ALSA: hda - Set TLV_DB_SCALE_MUTE bit for cx5051 vmaster
[linux-2.6/btrfs-unstable.git] / mm / slab.c
blob3070b929a1bfa67778e415525403e9b36e392344
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
130 #include "slab.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
175 static bool pfmemalloc_active __read_mostly;
178 * struct array_cache
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 spinlock_t lock;
195 void *entry[]; /*
196 * Must have this definition in here for the proper
197 * alignment of array_cache. Also simplifies accessing
198 * the entries.
200 * Entries should not be directly dereferenced as
201 * entries belonging to slabs marked pfmemalloc will
202 * have the lower bits set SLAB_OBJ_PFMEMALLOC
206 #define SLAB_OBJ_PFMEMALLOC 1
207 static inline bool is_obj_pfmemalloc(void *objp)
209 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
212 static inline void set_obj_pfmemalloc(void **objp)
214 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
215 return;
218 static inline void clear_obj_pfmemalloc(void **objp)
220 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
224 * bootstrap: The caches do not work without cpuarrays anymore, but the
225 * cpuarrays are allocated from the generic caches...
227 #define BOOT_CPUCACHE_ENTRIES 1
228 struct arraycache_init {
229 struct array_cache cache;
230 void *entries[BOOT_CPUCACHE_ENTRIES];
234 * Need this for bootstrapping a per node allocator.
236 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
238 #define CACHE_CACHE 0
239 #define SIZE_AC MAX_NUMNODES
240 #define SIZE_NODE (2 * MAX_NUMNODES)
242 static int drain_freelist(struct kmem_cache *cache,
243 struct kmem_cache_node *n, int tofree);
244 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
245 int node);
246 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
247 static void cache_reap(struct work_struct *unused);
249 static int slab_early_init = 1;
251 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
254 static void kmem_cache_node_init(struct kmem_cache_node *parent)
256 INIT_LIST_HEAD(&parent->slabs_full);
257 INIT_LIST_HEAD(&parent->slabs_partial);
258 INIT_LIST_HEAD(&parent->slabs_free);
259 parent->shared = NULL;
260 parent->alien = NULL;
261 parent->colour_next = 0;
262 spin_lock_init(&parent->list_lock);
263 parent->free_objects = 0;
264 parent->free_touched = 0;
267 #define MAKE_LIST(cachep, listp, slab, nodeid) \
268 do { \
269 INIT_LIST_HEAD(listp); \
270 list_splice(&(cachep->node[nodeid]->slab), listp); \
271 } while (0)
273 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
274 do { \
275 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
276 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
278 } while (0)
280 #define CFLGS_OFF_SLAB (0x80000000UL)
281 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
283 #define BATCHREFILL_LIMIT 16
285 * Optimization question: fewer reaps means less probability for unnessary
286 * cpucache drain/refill cycles.
288 * OTOH the cpuarrays can contain lots of objects,
289 * which could lock up otherwise freeable slabs.
291 #define REAPTIMEOUT_AC (2*HZ)
292 #define REAPTIMEOUT_NODE (4*HZ)
294 #if STATS
295 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
296 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
297 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
298 #define STATS_INC_GROWN(x) ((x)->grown++)
299 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
300 #define STATS_SET_HIGH(x) \
301 do { \
302 if ((x)->num_active > (x)->high_mark) \
303 (x)->high_mark = (x)->num_active; \
304 } while (0)
305 #define STATS_INC_ERR(x) ((x)->errors++)
306 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
307 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
308 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
309 #define STATS_SET_FREEABLE(x, i) \
310 do { \
311 if ((x)->max_freeable < i) \
312 (x)->max_freeable = i; \
313 } while (0)
314 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
315 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
316 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
317 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
318 #else
319 #define STATS_INC_ACTIVE(x) do { } while (0)
320 #define STATS_DEC_ACTIVE(x) do { } while (0)
321 #define STATS_INC_ALLOCED(x) do { } while (0)
322 #define STATS_INC_GROWN(x) do { } while (0)
323 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
324 #define STATS_SET_HIGH(x) do { } while (0)
325 #define STATS_INC_ERR(x) do { } while (0)
326 #define STATS_INC_NODEALLOCS(x) do { } while (0)
327 #define STATS_INC_NODEFREES(x) do { } while (0)
328 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
329 #define STATS_SET_FREEABLE(x, i) do { } while (0)
330 #define STATS_INC_ALLOCHIT(x) do { } while (0)
331 #define STATS_INC_ALLOCMISS(x) do { } while (0)
332 #define STATS_INC_FREEHIT(x) do { } while (0)
333 #define STATS_INC_FREEMISS(x) do { } while (0)
334 #endif
336 #if DEBUG
339 * memory layout of objects:
340 * 0 : objp
341 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
342 * the end of an object is aligned with the end of the real
343 * allocation. Catches writes behind the end of the allocation.
344 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
345 * redzone word.
346 * cachep->obj_offset: The real object.
347 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
348 * cachep->size - 1* BYTES_PER_WORD: last caller address
349 * [BYTES_PER_WORD long]
351 static int obj_offset(struct kmem_cache *cachep)
353 return cachep->obj_offset;
356 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
358 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
359 return (unsigned long long*) (objp + obj_offset(cachep) -
360 sizeof(unsigned long long));
363 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
365 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
366 if (cachep->flags & SLAB_STORE_USER)
367 return (unsigned long long *)(objp + cachep->size -
368 sizeof(unsigned long long) -
369 REDZONE_ALIGN);
370 return (unsigned long long *) (objp + cachep->size -
371 sizeof(unsigned long long));
374 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
376 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
377 return (void **)(objp + cachep->size - BYTES_PER_WORD);
380 #else
382 #define obj_offset(x) 0
383 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
384 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
385 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
387 #endif
389 #define OBJECT_FREE (0)
390 #define OBJECT_ACTIVE (1)
392 #ifdef CONFIG_DEBUG_SLAB_LEAK
394 static void set_obj_status(struct page *page, int idx, int val)
396 int freelist_size;
397 char *status;
398 struct kmem_cache *cachep = page->slab_cache;
400 freelist_size = cachep->num * sizeof(freelist_idx_t);
401 status = (char *)page->freelist + freelist_size;
402 status[idx] = val;
405 static inline unsigned int get_obj_status(struct page *page, int idx)
407 int freelist_size;
408 char *status;
409 struct kmem_cache *cachep = page->slab_cache;
411 freelist_size = cachep->num * sizeof(freelist_idx_t);
412 status = (char *)page->freelist + freelist_size;
414 return status[idx];
417 #else
418 static inline void set_obj_status(struct page *page, int idx, int val) {}
420 #endif
423 * Do not go above this order unless 0 objects fit into the slab or
424 * overridden on the command line.
426 #define SLAB_MAX_ORDER_HI 1
427 #define SLAB_MAX_ORDER_LO 0
428 static int slab_max_order = SLAB_MAX_ORDER_LO;
429 static bool slab_max_order_set __initdata;
431 static inline struct kmem_cache *virt_to_cache(const void *obj)
433 struct page *page = virt_to_head_page(obj);
434 return page->slab_cache;
437 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
438 unsigned int idx)
440 return page->s_mem + cache->size * idx;
444 * We want to avoid an expensive divide : (offset / cache->size)
445 * Using the fact that size is a constant for a particular cache,
446 * we can replace (offset / cache->size) by
447 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
449 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
450 const struct page *page, void *obj)
452 u32 offset = (obj - page->s_mem);
453 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
456 static struct arraycache_init initarray_generic =
457 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
459 /* internal cache of cache description objs */
460 static struct kmem_cache kmem_cache_boot = {
461 .batchcount = 1,
462 .limit = BOOT_CPUCACHE_ENTRIES,
463 .shared = 1,
464 .size = sizeof(struct kmem_cache),
465 .name = "kmem_cache",
468 #define BAD_ALIEN_MAGIC 0x01020304ul
470 #ifdef CONFIG_LOCKDEP
473 * Slab sometimes uses the kmalloc slabs to store the slab headers
474 * for other slabs "off slab".
475 * The locking for this is tricky in that it nests within the locks
476 * of all other slabs in a few places; to deal with this special
477 * locking we put on-slab caches into a separate lock-class.
479 * We set lock class for alien array caches which are up during init.
480 * The lock annotation will be lost if all cpus of a node goes down and
481 * then comes back up during hotplug
483 static struct lock_class_key on_slab_l3_key;
484 static struct lock_class_key on_slab_alc_key;
486 static struct lock_class_key debugobj_l3_key;
487 static struct lock_class_key debugobj_alc_key;
489 static void slab_set_lock_classes(struct kmem_cache *cachep,
490 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
491 int q)
493 struct array_cache **alc;
494 struct kmem_cache_node *n;
495 int r;
497 n = cachep->node[q];
498 if (!n)
499 return;
501 lockdep_set_class(&n->list_lock, l3_key);
502 alc = n->alien;
504 * FIXME: This check for BAD_ALIEN_MAGIC
505 * should go away when common slab code is taught to
506 * work even without alien caches.
507 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
508 * for alloc_alien_cache,
510 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
511 return;
512 for_each_node(r) {
513 if (alc[r])
514 lockdep_set_class(&alc[r]->lock, alc_key);
518 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
520 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
523 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
525 int node;
527 for_each_online_node(node)
528 slab_set_debugobj_lock_classes_node(cachep, node);
531 static void init_node_lock_keys(int q)
533 int i;
535 if (slab_state < UP)
536 return;
538 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
539 struct kmem_cache_node *n;
540 struct kmem_cache *cache = kmalloc_caches[i];
542 if (!cache)
543 continue;
545 n = cache->node[q];
546 if (!n || OFF_SLAB(cache))
547 continue;
549 slab_set_lock_classes(cache, &on_slab_l3_key,
550 &on_slab_alc_key, q);
554 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
556 if (!cachep->node[q])
557 return;
559 slab_set_lock_classes(cachep, &on_slab_l3_key,
560 &on_slab_alc_key, q);
563 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
565 int node;
567 VM_BUG_ON(OFF_SLAB(cachep));
568 for_each_node(node)
569 on_slab_lock_classes_node(cachep, node);
572 static inline void init_lock_keys(void)
574 int node;
576 for_each_node(node)
577 init_node_lock_keys(node);
579 #else
580 static void init_node_lock_keys(int q)
584 static inline void init_lock_keys(void)
588 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
592 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
596 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
600 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
603 #endif
605 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
607 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
609 return cachep->array[smp_processor_id()];
612 static size_t calculate_freelist_size(int nr_objs, size_t align)
614 size_t freelist_size;
616 freelist_size = nr_objs * sizeof(freelist_idx_t);
617 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
618 freelist_size += nr_objs * sizeof(char);
620 if (align)
621 freelist_size = ALIGN(freelist_size, align);
623 return freelist_size;
626 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
627 size_t idx_size, size_t align)
629 int nr_objs;
630 size_t remained_size;
631 size_t freelist_size;
632 int extra_space = 0;
634 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
635 extra_space = sizeof(char);
637 * Ignore padding for the initial guess. The padding
638 * is at most @align-1 bytes, and @buffer_size is at
639 * least @align. In the worst case, this result will
640 * be one greater than the number of objects that fit
641 * into the memory allocation when taking the padding
642 * into account.
644 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
647 * This calculated number will be either the right
648 * amount, or one greater than what we want.
650 remained_size = slab_size - nr_objs * buffer_size;
651 freelist_size = calculate_freelist_size(nr_objs, align);
652 if (remained_size < freelist_size)
653 nr_objs--;
655 return nr_objs;
659 * Calculate the number of objects and left-over bytes for a given buffer size.
661 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
662 size_t align, int flags, size_t *left_over,
663 unsigned int *num)
665 int nr_objs;
666 size_t mgmt_size;
667 size_t slab_size = PAGE_SIZE << gfporder;
670 * The slab management structure can be either off the slab or
671 * on it. For the latter case, the memory allocated for a
672 * slab is used for:
674 * - One unsigned int for each object
675 * - Padding to respect alignment of @align
676 * - @buffer_size bytes for each object
678 * If the slab management structure is off the slab, then the
679 * alignment will already be calculated into the size. Because
680 * the slabs are all pages aligned, the objects will be at the
681 * correct alignment when allocated.
683 if (flags & CFLGS_OFF_SLAB) {
684 mgmt_size = 0;
685 nr_objs = slab_size / buffer_size;
687 } else {
688 nr_objs = calculate_nr_objs(slab_size, buffer_size,
689 sizeof(freelist_idx_t), align);
690 mgmt_size = calculate_freelist_size(nr_objs, align);
692 *num = nr_objs;
693 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
696 #if DEBUG
697 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
699 static void __slab_error(const char *function, struct kmem_cache *cachep,
700 char *msg)
702 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
703 function, cachep->name, msg);
704 dump_stack();
705 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
707 #endif
710 * By default on NUMA we use alien caches to stage the freeing of
711 * objects allocated from other nodes. This causes massive memory
712 * inefficiencies when using fake NUMA setup to split memory into a
713 * large number of small nodes, so it can be disabled on the command
714 * line
717 static int use_alien_caches __read_mostly = 1;
718 static int __init noaliencache_setup(char *s)
720 use_alien_caches = 0;
721 return 1;
723 __setup("noaliencache", noaliencache_setup);
725 static int __init slab_max_order_setup(char *str)
727 get_option(&str, &slab_max_order);
728 slab_max_order = slab_max_order < 0 ? 0 :
729 min(slab_max_order, MAX_ORDER - 1);
730 slab_max_order_set = true;
732 return 1;
734 __setup("slab_max_order=", slab_max_order_setup);
736 #ifdef CONFIG_NUMA
738 * Special reaping functions for NUMA systems called from cache_reap().
739 * These take care of doing round robin flushing of alien caches (containing
740 * objects freed on different nodes from which they were allocated) and the
741 * flushing of remote pcps by calling drain_node_pages.
743 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
745 static void init_reap_node(int cpu)
747 int node;
749 node = next_node(cpu_to_mem(cpu), node_online_map);
750 if (node == MAX_NUMNODES)
751 node = first_node(node_online_map);
753 per_cpu(slab_reap_node, cpu) = node;
756 static void next_reap_node(void)
758 int node = __this_cpu_read(slab_reap_node);
760 node = next_node(node, node_online_map);
761 if (unlikely(node >= MAX_NUMNODES))
762 node = first_node(node_online_map);
763 __this_cpu_write(slab_reap_node, node);
766 #else
767 #define init_reap_node(cpu) do { } while (0)
768 #define next_reap_node(void) do { } while (0)
769 #endif
772 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
773 * via the workqueue/eventd.
774 * Add the CPU number into the expiration time to minimize the possibility of
775 * the CPUs getting into lockstep and contending for the global cache chain
776 * lock.
778 static void start_cpu_timer(int cpu)
780 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
783 * When this gets called from do_initcalls via cpucache_init(),
784 * init_workqueues() has already run, so keventd will be setup
785 * at that time.
787 if (keventd_up() && reap_work->work.func == NULL) {
788 init_reap_node(cpu);
789 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
790 schedule_delayed_work_on(cpu, reap_work,
791 __round_jiffies_relative(HZ, cpu));
795 static struct array_cache *alloc_arraycache(int node, int entries,
796 int batchcount, gfp_t gfp)
798 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
799 struct array_cache *nc = NULL;
801 nc = kmalloc_node(memsize, gfp, node);
803 * The array_cache structures contain pointers to free object.
804 * However, when such objects are allocated or transferred to another
805 * cache the pointers are not cleared and they could be counted as
806 * valid references during a kmemleak scan. Therefore, kmemleak must
807 * not scan such objects.
809 kmemleak_no_scan(nc);
810 if (nc) {
811 nc->avail = 0;
812 nc->limit = entries;
813 nc->batchcount = batchcount;
814 nc->touched = 0;
815 spin_lock_init(&nc->lock);
817 return nc;
820 static inline bool is_slab_pfmemalloc(struct page *page)
822 return PageSlabPfmemalloc(page);
825 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
826 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
827 struct array_cache *ac)
829 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
830 struct page *page;
831 unsigned long flags;
833 if (!pfmemalloc_active)
834 return;
836 spin_lock_irqsave(&n->list_lock, flags);
837 list_for_each_entry(page, &n->slabs_full, lru)
838 if (is_slab_pfmemalloc(page))
839 goto out;
841 list_for_each_entry(page, &n->slabs_partial, lru)
842 if (is_slab_pfmemalloc(page))
843 goto out;
845 list_for_each_entry(page, &n->slabs_free, lru)
846 if (is_slab_pfmemalloc(page))
847 goto out;
849 pfmemalloc_active = false;
850 out:
851 spin_unlock_irqrestore(&n->list_lock, flags);
854 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
855 gfp_t flags, bool force_refill)
857 int i;
858 void *objp = ac->entry[--ac->avail];
860 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
861 if (unlikely(is_obj_pfmemalloc(objp))) {
862 struct kmem_cache_node *n;
864 if (gfp_pfmemalloc_allowed(flags)) {
865 clear_obj_pfmemalloc(&objp);
866 return objp;
869 /* The caller cannot use PFMEMALLOC objects, find another one */
870 for (i = 0; i < ac->avail; i++) {
871 /* If a !PFMEMALLOC object is found, swap them */
872 if (!is_obj_pfmemalloc(ac->entry[i])) {
873 objp = ac->entry[i];
874 ac->entry[i] = ac->entry[ac->avail];
875 ac->entry[ac->avail] = objp;
876 return objp;
881 * If there are empty slabs on the slabs_free list and we are
882 * being forced to refill the cache, mark this one !pfmemalloc.
884 n = cachep->node[numa_mem_id()];
885 if (!list_empty(&n->slabs_free) && force_refill) {
886 struct page *page = virt_to_head_page(objp);
887 ClearPageSlabPfmemalloc(page);
888 clear_obj_pfmemalloc(&objp);
889 recheck_pfmemalloc_active(cachep, ac);
890 return objp;
893 /* No !PFMEMALLOC objects available */
894 ac->avail++;
895 objp = NULL;
898 return objp;
901 static inline void *ac_get_obj(struct kmem_cache *cachep,
902 struct array_cache *ac, gfp_t flags, bool force_refill)
904 void *objp;
906 if (unlikely(sk_memalloc_socks()))
907 objp = __ac_get_obj(cachep, ac, flags, force_refill);
908 else
909 objp = ac->entry[--ac->avail];
911 return objp;
914 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
915 void *objp)
917 if (unlikely(pfmemalloc_active)) {
918 /* Some pfmemalloc slabs exist, check if this is one */
919 struct page *page = virt_to_head_page(objp);
920 if (PageSlabPfmemalloc(page))
921 set_obj_pfmemalloc(&objp);
924 return objp;
927 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
928 void *objp)
930 if (unlikely(sk_memalloc_socks()))
931 objp = __ac_put_obj(cachep, ac, objp);
933 ac->entry[ac->avail++] = objp;
937 * Transfer objects in one arraycache to another.
938 * Locking must be handled by the caller.
940 * Return the number of entries transferred.
942 static int transfer_objects(struct array_cache *to,
943 struct array_cache *from, unsigned int max)
945 /* Figure out how many entries to transfer */
946 int nr = min3(from->avail, max, to->limit - to->avail);
948 if (!nr)
949 return 0;
951 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
952 sizeof(void *) *nr);
954 from->avail -= nr;
955 to->avail += nr;
956 return nr;
959 #ifndef CONFIG_NUMA
961 #define drain_alien_cache(cachep, alien) do { } while (0)
962 #define reap_alien(cachep, n) do { } while (0)
964 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
966 return (struct array_cache **)BAD_ALIEN_MAGIC;
969 static inline void free_alien_cache(struct array_cache **ac_ptr)
973 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
975 return 0;
978 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
979 gfp_t flags)
981 return NULL;
984 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
985 gfp_t flags, int nodeid)
987 return NULL;
990 #else /* CONFIG_NUMA */
992 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
993 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
995 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
997 struct array_cache **ac_ptr;
998 int memsize = sizeof(void *) * nr_node_ids;
999 int i;
1001 if (limit > 1)
1002 limit = 12;
1003 ac_ptr = kzalloc_node(memsize, gfp, node);
1004 if (ac_ptr) {
1005 for_each_node(i) {
1006 if (i == node || !node_online(i))
1007 continue;
1008 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1009 if (!ac_ptr[i]) {
1010 for (i--; i >= 0; i--)
1011 kfree(ac_ptr[i]);
1012 kfree(ac_ptr);
1013 return NULL;
1017 return ac_ptr;
1020 static void free_alien_cache(struct array_cache **ac_ptr)
1022 int i;
1024 if (!ac_ptr)
1025 return;
1026 for_each_node(i)
1027 kfree(ac_ptr[i]);
1028 kfree(ac_ptr);
1031 static void __drain_alien_cache(struct kmem_cache *cachep,
1032 struct array_cache *ac, int node)
1034 struct kmem_cache_node *n = cachep->node[node];
1036 if (ac->avail) {
1037 spin_lock(&n->list_lock);
1039 * Stuff objects into the remote nodes shared array first.
1040 * That way we could avoid the overhead of putting the objects
1041 * into the free lists and getting them back later.
1043 if (n->shared)
1044 transfer_objects(n->shared, ac, ac->limit);
1046 free_block(cachep, ac->entry, ac->avail, node);
1047 ac->avail = 0;
1048 spin_unlock(&n->list_lock);
1053 * Called from cache_reap() to regularly drain alien caches round robin.
1055 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1057 int node = __this_cpu_read(slab_reap_node);
1059 if (n->alien) {
1060 struct array_cache *ac = n->alien[node];
1062 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1063 __drain_alien_cache(cachep, ac, node);
1064 spin_unlock_irq(&ac->lock);
1069 static void drain_alien_cache(struct kmem_cache *cachep,
1070 struct array_cache **alien)
1072 int i = 0;
1073 struct array_cache *ac;
1074 unsigned long flags;
1076 for_each_online_node(i) {
1077 ac = alien[i];
1078 if (ac) {
1079 spin_lock_irqsave(&ac->lock, flags);
1080 __drain_alien_cache(cachep, ac, i);
1081 spin_unlock_irqrestore(&ac->lock, flags);
1086 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1088 int nodeid = page_to_nid(virt_to_page(objp));
1089 struct kmem_cache_node *n;
1090 struct array_cache *alien = NULL;
1091 int node;
1093 node = numa_mem_id();
1096 * Make sure we are not freeing a object from another node to the array
1097 * cache on this cpu.
1099 if (likely(nodeid == node))
1100 return 0;
1102 n = cachep->node[node];
1103 STATS_INC_NODEFREES(cachep);
1104 if (n->alien && n->alien[nodeid]) {
1105 alien = n->alien[nodeid];
1106 spin_lock(&alien->lock);
1107 if (unlikely(alien->avail == alien->limit)) {
1108 STATS_INC_ACOVERFLOW(cachep);
1109 __drain_alien_cache(cachep, alien, nodeid);
1111 ac_put_obj(cachep, alien, objp);
1112 spin_unlock(&alien->lock);
1113 } else {
1114 spin_lock(&(cachep->node[nodeid])->list_lock);
1115 free_block(cachep, &objp, 1, nodeid);
1116 spin_unlock(&(cachep->node[nodeid])->list_lock);
1118 return 1;
1120 #endif
1123 * Allocates and initializes node for a node on each slab cache, used for
1124 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1125 * will be allocated off-node since memory is not yet online for the new node.
1126 * When hotplugging memory or a cpu, existing node are not replaced if
1127 * already in use.
1129 * Must hold slab_mutex.
1131 static int init_cache_node_node(int node)
1133 struct kmem_cache *cachep;
1134 struct kmem_cache_node *n;
1135 const int memsize = sizeof(struct kmem_cache_node);
1137 list_for_each_entry(cachep, &slab_caches, list) {
1139 * Set up the kmem_cache_node for cpu before we can
1140 * begin anything. Make sure some other cpu on this
1141 * node has not already allocated this
1143 if (!cachep->node[node]) {
1144 n = kmalloc_node(memsize, GFP_KERNEL, node);
1145 if (!n)
1146 return -ENOMEM;
1147 kmem_cache_node_init(n);
1148 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1149 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1152 * The kmem_cache_nodes don't come and go as CPUs
1153 * come and go. slab_mutex is sufficient
1154 * protection here.
1156 cachep->node[node] = n;
1159 spin_lock_irq(&cachep->node[node]->list_lock);
1160 cachep->node[node]->free_limit =
1161 (1 + nr_cpus_node(node)) *
1162 cachep->batchcount + cachep->num;
1163 spin_unlock_irq(&cachep->node[node]->list_lock);
1165 return 0;
1168 static inline int slabs_tofree(struct kmem_cache *cachep,
1169 struct kmem_cache_node *n)
1171 return (n->free_objects + cachep->num - 1) / cachep->num;
1174 static void cpuup_canceled(long cpu)
1176 struct kmem_cache *cachep;
1177 struct kmem_cache_node *n = NULL;
1178 int node = cpu_to_mem(cpu);
1179 const struct cpumask *mask = cpumask_of_node(node);
1181 list_for_each_entry(cachep, &slab_caches, list) {
1182 struct array_cache *nc;
1183 struct array_cache *shared;
1184 struct array_cache **alien;
1186 /* cpu is dead; no one can alloc from it. */
1187 nc = cachep->array[cpu];
1188 cachep->array[cpu] = NULL;
1189 n = cachep->node[node];
1191 if (!n)
1192 goto free_array_cache;
1194 spin_lock_irq(&n->list_lock);
1196 /* Free limit for this kmem_cache_node */
1197 n->free_limit -= cachep->batchcount;
1198 if (nc)
1199 free_block(cachep, nc->entry, nc->avail, node);
1201 if (!cpumask_empty(mask)) {
1202 spin_unlock_irq(&n->list_lock);
1203 goto free_array_cache;
1206 shared = n->shared;
1207 if (shared) {
1208 free_block(cachep, shared->entry,
1209 shared->avail, node);
1210 n->shared = NULL;
1213 alien = n->alien;
1214 n->alien = NULL;
1216 spin_unlock_irq(&n->list_lock);
1218 kfree(shared);
1219 if (alien) {
1220 drain_alien_cache(cachep, alien);
1221 free_alien_cache(alien);
1223 free_array_cache:
1224 kfree(nc);
1227 * In the previous loop, all the objects were freed to
1228 * the respective cache's slabs, now we can go ahead and
1229 * shrink each nodelist to its limit.
1231 list_for_each_entry(cachep, &slab_caches, list) {
1232 n = cachep->node[node];
1233 if (!n)
1234 continue;
1235 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1239 static int cpuup_prepare(long cpu)
1241 struct kmem_cache *cachep;
1242 struct kmem_cache_node *n = NULL;
1243 int node = cpu_to_mem(cpu);
1244 int err;
1247 * We need to do this right in the beginning since
1248 * alloc_arraycache's are going to use this list.
1249 * kmalloc_node allows us to add the slab to the right
1250 * kmem_cache_node and not this cpu's kmem_cache_node
1252 err = init_cache_node_node(node);
1253 if (err < 0)
1254 goto bad;
1257 * Now we can go ahead with allocating the shared arrays and
1258 * array caches
1260 list_for_each_entry(cachep, &slab_caches, list) {
1261 struct array_cache *nc;
1262 struct array_cache *shared = NULL;
1263 struct array_cache **alien = NULL;
1265 nc = alloc_arraycache(node, cachep->limit,
1266 cachep->batchcount, GFP_KERNEL);
1267 if (!nc)
1268 goto bad;
1269 if (cachep->shared) {
1270 shared = alloc_arraycache(node,
1271 cachep->shared * cachep->batchcount,
1272 0xbaadf00d, GFP_KERNEL);
1273 if (!shared) {
1274 kfree(nc);
1275 goto bad;
1278 if (use_alien_caches) {
1279 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1280 if (!alien) {
1281 kfree(shared);
1282 kfree(nc);
1283 goto bad;
1286 cachep->array[cpu] = nc;
1287 n = cachep->node[node];
1288 BUG_ON(!n);
1290 spin_lock_irq(&n->list_lock);
1291 if (!n->shared) {
1293 * We are serialised from CPU_DEAD or
1294 * CPU_UP_CANCELLED by the cpucontrol lock
1296 n->shared = shared;
1297 shared = NULL;
1299 #ifdef CONFIG_NUMA
1300 if (!n->alien) {
1301 n->alien = alien;
1302 alien = NULL;
1304 #endif
1305 spin_unlock_irq(&n->list_lock);
1306 kfree(shared);
1307 free_alien_cache(alien);
1308 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1309 slab_set_debugobj_lock_classes_node(cachep, node);
1310 else if (!OFF_SLAB(cachep) &&
1311 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1312 on_slab_lock_classes_node(cachep, node);
1314 init_node_lock_keys(node);
1316 return 0;
1317 bad:
1318 cpuup_canceled(cpu);
1319 return -ENOMEM;
1322 static int cpuup_callback(struct notifier_block *nfb,
1323 unsigned long action, void *hcpu)
1325 long cpu = (long)hcpu;
1326 int err = 0;
1328 switch (action) {
1329 case CPU_UP_PREPARE:
1330 case CPU_UP_PREPARE_FROZEN:
1331 mutex_lock(&slab_mutex);
1332 err = cpuup_prepare(cpu);
1333 mutex_unlock(&slab_mutex);
1334 break;
1335 case CPU_ONLINE:
1336 case CPU_ONLINE_FROZEN:
1337 start_cpu_timer(cpu);
1338 break;
1339 #ifdef CONFIG_HOTPLUG_CPU
1340 case CPU_DOWN_PREPARE:
1341 case CPU_DOWN_PREPARE_FROZEN:
1343 * Shutdown cache reaper. Note that the slab_mutex is
1344 * held so that if cache_reap() is invoked it cannot do
1345 * anything expensive but will only modify reap_work
1346 * and reschedule the timer.
1348 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1349 /* Now the cache_reaper is guaranteed to be not running. */
1350 per_cpu(slab_reap_work, cpu).work.func = NULL;
1351 break;
1352 case CPU_DOWN_FAILED:
1353 case CPU_DOWN_FAILED_FROZEN:
1354 start_cpu_timer(cpu);
1355 break;
1356 case CPU_DEAD:
1357 case CPU_DEAD_FROZEN:
1359 * Even if all the cpus of a node are down, we don't free the
1360 * kmem_cache_node of any cache. This to avoid a race between
1361 * cpu_down, and a kmalloc allocation from another cpu for
1362 * memory from the node of the cpu going down. The node
1363 * structure is usually allocated from kmem_cache_create() and
1364 * gets destroyed at kmem_cache_destroy().
1366 /* fall through */
1367 #endif
1368 case CPU_UP_CANCELED:
1369 case CPU_UP_CANCELED_FROZEN:
1370 mutex_lock(&slab_mutex);
1371 cpuup_canceled(cpu);
1372 mutex_unlock(&slab_mutex);
1373 break;
1375 return notifier_from_errno(err);
1378 static struct notifier_block cpucache_notifier = {
1379 &cpuup_callback, NULL, 0
1382 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1384 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1385 * Returns -EBUSY if all objects cannot be drained so that the node is not
1386 * removed.
1388 * Must hold slab_mutex.
1390 static int __meminit drain_cache_node_node(int node)
1392 struct kmem_cache *cachep;
1393 int ret = 0;
1395 list_for_each_entry(cachep, &slab_caches, list) {
1396 struct kmem_cache_node *n;
1398 n = cachep->node[node];
1399 if (!n)
1400 continue;
1402 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1404 if (!list_empty(&n->slabs_full) ||
1405 !list_empty(&n->slabs_partial)) {
1406 ret = -EBUSY;
1407 break;
1410 return ret;
1413 static int __meminit slab_memory_callback(struct notifier_block *self,
1414 unsigned long action, void *arg)
1416 struct memory_notify *mnb = arg;
1417 int ret = 0;
1418 int nid;
1420 nid = mnb->status_change_nid;
1421 if (nid < 0)
1422 goto out;
1424 switch (action) {
1425 case MEM_GOING_ONLINE:
1426 mutex_lock(&slab_mutex);
1427 ret = init_cache_node_node(nid);
1428 mutex_unlock(&slab_mutex);
1429 break;
1430 case MEM_GOING_OFFLINE:
1431 mutex_lock(&slab_mutex);
1432 ret = drain_cache_node_node(nid);
1433 mutex_unlock(&slab_mutex);
1434 break;
1435 case MEM_ONLINE:
1436 case MEM_OFFLINE:
1437 case MEM_CANCEL_ONLINE:
1438 case MEM_CANCEL_OFFLINE:
1439 break;
1441 out:
1442 return notifier_from_errno(ret);
1444 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1447 * swap the static kmem_cache_node with kmalloced memory
1449 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1450 int nodeid)
1452 struct kmem_cache_node *ptr;
1454 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1455 BUG_ON(!ptr);
1457 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1459 * Do not assume that spinlocks can be initialized via memcpy:
1461 spin_lock_init(&ptr->list_lock);
1463 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1464 cachep->node[nodeid] = ptr;
1468 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1469 * size of kmem_cache_node.
1471 static void __init set_up_node(struct kmem_cache *cachep, int index)
1473 int node;
1475 for_each_online_node(node) {
1476 cachep->node[node] = &init_kmem_cache_node[index + node];
1477 cachep->node[node]->next_reap = jiffies +
1478 REAPTIMEOUT_NODE +
1479 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1484 * The memory after the last cpu cache pointer is used for the
1485 * the node pointer.
1487 static void setup_node_pointer(struct kmem_cache *cachep)
1489 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1493 * Initialisation. Called after the page allocator have been initialised and
1494 * before smp_init().
1496 void __init kmem_cache_init(void)
1498 int i;
1500 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1501 sizeof(struct rcu_head));
1502 kmem_cache = &kmem_cache_boot;
1503 setup_node_pointer(kmem_cache);
1505 if (num_possible_nodes() == 1)
1506 use_alien_caches = 0;
1508 for (i = 0; i < NUM_INIT_LISTS; i++)
1509 kmem_cache_node_init(&init_kmem_cache_node[i]);
1511 set_up_node(kmem_cache, CACHE_CACHE);
1514 * Fragmentation resistance on low memory - only use bigger
1515 * page orders on machines with more than 32MB of memory if
1516 * not overridden on the command line.
1518 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1519 slab_max_order = SLAB_MAX_ORDER_HI;
1521 /* Bootstrap is tricky, because several objects are allocated
1522 * from caches that do not exist yet:
1523 * 1) initialize the kmem_cache cache: it contains the struct
1524 * kmem_cache structures of all caches, except kmem_cache itself:
1525 * kmem_cache is statically allocated.
1526 * Initially an __init data area is used for the head array and the
1527 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1528 * array at the end of the bootstrap.
1529 * 2) Create the first kmalloc cache.
1530 * The struct kmem_cache for the new cache is allocated normally.
1531 * An __init data area is used for the head array.
1532 * 3) Create the remaining kmalloc caches, with minimally sized
1533 * head arrays.
1534 * 4) Replace the __init data head arrays for kmem_cache and the first
1535 * kmalloc cache with kmalloc allocated arrays.
1536 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1537 * the other cache's with kmalloc allocated memory.
1538 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1541 /* 1) create the kmem_cache */
1544 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1546 create_boot_cache(kmem_cache, "kmem_cache",
1547 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1548 nr_node_ids * sizeof(struct kmem_cache_node *),
1549 SLAB_HWCACHE_ALIGN);
1550 list_add(&kmem_cache->list, &slab_caches);
1552 /* 2+3) create the kmalloc caches */
1555 * Initialize the caches that provide memory for the array cache and the
1556 * kmem_cache_node structures first. Without this, further allocations will
1557 * bug.
1560 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1561 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1563 if (INDEX_AC != INDEX_NODE)
1564 kmalloc_caches[INDEX_NODE] =
1565 create_kmalloc_cache("kmalloc-node",
1566 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1568 slab_early_init = 0;
1570 /* 4) Replace the bootstrap head arrays */
1572 struct array_cache *ptr;
1574 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1576 memcpy(ptr, cpu_cache_get(kmem_cache),
1577 sizeof(struct arraycache_init));
1579 * Do not assume that spinlocks can be initialized via memcpy:
1581 spin_lock_init(&ptr->lock);
1583 kmem_cache->array[smp_processor_id()] = ptr;
1585 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1587 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1588 != &initarray_generic.cache);
1589 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1590 sizeof(struct arraycache_init));
1592 * Do not assume that spinlocks can be initialized via memcpy:
1594 spin_lock_init(&ptr->lock);
1596 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1598 /* 5) Replace the bootstrap kmem_cache_node */
1600 int nid;
1602 for_each_online_node(nid) {
1603 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1605 init_list(kmalloc_caches[INDEX_AC],
1606 &init_kmem_cache_node[SIZE_AC + nid], nid);
1608 if (INDEX_AC != INDEX_NODE) {
1609 init_list(kmalloc_caches[INDEX_NODE],
1610 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1615 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1618 void __init kmem_cache_init_late(void)
1620 struct kmem_cache *cachep;
1622 slab_state = UP;
1624 /* 6) resize the head arrays to their final sizes */
1625 mutex_lock(&slab_mutex);
1626 list_for_each_entry(cachep, &slab_caches, list)
1627 if (enable_cpucache(cachep, GFP_NOWAIT))
1628 BUG();
1629 mutex_unlock(&slab_mutex);
1631 /* Annotate slab for lockdep -- annotate the malloc caches */
1632 init_lock_keys();
1634 /* Done! */
1635 slab_state = FULL;
1638 * Register a cpu startup notifier callback that initializes
1639 * cpu_cache_get for all new cpus
1641 register_cpu_notifier(&cpucache_notifier);
1643 #ifdef CONFIG_NUMA
1645 * Register a memory hotplug callback that initializes and frees
1646 * node.
1648 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1649 #endif
1652 * The reap timers are started later, with a module init call: That part
1653 * of the kernel is not yet operational.
1657 static int __init cpucache_init(void)
1659 int cpu;
1662 * Register the timers that return unneeded pages to the page allocator
1664 for_each_online_cpu(cpu)
1665 start_cpu_timer(cpu);
1667 /* Done! */
1668 slab_state = FULL;
1669 return 0;
1671 __initcall(cpucache_init);
1673 static noinline void
1674 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1676 #if DEBUG
1677 struct kmem_cache_node *n;
1678 struct page *page;
1679 unsigned long flags;
1680 int node;
1681 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1682 DEFAULT_RATELIMIT_BURST);
1684 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1685 return;
1687 printk(KERN_WARNING
1688 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1689 nodeid, gfpflags);
1690 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1691 cachep->name, cachep->size, cachep->gfporder);
1693 for_each_online_node(node) {
1694 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1695 unsigned long active_slabs = 0, num_slabs = 0;
1697 n = cachep->node[node];
1698 if (!n)
1699 continue;
1701 spin_lock_irqsave(&n->list_lock, flags);
1702 list_for_each_entry(page, &n->slabs_full, lru) {
1703 active_objs += cachep->num;
1704 active_slabs++;
1706 list_for_each_entry(page, &n->slabs_partial, lru) {
1707 active_objs += page->active;
1708 active_slabs++;
1710 list_for_each_entry(page, &n->slabs_free, lru)
1711 num_slabs++;
1713 free_objects += n->free_objects;
1714 spin_unlock_irqrestore(&n->list_lock, flags);
1716 num_slabs += active_slabs;
1717 num_objs = num_slabs * cachep->num;
1718 printk(KERN_WARNING
1719 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1720 node, active_slabs, num_slabs, active_objs, num_objs,
1721 free_objects);
1723 #endif
1727 * Interface to system's page allocator. No need to hold the cache-lock.
1729 * If we requested dmaable memory, we will get it. Even if we
1730 * did not request dmaable memory, we might get it, but that
1731 * would be relatively rare and ignorable.
1733 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1734 int nodeid)
1736 struct page *page;
1737 int nr_pages;
1739 flags |= cachep->allocflags;
1740 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1741 flags |= __GFP_RECLAIMABLE;
1743 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1744 return NULL;
1746 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1747 if (!page) {
1748 memcg_uncharge_slab(cachep, cachep->gfporder);
1749 slab_out_of_memory(cachep, flags, nodeid);
1750 return NULL;
1753 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1754 if (unlikely(page->pfmemalloc))
1755 pfmemalloc_active = true;
1757 nr_pages = (1 << cachep->gfporder);
1758 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1759 add_zone_page_state(page_zone(page),
1760 NR_SLAB_RECLAIMABLE, nr_pages);
1761 else
1762 add_zone_page_state(page_zone(page),
1763 NR_SLAB_UNRECLAIMABLE, nr_pages);
1764 __SetPageSlab(page);
1765 if (page->pfmemalloc)
1766 SetPageSlabPfmemalloc(page);
1768 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1769 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1771 if (cachep->ctor)
1772 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1773 else
1774 kmemcheck_mark_unallocated_pages(page, nr_pages);
1777 return page;
1781 * Interface to system's page release.
1783 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1785 const unsigned long nr_freed = (1 << cachep->gfporder);
1787 kmemcheck_free_shadow(page, cachep->gfporder);
1789 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1790 sub_zone_page_state(page_zone(page),
1791 NR_SLAB_RECLAIMABLE, nr_freed);
1792 else
1793 sub_zone_page_state(page_zone(page),
1794 NR_SLAB_UNRECLAIMABLE, nr_freed);
1796 BUG_ON(!PageSlab(page));
1797 __ClearPageSlabPfmemalloc(page);
1798 __ClearPageSlab(page);
1799 page_mapcount_reset(page);
1800 page->mapping = NULL;
1802 if (current->reclaim_state)
1803 current->reclaim_state->reclaimed_slab += nr_freed;
1804 __free_pages(page, cachep->gfporder);
1805 memcg_uncharge_slab(cachep, cachep->gfporder);
1808 static void kmem_rcu_free(struct rcu_head *head)
1810 struct kmem_cache *cachep;
1811 struct page *page;
1813 page = container_of(head, struct page, rcu_head);
1814 cachep = page->slab_cache;
1816 kmem_freepages(cachep, page);
1819 #if DEBUG
1821 #ifdef CONFIG_DEBUG_PAGEALLOC
1822 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1823 unsigned long caller)
1825 int size = cachep->object_size;
1827 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1829 if (size < 5 * sizeof(unsigned long))
1830 return;
1832 *addr++ = 0x12345678;
1833 *addr++ = caller;
1834 *addr++ = smp_processor_id();
1835 size -= 3 * sizeof(unsigned long);
1837 unsigned long *sptr = &caller;
1838 unsigned long svalue;
1840 while (!kstack_end(sptr)) {
1841 svalue = *sptr++;
1842 if (kernel_text_address(svalue)) {
1843 *addr++ = svalue;
1844 size -= sizeof(unsigned long);
1845 if (size <= sizeof(unsigned long))
1846 break;
1851 *addr++ = 0x87654321;
1853 #endif
1855 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1857 int size = cachep->object_size;
1858 addr = &((char *)addr)[obj_offset(cachep)];
1860 memset(addr, val, size);
1861 *(unsigned char *)(addr + size - 1) = POISON_END;
1864 static void dump_line(char *data, int offset, int limit)
1866 int i;
1867 unsigned char error = 0;
1868 int bad_count = 0;
1870 printk(KERN_ERR "%03x: ", offset);
1871 for (i = 0; i < limit; i++) {
1872 if (data[offset + i] != POISON_FREE) {
1873 error = data[offset + i];
1874 bad_count++;
1877 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1878 &data[offset], limit, 1);
1880 if (bad_count == 1) {
1881 error ^= POISON_FREE;
1882 if (!(error & (error - 1))) {
1883 printk(KERN_ERR "Single bit error detected. Probably "
1884 "bad RAM.\n");
1885 #ifdef CONFIG_X86
1886 printk(KERN_ERR "Run memtest86+ or a similar memory "
1887 "test tool.\n");
1888 #else
1889 printk(KERN_ERR "Run a memory test tool.\n");
1890 #endif
1894 #endif
1896 #if DEBUG
1898 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1900 int i, size;
1901 char *realobj;
1903 if (cachep->flags & SLAB_RED_ZONE) {
1904 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1905 *dbg_redzone1(cachep, objp),
1906 *dbg_redzone2(cachep, objp));
1909 if (cachep->flags & SLAB_STORE_USER) {
1910 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1911 *dbg_userword(cachep, objp),
1912 *dbg_userword(cachep, objp));
1914 realobj = (char *)objp + obj_offset(cachep);
1915 size = cachep->object_size;
1916 for (i = 0; i < size && lines; i += 16, lines--) {
1917 int limit;
1918 limit = 16;
1919 if (i + limit > size)
1920 limit = size - i;
1921 dump_line(realobj, i, limit);
1925 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1927 char *realobj;
1928 int size, i;
1929 int lines = 0;
1931 realobj = (char *)objp + obj_offset(cachep);
1932 size = cachep->object_size;
1934 for (i = 0; i < size; i++) {
1935 char exp = POISON_FREE;
1936 if (i == size - 1)
1937 exp = POISON_END;
1938 if (realobj[i] != exp) {
1939 int limit;
1940 /* Mismatch ! */
1941 /* Print header */
1942 if (lines == 0) {
1943 printk(KERN_ERR
1944 "Slab corruption (%s): %s start=%p, len=%d\n",
1945 print_tainted(), cachep->name, realobj, size);
1946 print_objinfo(cachep, objp, 0);
1948 /* Hexdump the affected line */
1949 i = (i / 16) * 16;
1950 limit = 16;
1951 if (i + limit > size)
1952 limit = size - i;
1953 dump_line(realobj, i, limit);
1954 i += 16;
1955 lines++;
1956 /* Limit to 5 lines */
1957 if (lines > 5)
1958 break;
1961 if (lines != 0) {
1962 /* Print some data about the neighboring objects, if they
1963 * exist:
1965 struct page *page = virt_to_head_page(objp);
1966 unsigned int objnr;
1968 objnr = obj_to_index(cachep, page, objp);
1969 if (objnr) {
1970 objp = index_to_obj(cachep, page, objnr - 1);
1971 realobj = (char *)objp + obj_offset(cachep);
1972 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1973 realobj, size);
1974 print_objinfo(cachep, objp, 2);
1976 if (objnr + 1 < cachep->num) {
1977 objp = index_to_obj(cachep, page, objnr + 1);
1978 realobj = (char *)objp + obj_offset(cachep);
1979 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1980 realobj, size);
1981 print_objinfo(cachep, objp, 2);
1985 #endif
1987 #if DEBUG
1988 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1989 struct page *page)
1991 int i;
1992 for (i = 0; i < cachep->num; i++) {
1993 void *objp = index_to_obj(cachep, page, i);
1995 if (cachep->flags & SLAB_POISON) {
1996 #ifdef CONFIG_DEBUG_PAGEALLOC
1997 if (cachep->size % PAGE_SIZE == 0 &&
1998 OFF_SLAB(cachep))
1999 kernel_map_pages(virt_to_page(objp),
2000 cachep->size / PAGE_SIZE, 1);
2001 else
2002 check_poison_obj(cachep, objp);
2003 #else
2004 check_poison_obj(cachep, objp);
2005 #endif
2007 if (cachep->flags & SLAB_RED_ZONE) {
2008 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2009 slab_error(cachep, "start of a freed object "
2010 "was overwritten");
2011 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2012 slab_error(cachep, "end of a freed object "
2013 "was overwritten");
2017 #else
2018 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
2019 struct page *page)
2022 #endif
2025 * slab_destroy - destroy and release all objects in a slab
2026 * @cachep: cache pointer being destroyed
2027 * @page: page pointer being destroyed
2029 * Destroy all the objs in a slab, and release the mem back to the system.
2030 * Before calling the slab must have been unlinked from the cache. The
2031 * cache-lock is not held/needed.
2033 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
2035 void *freelist;
2037 freelist = page->freelist;
2038 slab_destroy_debugcheck(cachep, page);
2039 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2040 struct rcu_head *head;
2043 * RCU free overloads the RCU head over the LRU.
2044 * slab_page has been overloeaded over the LRU,
2045 * however it is not used from now on so that
2046 * we can use it safely.
2048 head = (void *)&page->rcu_head;
2049 call_rcu(head, kmem_rcu_free);
2051 } else {
2052 kmem_freepages(cachep, page);
2056 * From now on, we don't use freelist
2057 * although actual page can be freed in rcu context
2059 if (OFF_SLAB(cachep))
2060 kmem_cache_free(cachep->freelist_cache, freelist);
2064 * calculate_slab_order - calculate size (page order) of slabs
2065 * @cachep: pointer to the cache that is being created
2066 * @size: size of objects to be created in this cache.
2067 * @align: required alignment for the objects.
2068 * @flags: slab allocation flags
2070 * Also calculates the number of objects per slab.
2072 * This could be made much more intelligent. For now, try to avoid using
2073 * high order pages for slabs. When the gfp() functions are more friendly
2074 * towards high-order requests, this should be changed.
2076 static size_t calculate_slab_order(struct kmem_cache *cachep,
2077 size_t size, size_t align, unsigned long flags)
2079 unsigned long offslab_limit;
2080 size_t left_over = 0;
2081 int gfporder;
2083 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2084 unsigned int num;
2085 size_t remainder;
2087 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2088 if (!num)
2089 continue;
2091 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2092 if (num > SLAB_OBJ_MAX_NUM)
2093 break;
2095 if (flags & CFLGS_OFF_SLAB) {
2096 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
2098 * Max number of objs-per-slab for caches which
2099 * use off-slab slabs. Needed to avoid a possible
2100 * looping condition in cache_grow().
2102 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2103 freelist_size_per_obj += sizeof(char);
2104 offslab_limit = size;
2105 offslab_limit /= freelist_size_per_obj;
2107 if (num > offslab_limit)
2108 break;
2111 /* Found something acceptable - save it away */
2112 cachep->num = num;
2113 cachep->gfporder = gfporder;
2114 left_over = remainder;
2117 * A VFS-reclaimable slab tends to have most allocations
2118 * as GFP_NOFS and we really don't want to have to be allocating
2119 * higher-order pages when we are unable to shrink dcache.
2121 if (flags & SLAB_RECLAIM_ACCOUNT)
2122 break;
2125 * Large number of objects is good, but very large slabs are
2126 * currently bad for the gfp()s.
2128 if (gfporder >= slab_max_order)
2129 break;
2132 * Acceptable internal fragmentation?
2134 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2135 break;
2137 return left_over;
2140 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2142 if (slab_state >= FULL)
2143 return enable_cpucache(cachep, gfp);
2145 if (slab_state == DOWN) {
2147 * Note: Creation of first cache (kmem_cache).
2148 * The setup_node is taken care
2149 * of by the caller of __kmem_cache_create
2151 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2152 slab_state = PARTIAL;
2153 } else if (slab_state == PARTIAL) {
2155 * Note: the second kmem_cache_create must create the cache
2156 * that's used by kmalloc(24), otherwise the creation of
2157 * further caches will BUG().
2159 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2162 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2163 * the second cache, then we need to set up all its node/,
2164 * otherwise the creation of further caches will BUG().
2166 set_up_node(cachep, SIZE_AC);
2167 if (INDEX_AC == INDEX_NODE)
2168 slab_state = PARTIAL_NODE;
2169 else
2170 slab_state = PARTIAL_ARRAYCACHE;
2171 } else {
2172 /* Remaining boot caches */
2173 cachep->array[smp_processor_id()] =
2174 kmalloc(sizeof(struct arraycache_init), gfp);
2176 if (slab_state == PARTIAL_ARRAYCACHE) {
2177 set_up_node(cachep, SIZE_NODE);
2178 slab_state = PARTIAL_NODE;
2179 } else {
2180 int node;
2181 for_each_online_node(node) {
2182 cachep->node[node] =
2183 kmalloc_node(sizeof(struct kmem_cache_node),
2184 gfp, node);
2185 BUG_ON(!cachep->node[node]);
2186 kmem_cache_node_init(cachep->node[node]);
2190 cachep->node[numa_mem_id()]->next_reap =
2191 jiffies + REAPTIMEOUT_NODE +
2192 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2194 cpu_cache_get(cachep)->avail = 0;
2195 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2196 cpu_cache_get(cachep)->batchcount = 1;
2197 cpu_cache_get(cachep)->touched = 0;
2198 cachep->batchcount = 1;
2199 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2200 return 0;
2204 * __kmem_cache_create - Create a cache.
2205 * @cachep: cache management descriptor
2206 * @flags: SLAB flags
2208 * Returns a ptr to the cache on success, NULL on failure.
2209 * Cannot be called within a int, but can be interrupted.
2210 * The @ctor is run when new pages are allocated by the cache.
2212 * The flags are
2214 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2215 * to catch references to uninitialised memory.
2217 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2218 * for buffer overruns.
2220 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2221 * cacheline. This can be beneficial if you're counting cycles as closely
2222 * as davem.
2225 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2227 size_t left_over, freelist_size, ralign;
2228 gfp_t gfp;
2229 int err;
2230 size_t size = cachep->size;
2232 #if DEBUG
2233 #if FORCED_DEBUG
2235 * Enable redzoning and last user accounting, except for caches with
2236 * large objects, if the increased size would increase the object size
2237 * above the next power of two: caches with object sizes just above a
2238 * power of two have a significant amount of internal fragmentation.
2240 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2241 2 * sizeof(unsigned long long)))
2242 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2243 if (!(flags & SLAB_DESTROY_BY_RCU))
2244 flags |= SLAB_POISON;
2245 #endif
2246 if (flags & SLAB_DESTROY_BY_RCU)
2247 BUG_ON(flags & SLAB_POISON);
2248 #endif
2251 * Check that size is in terms of words. This is needed to avoid
2252 * unaligned accesses for some archs when redzoning is used, and makes
2253 * sure any on-slab bufctl's are also correctly aligned.
2255 if (size & (BYTES_PER_WORD - 1)) {
2256 size += (BYTES_PER_WORD - 1);
2257 size &= ~(BYTES_PER_WORD - 1);
2261 * Redzoning and user store require word alignment or possibly larger.
2262 * Note this will be overridden by architecture or caller mandated
2263 * alignment if either is greater than BYTES_PER_WORD.
2265 if (flags & SLAB_STORE_USER)
2266 ralign = BYTES_PER_WORD;
2268 if (flags & SLAB_RED_ZONE) {
2269 ralign = REDZONE_ALIGN;
2270 /* If redzoning, ensure that the second redzone is suitably
2271 * aligned, by adjusting the object size accordingly. */
2272 size += REDZONE_ALIGN - 1;
2273 size &= ~(REDZONE_ALIGN - 1);
2276 /* 3) caller mandated alignment */
2277 if (ralign < cachep->align) {
2278 ralign = cachep->align;
2280 /* disable debug if necessary */
2281 if (ralign > __alignof__(unsigned long long))
2282 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2284 * 4) Store it.
2286 cachep->align = ralign;
2288 if (slab_is_available())
2289 gfp = GFP_KERNEL;
2290 else
2291 gfp = GFP_NOWAIT;
2293 setup_node_pointer(cachep);
2294 #if DEBUG
2297 * Both debugging options require word-alignment which is calculated
2298 * into align above.
2300 if (flags & SLAB_RED_ZONE) {
2301 /* add space for red zone words */
2302 cachep->obj_offset += sizeof(unsigned long long);
2303 size += 2 * sizeof(unsigned long long);
2305 if (flags & SLAB_STORE_USER) {
2306 /* user store requires one word storage behind the end of
2307 * the real object. But if the second red zone needs to be
2308 * aligned to 64 bits, we must allow that much space.
2310 if (flags & SLAB_RED_ZONE)
2311 size += REDZONE_ALIGN;
2312 else
2313 size += BYTES_PER_WORD;
2315 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2316 if (size >= kmalloc_size(INDEX_NODE + 1)
2317 && cachep->object_size > cache_line_size()
2318 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2319 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2320 size = PAGE_SIZE;
2322 #endif
2323 #endif
2326 * Determine if the slab management is 'on' or 'off' slab.
2327 * (bootstrapping cannot cope with offslab caches so don't do
2328 * it too early on. Always use on-slab management when
2329 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2331 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2332 !(flags & SLAB_NOLEAKTRACE))
2334 * Size is large, assume best to place the slab management obj
2335 * off-slab (should allow better packing of objs).
2337 flags |= CFLGS_OFF_SLAB;
2339 size = ALIGN(size, cachep->align);
2341 * We should restrict the number of objects in a slab to implement
2342 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2344 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2345 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2347 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2349 if (!cachep->num)
2350 return -E2BIG;
2352 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2355 * If the slab has been placed off-slab, and we have enough space then
2356 * move it on-slab. This is at the expense of any extra colouring.
2358 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2359 flags &= ~CFLGS_OFF_SLAB;
2360 left_over -= freelist_size;
2363 if (flags & CFLGS_OFF_SLAB) {
2364 /* really off slab. No need for manual alignment */
2365 freelist_size = calculate_freelist_size(cachep->num, 0);
2367 #ifdef CONFIG_PAGE_POISONING
2368 /* If we're going to use the generic kernel_map_pages()
2369 * poisoning, then it's going to smash the contents of
2370 * the redzone and userword anyhow, so switch them off.
2372 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2373 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2374 #endif
2377 cachep->colour_off = cache_line_size();
2378 /* Offset must be a multiple of the alignment. */
2379 if (cachep->colour_off < cachep->align)
2380 cachep->colour_off = cachep->align;
2381 cachep->colour = left_over / cachep->colour_off;
2382 cachep->freelist_size = freelist_size;
2383 cachep->flags = flags;
2384 cachep->allocflags = __GFP_COMP;
2385 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2386 cachep->allocflags |= GFP_DMA;
2387 cachep->size = size;
2388 cachep->reciprocal_buffer_size = reciprocal_value(size);
2390 if (flags & CFLGS_OFF_SLAB) {
2391 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2393 * This is a possibility for one of the kmalloc_{dma,}_caches.
2394 * But since we go off slab only for object size greater than
2395 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2396 * in ascending order,this should not happen at all.
2397 * But leave a BUG_ON for some lucky dude.
2399 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2402 err = setup_cpu_cache(cachep, gfp);
2403 if (err) {
2404 __kmem_cache_shutdown(cachep);
2405 return err;
2408 if (flags & SLAB_DEBUG_OBJECTS) {
2410 * Would deadlock through slab_destroy()->call_rcu()->
2411 * debug_object_activate()->kmem_cache_alloc().
2413 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2415 slab_set_debugobj_lock_classes(cachep);
2416 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2417 on_slab_lock_classes(cachep);
2419 return 0;
2422 #if DEBUG
2423 static void check_irq_off(void)
2425 BUG_ON(!irqs_disabled());
2428 static void check_irq_on(void)
2430 BUG_ON(irqs_disabled());
2433 static void check_spinlock_acquired(struct kmem_cache *cachep)
2435 #ifdef CONFIG_SMP
2436 check_irq_off();
2437 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2438 #endif
2441 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2443 #ifdef CONFIG_SMP
2444 check_irq_off();
2445 assert_spin_locked(&cachep->node[node]->list_lock);
2446 #endif
2449 #else
2450 #define check_irq_off() do { } while(0)
2451 #define check_irq_on() do { } while(0)
2452 #define check_spinlock_acquired(x) do { } while(0)
2453 #define check_spinlock_acquired_node(x, y) do { } while(0)
2454 #endif
2456 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2457 struct array_cache *ac,
2458 int force, int node);
2460 static void do_drain(void *arg)
2462 struct kmem_cache *cachep = arg;
2463 struct array_cache *ac;
2464 int node = numa_mem_id();
2466 check_irq_off();
2467 ac = cpu_cache_get(cachep);
2468 spin_lock(&cachep->node[node]->list_lock);
2469 free_block(cachep, ac->entry, ac->avail, node);
2470 spin_unlock(&cachep->node[node]->list_lock);
2471 ac->avail = 0;
2474 static void drain_cpu_caches(struct kmem_cache *cachep)
2476 struct kmem_cache_node *n;
2477 int node;
2479 on_each_cpu(do_drain, cachep, 1);
2480 check_irq_on();
2481 for_each_online_node(node) {
2482 n = cachep->node[node];
2483 if (n && n->alien)
2484 drain_alien_cache(cachep, n->alien);
2487 for_each_online_node(node) {
2488 n = cachep->node[node];
2489 if (n)
2490 drain_array(cachep, n, n->shared, 1, node);
2495 * Remove slabs from the list of free slabs.
2496 * Specify the number of slabs to drain in tofree.
2498 * Returns the actual number of slabs released.
2500 static int drain_freelist(struct kmem_cache *cache,
2501 struct kmem_cache_node *n, int tofree)
2503 struct list_head *p;
2504 int nr_freed;
2505 struct page *page;
2507 nr_freed = 0;
2508 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2510 spin_lock_irq(&n->list_lock);
2511 p = n->slabs_free.prev;
2512 if (p == &n->slabs_free) {
2513 spin_unlock_irq(&n->list_lock);
2514 goto out;
2517 page = list_entry(p, struct page, lru);
2518 #if DEBUG
2519 BUG_ON(page->active);
2520 #endif
2521 list_del(&page->lru);
2523 * Safe to drop the lock. The slab is no longer linked
2524 * to the cache.
2526 n->free_objects -= cache->num;
2527 spin_unlock_irq(&n->list_lock);
2528 slab_destroy(cache, page);
2529 nr_freed++;
2531 out:
2532 return nr_freed;
2535 int __kmem_cache_shrink(struct kmem_cache *cachep)
2537 int ret = 0, i = 0;
2538 struct kmem_cache_node *n;
2540 drain_cpu_caches(cachep);
2542 check_irq_on();
2543 for_each_online_node(i) {
2544 n = cachep->node[i];
2545 if (!n)
2546 continue;
2548 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2550 ret += !list_empty(&n->slabs_full) ||
2551 !list_empty(&n->slabs_partial);
2553 return (ret ? 1 : 0);
2556 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2558 int i;
2559 struct kmem_cache_node *n;
2560 int rc = __kmem_cache_shrink(cachep);
2562 if (rc)
2563 return rc;
2565 for_each_online_cpu(i)
2566 kfree(cachep->array[i]);
2568 /* NUMA: free the node structures */
2569 for_each_online_node(i) {
2570 n = cachep->node[i];
2571 if (n) {
2572 kfree(n->shared);
2573 free_alien_cache(n->alien);
2574 kfree(n);
2577 return 0;
2581 * Get the memory for a slab management obj.
2583 * For a slab cache when the slab descriptor is off-slab, the
2584 * slab descriptor can't come from the same cache which is being created,
2585 * Because if it is the case, that means we defer the creation of
2586 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2587 * And we eventually call down to __kmem_cache_create(), which
2588 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2589 * This is a "chicken-and-egg" problem.
2591 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2592 * which are all initialized during kmem_cache_init().
2594 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2595 struct page *page, int colour_off,
2596 gfp_t local_flags, int nodeid)
2598 void *freelist;
2599 void *addr = page_address(page);
2601 if (OFF_SLAB(cachep)) {
2602 /* Slab management obj is off-slab. */
2603 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2604 local_flags, nodeid);
2605 if (!freelist)
2606 return NULL;
2607 } else {
2608 freelist = addr + colour_off;
2609 colour_off += cachep->freelist_size;
2611 page->active = 0;
2612 page->s_mem = addr + colour_off;
2613 return freelist;
2616 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2618 return ((freelist_idx_t *)page->freelist)[idx];
2621 static inline void set_free_obj(struct page *page,
2622 unsigned int idx, freelist_idx_t val)
2624 ((freelist_idx_t *)(page->freelist))[idx] = val;
2627 static void cache_init_objs(struct kmem_cache *cachep,
2628 struct page *page)
2630 int i;
2632 for (i = 0; i < cachep->num; i++) {
2633 void *objp = index_to_obj(cachep, page, i);
2634 #if DEBUG
2635 /* need to poison the objs? */
2636 if (cachep->flags & SLAB_POISON)
2637 poison_obj(cachep, objp, POISON_FREE);
2638 if (cachep->flags & SLAB_STORE_USER)
2639 *dbg_userword(cachep, objp) = NULL;
2641 if (cachep->flags & SLAB_RED_ZONE) {
2642 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2643 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2646 * Constructors are not allowed to allocate memory from the same
2647 * cache which they are a constructor for. Otherwise, deadlock.
2648 * They must also be threaded.
2650 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2651 cachep->ctor(objp + obj_offset(cachep));
2653 if (cachep->flags & SLAB_RED_ZONE) {
2654 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2655 slab_error(cachep, "constructor overwrote the"
2656 " end of an object");
2657 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2658 slab_error(cachep, "constructor overwrote the"
2659 " start of an object");
2661 if ((cachep->size % PAGE_SIZE) == 0 &&
2662 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2663 kernel_map_pages(virt_to_page(objp),
2664 cachep->size / PAGE_SIZE, 0);
2665 #else
2666 if (cachep->ctor)
2667 cachep->ctor(objp);
2668 #endif
2669 set_obj_status(page, i, OBJECT_FREE);
2670 set_free_obj(page, i, i);
2674 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2676 if (CONFIG_ZONE_DMA_FLAG) {
2677 if (flags & GFP_DMA)
2678 BUG_ON(!(cachep->allocflags & GFP_DMA));
2679 else
2680 BUG_ON(cachep->allocflags & GFP_DMA);
2684 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2685 int nodeid)
2687 void *objp;
2689 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2690 page->active++;
2691 #if DEBUG
2692 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2693 #endif
2695 return objp;
2698 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2699 void *objp, int nodeid)
2701 unsigned int objnr = obj_to_index(cachep, page, objp);
2702 #if DEBUG
2703 unsigned int i;
2705 /* Verify that the slab belongs to the intended node */
2706 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2708 /* Verify double free bug */
2709 for (i = page->active; i < cachep->num; i++) {
2710 if (get_free_obj(page, i) == objnr) {
2711 printk(KERN_ERR "slab: double free detected in cache "
2712 "'%s', objp %p\n", cachep->name, objp);
2713 BUG();
2716 #endif
2717 page->active--;
2718 set_free_obj(page, page->active, objnr);
2722 * Map pages beginning at addr to the given cache and slab. This is required
2723 * for the slab allocator to be able to lookup the cache and slab of a
2724 * virtual address for kfree, ksize, and slab debugging.
2726 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2727 void *freelist)
2729 page->slab_cache = cache;
2730 page->freelist = freelist;
2734 * Grow (by 1) the number of slabs within a cache. This is called by
2735 * kmem_cache_alloc() when there are no active objs left in a cache.
2737 static int cache_grow(struct kmem_cache *cachep,
2738 gfp_t flags, int nodeid, struct page *page)
2740 void *freelist;
2741 size_t offset;
2742 gfp_t local_flags;
2743 struct kmem_cache_node *n;
2746 * Be lazy and only check for valid flags here, keeping it out of the
2747 * critical path in kmem_cache_alloc().
2749 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2750 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2752 /* Take the node list lock to change the colour_next on this node */
2753 check_irq_off();
2754 n = cachep->node[nodeid];
2755 spin_lock(&n->list_lock);
2757 /* Get colour for the slab, and cal the next value. */
2758 offset = n->colour_next;
2759 n->colour_next++;
2760 if (n->colour_next >= cachep->colour)
2761 n->colour_next = 0;
2762 spin_unlock(&n->list_lock);
2764 offset *= cachep->colour_off;
2766 if (local_flags & __GFP_WAIT)
2767 local_irq_enable();
2770 * The test for missing atomic flag is performed here, rather than
2771 * the more obvious place, simply to reduce the critical path length
2772 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2773 * will eventually be caught here (where it matters).
2775 kmem_flagcheck(cachep, flags);
2778 * Get mem for the objs. Attempt to allocate a physical page from
2779 * 'nodeid'.
2781 if (!page)
2782 page = kmem_getpages(cachep, local_flags, nodeid);
2783 if (!page)
2784 goto failed;
2786 /* Get slab management. */
2787 freelist = alloc_slabmgmt(cachep, page, offset,
2788 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2789 if (!freelist)
2790 goto opps1;
2792 slab_map_pages(cachep, page, freelist);
2794 cache_init_objs(cachep, page);
2796 if (local_flags & __GFP_WAIT)
2797 local_irq_disable();
2798 check_irq_off();
2799 spin_lock(&n->list_lock);
2801 /* Make slab active. */
2802 list_add_tail(&page->lru, &(n->slabs_free));
2803 STATS_INC_GROWN(cachep);
2804 n->free_objects += cachep->num;
2805 spin_unlock(&n->list_lock);
2806 return 1;
2807 opps1:
2808 kmem_freepages(cachep, page);
2809 failed:
2810 if (local_flags & __GFP_WAIT)
2811 local_irq_disable();
2812 return 0;
2815 #if DEBUG
2818 * Perform extra freeing checks:
2819 * - detect bad pointers.
2820 * - POISON/RED_ZONE checking
2822 static void kfree_debugcheck(const void *objp)
2824 if (!virt_addr_valid(objp)) {
2825 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2826 (unsigned long)objp);
2827 BUG();
2831 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2833 unsigned long long redzone1, redzone2;
2835 redzone1 = *dbg_redzone1(cache, obj);
2836 redzone2 = *dbg_redzone2(cache, obj);
2839 * Redzone is ok.
2841 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2842 return;
2844 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2845 slab_error(cache, "double free detected");
2846 else
2847 slab_error(cache, "memory outside object was overwritten");
2849 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2850 obj, redzone1, redzone2);
2853 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2854 unsigned long caller)
2856 unsigned int objnr;
2857 struct page *page;
2859 BUG_ON(virt_to_cache(objp) != cachep);
2861 objp -= obj_offset(cachep);
2862 kfree_debugcheck(objp);
2863 page = virt_to_head_page(objp);
2865 if (cachep->flags & SLAB_RED_ZONE) {
2866 verify_redzone_free(cachep, objp);
2867 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2868 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2870 if (cachep->flags & SLAB_STORE_USER)
2871 *dbg_userword(cachep, objp) = (void *)caller;
2873 objnr = obj_to_index(cachep, page, objp);
2875 BUG_ON(objnr >= cachep->num);
2876 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2878 set_obj_status(page, objnr, OBJECT_FREE);
2879 if (cachep->flags & SLAB_POISON) {
2880 #ifdef CONFIG_DEBUG_PAGEALLOC
2881 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2882 store_stackinfo(cachep, objp, caller);
2883 kernel_map_pages(virt_to_page(objp),
2884 cachep->size / PAGE_SIZE, 0);
2885 } else {
2886 poison_obj(cachep, objp, POISON_FREE);
2888 #else
2889 poison_obj(cachep, objp, POISON_FREE);
2890 #endif
2892 return objp;
2895 #else
2896 #define kfree_debugcheck(x) do { } while(0)
2897 #define cache_free_debugcheck(x,objp,z) (objp)
2898 #endif
2900 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2901 bool force_refill)
2903 int batchcount;
2904 struct kmem_cache_node *n;
2905 struct array_cache *ac;
2906 int node;
2908 check_irq_off();
2909 node = numa_mem_id();
2910 if (unlikely(force_refill))
2911 goto force_grow;
2912 retry:
2913 ac = cpu_cache_get(cachep);
2914 batchcount = ac->batchcount;
2915 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2917 * If there was little recent activity on this cache, then
2918 * perform only a partial refill. Otherwise we could generate
2919 * refill bouncing.
2921 batchcount = BATCHREFILL_LIMIT;
2923 n = cachep->node[node];
2925 BUG_ON(ac->avail > 0 || !n);
2926 spin_lock(&n->list_lock);
2928 /* See if we can refill from the shared array */
2929 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2930 n->shared->touched = 1;
2931 goto alloc_done;
2934 while (batchcount > 0) {
2935 struct list_head *entry;
2936 struct page *page;
2937 /* Get slab alloc is to come from. */
2938 entry = n->slabs_partial.next;
2939 if (entry == &n->slabs_partial) {
2940 n->free_touched = 1;
2941 entry = n->slabs_free.next;
2942 if (entry == &n->slabs_free)
2943 goto must_grow;
2946 page = list_entry(entry, struct page, lru);
2947 check_spinlock_acquired(cachep);
2950 * The slab was either on partial or free list so
2951 * there must be at least one object available for
2952 * allocation.
2954 BUG_ON(page->active >= cachep->num);
2956 while (page->active < cachep->num && batchcount--) {
2957 STATS_INC_ALLOCED(cachep);
2958 STATS_INC_ACTIVE(cachep);
2959 STATS_SET_HIGH(cachep);
2961 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2962 node));
2965 /* move slabp to correct slabp list: */
2966 list_del(&page->lru);
2967 if (page->active == cachep->num)
2968 list_add(&page->lru, &n->slabs_full);
2969 else
2970 list_add(&page->lru, &n->slabs_partial);
2973 must_grow:
2974 n->free_objects -= ac->avail;
2975 alloc_done:
2976 spin_unlock(&n->list_lock);
2978 if (unlikely(!ac->avail)) {
2979 int x;
2980 force_grow:
2981 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2983 /* cache_grow can reenable interrupts, then ac could change. */
2984 ac = cpu_cache_get(cachep);
2985 node = numa_mem_id();
2987 /* no objects in sight? abort */
2988 if (!x && (ac->avail == 0 || force_refill))
2989 return NULL;
2991 if (!ac->avail) /* objects refilled by interrupt? */
2992 goto retry;
2994 ac->touched = 1;
2996 return ac_get_obj(cachep, ac, flags, force_refill);
2999 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3000 gfp_t flags)
3002 might_sleep_if(flags & __GFP_WAIT);
3003 #if DEBUG
3004 kmem_flagcheck(cachep, flags);
3005 #endif
3008 #if DEBUG
3009 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3010 gfp_t flags, void *objp, unsigned long caller)
3012 struct page *page;
3014 if (!objp)
3015 return objp;
3016 if (cachep->flags & SLAB_POISON) {
3017 #ifdef CONFIG_DEBUG_PAGEALLOC
3018 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3019 kernel_map_pages(virt_to_page(objp),
3020 cachep->size / PAGE_SIZE, 1);
3021 else
3022 check_poison_obj(cachep, objp);
3023 #else
3024 check_poison_obj(cachep, objp);
3025 #endif
3026 poison_obj(cachep, objp, POISON_INUSE);
3028 if (cachep->flags & SLAB_STORE_USER)
3029 *dbg_userword(cachep, objp) = (void *)caller;
3031 if (cachep->flags & SLAB_RED_ZONE) {
3032 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3033 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3034 slab_error(cachep, "double free, or memory outside"
3035 " object was overwritten");
3036 printk(KERN_ERR
3037 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3038 objp, *dbg_redzone1(cachep, objp),
3039 *dbg_redzone2(cachep, objp));
3041 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3042 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3045 page = virt_to_head_page(objp);
3046 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
3047 objp += obj_offset(cachep);
3048 if (cachep->ctor && cachep->flags & SLAB_POISON)
3049 cachep->ctor(objp);
3050 if (ARCH_SLAB_MINALIGN &&
3051 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3052 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3053 objp, (int)ARCH_SLAB_MINALIGN);
3055 return objp;
3057 #else
3058 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3059 #endif
3061 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3063 if (cachep == kmem_cache)
3064 return false;
3066 return should_failslab(cachep->object_size, flags, cachep->flags);
3069 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3071 void *objp;
3072 struct array_cache *ac;
3073 bool force_refill = false;
3075 check_irq_off();
3077 ac = cpu_cache_get(cachep);
3078 if (likely(ac->avail)) {
3079 ac->touched = 1;
3080 objp = ac_get_obj(cachep, ac, flags, false);
3083 * Allow for the possibility all avail objects are not allowed
3084 * by the current flags
3086 if (objp) {
3087 STATS_INC_ALLOCHIT(cachep);
3088 goto out;
3090 force_refill = true;
3093 STATS_INC_ALLOCMISS(cachep);
3094 objp = cache_alloc_refill(cachep, flags, force_refill);
3096 * the 'ac' may be updated by cache_alloc_refill(),
3097 * and kmemleak_erase() requires its correct value.
3099 ac = cpu_cache_get(cachep);
3101 out:
3103 * To avoid a false negative, if an object that is in one of the
3104 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3105 * treat the array pointers as a reference to the object.
3107 if (objp)
3108 kmemleak_erase(&ac->entry[ac->avail]);
3109 return objp;
3112 #ifdef CONFIG_NUMA
3114 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3116 * If we are in_interrupt, then process context, including cpusets and
3117 * mempolicy, may not apply and should not be used for allocation policy.
3119 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3121 int nid_alloc, nid_here;
3123 if (in_interrupt() || (flags & __GFP_THISNODE))
3124 return NULL;
3125 nid_alloc = nid_here = numa_mem_id();
3126 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3127 nid_alloc = cpuset_slab_spread_node();
3128 else if (current->mempolicy)
3129 nid_alloc = mempolicy_slab_node();
3130 if (nid_alloc != nid_here)
3131 return ____cache_alloc_node(cachep, flags, nid_alloc);
3132 return NULL;
3136 * Fallback function if there was no memory available and no objects on a
3137 * certain node and fall back is permitted. First we scan all the
3138 * available node for available objects. If that fails then we
3139 * perform an allocation without specifying a node. This allows the page
3140 * allocator to do its reclaim / fallback magic. We then insert the
3141 * slab into the proper nodelist and then allocate from it.
3143 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3145 struct zonelist *zonelist;
3146 gfp_t local_flags;
3147 struct zoneref *z;
3148 struct zone *zone;
3149 enum zone_type high_zoneidx = gfp_zone(flags);
3150 void *obj = NULL;
3151 int nid;
3152 unsigned int cpuset_mems_cookie;
3154 if (flags & __GFP_THISNODE)
3155 return NULL;
3157 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3159 retry_cpuset:
3160 cpuset_mems_cookie = read_mems_allowed_begin();
3161 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3163 retry:
3165 * Look through allowed nodes for objects available
3166 * from existing per node queues.
3168 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3169 nid = zone_to_nid(zone);
3171 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3172 cache->node[nid] &&
3173 cache->node[nid]->free_objects) {
3174 obj = ____cache_alloc_node(cache,
3175 flags | GFP_THISNODE, nid);
3176 if (obj)
3177 break;
3181 if (!obj) {
3183 * This allocation will be performed within the constraints
3184 * of the current cpuset / memory policy requirements.
3185 * We may trigger various forms of reclaim on the allowed
3186 * set and go into memory reserves if necessary.
3188 struct page *page;
3190 if (local_flags & __GFP_WAIT)
3191 local_irq_enable();
3192 kmem_flagcheck(cache, flags);
3193 page = kmem_getpages(cache, local_flags, numa_mem_id());
3194 if (local_flags & __GFP_WAIT)
3195 local_irq_disable();
3196 if (page) {
3198 * Insert into the appropriate per node queues
3200 nid = page_to_nid(page);
3201 if (cache_grow(cache, flags, nid, page)) {
3202 obj = ____cache_alloc_node(cache,
3203 flags | GFP_THISNODE, nid);
3204 if (!obj)
3206 * Another processor may allocate the
3207 * objects in the slab since we are
3208 * not holding any locks.
3210 goto retry;
3211 } else {
3212 /* cache_grow already freed obj */
3213 obj = NULL;
3218 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3219 goto retry_cpuset;
3220 return obj;
3224 * A interface to enable slab creation on nodeid
3226 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3227 int nodeid)
3229 struct list_head *entry;
3230 struct page *page;
3231 struct kmem_cache_node *n;
3232 void *obj;
3233 int x;
3235 VM_BUG_ON(nodeid > num_online_nodes());
3236 n = cachep->node[nodeid];
3237 BUG_ON(!n);
3239 retry:
3240 check_irq_off();
3241 spin_lock(&n->list_lock);
3242 entry = n->slabs_partial.next;
3243 if (entry == &n->slabs_partial) {
3244 n->free_touched = 1;
3245 entry = n->slabs_free.next;
3246 if (entry == &n->slabs_free)
3247 goto must_grow;
3250 page = list_entry(entry, struct page, lru);
3251 check_spinlock_acquired_node(cachep, nodeid);
3253 STATS_INC_NODEALLOCS(cachep);
3254 STATS_INC_ACTIVE(cachep);
3255 STATS_SET_HIGH(cachep);
3257 BUG_ON(page->active == cachep->num);
3259 obj = slab_get_obj(cachep, page, nodeid);
3260 n->free_objects--;
3261 /* move slabp to correct slabp list: */
3262 list_del(&page->lru);
3264 if (page->active == cachep->num)
3265 list_add(&page->lru, &n->slabs_full);
3266 else
3267 list_add(&page->lru, &n->slabs_partial);
3269 spin_unlock(&n->list_lock);
3270 goto done;
3272 must_grow:
3273 spin_unlock(&n->list_lock);
3274 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3275 if (x)
3276 goto retry;
3278 return fallback_alloc(cachep, flags);
3280 done:
3281 return obj;
3284 static __always_inline void *
3285 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3286 unsigned long caller)
3288 unsigned long save_flags;
3289 void *ptr;
3290 int slab_node = numa_mem_id();
3292 flags &= gfp_allowed_mask;
3294 lockdep_trace_alloc(flags);
3296 if (slab_should_failslab(cachep, flags))
3297 return NULL;
3299 cachep = memcg_kmem_get_cache(cachep, flags);
3301 cache_alloc_debugcheck_before(cachep, flags);
3302 local_irq_save(save_flags);
3304 if (nodeid == NUMA_NO_NODE)
3305 nodeid = slab_node;
3307 if (unlikely(!cachep->node[nodeid])) {
3308 /* Node not bootstrapped yet */
3309 ptr = fallback_alloc(cachep, flags);
3310 goto out;
3313 if (nodeid == slab_node) {
3315 * Use the locally cached objects if possible.
3316 * However ____cache_alloc does not allow fallback
3317 * to other nodes. It may fail while we still have
3318 * objects on other nodes available.
3320 ptr = ____cache_alloc(cachep, flags);
3321 if (ptr)
3322 goto out;
3324 /* ___cache_alloc_node can fall back to other nodes */
3325 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3326 out:
3327 local_irq_restore(save_flags);
3328 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3329 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3330 flags);
3332 if (likely(ptr)) {
3333 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3334 if (unlikely(flags & __GFP_ZERO))
3335 memset(ptr, 0, cachep->object_size);
3338 return ptr;
3341 static __always_inline void *
3342 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3344 void *objp;
3346 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3347 objp = alternate_node_alloc(cache, flags);
3348 if (objp)
3349 goto out;
3351 objp = ____cache_alloc(cache, flags);
3354 * We may just have run out of memory on the local node.
3355 * ____cache_alloc_node() knows how to locate memory on other nodes
3357 if (!objp)
3358 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3360 out:
3361 return objp;
3363 #else
3365 static __always_inline void *
3366 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3368 return ____cache_alloc(cachep, flags);
3371 #endif /* CONFIG_NUMA */
3373 static __always_inline void *
3374 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3376 unsigned long save_flags;
3377 void *objp;
3379 flags &= gfp_allowed_mask;
3381 lockdep_trace_alloc(flags);
3383 if (slab_should_failslab(cachep, flags))
3384 return NULL;
3386 cachep = memcg_kmem_get_cache(cachep, flags);
3388 cache_alloc_debugcheck_before(cachep, flags);
3389 local_irq_save(save_flags);
3390 objp = __do_cache_alloc(cachep, flags);
3391 local_irq_restore(save_flags);
3392 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3393 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3394 flags);
3395 prefetchw(objp);
3397 if (likely(objp)) {
3398 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3399 if (unlikely(flags & __GFP_ZERO))
3400 memset(objp, 0, cachep->object_size);
3403 return objp;
3407 * Caller needs to acquire correct kmem_cache_node's list_lock
3409 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3410 int node)
3412 int i;
3413 struct kmem_cache_node *n;
3415 for (i = 0; i < nr_objects; i++) {
3416 void *objp;
3417 struct page *page;
3419 clear_obj_pfmemalloc(&objpp[i]);
3420 objp = objpp[i];
3422 page = virt_to_head_page(objp);
3423 n = cachep->node[node];
3424 list_del(&page->lru);
3425 check_spinlock_acquired_node(cachep, node);
3426 slab_put_obj(cachep, page, objp, node);
3427 STATS_DEC_ACTIVE(cachep);
3428 n->free_objects++;
3430 /* fixup slab chains */
3431 if (page->active == 0) {
3432 if (n->free_objects > n->free_limit) {
3433 n->free_objects -= cachep->num;
3434 /* No need to drop any previously held
3435 * lock here, even if we have a off-slab slab
3436 * descriptor it is guaranteed to come from
3437 * a different cache, refer to comments before
3438 * alloc_slabmgmt.
3440 slab_destroy(cachep, page);
3441 } else {
3442 list_add(&page->lru, &n->slabs_free);
3444 } else {
3445 /* Unconditionally move a slab to the end of the
3446 * partial list on free - maximum time for the
3447 * other objects to be freed, too.
3449 list_add_tail(&page->lru, &n->slabs_partial);
3454 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3456 int batchcount;
3457 struct kmem_cache_node *n;
3458 int node = numa_mem_id();
3460 batchcount = ac->batchcount;
3461 #if DEBUG
3462 BUG_ON(!batchcount || batchcount > ac->avail);
3463 #endif
3464 check_irq_off();
3465 n = cachep->node[node];
3466 spin_lock(&n->list_lock);
3467 if (n->shared) {
3468 struct array_cache *shared_array = n->shared;
3469 int max = shared_array->limit - shared_array->avail;
3470 if (max) {
3471 if (batchcount > max)
3472 batchcount = max;
3473 memcpy(&(shared_array->entry[shared_array->avail]),
3474 ac->entry, sizeof(void *) * batchcount);
3475 shared_array->avail += batchcount;
3476 goto free_done;
3480 free_block(cachep, ac->entry, batchcount, node);
3481 free_done:
3482 #if STATS
3484 int i = 0;
3485 struct list_head *p;
3487 p = n->slabs_free.next;
3488 while (p != &(n->slabs_free)) {
3489 struct page *page;
3491 page = list_entry(p, struct page, lru);
3492 BUG_ON(page->active);
3494 i++;
3495 p = p->next;
3497 STATS_SET_FREEABLE(cachep, i);
3499 #endif
3500 spin_unlock(&n->list_lock);
3501 ac->avail -= batchcount;
3502 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3506 * Release an obj back to its cache. If the obj has a constructed state, it must
3507 * be in this state _before_ it is released. Called with disabled ints.
3509 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3510 unsigned long caller)
3512 struct array_cache *ac = cpu_cache_get(cachep);
3514 check_irq_off();
3515 kmemleak_free_recursive(objp, cachep->flags);
3516 objp = cache_free_debugcheck(cachep, objp, caller);
3518 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3521 * Skip calling cache_free_alien() when the platform is not numa.
3522 * This will avoid cache misses that happen while accessing slabp (which
3523 * is per page memory reference) to get nodeid. Instead use a global
3524 * variable to skip the call, which is mostly likely to be present in
3525 * the cache.
3527 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3528 return;
3530 if (likely(ac->avail < ac->limit)) {
3531 STATS_INC_FREEHIT(cachep);
3532 } else {
3533 STATS_INC_FREEMISS(cachep);
3534 cache_flusharray(cachep, ac);
3537 ac_put_obj(cachep, ac, objp);
3541 * kmem_cache_alloc - Allocate an object
3542 * @cachep: The cache to allocate from.
3543 * @flags: See kmalloc().
3545 * Allocate an object from this cache. The flags are only relevant
3546 * if the cache has no available objects.
3548 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3550 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3552 trace_kmem_cache_alloc(_RET_IP_, ret,
3553 cachep->object_size, cachep->size, flags);
3555 return ret;
3557 EXPORT_SYMBOL(kmem_cache_alloc);
3559 #ifdef CONFIG_TRACING
3560 void *
3561 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3563 void *ret;
3565 ret = slab_alloc(cachep, flags, _RET_IP_);
3567 trace_kmalloc(_RET_IP_, ret,
3568 size, cachep->size, flags);
3569 return ret;
3571 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3572 #endif
3574 #ifdef CONFIG_NUMA
3576 * kmem_cache_alloc_node - Allocate an object on the specified node
3577 * @cachep: The cache to allocate from.
3578 * @flags: See kmalloc().
3579 * @nodeid: node number of the target node.
3581 * Identical to kmem_cache_alloc but it will allocate memory on the given
3582 * node, which can improve the performance for cpu bound structures.
3584 * Fallback to other node is possible if __GFP_THISNODE is not set.
3586 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3588 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3590 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3591 cachep->object_size, cachep->size,
3592 flags, nodeid);
3594 return ret;
3596 EXPORT_SYMBOL(kmem_cache_alloc_node);
3598 #ifdef CONFIG_TRACING
3599 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3600 gfp_t flags,
3601 int nodeid,
3602 size_t size)
3604 void *ret;
3606 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3608 trace_kmalloc_node(_RET_IP_, ret,
3609 size, cachep->size,
3610 flags, nodeid);
3611 return ret;
3613 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3614 #endif
3616 static __always_inline void *
3617 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3619 struct kmem_cache *cachep;
3621 cachep = kmalloc_slab(size, flags);
3622 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3623 return cachep;
3624 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3627 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3628 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3630 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3632 EXPORT_SYMBOL(__kmalloc_node);
3634 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3635 int node, unsigned long caller)
3637 return __do_kmalloc_node(size, flags, node, caller);
3639 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3640 #else
3641 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3643 return __do_kmalloc_node(size, flags, node, 0);
3645 EXPORT_SYMBOL(__kmalloc_node);
3646 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3647 #endif /* CONFIG_NUMA */
3650 * __do_kmalloc - allocate memory
3651 * @size: how many bytes of memory are required.
3652 * @flags: the type of memory to allocate (see kmalloc).
3653 * @caller: function caller for debug tracking of the caller
3655 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3656 unsigned long caller)
3658 struct kmem_cache *cachep;
3659 void *ret;
3661 cachep = kmalloc_slab(size, flags);
3662 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3663 return cachep;
3664 ret = slab_alloc(cachep, flags, caller);
3666 trace_kmalloc(caller, ret,
3667 size, cachep->size, flags);
3669 return ret;
3673 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3674 void *__kmalloc(size_t size, gfp_t flags)
3676 return __do_kmalloc(size, flags, _RET_IP_);
3678 EXPORT_SYMBOL(__kmalloc);
3680 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3682 return __do_kmalloc(size, flags, caller);
3684 EXPORT_SYMBOL(__kmalloc_track_caller);
3686 #else
3687 void *__kmalloc(size_t size, gfp_t flags)
3689 return __do_kmalloc(size, flags, 0);
3691 EXPORT_SYMBOL(__kmalloc);
3692 #endif
3695 * kmem_cache_free - Deallocate an object
3696 * @cachep: The cache the allocation was from.
3697 * @objp: The previously allocated object.
3699 * Free an object which was previously allocated from this
3700 * cache.
3702 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3704 unsigned long flags;
3705 cachep = cache_from_obj(cachep, objp);
3706 if (!cachep)
3707 return;
3709 local_irq_save(flags);
3710 debug_check_no_locks_freed(objp, cachep->object_size);
3711 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3712 debug_check_no_obj_freed(objp, cachep->object_size);
3713 __cache_free(cachep, objp, _RET_IP_);
3714 local_irq_restore(flags);
3716 trace_kmem_cache_free(_RET_IP_, objp);
3718 EXPORT_SYMBOL(kmem_cache_free);
3721 * kfree - free previously allocated memory
3722 * @objp: pointer returned by kmalloc.
3724 * If @objp is NULL, no operation is performed.
3726 * Don't free memory not originally allocated by kmalloc()
3727 * or you will run into trouble.
3729 void kfree(const void *objp)
3731 struct kmem_cache *c;
3732 unsigned long flags;
3734 trace_kfree(_RET_IP_, objp);
3736 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3737 return;
3738 local_irq_save(flags);
3739 kfree_debugcheck(objp);
3740 c = virt_to_cache(objp);
3741 debug_check_no_locks_freed(objp, c->object_size);
3743 debug_check_no_obj_freed(objp, c->object_size);
3744 __cache_free(c, (void *)objp, _RET_IP_);
3745 local_irq_restore(flags);
3747 EXPORT_SYMBOL(kfree);
3750 * This initializes kmem_cache_node or resizes various caches for all nodes.
3752 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3754 int node;
3755 struct kmem_cache_node *n;
3756 struct array_cache *new_shared;
3757 struct array_cache **new_alien = NULL;
3759 for_each_online_node(node) {
3761 if (use_alien_caches) {
3762 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3763 if (!new_alien)
3764 goto fail;
3767 new_shared = NULL;
3768 if (cachep->shared) {
3769 new_shared = alloc_arraycache(node,
3770 cachep->shared*cachep->batchcount,
3771 0xbaadf00d, gfp);
3772 if (!new_shared) {
3773 free_alien_cache(new_alien);
3774 goto fail;
3778 n = cachep->node[node];
3779 if (n) {
3780 struct array_cache *shared = n->shared;
3782 spin_lock_irq(&n->list_lock);
3784 if (shared)
3785 free_block(cachep, shared->entry,
3786 shared->avail, node);
3788 n->shared = new_shared;
3789 if (!n->alien) {
3790 n->alien = new_alien;
3791 new_alien = NULL;
3793 n->free_limit = (1 + nr_cpus_node(node)) *
3794 cachep->batchcount + cachep->num;
3795 spin_unlock_irq(&n->list_lock);
3796 kfree(shared);
3797 free_alien_cache(new_alien);
3798 continue;
3800 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3801 if (!n) {
3802 free_alien_cache(new_alien);
3803 kfree(new_shared);
3804 goto fail;
3807 kmem_cache_node_init(n);
3808 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3809 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3810 n->shared = new_shared;
3811 n->alien = new_alien;
3812 n->free_limit = (1 + nr_cpus_node(node)) *
3813 cachep->batchcount + cachep->num;
3814 cachep->node[node] = n;
3816 return 0;
3818 fail:
3819 if (!cachep->list.next) {
3820 /* Cache is not active yet. Roll back what we did */
3821 node--;
3822 while (node >= 0) {
3823 if (cachep->node[node]) {
3824 n = cachep->node[node];
3826 kfree(n->shared);
3827 free_alien_cache(n->alien);
3828 kfree(n);
3829 cachep->node[node] = NULL;
3831 node--;
3834 return -ENOMEM;
3837 struct ccupdate_struct {
3838 struct kmem_cache *cachep;
3839 struct array_cache *new[0];
3842 static void do_ccupdate_local(void *info)
3844 struct ccupdate_struct *new = info;
3845 struct array_cache *old;
3847 check_irq_off();
3848 old = cpu_cache_get(new->cachep);
3850 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3851 new->new[smp_processor_id()] = old;
3854 /* Always called with the slab_mutex held */
3855 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3856 int batchcount, int shared, gfp_t gfp)
3858 struct ccupdate_struct *new;
3859 int i;
3861 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3862 gfp);
3863 if (!new)
3864 return -ENOMEM;
3866 for_each_online_cpu(i) {
3867 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3868 batchcount, gfp);
3869 if (!new->new[i]) {
3870 for (i--; i >= 0; i--)
3871 kfree(new->new[i]);
3872 kfree(new);
3873 return -ENOMEM;
3876 new->cachep = cachep;
3878 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3880 check_irq_on();
3881 cachep->batchcount = batchcount;
3882 cachep->limit = limit;
3883 cachep->shared = shared;
3885 for_each_online_cpu(i) {
3886 struct array_cache *ccold = new->new[i];
3887 if (!ccold)
3888 continue;
3889 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3890 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3891 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3892 kfree(ccold);
3894 kfree(new);
3895 return alloc_kmem_cache_node(cachep, gfp);
3898 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3899 int batchcount, int shared, gfp_t gfp)
3901 int ret;
3902 struct kmem_cache *c = NULL;
3903 int i = 0;
3905 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3907 if (slab_state < FULL)
3908 return ret;
3910 if ((ret < 0) || !is_root_cache(cachep))
3911 return ret;
3913 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3914 for_each_memcg_cache_index(i) {
3915 c = cache_from_memcg_idx(cachep, i);
3916 if (c)
3917 /* return value determined by the parent cache only */
3918 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3921 return ret;
3924 /* Called with slab_mutex held always */
3925 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3927 int err;
3928 int limit = 0;
3929 int shared = 0;
3930 int batchcount = 0;
3932 if (!is_root_cache(cachep)) {
3933 struct kmem_cache *root = memcg_root_cache(cachep);
3934 limit = root->limit;
3935 shared = root->shared;
3936 batchcount = root->batchcount;
3939 if (limit && shared && batchcount)
3940 goto skip_setup;
3942 * The head array serves three purposes:
3943 * - create a LIFO ordering, i.e. return objects that are cache-warm
3944 * - reduce the number of spinlock operations.
3945 * - reduce the number of linked list operations on the slab and
3946 * bufctl chains: array operations are cheaper.
3947 * The numbers are guessed, we should auto-tune as described by
3948 * Bonwick.
3950 if (cachep->size > 131072)
3951 limit = 1;
3952 else if (cachep->size > PAGE_SIZE)
3953 limit = 8;
3954 else if (cachep->size > 1024)
3955 limit = 24;
3956 else if (cachep->size > 256)
3957 limit = 54;
3958 else
3959 limit = 120;
3962 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3963 * allocation behaviour: Most allocs on one cpu, most free operations
3964 * on another cpu. For these cases, an efficient object passing between
3965 * cpus is necessary. This is provided by a shared array. The array
3966 * replaces Bonwick's magazine layer.
3967 * On uniprocessor, it's functionally equivalent (but less efficient)
3968 * to a larger limit. Thus disabled by default.
3970 shared = 0;
3971 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3972 shared = 8;
3974 #if DEBUG
3976 * With debugging enabled, large batchcount lead to excessively long
3977 * periods with disabled local interrupts. Limit the batchcount
3979 if (limit > 32)
3980 limit = 32;
3981 #endif
3982 batchcount = (limit + 1) / 2;
3983 skip_setup:
3984 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3985 if (err)
3986 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3987 cachep->name, -err);
3988 return err;
3992 * Drain an array if it contains any elements taking the node lock only if
3993 * necessary. Note that the node listlock also protects the array_cache
3994 * if drain_array() is used on the shared array.
3996 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3997 struct array_cache *ac, int force, int node)
3999 int tofree;
4001 if (!ac || !ac->avail)
4002 return;
4003 if (ac->touched && !force) {
4004 ac->touched = 0;
4005 } else {
4006 spin_lock_irq(&n->list_lock);
4007 if (ac->avail) {
4008 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4009 if (tofree > ac->avail)
4010 tofree = (ac->avail + 1) / 2;
4011 free_block(cachep, ac->entry, tofree, node);
4012 ac->avail -= tofree;
4013 memmove(ac->entry, &(ac->entry[tofree]),
4014 sizeof(void *) * ac->avail);
4016 spin_unlock_irq(&n->list_lock);
4021 * cache_reap - Reclaim memory from caches.
4022 * @w: work descriptor
4024 * Called from workqueue/eventd every few seconds.
4025 * Purpose:
4026 * - clear the per-cpu caches for this CPU.
4027 * - return freeable pages to the main free memory pool.
4029 * If we cannot acquire the cache chain mutex then just give up - we'll try
4030 * again on the next iteration.
4032 static void cache_reap(struct work_struct *w)
4034 struct kmem_cache *searchp;
4035 struct kmem_cache_node *n;
4036 int node = numa_mem_id();
4037 struct delayed_work *work = to_delayed_work(w);
4039 if (!mutex_trylock(&slab_mutex))
4040 /* Give up. Setup the next iteration. */
4041 goto out;
4043 list_for_each_entry(searchp, &slab_caches, list) {
4044 check_irq_on();
4047 * We only take the node lock if absolutely necessary and we
4048 * have established with reasonable certainty that
4049 * we can do some work if the lock was obtained.
4051 n = searchp->node[node];
4053 reap_alien(searchp, n);
4055 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4058 * These are racy checks but it does not matter
4059 * if we skip one check or scan twice.
4061 if (time_after(n->next_reap, jiffies))
4062 goto next;
4064 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4066 drain_array(searchp, n, n->shared, 0, node);
4068 if (n->free_touched)
4069 n->free_touched = 0;
4070 else {
4071 int freed;
4073 freed = drain_freelist(searchp, n, (n->free_limit +
4074 5 * searchp->num - 1) / (5 * searchp->num));
4075 STATS_ADD_REAPED(searchp, freed);
4077 next:
4078 cond_resched();
4080 check_irq_on();
4081 mutex_unlock(&slab_mutex);
4082 next_reap_node();
4083 out:
4084 /* Set up the next iteration */
4085 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4088 #ifdef CONFIG_SLABINFO
4089 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4091 struct page *page;
4092 unsigned long active_objs;
4093 unsigned long num_objs;
4094 unsigned long active_slabs = 0;
4095 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4096 const char *name;
4097 char *error = NULL;
4098 int node;
4099 struct kmem_cache_node *n;
4101 active_objs = 0;
4102 num_slabs = 0;
4103 for_each_online_node(node) {
4104 n = cachep->node[node];
4105 if (!n)
4106 continue;
4108 check_irq_on();
4109 spin_lock_irq(&n->list_lock);
4111 list_for_each_entry(page, &n->slabs_full, lru) {
4112 if (page->active != cachep->num && !error)
4113 error = "slabs_full accounting error";
4114 active_objs += cachep->num;
4115 active_slabs++;
4117 list_for_each_entry(page, &n->slabs_partial, lru) {
4118 if (page->active == cachep->num && !error)
4119 error = "slabs_partial accounting error";
4120 if (!page->active && !error)
4121 error = "slabs_partial accounting error";
4122 active_objs += page->active;
4123 active_slabs++;
4125 list_for_each_entry(page, &n->slabs_free, lru) {
4126 if (page->active && !error)
4127 error = "slabs_free accounting error";
4128 num_slabs++;
4130 free_objects += n->free_objects;
4131 if (n->shared)
4132 shared_avail += n->shared->avail;
4134 spin_unlock_irq(&n->list_lock);
4136 num_slabs += active_slabs;
4137 num_objs = num_slabs * cachep->num;
4138 if (num_objs - active_objs != free_objects && !error)
4139 error = "free_objects accounting error";
4141 name = cachep->name;
4142 if (error)
4143 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4145 sinfo->active_objs = active_objs;
4146 sinfo->num_objs = num_objs;
4147 sinfo->active_slabs = active_slabs;
4148 sinfo->num_slabs = num_slabs;
4149 sinfo->shared_avail = shared_avail;
4150 sinfo->limit = cachep->limit;
4151 sinfo->batchcount = cachep->batchcount;
4152 sinfo->shared = cachep->shared;
4153 sinfo->objects_per_slab = cachep->num;
4154 sinfo->cache_order = cachep->gfporder;
4157 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4159 #if STATS
4160 { /* node stats */
4161 unsigned long high = cachep->high_mark;
4162 unsigned long allocs = cachep->num_allocations;
4163 unsigned long grown = cachep->grown;
4164 unsigned long reaped = cachep->reaped;
4165 unsigned long errors = cachep->errors;
4166 unsigned long max_freeable = cachep->max_freeable;
4167 unsigned long node_allocs = cachep->node_allocs;
4168 unsigned long node_frees = cachep->node_frees;
4169 unsigned long overflows = cachep->node_overflow;
4171 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4172 "%4lu %4lu %4lu %4lu %4lu",
4173 allocs, high, grown,
4174 reaped, errors, max_freeable, node_allocs,
4175 node_frees, overflows);
4177 /* cpu stats */
4179 unsigned long allochit = atomic_read(&cachep->allochit);
4180 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4181 unsigned long freehit = atomic_read(&cachep->freehit);
4182 unsigned long freemiss = atomic_read(&cachep->freemiss);
4184 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4185 allochit, allocmiss, freehit, freemiss);
4187 #endif
4190 #define MAX_SLABINFO_WRITE 128
4192 * slabinfo_write - Tuning for the slab allocator
4193 * @file: unused
4194 * @buffer: user buffer
4195 * @count: data length
4196 * @ppos: unused
4198 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4199 size_t count, loff_t *ppos)
4201 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4202 int limit, batchcount, shared, res;
4203 struct kmem_cache *cachep;
4205 if (count > MAX_SLABINFO_WRITE)
4206 return -EINVAL;
4207 if (copy_from_user(&kbuf, buffer, count))
4208 return -EFAULT;
4209 kbuf[MAX_SLABINFO_WRITE] = '\0';
4211 tmp = strchr(kbuf, ' ');
4212 if (!tmp)
4213 return -EINVAL;
4214 *tmp = '\0';
4215 tmp++;
4216 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4217 return -EINVAL;
4219 /* Find the cache in the chain of caches. */
4220 mutex_lock(&slab_mutex);
4221 res = -EINVAL;
4222 list_for_each_entry(cachep, &slab_caches, list) {
4223 if (!strcmp(cachep->name, kbuf)) {
4224 if (limit < 1 || batchcount < 1 ||
4225 batchcount > limit || shared < 0) {
4226 res = 0;
4227 } else {
4228 res = do_tune_cpucache(cachep, limit,
4229 batchcount, shared,
4230 GFP_KERNEL);
4232 break;
4235 mutex_unlock(&slab_mutex);
4236 if (res >= 0)
4237 res = count;
4238 return res;
4241 #ifdef CONFIG_DEBUG_SLAB_LEAK
4243 static void *leaks_start(struct seq_file *m, loff_t *pos)
4245 mutex_lock(&slab_mutex);
4246 return seq_list_start(&slab_caches, *pos);
4249 static inline int add_caller(unsigned long *n, unsigned long v)
4251 unsigned long *p;
4252 int l;
4253 if (!v)
4254 return 1;
4255 l = n[1];
4256 p = n + 2;
4257 while (l) {
4258 int i = l/2;
4259 unsigned long *q = p + 2 * i;
4260 if (*q == v) {
4261 q[1]++;
4262 return 1;
4264 if (*q > v) {
4265 l = i;
4266 } else {
4267 p = q + 2;
4268 l -= i + 1;
4271 if (++n[1] == n[0])
4272 return 0;
4273 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4274 p[0] = v;
4275 p[1] = 1;
4276 return 1;
4279 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4280 struct page *page)
4282 void *p;
4283 int i;
4285 if (n[0] == n[1])
4286 return;
4287 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4288 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4289 continue;
4291 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4292 return;
4296 static void show_symbol(struct seq_file *m, unsigned long address)
4298 #ifdef CONFIG_KALLSYMS
4299 unsigned long offset, size;
4300 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4302 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4303 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4304 if (modname[0])
4305 seq_printf(m, " [%s]", modname);
4306 return;
4308 #endif
4309 seq_printf(m, "%p", (void *)address);
4312 static int leaks_show(struct seq_file *m, void *p)
4314 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4315 struct page *page;
4316 struct kmem_cache_node *n;
4317 const char *name;
4318 unsigned long *x = m->private;
4319 int node;
4320 int i;
4322 if (!(cachep->flags & SLAB_STORE_USER))
4323 return 0;
4324 if (!(cachep->flags & SLAB_RED_ZONE))
4325 return 0;
4327 /* OK, we can do it */
4329 x[1] = 0;
4331 for_each_online_node(node) {
4332 n = cachep->node[node];
4333 if (!n)
4334 continue;
4336 check_irq_on();
4337 spin_lock_irq(&n->list_lock);
4339 list_for_each_entry(page, &n->slabs_full, lru)
4340 handle_slab(x, cachep, page);
4341 list_for_each_entry(page, &n->slabs_partial, lru)
4342 handle_slab(x, cachep, page);
4343 spin_unlock_irq(&n->list_lock);
4345 name = cachep->name;
4346 if (x[0] == x[1]) {
4347 /* Increase the buffer size */
4348 mutex_unlock(&slab_mutex);
4349 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4350 if (!m->private) {
4351 /* Too bad, we are really out */
4352 m->private = x;
4353 mutex_lock(&slab_mutex);
4354 return -ENOMEM;
4356 *(unsigned long *)m->private = x[0] * 2;
4357 kfree(x);
4358 mutex_lock(&slab_mutex);
4359 /* Now make sure this entry will be retried */
4360 m->count = m->size;
4361 return 0;
4363 for (i = 0; i < x[1]; i++) {
4364 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4365 show_symbol(m, x[2*i+2]);
4366 seq_putc(m, '\n');
4369 return 0;
4372 static const struct seq_operations slabstats_op = {
4373 .start = leaks_start,
4374 .next = slab_next,
4375 .stop = slab_stop,
4376 .show = leaks_show,
4379 static int slabstats_open(struct inode *inode, struct file *file)
4381 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4382 int ret = -ENOMEM;
4383 if (n) {
4384 ret = seq_open(file, &slabstats_op);
4385 if (!ret) {
4386 struct seq_file *m = file->private_data;
4387 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4388 m->private = n;
4389 n = NULL;
4391 kfree(n);
4393 return ret;
4396 static const struct file_operations proc_slabstats_operations = {
4397 .open = slabstats_open,
4398 .read = seq_read,
4399 .llseek = seq_lseek,
4400 .release = seq_release_private,
4402 #endif
4404 static int __init slab_proc_init(void)
4406 #ifdef CONFIG_DEBUG_SLAB_LEAK
4407 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4408 #endif
4409 return 0;
4411 module_init(slab_proc_init);
4412 #endif
4415 * ksize - get the actual amount of memory allocated for a given object
4416 * @objp: Pointer to the object
4418 * kmalloc may internally round up allocations and return more memory
4419 * than requested. ksize() can be used to determine the actual amount of
4420 * memory allocated. The caller may use this additional memory, even though
4421 * a smaller amount of memory was initially specified with the kmalloc call.
4422 * The caller must guarantee that objp points to a valid object previously
4423 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4424 * must not be freed during the duration of the call.
4426 size_t ksize(const void *objp)
4428 BUG_ON(!objp);
4429 if (unlikely(objp == ZERO_SIZE_PTR))
4430 return 0;
4432 return virt_to_cache(objp)->object_size;
4434 EXPORT_SYMBOL(ksize);