so stay:
1929 * 36K beyond start of superblock
1930 * beyond end of badblocks
1931 * beyond write-intent bitmap
1933 if (rdev->sb_start + (32+4)*2 > new_offset)
1934 return 0;
1935 bitmap = rdev->mddev->bitmap;
1936 if (bitmap && !rdev->mddev->bitmap_info.file &&
1937 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1938 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1939 return 0;
1940 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1941 return 0;
1943 return 1;
1946 static struct super_type super_types[] = {
1947 [0] = {
1948 .name = "0.90.0",
1949 .owner = THIS_MODULE,
1950 .load_super = super_90_load,
1951 .validate_super = super_90_validate,
1952 .sync_super = super_90_sync,
1953 .rdev_size_change = super_90_rdev_size_change,
1954 .allow_new_offset = super_90_allow_new_offset,
1956 [1] = {
1957 .name = "md-1",
1958 .owner = THIS_MODULE,
1959 .load_super = super_1_load,
1960 .validate_super = super_1_validate,
1961 .sync_super = super_1_sync,
1962 .rdev_size_change = super_1_rdev_size_change,
1963 .allow_new_offset = super_1_allow_new_offset,
1967 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1969 if (mddev->sync_super) {
1970 mddev->sync_super(mddev, rdev);
1971 return;
1974 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1976 super_types[mddev->major_version].sync_super(mddev, rdev);
1979 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1981 struct md_rdev *rdev, *rdev2;
1983 rcu_read_lock();
1984 rdev_for_each_rcu(rdev, mddev1)
1985 rdev_for_each_rcu(rdev2, mddev2)
1986 if (rdev->bdev->bd_contains ==
1987 rdev2->bdev->bd_contains) {
1988 rcu_read_unlock();
1989 return 1;
1991 rcu_read_unlock();
1992 return 0;
1995 static LIST_HEAD(pending_raid_disks);
1998 * Try to register data integrity profile for an mddev
2000 * This is called when an array is started and after a disk has been kicked
2001 * from the array. It only succeeds if all working and active component devices
2002 * are integrity capable with matching profiles.
2004 int md_integrity_register(struct mddev *mddev)
2006 struct md_rdev *rdev, *reference = NULL;
2008 if (list_empty(&mddev->disks))
2009 return 0; /* nothing to do */
2010 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2011 return 0; /* shouldn't register, or already is */
2012 rdev_for_each(rdev, mddev) {
2013 /* skip spares and non-functional disks */
2014 if (test_bit(Faulty, &rdev->flags))
2015 continue;
2016 if (rdev->raid_disk < 0)
2017 continue;
2018 if (!reference) {
2019 /* Use the first rdev as the reference */
2020 reference = rdev;
2021 continue;
2023 /* does this rdev's profile match the reference profile? */
2024 if (blk_integrity_compare(reference->bdev->bd_disk,
2025 rdev->bdev->bd_disk) < 0)
2026 return -EINVAL;
2028 if (!reference || !bdev_get_integrity(reference->bdev))
2029 return 0;
2031 * All component devices are integrity capable and have matching
2032 * profiles, register the common profile for the md device.
2034 if (blk_integrity_register(mddev->gendisk,
2035 bdev_get_integrity(reference->bdev)) != 0) {
2036 printk(KERN_ERR "md: failed to register integrity for %s\n",
2037 mdname(mddev));
2038 return -EINVAL;
2040 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2041 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2042 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2043 mdname(mddev));
2044 return -EINVAL;
2046 return 0;
2048 EXPORT_SYMBOL(md_integrity_register);
2050 /* Disable data integrity if non-capable/non-matching disk is being added */
2051 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2053 struct blk_integrity *bi_rdev;
2054 struct blk_integrity *bi_mddev;
2056 if (!mddev->gendisk)
2057 return;
2059 bi_rdev = bdev_get_integrity(rdev->bdev);
2060 bi_mddev = blk_get_integrity(mddev->gendisk);
2062 if (!bi_mddev) /* nothing to do */
2063 return;
2064 if (rdev->raid_disk < 0) /* skip spares */
2065 return;
2066 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2067 rdev->bdev->bd_disk) >= 0)
2068 return;
2069 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2070 blk_integrity_unregister(mddev->gendisk);
2072 EXPORT_SYMBOL(md_integrity_add_rdev);
2074 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2076 char b[BDEVNAME_SIZE];
2077 struct kobject *ko;
2078 char *s;
2079 int err;
2081 if (rdev->mddev) {
2082 MD_BUG();
2083 return -EINVAL;
2086 /* prevent duplicates */
2087 if (find_rdev(mddev, rdev->bdev->bd_dev))
2088 return -EEXIST;
2090 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2091 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2092 rdev->sectors < mddev->dev_sectors)) {
2093 if (mddev->pers) {
2094 /* Cannot change size, so fail
2095 * If mddev->level <= 0, then we don't care
2096 * about aligning sizes (e.g. linear)
2098 if (mddev->level > 0)
2099 return -ENOSPC;
2100 } else
2101 mddev->dev_sectors = rdev->sectors;
2104 /* Verify rdev->desc_nr is unique.
2105 * If it is -1, assign a free number, else
2106 * check number is not in use
2108 if (rdev->desc_nr < 0) {
2109 int choice = 0;
2110 if (mddev->pers) choice = mddev->raid_disks;
2111 while (find_rdev_nr(mddev, choice))
2112 choice++;
2113 rdev->desc_nr = choice;
2114 } else {
2115 if (find_rdev_nr(mddev, rdev->desc_nr))
2116 return -EBUSY;
2118 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2119 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2120 mdname(mddev), mddev->max_disks);
2121 return -EBUSY;
2123 bdevname(rdev->bdev,b);
2124 while ( (s=strchr(b, '/')) != NULL)
2125 *s = '!';
2127 rdev->mddev = mddev;
2128 printk(KERN_INFO "md: bind<%s>\n", b);
2130 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2131 goto fail;
2133 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2134 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2135 /* failure here is OK */;
2136 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2138 list_add_rcu(&rdev->same_set, &mddev->disks);
2139 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2141 /* May as well allow recovery to be retried once */
2142 mddev->recovery_disabled++;
2144 return 0;
2146 fail:
2147 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2148 b, mdname(mddev));
2149 return err;
2152 static void md_delayed_delete(struct work_struct *ws)
2154 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2155 kobject_del(&rdev->kobj);
2156 kobject_put(&rdev->kobj);
2159 static void unbind_rdev_from_array(struct md_rdev * rdev)
2161 char b[BDEVNAME_SIZE];
2162 if (!rdev->mddev) {
2163 MD_BUG();
2164 return;
2166 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2167 list_del_rcu(&rdev->same_set);
2168 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2169 rdev->mddev = NULL;
2170 sysfs_remove_link(&rdev->kobj, "block");
2171 sysfs_put(rdev->sysfs_state);
2172 rdev->sysfs_state = NULL;
2173 rdev->badblocks.count = 0;
2174 /* We need to delay this, otherwise we can deadlock when
2175 * writing to 'remove' to "dev/state". We also need
2176 * to delay it due to rcu usage.
2178 synchronize_rcu();
2179 INIT_WORK(&rdev->del_work, md_delayed_delete);
2180 kobject_get(&rdev->kobj);
2181 queue_work(md_misc_wq, &rdev->del_work);
2185 * prevent the device from being mounted, repartitioned or
2186 * otherwise reused by a RAID array (or any other kernel
2187 * subsystem), by bd_claiming the device.
2189 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2191 int err = 0;
2192 struct block_device *bdev;
2193 char b[BDEVNAME_SIZE];
2195 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2196 shared ? (struct md_rdev *)lock_rdev : rdev);
2197 if (IS_ERR(bdev)) {
2198 printk(KERN_ERR "md: could not open %s.\n",
2199 __bdevname(dev, b));
2200 return PTR_ERR(bdev);
2202 rdev->bdev = bdev;
2203 return err;
2206 static void unlock_rdev(struct md_rdev *rdev)
2208 struct block_device *bdev = rdev->bdev;
2209 rdev->bdev = NULL;
2210 if (!bdev)
2211 MD_BUG();
2212 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2215 void md_autodetect_dev(dev_t dev);
2217 static void export_rdev(struct md_rdev * rdev)
2219 char b[BDEVNAME_SIZE];
2220 printk(KERN_INFO "md: export_rdev(%s)\n",
2221 bdevname(rdev->bdev,b));
2222 if (rdev->mddev)
2223 MD_BUG();
2224 md_rdev_clear(rdev);
2225 #ifndef MODULE
2226 if (test_bit(AutoDetected, &rdev->flags))
2227 md_autodetect_dev(rdev->bdev->bd_dev);
2228 #endif
2229 unlock_rdev(rdev);
2230 kobject_put(&rdev->kobj);
2233 static void kick_rdev_from_array(struct md_rdev * rdev)
2235 unbind_rdev_from_array(rdev);
2236 export_rdev(rdev);
2239 static void export_array(struct mddev *mddev)
2241 struct md_rdev *rdev, *tmp;
2243 rdev_for_each_safe(rdev, tmp, mddev) {
2244 if (!rdev->mddev) {
2245 MD_BUG();
2246 continue;
2248 kick_rdev_from_array(rdev);
2250 if (!list_empty(&mddev->disks))
2251 MD_BUG();
2252 mddev->raid_disks = 0;
2253 mddev->major_version = 0;
2256 static void print_desc(mdp_disk_t *desc)
2258 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2259 desc->major,desc->minor,desc->raid_disk,desc->state);
2262 static void print_sb_90(mdp_super_t *sb)
2264 int i;
2266 printk(KERN_INFO
2267 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2268 sb->major_version, sb->minor_version, sb->patch_version,
2269 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2270 sb->ctime);
2271 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2272 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2273 sb->md_minor, sb->layout, sb->chunk_size);
2274 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2275 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2276 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2277 sb->failed_disks, sb->spare_disks,
2278 sb->sb_csum, (unsigned long)sb->events_lo);
2280 printk(KERN_INFO);
2281 for (i = 0; i < MD_SB_DISKS; i++) {
2282 mdp_disk_t *desc;
2284 desc = sb->disks + i;
2285 if (desc->number || desc->major || desc->minor ||
2286 desc->raid_disk || (desc->state && (desc->state != 4))) {
2287 printk(" D %2d: ", i);
2288 print_desc(desc);
2291 printk(KERN_INFO "md: THIS: ");
2292 print_desc(&sb->this_disk);
2295 static void print_sb_1(struct mdp_superblock_1 *sb)
2297 __u8 *uuid;
2299 uuid = sb->set_uuid;
2300 printk(KERN_INFO
2301 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2302 "md: Name: \"%s\" CT:%llu\n",
2303 le32_to_cpu(sb->major_version),
2304 le32_to_cpu(sb->feature_map),
2305 uuid,
2306 sb->set_name,
2307 (unsigned long long)le64_to_cpu(sb->ctime)
2308 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2310 uuid = sb->device_uuid;
2311 printk(KERN_INFO
2312 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2313 " RO:%llu\n"
2314 "md: Dev:%08x UUID: %pU\n"
2315 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2316 "md: (MaxDev:%u) \n",
2317 le32_to_cpu(sb->level),
2318 (unsigned long long)le64_to_cpu(sb->size),
2319 le32_to_cpu(sb->raid_disks),
2320 le32_to_cpu(sb->layout),
2321 le32_to_cpu(sb->chunksize),
2322 (unsigned long long)le64_to_cpu(sb->data_offset),
2323 (unsigned long long)le64_to_cpu(sb->data_size),
2324 (unsigned long long)le64_to_cpu(sb->super_offset),
2325 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2326 le32_to_cpu(sb->dev_number),
2327 uuid,
2328 sb->devflags,
2329 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2330 (unsigned long long)le64_to_cpu(sb->events),
2331 (unsigned long long)le64_to_cpu(sb->resync_offset),
2332 le32_to_cpu(sb->sb_csum),
2333 le32_to_cpu(sb->max_dev)
2337 static void print_rdev(struct md_rdev *rdev, int major_version)
2339 char b[BDEVNAME_SIZE];
2340 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2341 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2342 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2343 rdev->desc_nr);
2344 if (rdev->sb_loaded) {
2345 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2346 switch (major_version) {
2347 case 0:
2348 print_sb_90(page_address(rdev->sb_page));
2349 break;
2350 case 1:
2351 print_sb_1(page_address(rdev->sb_page));
2352 break;
2354 } else
2355 printk(KERN_INFO "md: no rdev superblock!\n");
2358 static void md_print_devices(void)
2360 struct list_head *tmp;
2361 struct md_rdev *rdev;
2362 struct mddev *mddev;
2363 char b[BDEVNAME_SIZE];
2365 printk("\n");
2366 printk("md: **********************************\n");
2367 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2368 printk("md: **********************************\n");
2369 for_each_mddev(mddev, tmp) {
2371 if (mddev->bitmap)
2372 bitmap_print_sb(mddev->bitmap);
2373 else
2374 printk("%s: ", mdname(mddev));
2375 rdev_for_each(rdev, mddev)
2376 printk("<%s>", bdevname(rdev->bdev,b));
2377 printk("\n");
2379 rdev_for_each(rdev, mddev)
2380 print_rdev(rdev, mddev->major_version);
2382 printk("md: **********************************\n");
2383 printk("\n");
2387 static void sync_sbs(struct mddev * mddev, int nospares)
2389 /* Update each superblock (in-memory image), but
2390 * if we are allowed to, skip spares which already
2391 * have the right event counter, or have one earlier
2392 * (which would mean they aren't being marked as dirty
2393 * with the rest of the array)
2395 struct md_rdev *rdev;
2396 rdev_for_each(rdev, mddev) {
2397 if (rdev->sb_events == mddev->events ||
2398 (nospares &&
2399 rdev->raid_disk < 0 &&
2400 rdev->sb_events+1 == mddev->events)) {
2401 /* Don't update this superblock */
2402 rdev->sb_loaded = 2;
2403 } else {
2404 sync_super(mddev, rdev);
2405 rdev->sb_loaded = 1;
2410 static void md_update_sb(struct mddev * mddev, int force_change)
2412 struct md_rdev *rdev;
2413 int sync_req;
2414 int nospares = 0;
2415 int any_badblocks_changed = 0;
2417 if (mddev->ro) {
2418 if (force_change)
2419 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2420 return;
2422 repeat:
2423 /* First make sure individual recovery_offsets are correct */
2424 rdev_for_each(rdev, mddev) {
2425 if (rdev->raid_disk >= 0 &&
2426 mddev->delta_disks >= 0 &&
2427 !test_bit(In_sync, &rdev->flags) &&
2428 mddev->curr_resync_completed > rdev->recovery_offset)
2429 rdev->recovery_offset = mddev->curr_resync_completed;
2432 if (!mddev->persistent) {
2433 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2434 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2435 if (!mddev->external) {
2436 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2437 rdev_for_each(rdev, mddev) {
2438 if (rdev->badblocks.changed) {
2439 rdev->badblocks.changed = 0;
2440 md_ack_all_badblocks(&rdev->badblocks);
2441 md_error(mddev, rdev);
2443 clear_bit(Blocked, &rdev->flags);
2444 clear_bit(BlockedBadBlocks, &rdev->flags);
2445 wake_up(&rdev->blocked_wait);
2448 wake_up(&mddev->sb_wait);
2449 return;
2452 spin_lock_irq(&mddev->write_lock);
2454 mddev->utime = get_seconds();
2456 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2457 force_change = 1;
2458 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2459 /* just a clean<-> dirty transition, possibly leave spares alone,
2460 * though if events isn't the right even/odd, we will have to do
2461 * spares after all
2463 nospares = 1;
2464 if (force_change)
2465 nospares = 0;
2466 if (mddev->degraded)
2467 /* If the array is degraded, then skipping spares is both
2468 * dangerous and fairly pointless.
2469 * Dangerous because a device that was removed from the array
2470 * might have a event_count that still looks up-to-date,
2471 * so it can be re-added without a resync.
2472 * Pointless because if there are any spares to skip,
2473 * then a recovery will happen and soon that array won't
2474 * be degraded any more and the spare can go back to sleep then.
2476 nospares = 0;
2478 sync_req = mddev->in_sync;
2480 /* If this is just a dirty<->clean transition, and the array is clean
2481 * and 'events' is odd, we can roll back to the previous clean state */
2482 if (nospares
2483 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2484 && mddev->can_decrease_events
2485 && mddev->events != 1) {
2486 mddev->events--;
2487 mddev->can_decrease_events = 0;
2488 } else {
2489 /* otherwise we have to go forward and ... */
2490 mddev->events ++;
2491 mddev->can_decrease_events = nospares;
2494 if (!mddev->events) {
2496 * oops, this 64-bit counter should never wrap.
2497 * Either we are in around ~1 trillion A.C., assuming
2498 * 1 reboot per second, or we have a bug:
2500 MD_BUG();
2501 mddev->events --;
2504 rdev_for_each(rdev, mddev) {
2505 if (rdev->badblocks.changed)
2506 any_badblocks_changed++;
2507 if (test_bit(Faulty, &rdev->flags))
2508 set_bit(FaultRecorded, &rdev->flags);
2511 sync_sbs(mddev, nospares);
2512 spin_unlock_irq(&mddev->write_lock);
2514 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2515 mdname(mddev), mddev->in_sync);
2517 bitmap_update_sb(mddev->bitmap);
2518 rdev_for_each(rdev, mddev) {
2519 char b[BDEVNAME_SIZE];
2521 if (rdev->sb_loaded != 1)
2522 continue; /* no noise on spare devices */
2524 if (!test_bit(Faulty, &rdev->flags) &&
2525 rdev->saved_raid_disk == -1) {
2526 md_super_write(mddev,rdev,
2527 rdev->sb_start, rdev->sb_size,
2528 rdev->sb_page);
2529 pr_debug("md: (write) %s's sb offset: %llu\n",
2530 bdevname(rdev->bdev, b),
2531 (unsigned long long)rdev->sb_start);
2532 rdev->sb_events = mddev->events;
2533 if (rdev->badblocks.size) {
2534 md_super_write(mddev, rdev,
2535 rdev->badblocks.sector,
2536 rdev->badblocks.size << 9,
2537 rdev->bb_page);
2538 rdev->badblocks.size = 0;
2541 } else if (test_bit(Faulty, &rdev->flags))
2542 pr_debug("md: %s (skipping faulty)\n",
2543 bdevname(rdev->bdev, b));
2544 else
2545 pr_debug("(skipping incremental s/r ");
2547 if (mddev->level == LEVEL_MULTIPATH)
2548 /* only need to write one superblock... */
2549 break;
2551 md_super_wait(mddev);
2552 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2554 spin_lock_irq(&mddev->write_lock);
2555 if (mddev->in_sync != sync_req ||
2556 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2557 /* have to write it out again */
2558 spin_unlock_irq(&mddev->write_lock);
2559 goto repeat;
2561 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2562 spin_unlock_irq(&mddev->write_lock);
2563 wake_up(&mddev->sb_wait);
2564 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2565 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2567 rdev_for_each(rdev, mddev) {
2568 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2569 clear_bit(Blocked, &rdev->flags);
2571 if (any_badblocks_changed)
2572 md_ack_all_badblocks(&rdev->badblocks);
2573 clear_bit(BlockedBadBlocks, &rdev->flags);
2574 wake_up(&rdev->blocked_wait);
2578 /* words written to sysfs files may, or may not, be \n terminated.
2579 * We want to accept with case. For this we use cmd_match.
2581 static int cmd_match(const char *cmd, const char *str)
2583 /* See if cmd, written into a sysfs file, matches
2584 * str. They must either be the same, or cmd can
2585 * have a trailing newline
2587 while (*cmd && *str && *cmd == *str) {
2588 cmd++;
2589 str++;
2591 if (*cmd == '\n')
2592 cmd++;
2593 if (*str || *cmd)
2594 return 0;
2595 return 1;
2598 struct rdev_sysfs_entry {
2599 struct attribute attr;
2600 ssize_t (*show)(struct md_rdev *, char *);
2601 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2604 static ssize_t
2605 state_show(struct md_rdev *rdev, char *page)
2607 char *sep = "";
2608 size_t len = 0;
2610 if (test_bit(Faulty, &rdev->flags) ||
2611 rdev->badblocks.unacked_exist) {
2612 len+= sprintf(page+len, "%sfaulty",sep);
2613 sep = ",";
2615 if (test_bit(In_sync, &rdev->flags)) {
2616 len += sprintf(page+len, "%sin_sync",sep);
2617 sep = ",";
2619 if (test_bit(WriteMostly, &rdev->flags)) {
2620 len += sprintf(page+len, "%swrite_mostly",sep);
2621 sep = ",";
2623 if (test_bit(Blocked, &rdev->flags) ||
2624 (rdev->badblocks.unacked_exist
2625 && !test_bit(Faulty, &rdev->flags))) {
2626 len += sprintf(page+len, "%sblocked", sep);
2627 sep = ",";
2629 if (!test_bit(Faulty, &rdev->flags) &&
2630 !test_bit(In_sync, &rdev->flags)) {
2631 len += sprintf(page+len, "%sspare", sep);
2632 sep = ",";
2634 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2635 len += sprintf(page+len, "%swrite_error", sep);
2636 sep = ",";
2638 if (test_bit(WantReplacement, &rdev->flags)) {
2639 len += sprintf(page+len, "%swant_replacement", sep);
2640 sep = ",";
2642 if (test_bit(Replacement, &rdev->flags)) {
2643 len += sprintf(page+len, "%sreplacement", sep);
2644 sep = ",";
2647 return len+sprintf(page+len, "\n");
2650 static ssize_t
2651 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2653 /* can write
2654 * faulty - simulates an error
2655 * remove - disconnects the device
2656 * writemostly - sets write_mostly
2657 * -writemostly - clears write_mostly
2658 * blocked - sets the Blocked flags
2659 * -blocked - clears the Blocked and possibly simulates an error
2660 * insync - sets Insync providing device isn't active
2661 * write_error - sets WriteErrorSeen
2662 * -write_error - clears WriteErrorSeen
2664 int err = -EINVAL;
2665 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2666 md_error(rdev->mddev, rdev);
2667 if (test_bit(Faulty, &rdev->flags))
2668 err = 0;
2669 else
2670 err = -EBUSY;
2671 } else if (cmd_match(buf, "remove")) {
2672 if (rdev->raid_disk >= 0)
2673 err = -EBUSY;
2674 else {
2675 struct mddev *mddev = rdev->mddev;
2676 kick_rdev_from_array(rdev);
2677 if (mddev->pers)
2678 md_update_sb(mddev, 1);
2679 md_new_event(mddev);
2680 err = 0;
2682 } else if (cmd_match(buf, "writemostly")) {
2683 set_bit(WriteMostly, &rdev->flags);
2684 err = 0;
2685 } else if (cmd_match(buf, "-writemostly")) {
2686 clear_bit(WriteMostly, &rdev->flags);
2687 err = 0;
2688 } else if (cmd_match(buf, "blocked")) {
2689 set_bit(Blocked, &rdev->flags);
2690 err = 0;
2691 } else if (cmd_match(buf, "-blocked")) {
2692 if (!test_bit(Faulty, &rdev->flags) &&
2693 rdev->badblocks.unacked_exist) {
2694 /* metadata handler doesn't understand badblocks,
2695 * so we need to fail the device
2697 md_error(rdev->mddev, rdev);
2699 clear_bit(Blocked, &rdev->flags);
2700 clear_bit(BlockedBadBlocks, &rdev->flags);
2701 wake_up(&rdev->blocked_wait);
2702 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2703 md_wakeup_thread(rdev->mddev->thread);
2705 err = 0;
2706 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2707 set_bit(In_sync, &rdev->flags);
2708 err = 0;
2709 } else if (cmd_match(buf, "write_error")) {
2710 set_bit(WriteErrorSeen, &rdev->flags);
2711 err = 0;
2712 } else if (cmd_match(buf, "-write_error")) {
2713 clear_bit(WriteErrorSeen, &rdev->flags);
2714 err = 0;
2715 } else if (cmd_match(buf, "want_replacement")) {
2716 /* Any non-spare device that is not a replacement can
2717 * become want_replacement at any time, but we then need to
2718 * check if recovery is needed.
2720 if (rdev->raid_disk >= 0 &&
2721 !test_bit(Replacement, &rdev->flags))
2722 set_bit(WantReplacement, &rdev->flags);
2723 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2724 md_wakeup_thread(rdev->mddev->thread);
2725 err = 0;
2726 } else if (cmd_match(buf, "-want_replacement")) {
2727 /* Clearing 'want_replacement' is always allowed.
2728 * Once replacements starts it is too late though.
2730 err = 0;
2731 clear_bit(WantReplacement, &rdev->flags);
2732 } else if (cmd_match(buf, "replacement")) {
2733 /* Can only set a device as a replacement when array has not
2734 * yet been started. Once running, replacement is automatic
2735 * from spares, or by assigning 'slot'.
2737 if (rdev->mddev->pers)
2738 err = -EBUSY;
2739 else {
2740 set_bit(Replacement, &rdev->flags);
2741 err = 0;
2743 } else if (cmd_match(buf, "-replacement")) {
2744 /* Similarly, can only clear Replacement before start */
2745 if (rdev->mddev->pers)
2746 err = -EBUSY;
2747 else {
2748 clear_bit(Replacement, &rdev->flags);
2749 err = 0;
2752 if (!err)
2753 sysfs_notify_dirent_safe(rdev->sysfs_state);
2754 return err ? err : len;
2756 static struct rdev_sysfs_entry rdev_state =
2757 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2759 static ssize_t
2760 errors_show(struct md_rdev *rdev, char *page)
2762 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2765 static ssize_t
2766 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2768 char *e;
2769 unsigned long n = simple_strtoul(buf, &e, 10);
2770 if (*buf && (*e == 0 || *e == '\n')) {
2771 atomic_set(&rdev->corrected_errors, n);
2772 return len;
2774 return -EINVAL;
2776 static struct rdev_sysfs_entry rdev_errors =
2777 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2779 static ssize_t
2780 slot_show(struct md_rdev *rdev, char *page)
2782 if (rdev->raid_disk < 0)
2783 return sprintf(page, "none\n");
2784 else
2785 return sprintf(page, "%d\n", rdev->raid_disk);
2788 static ssize_t
2789 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2791 char *e;
2792 int err;
2793 int slot = simple_strtoul(buf, &e, 10);
2794 if (strncmp(buf, "none", 4)==0)
2795 slot = -1;
2796 else if (e==buf || (*e && *e!= '\n'))
2797 return -EINVAL;
2798 if (rdev->mddev->pers && slot == -1) {
2799 /* Setting 'slot' on an active array requires also
2800 * updating the 'rd%d' link, and communicating
2801 * with the personality with ->hot_*_disk.
2802 * For now we only support removing
2803 * failed/spare devices. This normally happens automatically,
2804 * but not when the metadata is externally managed.
2806 if (rdev->raid_disk == -1)
2807 return -EEXIST;
2808 /* personality does all needed checks */
2809 if (rdev->mddev->pers->hot_remove_disk == NULL)
2810 return -EINVAL;
2811 clear_bit(Blocked, &rdev->flags);
2812 remove_and_add_spares(rdev->mddev, rdev);
2813 if (rdev->raid_disk >= 0)
2814 return -EBUSY;
2815 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2816 md_wakeup_thread(rdev->mddev->thread);
2817 } else if (rdev->mddev->pers) {
2818 /* Activating a spare .. or possibly reactivating
2819 * if we ever get bitmaps working here.
2822 if (rdev->raid_disk != -1)
2823 return -EBUSY;
2825 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2826 return -EBUSY;
2828 if (rdev->mddev->pers->hot_add_disk == NULL)
2829 return -EINVAL;
2831 if (slot >= rdev->mddev->raid_disks &&
2832 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2833 return -ENOSPC;
2835 rdev->raid_disk = slot;
2836 if (test_bit(In_sync, &rdev->flags))
2837 rdev->saved_raid_disk = slot;
2838 else
2839 rdev->saved_raid_disk = -1;
2840 clear_bit(In_sync, &rdev->flags);
2841 err = rdev->mddev->pers->
2842 hot_add_disk(rdev->mddev, rdev);
2843 if (err) {
2844 rdev->raid_disk = -1;
2845 return err;
2846 } else
2847 sysfs_notify_dirent_safe(rdev->sysfs_state);
2848 if (sysfs_link_rdev(rdev->mddev, rdev))
2849 /* failure here is OK */;
2850 /* don't wakeup anyone, leave that to userspace. */
2851 } else {
2852 if (slot >= rdev->mddev->raid_disks &&
2853 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2854 return -ENOSPC;
2855 rdev->raid_disk = slot;
2856 /* assume it is working */
2857 clear_bit(Faulty, &rdev->flags);
2858 clear_bit(WriteMostly, &rdev->flags);
2859 set_bit(In_sync, &rdev->flags);
2860 sysfs_notify_dirent_safe(rdev->sysfs_state);
2862 return len;
2866 static struct rdev_sysfs_entry rdev_slot =
2867 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2869 static ssize_t
2870 offset_show(struct md_rdev *rdev, char *page)
2872 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2875 static ssize_t
2876 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2878 unsigned long long offset;
2879 if (strict_strtoull(buf, 10, &offset) < 0)
2880 return -EINVAL;
2881 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2882 return -EBUSY;
2883 if (rdev->sectors && rdev->mddev->external)
2884 /* Must set offset before size, so overlap checks
2885 * can be sane */
2886 return -EBUSY;
2887 rdev->data_offset = offset;
2888 rdev->new_data_offset = offset;
2889 return len;
2892 static struct rdev_sysfs_entry rdev_offset =
2893 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2895 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2897 return sprintf(page, "%llu\n",
2898 (unsigned long long)rdev->new_data_offset);
2901 static ssize_t new_offset_store(struct md_rdev *rdev,
2902 const char *buf, size_t len)
2904 unsigned long long new_offset;
2905 struct mddev *mddev = rdev->mddev;
2907 if (strict_strtoull(buf, 10, &new_offset) < 0)
2908 return -EINVAL;
2910 if (mddev->sync_thread)
2911 return -EBUSY;
2912 if (new_offset == rdev->data_offset)
2913 /* reset is always permitted */
2915 else if (new_offset > rdev->data_offset) {
2916 /* must not push array size beyond rdev_sectors */
2917 if (new_offset - rdev->data_offset
2918 + mddev->dev_sectors > rdev->sectors)
2919 return -E2BIG;
2921 /* Metadata worries about other space details. */
2923 /* decreasing the offset is inconsistent with a backwards
2924 * reshape.
2926 if (new_offset < rdev->data_offset &&
2927 mddev->reshape_backwards)
2928 return -EINVAL;
2929 /* Increasing offset is inconsistent with forwards
2930 * reshape. reshape_direction should be set to
2931 * 'backwards' first.
2933 if (new_offset > rdev->data_offset &&
2934 !mddev->reshape_backwards)
2935 return -EINVAL;
2937 if (mddev->pers && mddev->persistent &&
2938 !super_types[mddev->major_version]
2939 .allow_new_offset(rdev, new_offset))
2940 return -E2BIG;
2941 rdev->new_data_offset = new_offset;
2942 if (new_offset > rdev->data_offset)
2943 mddev->reshape_backwards = 1;
2944 else if (new_offset < rdev->data_offset)
2945 mddev->reshape_backwards = 0;
2947 return len;
2949 static struct rdev_sysfs_entry rdev_new_offset =
2950 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2952 static ssize_t
2953 rdev_size_show(struct md_rdev *rdev, char *page)
2955 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2958 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2960 /* check if two start/length pairs overlap */
2961 if (s1+l1 <= s2)
2962 return 0;
2963 if (s2+l2 <= s1)
2964 return 0;
2965 return 1;
2968 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2970 unsigned long long blocks;
2971 sector_t new;
2973 if (strict_strtoull(buf, 10, &blocks) < 0)
2974 return -EINVAL;
2976 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2977 return -EINVAL; /* sector conversion overflow */
2979 new = blocks * 2;
2980 if (new != blocks * 2)
2981 return -EINVAL; /* unsigned long long to sector_t overflow */
2983 *sectors = new;
2984 return 0;
2987 static ssize_t
2988 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2990 struct mddev *my_mddev = rdev->mddev;
2991 sector_t oldsectors = rdev->sectors;
2992 sector_t sectors;
2994 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2995 return -EINVAL;
2996 if (rdev->data_offset != rdev->new_data_offset)
2997 return -EINVAL; /* too confusing */
2998 if (my_mddev->pers && rdev->raid_disk >= 0) {
2999 if (my_mddev->persistent) {
3000 sectors = super_types[my_mddev->major_version].
3001 rdev_size_change(rdev, sectors);
3002 if (!sectors)
3003 return -EBUSY;
3004 } else if (!sectors)
3005 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3006 rdev->data_offset;
3007 if (!my_mddev->pers->resize)
3008 /* Cannot change size for RAID0 or Linear etc */
3009 return -EINVAL;
3011 if (sectors < my_mddev->dev_sectors)
3012 return -EINVAL; /* component must fit device */
3014 rdev->sectors = sectors;
3015 if (sectors > oldsectors && my_mddev->external) {
3016 /* need to check that all other rdevs with the same ->bdev
3017 * do not overlap. We need to unlock the mddev to avoid
3018 * a deadlock. We have already changed rdev->sectors, and if
3019 * we have to change it back, we will have the lock again.
3021 struct mddev *mddev;
3022 int overlap = 0;
3023 struct list_head *tmp;
3025 mddev_unlock(my_mddev);
3026 for_each_mddev(mddev, tmp) {
3027 struct md_rdev *rdev2;
3029 mddev_lock(mddev);
3030 rdev_for_each(rdev2, mddev)
3031 if (rdev->bdev == rdev2->bdev &&
3032 rdev != rdev2 &&
3033 overlaps(rdev->data_offset, rdev->sectors,
3034 rdev2->data_offset,
3035 rdev2->sectors)) {
3036 overlap = 1;
3037 break;
3039 mddev_unlock(mddev);
3040 if (overlap) {
3041 mddev_put(mddev);
3042 break;
3045 mddev_lock(my_mddev);
3046 if (overlap) {
3047 /* Someone else could have slipped in a size
3048 * change here, but doing so is just silly.
3049 * We put oldsectors back because we *know* it is
3050 * safe, and trust userspace not to race with
3051 * itself
3053 rdev->sectors = oldsectors;
3054 return -EBUSY;
3057 return len;
3060 static struct rdev_sysfs_entry rdev_size =
3061 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3064 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3066 unsigned long long recovery_start = rdev->recovery_offset;
3068 if (test_bit(In_sync, &rdev->flags) ||
3069 recovery_start == MaxSector)
3070 return sprintf(page, "none\n");
3072 return sprintf(page, "%llu\n", recovery_start);
3075 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3077 unsigned long long recovery_start;
3079 if (cmd_match(buf, "none"))
3080 recovery_start = MaxSector;
3081 else if (strict_strtoull(buf, 10, &recovery_start))
3082 return -EINVAL;
3084 if (rdev->mddev->pers &&
3085 rdev->raid_disk >= 0)
3086 return -EBUSY;
3088 rdev->recovery_offset = recovery_start;
3089 if (recovery_start == MaxSector)
3090 set_bit(In_sync, &rdev->flags);
3091 else
3092 clear_bit(In_sync, &rdev->flags);
3093 return len;
3096 static struct rdev_sysfs_entry rdev_recovery_start =
3097 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3100 static ssize_t
3101 badblocks_show(struct badblocks *bb, char *page, int unack);
3102 static ssize_t
3103 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3105 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3107 return badblocks_show(&rdev->badblocks, page, 0);
3109 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3111 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3112 /* Maybe that ack was all we needed */
3113 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3114 wake_up(&rdev->blocked_wait);
3115 return rv;
3117 static struct rdev_sysfs_entry rdev_bad_blocks =
3118 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3121 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3123 return badblocks_show(&rdev->badblocks, page, 1);
3125 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3127 return badblocks_store(&rdev->badblocks, page, len, 1);
3129 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3130 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3132 static struct attribute *rdev_default_attrs[] = {
3133 &rdev_state.attr,
3134 &rdev_errors.attr,
3135 &rdev_slot.attr,
3136 &rdev_offset.attr,
3137 &rdev_new_offset.attr,
3138 &rdev_size.attr,
3139 &rdev_recovery_start.attr,
3140 &rdev_bad_blocks.attr,
3141 &rdev_unack_bad_blocks.attr,
3142 NULL,
3144 static ssize_t
3145 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3147 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3148 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3149 struct mddev *mddev = rdev->mddev;
3150 ssize_t rv;
3152 if (!entry->show)
3153 return -EIO;
3155 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3156 if (!rv) {
3157 if (rdev->mddev == NULL)
3158 rv = -EBUSY;
3159 else
3160 rv = entry->show(rdev, page);
3161 mddev_unlock(mddev);
3163 return rv;
3166 static ssize_t
3167 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3168 const char *page, size_t length)
3170 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3171 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3172 ssize_t rv;
3173 struct mddev *mddev = rdev->mddev;
3175 if (!entry->store)
3176 return -EIO;
3177 if (!capable(CAP_SYS_ADMIN))
3178 return -EACCES;
3179 rv = mddev ? mddev_lock(mddev): -EBUSY;
3180 if (!rv) {
3181 if (rdev->mddev == NULL)
3182 rv = -EBUSY;
3183 else
3184 rv = entry->store(rdev, page, length);
3185 mddev_unlock(mddev);
3187 return rv;
3190 static void rdev_free(struct kobject *ko)
3192 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3193 kfree(rdev);
3195 static const struct sysfs_ops rdev_sysfs_ops = {
3196 .show = rdev_attr_show,
3197 .store = rdev_attr_store,
3199 static struct kobj_type rdev_ktype = {
3200 .release = rdev_free,
3201 .sysfs_ops = &rdev_sysfs_ops,
3202 .default_attrs = rdev_default_attrs,
3205 int md_rdev_init(struct md_rdev *rdev)
3207 rdev->desc_nr = -1;
3208 rdev->saved_raid_disk = -1;
3209 rdev->raid_disk = -1;
3210 rdev->flags = 0;
3211 rdev->data_offset = 0;
3212 rdev->new_data_offset = 0;
3213 rdev->sb_events = 0;
3214 rdev->last_read_error.tv_sec = 0;
3215 rdev->last_read_error.tv_nsec = 0;
3216 rdev->sb_loaded = 0;
3217 rdev->bb_page = NULL;
3218 atomic_set(&rdev->nr_pending, 0);
3219 atomic_set(&rdev->read_errors, 0);
3220 atomic_set(&rdev->corrected_errors, 0);
3222 INIT_LIST_HEAD(&rdev->same_set);
3223 init_waitqueue_head(&rdev->blocked_wait);
3225 /* Add space to store bad block list.
3226 * This reserves the space even on arrays where it cannot
3227 * be used - I wonder if that matters
3229 rdev->badblocks.count = 0;
3230 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3231 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3232 seqlock_init(&rdev->badblocks.lock);
3233 if (rdev->badblocks.page == NULL)
3234 return -ENOMEM;
3236 return 0;
3238 EXPORT_SYMBOL_GPL(md_rdev_init);
3240 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3242 * mark the device faulty if:
3244 * - the device is nonexistent (zero size)
3245 * - the device has no valid superblock
3247 * a faulty rdev _never_ has rdev->sb set.
3249 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3251 char b[BDEVNAME_SIZE];
3252 int err;
3253 struct md_rdev *rdev;
3254 sector_t size;
3256 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3257 if (!rdev) {
3258 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3259 return ERR_PTR(-ENOMEM);
3262 err = md_rdev_init(rdev);
3263 if (err)
3264 goto abort_free;
3265 err = alloc_disk_sb(rdev);
3266 if (err)
3267 goto abort_free;
3269 err = lock_rdev(rdev, newdev, super_format == -2);
3270 if (err)
3271 goto abort_free;
3273 kobject_init(&rdev->kobj, &rdev_ktype);
3275 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3276 if (!size) {
3277 printk(KERN_WARNING
3278 "md: %s has zero or unknown size, marking faulty!\n",
3279 bdevname(rdev->bdev,b));
3280 err = -EINVAL;
3281 goto abort_free;
3284 if (super_format >= 0) {
3285 err = super_types[super_format].
3286 load_super(rdev, NULL, super_minor);
3287 if (err == -EINVAL) {
3288 printk(KERN_WARNING
3289 "md: %s does not have a valid v%d.%d "
3290 "superblock, not importing!\n",
3291 bdevname(rdev->bdev,b),
3292 super_format, super_minor);
3293 goto abort_free;
3295 if (err < 0) {
3296 printk(KERN_WARNING
3297 "md: could not read %s's sb, not importing!\n",
3298 bdevname(rdev->bdev,b));
3299 goto abort_free;
3303 return rdev;
3305 abort_free:
3306 if (rdev->bdev)
3307 unlock_rdev(rdev);
3308 md_rdev_clear(rdev);
3309 kfree(rdev);
3310 return ERR_PTR(err);
3314 * Check a full RAID array for plausibility
3318 static void analyze_sbs(struct mddev * mddev)
3320 int i;
3321 struct md_rdev *rdev, *freshest, *tmp;
3322 char b[BDEVNAME_SIZE];
3324 freshest = NULL;
3325 rdev_for_each_safe(rdev, tmp, mddev)
3326 switch (super_types[mddev->major_version].
3327 load_super(rdev, freshest, mddev->minor_version)) {
3328 case 1:
3329 freshest = rdev;
3330 break;
3331 case 0:
3332 break;
3333 default:
3334 printk( KERN_ERR \
3335 "md: fatal superblock inconsistency in %s"
3336 " -- removing from array\n",
3337 bdevname(rdev->bdev,b));
3338 kick_rdev_from_array(rdev);
3342 super_types[mddev->major_version].
3343 validate_super(mddev, freshest);
3345 i = 0;
3346 rdev_for_each_safe(rdev, tmp, mddev) {
3347 if (mddev->max_disks &&
3348 (rdev->desc_nr >= mddev->max_disks ||
3349 i > mddev->max_disks)) {
3350 printk(KERN_WARNING
3351 "md: %s: %s: only %d devices permitted\n",
3352 mdname(mddev), bdevname(rdev->bdev, b),
3353 mddev->max_disks);
3354 kick_rdev_from_array(rdev);
3355 continue;
3357 if (rdev != freshest)
3358 if (super_types[mddev->major_version].
3359 validate_super(mddev, rdev)) {
3360 printk(KERN_WARNING "md: kicking non-fresh %s"
3361 " from array!\n",
3362 bdevname(rdev->bdev,b));
3363 kick_rdev_from_array(rdev);
3364 continue;
3366 if (mddev->level == LEVEL_MULTIPATH) {
3367 rdev->desc_nr = i++;
3368 rdev->raid_disk = rdev->desc_nr;
3369 set_bit(In_sync, &rdev->flags);
3370 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3371 rdev->raid_disk = -1;
3372 clear_bit(In_sync, &rdev->flags);
3377 /* Read a fixed-point number.
3378 * Numbers in sysfs attributes should be in "standard" units where
3379 * possible, so time should be in seconds.
3380 * However we internally use a a much smaller unit such as
3381 * milliseconds or jiffies.
3382 * This function takes a decimal number with a possible fractional
3383 * component, and produces an integer which is the result of
3384 * multiplying that number by 10^'scale'.
3385 * all without any floating-point arithmetic.
3387 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3389 unsigned long result = 0;
3390 long decimals = -1;
3391 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3392 if (*cp == '.')
3393 decimals = 0;
3394 else if (decimals < scale) {
3395 unsigned int value;
3396 value = *cp - '0';
3397 result = result * 10 + value;
3398 if (decimals >= 0)
3399 decimals++;
3401 cp++;
3403 if (*cp == '\n')
3404 cp++;
3405 if (*cp)
3406 return -EINVAL;
3407 if (decimals < 0)
3408 decimals = 0;
3409 while (decimals < scale) {
3410 result *= 10;
3411 decimals ++;
3413 *res = result;
3414 return 0;
3418 static void md_safemode_timeout(unsigned long data);
3420 static ssize_t
3421 safe_delay_show(struct mddev *mddev, char *page)
3423 int msec = (mddev->safemode_delay*1000)/HZ;
3424 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3426 static ssize_t
3427 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3429 unsigned long msec;
3431 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3432 return -EINVAL;
3433 if (msec == 0)
3434 mddev->safemode_delay = 0;
3435 else {
3436 unsigned long old_delay = mddev->safemode_delay;
3437 mddev->safemode_delay = (msec*HZ)/1000;
3438 if (mddev->safemode_delay == 0)
3439 mddev->safemode_delay = 1;
3440 if (mddev->safemode_delay < old_delay)
3441 md_safemode_timeout((unsigned long)mddev);
3443 return len;
3445 static struct md_sysfs_entry md_safe_delay =
3446 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3448 static ssize_t
3449 level_show(struct mddev *mddev, char *page)
3451 struct md_personality *p = mddev->pers;
3452 if (p)
3453 return sprintf(page, "%s\n", p->name);
3454 else if (mddev->clevel[0])
3455 return sprintf(page, "%s\n", mddev->clevel);
3456 else if (mddev->level != LEVEL_NONE)
3457 return sprintf(page, "%d\n", mddev->level);
3458 else
3459 return 0;
3462 static ssize_t
3463 level_store(struct mddev *mddev, const char *buf, size_t len)
3465 char clevel[16];
3466 ssize_t rv = len;
3467 struct md_personality *pers;
3468 long level;
3469 void *priv;
3470 struct md_rdev *rdev;
3472 if (mddev->pers == NULL) {
3473 if (len == 0)
3474 return 0;
3475 if (len >= sizeof(mddev->clevel))
3476 return -ENOSPC;
3477 strncpy(mddev->clevel, buf, len);
3478 if (mddev->clevel[len-1] == '\n')
3479 len--;
3480 mddev->clevel[len] = 0;
3481 mddev->level = LEVEL_NONE;
3482 return rv;
3485 /* request to change the personality. Need to ensure:
3486 * - array is not engaged in resync/recovery/reshape
3487 * - old personality can be suspended
3488 * - new personality will access other array.
3491 if (mddev->sync_thread ||
3492 mddev->reshape_position != MaxSector ||
3493 mddev->sysfs_active)
3494 return -EBUSY;
3496 if (!mddev->pers->quiesce) {
3497 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3498 mdname(mddev), mddev->pers->name);
3499 return -EINVAL;
3502 /* Now find the new personality */
3503 if (len == 0 || len >= sizeof(clevel))
3504 return -EINVAL;
3505 strncpy(clevel, buf, len);
3506 if (clevel[len-1] == '\n')
3507 len--;
3508 clevel[len] = 0;
3509 if (strict_strtol(clevel, 10, &level))
3510 level = LEVEL_NONE;
3512 if (request_module("md-%s", clevel) != 0)
3513 request_module("md-level-%s", clevel);
3514 spin_lock(&pers_lock);
3515 pers = find_pers(level, clevel);
3516 if (!pers || !try_module_get(pers->owner)) {
3517 spin_unlock(&pers_lock);
3518 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3519 return -EINVAL;
3521 spin_unlock(&pers_lock);
3523 if (pers == mddev->pers) {
3524 /* Nothing to do! */
3525 module_put(pers->owner);
3526 return rv;
3528 if (!pers->takeover) {
3529 module_put(pers->owner);
3530 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3531 mdname(mddev), clevel);
3532 return -EINVAL;
3535 rdev_for_each(rdev, mddev)
3536 rdev->new_raid_disk = rdev->raid_disk;
3538 /* ->takeover must set new_* and/or delta_disks
3539 * if it succeeds, and may set them when it fails.
3541 priv = pers->takeover(mddev);
3542 if (IS_ERR(priv)) {
3543 mddev->new_level = mddev->level;
3544 mddev->new_layout = mddev->layout;
3545 mddev->new_chunk_sectors = mddev->chunk_sectors;
3546 mddev->raid_disks -= mddev->delta_disks;
3547 mddev->delta_disks = 0;
3548 mddev->reshape_backwards = 0;
3549 module_put(pers->owner);
3550 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3551 mdname(mddev), clevel);
3552 return PTR_ERR(priv);
3555 /* Looks like we have a winner */
3556 mddev_suspend(mddev);
3557 mddev->pers->stop(mddev);
3559 if (mddev->pers->sync_request == NULL &&
3560 pers->sync_request != NULL) {
3561 /* need to add the md_redundancy_group */
3562 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3563 printk(KERN_WARNING
3564 "md: cannot register extra attributes for %s\n",
3565 mdname(mddev));
3566 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3568 if (mddev->pers->sync_request != NULL &&
3569 pers->sync_request == NULL) {
3570 /* need to remove the md_redundancy_group */
3571 if (mddev->to_remove == NULL)
3572 mddev->to_remove = &md_redundancy_group;
3575 if (mddev->pers->sync_request == NULL &&
3576 mddev->external) {
3577 /* We are converting from a no-redundancy array
3578 * to a redundancy array and metadata is managed
3579 * externally so we need to be sure that writes
3580 * won't block due to a need to transition
3581 * clean->dirty
3582 * until external management is started.
3584 mddev->in_sync = 0;
3585 mddev->safemode_delay = 0;
3586 mddev->safemode = 0;
3589 rdev_for_each(rdev, mddev) {
3590 if (rdev->raid_disk < 0)
3591 continue;
3592 if (rdev->new_raid_disk >= mddev->raid_disks)
3593 rdev->new_raid_disk = -1;
3594 if (rdev->new_raid_disk == rdev->raid_disk)
3595 continue;
3596 sysfs_unlink_rdev(mddev, rdev);
3598 rdev_for_each(rdev, mddev) {
3599 if (rdev->raid_disk < 0)
3600 continue;
3601 if (rdev->new_raid_disk == rdev->raid_disk)
3602 continue;
3603 rdev->raid_disk = rdev->new_raid_disk;
3604 if (rdev->raid_disk < 0)
3605 clear_bit(In_sync, &rdev->flags);
3606 else {
3607 if (sysfs_link_rdev(mddev, rdev))
3608 printk(KERN_WARNING "md: cannot register rd%d"
3609 " for %s after level change\n",
3610 rdev->raid_disk, mdname(mddev));
3614 module_put(mddev->pers->owner);
3615 mddev->pers = pers;
3616 mddev->private = priv;
3617 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3618 mddev->level = mddev->new_level;
3619 mddev->layout = mddev->new_layout;
3620 mddev->chunk_sectors = mddev->new_chunk_sectors;
3621 mddev->delta_disks = 0;
3622 mddev->reshape_backwards = 0;
3623 mddev->degraded = 0;
3624 if (mddev->pers->sync_request == NULL) {
3625 /* this is now an array without redundancy, so
3626 * it must always be in_sync
3628 mddev->in_sync = 1;
3629 del_timer_sync(&mddev->safemode_timer);
3631 pers->run(mddev);
3632 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3633 mddev_resume(mddev);
3634 sysfs_notify(&mddev->kobj, NULL, "level");
3635 md_new_event(mddev);
3636 return rv;
3639 static struct md_sysfs_entry md_level =
3640 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3643 static ssize_t
3644 layout_show(struct mddev *mddev, char *page)
3646 /* just a number, not meaningful for all levels */
3647 if (mddev->reshape_position != MaxSector &&
3648 mddev->layout != mddev->new_layout)
3649 return sprintf(page, "%d (%d)\n",
3650 mddev->new_layout, mddev->layout);
3651 return sprintf(page, "%d\n", mddev->layout);
3654 static ssize_t
3655 layout_store(struct mddev *mddev, const char *buf, size_t len)
3657 char *e;
3658 unsigned long n = simple_strtoul(buf, &e, 10);
3660 if (!*buf || (*e && *e != '\n'))
3661 return -EINVAL;
3663 if (mddev->pers) {
3664 int err;
3665 if (mddev->pers->check_reshape == NULL)
3666 return -EBUSY;
3667 mddev->new_layout = n;
3668 err = mddev->pers->check_reshape(mddev);
3669 if (err) {
3670 mddev->new_layout = mddev->layout;
3671 return err;
3673 } else {
3674 mddev->new_layout = n;
3675 if (mddev->reshape_position == MaxSector)
3676 mddev->layout = n;
3678 return len;
3680 static struct md_sysfs_entry md_layout =
3681 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3684 static ssize_t
3685 raid_disks_show(struct mddev *mddev, char *page)
3687 if (mddev->raid_disks == 0)
3688 return 0;
3689 if (mddev->reshape_position != MaxSector &&
3690 mddev->delta_disks != 0)
3691 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3692 mddev->raid_disks - mddev->delta_disks);
3693 return sprintf(page, "%d\n", mddev->raid_disks);
3696 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3698 static ssize_t
3699 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3701 char *e;
3702 int rv = 0;
3703 unsigned long n = simple_strtoul(buf, &e, 10);
3705 if (!*buf || (*e && *e != '\n'))
3706 return -EINVAL;
3708 if (mddev->pers)
3709 rv = update_raid_disks(mddev, n);
3710 else if (mddev->reshape_position != MaxSector) {
3711 struct md_rdev *rdev;
3712 int olddisks = mddev->raid_disks - mddev->delta_disks;
3714 rdev_for_each(rdev, mddev) {
3715 if (olddisks < n &&
3716 rdev->data_offset < rdev->new_data_offset)
3717 return -EINVAL;
3718 if (olddisks > n &&
3719 rdev->data_offset > rdev->new_data_offset)
3720 return -EINVAL;
3722 mddev->delta_disks = n - olddisks;
3723 mddev->raid_disks = n;
3724 mddev->reshape_backwards = (mddev->delta_disks < 0);
3725 } else
3726 mddev->raid_disks = n;
3727 return rv ? rv : len;
3729 static struct md_sysfs_entry md_raid_disks =
3730 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3732 static ssize_t
3733 chunk_size_show(struct mddev *mddev, char *page)
3735 if (mddev->reshape_position != MaxSector &&
3736 mddev->chunk_sectors != mddev->new_chunk_sectors)
3737 return sprintf(page, "%d (%d)\n",
3738 mddev->new_chunk_sectors << 9,
3739 mddev->chunk_sectors << 9);
3740 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3743 static ssize_t
3744 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3746 char *e;
3747 unsigned long n = simple_strtoul(buf, &e, 10);
3749 if (!*buf || (*e && *e != '\n'))
3750 return -EINVAL;
3752 if (mddev->pers) {
3753 int err;
3754 if (mddev->pers->check_reshape == NULL)
3755 return -EBUSY;
3756 mddev->new_chunk_sectors = n >> 9;
3757 err = mddev->pers->check_reshape(mddev);
3758 if (err) {
3759 mddev->new_chunk_sectors = mddev->chunk_sectors;
3760 return err;
3762 } else {
3763 mddev->new_chunk_sectors = n >> 9;
3764 if (mddev->reshape_position == MaxSector)
3765 mddev->chunk_sectors = n >> 9;
3767 return len;
3769 static struct md_sysfs_entry md_chunk_size =
3770 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3772 static ssize_t
3773 resync_start_show(struct mddev *mddev, char *page)
3775 if (mddev->recovery_cp == MaxSector)
3776 return sprintf(page, "none\n");
3777 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3780 static ssize_t
3781 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3783 char *e;
3784 unsigned long long n = simple_strtoull(buf, &e, 10);
3786 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3787 return -EBUSY;
3788 if (cmd_match(buf, "none"))
3789 n = MaxSector;
3790 else if (!*buf || (*e && *e != '\n'))
3791 return -EINVAL;
3793 mddev->recovery_cp = n;
3794 if (mddev->pers)
3795 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3796 return len;
3798 static struct md_sysfs_entry md_resync_start =
3799 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3802 * The array state can be:
3804 * clear
3805 * No devices, no size, no level
3806 * Equivalent to STOP_ARRAY ioctl
3807 * inactive
3808 * May have some settings, but array is not active
3809 * all IO results in error
3810 * When written, doesn't tear down array, but just stops it
3811 * suspended (not supported yet)
3812 * All IO requests will block. The array can be reconfigured.
3813 * Writing this, if accepted, will block until array is quiescent
3814 * readonly
3815 * no resync can happen. no superblocks get written.
3816 * write requests fail
3817 * read-auto
3818 * like readonly, but behaves like 'clean' on a write request.
3820 * clean - no pending writes, but otherwise active.
3821 * When written to inactive array, starts without resync
3822 * If a write request arrives then
3823 * if metadata is known, mark 'dirty' and switch to 'active'.
3824 * if not known, block and switch to write-pending
3825 * If written to an active array that has pending writes, then fails.
3826 * active
3827 * fully active: IO and resync can be happening.
3828 * When written to inactive array, starts with resync
3830 * write-pending
3831 * clean, but writes are blocked waiting for 'active' to be written.
3833 * active-idle
3834 * like active, but no writes have been seen for a while (100msec).
3837 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3838 write_pending, active_idle, bad_word};
3839 static char *array_states[] = {
3840 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3841 "write-pending", "active-idle", NULL };
3843 static int match_word(const char *word, char **list)
3845 int n;
3846 for (n=0; list[n]; n++)
3847 if (cmd_match(word, list[n]))
3848 break;
3849 return n;
3852 static ssize_t
3853 array_state_show(struct mddev *mddev, char *page)
3855 enum array_state st = inactive;
3857 if (mddev->pers)
3858 switch(mddev->ro) {
3859 case 1:
3860 st = readonly;
3861 break;
3862 case 2:
3863 st = read_auto;
3864 break;
3865 case 0:
3866 if (mddev->in_sync)
3867 st = clean;
3868 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3869 st = write_pending;
3870 else if (mddev->safemode)
3871 st = active_idle;
3872 else
3873 st = active;
3875 else {
3876 if (list_empty(&mddev->disks) &&
3877 mddev->raid_disks == 0 &&
3878 mddev->dev_sectors == 0)
3879 st = clear;
3880 else
3881 st = inactive;
3883 return sprintf(page, "%s\n", array_states[st]);
3886 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3887 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3888 static int do_md_run(struct mddev * mddev);
3889 static int restart_array(struct mddev *mddev);
3891 static ssize_t
3892 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3894 int err = -EINVAL;
3895 enum array_state st = match_word(buf, array_states);
3896 switch(st) {
3897 case bad_word:
3898 break;
3899 case clear:
3900 /* stopping an active array */
3901 err = do_md_stop(mddev, 0, NULL);
3902 break;
3903 case inactive:
3904 /* stopping an active array */
3905 if (mddev->pers)
3906 err = do_md_stop(mddev, 2, NULL);
3907 else
3908 err = 0; /* already inactive */
3909 break;
3910 case suspended:
3911 break; /* not supported yet */
3912 case readonly:
3913 if (mddev->pers)
3914 err = md_set_readonly(mddev, NULL);
3915 else {
3916 mddev->ro = 1;
3917 set_disk_ro(mddev->gendisk, 1);
3918 err = do_md_run(mddev);
3920 break;
3921 case read_auto:
3922 if (mddev->pers) {
3923 if (mddev->ro == 0)
3924 err = md_set_readonly(mddev, NULL);
3925 else if (mddev->ro == 1)
3926 err = restart_array(mddev);
3927 if (err == 0) {
3928 mddev->ro = 2;
3929 set_disk_ro(mddev->gendisk, 0);
3931 } else {
3932 mddev->ro = 2;
3933 err = do_md_run(mddev);
3935 break;
3936 case clean:
3937 if (mddev->pers) {
3938 restart_array(mddev);
3939 spin_lock_irq(&mddev->write_lock);
3940 if (atomic_read(&mddev->writes_pending) == 0) {
3941 if (mddev->in_sync == 0) {
3942 mddev->in_sync = 1;
3943 if (mddev->safemode == 1)
3944 mddev->safemode = 0;
3945 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3947 err = 0;
3948 } else
3949 err = -EBUSY;
3950 spin_unlock_irq(&mddev->write_lock);
3951 } else
3952 err = -EINVAL;
3953 break;
3954 case active:
3955 if (mddev->pers) {
3956 restart_array(mddev);
3957 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3958 wake_up(&mddev->sb_wait);
3959 err = 0;
3960 } else {
3961 mddev->ro = 0;
3962 set_disk_ro(mddev->gendisk, 0);
3963 err = do_md_run(mddev);
3965 break;
3966 case write_pending:
3967 case active_idle:
3968 /* these cannot be set */
3969 break;
3971 if (err)
3972 return err;
3973 else {
3974 if (mddev->hold_active == UNTIL_IOCTL)
3975 mddev->hold_active = 0;
3976 sysfs_notify_dirent_safe(mddev->sysfs_state);
3977 return len;
3980 static struct md_sysfs_entry md_array_state =
3981 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3983 static ssize_t
3984 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3985 return sprintf(page, "%d\n",
3986 atomic_read(&mddev->max_corr_read_errors));
3989 static ssize_t
3990 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3992 char *e;
3993 unsigned long n = simple_strtoul(buf, &e, 10);
3995 if (*buf && (*e == 0 || *e == '\n')) {
3996 atomic_set(&mddev->max_corr_read_errors, n);
3997 return len;
3999 return -EINVAL;
4002 static struct md_sysfs_entry max_corr_read_errors =
4003 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4004 max_corrected_read_errors_store);
4006 static ssize_t
4007 null_show(struct mddev *mddev, char *page)
4009 return -EINVAL;
4012 static ssize_t
4013 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4015 /* buf must be %d:%d\n? giving major and minor numbers */
4016 /* The new device is added to the array.
4017 * If the array has a persistent superblock, we read the
4018 * superblock to initialise info and check validity.
4019 * Otherwise, only checking done is that in bind_rdev_to_array,
4020 * which mainly checks size.
4022 char *e;
4023 int major = simple_strtoul(buf, &e, 10);
4024 int minor;
4025 dev_t dev;
4026 struct md_rdev *rdev;
4027 int err;
4029 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4030 return -EINVAL;
4031 minor = simple_strtoul(e+1, &e, 10);
4032 if (*e && *e != '\n')
4033 return -EINVAL;
4034 dev = MKDEV(major, minor);
4035 if (major != MAJOR(dev) ||
4036 minor != MINOR(dev))
4037 return -EOVERFLOW;
4040 if (mddev->persistent) {
4041 rdev = md_import_device(dev, mddev->major_version,
4042 mddev->minor_version);
4043 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4044 struct md_rdev *rdev0
4045 = list_entry(mddev->disks.next,
4046 struct md_rdev, same_set);
4047 err = super_types[mddev->major_version]
4048 .load_super(rdev, rdev0, mddev->minor_version);
4049 if (err < 0)
4050 goto out;
4052 } else if (mddev->external)
4053 rdev = md_import_device(dev, -2, -1);
4054 else
4055 rdev = md_import_device(dev, -1, -1);
4057 if (IS_ERR(rdev))
4058 return PTR_ERR(rdev);
4059 err = bind_rdev_to_array(rdev, mddev);
4060 out:
4061 if (err)
4062 export_rdev(rdev);
4063 return err ? err : len;
4066 static struct md_sysfs_entry md_new_device =
4067 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4069 static ssize_t
4070 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4072 char *end;
4073 unsigned long chunk, end_chunk;
4075 if (!mddev->bitmap)
4076 goto out;
4077 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4078 while (*buf) {
4079 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4080 if (buf == end) break;
4081 if (*end == '-') { /* range */
4082 buf = end + 1;
4083 end_chunk = simple_strtoul(buf, &end, 0);
4084 if (buf == end) break;
4086 if (*end && !isspace(*end)) break;
4087 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4088 buf = skip_spaces(end);
4090 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4091 out:
4092 return len;
4095 static struct md_sysfs_entry md_bitmap =
4096 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4098 static ssize_t
4099 size_show(struct mddev *mddev, char *page)
4101 return sprintf(page, "%llu\n",
4102 (unsigned long long)mddev->dev_sectors / 2);
4105 static int update_size(struct mddev *mddev, sector_t num_sectors);
4107 static ssize_t
4108 size_store(struct mddev *mddev, const char *buf, size_t len)
4110 /* If array is inactive, we can reduce the component size, but
4111 * not increase it (except from 0).
4112 * If array is active, we can try an on-line resize
4114 sector_t sectors;
4115 int err = strict_blocks_to_sectors(buf, &sectors);
4117 if (err < 0)
4118 return err;
4119 if (mddev->pers) {
4120 err = update_size(mddev, sectors);
4121 md_update_sb(mddev, 1);
4122 } else {
4123 if (mddev->dev_sectors == 0 ||
4124 mddev->dev_sectors > sectors)
4125 mddev->dev_sectors = sectors;
4126 else
4127 err = -ENOSPC;
4129 return err ? err : len;
4132 static struct md_sysfs_entry md_size =
4133 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4136 /* Metadata version.
4137 * This is one of
4138 * 'none' for arrays with no metadata (good luck...)
4139 * 'external' for arrays with externally managed metadata,
4140 * or N.M for internally known formats
4142 static ssize_t
4143 metadata_show(struct mddev *mddev, char *page)
4145 if (mddev->persistent)
4146 return sprintf(page, "%d.%d\n",
4147 mddev->major_version, mddev->minor_version);
4148 else if (mddev->external)
4149 return sprintf(page, "external:%s\n", mddev->metadata_type);
4150 else
4151 return sprintf(page, "none\n");
4154 static ssize_t
4155 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4157 int major, minor;
4158 char *e;
4159 /* Changing the details of 'external' metadata is
4160 * always permitted. Otherwise there must be
4161 * no devices attached to the array.
4163 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4165 else if (!list_empty(&mddev->disks))
4166 return -EBUSY;
4168 if (cmd_match(buf, "none")) {
4169 mddev->persistent = 0;
4170 mddev->external = 0;
4171 mddev->major_version = 0;
4172 mddev->minor_version = 90;
4173 return len;
4175 if (strncmp(buf, "external:", 9) == 0) {
4176 size_t namelen = len-9;
4177 if (namelen >= sizeof(mddev->metadata_type))
4178 namelen = sizeof(mddev->metadata_type)-1;
4179 strncpy(mddev->metadata_type, buf+9, namelen);
4180 mddev->metadata_type[namelen] = 0;
4181 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4182 mddev->metadata_type[--namelen] = 0;
4183 mddev->persistent = 0;
4184 mddev->external = 1;
4185 mddev->major_version = 0;
4186 mddev->minor_version = 90;
4187 return len;
4189 major = simple_strtoul(buf, &e, 10);
4190 if (e==buf || *e != '.')
4191 return -EINVAL;
4192 buf = e+1;
4193 minor = simple_strtoul(buf, &e, 10);
4194 if (e==buf || (*e && *e != '\n') )
4195 return -EINVAL;
4196 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4197 return -ENOENT;
4198 mddev->major_version = major;
4199 mddev->minor_version = minor;
4200 mddev->persistent = 1;
4201 mddev->external = 0;
4202 return len;
4205 static struct md_sysfs_entry md_metadata =
4206 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4208 static ssize_t
4209 action_show(struct mddev *mddev, char *page)
4211 char *type = "idle";
4212 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4213 type = "frozen";
4214 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4215 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4216 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4217 type = "reshape";
4218 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4219 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4220 type = "resync";
4221 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4222 type = "check";
4223 else
4224 type = "repair";
4225 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4226 type = "recover";
4228 return sprintf(page, "%s\n", type);
4231 static ssize_t
4232 action_store(struct mddev *mddev, const char *page, size_t len)
4234 if (!mddev->pers || !mddev->pers->sync_request)
4235 return -EINVAL;
4237 if (cmd_match(page, "frozen"))
4238 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4239 else
4240 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4242 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4243 if (mddev->sync_thread) {
4244 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4245 md_reap_sync_thread(mddev);
4247 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4248 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4249 return -EBUSY;
4250 else if (cmd_match(page, "resync"))
4251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4252 else if (cmd_match(page, "recover")) {
4253 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4255 } else if (cmd_match(page, "reshape")) {
4256 int err;
4257 if (mddev->pers->start_reshape == NULL)
4258 return -EINVAL;
4259 err = mddev->pers->start_reshape(mddev);
4260 if (err)
4261 return err;
4262 sysfs_notify(&mddev->kobj, NULL, "degraded");
4263 } else {
4264 if (cmd_match(page, "check"))
4265 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4266 else if (!cmd_match(page, "repair"))
4267 return -EINVAL;
4268 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4269 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4271 if (mddev->ro == 2) {
4272 /* A write to sync_action is enough to justify
4273 * canceling read-auto mode
4275 mddev->ro = 0;
4276 md_wakeup_thread(mddev->sync_thread);
4278 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4279 md_wakeup_thread(mddev->thread);
4280 sysfs_notify_dirent_safe(mddev->sysfs_action);
4281 return len;
4284 static ssize_t
4285 mismatch_cnt_show(struct mddev *mddev, char *page)
4287 return sprintf(page, "%llu\n",
4288 (unsigned long long)
4289 atomic64_read(&mddev->resync_mismatches));
4292 static struct md_sysfs_entry md_scan_mode =
4293 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4296 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4298 static ssize_t
4299 sync_min_show(struct mddev *mddev, char *page)
4301 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4302 mddev->sync_speed_min ? "local": "system");
4305 static ssize_t
4306 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4308 int min;
4309 char *e;
4310 if (strncmp(buf, "system", 6)==0) {
4311 mddev->sync_speed_min = 0;
4312 return len;
4314 min = simple_strtoul(buf, &e, 10);
4315 if (buf == e || (*e && *e != '\n') || min <= 0)
4316 return -EINVAL;
4317 mddev->sync_speed_min = min;
4318 return len;
4321 static struct md_sysfs_entry md_sync_min =
4322 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4324 static ssize_t
4325 sync_max_show(struct mddev *mddev, char *page)
4327 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4328 mddev->sync_speed_max ? "local": "system");
4331 static ssize_t
4332 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4334 int max;
4335 char *e;
4336 if (strncmp(buf, "system", 6)==0) {
4337 mddev->sync_speed_max = 0;
4338 return len;
4340 max = simple_strtoul(buf, &e, 10);
4341 if (buf == e || (*e && *e != '\n') || max <= 0)
4342 return -EINVAL;
4343 mddev->sync_speed_max = max;
4344 return len;
4347 static struct md_sysfs_entry md_sync_max =
4348 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4350 static ssize_t
4351 degraded_show(struct mddev *mddev, char *page)
4353 return sprintf(page, "%d\n", mddev->degraded);
4355 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4357 static ssize_t
4358 sync_force_parallel_show(struct mddev *mddev, char *page)
4360 return sprintf(page, "%d\n", mddev->parallel_resync);
4363 static ssize_t
4364 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4366 long n;
4368 if (strict_strtol(buf, 10, &n))
4369 return -EINVAL;
4371 if (n != 0 && n != 1)
4372 return -EINVAL;
4374 mddev->parallel_resync = n;
4376 if (mddev->sync_thread)
4377 wake_up(&resync_wait);
4379 return len;
4382 /* force parallel resync, even with shared block devices */
4383 static struct md_sysfs_entry md_sync_force_parallel =
4384 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4385 sync_force_parallel_show, sync_force_parallel_store);
4387 static ssize_t
4388 sync_speed_show(struct mddev *mddev, char *page)
4390 unsigned long resync, dt, db;
4391 if (mddev->curr_resync == 0)
4392 return sprintf(page, "none\n");
4393 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4394 dt = (jiffies - mddev->resync_mark) / HZ;
4395 if (!dt) dt++;
4396 db = resync - mddev->resync_mark_cnt;
4397 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4400 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4402 static ssize_t
4403 sync_completed_show(struct mddev *mddev, char *page)
4405 unsigned long long max_sectors, resync;
4407 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4408 return sprintf(page, "none\n");
4410 if (mddev->curr_resync == 1 ||
4411 mddev->curr_resync == 2)
4412 return sprintf(page, "delayed\n");
4414 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4415 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4416 max_sectors = mddev->resync_max_sectors;
4417 else
4418 max_sectors = mddev->dev_sectors;
4420 resync = mddev->curr_resync_completed;
4421 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4424 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4426 static ssize_t
4427 min_sync_show(struct mddev *mddev, char *page)
4429 return sprintf(page, "%llu\n",
4430 (unsigned long long)mddev->resync_min);
4432 static ssize_t
4433 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4435 unsigned long long min;
4436 if (strict_strtoull(buf, 10, &min))
4437 return -EINVAL;
4438 if (min > mddev->resync_max)
4439 return -EINVAL;
4440 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4441 return -EBUSY;
4443 /* Must be a multiple of chunk_size */
4444 if (mddev->chunk_sectors) {
4445 sector_t temp = min;
4446 if (sector_div(temp, mddev->chunk_sectors))
4447 return -EINVAL;
4449 mddev->resync_min = min;
4451 return len;
4454 static struct md_sysfs_entry md_min_sync =
4455 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4457 static ssize_t
4458 max_sync_show(struct mddev *mddev, char *page)
4460 if (mddev->resync_max == MaxSector)
4461 return sprintf(page, "max\n");
4462 else
4463 return sprintf(page, "%llu\n",
4464 (unsigned long long)mddev->resync_max);
4466 static ssize_t
4467 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4469 if (strncmp(buf, "max", 3) == 0)
4470 mddev->resync_max = MaxSector;
4471 else {
4472 unsigned long long max;
4473 if (strict_strtoull(buf, 10, &max))
4474 return -EINVAL;
4475 if (max < mddev->resync_min)
4476 return -EINVAL;
4477 if (max < mddev->resync_max &&
4478 mddev->ro == 0 &&
4479 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4480 return -EBUSY;
4482 /* Must be a multiple of chunk_size */
4483 if (mddev->chunk_sectors) {
4484 sector_t temp = max;
4485 if (sector_div(temp, mddev->chunk_sectors))
4486 return -EINVAL;
4488 mddev->resync_max = max;
4490 wake_up(&mddev->recovery_wait);
4491 return len;
4494 static struct md_sysfs_entry md_max_sync =
4495 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4497 static ssize_t
4498 suspend_lo_show(struct mddev *mddev, char *page)
4500 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4503 static ssize_t
4504 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4506 char *e;
4507 unsigned long long new = simple_strtoull(buf, &e, 10);
4508 unsigned long long old = mddev->suspend_lo;
4510 if (mddev->pers == NULL ||
4511 mddev->pers->quiesce == NULL)
4512 return -EINVAL;
4513 if (buf == e || (*e && *e != '\n'))
4514 return -EINVAL;
4516 mddev->suspend_lo = new;
4517 if (new >= old)
4518 /* Shrinking suspended region */
4519 mddev->pers->quiesce(mddev, 2);
4520 else {
4521 /* Expanding suspended region - need to wait */
4522 mddev->pers->quiesce(mddev, 1);
4523 mddev->pers->quiesce(mddev, 0);
4525 return len;
4527 static struct md_sysfs_entry md_suspend_lo =
4528 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4531 static ssize_t
4532 suspend_hi_show(struct mddev *mddev, char *page)
4534 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4537 static ssize_t
4538 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4540 char *e;
4541 unsigned long long new = simple_strtoull(buf, &e, 10);
4542 unsigned long long old = mddev->suspend_hi;
4544 if (mddev->pers == NULL ||
4545 mddev->pers->quiesce == NULL)
4546 return -EINVAL;
4547 if (buf == e || (*e && *e != '\n'))
4548 return -EINVAL;
4550 mddev->suspend_hi = new;
4551 if (new <= old)
4552 /* Shrinking suspended region */
4553 mddev->pers->quiesce(mddev, 2);
4554 else {
4555 /* Expanding suspended region - need to wait */
4556 mddev->pers->quiesce(mddev, 1);
4557 mddev->pers->quiesce(mddev, 0);
4559 return len;
4561 static struct md_sysfs_entry md_suspend_hi =
4562 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4564 static ssize_t
4565 reshape_position_show(struct mddev *mddev, char *page)
4567 if (mddev->reshape_position != MaxSector)
4568 return sprintf(page, "%llu\n",
4569 (unsigned long long)mddev->reshape_position);
4570 strcpy(page, "none\n");
4571 return 5;
4574 static ssize_t
4575 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4577 struct md_rdev *rdev;
4578 char *e;
4579 unsigned long long new = simple_strtoull(buf, &e, 10);
4580 if (mddev->pers)
4581 return -EBUSY;
4582 if (buf == e || (*e && *e != '\n'))
4583 return -EINVAL;
4584 mddev->reshape_position = new;
4585 mddev->delta_disks = 0;
4586 mddev->reshape_backwards = 0;
4587 mddev->new_level = mddev->level;
4588 mddev->new_layout = mddev->layout;
4589 mddev->new_chunk_sectors = mddev->chunk_sectors;
4590 rdev_for_each(rdev, mddev)
4591 rdev->new_data_offset = rdev->data_offset;
4592 return len;
4595 static struct md_sysfs_entry md_reshape_position =
4596 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4597 reshape_position_store);
4599 static ssize_t
4600 reshape_direction_show(struct mddev *mddev, char *page)
4602 return sprintf(page, "%s\n",
4603 mddev->reshape_backwards ? "backwards" : "forwards");
4606 static ssize_t
4607 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4609 int backwards = 0;
4610 if (cmd_match(buf, "forwards"))
4611 backwards = 0;
4612 else if (cmd_match(buf, "backwards"))
4613 backwards = 1;
4614 else
4615 return -EINVAL;
4616 if (mddev->reshape_backwards == backwards)
4617 return len;
4619 /* check if we are allowed to change */
4620 if (mddev->delta_disks)
4621 return -EBUSY;
4623 if (mddev->persistent &&
4624 mddev->major_version == 0)
4625 return -EINVAL;
4627 mddev->reshape_backwards = backwards;
4628 return len;
4631 static struct md_sysfs_entry md_reshape_direction =
4632 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4633 reshape_direction_store);
4635 static ssize_t
4636 array_size_show(struct mddev *mddev, char *page)
4638 if (mddev->external_size)
4639 return sprintf(page, "%llu\n",
4640 (unsigned long long)mddev->array_sectors/2);
4641 else
4642 return sprintf(page, "default\n");
4645 static ssize_t
4646 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4648 sector_t sectors;
4650 if (strncmp(buf, "default", 7) == 0) {
4651 if (mddev->pers)
4652 sectors = mddev->pers->size(mddev, 0, 0);
4653 else
4654 sectors = mddev->array_sectors;
4656 mddev->external_size = 0;
4657 } else {
4658 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4659 return -EINVAL;
4660 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4661 return -E2BIG;
4663 mddev->external_size = 1;
4666 mddev->array_sectors = sectors;
4667 if (mddev->pers) {
4668 set_capacity(mddev->gendisk, mddev->array_sectors);
4669 revalidate_disk(mddev->gendisk);
4671 return len;
4674 static struct md_sysfs_entry md_array_size =
4675 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4676 array_size_store);
4678 static struct attribute *md_default_attrs[] = {
4679 &md_level.attr,
4680 &md_layout.attr,
4681 &md_raid_disks.attr,
4682 &md_chunk_size.attr,
4683 &md_size.attr,
4684 &md_resync_start.attr,
4685 &md_metadata.attr,
4686 &md_new_device.attr,
4687 &md_safe_delay.attr,
4688 &md_array_state.attr,
4689 &md_reshape_position.attr,
4690 &md_reshape_direction.attr,
4691 &md_array_size.attr,
4692 &max_corr_read_errors.attr,
4693 NULL,
4696 static struct attribute *md_redundancy_attrs[] = {
4697 &md_scan_mode.attr,
4698 &md_mismatches.attr,
4699 &md_sync_min.attr,
4700 &md_sync_max.attr,
4701 &md_sync_speed.attr,
4702 &md_sync_force_parallel.attr,
4703 &md_sync_completed.attr,
4704 &md_min_sync.attr,
4705 &md_max_sync.attr,
4706 &md_suspend_lo.attr,
4707 &md_suspend_hi.attr,
4708 &md_bitmap.attr,
4709 &md_degraded.attr,
4710 NULL,
4712 static struct attribute_group md_redundancy_group = {
4713 .name = NULL,
4714 .attrs = md_redundancy_attrs,
4718 static ssize_t
4719 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4721 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4722 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4723 ssize_t rv;
4725 if (!entry->show)
4726 return -EIO;
4727 spin_lock(&all_mddevs_lock);
4728 if (list_empty(&mddev->all_mddevs)) {
4729 spin_unlock(&all_mddevs_lock);
4730 return -EBUSY;
4732 mddev_get(mddev);
4733 spin_unlock(&all_mddevs_lock);
4735 rv = mddev_lock(mddev);
4736 if (!rv) {
4737 rv = entry->show(mddev, page);
4738 mddev_unlock(mddev);
4740 mddev_put(mddev);
4741 return rv;
4744 static ssize_t
4745 md_attr_store(struct kobject *kobj, struct attribute *attr,
4746 const char *page, size_t length)
4748 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4749 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4750 ssize_t rv;
4752 if (!entry->store)
4753 return -EIO;
4754 if (!capable(CAP_SYS_ADMIN))
4755 return -EACCES;
4756 spin_lock(&all_mddevs_lock);
4757 if (list_empty(&mddev->all_mddevs)) {
4758 spin_unlock(&all_mddevs_lock);
4759 return -EBUSY;
4761 mddev_get(mddev);
4762 spin_unlock(&all_mddevs_lock);
4763 if (entry->store == new_dev_store)
4764 flush_workqueue(md_misc_wq);
4765 rv = mddev_lock(mddev);
4766 if (!rv) {
4767 rv = entry->store(mddev, page, length);
4768 mddev_unlock(mddev);
4770 mddev_put(mddev);
4771 return rv;
4774 static void md_free(struct kobject *ko)
4776 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4778 if (mddev->sysfs_state)
4779 sysfs_put(mddev->sysfs_state);
4781 if (mddev->gendisk) {
4782 del_gendisk(mddev->gendisk);
4783 put_disk(mddev->gendisk);
4785 if (mddev->queue)
4786 blk_cleanup_queue(mddev->queue);
4788 kfree(mddev);
4791 static const struct sysfs_ops md_sysfs_ops = {
4792 .show = md_attr_show,
4793 .store = md_attr_store,
4795 static struct kobj_type md_ktype = {
4796 .release = md_free,
4797 .sysfs_ops = &md_sysfs_ops,
4798 .default_attrs = md_default_attrs,
4801 int mdp_major = 0;
4803 static void mddev_delayed_delete(struct work_struct *ws)
4805 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4807 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4808 kobject_del(&mddev->kobj);
4809 kobject_put(&mddev->kobj);
4812 static int md_alloc(dev_t dev, char *name)
4814 static DEFINE_MUTEX(disks_mutex);
4815 struct mddev *mddev = mddev_find(dev);
4816 struct gendisk *disk;
4817 int partitioned;
4818 int shift;
4819 int unit;
4820 int error;
4822 if (!mddev)
4823 return -ENODEV;
4825 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4826 shift = partitioned ? MdpMinorShift : 0;
4827 unit = MINOR(mddev->unit) >> shift;
4829 /* wait for any previous instance of this device to be
4830 * completely removed (mddev_delayed_delete).
4832 flush_workqueue(md_misc_wq);
4834 mutex_lock(&disks_mutex);
4835 error = -EEXIST;
4836 if (mddev->gendisk)
4837 goto abort;
4839 if (name) {
4840 /* Need to ensure that 'name' is not a duplicate.
4842 struct mddev *mddev2;
4843 spin_lock(&all_mddevs_lock);
4845 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4846 if (mddev2->gendisk &&
4847 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4848 spin_unlock(&all_mddevs_lock);
4849 goto abort;
4851 spin_unlock(&all_mddevs_lock);
4854 error = -ENOMEM;
4855 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4856 if (!mddev->queue)
4857 goto abort;
4858 mddev->queue->queuedata = mddev;
4860 blk_queue_make_request(mddev->queue, md_make_request);
4861 blk_set_stacking_limits(&mddev->queue->limits);
4863 disk = alloc_disk(1 << shift);
4864 if (!disk) {
4865 blk_cleanup_queue(mddev->queue);
4866 mddev->queue = NULL;
4867 goto abort;
4869 disk->major = MAJOR(mddev->unit);
4870 disk->first_minor = unit << shift;
4871 if (name)
4872 strcpy(disk->disk_name, name);
4873 else if (partitioned)
4874 sprintf(disk->disk_name, "md_d%d", unit);
4875 else
4876 sprintf(disk->disk_name, "md%d", unit);
4877 disk->fops = &md_fops;
4878 disk->private_data = mddev;
4879 disk->queue = mddev->queue;
4880 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4881 /* Allow extended partitions. This makes the
4882 * 'mdp' device redundant, but we can't really
4883 * remove it now.
4885 disk->flags |= GENHD_FL_EXT_DEVT;
4886 mddev->gendisk = disk;
4887 /* As soon as we call add_disk(), another thread could get
4888 * through to md_open, so make sure it doesn't get too far
4890 mutex_lock(&mddev->open_mutex);
4891 add_disk(disk);
4893 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4894 &disk_to_dev(disk)->kobj, "%s", "md");
4895 if (error) {
4896 /* This isn't possible, but as kobject_init_and_add is marked
4897 * __must_check, we must do something with the result
4899 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4900 disk->disk_name);
4901 error = 0;
4903 if (mddev->kobj.sd &&
4904 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4905 printk(KERN_DEBUG "pointless warning\n");
4906 mutex_unlock(&mddev->open_mutex);
4907 abort:
4908 mutex_unlock(&disks_mutex);
4909 if (!error && mddev->kobj.sd) {
4910 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4911 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4913 mddev_put(mddev);
4914 return error;
4917 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4919 md_alloc(dev, NULL);
4920 return NULL;
4923 static int add_named_array(const char *val, struct kernel_param *kp)
4925 /* val must be "md_*" where * is not all digits.
4926 * We allocate an array with a large free minor number, and
4927 * set the name to val. val must not already be an active name.
4929 int len = strlen(val);
4930 char buf[DISK_NAME_LEN];
4932 while (len && val[len-1] == '\n')
4933 len--;
4934 if (len >= DISK_NAME_LEN)
4935 return -E2BIG;
4936 strlcpy(buf, val, len+1);
4937 if (strncmp(buf, "md_", 3) != 0)
4938 return -EINVAL;
4939 return md_alloc(0, buf);
4942 static void md_safemode_timeout(unsigned long data)
4944 struct mddev *mddev = (struct mddev *) data;
4946 if (!atomic_read(&mddev->writes_pending)) {
4947 mddev->safemode = 1;
4948 if (mddev->external)
4949 sysfs_notify_dirent_safe(mddev->sysfs_state);
4951 md_wakeup_thread(mddev->thread);
4954 static int start_dirty_degraded;
4956 int md_run(struct mddev *mddev)
4958 int err;
4959 struct md_rdev *rdev;
4960 struct md_personality *pers;
4962 if (list_empty(&mddev->disks))
4963 /* cannot run an array with no devices.. */
4964 return -EINVAL;
4966 if (mddev->pers)
4967 return -EBUSY;
4968 /* Cannot run until previous stop completes properly */
4969 if (mddev->sysfs_active)
4970 return -EBUSY;
4973 * Analyze all RAID superblock(s)
4975 if (!mddev->raid_disks) {
4976 if (!mddev->persistent)
4977 return -EINVAL;
4978 analyze_sbs(mddev);
4981 if (mddev->level != LEVEL_NONE)
4982 request_module("md-level-%d", mddev->level);
4983 else if (mddev->clevel[0])
4984 request_module("md-%s", mddev->clevel);
4987 * Drop all container device buffers, from now on
4988 * the only valid external interface is through the md
4989 * device.
4991 rdev_for_each(rdev, mddev) {
4992 if (test_bit(Faulty, &rdev->flags))
4993 continue;
4994 sync_blockdev(rdev->bdev);
4995 invalidate_bdev(rdev->bdev);
4997 /* perform some consistency tests on the device.
4998 * We don't want the data to overlap the metadata,
4999 * Internal Bitmap issues have been handled elsewhere.
5001 if (rdev->meta_bdev) {
5002 /* Nothing to check */;
5003 } else if (rdev->data_offset < rdev->sb_start) {
5004 if (mddev->dev_sectors &&
5005 rdev->data_offset + mddev->dev_sectors
5006 > rdev->sb_start) {
5007 printk("md: %s: data overlaps metadata\n",
5008 mdname(mddev));
5009 return -EINVAL;
5011 } else {
5012 if (rdev->sb_start + rdev->sb_size/512
5013 > rdev->data_offset) {
5014 printk("md: %s: metadata overlaps data\n",
5015 mdname(mddev));
5016 return -EINVAL;
5019 sysfs_notify_dirent_safe(rdev->sysfs_state);
5022 if (mddev->bio_set == NULL)
5023 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5025 spin_lock(&pers_lock);
5026 pers = find_pers(mddev->level, mddev->clevel);
5027 if (!pers || !try_module_get(pers->owner)) {
5028 spin_unlock(&pers_lock);
5029 if (mddev->level != LEVEL_NONE)
5030 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5031 mddev->level);
5032 else
5033 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5034 mddev->clevel);
5035 return -EINVAL;
5037 mddev->pers = pers;
5038 spin_unlock(&pers_lock);
5039 if (mddev->level != pers->level) {
5040 mddev->level = pers->level;
5041 mddev->new_level = pers->level;
5043 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5045 if (mddev->reshape_position != MaxSector &&
5046 pers->start_reshape == NULL) {
5047 /* This personality cannot handle reshaping... */
5048 mddev->pers = NULL;
5049 module_put(pers->owner);
5050 return -EINVAL;
5053 if (pers->sync_request) {
5054 /* Warn if this is a potentially silly
5055 * configuration.
5057 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5058 struct md_rdev *rdev2;
5059 int warned = 0;
5061 rdev_for_each(rdev, mddev)
5062 rdev_for_each(rdev2, mddev) {
5063 if (rdev < rdev2 &&
5064 rdev->bdev->bd_contains ==
5065 rdev2->bdev->bd_contains) {
5066 printk(KERN_WARNING
5067 "%s: WARNING: %s appears to be"
5068 " on the same physical disk as"
5069 " %s.\n",
5070 mdname(mddev),
5071 bdevname(rdev->bdev,b),
5072 bdevname(rdev2->bdev,b2));
5073 warned = 1;
5077 if (warned)
5078 printk(KERN_WARNING
5079 "True protection against single-disk"
5080 " failure might be compromised.\n");
5083 mddev->recovery = 0;
5084 /* may be over-ridden by personality */
5085 mddev->resync_max_sectors = mddev->dev_sectors;
5087 mddev->ok_start_degraded = start_dirty_degraded;
5089 if (start_readonly && mddev->ro == 0)
5090 mddev->ro = 2; /* read-only, but switch on first write */
5092 err = mddev->pers->run(mddev);
5093 if (err)
5094 printk(KERN_ERR "md: pers->run() failed ...\n");
5095 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5096 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5097 " but 'external_size' not in effect?\n", __func__);
5098 printk(KERN_ERR
5099 "md: invalid array_size %llu > default size %llu\n",
5100 (unsigned long long)mddev->array_sectors / 2,
5101 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5102 err = -EINVAL;
5103 mddev->pers->stop(mddev);
5105 if (err == 0 && mddev->pers->sync_request &&
5106 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5107 err = bitmap_create(mddev);
5108 if (err) {
5109 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5110 mdname(mddev), err);
5111 mddev->pers->stop(mddev);
5114 if (err) {
5115 module_put(mddev->pers->owner);
5116 mddev->pers = NULL;
5117 bitmap_destroy(mddev);
5118 return err;
5120 if (mddev->pers->sync_request) {
5121 if (mddev->kobj.sd &&
5122 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5123 printk(KERN_WARNING
5124 "md: cannot register extra attributes for %s\n",
5125 mdname(mddev));
5126 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5127 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5128 mddev->ro = 0;
5130 atomic_set(&mddev->writes_pending,0);
5131 atomic_set(&mddev->max_corr_read_errors,
5132 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5133 mddev->safemode = 0;
5134 mddev->safemode_timer.function = md_safemode_timeout;
5135 mddev->safemode_timer.data = (unsigned long) mddev;
5136 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5137 mddev->in_sync = 1;
5138 smp_wmb();
5139 mddev->ready = 1;
5140 rdev_for_each(rdev, mddev)
5141 if (rdev->raid_disk >= 0)
5142 if (sysfs_link_rdev(mddev, rdev))
5143 /* failure here is OK */;
5145 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5147 if (mddev->flags)
5148 md_update_sb(mddev, 0);
5150 md_new_event(mddev);
5151 sysfs_notify_dirent_safe(mddev->sysfs_state);
5152 sysfs_notify_dirent_safe(mddev->sysfs_action);
5153 sysfs_notify(&mddev->kobj, NULL, "degraded");
5154 return 0;
5156 EXPORT_SYMBOL_GPL(md_run);
5158 static int do_md_run(struct mddev *mddev)
5160 int err;
5162 err = md_run(mddev);
5163 if (err)
5164 goto out;
5165 err = bitmap_load(mddev);
5166 if (err) {
5167 bitmap_destroy(mddev);
5168 goto out;
5171 md_wakeup_thread(mddev->thread);
5172 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5174 set_capacity(mddev->gendisk, mddev->array_sectors);
5175 revalidate_disk(mddev->gendisk);
5176 mddev->changed = 1;
5177 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5178 out:
5179 return err;
5182 static int restart_array(struct mddev *mddev)
5184 struct gendisk *disk = mddev->gendisk;
5186 /* Complain if it has no devices */
5187 if (list_empty(&mddev->disks))
5188 return -ENXIO;
5189 if (!mddev->pers)
5190 return -EINVAL;
5191 if (!mddev->ro)
5192 return -EBUSY;
5193 mddev->safemode = 0;
5194 mddev->ro = 0;
5195 set_disk_ro(disk, 0);
5196 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5197 mdname(mddev));
5198 /* Kick recovery or resync if necessary */
5199 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5200 md_wakeup_thread(mddev->thread);
5201 md_wakeup_thread(mddev->sync_thread);
5202 sysfs_notify_dirent_safe(mddev->sysfs_state);
5203 return 0;
5206 /* similar to deny_write_access, but accounts for our holding a reference
5207 * to the file ourselves */
5208 static int deny_bitmap_write_access(struct file * file)
5210 struct inode *inode = file->f_mapping->host;
5212 spin_lock(&inode->i_lock);
5213 if (atomic_read(&inode->i_writecount) > 1) {
5214 spin_unlock(&inode->i_lock);
5215 return -ETXTBSY;
5217 atomic_set(&inode->i_writecount, -1);
5218 spin_unlock(&inode->i_lock);
5220 return 0;
5223 void restore_bitmap_write_access(struct file *file)
5225 struct inode *inode = file->f_mapping->host;
5227 spin_lock(&inode->i_lock);
5228 atomic_set(&inode->i_writecount, 1);
5229 spin_unlock(&inode->i_lock);
5232 static void md_clean(struct mddev *mddev)
5234 mddev->array_sectors = 0;
5235 mddev->external_size = 0;
5236 mddev->dev_sectors = 0;
5237 mddev->raid_disks = 0;
5238 mddev->recovery_cp = 0;
5239 mddev->resync_min = 0;
5240 mddev->resync_max = MaxSector;
5241 mddev->reshape_position = MaxSector;
5242 mddev->external = 0;
5243 mddev->persistent = 0;
5244 mddev->level = LEVEL_NONE;
5245 mddev->clevel[0] = 0;
5246 mddev->flags = 0;
5247 mddev->ro = 0;
5248 mddev->metadata_type[0] = 0;
5249 mddev->chunk_sectors = 0;
5250 mddev->ctime = mddev->utime = 0;
5251 mddev->layout = 0;
5252 mddev->max_disks = 0;
5253 mddev->events = 0;
5254 mddev->can_decrease_events = 0;
5255 mddev->delta_disks = 0;
5256 mddev->reshape_backwards = 0;
5257 mddev->new_level = LEVEL_NONE;
5258 mddev->new_layout = 0;
5259 mddev->new_chunk_sectors = 0;
5260 mddev->curr_resync = 0;
5261 atomic64_set(&mddev->resync_mismatches, 0);
5262 mddev->suspend_lo = mddev->suspend_hi = 0;
5263 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5264 mddev->recovery = 0;
5265 mddev->in_sync = 0;
5266 mddev->changed = 0;
5267 mddev->degraded = 0;
5268 mddev->safemode = 0;
5269 mddev->merge_check_needed = 0;
5270 mddev->bitmap_info.offset = 0;
5271 mddev->bitmap_info.default_offset = 0;
5272 mddev->bitmap_info.default_space = 0;
5273 mddev->bitmap_info.chunksize = 0;
5274 mddev->bitmap_info.daemon_sleep = 0;
5275 mddev->bitmap_info.max_write_behind = 0;
5278 static void __md_stop_writes(struct mddev *mddev)
5280 if (mddev->sync_thread) {
5281 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5282 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5283 md_reap_sync_thread(mddev);
5286 del_timer_sync(&mddev->safemode_timer);
5288 bitmap_flush(mddev);
5289 md_super_wait(mddev);
5291 if (mddev->ro == 0 &&
5292 (!mddev->in_sync || mddev->flags)) {
5293 /* mark array as shutdown cleanly */
5294 mddev->in_sync = 1;
5295 md_update_sb(mddev, 1);
5299 void md_stop_writes(struct mddev *mddev)
5301 mddev_lock(mddev);
5302 __md_stop_writes(mddev);
5303 mddev_unlock(mddev);
5305 EXPORT_SYMBOL_GPL(md_stop_writes);
5307 static void __md_stop(struct mddev *mddev)
5309 mddev->ready = 0;
5310 mddev->pers->stop(mddev);
5311 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5312 mddev->to_remove = &md_redundancy_group;
5313 module_put(mddev->pers->owner);
5314 mddev->pers = NULL;
5315 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5318 void md_stop(struct mddev *mddev)
5320 /* stop the array and free an attached data structures.
5321 * This is called from dm-raid
5323 __md_stop(mddev);
5324 bitmap_destroy(mddev);
5325 if (mddev->bio_set)
5326 bioset_free(mddev->bio_set);
5329 EXPORT_SYMBOL_GPL(md_stop);
5331 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5333 int err = 0;
5334 mutex_lock(&mddev->open_mutex);
5335 if (atomic_read(&mddev->openers) > !!bdev) {
5336 printk("md: %s still in use.\n",mdname(mddev));
5337 err = -EBUSY;
5338 goto out;
5340 if (bdev)
5341 sync_blockdev(bdev);
5342 if (mddev->pers) {
5343 __md_stop_writes(mddev);
5345 err = -ENXIO;
5346 if (mddev->ro==1)
5347 goto out;
5348 mddev->ro = 1;
5349 set_disk_ro(mddev->gendisk, 1);
5350 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5351 sysfs_notify_dirent_safe(mddev->sysfs_state);
5352 err = 0;
5354 out:
5355 mutex_unlock(&mddev->open_mutex);
5356 return err;
5359 /* mode:
5360 * 0 - completely stop and dis-assemble array
5361 * 2 - stop but do not disassemble array
5363 static int do_md_stop(struct mddev * mddev, int mode,
5364 struct block_device *bdev)
5366 struct gendisk *disk = mddev->gendisk;
5367 struct md_rdev *rdev;
5369 mutex_lock(&mddev->open_mutex);
5370 if (atomic_read(&mddev->openers) > !!bdev ||
5371 mddev->sysfs_active) {
5372 printk("md: %s still in use.\n",mdname(mddev));
5373 mutex_unlock(&mddev->open_mutex);
5374 return -EBUSY;
5376 if (bdev)
5377 /* It is possible IO was issued on some other
5378 * open file which was closed before we took ->open_mutex.
5379 * As that was not the last close __blkdev_put will not
5380 * have called sync_blockdev, so we must.
5382 sync_blockdev(bdev);
5384 if (mddev->pers) {
5385 if (mddev->ro)
5386 set_disk_ro(disk, 0);
5388 __md_stop_writes(mddev);
5389 __md_stop(mddev);
5390 mddev->queue->merge_bvec_fn = NULL;
5391 mddev->queue->backing_dev_info.congested_fn = NULL;
5393 /* tell userspace to handle 'inactive' */
5394 sysfs_notify_dirent_safe(mddev->sysfs_state);
5396 rdev_for_each(rdev, mddev)
5397 if (rdev->raid_disk >= 0)
5398 sysfs_unlink_rdev(mddev, rdev);
5400 set_capacity(disk, 0);
5401 mutex_unlock(&mddev->open_mutex);
5402 mddev->changed = 1;
5403 revalidate_disk(disk);
5405 if (mddev->ro)
5406 mddev->ro = 0;
5407 } else
5408 mutex_unlock(&mddev->open_mutex);
5410 * Free resources if final stop
5412 if (mode == 0) {
5413 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5415 bitmap_destroy(mddev);
5416 if (mddev->bitmap_info.file) {
5417 restore_bitmap_write_access(mddev->bitmap_info.file);
5418 fput(mddev->bitmap_info.file);
5419 mddev->bitmap_info.file = NULL;
5421 mddev->bitmap_info.offset = 0;
5423 export_array(mddev);
5425 md_clean(mddev);
5426 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5427 if (mddev->hold_active == UNTIL_STOP)
5428 mddev->hold_active = 0;
5430 blk_integrity_unregister(disk);
5431 md_new_event(mddev);
5432 sysfs_notify_dirent_safe(mddev->sysfs_state);
5433 return 0;
5436 #ifndef MODULE
5437 static void autorun_array(struct mddev *mddev)
5439 struct md_rdev *rdev;
5440 int err;
5442 if (list_empty(&mddev->disks))
5443 return;
5445 printk(KERN_INFO "md: running: ");
5447 rdev_for_each(rdev, mddev) {
5448 char b[BDEVNAME_SIZE];
5449 printk("<%s>", bdevname(rdev->bdev,b));
5451 printk("\n");
5453 err = do_md_run(mddev);
5454 if (err) {
5455 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5456 do_md_stop(mddev, 0, NULL);
5461 * lets try to run arrays based on all disks that have arrived
5462 * until now. (those are in pending_raid_disks)
5464 * the method: pick the first pending disk, collect all disks with
5465 * the same UUID, remove all from the pending list and put them into
5466 * the 'same_array' list. Then order this list based on superblock
5467 * update time (freshest comes first), kick out 'old' disks and
5468 * compare superblocks. If everything's fine then run it.
5470 * If "unit" is allocated, then bump its reference count
5472 static void autorun_devices(int part)
5474 struct md_rdev *rdev0, *rdev, *tmp;
5475 struct mddev *mddev;
5476 char b[BDEVNAME_SIZE];
5478 printk(KERN_INFO "md: autorun ...\n");
5479 while (!list_empty(&pending_raid_disks)) {
5480 int unit;
5481 dev_t dev;
5482 LIST_HEAD(candidates);
5483 rdev0 = list_entry(pending_raid_disks.next,
5484 struct md_rdev, same_set);
5486 printk(KERN_INFO "md: considering %s ...\n",
5487 bdevname(rdev0->bdev,b));
5488 INIT_LIST_HEAD(&candidates);
5489 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5490 if (super_90_load(rdev, rdev0, 0) >= 0) {
5491 printk(KERN_INFO "md: adding %s ...\n",
5492 bdevname(rdev->bdev,b));
5493 list_move(&rdev->same_set, &candidates);
5496 * now we have a set of devices, with all of them having
5497 * mostly sane superblocks. It's time to allocate the
5498 * mddev.
5500 if (part) {
5501 dev = MKDEV(mdp_major,
5502 rdev0->preferred_minor << MdpMinorShift);
5503 unit = MINOR(dev) >> MdpMinorShift;
5504 } else {
5505 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5506 unit = MINOR(dev);
5508 if (rdev0->preferred_minor != unit) {
5509 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5510 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5511 break;
5514 md_probe(dev, NULL, NULL);
5515 mddev = mddev_find(dev);
5516 if (!mddev || !mddev->gendisk) {
5517 if (mddev)
5518 mddev_put(mddev);
5519 printk(KERN_ERR
5520 "md: cannot allocate memory for md drive.\n");
5521 break;
5523 if (mddev_lock(mddev))
5524 printk(KERN_WARNING "md: %s locked, cannot run\n",
5525 mdname(mddev));
5526 else if (mddev->raid_disks || mddev->major_version
5527 || !list_empty(&mddev->disks)) {
5528 printk(KERN_WARNING
5529 "md: %s already running, cannot run %s\n",
5530 mdname(mddev), bdevname(rdev0->bdev,b));
5531 mddev_unlock(mddev);
5532 } else {
5533 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5534 mddev->persistent = 1;
5535 rdev_for_each_list(rdev, tmp, &candidates) {
5536 list_del_init(&rdev->same_set);
5537 if (bind_rdev_to_array(rdev, mddev))
5538 export_rdev(rdev);
5540 autorun_array(mddev);
5541 mddev_unlock(mddev);
5543 /* on success, candidates will be empty, on error
5544 * it won't...
5546 rdev_for_each_list(rdev, tmp, &candidates) {
5547 list_del_init(&rdev->same_set);
5548 export_rdev(rdev);
5550 mddev_put(mddev);
5552 printk(KERN_INFO "md: ... autorun DONE.\n");
5554 #endif /* !MODULE */
5556 static int get_version(void __user * arg)
5558 mdu_version_t ver;
5560 ver.major = MD_MAJOR_VERSION;
5561 ver.minor = MD_MINOR_VERSION;
5562 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5564 if (copy_to_user(arg, &ver, sizeof(ver)))
5565 return -EFAULT;
5567 return 0;
5570 static int get_array_info(struct mddev * mddev, void __user * arg)
5572 mdu_array_info_t info;
5573 int nr,working,insync,failed,spare;
5574 struct md_rdev *rdev;
5576 nr = working = insync = failed = spare = 0;
5577 rcu_read_lock();
5578 rdev_for_each_rcu(rdev, mddev) {
5579 nr++;
5580 if (test_bit(Faulty, &rdev->flags))
5581 failed++;
5582 else {
5583 working++;
5584 if (test_bit(In_sync, &rdev->flags))
5585 insync++;
5586 else
5587 spare++;
5590 rcu_read_unlock();
5592 info.major_version = mddev->major_version;
5593 info.minor_version = mddev->minor_version;
5594 info.patch_version = MD_PATCHLEVEL_VERSION;
5595 info.ctime = mddev->ctime;
5596 info.level = mddev->level;
5597 info.size = mddev->dev_sectors / 2;
5598 if (info.size != mddev->dev_sectors / 2) /* overflow */
5599 info.size = -1;
5600 info.nr_disks = nr;
5601 info.raid_disks = mddev->raid_disks;
5602 info.md_minor = mddev->md_minor;
5603 info.not_persistent= !mddev->persistent;
5605 info.utime = mddev->utime;
5606 info.state = 0;
5607 if (mddev->in_sync)
5608 info.state = (1<<MD_SB_CLEAN);
5609 if (mddev->bitmap && mddev->bitmap_info.offset)
5610 info.state = (1<<MD_SB_BITMAP_PRESENT);
5611 info.active_disks = insync;
5612 info.working_disks = working;
5613 info.failed_disks = failed;
5614 info.spare_disks = spare;
5616 info.layout = mddev->layout;
5617 info.chunk_size = mddev->chunk_sectors << 9;
5619 if (copy_to_user(arg, &info, sizeof(info)))
5620 return -EFAULT;
5622 return 0;
5625 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5627 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5628 char *ptr, *buf = NULL;
5629 int err = -ENOMEM;
5631 if (md_allow_write(mddev))
5632 file = kmalloc(sizeof(*file), GFP_NOIO);
5633 else
5634 file = kmalloc(sizeof(*file), GFP_KERNEL);
5636 if (!file)
5637 goto out;
5639 /* bitmap disabled, zero the first byte and copy out */
5640 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5641 file->pathname[0] = '\0';
5642 goto copy_out;
5645 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5646 if (!buf)
5647 goto out;
5649 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5650 buf, sizeof(file->pathname));
5651 if (IS_ERR(ptr))
5652 goto out;
5654 strcpy(file->pathname, ptr);
5656 copy_out:
5657 err = 0;
5658 if (copy_to_user(arg, file, sizeof(*file)))
5659 err = -EFAULT;
5660 out:
5661 kfree(buf);
5662 kfree(file);
5663 return err;
5666 static int get_disk_info(struct mddev * mddev, void __user * arg)
5668 mdu_disk_info_t info;
5669 struct md_rdev *rdev;
5671 if (copy_from_user(&info, arg, sizeof(info)))
5672 return -EFAULT;
5674 rcu_read_lock();
5675 rdev = find_rdev_nr_rcu(mddev, info.number);
5676 if (rdev) {
5677 info.major = MAJOR(rdev->bdev->bd_dev);
5678 info.minor = MINOR(rdev->bdev->bd_dev);
5679 info.raid_disk = rdev->raid_disk;
5680 info.state = 0;
5681 if (test_bit(Faulty, &rdev->flags))
5682 info.state |= (1<<MD_DISK_FAULTY);
5683 else if (test_bit(In_sync, &rdev->flags)) {
5684 info.state |= (1<<MD_DISK_ACTIVE);
5685 info.state |= (1<<MD_DISK_SYNC);
5687 if (test_bit(WriteMostly, &rdev->flags))
5688 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5689 } else {
5690 info.major = info.minor = 0;
5691 info.raid_disk = -1;
5692 info.state = (1<<MD_DISK_REMOVED);
5694 rcu_read_unlock();
5696 if (copy_to_user(arg, &info, sizeof(info)))
5697 return -EFAULT;
5699 return 0;
5702 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5704 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5705 struct md_rdev *rdev;
5706 dev_t dev = MKDEV(info->major,info->minor);
5708 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5709 return -EOVERFLOW;
5711 if (!mddev->raid_disks) {
5712 int err;
5713 /* expecting a device which has a superblock */
5714 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5715 if (IS_ERR(rdev)) {
5716 printk(KERN_WARNING
5717 "md: md_import_device returned %ld\n",
5718 PTR_ERR(rdev));
5719 return PTR_ERR(rdev);
5721 if (!list_empty(&mddev->disks)) {
5722 struct md_rdev *rdev0
5723 = list_entry(mddev->disks.next,
5724 struct md_rdev, same_set);
5725 err = super_types[mddev->major_version]
5726 .load_super(rdev, rdev0, mddev->minor_version);
5727 if (err < 0) {
5728 printk(KERN_WARNING
5729 "md: %s has different UUID to %s\n",
5730 bdevname(rdev->bdev,b),
5731 bdevname(rdev0->bdev,b2));
5732 export_rdev(rdev);
5733 return -EINVAL;
5736 err = bind_rdev_to_array(rdev, mddev);
5737 if (err)
5738 export_rdev(rdev);
5739 return err;
5743 * add_new_disk can be used once the array is assembled
5744 * to add "hot spares". They must already have a superblock
5745 * written
5747 if (mddev->pers) {
5748 int err;
5749 if (!mddev->pers->hot_add_disk) {
5750 printk(KERN_WARNING
5751 "%s: personality does not support diskops!\n",
5752 mdname(mddev));
5753 return -EINVAL;
5755 if (mddev->persistent)
5756 rdev = md_import_device(dev, mddev->major_version,
5757 mddev->minor_version);
5758 else
5759 rdev = md_import_device(dev, -1, -1);
5760 if (IS_ERR(rdev)) {
5761 printk(KERN_WARNING
5762 "md: md_import_device returned %ld\n",
5763 PTR_ERR(rdev));
5764 return PTR_ERR(rdev);
5766 /* set saved_raid_disk if appropriate */
5767 if (!mddev->persistent) {
5768 if (info->state & (1<<MD_DISK_SYNC) &&
5769 info->raid_disk < mddev->raid_disks) {
5770 rdev->raid_disk = info->raid_disk;
5771 set_bit(In_sync, &rdev->flags);
5772 } else
5773 rdev->raid_disk = -1;
5774 } else
5775 super_types[mddev->major_version].
5776 validate_super(mddev, rdev);
5777 if ((info->state & (1<<MD_DISK_SYNC)) &&
5778 rdev->raid_disk != info->raid_disk) {
5779 /* This was a hot-add request, but events doesn't
5780 * match, so reject it.
5782 export_rdev(rdev);
5783 return -EINVAL;
5786 if (test_bit(In_sync, &rdev->flags))
5787 rdev->saved_raid_disk = rdev->raid_disk;
5788 else
5789 rdev->saved_raid_disk = -1;
5791 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5792 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5793 set_bit(WriteMostly, &rdev->flags);
5794 else
5795 clear_bit(WriteMostly, &rdev->flags);
5797 rdev->raid_disk = -1;
5798 err = bind_rdev_to_array(rdev, mddev);
5799 if (!err && !mddev->pers->hot_remove_disk) {
5800 /* If there is hot_add_disk but no hot_remove_disk
5801 * then added disks for geometry changes,
5802 * and should be added immediately.
5804 super_types[mddev->major_version].
5805 validate_super(mddev, rdev);
5806 err = mddev->pers->hot_add_disk(mddev, rdev);
5807 if (err)
5808 unbind_rdev_from_array(rdev);
5810 if (err)
5811 export_rdev(rdev);
5812 else
5813 sysfs_notify_dirent_safe(rdev->sysfs_state);
5815 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5816 if (mddev->degraded)
5817 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5818 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5819 if (!err)
5820 md_new_event(mddev);
5821 md_wakeup_thread(mddev->thread);
5822 return err;
5825 /* otherwise, add_new_disk is only allowed
5826 * for major_version==0 superblocks
5828 if (mddev->major_version != 0) {
5829 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5830 mdname(mddev));
5831 return -EINVAL;
5834 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5835 int err;
5836 rdev = md_import_device(dev, -1, 0);
5837 if (IS_ERR(rdev)) {
5838 printk(KERN_WARNING
5839 "md: error, md_import_device() returned %ld\n",
5840 PTR_ERR(rdev));
5841 return PTR_ERR(rdev);
5843 rdev->desc_nr = info->number;
5844 if (info->raid_disk < mddev->raid_disks)
5845 rdev->raid_disk = info->raid_disk;
5846 else
5847 rdev->raid_disk = -1;
5849 if (rdev->raid_disk < mddev->raid_disks)
5850 if (info->state & (1<<MD_DISK_SYNC))
5851 set_bit(In_sync, &rdev->flags);
5853 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5854 set_bit(WriteMostly, &rdev->flags);
5856 if (!mddev->persistent) {
5857 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5858 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5859 } else
5860 rdev->sb_start = calc_dev_sboffset(rdev);
5861 rdev->sectors = rdev->sb_start;
5863 err = bind_rdev_to_array(rdev, mddev);
5864 if (err) {
5865 export_rdev(rdev);
5866 return err;
5870 return 0;
5873 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5875 char b[BDEVNAME_SIZE];
5876 struct md_rdev *rdev;
5878 rdev = find_rdev(mddev, dev);
5879 if (!rdev)
5880 return -ENXIO;
5882 clear_bit(Blocked, &rdev->flags);
5883 remove_and_add_spares(mddev, rdev);
5885 if (rdev->raid_disk >= 0)
5886 goto busy;
5888 kick_rdev_from_array(rdev);
5889 md_update_sb(mddev, 1);
5890 md_new_event(mddev);
5892 return 0;
5893 busy:
5894 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5895 bdevname(rdev->bdev,b), mdname(mddev));
5896 return -EBUSY;
5899 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5901 char b[BDEVNAME_SIZE];
5902 int err;
5903 struct md_rdev *rdev;
5905 if (!mddev->pers)
5906 return -ENODEV;
5908 if (mddev->major_version != 0) {
5909 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5910 " version-0 superblocks.\n",
5911 mdname(mddev));
5912 return -EINVAL;
5914 if (!mddev->pers->hot_add_disk) {
5915 printk(KERN_WARNING
5916 "%s: personality does not support diskops!\n",
5917 mdname(mddev));
5918 return -EINVAL;
5921 rdev = md_import_device(dev, -1, 0);
5922 if (IS_ERR(rdev)) {
5923 printk(KERN_WARNING
5924 "md: error, md_import_device() returned %ld\n",
5925 PTR_ERR(rdev));
5926 return -EINVAL;
5929 if (mddev->persistent)
5930 rdev->sb_start = calc_dev_sboffset(rdev);
5931 else
5932 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5934 rdev->sectors = rdev->sb_start;
5936 if (test_bit(Faulty, &rdev->flags)) {
5937 printk(KERN_WARNING
5938 "md: can not hot-add faulty %s disk to %s!\n",
5939 bdevname(rdev->bdev,b), mdname(mddev));
5940 err = -EINVAL;
5941 goto abort_export;
5943 clear_bit(In_sync, &rdev->flags);
5944 rdev->desc_nr = -1;
5945 rdev->saved_raid_disk = -1;
5946 err = bind_rdev_to_array(rdev, mddev);
5947 if (err)
5948 goto abort_export;
5951 * The rest should better be atomic, we can have disk failures
5952 * noticed in interrupt contexts ...
5955 rdev->raid_disk = -1;
5957 md_update_sb(mddev, 1);
5960 * Kick recovery, maybe this spare has to be added to the
5961 * array immediately.
5963 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5964 md_wakeup_thread(mddev->thread);
5965 md_new_event(mddev);
5966 return 0;
5968 abort_export:
5969 export_rdev(rdev);
5970 return err;
5973 static int set_bitmap_file(struct mddev *mddev, int fd)
5975 int err;
5977 if (mddev->pers) {
5978 if (!mddev->pers->quiesce)
5979 return -EBUSY;
5980 if (mddev->recovery || mddev->sync_thread)
5981 return -EBUSY;
5982 /* we should be able to change the bitmap.. */
5986 if (fd >= 0) {
5987 if (mddev->bitmap)
5988 return -EEXIST; /* cannot add when bitmap is present */
5989 mddev->bitmap_info.file = fget(fd);
5991 if (mddev->bitmap_info.file == NULL) {
5992 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5993 mdname(mddev));
5994 return -EBADF;
5997 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5998 if (err) {
5999 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6000 mdname(mddev));
6001 fput(mddev->bitmap_info.file);
6002 mddev->bitmap_info.file = NULL;
6003 return err;
6005 mddev->bitmap_info.offset = 0; /* file overrides offset */
6006 } else if (mddev->bitmap == NULL)
6007 return -ENOENT; /* cannot remove what isn't there */
6008 err = 0;
6009 if (mddev->pers) {
6010 mddev->pers->quiesce(mddev, 1);
6011 if (fd >= 0) {
6012 err = bitmap_create(mddev);
6013 if (!err)
6014 err = bitmap_load(mddev);
6016 if (fd < 0 || err) {
6017 bitmap_destroy(mddev);
6018 fd = -1; /* make sure to put the file */
6020 mddev->pers->quiesce(mddev, 0);
6022 if (fd < 0) {
6023 if (mddev->bitmap_info.file) {
6024 restore_bitmap_write_access(mddev->bitmap_info.file);
6025 fput(mddev->bitmap_info.file);
6027 mddev->bitmap_info.file = NULL;
6030 return err;
6034 * set_array_info is used two different ways
6035 * The original usage is when creating a new array.
6036 * In this usage, raid_disks is > 0 and it together with
6037 * level, size, not_persistent,layout,chunksize determine the
6038 * shape of the array.
6039 * This will always create an array with a type-0.90.0 superblock.
6040 * The newer usage is when assembling an array.
6041 * In this case raid_disks will be 0, and the major_version field is
6042 * use to determine which style super-blocks are to be found on the devices.
6043 * The minor and patch _version numbers are also kept incase the
6044 * super_block handler wishes to interpret them.
6046 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6049 if (info->raid_disks == 0) {
6050 /* just setting version number for superblock loading */
6051 if (info->major_version < 0 ||
6052 info->major_version >= ARRAY_SIZE(super_types) ||
6053 super_types[info->major_version].name == NULL) {
6054 /* maybe try to auto-load a module? */
6055 printk(KERN_INFO
6056 "md: superblock version %d not known\n",
6057 info->major_version);
6058 return -EINVAL;
6060 mddev->major_version = info->major_version;
6061 mddev->minor_version = info->minor_version;
6062 mddev->patch_version = info->patch_version;
6063 mddev->persistent = !info->not_persistent;
6064 /* ensure mddev_put doesn't delete this now that there
6065 * is some minimal configuration.
6067 mddev->ctime = get_seconds();
6068 return 0;
6070 mddev->major_version = MD_MAJOR_VERSION;
6071 mddev->minor_version = MD_MINOR_VERSION;
6072 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6073 mddev->ctime = get_seconds();
6075 mddev->level = info->level;
6076 mddev->clevel[0] = 0;
6077 mddev->dev_sectors = 2 * (sector_t)info->size;
6078 mddev->raid_disks = info->raid_disks;
6079 /* don't set md_minor, it is determined by which /dev/md* was
6080 * openned
6082 if (info->state & (1<<MD_SB_CLEAN))
6083 mddev->recovery_cp = MaxSector;
6084 else
6085 mddev->recovery_cp = 0;
6086 mddev->persistent = ! info->not_persistent;
6087 mddev->external = 0;
6089 mddev->layout = info->layout;
6090 mddev->chunk_sectors = info->chunk_size >> 9;
6092 mddev->max_disks = MD_SB_DISKS;
6094 if (mddev->persistent)
6095 mddev->flags = 0;
6096 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6098 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6099 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6100 mddev->bitmap_info.offset = 0;
6102 mddev->reshape_position = MaxSector;
6105 * Generate a 128 bit UUID
6107 get_random_bytes(mddev->uuid, 16);
6109 mddev->new_level = mddev->level;
6110 mddev->new_chunk_sectors = mddev->chunk_sectors;
6111 mddev->new_layout = mddev->layout;
6112 mddev->delta_disks = 0;
6113 mddev->reshape_backwards = 0;
6115 return 0;
6118 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6120 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6122 if (mddev->external_size)
6123 return;
6125 mddev->array_sectors = array_sectors;
6127 EXPORT_SYMBOL(md_set_array_sectors);
6129 static int update_size(struct mddev *mddev, sector_t num_sectors)
6131 struct md_rdev *rdev;
6132 int rv;
6133 int fit = (num_sectors == 0);
6135 if (mddev->pers->resize == NULL)
6136 return -EINVAL;
6137 /* The "num_sectors" is the number of sectors of each device that
6138 * is used. This can only make sense for arrays with redundancy.
6139 * linear and raid0 always use whatever space is available. We can only
6140 * consider changing this number if no resync or reconstruction is
6141 * happening, and if the new size is acceptable. It must fit before the
6142 * sb_start or, if that is <data_offset, it must fit before the size
6143 * of each device. If num_sectors is zero, we find the largest size
6144 * that fits.
6146 if (mddev->sync_thread)
6147 return -EBUSY;
6149 rdev_for_each(rdev, mddev) {
6150 sector_t avail = rdev->sectors;
6152 if (fit && (num_sectors == 0 || num_sectors > avail))
6153 num_sectors = avail;
6154 if (avail < num_sectors)
6155 return -ENOSPC;
6157 rv = mddev->pers->resize(mddev, num_sectors);
6158 if (!rv)
6159 revalidate_disk(mddev->gendisk);
6160 return rv;
6163 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6165 int rv;
6166 struct md_rdev *rdev;
6167 /* change the number of raid disks */
6168 if (mddev->pers->check_reshape == NULL)
6169 return -EINVAL;
6170 if (raid_disks <= 0 ||
6171 (mddev->max_disks && raid_disks >= mddev->max_disks))
6172 return -EINVAL;
6173 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6174 return -EBUSY;
6176 rdev_for_each(rdev, mddev) {
6177 if (mddev->raid_disks < raid_disks &&
6178 rdev->data_offset < rdev->new_data_offset)
6179 return -EINVAL;
6180 if (mddev->raid_disks > raid_disks &&
6181 rdev->data_offset > rdev->new_data_offset)
6182 return -EINVAL;
6185 mddev->delta_disks = raid_disks - mddev->raid_disks;
6186 if (mddev->delta_disks < 0)
6187 mddev->reshape_backwards = 1;
6188 else if (mddev->delta_disks > 0)
6189 mddev->reshape_backwards = 0;
6191 rv = mddev->pers->check_reshape(mddev);
6192 if (rv < 0) {
6193 mddev->delta_disks = 0;
6194 mddev->reshape_backwards = 0;
6196 return rv;
6201 * update_array_info is used to change the configuration of an
6202 * on-line array.
6203 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6204 * fields in the info are checked against the array.
6205 * Any differences that cannot be handled will cause an error.
6206 * Normally, only one change can be managed at a time.
6208 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6210 int rv = 0;
6211 int cnt = 0;
6212 int state = 0;
6214 /* calculate expected state,ignoring low bits */
6215 if (mddev->bitmap && mddev->bitmap_info.offset)
6216 state |= (1 << MD_SB_BITMAP_PRESENT);
6218 if (mddev->major_version != info->major_version ||
6219 mddev->minor_version != info->minor_version ||
6220 /* mddev->patch_version != info->patch_version || */
6221 mddev->ctime != info->ctime ||
6222 mddev->level != info->level ||
6223 /* mddev->layout != info->layout || */
6224 !mddev->persistent != info->not_persistent||
6225 mddev->chunk_sectors != info->chunk_size >> 9 ||
6226 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6227 ((state^info->state) & 0xfffffe00)
6229 return -EINVAL;
6230 /* Check there is only one change */
6231 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6232 cnt++;
6233 if (mddev->raid_disks != info->raid_disks)
6234 cnt++;
6235 if (mddev->layout != info->layout)
6236 cnt++;
6237 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6238 cnt++;
6239 if (cnt == 0)
6240 return 0;
6241 if (cnt > 1)
6242 return -EINVAL;
6244 if (mddev->layout != info->layout) {
6245 /* Change layout
6246 * we don't need to do anything at the md level, the
6247 * personality will take care of it all.
6249 if (mddev->pers->check_reshape == NULL)
6250 return -EINVAL;
6251 else {
6252 mddev->new_layout = info->layout;
6253 rv = mddev->pers->check_reshape(mddev);
6254 if (rv)
6255 mddev->new_layout = mddev->layout;
6256 return rv;
6259 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6260 rv = update_size(mddev, (sector_t)info->size * 2);
6262 if (mddev->raid_disks != info->raid_disks)
6263 rv = update_raid_disks(mddev, info->raid_disks);
6265 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6266 if (mddev->pers->quiesce == NULL)
6267 return -EINVAL;
6268 if (mddev->recovery || mddev->sync_thread)
6269 return -EBUSY;
6270 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6271 /* add the bitmap */
6272 if (mddev->bitmap)
6273 return -EEXIST;
6274 if (mddev->bitmap_info.default_offset == 0)
6275 return -EINVAL;
6276 mddev->bitmap_info.offset =
6277 mddev->bitmap_info.default_offset;
6278 mddev->bitmap_info.space =
6279 mddev->bitmap_info.default_space;
6280 mddev->pers->quiesce(mddev, 1);
6281 rv = bitmap_create(mddev);
6282 if (!rv)
6283 rv = bitmap_load(mddev);
6284 if (rv)
6285 bitmap_destroy(mddev);
6286 mddev->pers->quiesce(mddev, 0);
6287 } else {
6288 /* remove the bitmap */
6289 if (!mddev->bitmap)
6290 return -ENOENT;
6291 if (mddev->bitmap->storage.file)
6292 return -EINVAL;
6293 mddev->pers->quiesce(mddev, 1);
6294 bitmap_destroy(mddev);
6295 mddev->pers->quiesce(mddev, 0);
6296 mddev->bitmap_info.offset = 0;
6299 md_update_sb(mddev, 1);
6300 return rv;
6303 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6305 struct md_rdev *rdev;
6306 int err = 0;
6308 if (mddev->pers == NULL)
6309 return -ENODEV;
6311 rcu_read_lock();
6312 rdev = find_rdev_rcu(mddev, dev);
6313 if (!rdev)
6314 err = -ENODEV;
6315 else {
6316 md_error(mddev, rdev);
6317 if (!test_bit(Faulty, &rdev->flags))
6318 err = -EBUSY;
6320 rcu_read_unlock();
6321 return err;
6325 * We have a problem here : there is no easy way to give a CHS
6326 * virtual geometry. We currently pretend that we have a 2 heads
6327 * 4 sectors (with a BIG number of cylinders...). This drives
6328 * dosfs just mad... ;-)
6330 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6332 struct mddev *mddev = bdev->bd_disk->private_data;
6334 geo->heads = 2;
6335 geo->sectors = 4;
6336 geo->cylinders = mddev->array_sectors / 8;
6337 return 0;
6340 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6341 unsigned int cmd, unsigned long arg)
6343 int err = 0;
6344 void __user *argp = (void __user *)arg;
6345 struct mddev *mddev = NULL;
6346 int ro;
6348 switch (cmd) {
6349 case RAID_VERSION:
6350 case GET_ARRAY_INFO:
6351 case GET_DISK_INFO:
6352 break;
6353 default:
6354 if (!capable(CAP_SYS_ADMIN))
6355 return -EACCES;
6359 * Commands dealing with the RAID driver but not any
6360 * particular array:
6362 switch (cmd) {
6363 case RAID_VERSION:
6364 err = get_version(argp);
6365 goto done;
6367 case PRINT_RAID_DEBUG:
6368 err = 0;
6369 md_print_devices();
6370 goto done;
6372 #ifndef MODULE
6373 case RAID_AUTORUN:
6374 err = 0;
6375 autostart_arrays(arg);
6376 goto done;
6377 #endif
6378 default:;
6382 * Commands creating/starting a new array:
6385 mddev = bdev->bd_disk->private_data;
6387 if (!mddev) {
6388 BUG();
6389 goto abort;
6392 /* Some actions do not requires the mutex */
6393 switch (cmd) {
6394 case GET_ARRAY_INFO:
6395 if (!mddev->raid_disks && !mddev->external)
6396 err = -ENODEV;
6397 else
6398 err = get_array_info(mddev, argp);
6399 goto abort;
6401 case GET_DISK_INFO:
6402 if (!mddev->raid_disks && !mddev->external)
6403 err = -ENODEV;
6404 else
6405 err = get_disk_info(mddev, argp);
6406 goto abort;
6408 case SET_DISK_FAULTY:
6409 err = set_disk_faulty(mddev, new_decode_dev(arg));
6410 goto abort;
6413 if (cmd == ADD_NEW_DISK)
6414 /* need to ensure md_delayed_delete() has completed */
6415 flush_workqueue(md_misc_wq);
6417 err = mddev_lock(mddev);
6418 if (err) {
6419 printk(KERN_INFO
6420 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6421 err, cmd);
6422 goto abort;
6425 if (cmd == SET_ARRAY_INFO) {
6426 mdu_array_info_t info;
6427 if (!arg)
6428 memset(&info, 0, sizeof(info));
6429 else if (copy_from_user(&info, argp, sizeof(info))) {
6430 err = -EFAULT;
6431 goto abort_unlock;
6433 if (mddev->pers) {
6434 err = update_array_info(mddev, &info);
6435 if (err) {
6436 printk(KERN_WARNING "md: couldn't update"
6437 " array info. %d\n", err);
6438 goto abort_unlock;
6440 goto done_unlock;
6442 if (!list_empty(&mddev->disks)) {
6443 printk(KERN_WARNING
6444 "md: array %s already has disks!\n",
6445 mdname(mddev));
6446 err = -EBUSY;
6447 goto abort_unlock;
6449 if (mddev->raid_disks) {
6450 printk(KERN_WARNING
6451 "md: array %s already initialised!\n",
6452 mdname(mddev));
6453 err = -EBUSY;
6454 goto abort_unlock;
6456 err = set_array_info(mddev, &info);
6457 if (err) {
6458 printk(KERN_WARNING "md: couldn't set"
6459 " array info. %d\n", err);
6460 goto abort_unlock;
6462 goto done_unlock;
6466 * Commands querying/configuring an existing array:
6468 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6469 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6470 if ((!mddev->raid_disks && !mddev->external)
6471 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6472 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6473 && cmd != GET_BITMAP_FILE) {
6474 err = -ENODEV;
6475 goto abort_unlock;
6479 * Commands even a read-only array can execute:
6481 switch (cmd) {
6482 case GET_BITMAP_FILE:
6483 err = get_bitmap_file(mddev, argp);
6484 goto done_unlock;
6486 case RESTART_ARRAY_RW:
6487 err = restart_array(mddev);
6488 goto done_unlock;
6490 case STOP_ARRAY:
6491 err = do_md_stop(mddev, 0, bdev);
6492 goto done_unlock;
6494 case STOP_ARRAY_RO:
6495 err = md_set_readonly(mddev, bdev);
6496 goto done_unlock;
6498 case HOT_REMOVE_DISK:
6499 err = hot_remove_disk(mddev, new_decode_dev(arg));
6500 goto done_unlock;
6502 case ADD_NEW_DISK:
6503 /* We can support ADD_NEW_DISK on read-only arrays
6504 * on if we are re-adding a preexisting device.
6505 * So require mddev->pers and MD_DISK_SYNC.
6507 if (mddev->pers) {
6508 mdu_disk_info_t info;
6509 if (copy_from_user(&info, argp, sizeof(info)))
6510 err = -EFAULT;
6511 else if (!(info.state & (1<<MD_DISK_SYNC)))
6512 /* Need to clear read-only for this */
6513 break;
6514 else
6515 err = add_new_disk(mddev, &info);
6516 goto done_unlock;
6518 break;
6520 case BLKROSET:
6521 if (get_user(ro, (int __user *)(arg))) {
6522 err = -EFAULT;
6523 goto done_unlock;
6525 err = -EINVAL;
6527 /* if the bdev is going readonly the value of mddev->ro
6528 * does not matter, no writes are coming
6530 if (ro)
6531 goto done_unlock;
6533 /* are we are already prepared for writes? */
6534 if (mddev->ro != 1)
6535 goto done_unlock;
6537 /* transitioning to readauto need only happen for
6538 * arrays that call md_write_start
6540 if (mddev->pers) {
6541 err = restart_array(mddev);
6542 if (err == 0) {
6543 mddev->ro = 2;
6544 set_disk_ro(mddev->gendisk, 0);
6547 goto done_unlock;
6551 * The remaining ioctls are changing the state of the
6552 * superblock, so we do not allow them on read-only arrays.
6553 * However non-MD ioctls (e.g. get-size) will still come through
6554 * here and hit the 'default' below, so only disallow
6555 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6557 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6558 if (mddev->ro == 2) {
6559 mddev->ro = 0;
6560 sysfs_notify_dirent_safe(mddev->sysfs_state);
6561 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6562 /* mddev_unlock will wake thread */
6563 /* If a device failed while we were read-only, we
6564 * need to make sure the metadata is updated now.
6566 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6567 mddev_unlock(mddev);
6568 wait_event(mddev->sb_wait,
6569 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6570 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6571 mddev_lock(mddev);
6573 } else {
6574 err = -EROFS;
6575 goto abort_unlock;
6579 switch (cmd) {
6580 case ADD_NEW_DISK:
6582 mdu_disk_info_t info;
6583 if (copy_from_user(&info, argp, sizeof(info)))
6584 err = -EFAULT;
6585 else
6586 err = add_new_disk(mddev, &info);
6587 goto done_unlock;
6590 case HOT_ADD_DISK:
6591 err = hot_add_disk(mddev, new_decode_dev(arg));
6592 goto done_unlock;
6594 case RUN_ARRAY:
6595 err = do_md_run(mddev);
6596 goto done_unlock;
6598 case SET_BITMAP_FILE:
6599 err = set_bitmap_file(mddev, (int)arg);
6600 goto done_unlock;
6602 default:
6603 err = -EINVAL;
6604 goto abort_unlock;
6607 done_unlock:
6608 abort_unlock:
6609 if (mddev->hold_active == UNTIL_IOCTL &&
6610 err != -EINVAL)
6611 mddev->hold_active = 0;
6612 mddev_unlock(mddev);
6614 return err;
6615 done:
6616 if (err)
6617 MD_BUG();
6618 abort:
6619 return err;
6621 #ifdef CONFIG_COMPAT
6622 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6623 unsigned int cmd, unsigned long arg)
6625 switch (cmd) {
6626 case HOT_REMOVE_DISK:
6627 case HOT_ADD_DISK:
6628 case SET_DISK_FAULTY:
6629 case SET_BITMAP_FILE:
6630 /* These take in integer arg, do not convert */
6631 break;
6632 default:
6633 arg = (unsigned long)compat_ptr(arg);
6634 break;
6637 return md_ioctl(bdev, mode, cmd, arg);
6639 #endif /* CONFIG_COMPAT */
6641 static int md_open(struct block_device *bdev, fmode_t mode)
6644 * Succeed if we can lock the mddev, which confirms that
6645 * it isn't being stopped right now.
6647 struct mddev *mddev = mddev_find(bdev->bd_dev);
6648 int err;
6650 if (!mddev)
6651 return -ENODEV;
6653 if (mddev->gendisk != bdev->bd_disk) {
6654 /* we are racing with mddev_put which is discarding this
6655 * bd_disk.
6657 mddev_put(mddev);
6658 /* Wait until bdev->bd_disk is definitely gone */
6659 flush_workqueue(md_misc_wq);
6660 /* Then retry the open from the top */
6661 return -ERESTARTSYS;
6663 BUG_ON(mddev != bdev->bd_disk->private_data);
6665 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6666 goto out;
6668 err = 0;
6669 atomic_inc(&mddev->openers);
6670 mutex_unlock(&mddev->open_mutex);
6672 check_disk_change(bdev);
6673 out:
6674 return err;
6677 static int md_release(struct gendisk *disk, fmode_t mode)
6679 struct mddev *mddev = disk->private_data;
6681 BUG_ON(!mddev);
6682 atomic_dec(&mddev->openers);
6683 mddev_put(mddev);
6685 return 0;
6688 static int md_media_changed(struct gendisk *disk)
6690 struct mddev *mddev = disk->private_data;
6692 return mddev->changed;
6695 static int md_revalidate(struct gendisk *disk)
6697 struct mddev *mddev = disk->private_data;
6699 mddev->changed = 0;
6700 return 0;
6702 static const struct block_device_operations md_fops =
6704 .owner = THIS_MODULE,
6705 .open = md_open,
6706 .release = md_release,
6707 .ioctl = md_ioctl,
6708 #ifdef CONFIG_COMPAT
6709 .compat_ioctl = md_compat_ioctl,
6710 #endif
6711 .getgeo = md_getgeo,
6712 .media_changed = md_media_changed,
6713 .revalidate_disk= md_revalidate,
6716 static int md_thread(void * arg)
6718 struct md_thread *thread = arg;
6721 * md_thread is a 'system-thread', it's priority should be very
6722 * high. We avoid resource deadlocks individually in each
6723 * raid personality. (RAID5 does preallocation) We also use RR and
6724 * the very same RT priority as kswapd, thus we will never get
6725 * into a priority inversion deadlock.
6727 * we definitely have to have equal or higher priority than
6728 * bdflush, otherwise bdflush will deadlock if there are too
6729 * many dirty RAID5 blocks.
6732 allow_signal(SIGKILL);
6733 while (!kthread_should_stop()) {
6735 /* We need to wait INTERRUPTIBLE so that
6736 * we don't add to the load-average.
6737 * That means we need to be sure no signals are
6738 * pending
6740 if (signal_pending(current))
6741 flush_signals(current);
6743 wait_event_interruptible_timeout
6744 (thread->wqueue,
6745 test_bit(THREAD_WAKEUP, &thread->flags)
6746 || kthread_should_stop(),
6747 thread->timeout);
6749 clear_bit(THREAD_WAKEUP, &thread->flags);
6750 if (!kthread_should_stop())
6751 thread->run(thread);
6754 return 0;
6757 void md_wakeup_thread(struct md_thread *thread)
6759 if (thread) {
6760 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6761 set_bit(THREAD_WAKEUP, &thread->flags);
6762 wake_up(&thread->wqueue);
6766 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6767 struct mddev *mddev, const char *name)
6769 struct md_thread *thread;
6771 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6772 if (!thread)
6773 return NULL;
6775 init_waitqueue_head(&thread->wqueue);
6777 thread->run = run;
6778 thread->mddev = mddev;
6779 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6780 thread->tsk = kthread_run(md_thread, thread,
6781 "%s_%s",
6782 mdname(thread->mddev),
6783 name);
6784 if (IS_ERR(thread->tsk)) {
6785 kfree(thread);
6786 return NULL;
6788 return thread;
6791 void md_unregister_thread(struct md_thread **threadp)
6793 struct md_thread *thread = *threadp;
6794 if (!thread)
6795 return;
6796 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6797 /* Locking ensures that mddev_unlock does not wake_up a
6798 * non-existent thread
6800 spin_lock(&pers_lock);
6801 *threadp = NULL;
6802 spin_unlock(&pers_lock);
6804 kthread_stop(thread->tsk);
6805 kfree(thread);
6808 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6810 if (!mddev) {
6811 MD_BUG();
6812 return;
6815 if (!rdev || test_bit(Faulty, &rdev->flags))
6816 return;
6818 if (!mddev->pers || !mddev->pers->error_handler)
6819 return;
6820 mddev->pers->error_handler(mddev,rdev);
6821 if (mddev->degraded)
6822 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6823 sysfs_notify_dirent_safe(rdev->sysfs_state);
6824 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6825 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6826 md_wakeup_thread(mddev->thread);
6827 if (mddev->event_work.func)
6828 queue_work(md_misc_wq, &mddev->event_work);
6829 md_new_event_inintr(mddev);
6832 /* seq_file implementation /proc/mdstat */
6834 static void status_unused(struct seq_file *seq)
6836 int i = 0;
6837 struct md_rdev *rdev;
6839 seq_printf(seq, "unused devices: ");
6841 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6842 char b[BDEVNAME_SIZE];
6843 i++;
6844 seq_printf(seq, "%s ",
6845 bdevname(rdev->bdev,b));
6847 if (!i)
6848 seq_printf(seq, "<none>");
6850 seq_printf(seq, "\n");
6854 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6856 sector_t max_sectors, resync, res;
6857 unsigned long dt, db;
6858 sector_t rt;
6859 int scale;
6860 unsigned int per_milli;
6862 if (mddev->curr_resync <= 3)
6863 resync = 0;
6864 else
6865 resync = mddev->curr_resync
6866 - atomic_read(&mddev->recovery_active);
6868 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6869 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6870 max_sectors = mddev->resync_max_sectors;
6871 else
6872 max_sectors = mddev->dev_sectors;
6875 * Should not happen.
6877 if (!max_sectors) {
6878 MD_BUG();
6879 return;
6881 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6882 * in a sector_t, and (max_sectors>>scale) will fit in a
6883 * u32, as those are the requirements for sector_div.
6884 * Thus 'scale' must be at least 10
6886 scale = 10;
6887 if (sizeof(sector_t) > sizeof(unsigned long)) {
6888 while ( max_sectors/2 > (1ULL<<(scale+32)))
6889 scale++;
6891 res = (resync>>scale)*1000;
6892 sector_div(res, (u32)((max_sectors>>scale)+1));
6894 per_milli = res;
6896 int i, x = per_milli/50, y = 20-x;
6897 seq_printf(seq, "[");
6898 for (i = 0; i < x; i++)
6899 seq_printf(seq, "=");
6900 seq_printf(seq, ">");
6901 for (i = 0; i < y; i++)
6902 seq_printf(seq, ".");
6903 seq_printf(seq, "] ");
6905 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6906 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6907 "reshape" :
6908 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6909 "check" :
6910 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6911 "resync" : "recovery"))),
6912 per_milli/10, per_milli % 10,
6913 (unsigned long long) resync/2,
6914 (unsigned long long) max_sectors/2);
6917 * dt: time from mark until now
6918 * db: blocks written from mark until now
6919 * rt: remaining time
6921 * rt is a sector_t, so could be 32bit or 64bit.
6922 * So we divide before multiply in case it is 32bit and close
6923 * to the limit.
6924 * We scale the divisor (db) by 32 to avoid losing precision
6925 * near the end of resync when the number of remaining sectors
6926 * is close to 'db'.
6927 * We then divide rt by 32 after multiplying by db to compensate.
6928 * The '+1' avoids division by zero if db is very small.
6930 dt = ((jiffies - mddev->resync_mark) / HZ);
6931 if (!dt) dt++;
6932 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6933 - mddev->resync_mark_cnt;
6935 rt = max_sectors - resync; /* number of remaining sectors */
6936 sector_div(rt, db/32+1);
6937 rt *= dt;
6938 rt >>= 5;
6940 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6941 ((unsigned long)rt % 60)/6);
6943 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6946 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6948 struct list_head *tmp;
6949 loff_t l = *pos;
6950 struct mddev *mddev;
6952 if (l >= 0x10000)
6953 return NULL;
6954 if (!l--)
6955 /* header */
6956 return (void*)1;
6958 spin_lock(&all_mddevs_lock);
6959 list_for_each(tmp,&all_mddevs)
6960 if (!l--) {
6961 mddev = list_entry(tmp, struct mddev, all_mddevs);
6962 mddev_get(mddev);
6963 spin_unlock(&all_mddevs_lock);
6964 return mddev;
6966 spin_unlock(&all_mddevs_lock);
6967 if (!l--)
6968 return (void*)2;/* tail */
6969 return NULL;
6972 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6974 struct list_head *tmp;
6975 struct mddev *next_mddev, *mddev = v;
6977 ++*pos;
6978 if (v == (void*)2)
6979 return NULL;
6981 spin_lock(&all_mddevs_lock);
6982 if (v == (void*)1)
6983 tmp = all_mddevs.next;
6984 else
6985 tmp = mddev->all_mddevs.next;
6986 if (tmp != &all_mddevs)
6987 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6988 else {
6989 next_mddev = (void*)2;
6990 *pos = 0x10000;
6992 spin_unlock(&all_mddevs_lock);
6994 if (v != (void*)1)
6995 mddev_put(mddev);
6996 return next_mddev;
7000 static void md_seq_stop(struct seq_file *seq, void *v)
7002 struct mddev *mddev = v;
7004 if (mddev && v != (void*)1 && v != (void*)2)
7005 mddev_put(mddev);
7008 static int md_seq_show(struct seq_file *seq, void *v)
7010 struct mddev *mddev = v;
7011 sector_t sectors;
7012 struct md_rdev *rdev;
7014 if (v == (void*)1) {
7015 struct md_personality *pers;
7016 seq_printf(seq, "Personalities : ");
7017 spin_lock(&pers_lock);
7018 list_for_each_entry(pers, &pers_list, list)
7019 seq_printf(seq, "[%s] ", pers->name);
7021 spin_unlock(&pers_lock);
7022 seq_printf(seq, "\n");
7023 seq->poll_event = atomic_read(&md_event_count);
7024 return 0;
7026 if (v == (void*)2) {
7027 status_unused(seq);
7028 return 0;
7031 if (mddev_lock(mddev) < 0)
7032 return -EINTR;
7034 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7035 seq_printf(seq, "%s : %sactive", mdname(mddev),
7036 mddev->pers ? "" : "in");
7037 if (mddev->pers) {
7038 if (mddev->ro==1)
7039 seq_printf(seq, " (read-only)");
7040 if (mddev->ro==2)
7041 seq_printf(seq, " (auto-read-only)");
7042 seq_printf(seq, " %s", mddev->pers->name);
7045 sectors = 0;
7046 rdev_for_each(rdev, mddev) {
7047 char b[BDEVNAME_SIZE];
7048 seq_printf(seq, " %s[%d]",
7049 bdevname(rdev->bdev,b), rdev->desc_nr);
7050 if (test_bit(WriteMostly, &rdev->flags))
7051 seq_printf(seq, "(W)");
7052 if (test_bit(Faulty, &rdev->flags)) {
7053 seq_printf(seq, "(F)");
7054 continue;
7056 if (rdev->raid_disk < 0)
7057 seq_printf(seq, "(S)"); /* spare */
7058 if (test_bit(Replacement, &rdev->flags))
7059 seq_printf(seq, "(R)");
7060 sectors += rdev->sectors;
7063 if (!list_empty(&mddev->disks)) {
7064 if (mddev->pers)
7065 seq_printf(seq, "\n %llu blocks",
7066 (unsigned long long)
7067 mddev->array_sectors / 2);
7068 else
7069 seq_printf(seq, "\n %llu blocks",
7070 (unsigned long long)sectors / 2);
7072 if (mddev->persistent) {
7073 if (mddev->major_version != 0 ||
7074 mddev->minor_version != 90) {
7075 seq_printf(seq," super %d.%d",
7076 mddev->major_version,
7077 mddev->minor_version);
7079 } else if (mddev->external)
7080 seq_printf(seq, " super external:%s",
7081 mddev->metadata_type);
7082 else
7083 seq_printf(seq, " super non-persistent");
7085 if (mddev->pers) {
7086 mddev->pers->status(seq, mddev);
7087 seq_printf(seq, "\n ");
7088 if (mddev->pers->sync_request) {
7089 if (mddev->curr_resync > 2) {
7090 status_resync(seq, mddev);
7091 seq_printf(seq, "\n ");
7092 } else if (mddev->curr_resync >= 1)
7093 seq_printf(seq, "\tresync=DELAYED\n ");
7094 else if (mddev->recovery_cp < MaxSector)
7095 seq_printf(seq, "\tresync=PENDING\n ");
7097 } else
7098 seq_printf(seq, "\n ");
7100 bitmap_status(seq, mddev->bitmap);
7102 seq_printf(seq, "\n");
7104 mddev_unlock(mddev);
7106 return 0;
7109 static const struct seq_operations md_seq_ops = {
7110 .start = md_seq_start,
7111 .next = md_seq_next,
7112 .stop = md_seq_stop,
7113 .show = md_seq_show,
7116 static int md_seq_open(struct inode *inode, struct file *file)
7118 struct seq_file *seq;
7119 int error;
7121 error = seq_open(file, &md_seq_ops);
7122 if (error)
7123 return error;
7125 seq = file->private_data;
7126 seq->poll_event = atomic_read(&md_event_count);
7127 return error;
7130 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7132 struct seq_file *seq = filp->private_data;
7133 int mask;
7135 poll_wait(filp, &md_event_waiters, wait);
7137 /* always allow read */
7138 mask = POLLIN | POLLRDNORM;
7140 if (seq->poll_event != atomic_read(&md_event_count))
7141 mask |= POLLERR | POLLPRI;
7142 return mask;
7145 static const struct file_operations md_seq_fops = {
7146 .owner = THIS_MODULE,
7147 .open = md_seq_open,
7148 .read = seq_read,
7149 .llseek = seq_lseek,
7150 .release = seq_release_private,
7151 .poll = mdstat_poll,
7154 int register_md_personality(struct md_personality *p)
7156 spin_lock(&pers_lock);
7157 list_add_tail(&p->list, &pers_list);
7158 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7159 spin_unlock(&pers_lock);
7160 return 0;
7163 int unregister_md_personality(struct md_personality *p)
7165 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7166 spin_lock(&pers_lock);
7167 list_del_init(&p->list);
7168 spin_unlock(&pers_lock);
7169 return 0;
7172 static int is_mddev_idle(struct mddev *mddev, int init)
7174 struct md_rdev * rdev;
7175 int idle;
7176 int curr_events;
7178 idle = 1;
7179 rcu_read_lock();
7180 rdev_for_each_rcu(rdev, mddev) {
7181 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7182 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7183 (int)part_stat_read(&disk->part0, sectors[1]) -
7184 atomic_read(&disk->sync_io);
7185 /* sync IO will cause sync_io to increase before the disk_stats
7186 * as sync_io is counted when a request starts, and
7187 * disk_stats is counted when it completes.
7188 * So resync activity will cause curr_events to be smaller than
7189 * when there was no such activity.
7190 * non-sync IO will cause disk_stat to increase without
7191 * increasing sync_io so curr_events will (eventually)
7192 * be larger than it was before. Once it becomes
7193 * substantially larger, the test below will cause
7194 * the array to appear non-idle, and resync will slow
7195 * down.
7196 * If there is a lot of outstanding resync activity when
7197 * we set last_event to curr_events, then all that activity
7198 * completing might cause the array to appear non-idle
7199 * and resync will be slowed down even though there might
7200 * not have been non-resync activity. This will only
7201 * happen once though. 'last_events' will soon reflect
7202 * the state where there is little or no outstanding
7203 * resync requests, and further resync activity will
7204 * always make curr_events less than last_events.
7207 if (init || curr_events - rdev->last_events > 64) {
7208 rdev->last_events = curr_events;
7209 idle = 0;
7212 rcu_read_unlock();
7213 return idle;
7216 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7218 /* another "blocks" (512byte) blocks have been synced */
7219 atomic_sub(blocks, &mddev->recovery_active);
7220 wake_up(&mddev->recovery_wait);
7221 if (!ok) {
7222 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7223 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7224 md_wakeup_thread(mddev->thread);
7225 // stop recovery, signal do_sync ....
7230 /* md_write_start(mddev, bi)
7231 * If we need to update some array metadata (e.g. 'active' flag
7232 * in superblock) before writing, schedule a superblock update
7233 * and wait for it to complete.
7235 void md_write_start(struct mddev *mddev, struct bio *bi)
7237 int did_change = 0;
7238 if (bio_data_dir(bi) != WRITE)
7239 return;
7241 BUG_ON(mddev->ro == 1);
7242 if (mddev->ro == 2) {
7243 /* need to switch to read/write */
7244 mddev->ro = 0;
7245 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7246 md_wakeup_thread(mddev->thread);
7247 md_wakeup_thread(mddev->sync_thread);
7248 did_change = 1;
7250 atomic_inc(&mddev->writes_pending);
7251 if (mddev->safemode == 1)
7252 mddev->safemode = 0;
7253 if (mddev->in_sync) {
7254 spin_lock_irq(&mddev->write_lock);
7255 if (mddev->in_sync) {
7256 mddev->in_sync = 0;
7257 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7258 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7259 md_wakeup_thread(mddev->thread);
7260 did_change = 1;
7262 spin_unlock_irq(&mddev->write_lock);
7264 if (did_change)
7265 sysfs_notify_dirent_safe(mddev->sysfs_state);
7266 wait_event(mddev->sb_wait,
7267 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7270 void md_write_end(struct mddev *mddev)
7272 if (atomic_dec_and_test(&mddev->writes_pending)) {
7273 if (mddev->safemode == 2)
7274 md_wakeup_thread(mddev->thread);
7275 else if (mddev->safemode_delay)
7276 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7280 /* md_allow_write(mddev)
7281 * Calling this ensures that the array is marked 'active' so that writes
7282 * may proceed without blocking. It is important to call this before
7283 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7284 * Must be called with mddev_lock held.
7286 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7287 * is dropped, so return -EAGAIN after notifying userspace.
7289 int md_allow_write(struct mddev *mddev)
7291 if (!mddev->pers)
7292 return 0;
7293 if (mddev->ro)
7294 return 0;
7295 if (!mddev->pers->sync_request)
7296 return 0;
7298 spin_lock_irq(&mddev->write_lock);
7299 if (mddev->in_sync) {
7300 mddev->in_sync = 0;
7301 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7302 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7303 if (mddev->safemode_delay &&
7304 mddev->safemode == 0)
7305 mddev->safemode = 1;
7306 spin_unlock_irq(&mddev->write_lock);
7307 md_update_sb(mddev, 0);
7308 sysfs_notify_dirent_safe(mddev->sysfs_state);
7309 } else
7310 spin_unlock_irq(&mddev->write_lock);
7312 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7313 return -EAGAIN;
7314 else
7315 return 0;
7317 EXPORT_SYMBOL_GPL(md_allow_write);
7319 #define SYNC_MARKS 10
7320 #define SYNC_MARK_STEP (3*HZ)
7321 #define UPDATE_FREQUENCY (5*60*HZ)
7322 void md_do_sync(struct md_thread *thread)
7324 struct mddev *mddev = thread->mddev;
7325 struct mddev *mddev2;
7326 unsigned int currspeed = 0,
7327 window;
7328 sector_t max_sectors,j, io_sectors;
7329 unsigned long mark[SYNC_MARKS];
7330 unsigned long update_time;
7331 sector_t mark_cnt[SYNC_MARKS];
7332 int last_mark,m;
7333 struct list_head *tmp;
7334 sector_t last_check;
7335 int skipped = 0;
7336 struct md_rdev *rdev;
7337 char *desc;
7338 struct blk_plug plug;
7340 /* just incase thread restarts... */
7341 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7342 return;
7343 if (mddev->ro) /* never try to sync a read-only array */
7344 return;
7346 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7347 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7348 desc = "data-check";
7349 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7350 desc = "requested-resync";
7351 else
7352 desc = "resync";
7353 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7354 desc = "reshape";
7355 else
7356 desc = "recovery";
7358 /* we overload curr_resync somewhat here.
7359 * 0 == not engaged in resync at all
7360 * 2 == checking that there is no conflict with another sync
7361 * 1 == like 2, but have yielded to allow conflicting resync to
7362 * commense
7363 * other == active in resync - this many blocks
7365 * Before starting a resync we must have set curr_resync to
7366 * 2, and then checked that every "conflicting" array has curr_resync
7367 * less than ours. When we find one that is the same or higher
7368 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7369 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7370 * This will mean we have to start checking from the beginning again.
7374 do {
7375 mddev->curr_resync = 2;
7377 try_again:
7378 if (kthread_should_stop())
7379 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7381 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7382 goto skip;
7383 for_each_mddev(mddev2, tmp) {
7384 if (mddev2 == mddev)
7385 continue;
7386 if (!mddev->parallel_resync
7387 && mddev2->curr_resync
7388 && match_mddev_units(mddev, mddev2)) {
7389 DEFINE_WAIT(wq);
7390 if (mddev < mddev2 && mddev->curr_resync == 2) {
7391 /* arbitrarily yield */
7392 mddev->curr_resync = 1;
7393 wake_up(&resync_wait);
7395 if (mddev > mddev2 && mddev->curr_resync == 1)
7396 /* no need to wait here, we can wait the next
7397 * time 'round when curr_resync == 2
7399 continue;
7400 /* We need to wait 'interruptible' so as not to
7401 * contribute to the load average, and not to
7402 * be caught by 'softlockup'
7404 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7405 if (!kthread_should_stop() &&
7406 mddev2->curr_resync >= mddev->curr_resync) {
7407 printk(KERN_INFO "md: delaying %s of %s"
7408 " until %s has finished (they"
7409 " share one or more physical units)\n",
7410 desc, mdname(mddev), mdname(mddev2));
7411 mddev_put(mddev2);
7412 if (signal_pending(current))
7413 flush_signals(current);
7414 schedule();
7415 finish_wait(&resync_wait, &wq);
7416 goto try_again;
7418 finish_wait(&resync_wait, &wq);
7421 } while (mddev->curr_resync < 2);
7423 j = 0;
7424 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7425 /* resync follows the size requested by the personality,
7426 * which defaults to physical size, but can be virtual size
7428 max_sectors = mddev->resync_max_sectors;
7429 atomic64_set(&mddev->resync_mismatches, 0);
7430 /* we don't use the checkpoint if there's a bitmap */
7431 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7432 j = mddev->resync_min;
7433 else if (!mddev->bitmap)
7434 j = mddev->recovery_cp;
7436 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7437 max_sectors = mddev->resync_max_sectors;
7438 else {
7439 /* recovery follows the physical size of devices */
7440 max_sectors = mddev->dev_sectors;
7441 j = MaxSector;
7442 rcu_read_lock();
7443 rdev_for_each_rcu(rdev, mddev)
7444 if (rdev->raid_disk >= 0 &&
7445 !test_bit(Faulty, &rdev->flags) &&
7446 !test_bit(In_sync, &rdev->flags) &&
7447 rdev->recovery_offset < j)
7448 j = rdev->recovery_offset;
7449 rcu_read_unlock();
7452 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7453 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7454 " %d KB/sec/disk.\n", speed_min(mddev));
7455 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7456 "(but not more than %d KB/sec) for %s.\n",
7457 speed_max(mddev), desc);
7459 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7461 io_sectors = 0;
7462 for (m = 0; m < SYNC_MARKS; m++) {
7463 mark[m] = jiffies;
7464 mark_cnt[m] = io_sectors;
7466 last_mark = 0;
7467 mddev->resync_mark = mark[last_mark];
7468 mddev->resync_mark_cnt = mark_cnt[last_mark];
7471 * Tune reconstruction:
7473 window = 32*(PAGE_SIZE/512);
7474 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7475 window/2, (unsigned long long)max_sectors/2);
7477 atomic_set(&mddev->recovery_active, 0);
7478 last_check = 0;
7480 if (j>2) {
7481 printk(KERN_INFO
7482 "md: resuming %s of %s from checkpoint.\n",
7483 desc, mdname(mddev));
7484 mddev->curr_resync = j;
7485 } else
7486 mddev->curr_resync = 3; /* no longer delayed */
7487 mddev->curr_resync_completed = j;
7488 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7489 md_new_event(mddev);
7490 update_time = jiffies;
7492 blk_start_plug(&plug);
7493 while (j < max_sectors) {
7494 sector_t sectors;
7496 skipped = 0;
7498 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7499 ((mddev->curr_resync > mddev->curr_resync_completed &&
7500 (mddev->curr_resync - mddev->curr_resync_completed)
7501 > (max_sectors >> 4)) ||
7502 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7503 (j - mddev->curr_resync_completed)*2
7504 >= mddev->resync_max - mddev->curr_resync_completed
7505 )) {
7506 /* time to update curr_resync_completed */
7507 wait_event(mddev->recovery_wait,
7508 atomic_read(&mddev->recovery_active) == 0);
7509 mddev->curr_resync_completed = j;
7510 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7511 j > mddev->recovery_cp)
7512 mddev->recovery_cp = j;
7513 update_time = jiffies;
7514 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7515 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7518 while (j >= mddev->resync_max && !kthread_should_stop()) {
7519 /* As this condition is controlled by user-space,
7520 * we can block indefinitely, so use '_interruptible'
7521 * to avoid triggering warnings.
7523 flush_signals(current); /* just in case */
7524 wait_event_interruptible(mddev->recovery_wait,
7525 mddev->resync_max > j
7526 || kthread_should_stop());
7529 if (kthread_should_stop())
7530 goto interrupted;
7532 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7533 currspeed < speed_min(mddev));
7534 if (sectors == 0) {
7535 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7536 goto out;
7539 if (!skipped) { /* actual IO requested */
7540 io_sectors += sectors;
7541 atomic_add(sectors, &mddev->recovery_active);
7544 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7545 break;
7547 j += sectors;
7548 if (j > 2)
7549 mddev->curr_resync = j;
7550 mddev->curr_mark_cnt = io_sectors;
7551 if (last_check == 0)
7552 /* this is the earliest that rebuild will be
7553 * visible in /proc/mdstat
7555 md_new_event(mddev);
7557 if (last_check + window > io_sectors || j == max_sectors)
7558 continue;
7560 last_check = io_sectors;
7561 repeat:
7562 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7563 /* step marks */
7564 int next = (last_mark+1) % SYNC_MARKS;
7566 mddev->resync_mark = mark[next];
7567 mddev->resync_mark_cnt = mark_cnt[next];
7568 mark[next] = jiffies;
7569 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7570 last_mark = next;
7574 if (kthread_should_stop())
7575 goto interrupted;
7579 * this loop exits only if either when we are slower than
7580 * the 'hard' speed limit, or the system was IO-idle for
7581 * a jiffy.
7582 * the system might be non-idle CPU-wise, but we only care
7583 * about not overloading the IO subsystem. (things like an
7584 * e2fsck being done on the RAID array should execute fast)
7586 cond_resched();
7588 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7589 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7591 if (currspeed > speed_min(mddev)) {
7592 if ((currspeed > speed_max(mddev)) ||
7593 !is_mddev_idle(mddev, 0)) {
7594 msleep(500);
7595 goto repeat;
7599 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7601 * this also signals 'finished resyncing' to md_stop
7603 out:
7604 blk_finish_plug(&plug);
7605 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7607 /* tell personality that we are finished */
7608 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7610 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7611 mddev->curr_resync > 2) {
7612 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7613 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7614 if (mddev->curr_resync >= mddev->recovery_cp) {
7615 printk(KERN_INFO
7616 "md: checkpointing %s of %s.\n",
7617 desc, mdname(mddev));
7618 if (test_bit(MD_RECOVERY_ERROR,
7619 &mddev->recovery))
7620 mddev->recovery_cp =
7621 mddev->curr_resync_completed;
7622 else
7623 mddev->recovery_cp =
7624 mddev->curr_resync;
7626 } else
7627 mddev->recovery_cp = MaxSector;
7628 } else {
7629 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7630 mddev->curr_resync = MaxSector;
7631 rcu_read_lock();
7632 rdev_for_each_rcu(rdev, mddev)
7633 if (rdev->raid_disk >= 0 &&
7634 mddev->delta_disks >= 0 &&
7635 !test_bit(Faulty, &rdev->flags) &&
7636 !test_bit(In_sync, &rdev->flags) &&
7637 rdev->recovery_offset < mddev->curr_resync)
7638 rdev->recovery_offset = mddev->curr_resync;
7639 rcu_read_unlock();
7642 skip:
7643 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7645 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7646 /* We completed so min/max setting can be forgotten if used. */
7647 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7648 mddev->resync_min = 0;
7649 mddev->resync_max = MaxSector;
7650 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7651 mddev->resync_min = mddev->curr_resync_completed;
7652 mddev->curr_resync = 0;
7653 wake_up(&resync_wait);
7654 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7655 md_wakeup_thread(mddev->thread);
7656 return;
7658 interrupted:
7660 * got a signal, exit.
7662 printk(KERN_INFO
7663 "md: md_do_sync() got signal ... exiting\n");
7664 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7665 goto out;
7668 EXPORT_SYMBOL_GPL(md_do_sync);
7670 static int remove_and_add_spares(struct mddev *mddev,
7671 struct md_rdev *this)
7673 struct md_rdev *rdev;
7674 int spares = 0;
7675 int removed = 0;
7677 rdev_for_each(rdev, mddev)
7678 if ((this == NULL || rdev == this) &&
7679 rdev->raid_disk >= 0 &&
7680 !test_bit(Blocked, &rdev->flags) &&
7681 (test_bit(Faulty, &rdev->flags) ||
7682 ! test_bit(In_sync, &rdev->flags)) &&
7683 atomic_read(&rdev->nr_pending)==0) {
7684 if (mddev->pers->hot_remove_disk(
7685 mddev, rdev) == 0) {
7686 sysfs_unlink_rdev(mddev, rdev);
7687 rdev->raid_disk = -1;
7688 removed++;
7691 if (removed && mddev->kobj.sd)
7692 sysfs_notify(&mddev->kobj, NULL, "degraded");
7694 if (this)
7695 goto no_add;
7697 rdev_for_each(rdev, mddev) {
7698 if (rdev->raid_disk >= 0 &&
7699 !test_bit(In_sync, &rdev->flags) &&
7700 !test_bit(Faulty, &rdev->flags))
7701 spares++;
7702 if (rdev->raid_disk >= 0)
7703 continue;
7704 if (test_bit(Faulty, &rdev->flags))
7705 continue;
7706 if (mddev->ro &&
7707 rdev->saved_raid_disk < 0)
7708 continue;
7710 rdev->recovery_offset = 0;
7711 if (rdev->saved_raid_disk >= 0 && mddev->in_sync) {
7712 spin_lock_irq(&mddev->write_lock);
7713 if (mddev->in_sync)
7714 /* OK, this device, which is in_sync,
7715 * will definitely be noticed before
7716 * the next write, so recovery isn't
7717 * needed.
7719 rdev->recovery_offset = mddev->recovery_cp;
7720 spin_unlock_irq(&mddev->write_lock);
7722 if (mddev->ro && rdev->recovery_offset != MaxSector)
7723 /* not safe to add this disk now */
7724 continue;
7725 if (mddev->pers->
7726 hot_add_disk(mddev, rdev) == 0) {
7727 if (sysfs_link_rdev(mddev, rdev))
7728 /* failure here is OK */;
7729 spares++;
7730 md_new_event(mddev);
7731 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7734 no_add:
7735 if (removed)
7736 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7737 return spares;
7741 * This routine is regularly called by all per-raid-array threads to
7742 * deal with generic issues like resync and super-block update.
7743 * Raid personalities that don't have a thread (linear/raid0) do not
7744 * need this as they never do any recovery or update the superblock.
7746 * It does not do any resync itself, but rather "forks" off other threads
7747 * to do that as needed.
7748 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7749 * "->recovery" and create a thread at ->sync_thread.
7750 * When the thread finishes it sets MD_RECOVERY_DONE
7751 * and wakeups up this thread which will reap the thread and finish up.
7752 * This thread also removes any faulty devices (with nr_pending == 0).
7754 * The overall approach is:
7755 * 1/ if the superblock needs updating, update it.
7756 * 2/ If a recovery thread is running, don't do anything else.
7757 * 3/ If recovery has finished, clean up, possibly marking spares active.
7758 * 4/ If there are any faulty devices, remove them.
7759 * 5/ If array is degraded, try to add spares devices
7760 * 6/ If array has spares or is not in-sync, start a resync thread.
7762 void md_check_recovery(struct mddev *mddev)
7764 if (mddev->suspended)
7765 return;
7767 if (mddev->bitmap)
7768 bitmap_daemon_work(mddev);
7770 if (signal_pending(current)) {
7771 if (mddev->pers->sync_request && !mddev->external) {
7772 printk(KERN_INFO "md: %s in immediate safe mode\n",
7773 mdname(mddev));
7774 mddev->safemode = 2;
7776 flush_signals(current);
7779 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7780 return;
7781 if ( ! (
7782 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7783 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7784 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7785 (mddev->external == 0 && mddev->safemode == 1) ||
7786 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7787 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7789 return;
7791 if (mddev_trylock(mddev)) {
7792 int spares = 0;
7794 if (mddev->ro) {
7795 /* On a read-only array we can:
7796 * - remove failed devices
7797 * - add already-in_sync devices if the array itself
7798 * is in-sync.
7799 * As we only add devices that are already in-sync,
7800 * we can activate the spares immediately.
7802 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7803 remove_and_add_spares(mddev, NULL);
7804 mddev->pers->spare_active(mddev);
7805 goto unlock;
7808 if (!mddev->external) {
7809 int did_change = 0;
7810 spin_lock_irq(&mddev->write_lock);
7811 if (mddev->safemode &&
7812 !atomic_read(&mddev->writes_pending) &&
7813 !mddev->in_sync &&
7814 mddev->recovery_cp == MaxSector) {
7815 mddev->in_sync = 1;
7816 did_change = 1;
7817 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7819 if (mddev->safemode == 1)
7820 mddev->safemode = 0;
7821 spin_unlock_irq(&mddev->write_lock);
7822 if (did_change)
7823 sysfs_notify_dirent_safe(mddev->sysfs_state);
7826 if (mddev->flags)
7827 md_update_sb(mddev, 0);
7829 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7830 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7831 /* resync/recovery still happening */
7832 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7833 goto unlock;
7835 if (mddev->sync_thread) {
7836 md_reap_sync_thread(mddev);
7837 goto unlock;
7839 /* Set RUNNING before clearing NEEDED to avoid
7840 * any transients in the value of "sync_action".
7842 mddev->curr_resync_completed = 0;
7843 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7844 /* Clear some bits that don't mean anything, but
7845 * might be left set
7847 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7848 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7850 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7851 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7852 goto unlock;
7853 /* no recovery is running.
7854 * remove any failed drives, then
7855 * add spares if possible.
7856 * Spares are also removed and re-added, to allow
7857 * the personality to fail the re-add.
7860 if (mddev->reshape_position != MaxSector) {
7861 if (mddev->pers->check_reshape == NULL ||
7862 mddev->pers->check_reshape(mddev) != 0)
7863 /* Cannot proceed */
7864 goto unlock;
7865 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7866 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7867 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7868 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7869 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7870 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7871 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7872 } else if (mddev->recovery_cp < MaxSector) {
7873 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7874 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7875 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7876 /* nothing to be done ... */
7877 goto unlock;
7879 if (mddev->pers->sync_request) {
7880 if (spares) {
7881 /* We are adding a device or devices to an array
7882 * which has the bitmap stored on all devices.
7883 * So make sure all bitmap pages get written
7885 bitmap_write_all(mddev->bitmap);
7887 mddev->sync_thread = md_register_thread(md_do_sync,
7888 mddev,
7889 "resync");
7890 if (!mddev->sync_thread) {
7891 printk(KERN_ERR "%s: could not start resync"
7892 " thread...\n",
7893 mdname(mddev));
7894 /* leave the spares where they are, it shouldn't hurt */
7895 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7896 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7897 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7898 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7899 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7900 } else
7901 md_wakeup_thread(mddev->sync_thread);
7902 sysfs_notify_dirent_safe(mddev->sysfs_action);
7903 md_new_event(mddev);
7905 unlock:
7906 if (!mddev->sync_thread) {
7907 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7908 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7909 &mddev->recovery))
7910 if (mddev->sysfs_action)
7911 sysfs_notify_dirent_safe(mddev->sysfs_action);
7913 mddev_unlock(mddev);
7917 void md_reap_sync_thread(struct mddev *mddev)
7919 struct md_rdev *rdev;
7921 /* resync has finished, collect result */
7922 md_unregister_thread(&mddev->sync_thread);
7923 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7924 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7925 /* success...*/
7926 /* activate any spares */
7927 if (mddev->pers->spare_active(mddev)) {
7928 sysfs_notify(&mddev->kobj, NULL,
7929 "degraded");
7930 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7933 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7934 mddev->pers->finish_reshape)
7935 mddev->pers->finish_reshape(mddev);
7937 /* If array is no-longer degraded, then any saved_raid_disk
7938 * information must be scrapped. Also if any device is now
7939 * In_sync we must scrape the saved_raid_disk for that device
7940 * do the superblock for an incrementally recovered device
7941 * written out.
7943 rdev_for_each(rdev, mddev)
7944 if (!mddev->degraded ||
7945 test_bit(In_sync, &rdev->flags))
7946 rdev->saved_raid_disk = -1;
7948 md_update_sb(mddev, 1);
7949 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7950 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7951 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7952 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7953 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7954 /* flag recovery needed just to double check */
7955 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7956 sysfs_notify_dirent_safe(mddev->sysfs_action);
7957 md_new_event(mddev);
7958 if (mddev->event_work.func)
7959 queue_work(md_misc_wq, &mddev->event_work);
7962 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7964 sysfs_notify_dirent_safe(rdev->sysfs_state);
7965 wait_event_timeout(rdev->blocked_wait,
7966 !test_bit(Blocked, &rdev->flags) &&
7967 !test_bit(BlockedBadBlocks, &rdev->flags),
7968 msecs_to_jiffies(5000));
7969 rdev_dec_pending(rdev, mddev);
7971 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7973 void md_finish_reshape(struct mddev *mddev)
7975 /* called be personality module when reshape completes. */
7976 struct md_rdev *rdev;
7978 rdev_for_each(rdev, mddev) {
7979 if (rdev->data_offset > rdev->new_data_offset)
7980 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7981 else
7982 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7983 rdev->data_offset = rdev->new_data_offset;
7986 EXPORT_SYMBOL(md_finish_reshape);
7988 /* Bad block management.
7989 * We can record which blocks on each device are 'bad' and so just
7990 * fail those blocks, or that stripe, rather than the whole device.
7991 * Entries in the bad-block table are 64bits wide. This comprises:
7992 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7993 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7994 * A 'shift' can be set so that larger blocks are tracked and
7995 * consequently larger devices can be covered.
7996 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7998 * Locking of the bad-block table uses a seqlock so md_is_badblock
7999 * might need to retry if it is very unlucky.
8000 * We will sometimes want to check for bad blocks in a bi_end_io function,
8001 * so we use the write_seqlock_irq variant.
8003 * When looking for a bad block we specify a range and want to
8004 * know if any block in the range is bad. So we binary-search
8005 * to the last range that starts at-or-before the given endpoint,
8006 * (or "before the sector after the target range")
8007 * then see if it ends after the given start.
8008 * We return
8009 * 0 if there are no known bad blocks in the range
8010 * 1 if there are known bad block which are all acknowledged
8011 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8012 * plus the start/length of the first bad section we overlap.
8014 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8015 sector_t *first_bad, int *bad_sectors)
8017 int hi;
8018 int lo;
8019 u64 *p = bb->page;
8020 int rv;
8021 sector_t target = s + sectors;
8022 unsigned seq;
8024 if (bb->shift > 0) {
8025 /* round the start down, and the end up */
8026 s >>= bb->shift;
8027 target += (1<<bb->shift) - 1;
8028 target >>= bb->shift;
8029 sectors = target - s;
8031 /* 'target' is now the first block after the bad range */
8033 retry:
8034 seq = read_seqbegin(&bb->lock);
8035 lo = 0;
8036 rv = 0;
8037 hi = bb->count;
8039 /* Binary search between lo and hi for 'target'
8040 * i.e. for the last range that starts before 'target'
8042 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8043 * are known not to be the last range before target.
8044 * VARIANT: hi-lo is the number of possible
8045 * ranges, and decreases until it reaches 1
8047 while (hi - lo > 1) {
8048 int mid = (lo + hi) / 2;
8049 sector_t a = BB_OFFSET(p[mid]);
8050 if (a < target)
8051 /* This could still be the one, earlier ranges
8052 * could not. */
8053 lo = mid;
8054 else
8055 /* This and later ranges are definitely out. */
8056 hi = mid;
8058 /* 'lo' might be the last that started before target, but 'hi' isn't */
8059 if (hi > lo) {
8060 /* need to check all range that end after 's' to see if
8061 * any are unacknowledged.
8063 while (lo >= 0 &&
8064 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8065 if (BB_OFFSET(p[lo]) < target) {
8066 /* starts before the end, and finishes after
8067 * the start, so they must overlap
8069 if (rv != -1 && BB_ACK(p[lo]))
8070 rv = 1;
8071 else
8072 rv = -1;
8073 *first_bad = BB_OFFSET(p[lo]);
8074 *bad_sectors = BB_LEN(p[lo]);
8076 lo--;
8080 if (read_seqretry(&bb->lock, seq))
8081 goto retry;
8083 return rv;
8085 EXPORT_SYMBOL_GPL(md_is_badblock);
8088 * Add a range of bad blocks to the table.
8089 * This might extend the table, or might contract it
8090 * if two adjacent ranges can be merged.
8091 * We binary-search to find the 'insertion' point, then
8092 * decide how best to handle it.
8094 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8095 int acknowledged)
8097 u64 *p;
8098 int lo, hi;
8099 int rv = 1;
8101 if (bb->shift < 0)
8102 /* badblocks are disabled */
8103 return 0;
8105 if (bb->shift) {
8106 /* round the start down, and the end up */
8107 sector_t next = s + sectors;
8108 s >>= bb->shift;
8109 next += (1<<bb->shift) - 1;
8110 next >>= bb->shift;
8111 sectors = next - s;
8114 write_seqlock_irq(&bb->lock);
8116 p = bb->page;
8117 lo = 0;
8118 hi = bb->count;
8119 /* Find the last range that starts at-or-before 's' */
8120 while (hi - lo > 1) {
8121 int mid = (lo + hi) / 2;
8122 sector_t a = BB_OFFSET(p[mid]);
8123 if (a <= s)
8124 lo = mid;
8125 else
8126 hi = mid;
8128 if (hi > lo && BB_OFFSET(p[lo]) > s)
8129 hi = lo;
8131 if (hi > lo) {
8132 /* we found a range that might merge with the start
8133 * of our new range
8135 sector_t a = BB_OFFSET(p[lo]);
8136 sector_t e = a + BB_LEN(p[lo]);
8137 int ack = BB_ACK(p[lo]);
8138 if (e >= s) {
8139 /* Yes, we can merge with a previous range */
8140 if (s == a && s + sectors >= e)
8141 /* new range covers old */
8142 ack = acknowledged;
8143 else
8144 ack = ack && acknowledged;
8146 if (e < s + sectors)
8147 e = s + sectors;
8148 if (e - a <= BB_MAX_LEN) {
8149 p[lo] = BB_MAKE(a, e-a, ack);
8150 s = e;
8151 } else {
8152 /* does not all fit in one range,
8153 * make p[lo] maximal
8155 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8156 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8157 s = a + BB_MAX_LEN;
8159 sectors = e - s;
8162 if (sectors && hi < bb->count) {
8163 /* 'hi' points to the first range that starts after 's'.
8164 * Maybe we can merge with the start of that range */
8165 sector_t a = BB_OFFSET(p[hi]);
8166 sector_t e = a + BB_LEN(p[hi]);
8167 int ack = BB_ACK(p[hi]);
8168 if (a <= s + sectors) {
8169 /* merging is possible */
8170 if (e <= s + sectors) {
8171 /* full overlap */
8172 e = s + sectors;
8173 ack = acknowledged;
8174 } else
8175 ack = ack && acknowledged;
8177 a = s;
8178 if (e - a <= BB_MAX_LEN) {
8179 p[hi] = BB_MAKE(a, e-a, ack);
8180 s = e;
8181 } else {
8182 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8183 s = a + BB_MAX_LEN;
8185 sectors = e - s;
8186 lo = hi;
8187 hi++;
8190 if (sectors == 0 && hi < bb->count) {
8191 /* we might be able to combine lo and hi */
8192 /* Note: 's' is at the end of 'lo' */
8193 sector_t a = BB_OFFSET(p[hi]);
8194 int lolen = BB_LEN(p[lo]);
8195 int hilen = BB_LEN(p[hi]);
8196 int newlen = lolen + hilen - (s - a);
8197 if (s >= a && newlen < BB_MAX_LEN) {
8198 /* yes, we can combine them */
8199 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8200 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8201 memmove(p + hi, p + hi + 1,
8202 (bb->count - hi - 1) * 8);
8203 bb->count--;
8206 while (sectors) {
8207 /* didn't merge (it all).
8208 * Need to add a range just before 'hi' */
8209 if (bb->count >= MD_MAX_BADBLOCKS) {
8210 /* No room for more */
8211 rv = 0;
8212 break;
8213 } else {
8214 int this_sectors = sectors;
8215 memmove(p + hi + 1, p + hi,
8216 (bb->count - hi) * 8);
8217 bb->count++;
8219 if (this_sectors > BB_MAX_LEN)
8220 this_sectors = BB_MAX_LEN;
8221 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8222 sectors -= this_sectors;
8223 s += this_sectors;
8227 bb->changed = 1;
8228 if (!acknowledged)
8229 bb->unacked_exist = 1;
8230 write_sequnlock_irq(&bb->lock);
8232 return rv;
8235 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8236 int is_new)
8238 int rv;
8239 if (is_new)
8240 s += rdev->new_data_offset;
8241 else
8242 s += rdev->data_offset;
8243 rv = md_set_badblocks(&rdev->badblocks,
8244 s, sectors, 0);
8245 if (rv) {
8246 /* Make sure they get written out promptly */
8247 sysfs_notify_dirent_safe(rdev->sysfs_state);
8248 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8249 md_wakeup_thread(rdev->mddev->thread);
8251 return rv;
8253 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8256 * Remove a range of bad blocks from the table.
8257 * This may involve extending the table if we spilt a region,
8258 * but it must not fail. So if the table becomes full, we just
8259 * drop the remove request.
8261 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8263 u64 *p;
8264 int lo, hi;
8265 sector_t target = s + sectors;
8266 int rv = 0;
8268 if (bb->shift > 0) {
8269 /* When clearing we round the start up and the end down.
8270 * This should not matter as the shift should align with
8271 * the block size and no rounding should ever be needed.
8272 * However it is better the think a block is bad when it
8273 * isn't than to think a block is not bad when it is.
8275 s += (1<<bb->shift) - 1;
8276 s >>= bb->shift;
8277 target >>= bb->shift;
8278 sectors = target - s;
8281 write_seqlock_irq(&bb->lock);
8283 p = bb->page;
8284 lo = 0;
8285 hi = bb->count;
8286 /* Find the last range that starts before 'target' */
8287 while (hi - lo > 1) {
8288 int mid = (lo + hi) / 2;
8289 sector_t a = BB_OFFSET(p[mid]);
8290 if (a < target)
8291 lo = mid;
8292 else
8293 hi = mid;
8295 if (hi > lo) {
8296 /* p[lo] is the last range that could overlap the
8297 * current range. Earlier ranges could also overlap,
8298 * but only this one can overlap the end of the range.
8300 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8301 /* Partial overlap, leave the tail of this range */
8302 int ack = BB_ACK(p[lo]);
8303 sector_t a = BB_OFFSET(p[lo]);
8304 sector_t end = a + BB_LEN(p[lo]);
8306 if (a < s) {
8307 /* we need to split this range */
8308 if (bb->count >= MD_MAX_BADBLOCKS) {
8309 rv = 0;
8310 goto out;
8312 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8313 bb->count++;
8314 p[lo] = BB_MAKE(a, s-a, ack);
8315 lo++;
8317 p[lo] = BB_MAKE(target, end - target, ack);
8318 /* there is no longer an overlap */
8319 hi = lo;
8320 lo--;
8322 while (lo >= 0 &&
8323 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8324 /* This range does overlap */
8325 if (BB_OFFSET(p[lo]) < s) {
8326 /* Keep the early parts of this range. */
8327 int ack = BB_ACK(p[lo]);
8328 sector_t start = BB_OFFSET(p[lo]);
8329 p[lo] = BB_MAKE(start, s - start, ack);
8330 /* now low doesn't overlap, so.. */
8331 break;
8333 lo--;
8335 /* 'lo' is strictly before, 'hi' is strictly after,
8336 * anything between needs to be discarded
8338 if (hi - lo > 1) {
8339 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8340 bb->count -= (hi - lo - 1);
8344 bb->changed = 1;
8345 out:
8346 write_sequnlock_irq(&bb->lock);
8347 return rv;
8350 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8351 int is_new)
8353 if (is_new)
8354 s += rdev->new_data_offset;
8355 else
8356 s += rdev->data_offset;
8357 return md_clear_badblocks(&rdev->badblocks,
8358 s, sectors);
8360 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8363 * Acknowledge all bad blocks in a list.
8364 * This only succeeds if ->changed is clear. It is used by
8365 * in-kernel metadata updates
8367 void md_ack_all_badblocks(struct badblocks *bb)
8369 if (bb->page == NULL || bb->changed)
8370 /* no point even trying */
8371 return;
8372 write_seqlock_irq(&bb->lock);
8374 if (bb->changed == 0 && bb->unacked_exist) {
8375 u64 *p = bb->page;
8376 int i;
8377 for (i = 0; i < bb->count ; i++) {
8378 if (!BB_ACK(p[i])) {
8379 sector_t start = BB_OFFSET(p[i]);
8380 int len = BB_LEN(p[i]);
8381 p[i] = BB_MAKE(start, len, 1);
8384 bb->unacked_exist = 0;
8386 write_sequnlock_irq(&bb->lock);
8388 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8390 /* sysfs access to bad-blocks list.
8391 * We present two files.
8392 * 'bad-blocks' lists sector numbers and lengths of ranges that
8393 * are recorded as bad. The list is truncated to fit within
8394 * the one-page limit of sysfs.
8395 * Writing "sector length" to this file adds an acknowledged
8396 * bad block list.
8397 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8398 * been acknowledged. Writing to this file adds bad blocks
8399 * without acknowledging them. This is largely for testing.
8402 static ssize_t
8403 badblocks_show(struct badblocks *bb, char *page, int unack)
8405 size_t len;
8406 int i;
8407 u64 *p = bb->page;
8408 unsigned seq;
8410 if (bb->shift < 0)
8411 return 0;
8413 retry:
8414 seq = read_seqbegin(&bb->lock);
8416 len = 0;
8417 i = 0;
8419 while (len < PAGE_SIZE && i < bb->count) {
8420 sector_t s = BB_OFFSET(p[i]);
8421 unsigned int length = BB_LEN(p[i]);
8422 int ack = BB_ACK(p[i]);
8423 i++;
8425 if (unack && ack)
8426 continue;
8428 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8429 (unsigned long long)s << bb->shift,
8430 length << bb->shift);
8432 if (unack && len == 0)
8433 bb->unacked_exist = 0;
8435 if (read_seqretry(&bb->lock, seq))
8436 goto retry;
8438 return len;
8441 #define DO_DEBUG 1
8443 static ssize_t
8444 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8446 unsigned long long sector;
8447 int length;
8448 char newline;
8449 #ifdef DO_DEBUG
8450 /* Allow clearing via sysfs *only* for testing/debugging.
8451 * Normally only a successful write may clear a badblock
8453 int clear = 0;
8454 if (page[0] == '-') {
8455 clear = 1;
8456 page++;
8458 #endif /* DO_DEBUG */
8460 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8461 case 3:
8462 if (newline != '\n')
8463 return -EINVAL;
8464 case 2:
8465 if (length <= 0)
8466 return -EINVAL;
8467 break;
8468 default:
8469 return -EINVAL;
8472 #ifdef DO_DEBUG
8473 if (clear) {
8474 md_clear_badblocks(bb, sector, length);
8475 return len;
8477 #endif /* DO_DEBUG */
8478 if (md_set_badblocks(bb, sector, length, !unack))
8479 return len;
8480 else
8481 return -ENOSPC;
8484 static int md_notify_reboot(struct notifier_block *this,
8485 unsigned long code, void *x)
8487 struct list_head *tmp;
8488 struct mddev *mddev;
8489 int need_delay = 0;
8491 for_each_mddev(mddev, tmp) {
8492 if (mddev_trylock(mddev)) {
8493 if (mddev->pers)
8494 __md_stop_writes(mddev);
8495 mddev->safemode = 2;
8496 mddev_unlock(mddev);
8498 need_delay = 1;
8501 * certain more exotic SCSI devices are known to be
8502 * volatile wrt too early system reboots. While the
8503 * right place to handle this issue is the given
8504 * driver, we do want to have a safe RAID driver ...
8506 if (need_delay)
8507 mdelay(1000*1);
8509 return NOTIFY_DONE;
8512 static struct notifier_block md_notifier = {
8513 .notifier_call = md_notify_reboot,
8514 .next = NULL,
8515 .priority = INT_MAX, /* before any real devices */
8518 static void md_geninit(void)
8520 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8522 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8525 static int __init md_init(void)
8527 int ret = -ENOMEM;
8529 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8530 if (!md_wq)
8531 goto err_wq;
8533 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8534 if (!md_misc_wq)
8535 goto err_misc_wq;
8537 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8538 goto err_md;
8540 if ((ret = register_blkdev(0, "mdp")) < 0)
8541 goto err_mdp;
8542 mdp_major = ret;
8544 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8545 md_probe, NULL, NULL);
8546 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8547 md_probe, NULL, NULL);
8549 register_reboot_notifier(&md_notifier);
8550 raid_table_header = register_sysctl_table(raid_root_table);
8552 md_geninit();
8553 return 0;
8555 err_mdp:
8556 unregister_blkdev(MD_MAJOR, "md");
8557 err_md:
8558 destroy_workqueue(md_misc_wq);
8559 err_misc_wq:
8560 destroy_workqueue(md_wq);
8561 err_wq:
8562 return ret;
8565 #ifndef MODULE
8568 * Searches all registered partitions for autorun RAID arrays
8569 * at boot time.
8572 static LIST_HEAD(all_detected_devices);
8573 struct detected_devices_node {
8574 struct list_head list;
8575 dev_t dev;
8578 void md_autodetect_dev(dev_t dev)
8580 struct detected_devices_node *node_detected_dev;
8582 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8583 if (node_detected_dev) {
8584 node_detected_dev->dev = dev;
8585 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8586 } else {
8587 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8588 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8593 static void autostart_arrays(int part)
8595 struct md_rdev *rdev;
8596 struct detected_devices_node *node_detected_dev;
8597 dev_t dev;
8598 int i_scanned, i_passed;
8600 i_scanned = 0;
8601 i_passed = 0;
8603 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8605 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8606 i_scanned++;
8607 node_detected_dev = list_entry(all_detected_devices.next,
8608 struct detected_devices_node, list);
8609 list_del(&node_detected_dev->list);
8610 dev = node_detected_dev->dev;
8611 kfree(node_detected_dev);
8612 rdev = md_import_device(dev,0, 90);
8613 if (IS_ERR(rdev))
8614 continue;
8616 if (test_bit(Faulty, &rdev->flags)) {
8617 MD_BUG();
8618 continue;
8620 set_bit(AutoDetected, &rdev->flags);
8621 list_add(&rdev->same_set, &pending_raid_disks);
8622 i_passed++;
8625 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8626 i_scanned, i_passed);
8628 autorun_devices(part);
8631 #endif /* !MODULE */
8633 static __exit void md_exit(void)
8635 struct mddev *mddev;
8636 struct list_head *tmp;
8638 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8639 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8641 unregister_blkdev(MD_MAJOR,"md");
8642 unregister_blkdev(mdp_major, "mdp");
8643 unregister_reboot_notifier(&md_notifier);
8644 unregister_sysctl_table(raid_table_header);
8645 remove_proc_entry("mdstat", NULL);
8646 for_each_mddev(mddev, tmp) {
8647 export_array(mddev);
8648 mddev->hold_active = 0;
8650 destroy_workqueue(md_misc_wq);
8651 destroy_workqueue(md_wq);
8654 subsys_initcall(md_init);
8655 module_exit(md_exit)
8657 static int get_ro(char *buffer, struct kernel_param *kp)
8659 return sprintf(buffer, "%d", start_readonly);
8661 static int set_ro(const char *val, struct kernel_param *kp)
8663 char *e;
8664 int num = simple_strtoul(val, &e, 10);
8665 if (*val && (*e == '\0' || *e == '\n')) {
8666 start_readonly = num;
8667 return 0;
8669 return -EINVAL;
8672 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8673 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8675 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8677 EXPORT_SYMBOL(register_md_personality);
8678 EXPORT_SYMBOL(unregister_md_personality);
8679 EXPORT_SYMBOL(md_error);
8680 EXPORT_SYMBOL(md_done_sync);
8681 EXPORT_SYMBOL(md_write_start);
8682 EXPORT_SYMBOL(md_write_end);
8683 EXPORT_SYMBOL(md_register_thread);
8684 EXPORT_SYMBOL(md_unregister_thread);
8685 EXPORT_SYMBOL(md_wakeup_thread);
8686 EXPORT_SYMBOL(md_check_recovery);
8687 EXPORT_SYMBOL(md_reap_sync_thread);
8688 MODULE_LICENSE("GPL");
8689 MODULE_DESCRIPTION("MD RAID framework");
8690 MODULE_ALIAS("md");
8691 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);