[media] vivid: sdr cap: few enhancements
[linux-2.6/btrfs-unstable.git] / mm / memcontrol.c
blob6ddaeba34e097a7553d33b8add26e26a27d3c81a
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account 0
87 #endif
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "dirty",
95 "writeback",
96 "swap",
99 static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
106 static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
114 #define THRESHOLDS_EVENTS_TARGET 128
115 #define SOFTLIMIT_EVENTS_TARGET 1024
116 #define NUMAINFO_EVENTS_TARGET 1024
119 * Cgroups above their limits are maintained in a RB-Tree, independent of
120 * their hierarchy representation
123 struct mem_cgroup_tree_per_zone {
124 struct rb_root rb_root;
125 spinlock_t lock;
128 struct mem_cgroup_tree_per_node {
129 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
132 struct mem_cgroup_tree {
133 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
136 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138 /* for OOM */
139 struct mem_cgroup_eventfd_list {
140 struct list_head list;
141 struct eventfd_ctx *eventfd;
145 * cgroup_event represents events which userspace want to receive.
147 struct mem_cgroup_event {
149 * memcg which the event belongs to.
151 struct mem_cgroup *memcg;
153 * eventfd to signal userspace about the event.
155 struct eventfd_ctx *eventfd;
157 * Each of these stored in a list by the cgroup.
159 struct list_head list;
161 * register_event() callback will be used to add new userspace
162 * waiter for changes related to this event. Use eventfd_signal()
163 * on eventfd to send notification to userspace.
165 int (*register_event)(struct mem_cgroup *memcg,
166 struct eventfd_ctx *eventfd, const char *args);
168 * unregister_event() callback will be called when userspace closes
169 * the eventfd or on cgroup removing. This callback must be set,
170 * if you want provide notification functionality.
172 void (*unregister_event)(struct mem_cgroup *memcg,
173 struct eventfd_ctx *eventfd);
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
184 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
185 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187 /* Stuffs for move charges at task migration. */
189 * Types of charges to be moved.
191 #define MOVE_ANON 0x1U
192 #define MOVE_FILE 0x2U
193 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
195 /* "mc" and its members are protected by cgroup_mutex */
196 static struct move_charge_struct {
197 spinlock_t lock; /* for from, to */
198 struct mem_cgroup *from;
199 struct mem_cgroup *to;
200 unsigned long flags;
201 unsigned long precharge;
202 unsigned long moved_charge;
203 unsigned long moved_swap;
204 struct task_struct *moving_task; /* a task moving charges */
205 wait_queue_head_t waitq; /* a waitq for other context */
206 } mc = {
207 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
208 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
212 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
213 * limit reclaim to prevent infinite loops, if they ever occur.
215 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
216 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
218 enum charge_type {
219 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
220 MEM_CGROUP_CHARGE_TYPE_ANON,
221 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
222 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
223 NR_CHARGE_TYPE,
226 /* for encoding cft->private value on file */
227 enum res_type {
228 _MEM,
229 _MEMSWAP,
230 _OOM_TYPE,
231 _KMEM,
234 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
235 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
236 #define MEMFILE_ATTR(val) ((val) & 0xffff)
237 /* Used for OOM nofiier */
238 #define OOM_CONTROL (0)
241 * The memcg_create_mutex will be held whenever a new cgroup is created.
242 * As a consequence, any change that needs to protect against new child cgroups
243 * appearing has to hold it as well.
245 static DEFINE_MUTEX(memcg_create_mutex);
247 /* Some nice accessors for the vmpressure. */
248 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 if (!memcg)
251 memcg = root_mem_cgroup;
252 return &memcg->vmpressure;
255 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262 return (memcg == root_mem_cgroup);
266 * We restrict the id in the range of [1, 65535], so it can fit into
267 * an unsigned short.
269 #define MEM_CGROUP_ID_MAX USHRT_MAX
271 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273 return memcg->css.id;
277 * A helper function to get mem_cgroup from ID. must be called under
278 * rcu_read_lock(). The caller is responsible for calling
279 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
280 * refcnt from swap can be called against removed memcg.)
282 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284 struct cgroup_subsys_state *css;
286 css = css_from_id(id, &memory_cgrp_subsys);
287 return mem_cgroup_from_css(css);
290 /* Writing them here to avoid exposing memcg's inner layout */
291 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
293 void sock_update_memcg(struct sock *sk)
295 if (mem_cgroup_sockets_enabled) {
296 struct mem_cgroup *memcg;
297 struct cg_proto *cg_proto;
299 BUG_ON(!sk->sk_prot->proto_cgroup);
301 /* Socket cloning can throw us here with sk_cgrp already
302 * filled. It won't however, necessarily happen from
303 * process context. So the test for root memcg given
304 * the current task's memcg won't help us in this case.
306 * Respecting the original socket's memcg is a better
307 * decision in this case.
309 if (sk->sk_cgrp) {
310 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
311 css_get(&sk->sk_cgrp->memcg->css);
312 return;
315 rcu_read_lock();
316 memcg = mem_cgroup_from_task(current);
317 cg_proto = sk->sk_prot->proto_cgroup(memcg);
318 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
319 css_tryget_online(&memcg->css)) {
320 sk->sk_cgrp = cg_proto;
322 rcu_read_unlock();
325 EXPORT_SYMBOL(sock_update_memcg);
327 void sock_release_memcg(struct sock *sk)
329 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
330 struct mem_cgroup *memcg;
331 WARN_ON(!sk->sk_cgrp->memcg);
332 memcg = sk->sk_cgrp->memcg;
333 css_put(&sk->sk_cgrp->memcg->css);
337 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339 if (!memcg || mem_cgroup_is_root(memcg))
340 return NULL;
342 return &memcg->tcp_mem;
344 EXPORT_SYMBOL(tcp_proto_cgroup);
346 #endif
348 #ifdef CONFIG_MEMCG_KMEM
350 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
351 * The main reason for not using cgroup id for this:
352 * this works better in sparse environments, where we have a lot of memcgs,
353 * but only a few kmem-limited. Or also, if we have, for instance, 200
354 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
355 * 200 entry array for that.
357 * The current size of the caches array is stored in memcg_nr_cache_ids. It
358 * will double each time we have to increase it.
360 static DEFINE_IDA(memcg_cache_ida);
361 int memcg_nr_cache_ids;
363 /* Protects memcg_nr_cache_ids */
364 static DECLARE_RWSEM(memcg_cache_ids_sem);
366 void memcg_get_cache_ids(void)
368 down_read(&memcg_cache_ids_sem);
371 void memcg_put_cache_ids(void)
373 up_read(&memcg_cache_ids_sem);
377 * MIN_SIZE is different than 1, because we would like to avoid going through
378 * the alloc/free process all the time. In a small machine, 4 kmem-limited
379 * cgroups is a reasonable guess. In the future, it could be a parameter or
380 * tunable, but that is strictly not necessary.
382 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
383 * this constant directly from cgroup, but it is understandable that this is
384 * better kept as an internal representation in cgroup.c. In any case, the
385 * cgrp_id space is not getting any smaller, and we don't have to necessarily
386 * increase ours as well if it increases.
388 #define MEMCG_CACHES_MIN_SIZE 4
389 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
392 * A lot of the calls to the cache allocation functions are expected to be
393 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
394 * conditional to this static branch, we'll have to allow modules that does
395 * kmem_cache_alloc and the such to see this symbol as well
397 struct static_key memcg_kmem_enabled_key;
398 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif /* CONFIG_MEMCG_KMEM */
402 static struct mem_cgroup_per_zone *
403 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405 int nid = zone_to_nid(zone);
406 int zid = zone_idx(zone);
408 return &memcg->nodeinfo[nid]->zoneinfo[zid];
412 * mem_cgroup_css_from_page - css of the memcg associated with a page
413 * @page: page of interest
415 * If memcg is bound to the default hierarchy, css of the memcg associated
416 * with @page is returned. The returned css remains associated with @page
417 * until it is released.
419 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
420 * is returned.
422 * XXX: The above description of behavior on the default hierarchy isn't
423 * strictly true yet as replace_page_cache_page() can modify the
424 * association before @page is released even on the default hierarchy;
425 * however, the current and planned usages don't mix the the two functions
426 * and replace_page_cache_page() will soon be updated to make the invariant
427 * actually true.
429 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431 struct mem_cgroup *memcg;
433 rcu_read_lock();
435 memcg = page->mem_cgroup;
437 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
438 memcg = root_mem_cgroup;
440 rcu_read_unlock();
441 return &memcg->css;
445 * page_cgroup_ino - return inode number of the memcg a page is charged to
446 * @page: the page
448 * Look up the closest online ancestor of the memory cgroup @page is charged to
449 * and return its inode number or 0 if @page is not charged to any cgroup. It
450 * is safe to call this function without holding a reference to @page.
452 * Note, this function is inherently racy, because there is nothing to prevent
453 * the cgroup inode from getting torn down and potentially reallocated a moment
454 * after page_cgroup_ino() returns, so it only should be used by callers that
455 * do not care (such as procfs interfaces).
457 ino_t page_cgroup_ino(struct page *page)
459 struct mem_cgroup *memcg;
460 unsigned long ino = 0;
462 rcu_read_lock();
463 memcg = READ_ONCE(page->mem_cgroup);
464 while (memcg && !(memcg->css.flags & CSS_ONLINE))
465 memcg = parent_mem_cgroup(memcg);
466 if (memcg)
467 ino = cgroup_ino(memcg->css.cgroup);
468 rcu_read_unlock();
469 return ino;
472 static struct mem_cgroup_per_zone *
473 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
475 int nid = page_to_nid(page);
476 int zid = page_zonenum(page);
478 return &memcg->nodeinfo[nid]->zoneinfo[zid];
481 static struct mem_cgroup_tree_per_zone *
482 soft_limit_tree_node_zone(int nid, int zid)
484 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
487 static struct mem_cgroup_tree_per_zone *
488 soft_limit_tree_from_page(struct page *page)
490 int nid = page_to_nid(page);
491 int zid = page_zonenum(page);
493 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
496 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long new_usage_in_excess)
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
504 if (mz->on_tree)
505 return;
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
528 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
529 struct mem_cgroup_tree_per_zone *mctz)
531 if (!mz->on_tree)
532 return;
533 rb_erase(&mz->tree_node, &mctz->rb_root);
534 mz->on_tree = false;
537 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
538 struct mem_cgroup_tree_per_zone *mctz)
540 unsigned long flags;
542 spin_lock_irqsave(&mctz->lock, flags);
543 __mem_cgroup_remove_exceeded(mz, mctz);
544 spin_unlock_irqrestore(&mctz->lock, flags);
547 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
549 unsigned long nr_pages = page_counter_read(&memcg->memory);
550 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
551 unsigned long excess = 0;
553 if (nr_pages > soft_limit)
554 excess = nr_pages - soft_limit;
556 return excess;
559 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
561 unsigned long excess;
562 struct mem_cgroup_per_zone *mz;
563 struct mem_cgroup_tree_per_zone *mctz;
565 mctz = soft_limit_tree_from_page(page);
567 * Necessary to update all ancestors when hierarchy is used.
568 * because their event counter is not touched.
570 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
571 mz = mem_cgroup_page_zoneinfo(memcg, page);
572 excess = soft_limit_excess(memcg);
574 * We have to update the tree if mz is on RB-tree or
575 * mem is over its softlimit.
577 if (excess || mz->on_tree) {
578 unsigned long flags;
580 spin_lock_irqsave(&mctz->lock, flags);
581 /* if on-tree, remove it */
582 if (mz->on_tree)
583 __mem_cgroup_remove_exceeded(mz, mctz);
585 * Insert again. mz->usage_in_excess will be updated.
586 * If excess is 0, no tree ops.
588 __mem_cgroup_insert_exceeded(mz, mctz, excess);
589 spin_unlock_irqrestore(&mctz->lock, flags);
594 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
596 struct mem_cgroup_tree_per_zone *mctz;
597 struct mem_cgroup_per_zone *mz;
598 int nid, zid;
600 for_each_node(nid) {
601 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
602 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
603 mctz = soft_limit_tree_node_zone(nid, zid);
604 mem_cgroup_remove_exceeded(mz, mctz);
609 static struct mem_cgroup_per_zone *
610 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
612 struct rb_node *rightmost = NULL;
613 struct mem_cgroup_per_zone *mz;
615 retry:
616 mz = NULL;
617 rightmost = rb_last(&mctz->rb_root);
618 if (!rightmost)
619 goto done; /* Nothing to reclaim from */
621 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
623 * Remove the node now but someone else can add it back,
624 * we will to add it back at the end of reclaim to its correct
625 * position in the tree.
627 __mem_cgroup_remove_exceeded(mz, mctz);
628 if (!soft_limit_excess(mz->memcg) ||
629 !css_tryget_online(&mz->memcg->css))
630 goto retry;
631 done:
632 return mz;
635 static struct mem_cgroup_per_zone *
636 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638 struct mem_cgroup_per_zone *mz;
640 spin_lock_irq(&mctz->lock);
641 mz = __mem_cgroup_largest_soft_limit_node(mctz);
642 spin_unlock_irq(&mctz->lock);
643 return mz;
647 * Implementation Note: reading percpu statistics for memcg.
649 * Both of vmstat[] and percpu_counter has threshold and do periodic
650 * synchronization to implement "quick" read. There are trade-off between
651 * reading cost and precision of value. Then, we may have a chance to implement
652 * a periodic synchronizion of counter in memcg's counter.
654 * But this _read() function is used for user interface now. The user accounts
655 * memory usage by memory cgroup and he _always_ requires exact value because
656 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
657 * have to visit all online cpus and make sum. So, for now, unnecessary
658 * synchronization is not implemented. (just implemented for cpu hotplug)
660 * If there are kernel internal actions which can make use of some not-exact
661 * value, and reading all cpu value can be performance bottleneck in some
662 * common workload, threashold and synchonization as vmstat[] should be
663 * implemented.
665 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
666 enum mem_cgroup_stat_index idx)
668 long val = 0;
669 int cpu;
671 for_each_possible_cpu(cpu)
672 val += per_cpu(memcg->stat->count[idx], cpu);
673 return val;
676 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
677 enum mem_cgroup_events_index idx)
679 unsigned long val = 0;
680 int cpu;
682 for_each_possible_cpu(cpu)
683 val += per_cpu(memcg->stat->events[idx], cpu);
684 return val;
687 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
688 struct page *page,
689 int nr_pages)
692 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
693 * counted as CACHE even if it's on ANON LRU.
695 if (PageAnon(page))
696 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
697 nr_pages);
698 else
699 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
700 nr_pages);
702 if (PageTransHuge(page))
703 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
704 nr_pages);
706 /* pagein of a big page is an event. So, ignore page size */
707 if (nr_pages > 0)
708 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
709 else {
710 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
711 nr_pages = -nr_pages; /* for event */
714 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
717 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 int nid,
719 unsigned int lru_mask)
721 unsigned long nr = 0;
722 int zid;
724 VM_BUG_ON((unsigned)nid >= nr_node_ids);
726 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
727 struct mem_cgroup_per_zone *mz;
728 enum lru_list lru;
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
733 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
734 nr += mz->lru_size[lru];
737 return nr;
740 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
741 unsigned int lru_mask)
743 unsigned long nr = 0;
744 int nid;
746 for_each_node_state(nid, N_MEMORY)
747 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
748 return nr;
751 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
752 enum mem_cgroup_events_target target)
754 unsigned long val, next;
756 val = __this_cpu_read(memcg->stat->nr_page_events);
757 next = __this_cpu_read(memcg->stat->targets[target]);
758 /* from time_after() in jiffies.h */
759 if ((long)next - (long)val < 0) {
760 switch (target) {
761 case MEM_CGROUP_TARGET_THRESH:
762 next = val + THRESHOLDS_EVENTS_TARGET;
763 break;
764 case MEM_CGROUP_TARGET_SOFTLIMIT:
765 next = val + SOFTLIMIT_EVENTS_TARGET;
766 break;
767 case MEM_CGROUP_TARGET_NUMAINFO:
768 next = val + NUMAINFO_EVENTS_TARGET;
769 break;
770 default:
771 break;
773 __this_cpu_write(memcg->stat->targets[target], next);
774 return true;
776 return false;
780 * Check events in order.
783 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
785 /* threshold event is triggered in finer grain than soft limit */
786 if (unlikely(mem_cgroup_event_ratelimit(memcg,
787 MEM_CGROUP_TARGET_THRESH))) {
788 bool do_softlimit;
789 bool do_numainfo __maybe_unused;
791 do_softlimit = mem_cgroup_event_ratelimit(memcg,
792 MEM_CGROUP_TARGET_SOFTLIMIT);
793 #if MAX_NUMNODES > 1
794 do_numainfo = mem_cgroup_event_ratelimit(memcg,
795 MEM_CGROUP_TARGET_NUMAINFO);
796 #endif
797 mem_cgroup_threshold(memcg);
798 if (unlikely(do_softlimit))
799 mem_cgroup_update_tree(memcg, page);
800 #if MAX_NUMNODES > 1
801 if (unlikely(do_numainfo))
802 atomic_inc(&memcg->numainfo_events);
803 #endif
807 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
810 * mm_update_next_owner() may clear mm->owner to NULL
811 * if it races with swapoff, page migration, etc.
812 * So this can be called with p == NULL.
814 if (unlikely(!p))
815 return NULL;
817 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
819 EXPORT_SYMBOL(mem_cgroup_from_task);
821 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
823 struct mem_cgroup *memcg = NULL;
825 rcu_read_lock();
826 do {
828 * Page cache insertions can happen withou an
829 * actual mm context, e.g. during disk probing
830 * on boot, loopback IO, acct() writes etc.
832 if (unlikely(!mm))
833 memcg = root_mem_cgroup;
834 else {
835 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
836 if (unlikely(!memcg))
837 memcg = root_mem_cgroup;
839 } while (!css_tryget_online(&memcg->css));
840 rcu_read_unlock();
841 return memcg;
845 * mem_cgroup_iter - iterate over memory cgroup hierarchy
846 * @root: hierarchy root
847 * @prev: previously returned memcg, NULL on first invocation
848 * @reclaim: cookie for shared reclaim walks, NULL for full walks
850 * Returns references to children of the hierarchy below @root, or
851 * @root itself, or %NULL after a full round-trip.
853 * Caller must pass the return value in @prev on subsequent
854 * invocations for reference counting, or use mem_cgroup_iter_break()
855 * to cancel a hierarchy walk before the round-trip is complete.
857 * Reclaimers can specify a zone and a priority level in @reclaim to
858 * divide up the memcgs in the hierarchy among all concurrent
859 * reclaimers operating on the same zone and priority.
861 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
862 struct mem_cgroup *prev,
863 struct mem_cgroup_reclaim_cookie *reclaim)
865 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
866 struct cgroup_subsys_state *css = NULL;
867 struct mem_cgroup *memcg = NULL;
868 struct mem_cgroup *pos = NULL;
870 if (mem_cgroup_disabled())
871 return NULL;
873 if (!root)
874 root = root_mem_cgroup;
876 if (prev && !reclaim)
877 pos = prev;
879 if (!root->use_hierarchy && root != root_mem_cgroup) {
880 if (prev)
881 goto out;
882 return root;
885 rcu_read_lock();
887 if (reclaim) {
888 struct mem_cgroup_per_zone *mz;
890 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
891 iter = &mz->iter[reclaim->priority];
893 if (prev && reclaim->generation != iter->generation)
894 goto out_unlock;
896 do {
897 pos = READ_ONCE(iter->position);
899 * A racing update may change the position and
900 * put the last reference, hence css_tryget(),
901 * or retry to see the updated position.
903 } while (pos && !css_tryget(&pos->css));
906 if (pos)
907 css = &pos->css;
909 for (;;) {
910 css = css_next_descendant_pre(css, &root->css);
911 if (!css) {
913 * Reclaimers share the hierarchy walk, and a
914 * new one might jump in right at the end of
915 * the hierarchy - make sure they see at least
916 * one group and restart from the beginning.
918 if (!prev)
919 continue;
920 break;
924 * Verify the css and acquire a reference. The root
925 * is provided by the caller, so we know it's alive
926 * and kicking, and don't take an extra reference.
928 memcg = mem_cgroup_from_css(css);
930 if (css == &root->css)
931 break;
933 if (css_tryget(css)) {
935 * Make sure the memcg is initialized:
936 * mem_cgroup_css_online() orders the the
937 * initialization against setting the flag.
939 if (smp_load_acquire(&memcg->initialized))
940 break;
942 css_put(css);
945 memcg = NULL;
948 if (reclaim) {
949 if (cmpxchg(&iter->position, pos, memcg) == pos) {
950 if (memcg)
951 css_get(&memcg->css);
952 if (pos)
953 css_put(&pos->css);
957 * pairs with css_tryget when dereferencing iter->position
958 * above.
960 if (pos)
961 css_put(&pos->css);
963 if (!memcg)
964 iter->generation++;
965 else if (!prev)
966 reclaim->generation = iter->generation;
969 out_unlock:
970 rcu_read_unlock();
971 out:
972 if (prev && prev != root)
973 css_put(&prev->css);
975 return memcg;
979 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
980 * @root: hierarchy root
981 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
983 void mem_cgroup_iter_break(struct mem_cgroup *root,
984 struct mem_cgroup *prev)
986 if (!root)
987 root = root_mem_cgroup;
988 if (prev && prev != root)
989 css_put(&prev->css);
993 * Iteration constructs for visiting all cgroups (under a tree). If
994 * loops are exited prematurely (break), mem_cgroup_iter_break() must
995 * be used for reference counting.
997 #define for_each_mem_cgroup_tree(iter, root) \
998 for (iter = mem_cgroup_iter(root, NULL, NULL); \
999 iter != NULL; \
1000 iter = mem_cgroup_iter(root, iter, NULL))
1002 #define for_each_mem_cgroup(iter) \
1003 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1004 iter != NULL; \
1005 iter = mem_cgroup_iter(NULL, iter, NULL))
1008 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1009 * @zone: zone of the wanted lruvec
1010 * @memcg: memcg of the wanted lruvec
1012 * Returns the lru list vector holding pages for the given @zone and
1013 * @mem. This can be the global zone lruvec, if the memory controller
1014 * is disabled.
1016 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1017 struct mem_cgroup *memcg)
1019 struct mem_cgroup_per_zone *mz;
1020 struct lruvec *lruvec;
1022 if (mem_cgroup_disabled()) {
1023 lruvec = &zone->lruvec;
1024 goto out;
1027 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1028 lruvec = &mz->lruvec;
1029 out:
1031 * Since a node can be onlined after the mem_cgroup was created,
1032 * we have to be prepared to initialize lruvec->zone here;
1033 * and if offlined then reonlined, we need to reinitialize it.
1035 if (unlikely(lruvec->zone != zone))
1036 lruvec->zone = zone;
1037 return lruvec;
1041 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1042 * @page: the page
1043 * @zone: zone of the page
1045 * This function is only safe when following the LRU page isolation
1046 * and putback protocol: the LRU lock must be held, and the page must
1047 * either be PageLRU() or the caller must have isolated/allocated it.
1049 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1051 struct mem_cgroup_per_zone *mz;
1052 struct mem_cgroup *memcg;
1053 struct lruvec *lruvec;
1055 if (mem_cgroup_disabled()) {
1056 lruvec = &zone->lruvec;
1057 goto out;
1060 memcg = page->mem_cgroup;
1062 * Swapcache readahead pages are added to the LRU - and
1063 * possibly migrated - before they are charged.
1065 if (!memcg)
1066 memcg = root_mem_cgroup;
1068 mz = mem_cgroup_page_zoneinfo(memcg, page);
1069 lruvec = &mz->lruvec;
1070 out:
1072 * Since a node can be onlined after the mem_cgroup was created,
1073 * we have to be prepared to initialize lruvec->zone here;
1074 * and if offlined then reonlined, we need to reinitialize it.
1076 if (unlikely(lruvec->zone != zone))
1077 lruvec->zone = zone;
1078 return lruvec;
1082 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1083 * @lruvec: mem_cgroup per zone lru vector
1084 * @lru: index of lru list the page is sitting on
1085 * @nr_pages: positive when adding or negative when removing
1087 * This function must be called when a page is added to or removed from an
1088 * lru list.
1090 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1091 int nr_pages)
1093 struct mem_cgroup_per_zone *mz;
1094 unsigned long *lru_size;
1096 if (mem_cgroup_disabled())
1097 return;
1099 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1100 lru_size = mz->lru_size + lru;
1101 *lru_size += nr_pages;
1102 VM_BUG_ON((long)(*lru_size) < 0);
1105 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1107 struct mem_cgroup *task_memcg;
1108 struct task_struct *p;
1109 bool ret;
1111 p = find_lock_task_mm(task);
1112 if (p) {
1113 task_memcg = get_mem_cgroup_from_mm(p->mm);
1114 task_unlock(p);
1115 } else {
1117 * All threads may have already detached their mm's, but the oom
1118 * killer still needs to detect if they have already been oom
1119 * killed to prevent needlessly killing additional tasks.
1121 rcu_read_lock();
1122 task_memcg = mem_cgroup_from_task(task);
1123 css_get(&task_memcg->css);
1124 rcu_read_unlock();
1126 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1127 css_put(&task_memcg->css);
1128 return ret;
1131 #define mem_cgroup_from_counter(counter, member) \
1132 container_of(counter, struct mem_cgroup, member)
1135 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1136 * @memcg: the memory cgroup
1138 * Returns the maximum amount of memory @mem can be charged with, in
1139 * pages.
1141 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1143 unsigned long margin = 0;
1144 unsigned long count;
1145 unsigned long limit;
1147 count = page_counter_read(&memcg->memory);
1148 limit = READ_ONCE(memcg->memory.limit);
1149 if (count < limit)
1150 margin = limit - count;
1152 if (do_swap_account) {
1153 count = page_counter_read(&memcg->memsw);
1154 limit = READ_ONCE(memcg->memsw.limit);
1155 if (count <= limit)
1156 margin = min(margin, limit - count);
1159 return margin;
1163 * A routine for checking "mem" is under move_account() or not.
1165 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1166 * moving cgroups. This is for waiting at high-memory pressure
1167 * caused by "move".
1169 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1171 struct mem_cgroup *from;
1172 struct mem_cgroup *to;
1173 bool ret = false;
1175 * Unlike task_move routines, we access mc.to, mc.from not under
1176 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1178 spin_lock(&mc.lock);
1179 from = mc.from;
1180 to = mc.to;
1181 if (!from)
1182 goto unlock;
1184 ret = mem_cgroup_is_descendant(from, memcg) ||
1185 mem_cgroup_is_descendant(to, memcg);
1186 unlock:
1187 spin_unlock(&mc.lock);
1188 return ret;
1191 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1193 if (mc.moving_task && current != mc.moving_task) {
1194 if (mem_cgroup_under_move(memcg)) {
1195 DEFINE_WAIT(wait);
1196 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1197 /* moving charge context might have finished. */
1198 if (mc.moving_task)
1199 schedule();
1200 finish_wait(&mc.waitq, &wait);
1201 return true;
1204 return false;
1207 #define K(x) ((x) << (PAGE_SHIFT-10))
1209 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1210 * @memcg: The memory cgroup that went over limit
1211 * @p: Task that is going to be killed
1213 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1214 * enabled
1216 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1218 /* oom_info_lock ensures that parallel ooms do not interleave */
1219 static DEFINE_MUTEX(oom_info_lock);
1220 struct mem_cgroup *iter;
1221 unsigned int i;
1223 mutex_lock(&oom_info_lock);
1224 rcu_read_lock();
1226 if (p) {
1227 pr_info("Task in ");
1228 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1229 pr_cont(" killed as a result of limit of ");
1230 } else {
1231 pr_info("Memory limit reached of cgroup ");
1234 pr_cont_cgroup_path(memcg->css.cgroup);
1235 pr_cont("\n");
1237 rcu_read_unlock();
1239 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1240 K((u64)page_counter_read(&memcg->memory)),
1241 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1242 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1243 K((u64)page_counter_read(&memcg->memsw)),
1244 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1245 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1246 K((u64)page_counter_read(&memcg->kmem)),
1247 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1249 for_each_mem_cgroup_tree(iter, memcg) {
1250 pr_info("Memory cgroup stats for ");
1251 pr_cont_cgroup_path(iter->css.cgroup);
1252 pr_cont(":");
1254 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1255 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1256 continue;
1257 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1258 K(mem_cgroup_read_stat(iter, i)));
1261 for (i = 0; i < NR_LRU_LISTS; i++)
1262 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1263 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1265 pr_cont("\n");
1267 mutex_unlock(&oom_info_lock);
1271 * This function returns the number of memcg under hierarchy tree. Returns
1272 * 1(self count) if no children.
1274 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1276 int num = 0;
1277 struct mem_cgroup *iter;
1279 for_each_mem_cgroup_tree(iter, memcg)
1280 num++;
1281 return num;
1285 * Return the memory (and swap, if configured) limit for a memcg.
1287 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1289 unsigned long limit;
1291 limit = memcg->memory.limit;
1292 if (mem_cgroup_swappiness(memcg)) {
1293 unsigned long memsw_limit;
1295 memsw_limit = memcg->memsw.limit;
1296 limit = min(limit + total_swap_pages, memsw_limit);
1298 return limit;
1301 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1302 int order)
1304 struct oom_control oc = {
1305 .zonelist = NULL,
1306 .nodemask = NULL,
1307 .gfp_mask = gfp_mask,
1308 .order = order,
1310 struct mem_cgroup *iter;
1311 unsigned long chosen_points = 0;
1312 unsigned long totalpages;
1313 unsigned int points = 0;
1314 struct task_struct *chosen = NULL;
1316 mutex_lock(&oom_lock);
1319 * If current has a pending SIGKILL or is exiting, then automatically
1320 * select it. The goal is to allow it to allocate so that it may
1321 * quickly exit and free its memory.
1323 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1324 mark_oom_victim(current);
1325 goto unlock;
1328 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1329 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1330 for_each_mem_cgroup_tree(iter, memcg) {
1331 struct css_task_iter it;
1332 struct task_struct *task;
1334 css_task_iter_start(&iter->css, &it);
1335 while ((task = css_task_iter_next(&it))) {
1336 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1337 case OOM_SCAN_SELECT:
1338 if (chosen)
1339 put_task_struct(chosen);
1340 chosen = task;
1341 chosen_points = ULONG_MAX;
1342 get_task_struct(chosen);
1343 /* fall through */
1344 case OOM_SCAN_CONTINUE:
1345 continue;
1346 case OOM_SCAN_ABORT:
1347 css_task_iter_end(&it);
1348 mem_cgroup_iter_break(memcg, iter);
1349 if (chosen)
1350 put_task_struct(chosen);
1351 goto unlock;
1352 case OOM_SCAN_OK:
1353 break;
1355 points = oom_badness(task, memcg, NULL, totalpages);
1356 if (!points || points < chosen_points)
1357 continue;
1358 /* Prefer thread group leaders for display purposes */
1359 if (points == chosen_points &&
1360 thread_group_leader(chosen))
1361 continue;
1363 if (chosen)
1364 put_task_struct(chosen);
1365 chosen = task;
1366 chosen_points = points;
1367 get_task_struct(chosen);
1369 css_task_iter_end(&it);
1372 if (chosen) {
1373 points = chosen_points * 1000 / totalpages;
1374 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1375 "Memory cgroup out of memory");
1377 unlock:
1378 mutex_unlock(&oom_lock);
1381 #if MAX_NUMNODES > 1
1384 * test_mem_cgroup_node_reclaimable
1385 * @memcg: the target memcg
1386 * @nid: the node ID to be checked.
1387 * @noswap : specify true here if the user wants flle only information.
1389 * This function returns whether the specified memcg contains any
1390 * reclaimable pages on a node. Returns true if there are any reclaimable
1391 * pages in the node.
1393 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1394 int nid, bool noswap)
1396 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1397 return true;
1398 if (noswap || !total_swap_pages)
1399 return false;
1400 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1401 return true;
1402 return false;
1407 * Always updating the nodemask is not very good - even if we have an empty
1408 * list or the wrong list here, we can start from some node and traverse all
1409 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1412 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1414 int nid;
1416 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1417 * pagein/pageout changes since the last update.
1419 if (!atomic_read(&memcg->numainfo_events))
1420 return;
1421 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1422 return;
1424 /* make a nodemask where this memcg uses memory from */
1425 memcg->scan_nodes = node_states[N_MEMORY];
1427 for_each_node_mask(nid, node_states[N_MEMORY]) {
1429 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1430 node_clear(nid, memcg->scan_nodes);
1433 atomic_set(&memcg->numainfo_events, 0);
1434 atomic_set(&memcg->numainfo_updating, 0);
1438 * Selecting a node where we start reclaim from. Because what we need is just
1439 * reducing usage counter, start from anywhere is O,K. Considering
1440 * memory reclaim from current node, there are pros. and cons.
1442 * Freeing memory from current node means freeing memory from a node which
1443 * we'll use or we've used. So, it may make LRU bad. And if several threads
1444 * hit limits, it will see a contention on a node. But freeing from remote
1445 * node means more costs for memory reclaim because of memory latency.
1447 * Now, we use round-robin. Better algorithm is welcomed.
1449 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1451 int node;
1453 mem_cgroup_may_update_nodemask(memcg);
1454 node = memcg->last_scanned_node;
1456 node = next_node(node, memcg->scan_nodes);
1457 if (node == MAX_NUMNODES)
1458 node = first_node(memcg->scan_nodes);
1460 * We call this when we hit limit, not when pages are added to LRU.
1461 * No LRU may hold pages because all pages are UNEVICTABLE or
1462 * memcg is too small and all pages are not on LRU. In that case,
1463 * we use curret node.
1465 if (unlikely(node == MAX_NUMNODES))
1466 node = numa_node_id();
1468 memcg->last_scanned_node = node;
1469 return node;
1471 #else
1472 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1474 return 0;
1476 #endif
1478 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1479 struct zone *zone,
1480 gfp_t gfp_mask,
1481 unsigned long *total_scanned)
1483 struct mem_cgroup *victim = NULL;
1484 int total = 0;
1485 int loop = 0;
1486 unsigned long excess;
1487 unsigned long nr_scanned;
1488 struct mem_cgroup_reclaim_cookie reclaim = {
1489 .zone = zone,
1490 .priority = 0,
1493 excess = soft_limit_excess(root_memcg);
1495 while (1) {
1496 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1497 if (!victim) {
1498 loop++;
1499 if (loop >= 2) {
1501 * If we have not been able to reclaim
1502 * anything, it might because there are
1503 * no reclaimable pages under this hierarchy
1505 if (!total)
1506 break;
1508 * We want to do more targeted reclaim.
1509 * excess >> 2 is not to excessive so as to
1510 * reclaim too much, nor too less that we keep
1511 * coming back to reclaim from this cgroup
1513 if (total >= (excess >> 2) ||
1514 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1515 break;
1517 continue;
1519 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1520 zone, &nr_scanned);
1521 *total_scanned += nr_scanned;
1522 if (!soft_limit_excess(root_memcg))
1523 break;
1525 mem_cgroup_iter_break(root_memcg, victim);
1526 return total;
1529 #ifdef CONFIG_LOCKDEP
1530 static struct lockdep_map memcg_oom_lock_dep_map = {
1531 .name = "memcg_oom_lock",
1533 #endif
1535 static DEFINE_SPINLOCK(memcg_oom_lock);
1538 * Check OOM-Killer is already running under our hierarchy.
1539 * If someone is running, return false.
1541 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1543 struct mem_cgroup *iter, *failed = NULL;
1545 spin_lock(&memcg_oom_lock);
1547 for_each_mem_cgroup_tree(iter, memcg) {
1548 if (iter->oom_lock) {
1550 * this subtree of our hierarchy is already locked
1551 * so we cannot give a lock.
1553 failed = iter;
1554 mem_cgroup_iter_break(memcg, iter);
1555 break;
1556 } else
1557 iter->oom_lock = true;
1560 if (failed) {
1562 * OK, we failed to lock the whole subtree so we have
1563 * to clean up what we set up to the failing subtree
1565 for_each_mem_cgroup_tree(iter, memcg) {
1566 if (iter == failed) {
1567 mem_cgroup_iter_break(memcg, iter);
1568 break;
1570 iter->oom_lock = false;
1572 } else
1573 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1575 spin_unlock(&memcg_oom_lock);
1577 return !failed;
1580 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1582 struct mem_cgroup *iter;
1584 spin_lock(&memcg_oom_lock);
1585 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1586 for_each_mem_cgroup_tree(iter, memcg)
1587 iter->oom_lock = false;
1588 spin_unlock(&memcg_oom_lock);
1591 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1593 struct mem_cgroup *iter;
1595 spin_lock(&memcg_oom_lock);
1596 for_each_mem_cgroup_tree(iter, memcg)
1597 iter->under_oom++;
1598 spin_unlock(&memcg_oom_lock);
1601 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1603 struct mem_cgroup *iter;
1606 * When a new child is created while the hierarchy is under oom,
1607 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1609 spin_lock(&memcg_oom_lock);
1610 for_each_mem_cgroup_tree(iter, memcg)
1611 if (iter->under_oom > 0)
1612 iter->under_oom--;
1613 spin_unlock(&memcg_oom_lock);
1616 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1618 struct oom_wait_info {
1619 struct mem_cgroup *memcg;
1620 wait_queue_t wait;
1623 static int memcg_oom_wake_function(wait_queue_t *wait,
1624 unsigned mode, int sync, void *arg)
1626 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1627 struct mem_cgroup *oom_wait_memcg;
1628 struct oom_wait_info *oom_wait_info;
1630 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1631 oom_wait_memcg = oom_wait_info->memcg;
1633 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1634 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1635 return 0;
1636 return autoremove_wake_function(wait, mode, sync, arg);
1639 static void memcg_oom_recover(struct mem_cgroup *memcg)
1642 * For the following lockless ->under_oom test, the only required
1643 * guarantee is that it must see the state asserted by an OOM when
1644 * this function is called as a result of userland actions
1645 * triggered by the notification of the OOM. This is trivially
1646 * achieved by invoking mem_cgroup_mark_under_oom() before
1647 * triggering notification.
1649 if (memcg && memcg->under_oom)
1650 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1653 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1655 if (!current->memcg_oom.may_oom)
1656 return;
1658 * We are in the middle of the charge context here, so we
1659 * don't want to block when potentially sitting on a callstack
1660 * that holds all kinds of filesystem and mm locks.
1662 * Also, the caller may handle a failed allocation gracefully
1663 * (like optional page cache readahead) and so an OOM killer
1664 * invocation might not even be necessary.
1666 * That's why we don't do anything here except remember the
1667 * OOM context and then deal with it at the end of the page
1668 * fault when the stack is unwound, the locks are released,
1669 * and when we know whether the fault was overall successful.
1671 css_get(&memcg->css);
1672 current->memcg_oom.memcg = memcg;
1673 current->memcg_oom.gfp_mask = mask;
1674 current->memcg_oom.order = order;
1678 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1679 * @handle: actually kill/wait or just clean up the OOM state
1681 * This has to be called at the end of a page fault if the memcg OOM
1682 * handler was enabled.
1684 * Memcg supports userspace OOM handling where failed allocations must
1685 * sleep on a waitqueue until the userspace task resolves the
1686 * situation. Sleeping directly in the charge context with all kinds
1687 * of locks held is not a good idea, instead we remember an OOM state
1688 * in the task and mem_cgroup_oom_synchronize() has to be called at
1689 * the end of the page fault to complete the OOM handling.
1691 * Returns %true if an ongoing memcg OOM situation was detected and
1692 * completed, %false otherwise.
1694 bool mem_cgroup_oom_synchronize(bool handle)
1696 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1697 struct oom_wait_info owait;
1698 bool locked;
1700 /* OOM is global, do not handle */
1701 if (!memcg)
1702 return false;
1704 if (!handle || oom_killer_disabled)
1705 goto cleanup;
1707 owait.memcg = memcg;
1708 owait.wait.flags = 0;
1709 owait.wait.func = memcg_oom_wake_function;
1710 owait.wait.private = current;
1711 INIT_LIST_HEAD(&owait.wait.task_list);
1713 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1714 mem_cgroup_mark_under_oom(memcg);
1716 locked = mem_cgroup_oom_trylock(memcg);
1718 if (locked)
1719 mem_cgroup_oom_notify(memcg);
1721 if (locked && !memcg->oom_kill_disable) {
1722 mem_cgroup_unmark_under_oom(memcg);
1723 finish_wait(&memcg_oom_waitq, &owait.wait);
1724 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1725 current->memcg_oom.order);
1726 } else {
1727 schedule();
1728 mem_cgroup_unmark_under_oom(memcg);
1729 finish_wait(&memcg_oom_waitq, &owait.wait);
1732 if (locked) {
1733 mem_cgroup_oom_unlock(memcg);
1735 * There is no guarantee that an OOM-lock contender
1736 * sees the wakeups triggered by the OOM kill
1737 * uncharges. Wake any sleepers explicitely.
1739 memcg_oom_recover(memcg);
1741 cleanup:
1742 current->memcg_oom.memcg = NULL;
1743 css_put(&memcg->css);
1744 return true;
1748 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1749 * @page: page that is going to change accounted state
1751 * This function must mark the beginning of an accounted page state
1752 * change to prevent double accounting when the page is concurrently
1753 * being moved to another memcg:
1755 * memcg = mem_cgroup_begin_page_stat(page);
1756 * if (TestClearPageState(page))
1757 * mem_cgroup_update_page_stat(memcg, state, -1);
1758 * mem_cgroup_end_page_stat(memcg);
1760 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1762 struct mem_cgroup *memcg;
1763 unsigned long flags;
1766 * The RCU lock is held throughout the transaction. The fast
1767 * path can get away without acquiring the memcg->move_lock
1768 * because page moving starts with an RCU grace period.
1770 * The RCU lock also protects the memcg from being freed when
1771 * the page state that is going to change is the only thing
1772 * preventing the page from being uncharged.
1773 * E.g. end-writeback clearing PageWriteback(), which allows
1774 * migration to go ahead and uncharge the page before the
1775 * account transaction might be complete.
1777 rcu_read_lock();
1779 if (mem_cgroup_disabled())
1780 return NULL;
1781 again:
1782 memcg = page->mem_cgroup;
1783 if (unlikely(!memcg))
1784 return NULL;
1786 if (atomic_read(&memcg->moving_account) <= 0)
1787 return memcg;
1789 spin_lock_irqsave(&memcg->move_lock, flags);
1790 if (memcg != page->mem_cgroup) {
1791 spin_unlock_irqrestore(&memcg->move_lock, flags);
1792 goto again;
1796 * When charge migration first begins, we can have locked and
1797 * unlocked page stat updates happening concurrently. Track
1798 * the task who has the lock for mem_cgroup_end_page_stat().
1800 memcg->move_lock_task = current;
1801 memcg->move_lock_flags = flags;
1803 return memcg;
1805 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1808 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1809 * @memcg: the memcg that was accounted against
1811 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1813 if (memcg && memcg->move_lock_task == current) {
1814 unsigned long flags = memcg->move_lock_flags;
1816 memcg->move_lock_task = NULL;
1817 memcg->move_lock_flags = 0;
1819 spin_unlock_irqrestore(&memcg->move_lock, flags);
1822 rcu_read_unlock();
1824 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1827 * size of first charge trial. "32" comes from vmscan.c's magic value.
1828 * TODO: maybe necessary to use big numbers in big irons.
1830 #define CHARGE_BATCH 32U
1831 struct memcg_stock_pcp {
1832 struct mem_cgroup *cached; /* this never be root cgroup */
1833 unsigned int nr_pages;
1834 struct work_struct work;
1835 unsigned long flags;
1836 #define FLUSHING_CACHED_CHARGE 0
1838 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1839 static DEFINE_MUTEX(percpu_charge_mutex);
1842 * consume_stock: Try to consume stocked charge on this cpu.
1843 * @memcg: memcg to consume from.
1844 * @nr_pages: how many pages to charge.
1846 * The charges will only happen if @memcg matches the current cpu's memcg
1847 * stock, and at least @nr_pages are available in that stock. Failure to
1848 * service an allocation will refill the stock.
1850 * returns true if successful, false otherwise.
1852 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1854 struct memcg_stock_pcp *stock;
1855 bool ret = false;
1857 if (nr_pages > CHARGE_BATCH)
1858 return ret;
1860 stock = &get_cpu_var(memcg_stock);
1861 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1862 stock->nr_pages -= nr_pages;
1863 ret = true;
1865 put_cpu_var(memcg_stock);
1866 return ret;
1870 * Returns stocks cached in percpu and reset cached information.
1872 static void drain_stock(struct memcg_stock_pcp *stock)
1874 struct mem_cgroup *old = stock->cached;
1876 if (stock->nr_pages) {
1877 page_counter_uncharge(&old->memory, stock->nr_pages);
1878 if (do_swap_account)
1879 page_counter_uncharge(&old->memsw, stock->nr_pages);
1880 css_put_many(&old->css, stock->nr_pages);
1881 stock->nr_pages = 0;
1883 stock->cached = NULL;
1887 * This must be called under preempt disabled or must be called by
1888 * a thread which is pinned to local cpu.
1890 static void drain_local_stock(struct work_struct *dummy)
1892 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1893 drain_stock(stock);
1894 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1898 * Cache charges(val) to local per_cpu area.
1899 * This will be consumed by consume_stock() function, later.
1901 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1903 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1905 if (stock->cached != memcg) { /* reset if necessary */
1906 drain_stock(stock);
1907 stock->cached = memcg;
1909 stock->nr_pages += nr_pages;
1910 put_cpu_var(memcg_stock);
1914 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1915 * of the hierarchy under it.
1917 static void drain_all_stock(struct mem_cgroup *root_memcg)
1919 int cpu, curcpu;
1921 /* If someone's already draining, avoid adding running more workers. */
1922 if (!mutex_trylock(&percpu_charge_mutex))
1923 return;
1924 /* Notify other cpus that system-wide "drain" is running */
1925 get_online_cpus();
1926 curcpu = get_cpu();
1927 for_each_online_cpu(cpu) {
1928 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1929 struct mem_cgroup *memcg;
1931 memcg = stock->cached;
1932 if (!memcg || !stock->nr_pages)
1933 continue;
1934 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1935 continue;
1936 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1937 if (cpu == curcpu)
1938 drain_local_stock(&stock->work);
1939 else
1940 schedule_work_on(cpu, &stock->work);
1943 put_cpu();
1944 put_online_cpus();
1945 mutex_unlock(&percpu_charge_mutex);
1948 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1949 unsigned long action,
1950 void *hcpu)
1952 int cpu = (unsigned long)hcpu;
1953 struct memcg_stock_pcp *stock;
1955 if (action == CPU_ONLINE)
1956 return NOTIFY_OK;
1958 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1959 return NOTIFY_OK;
1961 stock = &per_cpu(memcg_stock, cpu);
1962 drain_stock(stock);
1963 return NOTIFY_OK;
1966 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1967 unsigned int nr_pages)
1969 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1970 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1971 struct mem_cgroup *mem_over_limit;
1972 struct page_counter *counter;
1973 unsigned long nr_reclaimed;
1974 bool may_swap = true;
1975 bool drained = false;
1976 int ret = 0;
1978 if (mem_cgroup_is_root(memcg))
1979 goto done;
1980 retry:
1981 if (consume_stock(memcg, nr_pages))
1982 goto done;
1984 if (!do_swap_account ||
1985 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1986 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
1987 goto done_restock;
1988 if (do_swap_account)
1989 page_counter_uncharge(&memcg->memsw, batch);
1990 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1991 } else {
1992 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1993 may_swap = false;
1996 if (batch > nr_pages) {
1997 batch = nr_pages;
1998 goto retry;
2002 * Unlike in global OOM situations, memcg is not in a physical
2003 * memory shortage. Allow dying and OOM-killed tasks to
2004 * bypass the last charges so that they can exit quickly and
2005 * free their memory.
2007 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2008 fatal_signal_pending(current) ||
2009 current->flags & PF_EXITING))
2010 goto bypass;
2012 if (unlikely(task_in_memcg_oom(current)))
2013 goto nomem;
2015 if (!(gfp_mask & __GFP_WAIT))
2016 goto nomem;
2018 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2020 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2021 gfp_mask, may_swap);
2023 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2024 goto retry;
2026 if (!drained) {
2027 drain_all_stock(mem_over_limit);
2028 drained = true;
2029 goto retry;
2032 if (gfp_mask & __GFP_NORETRY)
2033 goto nomem;
2035 * Even though the limit is exceeded at this point, reclaim
2036 * may have been able to free some pages. Retry the charge
2037 * before killing the task.
2039 * Only for regular pages, though: huge pages are rather
2040 * unlikely to succeed so close to the limit, and we fall back
2041 * to regular pages anyway in case of failure.
2043 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2044 goto retry;
2046 * At task move, charge accounts can be doubly counted. So, it's
2047 * better to wait until the end of task_move if something is going on.
2049 if (mem_cgroup_wait_acct_move(mem_over_limit))
2050 goto retry;
2052 if (nr_retries--)
2053 goto retry;
2055 if (gfp_mask & __GFP_NOFAIL)
2056 goto bypass;
2058 if (fatal_signal_pending(current))
2059 goto bypass;
2061 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2063 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2064 nomem:
2065 if (!(gfp_mask & __GFP_NOFAIL))
2066 return -ENOMEM;
2067 bypass:
2068 return -EINTR;
2070 done_restock:
2071 css_get_many(&memcg->css, batch);
2072 if (batch > nr_pages)
2073 refill_stock(memcg, batch - nr_pages);
2074 if (!(gfp_mask & __GFP_WAIT))
2075 goto done;
2077 * If the hierarchy is above the normal consumption range,
2078 * make the charging task trim their excess contribution.
2080 do {
2081 if (page_counter_read(&memcg->memory) <= memcg->high)
2082 continue;
2083 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2084 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2085 } while ((memcg = parent_mem_cgroup(memcg)));
2086 done:
2087 return ret;
2090 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2092 if (mem_cgroup_is_root(memcg))
2093 return;
2095 page_counter_uncharge(&memcg->memory, nr_pages);
2096 if (do_swap_account)
2097 page_counter_uncharge(&memcg->memsw, nr_pages);
2099 css_put_many(&memcg->css, nr_pages);
2102 static void lock_page_lru(struct page *page, int *isolated)
2104 struct zone *zone = page_zone(page);
2106 spin_lock_irq(&zone->lru_lock);
2107 if (PageLRU(page)) {
2108 struct lruvec *lruvec;
2110 lruvec = mem_cgroup_page_lruvec(page, zone);
2111 ClearPageLRU(page);
2112 del_page_from_lru_list(page, lruvec, page_lru(page));
2113 *isolated = 1;
2114 } else
2115 *isolated = 0;
2118 static void unlock_page_lru(struct page *page, int isolated)
2120 struct zone *zone = page_zone(page);
2122 if (isolated) {
2123 struct lruvec *lruvec;
2125 lruvec = mem_cgroup_page_lruvec(page, zone);
2126 VM_BUG_ON_PAGE(PageLRU(page), page);
2127 SetPageLRU(page);
2128 add_page_to_lru_list(page, lruvec, page_lru(page));
2130 spin_unlock_irq(&zone->lru_lock);
2133 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2134 bool lrucare)
2136 int isolated;
2138 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2141 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2142 * may already be on some other mem_cgroup's LRU. Take care of it.
2144 if (lrucare)
2145 lock_page_lru(page, &isolated);
2148 * Nobody should be changing or seriously looking at
2149 * page->mem_cgroup at this point:
2151 * - the page is uncharged
2153 * - the page is off-LRU
2155 * - an anonymous fault has exclusive page access, except for
2156 * a locked page table
2158 * - a page cache insertion, a swapin fault, or a migration
2159 * have the page locked
2161 page->mem_cgroup = memcg;
2163 if (lrucare)
2164 unlock_page_lru(page, isolated);
2167 #ifdef CONFIG_MEMCG_KMEM
2168 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2169 unsigned long nr_pages)
2171 struct page_counter *counter;
2172 int ret = 0;
2174 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2175 if (ret < 0)
2176 return ret;
2178 ret = try_charge(memcg, gfp, nr_pages);
2179 if (ret == -EINTR) {
2181 * try_charge() chose to bypass to root due to OOM kill or
2182 * fatal signal. Since our only options are to either fail
2183 * the allocation or charge it to this cgroup, do it as a
2184 * temporary condition. But we can't fail. From a kmem/slab
2185 * perspective, the cache has already been selected, by
2186 * mem_cgroup_kmem_get_cache(), so it is too late to change
2187 * our minds.
2189 * This condition will only trigger if the task entered
2190 * memcg_charge_kmem in a sane state, but was OOM-killed
2191 * during try_charge() above. Tasks that were already dying
2192 * when the allocation triggers should have been already
2193 * directed to the root cgroup in memcontrol.h
2195 page_counter_charge(&memcg->memory, nr_pages);
2196 if (do_swap_account)
2197 page_counter_charge(&memcg->memsw, nr_pages);
2198 css_get_many(&memcg->css, nr_pages);
2199 ret = 0;
2200 } else if (ret)
2201 page_counter_uncharge(&memcg->kmem, nr_pages);
2203 return ret;
2206 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2208 page_counter_uncharge(&memcg->memory, nr_pages);
2209 if (do_swap_account)
2210 page_counter_uncharge(&memcg->memsw, nr_pages);
2212 page_counter_uncharge(&memcg->kmem, nr_pages);
2214 css_put_many(&memcg->css, nr_pages);
2217 static int memcg_alloc_cache_id(void)
2219 int id, size;
2220 int err;
2222 id = ida_simple_get(&memcg_cache_ida,
2223 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2224 if (id < 0)
2225 return id;
2227 if (id < memcg_nr_cache_ids)
2228 return id;
2231 * There's no space for the new id in memcg_caches arrays,
2232 * so we have to grow them.
2234 down_write(&memcg_cache_ids_sem);
2236 size = 2 * (id + 1);
2237 if (size < MEMCG_CACHES_MIN_SIZE)
2238 size = MEMCG_CACHES_MIN_SIZE;
2239 else if (size > MEMCG_CACHES_MAX_SIZE)
2240 size = MEMCG_CACHES_MAX_SIZE;
2242 err = memcg_update_all_caches(size);
2243 if (!err)
2244 err = memcg_update_all_list_lrus(size);
2245 if (!err)
2246 memcg_nr_cache_ids = size;
2248 up_write(&memcg_cache_ids_sem);
2250 if (err) {
2251 ida_simple_remove(&memcg_cache_ida, id);
2252 return err;
2254 return id;
2257 static void memcg_free_cache_id(int id)
2259 ida_simple_remove(&memcg_cache_ida, id);
2262 struct memcg_kmem_cache_create_work {
2263 struct mem_cgroup *memcg;
2264 struct kmem_cache *cachep;
2265 struct work_struct work;
2268 static void memcg_kmem_cache_create_func(struct work_struct *w)
2270 struct memcg_kmem_cache_create_work *cw =
2271 container_of(w, struct memcg_kmem_cache_create_work, work);
2272 struct mem_cgroup *memcg = cw->memcg;
2273 struct kmem_cache *cachep = cw->cachep;
2275 memcg_create_kmem_cache(memcg, cachep);
2277 css_put(&memcg->css);
2278 kfree(cw);
2282 * Enqueue the creation of a per-memcg kmem_cache.
2284 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2285 struct kmem_cache *cachep)
2287 struct memcg_kmem_cache_create_work *cw;
2289 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2290 if (!cw)
2291 return;
2293 css_get(&memcg->css);
2295 cw->memcg = memcg;
2296 cw->cachep = cachep;
2297 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2299 schedule_work(&cw->work);
2302 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2303 struct kmem_cache *cachep)
2306 * We need to stop accounting when we kmalloc, because if the
2307 * corresponding kmalloc cache is not yet created, the first allocation
2308 * in __memcg_schedule_kmem_cache_create will recurse.
2310 * However, it is better to enclose the whole function. Depending on
2311 * the debugging options enabled, INIT_WORK(), for instance, can
2312 * trigger an allocation. This too, will make us recurse. Because at
2313 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2314 * the safest choice is to do it like this, wrapping the whole function.
2316 current->memcg_kmem_skip_account = 1;
2317 __memcg_schedule_kmem_cache_create(memcg, cachep);
2318 current->memcg_kmem_skip_account = 0;
2322 * Return the kmem_cache we're supposed to use for a slab allocation.
2323 * We try to use the current memcg's version of the cache.
2325 * If the cache does not exist yet, if we are the first user of it,
2326 * we either create it immediately, if possible, or create it asynchronously
2327 * in a workqueue.
2328 * In the latter case, we will let the current allocation go through with
2329 * the original cache.
2331 * Can't be called in interrupt context or from kernel threads.
2332 * This function needs to be called with rcu_read_lock() held.
2334 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2336 struct mem_cgroup *memcg;
2337 struct kmem_cache *memcg_cachep;
2338 int kmemcg_id;
2340 VM_BUG_ON(!is_root_cache(cachep));
2342 if (current->memcg_kmem_skip_account)
2343 return cachep;
2345 memcg = get_mem_cgroup_from_mm(current->mm);
2346 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2347 if (kmemcg_id < 0)
2348 goto out;
2350 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2351 if (likely(memcg_cachep))
2352 return memcg_cachep;
2355 * If we are in a safe context (can wait, and not in interrupt
2356 * context), we could be be predictable and return right away.
2357 * This would guarantee that the allocation being performed
2358 * already belongs in the new cache.
2360 * However, there are some clashes that can arrive from locking.
2361 * For instance, because we acquire the slab_mutex while doing
2362 * memcg_create_kmem_cache, this means no further allocation
2363 * could happen with the slab_mutex held. So it's better to
2364 * defer everything.
2366 memcg_schedule_kmem_cache_create(memcg, cachep);
2367 out:
2368 css_put(&memcg->css);
2369 return cachep;
2372 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2374 if (!is_root_cache(cachep))
2375 css_put(&cachep->memcg_params.memcg->css);
2379 * We need to verify if the allocation against current->mm->owner's memcg is
2380 * possible for the given order. But the page is not allocated yet, so we'll
2381 * need a further commit step to do the final arrangements.
2383 * It is possible for the task to switch cgroups in this mean time, so at
2384 * commit time, we can't rely on task conversion any longer. We'll then use
2385 * the handle argument to return to the caller which cgroup we should commit
2386 * against. We could also return the memcg directly and avoid the pointer
2387 * passing, but a boolean return value gives better semantics considering
2388 * the compiled-out case as well.
2390 * Returning true means the allocation is possible.
2392 bool
2393 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2395 struct mem_cgroup *memcg;
2396 int ret;
2398 *_memcg = NULL;
2400 memcg = get_mem_cgroup_from_mm(current->mm);
2402 if (!memcg_kmem_is_active(memcg)) {
2403 css_put(&memcg->css);
2404 return true;
2407 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2408 if (!ret)
2409 *_memcg = memcg;
2411 css_put(&memcg->css);
2412 return (ret == 0);
2415 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2416 int order)
2418 VM_BUG_ON(mem_cgroup_is_root(memcg));
2420 /* The page allocation failed. Revert */
2421 if (!page) {
2422 memcg_uncharge_kmem(memcg, 1 << order);
2423 return;
2425 page->mem_cgroup = memcg;
2428 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2430 struct mem_cgroup *memcg = page->mem_cgroup;
2432 if (!memcg)
2433 return;
2435 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2437 memcg_uncharge_kmem(memcg, 1 << order);
2438 page->mem_cgroup = NULL;
2441 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2443 struct mem_cgroup *memcg = NULL;
2444 struct kmem_cache *cachep;
2445 struct page *page;
2447 page = virt_to_head_page(ptr);
2448 if (PageSlab(page)) {
2449 cachep = page->slab_cache;
2450 if (!is_root_cache(cachep))
2451 memcg = cachep->memcg_params.memcg;
2452 } else
2453 /* page allocated by alloc_kmem_pages */
2454 memcg = page->mem_cgroup;
2456 return memcg;
2458 #endif /* CONFIG_MEMCG_KMEM */
2460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2463 * Because tail pages are not marked as "used", set it. We're under
2464 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2465 * charge/uncharge will be never happen and move_account() is done under
2466 * compound_lock(), so we don't have to take care of races.
2468 void mem_cgroup_split_huge_fixup(struct page *head)
2470 int i;
2472 if (mem_cgroup_disabled())
2473 return;
2475 for (i = 1; i < HPAGE_PMD_NR; i++)
2476 head[i].mem_cgroup = head->mem_cgroup;
2478 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2479 HPAGE_PMD_NR);
2481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2483 #ifdef CONFIG_MEMCG_SWAP
2484 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2485 bool charge)
2487 int val = (charge) ? 1 : -1;
2488 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2492 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2493 * @entry: swap entry to be moved
2494 * @from: mem_cgroup which the entry is moved from
2495 * @to: mem_cgroup which the entry is moved to
2497 * It succeeds only when the swap_cgroup's record for this entry is the same
2498 * as the mem_cgroup's id of @from.
2500 * Returns 0 on success, -EINVAL on failure.
2502 * The caller must have charged to @to, IOW, called page_counter_charge() about
2503 * both res and memsw, and called css_get().
2505 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2506 struct mem_cgroup *from, struct mem_cgroup *to)
2508 unsigned short old_id, new_id;
2510 old_id = mem_cgroup_id(from);
2511 new_id = mem_cgroup_id(to);
2513 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2514 mem_cgroup_swap_statistics(from, false);
2515 mem_cgroup_swap_statistics(to, true);
2516 return 0;
2518 return -EINVAL;
2520 #else
2521 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2522 struct mem_cgroup *from, struct mem_cgroup *to)
2524 return -EINVAL;
2526 #endif
2528 static DEFINE_MUTEX(memcg_limit_mutex);
2530 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2531 unsigned long limit)
2533 unsigned long curusage;
2534 unsigned long oldusage;
2535 bool enlarge = false;
2536 int retry_count;
2537 int ret;
2540 * For keeping hierarchical_reclaim simple, how long we should retry
2541 * is depends on callers. We set our retry-count to be function
2542 * of # of children which we should visit in this loop.
2544 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2545 mem_cgroup_count_children(memcg);
2547 oldusage = page_counter_read(&memcg->memory);
2549 do {
2550 if (signal_pending(current)) {
2551 ret = -EINTR;
2552 break;
2555 mutex_lock(&memcg_limit_mutex);
2556 if (limit > memcg->memsw.limit) {
2557 mutex_unlock(&memcg_limit_mutex);
2558 ret = -EINVAL;
2559 break;
2561 if (limit > memcg->memory.limit)
2562 enlarge = true;
2563 ret = page_counter_limit(&memcg->memory, limit);
2564 mutex_unlock(&memcg_limit_mutex);
2566 if (!ret)
2567 break;
2569 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2571 curusage = page_counter_read(&memcg->memory);
2572 /* Usage is reduced ? */
2573 if (curusage >= oldusage)
2574 retry_count--;
2575 else
2576 oldusage = curusage;
2577 } while (retry_count);
2579 if (!ret && enlarge)
2580 memcg_oom_recover(memcg);
2582 return ret;
2585 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2586 unsigned long limit)
2588 unsigned long curusage;
2589 unsigned long oldusage;
2590 bool enlarge = false;
2591 int retry_count;
2592 int ret;
2594 /* see mem_cgroup_resize_res_limit */
2595 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2596 mem_cgroup_count_children(memcg);
2598 oldusage = page_counter_read(&memcg->memsw);
2600 do {
2601 if (signal_pending(current)) {
2602 ret = -EINTR;
2603 break;
2606 mutex_lock(&memcg_limit_mutex);
2607 if (limit < memcg->memory.limit) {
2608 mutex_unlock(&memcg_limit_mutex);
2609 ret = -EINVAL;
2610 break;
2612 if (limit > memcg->memsw.limit)
2613 enlarge = true;
2614 ret = page_counter_limit(&memcg->memsw, limit);
2615 mutex_unlock(&memcg_limit_mutex);
2617 if (!ret)
2618 break;
2620 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2622 curusage = page_counter_read(&memcg->memsw);
2623 /* Usage is reduced ? */
2624 if (curusage >= oldusage)
2625 retry_count--;
2626 else
2627 oldusage = curusage;
2628 } while (retry_count);
2630 if (!ret && enlarge)
2631 memcg_oom_recover(memcg);
2633 return ret;
2636 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2637 gfp_t gfp_mask,
2638 unsigned long *total_scanned)
2640 unsigned long nr_reclaimed = 0;
2641 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2642 unsigned long reclaimed;
2643 int loop = 0;
2644 struct mem_cgroup_tree_per_zone *mctz;
2645 unsigned long excess;
2646 unsigned long nr_scanned;
2648 if (order > 0)
2649 return 0;
2651 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2653 * This loop can run a while, specially if mem_cgroup's continuously
2654 * keep exceeding their soft limit and putting the system under
2655 * pressure
2657 do {
2658 if (next_mz)
2659 mz = next_mz;
2660 else
2661 mz = mem_cgroup_largest_soft_limit_node(mctz);
2662 if (!mz)
2663 break;
2665 nr_scanned = 0;
2666 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2667 gfp_mask, &nr_scanned);
2668 nr_reclaimed += reclaimed;
2669 *total_scanned += nr_scanned;
2670 spin_lock_irq(&mctz->lock);
2671 __mem_cgroup_remove_exceeded(mz, mctz);
2674 * If we failed to reclaim anything from this memory cgroup
2675 * it is time to move on to the next cgroup
2677 next_mz = NULL;
2678 if (!reclaimed)
2679 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2681 excess = soft_limit_excess(mz->memcg);
2683 * One school of thought says that we should not add
2684 * back the node to the tree if reclaim returns 0.
2685 * But our reclaim could return 0, simply because due
2686 * to priority we are exposing a smaller subset of
2687 * memory to reclaim from. Consider this as a longer
2688 * term TODO.
2690 /* If excess == 0, no tree ops */
2691 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2692 spin_unlock_irq(&mctz->lock);
2693 css_put(&mz->memcg->css);
2694 loop++;
2696 * Could not reclaim anything and there are no more
2697 * mem cgroups to try or we seem to be looping without
2698 * reclaiming anything.
2700 if (!nr_reclaimed &&
2701 (next_mz == NULL ||
2702 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2703 break;
2704 } while (!nr_reclaimed);
2705 if (next_mz)
2706 css_put(&next_mz->memcg->css);
2707 return nr_reclaimed;
2711 * Test whether @memcg has children, dead or alive. Note that this
2712 * function doesn't care whether @memcg has use_hierarchy enabled and
2713 * returns %true if there are child csses according to the cgroup
2714 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2716 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2718 bool ret;
2721 * The lock does not prevent addition or deletion of children, but
2722 * it prevents a new child from being initialized based on this
2723 * parent in css_online(), so it's enough to decide whether
2724 * hierarchically inherited attributes can still be changed or not.
2726 lockdep_assert_held(&memcg_create_mutex);
2728 rcu_read_lock();
2729 ret = css_next_child(NULL, &memcg->css);
2730 rcu_read_unlock();
2731 return ret;
2735 * Reclaims as many pages from the given memcg as possible and moves
2736 * the rest to the parent.
2738 * Caller is responsible for holding css reference for memcg.
2740 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2742 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2744 /* we call try-to-free pages for make this cgroup empty */
2745 lru_add_drain_all();
2746 /* try to free all pages in this cgroup */
2747 while (nr_retries && page_counter_read(&memcg->memory)) {
2748 int progress;
2750 if (signal_pending(current))
2751 return -EINTR;
2753 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2754 GFP_KERNEL, true);
2755 if (!progress) {
2756 nr_retries--;
2757 /* maybe some writeback is necessary */
2758 congestion_wait(BLK_RW_ASYNC, HZ/10);
2763 return 0;
2766 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2767 char *buf, size_t nbytes,
2768 loff_t off)
2770 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2772 if (mem_cgroup_is_root(memcg))
2773 return -EINVAL;
2774 return mem_cgroup_force_empty(memcg) ?: nbytes;
2777 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2778 struct cftype *cft)
2780 return mem_cgroup_from_css(css)->use_hierarchy;
2783 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2784 struct cftype *cft, u64 val)
2786 int retval = 0;
2787 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2788 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2790 mutex_lock(&memcg_create_mutex);
2792 if (memcg->use_hierarchy == val)
2793 goto out;
2796 * If parent's use_hierarchy is set, we can't make any modifications
2797 * in the child subtrees. If it is unset, then the change can
2798 * occur, provided the current cgroup has no children.
2800 * For the root cgroup, parent_mem is NULL, we allow value to be
2801 * set if there are no children.
2803 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2804 (val == 1 || val == 0)) {
2805 if (!memcg_has_children(memcg))
2806 memcg->use_hierarchy = val;
2807 else
2808 retval = -EBUSY;
2809 } else
2810 retval = -EINVAL;
2812 out:
2813 mutex_unlock(&memcg_create_mutex);
2815 return retval;
2818 static unsigned long tree_stat(struct mem_cgroup *memcg,
2819 enum mem_cgroup_stat_index idx)
2821 struct mem_cgroup *iter;
2822 long val = 0;
2824 /* Per-cpu values can be negative, use a signed accumulator */
2825 for_each_mem_cgroup_tree(iter, memcg)
2826 val += mem_cgroup_read_stat(iter, idx);
2828 if (val < 0) /* race ? */
2829 val = 0;
2830 return val;
2833 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2835 u64 val;
2837 if (mem_cgroup_is_root(memcg)) {
2838 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2839 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2840 if (swap)
2841 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2842 } else {
2843 if (!swap)
2844 val = page_counter_read(&memcg->memory);
2845 else
2846 val = page_counter_read(&memcg->memsw);
2848 return val << PAGE_SHIFT;
2851 enum {
2852 RES_USAGE,
2853 RES_LIMIT,
2854 RES_MAX_USAGE,
2855 RES_FAILCNT,
2856 RES_SOFT_LIMIT,
2859 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2860 struct cftype *cft)
2862 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2863 struct page_counter *counter;
2865 switch (MEMFILE_TYPE(cft->private)) {
2866 case _MEM:
2867 counter = &memcg->memory;
2868 break;
2869 case _MEMSWAP:
2870 counter = &memcg->memsw;
2871 break;
2872 case _KMEM:
2873 counter = &memcg->kmem;
2874 break;
2875 default:
2876 BUG();
2879 switch (MEMFILE_ATTR(cft->private)) {
2880 case RES_USAGE:
2881 if (counter == &memcg->memory)
2882 return mem_cgroup_usage(memcg, false);
2883 if (counter == &memcg->memsw)
2884 return mem_cgroup_usage(memcg, true);
2885 return (u64)page_counter_read(counter) * PAGE_SIZE;
2886 case RES_LIMIT:
2887 return (u64)counter->limit * PAGE_SIZE;
2888 case RES_MAX_USAGE:
2889 return (u64)counter->watermark * PAGE_SIZE;
2890 case RES_FAILCNT:
2891 return counter->failcnt;
2892 case RES_SOFT_LIMIT:
2893 return (u64)memcg->soft_limit * PAGE_SIZE;
2894 default:
2895 BUG();
2899 #ifdef CONFIG_MEMCG_KMEM
2900 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2901 unsigned long nr_pages)
2903 int err = 0;
2904 int memcg_id;
2906 BUG_ON(memcg->kmemcg_id >= 0);
2907 BUG_ON(memcg->kmem_acct_activated);
2908 BUG_ON(memcg->kmem_acct_active);
2911 * For simplicity, we won't allow this to be disabled. It also can't
2912 * be changed if the cgroup has children already, or if tasks had
2913 * already joined.
2915 * If tasks join before we set the limit, a person looking at
2916 * kmem.usage_in_bytes will have no way to determine when it took
2917 * place, which makes the value quite meaningless.
2919 * After it first became limited, changes in the value of the limit are
2920 * of course permitted.
2922 mutex_lock(&memcg_create_mutex);
2923 if (cgroup_has_tasks(memcg->css.cgroup) ||
2924 (memcg->use_hierarchy && memcg_has_children(memcg)))
2925 err = -EBUSY;
2926 mutex_unlock(&memcg_create_mutex);
2927 if (err)
2928 goto out;
2930 memcg_id = memcg_alloc_cache_id();
2931 if (memcg_id < 0) {
2932 err = memcg_id;
2933 goto out;
2937 * We couldn't have accounted to this cgroup, because it hasn't got
2938 * activated yet, so this should succeed.
2940 err = page_counter_limit(&memcg->kmem, nr_pages);
2941 VM_BUG_ON(err);
2943 static_key_slow_inc(&memcg_kmem_enabled_key);
2945 * A memory cgroup is considered kmem-active as soon as it gets
2946 * kmemcg_id. Setting the id after enabling static branching will
2947 * guarantee no one starts accounting before all call sites are
2948 * patched.
2950 memcg->kmemcg_id = memcg_id;
2951 memcg->kmem_acct_activated = true;
2952 memcg->kmem_acct_active = true;
2953 out:
2954 return err;
2957 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2958 unsigned long limit)
2960 int ret;
2962 mutex_lock(&memcg_limit_mutex);
2963 if (!memcg_kmem_is_active(memcg))
2964 ret = memcg_activate_kmem(memcg, limit);
2965 else
2966 ret = page_counter_limit(&memcg->kmem, limit);
2967 mutex_unlock(&memcg_limit_mutex);
2968 return ret;
2971 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2973 int ret = 0;
2974 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2976 if (!parent)
2977 return 0;
2979 mutex_lock(&memcg_limit_mutex);
2981 * If the parent cgroup is not kmem-active now, it cannot be activated
2982 * after this point, because it has at least one child already.
2984 if (memcg_kmem_is_active(parent))
2985 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2986 mutex_unlock(&memcg_limit_mutex);
2987 return ret;
2989 #else
2990 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2991 unsigned long limit)
2993 return -EINVAL;
2995 #endif /* CONFIG_MEMCG_KMEM */
2998 * The user of this function is...
2999 * RES_LIMIT.
3001 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3002 char *buf, size_t nbytes, loff_t off)
3004 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3005 unsigned long nr_pages;
3006 int ret;
3008 buf = strstrip(buf);
3009 ret = page_counter_memparse(buf, "-1", &nr_pages);
3010 if (ret)
3011 return ret;
3013 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3014 case RES_LIMIT:
3015 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3016 ret = -EINVAL;
3017 break;
3019 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3020 case _MEM:
3021 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3022 break;
3023 case _MEMSWAP:
3024 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3025 break;
3026 case _KMEM:
3027 ret = memcg_update_kmem_limit(memcg, nr_pages);
3028 break;
3030 break;
3031 case RES_SOFT_LIMIT:
3032 memcg->soft_limit = nr_pages;
3033 ret = 0;
3034 break;
3036 return ret ?: nbytes;
3039 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3040 size_t nbytes, loff_t off)
3042 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3043 struct page_counter *counter;
3045 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3046 case _MEM:
3047 counter = &memcg->memory;
3048 break;
3049 case _MEMSWAP:
3050 counter = &memcg->memsw;
3051 break;
3052 case _KMEM:
3053 counter = &memcg->kmem;
3054 break;
3055 default:
3056 BUG();
3059 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3060 case RES_MAX_USAGE:
3061 page_counter_reset_watermark(counter);
3062 break;
3063 case RES_FAILCNT:
3064 counter->failcnt = 0;
3065 break;
3066 default:
3067 BUG();
3070 return nbytes;
3073 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3074 struct cftype *cft)
3076 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3079 #ifdef CONFIG_MMU
3080 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3081 struct cftype *cft, u64 val)
3083 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3085 if (val & ~MOVE_MASK)
3086 return -EINVAL;
3089 * No kind of locking is needed in here, because ->can_attach() will
3090 * check this value once in the beginning of the process, and then carry
3091 * on with stale data. This means that changes to this value will only
3092 * affect task migrations starting after the change.
3094 memcg->move_charge_at_immigrate = val;
3095 return 0;
3097 #else
3098 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3099 struct cftype *cft, u64 val)
3101 return -ENOSYS;
3103 #endif
3105 #ifdef CONFIG_NUMA
3106 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3108 struct numa_stat {
3109 const char *name;
3110 unsigned int lru_mask;
3113 static const struct numa_stat stats[] = {
3114 { "total", LRU_ALL },
3115 { "file", LRU_ALL_FILE },
3116 { "anon", LRU_ALL_ANON },
3117 { "unevictable", BIT(LRU_UNEVICTABLE) },
3119 const struct numa_stat *stat;
3120 int nid;
3121 unsigned long nr;
3122 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3124 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3126 seq_printf(m, "%s=%lu", stat->name, nr);
3127 for_each_node_state(nid, N_MEMORY) {
3128 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3129 stat->lru_mask);
3130 seq_printf(m, " N%d=%lu", nid, nr);
3132 seq_putc(m, '\n');
3135 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3136 struct mem_cgroup *iter;
3138 nr = 0;
3139 for_each_mem_cgroup_tree(iter, memcg)
3140 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3141 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3142 for_each_node_state(nid, N_MEMORY) {
3143 nr = 0;
3144 for_each_mem_cgroup_tree(iter, memcg)
3145 nr += mem_cgroup_node_nr_lru_pages(
3146 iter, nid, stat->lru_mask);
3147 seq_printf(m, " N%d=%lu", nid, nr);
3149 seq_putc(m, '\n');
3152 return 0;
3154 #endif /* CONFIG_NUMA */
3156 static int memcg_stat_show(struct seq_file *m, void *v)
3158 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3159 unsigned long memory, memsw;
3160 struct mem_cgroup *mi;
3161 unsigned int i;
3163 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3164 MEM_CGROUP_STAT_NSTATS);
3165 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3166 MEM_CGROUP_EVENTS_NSTATS);
3167 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3169 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3170 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3171 continue;
3172 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3173 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3176 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3177 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3178 mem_cgroup_read_events(memcg, i));
3180 for (i = 0; i < NR_LRU_LISTS; i++)
3181 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3182 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3184 /* Hierarchical information */
3185 memory = memsw = PAGE_COUNTER_MAX;
3186 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3187 memory = min(memory, mi->memory.limit);
3188 memsw = min(memsw, mi->memsw.limit);
3190 seq_printf(m, "hierarchical_memory_limit %llu\n",
3191 (u64)memory * PAGE_SIZE);
3192 if (do_swap_account)
3193 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3194 (u64)memsw * PAGE_SIZE);
3196 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3197 long long val = 0;
3199 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3200 continue;
3201 for_each_mem_cgroup_tree(mi, memcg)
3202 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3203 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3206 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3207 unsigned long long val = 0;
3209 for_each_mem_cgroup_tree(mi, memcg)
3210 val += mem_cgroup_read_events(mi, i);
3211 seq_printf(m, "total_%s %llu\n",
3212 mem_cgroup_events_names[i], val);
3215 for (i = 0; i < NR_LRU_LISTS; i++) {
3216 unsigned long long val = 0;
3218 for_each_mem_cgroup_tree(mi, memcg)
3219 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3220 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3223 #ifdef CONFIG_DEBUG_VM
3225 int nid, zid;
3226 struct mem_cgroup_per_zone *mz;
3227 struct zone_reclaim_stat *rstat;
3228 unsigned long recent_rotated[2] = {0, 0};
3229 unsigned long recent_scanned[2] = {0, 0};
3231 for_each_online_node(nid)
3232 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3233 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3234 rstat = &mz->lruvec.reclaim_stat;
3236 recent_rotated[0] += rstat->recent_rotated[0];
3237 recent_rotated[1] += rstat->recent_rotated[1];
3238 recent_scanned[0] += rstat->recent_scanned[0];
3239 recent_scanned[1] += rstat->recent_scanned[1];
3241 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3242 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3243 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3244 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3246 #endif
3248 return 0;
3251 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3252 struct cftype *cft)
3254 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3256 return mem_cgroup_swappiness(memcg);
3259 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3260 struct cftype *cft, u64 val)
3262 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3264 if (val > 100)
3265 return -EINVAL;
3267 if (css->parent)
3268 memcg->swappiness = val;
3269 else
3270 vm_swappiness = val;
3272 return 0;
3275 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3277 struct mem_cgroup_threshold_ary *t;
3278 unsigned long usage;
3279 int i;
3281 rcu_read_lock();
3282 if (!swap)
3283 t = rcu_dereference(memcg->thresholds.primary);
3284 else
3285 t = rcu_dereference(memcg->memsw_thresholds.primary);
3287 if (!t)
3288 goto unlock;
3290 usage = mem_cgroup_usage(memcg, swap);
3293 * current_threshold points to threshold just below or equal to usage.
3294 * If it's not true, a threshold was crossed after last
3295 * call of __mem_cgroup_threshold().
3297 i = t->current_threshold;
3300 * Iterate backward over array of thresholds starting from
3301 * current_threshold and check if a threshold is crossed.
3302 * If none of thresholds below usage is crossed, we read
3303 * only one element of the array here.
3305 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3306 eventfd_signal(t->entries[i].eventfd, 1);
3308 /* i = current_threshold + 1 */
3309 i++;
3312 * Iterate forward over array of thresholds starting from
3313 * current_threshold+1 and check if a threshold is crossed.
3314 * If none of thresholds above usage is crossed, we read
3315 * only one element of the array here.
3317 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3318 eventfd_signal(t->entries[i].eventfd, 1);
3320 /* Update current_threshold */
3321 t->current_threshold = i - 1;
3322 unlock:
3323 rcu_read_unlock();
3326 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3328 while (memcg) {
3329 __mem_cgroup_threshold(memcg, false);
3330 if (do_swap_account)
3331 __mem_cgroup_threshold(memcg, true);
3333 memcg = parent_mem_cgroup(memcg);
3337 static int compare_thresholds(const void *a, const void *b)
3339 const struct mem_cgroup_threshold *_a = a;
3340 const struct mem_cgroup_threshold *_b = b;
3342 if (_a->threshold > _b->threshold)
3343 return 1;
3345 if (_a->threshold < _b->threshold)
3346 return -1;
3348 return 0;
3351 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3353 struct mem_cgroup_eventfd_list *ev;
3355 spin_lock(&memcg_oom_lock);
3357 list_for_each_entry(ev, &memcg->oom_notify, list)
3358 eventfd_signal(ev->eventfd, 1);
3360 spin_unlock(&memcg_oom_lock);
3361 return 0;
3364 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3366 struct mem_cgroup *iter;
3368 for_each_mem_cgroup_tree(iter, memcg)
3369 mem_cgroup_oom_notify_cb(iter);
3372 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3373 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3375 struct mem_cgroup_thresholds *thresholds;
3376 struct mem_cgroup_threshold_ary *new;
3377 unsigned long threshold;
3378 unsigned long usage;
3379 int i, size, ret;
3381 ret = page_counter_memparse(args, "-1", &threshold);
3382 if (ret)
3383 return ret;
3385 mutex_lock(&memcg->thresholds_lock);
3387 if (type == _MEM) {
3388 thresholds = &memcg->thresholds;
3389 usage = mem_cgroup_usage(memcg, false);
3390 } else if (type == _MEMSWAP) {
3391 thresholds = &memcg->memsw_thresholds;
3392 usage = mem_cgroup_usage(memcg, true);
3393 } else
3394 BUG();
3396 /* Check if a threshold crossed before adding a new one */
3397 if (thresholds->primary)
3398 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3400 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3402 /* Allocate memory for new array of thresholds */
3403 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3404 GFP_KERNEL);
3405 if (!new) {
3406 ret = -ENOMEM;
3407 goto unlock;
3409 new->size = size;
3411 /* Copy thresholds (if any) to new array */
3412 if (thresholds->primary) {
3413 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3414 sizeof(struct mem_cgroup_threshold));
3417 /* Add new threshold */
3418 new->entries[size - 1].eventfd = eventfd;
3419 new->entries[size - 1].threshold = threshold;
3421 /* Sort thresholds. Registering of new threshold isn't time-critical */
3422 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3423 compare_thresholds, NULL);
3425 /* Find current threshold */
3426 new->current_threshold = -1;
3427 for (i = 0; i < size; i++) {
3428 if (new->entries[i].threshold <= usage) {
3430 * new->current_threshold will not be used until
3431 * rcu_assign_pointer(), so it's safe to increment
3432 * it here.
3434 ++new->current_threshold;
3435 } else
3436 break;
3439 /* Free old spare buffer and save old primary buffer as spare */
3440 kfree(thresholds->spare);
3441 thresholds->spare = thresholds->primary;
3443 rcu_assign_pointer(thresholds->primary, new);
3445 /* To be sure that nobody uses thresholds */
3446 synchronize_rcu();
3448 unlock:
3449 mutex_unlock(&memcg->thresholds_lock);
3451 return ret;
3454 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3455 struct eventfd_ctx *eventfd, const char *args)
3457 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3460 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3461 struct eventfd_ctx *eventfd, const char *args)
3463 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3466 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3467 struct eventfd_ctx *eventfd, enum res_type type)
3469 struct mem_cgroup_thresholds *thresholds;
3470 struct mem_cgroup_threshold_ary *new;
3471 unsigned long usage;
3472 int i, j, size;
3474 mutex_lock(&memcg->thresholds_lock);
3476 if (type == _MEM) {
3477 thresholds = &memcg->thresholds;
3478 usage = mem_cgroup_usage(memcg, false);
3479 } else if (type == _MEMSWAP) {
3480 thresholds = &memcg->memsw_thresholds;
3481 usage = mem_cgroup_usage(memcg, true);
3482 } else
3483 BUG();
3485 if (!thresholds->primary)
3486 goto unlock;
3488 /* Check if a threshold crossed before removing */
3489 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3491 /* Calculate new number of threshold */
3492 size = 0;
3493 for (i = 0; i < thresholds->primary->size; i++) {
3494 if (thresholds->primary->entries[i].eventfd != eventfd)
3495 size++;
3498 new = thresholds->spare;
3500 /* Set thresholds array to NULL if we don't have thresholds */
3501 if (!size) {
3502 kfree(new);
3503 new = NULL;
3504 goto swap_buffers;
3507 new->size = size;
3509 /* Copy thresholds and find current threshold */
3510 new->current_threshold = -1;
3511 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3512 if (thresholds->primary->entries[i].eventfd == eventfd)
3513 continue;
3515 new->entries[j] = thresholds->primary->entries[i];
3516 if (new->entries[j].threshold <= usage) {
3518 * new->current_threshold will not be used
3519 * until rcu_assign_pointer(), so it's safe to increment
3520 * it here.
3522 ++new->current_threshold;
3524 j++;
3527 swap_buffers:
3528 /* Swap primary and spare array */
3529 thresholds->spare = thresholds->primary;
3530 /* If all events are unregistered, free the spare array */
3531 if (!new) {
3532 kfree(thresholds->spare);
3533 thresholds->spare = NULL;
3536 rcu_assign_pointer(thresholds->primary, new);
3538 /* To be sure that nobody uses thresholds */
3539 synchronize_rcu();
3540 unlock:
3541 mutex_unlock(&memcg->thresholds_lock);
3544 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3545 struct eventfd_ctx *eventfd)
3547 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3550 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3551 struct eventfd_ctx *eventfd)
3553 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3556 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3557 struct eventfd_ctx *eventfd, const char *args)
3559 struct mem_cgroup_eventfd_list *event;
3561 event = kmalloc(sizeof(*event), GFP_KERNEL);
3562 if (!event)
3563 return -ENOMEM;
3565 spin_lock(&memcg_oom_lock);
3567 event->eventfd = eventfd;
3568 list_add(&event->list, &memcg->oom_notify);
3570 /* already in OOM ? */
3571 if (memcg->under_oom)
3572 eventfd_signal(eventfd, 1);
3573 spin_unlock(&memcg_oom_lock);
3575 return 0;
3578 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3579 struct eventfd_ctx *eventfd)
3581 struct mem_cgroup_eventfd_list *ev, *tmp;
3583 spin_lock(&memcg_oom_lock);
3585 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3586 if (ev->eventfd == eventfd) {
3587 list_del(&ev->list);
3588 kfree(ev);
3592 spin_unlock(&memcg_oom_lock);
3595 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3597 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3599 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3600 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3601 return 0;
3604 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3605 struct cftype *cft, u64 val)
3607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3609 /* cannot set to root cgroup and only 0 and 1 are allowed */
3610 if (!css->parent || !((val == 0) || (val == 1)))
3611 return -EINVAL;
3613 memcg->oom_kill_disable = val;
3614 if (!val)
3615 memcg_oom_recover(memcg);
3617 return 0;
3620 #ifdef CONFIG_MEMCG_KMEM
3621 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3623 int ret;
3625 ret = memcg_propagate_kmem(memcg);
3626 if (ret)
3627 return ret;
3629 return mem_cgroup_sockets_init(memcg, ss);
3632 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3634 struct cgroup_subsys_state *css;
3635 struct mem_cgroup *parent, *child;
3636 int kmemcg_id;
3638 if (!memcg->kmem_acct_active)
3639 return;
3642 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3643 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3644 * guarantees no cache will be created for this cgroup after we are
3645 * done (see memcg_create_kmem_cache()).
3647 memcg->kmem_acct_active = false;
3649 memcg_deactivate_kmem_caches(memcg);
3651 kmemcg_id = memcg->kmemcg_id;
3652 BUG_ON(kmemcg_id < 0);
3654 parent = parent_mem_cgroup(memcg);
3655 if (!parent)
3656 parent = root_mem_cgroup;
3659 * Change kmemcg_id of this cgroup and all its descendants to the
3660 * parent's id, and then move all entries from this cgroup's list_lrus
3661 * to ones of the parent. After we have finished, all list_lrus
3662 * corresponding to this cgroup are guaranteed to remain empty. The
3663 * ordering is imposed by list_lru_node->lock taken by
3664 * memcg_drain_all_list_lrus().
3666 css_for_each_descendant_pre(css, &memcg->css) {
3667 child = mem_cgroup_from_css(css);
3668 BUG_ON(child->kmemcg_id != kmemcg_id);
3669 child->kmemcg_id = parent->kmemcg_id;
3670 if (!memcg->use_hierarchy)
3671 break;
3673 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3675 memcg_free_cache_id(kmemcg_id);
3678 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3680 if (memcg->kmem_acct_activated) {
3681 memcg_destroy_kmem_caches(memcg);
3682 static_key_slow_dec(&memcg_kmem_enabled_key);
3683 WARN_ON(page_counter_read(&memcg->kmem));
3685 mem_cgroup_sockets_destroy(memcg);
3687 #else
3688 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3690 return 0;
3693 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3697 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3700 #endif
3702 #ifdef CONFIG_CGROUP_WRITEBACK
3704 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3706 return &memcg->cgwb_list;
3709 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3711 return wb_domain_init(&memcg->cgwb_domain, gfp);
3714 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3716 wb_domain_exit(&memcg->cgwb_domain);
3719 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3721 wb_domain_size_changed(&memcg->cgwb_domain);
3724 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3726 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3728 if (!memcg->css.parent)
3729 return NULL;
3731 return &memcg->cgwb_domain;
3735 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3736 * @wb: bdi_writeback in question
3737 * @pavail: out parameter for number of available pages
3738 * @pdirty: out parameter for number of dirty pages
3739 * @pwriteback: out parameter for number of pages under writeback
3741 * Determine the numbers of available, dirty, and writeback pages in @wb's
3742 * memcg. Dirty and writeback are self-explanatory. Available is a bit
3743 * more involved.
3745 * A memcg's headroom is "min(max, high) - used". The available memory is
3746 * calculated as the lowest headroom of itself and the ancestors plus the
3747 * number of pages already being used for file pages. Note that this
3748 * doesn't consider the actual amount of available memory in the system.
3749 * The caller should further cap *@pavail accordingly.
3751 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
3752 unsigned long *pdirty, unsigned long *pwriteback)
3754 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3755 struct mem_cgroup *parent;
3756 unsigned long head_room = PAGE_COUNTER_MAX;
3757 unsigned long file_pages;
3759 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3761 /* this should eventually include NR_UNSTABLE_NFS */
3762 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3764 file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3765 (1 << LRU_ACTIVE_FILE));
3766 while ((parent = parent_mem_cgroup(memcg))) {
3767 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3768 unsigned long used = page_counter_read(&memcg->memory);
3770 head_room = min(head_room, ceiling - min(ceiling, used));
3771 memcg = parent;
3774 *pavail = file_pages + head_room;
3777 #else /* CONFIG_CGROUP_WRITEBACK */
3779 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3781 return 0;
3784 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3788 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3792 #endif /* CONFIG_CGROUP_WRITEBACK */
3795 * DO NOT USE IN NEW FILES.
3797 * "cgroup.event_control" implementation.
3799 * This is way over-engineered. It tries to support fully configurable
3800 * events for each user. Such level of flexibility is completely
3801 * unnecessary especially in the light of the planned unified hierarchy.
3803 * Please deprecate this and replace with something simpler if at all
3804 * possible.
3808 * Unregister event and free resources.
3810 * Gets called from workqueue.
3812 static void memcg_event_remove(struct work_struct *work)
3814 struct mem_cgroup_event *event =
3815 container_of(work, struct mem_cgroup_event, remove);
3816 struct mem_cgroup *memcg = event->memcg;
3818 remove_wait_queue(event->wqh, &event->wait);
3820 event->unregister_event(memcg, event->eventfd);
3822 /* Notify userspace the event is going away. */
3823 eventfd_signal(event->eventfd, 1);
3825 eventfd_ctx_put(event->eventfd);
3826 kfree(event);
3827 css_put(&memcg->css);
3831 * Gets called on POLLHUP on eventfd when user closes it.
3833 * Called with wqh->lock held and interrupts disabled.
3835 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3836 int sync, void *key)
3838 struct mem_cgroup_event *event =
3839 container_of(wait, struct mem_cgroup_event, wait);
3840 struct mem_cgroup *memcg = event->memcg;
3841 unsigned long flags = (unsigned long)key;
3843 if (flags & POLLHUP) {
3845 * If the event has been detached at cgroup removal, we
3846 * can simply return knowing the other side will cleanup
3847 * for us.
3849 * We can't race against event freeing since the other
3850 * side will require wqh->lock via remove_wait_queue(),
3851 * which we hold.
3853 spin_lock(&memcg->event_list_lock);
3854 if (!list_empty(&event->list)) {
3855 list_del_init(&event->list);
3857 * We are in atomic context, but cgroup_event_remove()
3858 * may sleep, so we have to call it in workqueue.
3860 schedule_work(&event->remove);
3862 spin_unlock(&memcg->event_list_lock);
3865 return 0;
3868 static void memcg_event_ptable_queue_proc(struct file *file,
3869 wait_queue_head_t *wqh, poll_table *pt)
3871 struct mem_cgroup_event *event =
3872 container_of(pt, struct mem_cgroup_event, pt);
3874 event->wqh = wqh;
3875 add_wait_queue(wqh, &event->wait);
3879 * DO NOT USE IN NEW FILES.
3881 * Parse input and register new cgroup event handler.
3883 * Input must be in format '<event_fd> <control_fd> <args>'.
3884 * Interpretation of args is defined by control file implementation.
3886 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3887 char *buf, size_t nbytes, loff_t off)
3889 struct cgroup_subsys_state *css = of_css(of);
3890 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3891 struct mem_cgroup_event *event;
3892 struct cgroup_subsys_state *cfile_css;
3893 unsigned int efd, cfd;
3894 struct fd efile;
3895 struct fd cfile;
3896 const char *name;
3897 char *endp;
3898 int ret;
3900 buf = strstrip(buf);
3902 efd = simple_strtoul(buf, &endp, 10);
3903 if (*endp != ' ')
3904 return -EINVAL;
3905 buf = endp + 1;
3907 cfd = simple_strtoul(buf, &endp, 10);
3908 if ((*endp != ' ') && (*endp != '\0'))
3909 return -EINVAL;
3910 buf = endp + 1;
3912 event = kzalloc(sizeof(*event), GFP_KERNEL);
3913 if (!event)
3914 return -ENOMEM;
3916 event->memcg = memcg;
3917 INIT_LIST_HEAD(&event->list);
3918 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3919 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3920 INIT_WORK(&event->remove, memcg_event_remove);
3922 efile = fdget(efd);
3923 if (!efile.file) {
3924 ret = -EBADF;
3925 goto out_kfree;
3928 event->eventfd = eventfd_ctx_fileget(efile.file);
3929 if (IS_ERR(event->eventfd)) {
3930 ret = PTR_ERR(event->eventfd);
3931 goto out_put_efile;
3934 cfile = fdget(cfd);
3935 if (!cfile.file) {
3936 ret = -EBADF;
3937 goto out_put_eventfd;
3940 /* the process need read permission on control file */
3941 /* AV: shouldn't we check that it's been opened for read instead? */
3942 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3943 if (ret < 0)
3944 goto out_put_cfile;
3947 * Determine the event callbacks and set them in @event. This used
3948 * to be done via struct cftype but cgroup core no longer knows
3949 * about these events. The following is crude but the whole thing
3950 * is for compatibility anyway.
3952 * DO NOT ADD NEW FILES.
3954 name = cfile.file->f_path.dentry->d_name.name;
3956 if (!strcmp(name, "memory.usage_in_bytes")) {
3957 event->register_event = mem_cgroup_usage_register_event;
3958 event->unregister_event = mem_cgroup_usage_unregister_event;
3959 } else if (!strcmp(name, "memory.oom_control")) {
3960 event->register_event = mem_cgroup_oom_register_event;
3961 event->unregister_event = mem_cgroup_oom_unregister_event;
3962 } else if (!strcmp(name, "memory.pressure_level")) {
3963 event->register_event = vmpressure_register_event;
3964 event->unregister_event = vmpressure_unregister_event;
3965 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3966 event->register_event = memsw_cgroup_usage_register_event;
3967 event->unregister_event = memsw_cgroup_usage_unregister_event;
3968 } else {
3969 ret = -EINVAL;
3970 goto out_put_cfile;
3974 * Verify @cfile should belong to @css. Also, remaining events are
3975 * automatically removed on cgroup destruction but the removal is
3976 * asynchronous, so take an extra ref on @css.
3978 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3979 &memory_cgrp_subsys);
3980 ret = -EINVAL;
3981 if (IS_ERR(cfile_css))
3982 goto out_put_cfile;
3983 if (cfile_css != css) {
3984 css_put(cfile_css);
3985 goto out_put_cfile;
3988 ret = event->register_event(memcg, event->eventfd, buf);
3989 if (ret)
3990 goto out_put_css;
3992 efile.file->f_op->poll(efile.file, &event->pt);
3994 spin_lock(&memcg->event_list_lock);
3995 list_add(&event->list, &memcg->event_list);
3996 spin_unlock(&memcg->event_list_lock);
3998 fdput(cfile);
3999 fdput(efile);
4001 return nbytes;
4003 out_put_css:
4004 css_put(css);
4005 out_put_cfile:
4006 fdput(cfile);
4007 out_put_eventfd:
4008 eventfd_ctx_put(event->eventfd);
4009 out_put_efile:
4010 fdput(efile);
4011 out_kfree:
4012 kfree(event);
4014 return ret;
4017 static struct cftype mem_cgroup_legacy_files[] = {
4019 .name = "usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4024 .name = "max_usage_in_bytes",
4025 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4030 .name = "limit_in_bytes",
4031 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4032 .write = mem_cgroup_write,
4033 .read_u64 = mem_cgroup_read_u64,
4036 .name = "soft_limit_in_bytes",
4037 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4038 .write = mem_cgroup_write,
4039 .read_u64 = mem_cgroup_read_u64,
4042 .name = "failcnt",
4043 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4044 .write = mem_cgroup_reset,
4045 .read_u64 = mem_cgroup_read_u64,
4048 .name = "stat",
4049 .seq_show = memcg_stat_show,
4052 .name = "force_empty",
4053 .write = mem_cgroup_force_empty_write,
4056 .name = "use_hierarchy",
4057 .write_u64 = mem_cgroup_hierarchy_write,
4058 .read_u64 = mem_cgroup_hierarchy_read,
4061 .name = "cgroup.event_control", /* XXX: for compat */
4062 .write = memcg_write_event_control,
4063 .flags = CFTYPE_NO_PREFIX,
4064 .mode = S_IWUGO,
4067 .name = "swappiness",
4068 .read_u64 = mem_cgroup_swappiness_read,
4069 .write_u64 = mem_cgroup_swappiness_write,
4072 .name = "move_charge_at_immigrate",
4073 .read_u64 = mem_cgroup_move_charge_read,
4074 .write_u64 = mem_cgroup_move_charge_write,
4077 .name = "oom_control",
4078 .seq_show = mem_cgroup_oom_control_read,
4079 .write_u64 = mem_cgroup_oom_control_write,
4080 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4083 .name = "pressure_level",
4085 #ifdef CONFIG_NUMA
4087 .name = "numa_stat",
4088 .seq_show = memcg_numa_stat_show,
4090 #endif
4091 #ifdef CONFIG_MEMCG_KMEM
4093 .name = "kmem.limit_in_bytes",
4094 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4095 .write = mem_cgroup_write,
4096 .read_u64 = mem_cgroup_read_u64,
4099 .name = "kmem.usage_in_bytes",
4100 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4101 .read_u64 = mem_cgroup_read_u64,
4104 .name = "kmem.failcnt",
4105 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4106 .write = mem_cgroup_reset,
4107 .read_u64 = mem_cgroup_read_u64,
4110 .name = "kmem.max_usage_in_bytes",
4111 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4112 .write = mem_cgroup_reset,
4113 .read_u64 = mem_cgroup_read_u64,
4115 #ifdef CONFIG_SLABINFO
4117 .name = "kmem.slabinfo",
4118 .seq_start = slab_start,
4119 .seq_next = slab_next,
4120 .seq_stop = slab_stop,
4121 .seq_show = memcg_slab_show,
4123 #endif
4124 #endif
4125 { }, /* terminate */
4128 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4130 struct mem_cgroup_per_node *pn;
4131 struct mem_cgroup_per_zone *mz;
4132 int zone, tmp = node;
4134 * This routine is called against possible nodes.
4135 * But it's BUG to call kmalloc() against offline node.
4137 * TODO: this routine can waste much memory for nodes which will
4138 * never be onlined. It's better to use memory hotplug callback
4139 * function.
4141 if (!node_state(node, N_NORMAL_MEMORY))
4142 tmp = -1;
4143 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4144 if (!pn)
4145 return 1;
4147 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4148 mz = &pn->zoneinfo[zone];
4149 lruvec_init(&mz->lruvec);
4150 mz->usage_in_excess = 0;
4151 mz->on_tree = false;
4152 mz->memcg = memcg;
4154 memcg->nodeinfo[node] = pn;
4155 return 0;
4158 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4160 kfree(memcg->nodeinfo[node]);
4163 static struct mem_cgroup *mem_cgroup_alloc(void)
4165 struct mem_cgroup *memcg;
4166 size_t size;
4168 size = sizeof(struct mem_cgroup);
4169 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4171 memcg = kzalloc(size, GFP_KERNEL);
4172 if (!memcg)
4173 return NULL;
4175 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4176 if (!memcg->stat)
4177 goto out_free;
4179 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4180 goto out_free_stat;
4182 spin_lock_init(&memcg->pcp_counter_lock);
4183 return memcg;
4185 out_free_stat:
4186 free_percpu(memcg->stat);
4187 out_free:
4188 kfree(memcg);
4189 return NULL;
4193 * At destroying mem_cgroup, references from swap_cgroup can remain.
4194 * (scanning all at force_empty is too costly...)
4196 * Instead of clearing all references at force_empty, we remember
4197 * the number of reference from swap_cgroup and free mem_cgroup when
4198 * it goes down to 0.
4200 * Removal of cgroup itself succeeds regardless of refs from swap.
4203 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4205 int node;
4207 mem_cgroup_remove_from_trees(memcg);
4209 for_each_node(node)
4210 free_mem_cgroup_per_zone_info(memcg, node);
4212 free_percpu(memcg->stat);
4213 memcg_wb_domain_exit(memcg);
4214 kfree(memcg);
4218 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4220 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4222 if (!memcg->memory.parent)
4223 return NULL;
4224 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4226 EXPORT_SYMBOL(parent_mem_cgroup);
4228 static struct cgroup_subsys_state * __ref
4229 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4231 struct mem_cgroup *memcg;
4232 long error = -ENOMEM;
4233 int node;
4235 memcg = mem_cgroup_alloc();
4236 if (!memcg)
4237 return ERR_PTR(error);
4239 for_each_node(node)
4240 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4241 goto free_out;
4243 /* root ? */
4244 if (parent_css == NULL) {
4245 root_mem_cgroup = memcg;
4246 mem_cgroup_root_css = &memcg->css;
4247 page_counter_init(&memcg->memory, NULL);
4248 memcg->high = PAGE_COUNTER_MAX;
4249 memcg->soft_limit = PAGE_COUNTER_MAX;
4250 page_counter_init(&memcg->memsw, NULL);
4251 page_counter_init(&memcg->kmem, NULL);
4254 memcg->last_scanned_node = MAX_NUMNODES;
4255 INIT_LIST_HEAD(&memcg->oom_notify);
4256 memcg->move_charge_at_immigrate = 0;
4257 mutex_init(&memcg->thresholds_lock);
4258 spin_lock_init(&memcg->move_lock);
4259 vmpressure_init(&memcg->vmpressure);
4260 INIT_LIST_HEAD(&memcg->event_list);
4261 spin_lock_init(&memcg->event_list_lock);
4262 #ifdef CONFIG_MEMCG_KMEM
4263 memcg->kmemcg_id = -1;
4264 #endif
4265 #ifdef CONFIG_CGROUP_WRITEBACK
4266 INIT_LIST_HEAD(&memcg->cgwb_list);
4267 #endif
4268 return &memcg->css;
4270 free_out:
4271 __mem_cgroup_free(memcg);
4272 return ERR_PTR(error);
4275 static int
4276 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4280 int ret;
4282 if (css->id > MEM_CGROUP_ID_MAX)
4283 return -ENOSPC;
4285 if (!parent)
4286 return 0;
4288 mutex_lock(&memcg_create_mutex);
4290 memcg->use_hierarchy = parent->use_hierarchy;
4291 memcg->oom_kill_disable = parent->oom_kill_disable;
4292 memcg->swappiness = mem_cgroup_swappiness(parent);
4294 if (parent->use_hierarchy) {
4295 page_counter_init(&memcg->memory, &parent->memory);
4296 memcg->high = PAGE_COUNTER_MAX;
4297 memcg->soft_limit = PAGE_COUNTER_MAX;
4298 page_counter_init(&memcg->memsw, &parent->memsw);
4299 page_counter_init(&memcg->kmem, &parent->kmem);
4302 * No need to take a reference to the parent because cgroup
4303 * core guarantees its existence.
4305 } else {
4306 page_counter_init(&memcg->memory, NULL);
4307 memcg->high = PAGE_COUNTER_MAX;
4308 memcg->soft_limit = PAGE_COUNTER_MAX;
4309 page_counter_init(&memcg->memsw, NULL);
4310 page_counter_init(&memcg->kmem, NULL);
4312 * Deeper hierachy with use_hierarchy == false doesn't make
4313 * much sense so let cgroup subsystem know about this
4314 * unfortunate state in our controller.
4316 if (parent != root_mem_cgroup)
4317 memory_cgrp_subsys.broken_hierarchy = true;
4319 mutex_unlock(&memcg_create_mutex);
4321 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4322 if (ret)
4323 return ret;
4326 * Make sure the memcg is initialized: mem_cgroup_iter()
4327 * orders reading memcg->initialized against its callers
4328 * reading the memcg members.
4330 smp_store_release(&memcg->initialized, 1);
4332 return 0;
4335 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4338 struct mem_cgroup_event *event, *tmp;
4341 * Unregister events and notify userspace.
4342 * Notify userspace about cgroup removing only after rmdir of cgroup
4343 * directory to avoid race between userspace and kernelspace.
4345 spin_lock(&memcg->event_list_lock);
4346 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4347 list_del_init(&event->list);
4348 schedule_work(&event->remove);
4350 spin_unlock(&memcg->event_list_lock);
4352 vmpressure_cleanup(&memcg->vmpressure);
4354 memcg_deactivate_kmem(memcg);
4356 wb_memcg_offline(memcg);
4359 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4361 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4363 memcg_destroy_kmem(memcg);
4364 __mem_cgroup_free(memcg);
4368 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4369 * @css: the target css
4371 * Reset the states of the mem_cgroup associated with @css. This is
4372 * invoked when the userland requests disabling on the default hierarchy
4373 * but the memcg is pinned through dependency. The memcg should stop
4374 * applying policies and should revert to the vanilla state as it may be
4375 * made visible again.
4377 * The current implementation only resets the essential configurations.
4378 * This needs to be expanded to cover all the visible parts.
4380 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4382 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4384 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4385 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4386 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4387 memcg->low = 0;
4388 memcg->high = PAGE_COUNTER_MAX;
4389 memcg->soft_limit = PAGE_COUNTER_MAX;
4390 memcg_wb_domain_size_changed(memcg);
4393 #ifdef CONFIG_MMU
4394 /* Handlers for move charge at task migration. */
4395 static int mem_cgroup_do_precharge(unsigned long count)
4397 int ret;
4399 /* Try a single bulk charge without reclaim first */
4400 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4401 if (!ret) {
4402 mc.precharge += count;
4403 return ret;
4405 if (ret == -EINTR) {
4406 cancel_charge(root_mem_cgroup, count);
4407 return ret;
4410 /* Try charges one by one with reclaim */
4411 while (count--) {
4412 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4414 * In case of failure, any residual charges against
4415 * mc.to will be dropped by mem_cgroup_clear_mc()
4416 * later on. However, cancel any charges that are
4417 * bypassed to root right away or they'll be lost.
4419 if (ret == -EINTR)
4420 cancel_charge(root_mem_cgroup, 1);
4421 if (ret)
4422 return ret;
4423 mc.precharge++;
4424 cond_resched();
4426 return 0;
4430 * get_mctgt_type - get target type of moving charge
4431 * @vma: the vma the pte to be checked belongs
4432 * @addr: the address corresponding to the pte to be checked
4433 * @ptent: the pte to be checked
4434 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4436 * Returns
4437 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4438 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4439 * move charge. if @target is not NULL, the page is stored in target->page
4440 * with extra refcnt got(Callers should handle it).
4441 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4442 * target for charge migration. if @target is not NULL, the entry is stored
4443 * in target->ent.
4445 * Called with pte lock held.
4447 union mc_target {
4448 struct page *page;
4449 swp_entry_t ent;
4452 enum mc_target_type {
4453 MC_TARGET_NONE = 0,
4454 MC_TARGET_PAGE,
4455 MC_TARGET_SWAP,
4458 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4459 unsigned long addr, pte_t ptent)
4461 struct page *page = vm_normal_page(vma, addr, ptent);
4463 if (!page || !page_mapped(page))
4464 return NULL;
4465 if (PageAnon(page)) {
4466 if (!(mc.flags & MOVE_ANON))
4467 return NULL;
4468 } else {
4469 if (!(mc.flags & MOVE_FILE))
4470 return NULL;
4472 if (!get_page_unless_zero(page))
4473 return NULL;
4475 return page;
4478 #ifdef CONFIG_SWAP
4479 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4480 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4482 struct page *page = NULL;
4483 swp_entry_t ent = pte_to_swp_entry(ptent);
4485 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4486 return NULL;
4488 * Because lookup_swap_cache() updates some statistics counter,
4489 * we call find_get_page() with swapper_space directly.
4491 page = find_get_page(swap_address_space(ent), ent.val);
4492 if (do_swap_account)
4493 entry->val = ent.val;
4495 return page;
4497 #else
4498 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4499 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4501 return NULL;
4503 #endif
4505 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4506 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4508 struct page *page = NULL;
4509 struct address_space *mapping;
4510 pgoff_t pgoff;
4512 if (!vma->vm_file) /* anonymous vma */
4513 return NULL;
4514 if (!(mc.flags & MOVE_FILE))
4515 return NULL;
4517 mapping = vma->vm_file->f_mapping;
4518 pgoff = linear_page_index(vma, addr);
4520 /* page is moved even if it's not RSS of this task(page-faulted). */
4521 #ifdef CONFIG_SWAP
4522 /* shmem/tmpfs may report page out on swap: account for that too. */
4523 if (shmem_mapping(mapping)) {
4524 page = find_get_entry(mapping, pgoff);
4525 if (radix_tree_exceptional_entry(page)) {
4526 swp_entry_t swp = radix_to_swp_entry(page);
4527 if (do_swap_account)
4528 *entry = swp;
4529 page = find_get_page(swap_address_space(swp), swp.val);
4531 } else
4532 page = find_get_page(mapping, pgoff);
4533 #else
4534 page = find_get_page(mapping, pgoff);
4535 #endif
4536 return page;
4540 * mem_cgroup_move_account - move account of the page
4541 * @page: the page
4542 * @nr_pages: number of regular pages (>1 for huge pages)
4543 * @from: mem_cgroup which the page is moved from.
4544 * @to: mem_cgroup which the page is moved to. @from != @to.
4546 * The caller must confirm following.
4547 * - page is not on LRU (isolate_page() is useful.)
4548 * - compound_lock is held when nr_pages > 1
4550 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4551 * from old cgroup.
4553 static int mem_cgroup_move_account(struct page *page,
4554 unsigned int nr_pages,
4555 struct mem_cgroup *from,
4556 struct mem_cgroup *to)
4558 unsigned long flags;
4559 int ret;
4560 bool anon;
4562 VM_BUG_ON(from == to);
4563 VM_BUG_ON_PAGE(PageLRU(page), page);
4565 * The page is isolated from LRU. So, collapse function
4566 * will not handle this page. But page splitting can happen.
4567 * Do this check under compound_page_lock(). The caller should
4568 * hold it.
4570 ret = -EBUSY;
4571 if (nr_pages > 1 && !PageTransHuge(page))
4572 goto out;
4575 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4576 * of its source page while we change it: page migration takes
4577 * both pages off the LRU, but page cache replacement doesn't.
4579 if (!trylock_page(page))
4580 goto out;
4582 ret = -EINVAL;
4583 if (page->mem_cgroup != from)
4584 goto out_unlock;
4586 anon = PageAnon(page);
4588 spin_lock_irqsave(&from->move_lock, flags);
4590 if (!anon && page_mapped(page)) {
4591 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4592 nr_pages);
4593 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4594 nr_pages);
4598 * move_lock grabbed above and caller set from->moving_account, so
4599 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4600 * So mapping should be stable for dirty pages.
4602 if (!anon && PageDirty(page)) {
4603 struct address_space *mapping = page_mapping(page);
4605 if (mapping_cap_account_dirty(mapping)) {
4606 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4607 nr_pages);
4608 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4609 nr_pages);
4613 if (PageWriteback(page)) {
4614 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4615 nr_pages);
4616 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4617 nr_pages);
4621 * It is safe to change page->mem_cgroup here because the page
4622 * is referenced, charged, and isolated - we can't race with
4623 * uncharging, charging, migration, or LRU putback.
4626 /* caller should have done css_get */
4627 page->mem_cgroup = to;
4628 spin_unlock_irqrestore(&from->move_lock, flags);
4630 ret = 0;
4632 local_irq_disable();
4633 mem_cgroup_charge_statistics(to, page, nr_pages);
4634 memcg_check_events(to, page);
4635 mem_cgroup_charge_statistics(from, page, -nr_pages);
4636 memcg_check_events(from, page);
4637 local_irq_enable();
4638 out_unlock:
4639 unlock_page(page);
4640 out:
4641 return ret;
4644 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4645 unsigned long addr, pte_t ptent, union mc_target *target)
4647 struct page *page = NULL;
4648 enum mc_target_type ret = MC_TARGET_NONE;
4649 swp_entry_t ent = { .val = 0 };
4651 if (pte_present(ptent))
4652 page = mc_handle_present_pte(vma, addr, ptent);
4653 else if (is_swap_pte(ptent))
4654 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4655 else if (pte_none(ptent))
4656 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4658 if (!page && !ent.val)
4659 return ret;
4660 if (page) {
4662 * Do only loose check w/o serialization.
4663 * mem_cgroup_move_account() checks the page is valid or
4664 * not under LRU exclusion.
4666 if (page->mem_cgroup == mc.from) {
4667 ret = MC_TARGET_PAGE;
4668 if (target)
4669 target->page = page;
4671 if (!ret || !target)
4672 put_page(page);
4674 /* There is a swap entry and a page doesn't exist or isn't charged */
4675 if (ent.val && !ret &&
4676 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4677 ret = MC_TARGET_SWAP;
4678 if (target)
4679 target->ent = ent;
4681 return ret;
4684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4686 * We don't consider swapping or file mapped pages because THP does not
4687 * support them for now.
4688 * Caller should make sure that pmd_trans_huge(pmd) is true.
4690 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4691 unsigned long addr, pmd_t pmd, union mc_target *target)
4693 struct page *page = NULL;
4694 enum mc_target_type ret = MC_TARGET_NONE;
4696 page = pmd_page(pmd);
4697 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4698 if (!(mc.flags & MOVE_ANON))
4699 return ret;
4700 if (page->mem_cgroup == mc.from) {
4701 ret = MC_TARGET_PAGE;
4702 if (target) {
4703 get_page(page);
4704 target->page = page;
4707 return ret;
4709 #else
4710 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4711 unsigned long addr, pmd_t pmd, union mc_target *target)
4713 return MC_TARGET_NONE;
4715 #endif
4717 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4718 unsigned long addr, unsigned long end,
4719 struct mm_walk *walk)
4721 struct vm_area_struct *vma = walk->vma;
4722 pte_t *pte;
4723 spinlock_t *ptl;
4725 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4726 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4727 mc.precharge += HPAGE_PMD_NR;
4728 spin_unlock(ptl);
4729 return 0;
4732 if (pmd_trans_unstable(pmd))
4733 return 0;
4734 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4735 for (; addr != end; pte++, addr += PAGE_SIZE)
4736 if (get_mctgt_type(vma, addr, *pte, NULL))
4737 mc.precharge++; /* increment precharge temporarily */
4738 pte_unmap_unlock(pte - 1, ptl);
4739 cond_resched();
4741 return 0;
4744 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4746 unsigned long precharge;
4748 struct mm_walk mem_cgroup_count_precharge_walk = {
4749 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4750 .mm = mm,
4752 down_read(&mm->mmap_sem);
4753 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4754 up_read(&mm->mmap_sem);
4756 precharge = mc.precharge;
4757 mc.precharge = 0;
4759 return precharge;
4762 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4764 unsigned long precharge = mem_cgroup_count_precharge(mm);
4766 VM_BUG_ON(mc.moving_task);
4767 mc.moving_task = current;
4768 return mem_cgroup_do_precharge(precharge);
4771 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4772 static void __mem_cgroup_clear_mc(void)
4774 struct mem_cgroup *from = mc.from;
4775 struct mem_cgroup *to = mc.to;
4777 /* we must uncharge all the leftover precharges from mc.to */
4778 if (mc.precharge) {
4779 cancel_charge(mc.to, mc.precharge);
4780 mc.precharge = 0;
4783 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4784 * we must uncharge here.
4786 if (mc.moved_charge) {
4787 cancel_charge(mc.from, mc.moved_charge);
4788 mc.moved_charge = 0;
4790 /* we must fixup refcnts and charges */
4791 if (mc.moved_swap) {
4792 /* uncharge swap account from the old cgroup */
4793 if (!mem_cgroup_is_root(mc.from))
4794 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4797 * we charged both to->memory and to->memsw, so we
4798 * should uncharge to->memory.
4800 if (!mem_cgroup_is_root(mc.to))
4801 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4803 css_put_many(&mc.from->css, mc.moved_swap);
4805 /* we've already done css_get(mc.to) */
4806 mc.moved_swap = 0;
4808 memcg_oom_recover(from);
4809 memcg_oom_recover(to);
4810 wake_up_all(&mc.waitq);
4813 static void mem_cgroup_clear_mc(void)
4816 * we must clear moving_task before waking up waiters at the end of
4817 * task migration.
4819 mc.moving_task = NULL;
4820 __mem_cgroup_clear_mc();
4821 spin_lock(&mc.lock);
4822 mc.from = NULL;
4823 mc.to = NULL;
4824 spin_unlock(&mc.lock);
4827 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4828 struct cgroup_taskset *tset)
4830 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4831 struct mem_cgroup *from;
4832 struct task_struct *p;
4833 struct mm_struct *mm;
4834 unsigned long move_flags;
4835 int ret = 0;
4838 * We are now commited to this value whatever it is. Changes in this
4839 * tunable will only affect upcoming migrations, not the current one.
4840 * So we need to save it, and keep it going.
4842 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4843 if (!move_flags)
4844 return 0;
4846 p = cgroup_taskset_first(tset);
4847 from = mem_cgroup_from_task(p);
4849 VM_BUG_ON(from == memcg);
4851 mm = get_task_mm(p);
4852 if (!mm)
4853 return 0;
4854 /* We move charges only when we move a owner of the mm */
4855 if (mm->owner == p) {
4856 VM_BUG_ON(mc.from);
4857 VM_BUG_ON(mc.to);
4858 VM_BUG_ON(mc.precharge);
4859 VM_BUG_ON(mc.moved_charge);
4860 VM_BUG_ON(mc.moved_swap);
4862 spin_lock(&mc.lock);
4863 mc.from = from;
4864 mc.to = memcg;
4865 mc.flags = move_flags;
4866 spin_unlock(&mc.lock);
4867 /* We set mc.moving_task later */
4869 ret = mem_cgroup_precharge_mc(mm);
4870 if (ret)
4871 mem_cgroup_clear_mc();
4873 mmput(mm);
4874 return ret;
4877 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4878 struct cgroup_taskset *tset)
4880 if (mc.to)
4881 mem_cgroup_clear_mc();
4884 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4885 unsigned long addr, unsigned long end,
4886 struct mm_walk *walk)
4888 int ret = 0;
4889 struct vm_area_struct *vma = walk->vma;
4890 pte_t *pte;
4891 spinlock_t *ptl;
4892 enum mc_target_type target_type;
4893 union mc_target target;
4894 struct page *page;
4897 * We don't take compound_lock() here but no race with splitting thp
4898 * happens because:
4899 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4900 * under splitting, which means there's no concurrent thp split,
4901 * - if another thread runs into split_huge_page() just after we
4902 * entered this if-block, the thread must wait for page table lock
4903 * to be unlocked in __split_huge_page_splitting(), where the main
4904 * part of thp split is not executed yet.
4906 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4907 if (mc.precharge < HPAGE_PMD_NR) {
4908 spin_unlock(ptl);
4909 return 0;
4911 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4912 if (target_type == MC_TARGET_PAGE) {
4913 page = target.page;
4914 if (!isolate_lru_page(page)) {
4915 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4916 mc.from, mc.to)) {
4917 mc.precharge -= HPAGE_PMD_NR;
4918 mc.moved_charge += HPAGE_PMD_NR;
4920 putback_lru_page(page);
4922 put_page(page);
4924 spin_unlock(ptl);
4925 return 0;
4928 if (pmd_trans_unstable(pmd))
4929 return 0;
4930 retry:
4931 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4932 for (; addr != end; addr += PAGE_SIZE) {
4933 pte_t ptent = *(pte++);
4934 swp_entry_t ent;
4936 if (!mc.precharge)
4937 break;
4939 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4940 case MC_TARGET_PAGE:
4941 page = target.page;
4942 if (isolate_lru_page(page))
4943 goto put;
4944 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4945 mc.precharge--;
4946 /* we uncharge from mc.from later. */
4947 mc.moved_charge++;
4949 putback_lru_page(page);
4950 put: /* get_mctgt_type() gets the page */
4951 put_page(page);
4952 break;
4953 case MC_TARGET_SWAP:
4954 ent = target.ent;
4955 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4956 mc.precharge--;
4957 /* we fixup refcnts and charges later. */
4958 mc.moved_swap++;
4960 break;
4961 default:
4962 break;
4965 pte_unmap_unlock(pte - 1, ptl);
4966 cond_resched();
4968 if (addr != end) {
4970 * We have consumed all precharges we got in can_attach().
4971 * We try charge one by one, but don't do any additional
4972 * charges to mc.to if we have failed in charge once in attach()
4973 * phase.
4975 ret = mem_cgroup_do_precharge(1);
4976 if (!ret)
4977 goto retry;
4980 return ret;
4983 static void mem_cgroup_move_charge(struct mm_struct *mm)
4985 struct mm_walk mem_cgroup_move_charge_walk = {
4986 .pmd_entry = mem_cgroup_move_charge_pte_range,
4987 .mm = mm,
4990 lru_add_drain_all();
4992 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4993 * move_lock while we're moving its pages to another memcg.
4994 * Then wait for already started RCU-only updates to finish.
4996 atomic_inc(&mc.from->moving_account);
4997 synchronize_rcu();
4998 retry:
4999 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5001 * Someone who are holding the mmap_sem might be waiting in
5002 * waitq. So we cancel all extra charges, wake up all waiters,
5003 * and retry. Because we cancel precharges, we might not be able
5004 * to move enough charges, but moving charge is a best-effort
5005 * feature anyway, so it wouldn't be a big problem.
5007 __mem_cgroup_clear_mc();
5008 cond_resched();
5009 goto retry;
5012 * When we have consumed all precharges and failed in doing
5013 * additional charge, the page walk just aborts.
5015 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5016 up_read(&mm->mmap_sem);
5017 atomic_dec(&mc.from->moving_account);
5020 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5021 struct cgroup_taskset *tset)
5023 struct task_struct *p = cgroup_taskset_first(tset);
5024 struct mm_struct *mm = get_task_mm(p);
5026 if (mm) {
5027 if (mc.to)
5028 mem_cgroup_move_charge(mm);
5029 mmput(mm);
5031 if (mc.to)
5032 mem_cgroup_clear_mc();
5034 #else /* !CONFIG_MMU */
5035 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5036 struct cgroup_taskset *tset)
5038 return 0;
5040 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5041 struct cgroup_taskset *tset)
5044 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5045 struct cgroup_taskset *tset)
5048 #endif
5051 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5052 * to verify whether we're attached to the default hierarchy on each mount
5053 * attempt.
5055 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5058 * use_hierarchy is forced on the default hierarchy. cgroup core
5059 * guarantees that @root doesn't have any children, so turning it
5060 * on for the root memcg is enough.
5062 if (cgroup_on_dfl(root_css->cgroup))
5063 root_mem_cgroup->use_hierarchy = true;
5064 else
5065 root_mem_cgroup->use_hierarchy = false;
5068 static u64 memory_current_read(struct cgroup_subsys_state *css,
5069 struct cftype *cft)
5071 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5074 static int memory_low_show(struct seq_file *m, void *v)
5076 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5077 unsigned long low = READ_ONCE(memcg->low);
5079 if (low == PAGE_COUNTER_MAX)
5080 seq_puts(m, "max\n");
5081 else
5082 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5084 return 0;
5087 static ssize_t memory_low_write(struct kernfs_open_file *of,
5088 char *buf, size_t nbytes, loff_t off)
5090 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5091 unsigned long low;
5092 int err;
5094 buf = strstrip(buf);
5095 err = page_counter_memparse(buf, "max", &low);
5096 if (err)
5097 return err;
5099 memcg->low = low;
5101 return nbytes;
5104 static int memory_high_show(struct seq_file *m, void *v)
5106 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5107 unsigned long high = READ_ONCE(memcg->high);
5109 if (high == PAGE_COUNTER_MAX)
5110 seq_puts(m, "max\n");
5111 else
5112 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5114 return 0;
5117 static ssize_t memory_high_write(struct kernfs_open_file *of,
5118 char *buf, size_t nbytes, loff_t off)
5120 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5121 unsigned long high;
5122 int err;
5124 buf = strstrip(buf);
5125 err = page_counter_memparse(buf, "max", &high);
5126 if (err)
5127 return err;
5129 memcg->high = high;
5131 memcg_wb_domain_size_changed(memcg);
5132 return nbytes;
5135 static int memory_max_show(struct seq_file *m, void *v)
5137 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5138 unsigned long max = READ_ONCE(memcg->memory.limit);
5140 if (max == PAGE_COUNTER_MAX)
5141 seq_puts(m, "max\n");
5142 else
5143 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5145 return 0;
5148 static ssize_t memory_max_write(struct kernfs_open_file *of,
5149 char *buf, size_t nbytes, loff_t off)
5151 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5152 unsigned long max;
5153 int err;
5155 buf = strstrip(buf);
5156 err = page_counter_memparse(buf, "max", &max);
5157 if (err)
5158 return err;
5160 err = mem_cgroup_resize_limit(memcg, max);
5161 if (err)
5162 return err;
5164 memcg_wb_domain_size_changed(memcg);
5165 return nbytes;
5168 static int memory_events_show(struct seq_file *m, void *v)
5170 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5173 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5174 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5175 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5177 return 0;
5180 static struct cftype memory_files[] = {
5182 .name = "current",
5183 .read_u64 = memory_current_read,
5186 .name = "low",
5187 .flags = CFTYPE_NOT_ON_ROOT,
5188 .seq_show = memory_low_show,
5189 .write = memory_low_write,
5192 .name = "high",
5193 .flags = CFTYPE_NOT_ON_ROOT,
5194 .seq_show = memory_high_show,
5195 .write = memory_high_write,
5198 .name = "max",
5199 .flags = CFTYPE_NOT_ON_ROOT,
5200 .seq_show = memory_max_show,
5201 .write = memory_max_write,
5204 .name = "events",
5205 .flags = CFTYPE_NOT_ON_ROOT,
5206 .seq_show = memory_events_show,
5208 { } /* terminate */
5211 struct cgroup_subsys memory_cgrp_subsys = {
5212 .css_alloc = mem_cgroup_css_alloc,
5213 .css_online = mem_cgroup_css_online,
5214 .css_offline = mem_cgroup_css_offline,
5215 .css_free = mem_cgroup_css_free,
5216 .css_reset = mem_cgroup_css_reset,
5217 .can_attach = mem_cgroup_can_attach,
5218 .cancel_attach = mem_cgroup_cancel_attach,
5219 .attach = mem_cgroup_move_task,
5220 .bind = mem_cgroup_bind,
5221 .dfl_cftypes = memory_files,
5222 .legacy_cftypes = mem_cgroup_legacy_files,
5223 .early_init = 0,
5227 * mem_cgroup_low - check if memory consumption is below the normal range
5228 * @root: the highest ancestor to consider
5229 * @memcg: the memory cgroup to check
5231 * Returns %true if memory consumption of @memcg, and that of all
5232 * configurable ancestors up to @root, is below the normal range.
5234 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5236 if (mem_cgroup_disabled())
5237 return false;
5240 * The toplevel group doesn't have a configurable range, so
5241 * it's never low when looked at directly, and it is not
5242 * considered an ancestor when assessing the hierarchy.
5245 if (memcg == root_mem_cgroup)
5246 return false;
5248 if (page_counter_read(&memcg->memory) >= memcg->low)
5249 return false;
5251 while (memcg != root) {
5252 memcg = parent_mem_cgroup(memcg);
5254 if (memcg == root_mem_cgroup)
5255 break;
5257 if (page_counter_read(&memcg->memory) >= memcg->low)
5258 return false;
5260 return true;
5264 * mem_cgroup_try_charge - try charging a page
5265 * @page: page to charge
5266 * @mm: mm context of the victim
5267 * @gfp_mask: reclaim mode
5268 * @memcgp: charged memcg return
5270 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5271 * pages according to @gfp_mask if necessary.
5273 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5274 * Otherwise, an error code is returned.
5276 * After page->mapping has been set up, the caller must finalize the
5277 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5278 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5280 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5281 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5283 struct mem_cgroup *memcg = NULL;
5284 unsigned int nr_pages = 1;
5285 int ret = 0;
5287 if (mem_cgroup_disabled())
5288 goto out;
5290 if (PageSwapCache(page)) {
5292 * Every swap fault against a single page tries to charge the
5293 * page, bail as early as possible. shmem_unuse() encounters
5294 * already charged pages, too. The USED bit is protected by
5295 * the page lock, which serializes swap cache removal, which
5296 * in turn serializes uncharging.
5298 VM_BUG_ON_PAGE(!PageLocked(page), page);
5299 if (page->mem_cgroup)
5300 goto out;
5302 if (do_swap_account) {
5303 swp_entry_t ent = { .val = page_private(page), };
5304 unsigned short id = lookup_swap_cgroup_id(ent);
5306 rcu_read_lock();
5307 memcg = mem_cgroup_from_id(id);
5308 if (memcg && !css_tryget_online(&memcg->css))
5309 memcg = NULL;
5310 rcu_read_unlock();
5314 if (PageTransHuge(page)) {
5315 nr_pages <<= compound_order(page);
5316 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5319 if (!memcg)
5320 memcg = get_mem_cgroup_from_mm(mm);
5322 ret = try_charge(memcg, gfp_mask, nr_pages);
5324 css_put(&memcg->css);
5326 if (ret == -EINTR) {
5327 memcg = root_mem_cgroup;
5328 ret = 0;
5330 out:
5331 *memcgp = memcg;
5332 return ret;
5336 * mem_cgroup_commit_charge - commit a page charge
5337 * @page: page to charge
5338 * @memcg: memcg to charge the page to
5339 * @lrucare: page might be on LRU already
5341 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5342 * after page->mapping has been set up. This must happen atomically
5343 * as part of the page instantiation, i.e. under the page table lock
5344 * for anonymous pages, under the page lock for page and swap cache.
5346 * In addition, the page must not be on the LRU during the commit, to
5347 * prevent racing with task migration. If it might be, use @lrucare.
5349 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5351 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5352 bool lrucare)
5354 unsigned int nr_pages = 1;
5356 VM_BUG_ON_PAGE(!page->mapping, page);
5357 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5359 if (mem_cgroup_disabled())
5360 return;
5362 * Swap faults will attempt to charge the same page multiple
5363 * times. But reuse_swap_page() might have removed the page
5364 * from swapcache already, so we can't check PageSwapCache().
5366 if (!memcg)
5367 return;
5369 commit_charge(page, memcg, lrucare);
5371 if (PageTransHuge(page)) {
5372 nr_pages <<= compound_order(page);
5373 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5376 local_irq_disable();
5377 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5378 memcg_check_events(memcg, page);
5379 local_irq_enable();
5381 if (do_swap_account && PageSwapCache(page)) {
5382 swp_entry_t entry = { .val = page_private(page) };
5384 * The swap entry might not get freed for a long time,
5385 * let's not wait for it. The page already received a
5386 * memory+swap charge, drop the swap entry duplicate.
5388 mem_cgroup_uncharge_swap(entry);
5393 * mem_cgroup_cancel_charge - cancel a page charge
5394 * @page: page to charge
5395 * @memcg: memcg to charge the page to
5397 * Cancel a charge transaction started by mem_cgroup_try_charge().
5399 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5401 unsigned int nr_pages = 1;
5403 if (mem_cgroup_disabled())
5404 return;
5406 * Swap faults will attempt to charge the same page multiple
5407 * times. But reuse_swap_page() might have removed the page
5408 * from swapcache already, so we can't check PageSwapCache().
5410 if (!memcg)
5411 return;
5413 if (PageTransHuge(page)) {
5414 nr_pages <<= compound_order(page);
5415 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5418 cancel_charge(memcg, nr_pages);
5421 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5422 unsigned long nr_anon, unsigned long nr_file,
5423 unsigned long nr_huge, struct page *dummy_page)
5425 unsigned long nr_pages = nr_anon + nr_file;
5426 unsigned long flags;
5428 if (!mem_cgroup_is_root(memcg)) {
5429 page_counter_uncharge(&memcg->memory, nr_pages);
5430 if (do_swap_account)
5431 page_counter_uncharge(&memcg->memsw, nr_pages);
5432 memcg_oom_recover(memcg);
5435 local_irq_save(flags);
5436 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5437 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5438 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5439 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5440 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5441 memcg_check_events(memcg, dummy_page);
5442 local_irq_restore(flags);
5444 if (!mem_cgroup_is_root(memcg))
5445 css_put_many(&memcg->css, nr_pages);
5448 static void uncharge_list(struct list_head *page_list)
5450 struct mem_cgroup *memcg = NULL;
5451 unsigned long nr_anon = 0;
5452 unsigned long nr_file = 0;
5453 unsigned long nr_huge = 0;
5454 unsigned long pgpgout = 0;
5455 struct list_head *next;
5456 struct page *page;
5458 next = page_list->next;
5459 do {
5460 unsigned int nr_pages = 1;
5462 page = list_entry(next, struct page, lru);
5463 next = page->lru.next;
5465 VM_BUG_ON_PAGE(PageLRU(page), page);
5466 VM_BUG_ON_PAGE(page_count(page), page);
5468 if (!page->mem_cgroup)
5469 continue;
5472 * Nobody should be changing or seriously looking at
5473 * page->mem_cgroup at this point, we have fully
5474 * exclusive access to the page.
5477 if (memcg != page->mem_cgroup) {
5478 if (memcg) {
5479 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5480 nr_huge, page);
5481 pgpgout = nr_anon = nr_file = nr_huge = 0;
5483 memcg = page->mem_cgroup;
5486 if (PageTransHuge(page)) {
5487 nr_pages <<= compound_order(page);
5488 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5489 nr_huge += nr_pages;
5492 if (PageAnon(page))
5493 nr_anon += nr_pages;
5494 else
5495 nr_file += nr_pages;
5497 page->mem_cgroup = NULL;
5499 pgpgout++;
5500 } while (next != page_list);
5502 if (memcg)
5503 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5504 nr_huge, page);
5508 * mem_cgroup_uncharge - uncharge a page
5509 * @page: page to uncharge
5511 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5512 * mem_cgroup_commit_charge().
5514 void mem_cgroup_uncharge(struct page *page)
5516 if (mem_cgroup_disabled())
5517 return;
5519 /* Don't touch page->lru of any random page, pre-check: */
5520 if (!page->mem_cgroup)
5521 return;
5523 INIT_LIST_HEAD(&page->lru);
5524 uncharge_list(&page->lru);
5528 * mem_cgroup_uncharge_list - uncharge a list of page
5529 * @page_list: list of pages to uncharge
5531 * Uncharge a list of pages previously charged with
5532 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5534 void mem_cgroup_uncharge_list(struct list_head *page_list)
5536 if (mem_cgroup_disabled())
5537 return;
5539 if (!list_empty(page_list))
5540 uncharge_list(page_list);
5544 * mem_cgroup_migrate - migrate a charge to another page
5545 * @oldpage: currently charged page
5546 * @newpage: page to transfer the charge to
5547 * @lrucare: either or both pages might be on the LRU already
5549 * Migrate the charge from @oldpage to @newpage.
5551 * Both pages must be locked, @newpage->mapping must be set up.
5553 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5554 bool lrucare)
5556 struct mem_cgroup *memcg;
5557 int isolated;
5559 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5560 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5561 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5562 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5563 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5564 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5565 newpage);
5567 if (mem_cgroup_disabled())
5568 return;
5570 /* Page cache replacement: new page already charged? */
5571 if (newpage->mem_cgroup)
5572 return;
5575 * Swapcache readahead pages can get migrated before being
5576 * charged, and migration from compaction can happen to an
5577 * uncharged page when the PFN walker finds a page that
5578 * reclaim just put back on the LRU but has not released yet.
5580 memcg = oldpage->mem_cgroup;
5581 if (!memcg)
5582 return;
5584 if (lrucare)
5585 lock_page_lru(oldpage, &isolated);
5587 oldpage->mem_cgroup = NULL;
5589 if (lrucare)
5590 unlock_page_lru(oldpage, isolated);
5592 commit_charge(newpage, memcg, lrucare);
5596 * subsys_initcall() for memory controller.
5598 * Some parts like hotcpu_notifier() have to be initialized from this context
5599 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5600 * everything that doesn't depend on a specific mem_cgroup structure should
5601 * be initialized from here.
5603 static int __init mem_cgroup_init(void)
5605 int cpu, node;
5607 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5609 for_each_possible_cpu(cpu)
5610 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5611 drain_local_stock);
5613 for_each_node(node) {
5614 struct mem_cgroup_tree_per_node *rtpn;
5615 int zone;
5617 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5618 node_online(node) ? node : NUMA_NO_NODE);
5620 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5621 struct mem_cgroup_tree_per_zone *rtpz;
5623 rtpz = &rtpn->rb_tree_per_zone[zone];
5624 rtpz->rb_root = RB_ROOT;
5625 spin_lock_init(&rtpz->lock);
5627 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5630 return 0;
5632 subsys_initcall(mem_cgroup_init);
5634 #ifdef CONFIG_MEMCG_SWAP
5636 * mem_cgroup_swapout - transfer a memsw charge to swap
5637 * @page: page whose memsw charge to transfer
5638 * @entry: swap entry to move the charge to
5640 * Transfer the memsw charge of @page to @entry.
5642 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5644 struct mem_cgroup *memcg;
5645 unsigned short oldid;
5647 VM_BUG_ON_PAGE(PageLRU(page), page);
5648 VM_BUG_ON_PAGE(page_count(page), page);
5650 if (!do_swap_account)
5651 return;
5653 memcg = page->mem_cgroup;
5655 /* Readahead page, never charged */
5656 if (!memcg)
5657 return;
5659 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5660 VM_BUG_ON_PAGE(oldid, page);
5661 mem_cgroup_swap_statistics(memcg, true);
5663 page->mem_cgroup = NULL;
5665 if (!mem_cgroup_is_root(memcg))
5666 page_counter_uncharge(&memcg->memory, 1);
5669 * Interrupts should be disabled here because the caller holds the
5670 * mapping->tree_lock lock which is taken with interrupts-off. It is
5671 * important here to have the interrupts disabled because it is the
5672 * only synchronisation we have for udpating the per-CPU variables.
5674 VM_BUG_ON(!irqs_disabled());
5675 mem_cgroup_charge_statistics(memcg, page, -1);
5676 memcg_check_events(memcg, page);
5680 * mem_cgroup_uncharge_swap - uncharge a swap entry
5681 * @entry: swap entry to uncharge
5683 * Drop the memsw charge associated with @entry.
5685 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5687 struct mem_cgroup *memcg;
5688 unsigned short id;
5690 if (!do_swap_account)
5691 return;
5693 id = swap_cgroup_record(entry, 0);
5694 rcu_read_lock();
5695 memcg = mem_cgroup_from_id(id);
5696 if (memcg) {
5697 if (!mem_cgroup_is_root(memcg))
5698 page_counter_uncharge(&memcg->memsw, 1);
5699 mem_cgroup_swap_statistics(memcg, false);
5700 css_put(&memcg->css);
5702 rcu_read_unlock();
5705 /* for remember boot option*/
5706 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5707 static int really_do_swap_account __initdata = 1;
5708 #else
5709 static int really_do_swap_account __initdata;
5710 #endif
5712 static int __init enable_swap_account(char *s)
5714 if (!strcmp(s, "1"))
5715 really_do_swap_account = 1;
5716 else if (!strcmp(s, "0"))
5717 really_do_swap_account = 0;
5718 return 1;
5720 __setup("swapaccount=", enable_swap_account);
5722 static struct cftype memsw_cgroup_files[] = {
5724 .name = "memsw.usage_in_bytes",
5725 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5726 .read_u64 = mem_cgroup_read_u64,
5729 .name = "memsw.max_usage_in_bytes",
5730 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5731 .write = mem_cgroup_reset,
5732 .read_u64 = mem_cgroup_read_u64,
5735 .name = "memsw.limit_in_bytes",
5736 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5737 .write = mem_cgroup_write,
5738 .read_u64 = mem_cgroup_read_u64,
5741 .name = "memsw.failcnt",
5742 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5743 .write = mem_cgroup_reset,
5744 .read_u64 = mem_cgroup_read_u64,
5746 { }, /* terminate */
5749 static int __init mem_cgroup_swap_init(void)
5751 if (!mem_cgroup_disabled() && really_do_swap_account) {
5752 do_swap_account = 1;
5753 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5754 memsw_cgroup_files));
5756 return 0;
5758 subsys_initcall(mem_cgroup_swap_init);
5760 #endif /* CONFIG_MEMCG_SWAP */