Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / intel / igb / igb_main.c
blob3c0221620c9dc8abae3bf4edb06102475bd27df9
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
59 #define MAJ 5
60 #define MIN 2
61 #define BUILD 15
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 "Copyright (c) 2007-2014 Intel Corporation.";
71 static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
75 static const struct pci_device_id igb_pci_tbl[] = {
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159 netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 #ifdef CONFIG_PM_RUNTIME
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 #endif
194 static const struct dev_pm_ops igb_pm_ops = {
195 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 igb_runtime_idle)
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205 .notifier_call = igb_notify_dca,
206 .next = NULL,
207 .priority = 0
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
225 static const struct pci_error_handlers igb_err_handler = {
226 .error_detected = igb_io_error_detected,
227 .slot_reset = igb_io_slot_reset,
228 .resume = igb_io_resume,
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233 static struct pci_driver igb_driver = {
234 .name = igb_driver_name,
235 .id_table = igb_pci_tbl,
236 .probe = igb_probe,
237 .remove = igb_remove,
238 #ifdef CONFIG_PM
239 .driver.pm = &igb_pm_ops,
240 #endif
241 .shutdown = igb_shutdown,
242 .sriov_configure = igb_pci_sriov_configure,
243 .err_handler = &igb_err_handler
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256 struct igb_reg_info {
257 u32 ofs;
258 char *name;
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
263 /* General Registers */
264 {E1000_CTRL, "CTRL"},
265 {E1000_STATUS, "STATUS"},
266 {E1000_CTRL_EXT, "CTRL_EXT"},
268 /* Interrupt Registers */
269 {E1000_ICR, "ICR"},
271 /* RX Registers */
272 {E1000_RCTL, "RCTL"},
273 {E1000_RDLEN(0), "RDLEN"},
274 {E1000_RDH(0), "RDH"},
275 {E1000_RDT(0), "RDT"},
276 {E1000_RXDCTL(0), "RXDCTL"},
277 {E1000_RDBAL(0), "RDBAL"},
278 {E1000_RDBAH(0), "RDBAH"},
280 /* TX Registers */
281 {E1000_TCTL, "TCTL"},
282 {E1000_TDBAL(0), "TDBAL"},
283 {E1000_TDBAH(0), "TDBAH"},
284 {E1000_TDLEN(0), "TDLEN"},
285 {E1000_TDH(0), "TDH"},
286 {E1000_TDT(0), "TDT"},
287 {E1000_TXDCTL(0), "TXDCTL"},
288 {E1000_TDFH, "TDFH"},
289 {E1000_TDFT, "TDFT"},
290 {E1000_TDFHS, "TDFHS"},
291 {E1000_TDFPC, "TDFPC"},
293 /* List Terminator */
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 return;
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
366 struct net_device *netdev = adapter->netdev;
367 struct e1000_hw *hw = &adapter->hw;
368 struct igb_reg_info *reginfo;
369 struct igb_ring *tx_ring;
370 union e1000_adv_tx_desc *tx_desc;
371 struct my_u0 { u64 a; u64 b; } *u0;
372 struct igb_ring *rx_ring;
373 union e1000_adv_rx_desc *rx_desc;
374 u32 staterr;
375 u16 i, n;
377 if (!netif_msg_hw(adapter))
378 return;
380 /* Print netdevice Info */
381 if (netdev) {
382 dev_info(&adapter->pdev->dev, "Net device Info\n");
383 pr_info("Device Name state trans_start last_rx\n");
384 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 netdev->state, netdev->trans_start, netdev->last_rx);
388 /* Print Registers */
389 dev_info(&adapter->pdev->dev, "Register Dump\n");
390 pr_info(" Register Name Value\n");
391 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 reginfo->name; reginfo++) {
393 igb_regdump(hw, reginfo);
396 /* Print TX Ring Summary */
397 if (!netdev || !netif_running(netdev))
398 goto exit;
400 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
402 for (n = 0; n < adapter->num_tx_queues; n++) {
403 struct igb_tx_buffer *buffer_info;
404 tx_ring = adapter->tx_ring[n];
405 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 (u64)dma_unmap_addr(buffer_info, dma),
409 dma_unmap_len(buffer_info, len),
410 buffer_info->next_to_watch,
411 (u64)buffer_info->time_stamp);
414 /* Print TX Rings */
415 if (!netif_msg_tx_done(adapter))
416 goto rx_ring_summary;
418 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420 /* Transmit Descriptor Formats
422 * Advanced Transmit Descriptor
423 * +--------------------------------------------------------------+
424 * 0 | Buffer Address [63:0] |
425 * +--------------------------------------------------------------+
426 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
427 * +--------------------------------------------------------------+
428 * 63 46 45 40 39 38 36 35 32 31 24 15 0
431 for (n = 0; n < adapter->num_tx_queues; n++) {
432 tx_ring = adapter->tx_ring[n];
433 pr_info("------------------------------------\n");
434 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 pr_info("------------------------------------\n");
436 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439 const char *next_desc;
440 struct igb_tx_buffer *buffer_info;
441 tx_desc = IGB_TX_DESC(tx_ring, i);
442 buffer_info = &tx_ring->tx_buffer_info[i];
443 u0 = (struct my_u0 *)tx_desc;
444 if (i == tx_ring->next_to_use &&
445 i == tx_ring->next_to_clean)
446 next_desc = " NTC/U";
447 else if (i == tx_ring->next_to_use)
448 next_desc = " NTU";
449 else if (i == tx_ring->next_to_clean)
450 next_desc = " NTC";
451 else
452 next_desc = "";
454 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
455 i, le64_to_cpu(u0->a),
456 le64_to_cpu(u0->b),
457 (u64)dma_unmap_addr(buffer_info, dma),
458 dma_unmap_len(buffer_info, len),
459 buffer_info->next_to_watch,
460 (u64)buffer_info->time_stamp,
461 buffer_info->skb, next_desc);
463 if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 print_hex_dump(KERN_INFO, "",
465 DUMP_PREFIX_ADDRESS,
466 16, 1, buffer_info->skb->data,
467 dma_unmap_len(buffer_info, len),
468 true);
472 /* Print RX Rings Summary */
473 rx_ring_summary:
474 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475 pr_info("Queue [NTU] [NTC]\n");
476 for (n = 0; n < adapter->num_rx_queues; n++) {
477 rx_ring = adapter->rx_ring[n];
478 pr_info(" %5d %5X %5X\n",
479 n, rx_ring->next_to_use, rx_ring->next_to_clean);
482 /* Print RX Rings */
483 if (!netif_msg_rx_status(adapter))
484 goto exit;
486 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488 /* Advanced Receive Descriptor (Read) Format
489 * 63 1 0
490 * +-----------------------------------------------------+
491 * 0 | Packet Buffer Address [63:1] |A0/NSE|
492 * +----------------------------------------------+------+
493 * 8 | Header Buffer Address [63:1] | DD |
494 * +-----------------------------------------------------+
497 * Advanced Receive Descriptor (Write-Back) Format
499 * 63 48 47 32 31 30 21 20 17 16 4 3 0
500 * +------------------------------------------------------+
501 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
502 * | Checksum Ident | | | | Type | Type |
503 * +------------------------------------------------------+
504 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 * +------------------------------------------------------+
506 * 63 48 47 32 31 20 19 0
509 for (n = 0; n < adapter->num_rx_queues; n++) {
510 rx_ring = adapter->rx_ring[n];
511 pr_info("------------------------------------\n");
512 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 pr_info("------------------------------------\n");
514 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
515 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517 for (i = 0; i < rx_ring->count; i++) {
518 const char *next_desc;
519 struct igb_rx_buffer *buffer_info;
520 buffer_info = &rx_ring->rx_buffer_info[i];
521 rx_desc = IGB_RX_DESC(rx_ring, i);
522 u0 = (struct my_u0 *)rx_desc;
523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525 if (i == rx_ring->next_to_use)
526 next_desc = " NTU";
527 else if (i == rx_ring->next_to_clean)
528 next_desc = " NTC";
529 else
530 next_desc = "";
532 if (staterr & E1000_RXD_STAT_DD) {
533 /* Descriptor Done */
534 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
535 "RWB", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 next_desc);
539 } else {
540 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
541 "R ", i,
542 le64_to_cpu(u0->a),
543 le64_to_cpu(u0->b),
544 (u64)buffer_info->dma,
545 next_desc);
547 if (netif_msg_pktdata(adapter) &&
548 buffer_info->dma && buffer_info->page) {
549 print_hex_dump(KERN_INFO, "",
550 DUMP_PREFIX_ADDRESS,
551 16, 1,
552 page_address(buffer_info->page) +
553 buffer_info->page_offset,
554 IGB_RX_BUFSZ, true);
560 exit:
561 return;
565 * igb_get_i2c_data - Reads the I2C SDA data bit
566 * @hw: pointer to hardware structure
567 * @i2cctl: Current value of I2CCTL register
569 * Returns the I2C data bit value
571 static int igb_get_i2c_data(void *data)
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
577 return !!(i2cctl & E1000_I2C_DATA_IN);
581 * igb_set_i2c_data - Sets the I2C data bit
582 * @data: pointer to hardware structure
583 * @state: I2C data value (0 or 1) to set
585 * Sets the I2C data bit
587 static void igb_set_i2c_data(void *data, int state)
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
593 if (state)
594 i2cctl |= E1000_I2C_DATA_OUT;
595 else
596 i2cctl &= ~E1000_I2C_DATA_OUT;
598 i2cctl &= ~E1000_I2C_DATA_OE_N;
599 i2cctl |= E1000_I2C_CLK_OE_N;
600 wr32(E1000_I2CPARAMS, i2cctl);
601 wrfl();
606 * igb_set_i2c_clk - Sets the I2C SCL clock
607 * @data: pointer to hardware structure
608 * @state: state to set clock
610 * Sets the I2C clock line to state
612 static void igb_set_i2c_clk(void *data, int state)
614 struct igb_adapter *adapter = (struct igb_adapter *)data;
615 struct e1000_hw *hw = &adapter->hw;
616 s32 i2cctl = rd32(E1000_I2CPARAMS);
618 if (state) {
619 i2cctl |= E1000_I2C_CLK_OUT;
620 i2cctl &= ~E1000_I2C_CLK_OE_N;
621 } else {
622 i2cctl &= ~E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
625 wr32(E1000_I2CPARAMS, i2cctl);
626 wrfl();
630 * igb_get_i2c_clk - Gets the I2C SCL clock state
631 * @data: pointer to hardware structure
633 * Gets the I2C clock state
635 static int igb_get_i2c_clk(void *data)
637 struct igb_adapter *adapter = (struct igb_adapter *)data;
638 struct e1000_hw *hw = &adapter->hw;
639 s32 i2cctl = rd32(E1000_I2CPARAMS);
641 return !!(i2cctl & E1000_I2C_CLK_IN);
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645 .setsda = igb_set_i2c_data,
646 .setscl = igb_set_i2c_clk,
647 .getsda = igb_get_i2c_data,
648 .getscl = igb_get_i2c_clk,
649 .udelay = 5,
650 .timeout = 20,
654 * igb_get_hw_dev - return device
655 * @hw: pointer to hardware structure
657 * used by hardware layer to print debugging information
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 struct igb_adapter *adapter = hw->back;
662 return adapter->netdev;
666 * igb_init_module - Driver Registration Routine
668 * igb_init_module is the first routine called when the driver is
669 * loaded. All it does is register with the PCI subsystem.
671 static int __init igb_init_module(void)
673 int ret;
675 pr_info("%s - version %s\n",
676 igb_driver_string, igb_driver_version);
677 pr_info("%s\n", igb_copyright);
679 #ifdef CONFIG_IGB_DCA
680 dca_register_notify(&dca_notifier);
681 #endif
682 ret = pci_register_driver(&igb_driver);
683 return ret;
686 module_init(igb_init_module);
689 * igb_exit_module - Driver Exit Cleanup Routine
691 * igb_exit_module is called just before the driver is removed
692 * from memory.
694 static void __exit igb_exit_module(void)
696 #ifdef CONFIG_IGB_DCA
697 dca_unregister_notify(&dca_notifier);
698 #endif
699 pci_unregister_driver(&igb_driver);
702 module_exit(igb_exit_module);
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 * igb_cache_ring_register - Descriptor ring to register mapping
707 * @adapter: board private structure to initialize
709 * Once we know the feature-set enabled for the device, we'll cache
710 * the register offset the descriptor ring is assigned to.
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 int i = 0, j = 0;
715 u32 rbase_offset = adapter->vfs_allocated_count;
717 switch (adapter->hw.mac.type) {
718 case e1000_82576:
719 /* The queues are allocated for virtualization such that VF 0
720 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 * In order to avoid collision we start at the first free queue
722 * and continue consuming queues in the same sequence
724 if (adapter->vfs_allocated_count) {
725 for (; i < adapter->rss_queues; i++)
726 adapter->rx_ring[i]->reg_idx = rbase_offset +
727 Q_IDX_82576(i);
729 /* Fall through */
730 case e1000_82575:
731 case e1000_82580:
732 case e1000_i350:
733 case e1000_i354:
734 case e1000_i210:
735 case e1000_i211:
736 /* Fall through */
737 default:
738 for (; i < adapter->num_rx_queues; i++)
739 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740 for (; j < adapter->num_tx_queues; j++)
741 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742 break;
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 u32 value = 0;
752 if (E1000_REMOVED(hw_addr))
753 return ~value;
755 value = readl(&hw_addr[reg]);
757 /* reads should not return all F's */
758 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 struct net_device *netdev = igb->netdev;
760 hw->hw_addr = NULL;
761 netif_device_detach(netdev);
762 netdev_err(netdev, "PCIe link lost, device now detached\n");
765 return value;
769 * igb_write_ivar - configure ivar for given MSI-X vector
770 * @hw: pointer to the HW structure
771 * @msix_vector: vector number we are allocating to a given ring
772 * @index: row index of IVAR register to write within IVAR table
773 * @offset: column offset of in IVAR, should be multiple of 8
775 * This function is intended to handle the writing of the IVAR register
776 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
777 * each containing an cause allocation for an Rx and Tx ring, and a
778 * variable number of rows depending on the number of queues supported.
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 int index, int offset)
783 u32 ivar = array_rd32(E1000_IVAR0, index);
785 /* clear any bits that are currently set */
786 ivar &= ~((u32)0xFF << offset);
788 /* write vector and valid bit */
789 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791 array_wr32(E1000_IVAR0, index, ivar);
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 struct igb_adapter *adapter = q_vector->adapter;
798 struct e1000_hw *hw = &adapter->hw;
799 int rx_queue = IGB_N0_QUEUE;
800 int tx_queue = IGB_N0_QUEUE;
801 u32 msixbm = 0;
803 if (q_vector->rx.ring)
804 rx_queue = q_vector->rx.ring->reg_idx;
805 if (q_vector->tx.ring)
806 tx_queue = q_vector->tx.ring->reg_idx;
808 switch (hw->mac.type) {
809 case e1000_82575:
810 /* The 82575 assigns vectors using a bitmask, which matches the
811 * bitmask for the EICR/EIMS/EIMC registers. To assign one
812 * or more queues to a vector, we write the appropriate bits
813 * into the MSIXBM register for that vector.
815 if (rx_queue > IGB_N0_QUEUE)
816 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817 if (tx_queue > IGB_N0_QUEUE)
818 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820 msixbm |= E1000_EIMS_OTHER;
821 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822 q_vector->eims_value = msixbm;
823 break;
824 case e1000_82576:
825 /* 82576 uses a table that essentially consists of 2 columns
826 * with 8 rows. The ordering is column-major so we use the
827 * lower 3 bits as the row index, and the 4th bit as the
828 * column offset.
830 if (rx_queue > IGB_N0_QUEUE)
831 igb_write_ivar(hw, msix_vector,
832 rx_queue & 0x7,
833 (rx_queue & 0x8) << 1);
834 if (tx_queue > IGB_N0_QUEUE)
835 igb_write_ivar(hw, msix_vector,
836 tx_queue & 0x7,
837 ((tx_queue & 0x8) << 1) + 8);
838 q_vector->eims_value = 1 << msix_vector;
839 break;
840 case e1000_82580:
841 case e1000_i350:
842 case e1000_i354:
843 case e1000_i210:
844 case e1000_i211:
845 /* On 82580 and newer adapters the scheme is similar to 82576
846 * however instead of ordering column-major we have things
847 * ordered row-major. So we traverse the table by using
848 * bit 0 as the column offset, and the remaining bits as the
849 * row index.
851 if (rx_queue > IGB_N0_QUEUE)
852 igb_write_ivar(hw, msix_vector,
853 rx_queue >> 1,
854 (rx_queue & 0x1) << 4);
855 if (tx_queue > IGB_N0_QUEUE)
856 igb_write_ivar(hw, msix_vector,
857 tx_queue >> 1,
858 ((tx_queue & 0x1) << 4) + 8);
859 q_vector->eims_value = 1 << msix_vector;
860 break;
861 default:
862 BUG();
863 break;
866 /* add q_vector eims value to global eims_enable_mask */
867 adapter->eims_enable_mask |= q_vector->eims_value;
869 /* configure q_vector to set itr on first interrupt */
870 q_vector->set_itr = 1;
874 * igb_configure_msix - Configure MSI-X hardware
875 * @adapter: board private structure to initialize
877 * igb_configure_msix sets up the hardware to properly
878 * generate MSI-X interrupts.
880 static void igb_configure_msix(struct igb_adapter *adapter)
882 u32 tmp;
883 int i, vector = 0;
884 struct e1000_hw *hw = &adapter->hw;
886 adapter->eims_enable_mask = 0;
888 /* set vector for other causes, i.e. link changes */
889 switch (hw->mac.type) {
890 case e1000_82575:
891 tmp = rd32(E1000_CTRL_EXT);
892 /* enable MSI-X PBA support*/
893 tmp |= E1000_CTRL_EXT_PBA_CLR;
895 /* Auto-Mask interrupts upon ICR read. */
896 tmp |= E1000_CTRL_EXT_EIAME;
897 tmp |= E1000_CTRL_EXT_IRCA;
899 wr32(E1000_CTRL_EXT, tmp);
901 /* enable msix_other interrupt */
902 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903 adapter->eims_other = E1000_EIMS_OTHER;
905 break;
907 case e1000_82576:
908 case e1000_82580:
909 case e1000_i350:
910 case e1000_i354:
911 case e1000_i210:
912 case e1000_i211:
913 /* Turn on MSI-X capability first, or our settings
914 * won't stick. And it will take days to debug.
916 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 E1000_GPIE_NSICR);
920 /* enable msix_other interrupt */
921 adapter->eims_other = 1 << vector;
922 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924 wr32(E1000_IVAR_MISC, tmp);
925 break;
926 default:
927 /* do nothing, since nothing else supports MSI-X */
928 break;
929 } /* switch (hw->mac.type) */
931 adapter->eims_enable_mask |= adapter->eims_other;
933 for (i = 0; i < adapter->num_q_vectors; i++)
934 igb_assign_vector(adapter->q_vector[i], vector++);
936 wrfl();
940 * igb_request_msix - Initialize MSI-X interrupts
941 * @adapter: board private structure to initialize
943 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
944 * kernel.
946 static int igb_request_msix(struct igb_adapter *adapter)
948 struct net_device *netdev = adapter->netdev;
949 struct e1000_hw *hw = &adapter->hw;
950 int i, err = 0, vector = 0, free_vector = 0;
952 err = request_irq(adapter->msix_entries[vector].vector,
953 igb_msix_other, 0, netdev->name, adapter);
954 if (err)
955 goto err_out;
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
960 vector++;
962 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
964 if (q_vector->rx.ring && q_vector->tx.ring)
965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
967 else if (q_vector->tx.ring)
968 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 q_vector->tx.ring->queue_index);
970 else if (q_vector->rx.ring)
971 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 q_vector->rx.ring->queue_index);
973 else
974 sprintf(q_vector->name, "%s-unused", netdev->name);
976 err = request_irq(adapter->msix_entries[vector].vector,
977 igb_msix_ring, 0, q_vector->name,
978 q_vector);
979 if (err)
980 goto err_free;
983 igb_configure_msix(adapter);
984 return 0;
986 err_free:
987 /* free already assigned IRQs */
988 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
990 vector--;
991 for (i = 0; i < vector; i++) {
992 free_irq(adapter->msix_entries[free_vector++].vector,
993 adapter->q_vector[i]);
995 err_out:
996 return err;
1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 * @adapter: board private structure to initialize
1002 * @v_idx: Index of vector to be freed
1004 * This function frees the memory allocated to the q_vector.
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1010 adapter->q_vector[v_idx] = NULL;
1012 /* igb_get_stats64() might access the rings on this vector,
1013 * we must wait a grace period before freeing it.
1015 if (q_vector)
1016 kfree_rcu(q_vector, rcu);
1020 * igb_reset_q_vector - Reset config for interrupt vector
1021 * @adapter: board private structure to initialize
1022 * @v_idx: Index of vector to be reset
1024 * If NAPI is enabled it will delete any references to the
1025 * NAPI struct. This is preparation for igb_free_q_vector.
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1029 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1031 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032 * allocated. So, q_vector is NULL so we should stop here.
1034 if (!q_vector)
1035 return;
1037 if (q_vector->tx.ring)
1038 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1040 if (q_vector->rx.ring)
1041 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1043 netif_napi_del(&q_vector->napi);
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1049 int v_idx = adapter->num_q_vectors;
1051 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052 pci_disable_msix(adapter->pdev);
1053 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054 pci_disable_msi(adapter->pdev);
1056 while (v_idx--)
1057 igb_reset_q_vector(adapter, v_idx);
1061 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 * @adapter: board private structure to initialize
1064 * This function frees the memory allocated to the q_vectors. In addition if
1065 * NAPI is enabled it will delete any references to the NAPI struct prior
1066 * to freeing the q_vector.
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1070 int v_idx = adapter->num_q_vectors;
1072 adapter->num_tx_queues = 0;
1073 adapter->num_rx_queues = 0;
1074 adapter->num_q_vectors = 0;
1076 while (v_idx--) {
1077 igb_reset_q_vector(adapter, v_idx);
1078 igb_free_q_vector(adapter, v_idx);
1083 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 * @adapter: board private structure to initialize
1086 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 * MSI-X interrupts allocated.
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1091 igb_free_q_vectors(adapter);
1092 igb_reset_interrupt_capability(adapter);
1096 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 * @adapter: board private structure to initialize
1098 * @msix: boolean value of MSIX capability
1100 * Attempt to configure interrupts using the best available
1101 * capabilities of the hardware and kernel.
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1105 int err;
1106 int numvecs, i;
1108 if (!msix)
1109 goto msi_only;
1110 adapter->flags |= IGB_FLAG_HAS_MSIX;
1112 /* Number of supported queues. */
1113 adapter->num_rx_queues = adapter->rss_queues;
1114 if (adapter->vfs_allocated_count)
1115 adapter->num_tx_queues = 1;
1116 else
1117 adapter->num_tx_queues = adapter->rss_queues;
1119 /* start with one vector for every Rx queue */
1120 numvecs = adapter->num_rx_queues;
1122 /* if Tx handler is separate add 1 for every Tx queue */
1123 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124 numvecs += adapter->num_tx_queues;
1126 /* store the number of vectors reserved for queues */
1127 adapter->num_q_vectors = numvecs;
1129 /* add 1 vector for link status interrupts */
1130 numvecs++;
1131 for (i = 0; i < numvecs; i++)
1132 adapter->msix_entries[i].entry = i;
1134 err = pci_enable_msix_range(adapter->pdev,
1135 adapter->msix_entries,
1136 numvecs,
1137 numvecs);
1138 if (err > 0)
1139 return;
1141 igb_reset_interrupt_capability(adapter);
1143 /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147 /* disable SR-IOV for non MSI-X configurations */
1148 if (adapter->vf_data) {
1149 struct e1000_hw *hw = &adapter->hw;
1150 /* disable iov and allow time for transactions to clear */
1151 pci_disable_sriov(adapter->pdev);
1152 msleep(500);
1154 kfree(adapter->vf_data);
1155 adapter->vf_data = NULL;
1156 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157 wrfl();
1158 msleep(100);
1159 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1161 #endif
1162 adapter->vfs_allocated_count = 0;
1163 adapter->rss_queues = 1;
1164 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165 adapter->num_rx_queues = 1;
1166 adapter->num_tx_queues = 1;
1167 adapter->num_q_vectors = 1;
1168 if (!pci_enable_msi(adapter->pdev))
1169 adapter->flags |= IGB_FLAG_HAS_MSI;
1172 static void igb_add_ring(struct igb_ring *ring,
1173 struct igb_ring_container *head)
1175 head->ring = ring;
1176 head->count++;
1180 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 * @adapter: board private structure to initialize
1182 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 * @v_idx: index of vector in adapter struct
1184 * @txr_count: total number of Tx rings to allocate
1185 * @txr_idx: index of first Tx ring to allocate
1186 * @rxr_count: total number of Rx rings to allocate
1187 * @rxr_idx: index of first Rx ring to allocate
1189 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192 int v_count, int v_idx,
1193 int txr_count, int txr_idx,
1194 int rxr_count, int rxr_idx)
1196 struct igb_q_vector *q_vector;
1197 struct igb_ring *ring;
1198 int ring_count, size;
1200 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201 if (txr_count > 1 || rxr_count > 1)
1202 return -ENOMEM;
1204 ring_count = txr_count + rxr_count;
1205 size = sizeof(struct igb_q_vector) +
1206 (sizeof(struct igb_ring) * ring_count);
1208 /* allocate q_vector and rings */
1209 q_vector = adapter->q_vector[v_idx];
1210 if (!q_vector)
1211 q_vector = kzalloc(size, GFP_KERNEL);
1212 if (!q_vector)
1213 return -ENOMEM;
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1217 igb_poll, 64);
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1233 /* intialize ITR */
1234 if (rxr_count) {
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1238 } else {
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1244 if (txr_count) {
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1263 u64_stats_init(&ring->tx_syncp);
1264 u64_stats_init(&ring->tx_syncp2);
1266 /* assign ring to adapter */
1267 adapter->tx_ring[txr_idx] = ring;
1269 /* push pointer to next ring */
1270 ring++;
1273 if (rxr_count) {
1274 /* assign generic ring traits */
1275 ring->dev = &adapter->pdev->dev;
1276 ring->netdev = adapter->netdev;
1278 /* configure backlink on ring */
1279 ring->q_vector = q_vector;
1281 /* update q_vector Rx values */
1282 igb_add_ring(ring, &q_vector->rx);
1284 /* set flag indicating ring supports SCTP checksum offload */
1285 if (adapter->hw.mac.type >= e1000_82576)
1286 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1288 /* On i350, i354, i210, and i211, loopback VLAN packets
1289 * have the tag byte-swapped.
1291 if (adapter->hw.mac.type >= e1000_i350)
1292 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1294 /* apply Rx specific ring traits */
1295 ring->count = adapter->rx_ring_count;
1296 ring->queue_index = rxr_idx;
1298 u64_stats_init(&ring->rx_syncp);
1300 /* assign ring to adapter */
1301 adapter->rx_ring[rxr_idx] = ring;
1304 return 0;
1309 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1310 * @adapter: board private structure to initialize
1312 * We allocate one q_vector per queue interrupt. If allocation fails we
1313 * return -ENOMEM.
1315 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1317 int q_vectors = adapter->num_q_vectors;
1318 int rxr_remaining = adapter->num_rx_queues;
1319 int txr_remaining = adapter->num_tx_queues;
1320 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1321 int err;
1323 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1324 for (; rxr_remaining; v_idx++) {
1325 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1326 0, 0, 1, rxr_idx);
1328 if (err)
1329 goto err_out;
1331 /* update counts and index */
1332 rxr_remaining--;
1333 rxr_idx++;
1337 for (; v_idx < q_vectors; v_idx++) {
1338 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1339 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1341 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342 tqpv, txr_idx, rqpv, rxr_idx);
1344 if (err)
1345 goto err_out;
1347 /* update counts and index */
1348 rxr_remaining -= rqpv;
1349 txr_remaining -= tqpv;
1350 rxr_idx++;
1351 txr_idx++;
1354 return 0;
1356 err_out:
1357 adapter->num_tx_queues = 0;
1358 adapter->num_rx_queues = 0;
1359 adapter->num_q_vectors = 0;
1361 while (v_idx--)
1362 igb_free_q_vector(adapter, v_idx);
1364 return -ENOMEM;
1368 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369 * @adapter: board private structure to initialize
1370 * @msix: boolean value of MSIX capability
1372 * This function initializes the interrupts and allocates all of the queues.
1374 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1376 struct pci_dev *pdev = adapter->pdev;
1377 int err;
1379 igb_set_interrupt_capability(adapter, msix);
1381 err = igb_alloc_q_vectors(adapter);
1382 if (err) {
1383 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384 goto err_alloc_q_vectors;
1387 igb_cache_ring_register(adapter);
1389 return 0;
1391 err_alloc_q_vectors:
1392 igb_reset_interrupt_capability(adapter);
1393 return err;
1397 * igb_request_irq - initialize interrupts
1398 * @adapter: board private structure to initialize
1400 * Attempts to configure interrupts using the best available
1401 * capabilities of the hardware and kernel.
1403 static int igb_request_irq(struct igb_adapter *adapter)
1405 struct net_device *netdev = adapter->netdev;
1406 struct pci_dev *pdev = adapter->pdev;
1407 int err = 0;
1409 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1410 err = igb_request_msix(adapter);
1411 if (!err)
1412 goto request_done;
1413 /* fall back to MSI */
1414 igb_free_all_tx_resources(adapter);
1415 igb_free_all_rx_resources(adapter);
1417 igb_clear_interrupt_scheme(adapter);
1418 err = igb_init_interrupt_scheme(adapter, false);
1419 if (err)
1420 goto request_done;
1422 igb_setup_all_tx_resources(adapter);
1423 igb_setup_all_rx_resources(adapter);
1424 igb_configure(adapter);
1427 igb_assign_vector(adapter->q_vector[0], 0);
1429 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1430 err = request_irq(pdev->irq, igb_intr_msi, 0,
1431 netdev->name, adapter);
1432 if (!err)
1433 goto request_done;
1435 /* fall back to legacy interrupts */
1436 igb_reset_interrupt_capability(adapter);
1437 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1440 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1441 netdev->name, adapter);
1443 if (err)
1444 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1445 err);
1447 request_done:
1448 return err;
1451 static void igb_free_irq(struct igb_adapter *adapter)
1453 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1454 int vector = 0, i;
1456 free_irq(adapter->msix_entries[vector++].vector, adapter);
1458 for (i = 0; i < adapter->num_q_vectors; i++)
1459 free_irq(adapter->msix_entries[vector++].vector,
1460 adapter->q_vector[i]);
1461 } else {
1462 free_irq(adapter->pdev->irq, adapter);
1467 * igb_irq_disable - Mask off interrupt generation on the NIC
1468 * @adapter: board private structure
1470 static void igb_irq_disable(struct igb_adapter *adapter)
1472 struct e1000_hw *hw = &adapter->hw;
1474 /* we need to be careful when disabling interrupts. The VFs are also
1475 * mapped into these registers and so clearing the bits can cause
1476 * issues on the VF drivers so we only need to clear what we set
1478 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479 u32 regval = rd32(E1000_EIAM);
1481 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1482 wr32(E1000_EIMC, adapter->eims_enable_mask);
1483 regval = rd32(E1000_EIAC);
1484 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1487 wr32(E1000_IAM, 0);
1488 wr32(E1000_IMC, ~0);
1489 wrfl();
1490 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1491 int i;
1493 for (i = 0; i < adapter->num_q_vectors; i++)
1494 synchronize_irq(adapter->msix_entries[i].vector);
1495 } else {
1496 synchronize_irq(adapter->pdev->irq);
1501 * igb_irq_enable - Enable default interrupt generation settings
1502 * @adapter: board private structure
1504 static void igb_irq_enable(struct igb_adapter *adapter)
1506 struct e1000_hw *hw = &adapter->hw;
1508 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1509 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1510 u32 regval = rd32(E1000_EIAC);
1512 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1513 regval = rd32(E1000_EIAM);
1514 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1515 wr32(E1000_EIMS, adapter->eims_enable_mask);
1516 if (adapter->vfs_allocated_count) {
1517 wr32(E1000_MBVFIMR, 0xFF);
1518 ims |= E1000_IMS_VMMB;
1520 wr32(E1000_IMS, ims);
1521 } else {
1522 wr32(E1000_IMS, IMS_ENABLE_MASK |
1523 E1000_IMS_DRSTA);
1524 wr32(E1000_IAM, IMS_ENABLE_MASK |
1525 E1000_IMS_DRSTA);
1529 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1531 struct e1000_hw *hw = &adapter->hw;
1532 u16 vid = adapter->hw.mng_cookie.vlan_id;
1533 u16 old_vid = adapter->mng_vlan_id;
1535 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536 /* add VID to filter table */
1537 igb_vfta_set(hw, vid, true);
1538 adapter->mng_vlan_id = vid;
1539 } else {
1540 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1543 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544 (vid != old_vid) &&
1545 !test_bit(old_vid, adapter->active_vlans)) {
1546 /* remove VID from filter table */
1547 igb_vfta_set(hw, old_vid, false);
1552 * igb_release_hw_control - release control of the h/w to f/w
1553 * @adapter: address of board private structure
1555 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556 * For ASF and Pass Through versions of f/w this means that the
1557 * driver is no longer loaded.
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1561 struct e1000_hw *hw = &adapter->hw;
1562 u32 ctrl_ext;
1564 /* Let firmware take over control of h/w */
1565 ctrl_ext = rd32(E1000_CTRL_EXT);
1566 wr32(E1000_CTRL_EXT,
1567 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1571 * igb_get_hw_control - get control of the h/w from f/w
1572 * @adapter: address of board private structure
1574 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575 * For ASF and Pass Through versions of f/w this means that
1576 * the driver is loaded.
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1580 struct e1000_hw *hw = &adapter->hw;
1581 u32 ctrl_ext;
1583 /* Let firmware know the driver has taken over */
1584 ctrl_ext = rd32(E1000_CTRL_EXT);
1585 wr32(E1000_CTRL_EXT,
1586 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1590 * igb_configure - configure the hardware for RX and TX
1591 * @adapter: private board structure
1593 static void igb_configure(struct igb_adapter *adapter)
1595 struct net_device *netdev = adapter->netdev;
1596 int i;
1598 igb_get_hw_control(adapter);
1599 igb_set_rx_mode(netdev);
1601 igb_restore_vlan(adapter);
1603 igb_setup_tctl(adapter);
1604 igb_setup_mrqc(adapter);
1605 igb_setup_rctl(adapter);
1607 igb_configure_tx(adapter);
1608 igb_configure_rx(adapter);
1610 igb_rx_fifo_flush_82575(&adapter->hw);
1612 /* call igb_desc_unused which always leaves
1613 * at least 1 descriptor unused to make sure
1614 * next_to_use != next_to_clean
1616 for (i = 0; i < adapter->num_rx_queues; i++) {
1617 struct igb_ring *ring = adapter->rx_ring[i];
1618 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1623 * igb_power_up_link - Power up the phy/serdes link
1624 * @adapter: address of board private structure
1626 void igb_power_up_link(struct igb_adapter *adapter)
1628 igb_reset_phy(&adapter->hw);
1630 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1631 igb_power_up_phy_copper(&adapter->hw);
1632 else
1633 igb_power_up_serdes_link_82575(&adapter->hw);
1635 igb_setup_link(&adapter->hw);
1639 * igb_power_down_link - Power down the phy/serdes link
1640 * @adapter: address of board private structure
1642 static void igb_power_down_link(struct igb_adapter *adapter)
1644 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1645 igb_power_down_phy_copper_82575(&adapter->hw);
1646 else
1647 igb_shutdown_serdes_link_82575(&adapter->hw);
1651 * Detect and switch function for Media Auto Sense
1652 * @adapter: address of the board private structure
1654 static void igb_check_swap_media(struct igb_adapter *adapter)
1656 struct e1000_hw *hw = &adapter->hw;
1657 u32 ctrl_ext, connsw;
1658 bool swap_now = false;
1660 ctrl_ext = rd32(E1000_CTRL_EXT);
1661 connsw = rd32(E1000_CONNSW);
1663 /* need to live swap if current media is copper and we have fiber/serdes
1664 * to go to.
1667 if ((hw->phy.media_type == e1000_media_type_copper) &&
1668 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1669 swap_now = true;
1670 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1671 /* copper signal takes time to appear */
1672 if (adapter->copper_tries < 4) {
1673 adapter->copper_tries++;
1674 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1675 wr32(E1000_CONNSW, connsw);
1676 return;
1677 } else {
1678 adapter->copper_tries = 0;
1679 if ((connsw & E1000_CONNSW_PHYSD) &&
1680 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1681 swap_now = true;
1682 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1683 wr32(E1000_CONNSW, connsw);
1688 if (!swap_now)
1689 return;
1691 switch (hw->phy.media_type) {
1692 case e1000_media_type_copper:
1693 netdev_info(adapter->netdev,
1694 "MAS: changing media to fiber/serdes\n");
1695 ctrl_ext |=
1696 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1697 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1698 adapter->copper_tries = 0;
1699 break;
1700 case e1000_media_type_internal_serdes:
1701 case e1000_media_type_fiber:
1702 netdev_info(adapter->netdev,
1703 "MAS: changing media to copper\n");
1704 ctrl_ext &=
1705 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1706 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1707 break;
1708 default:
1709 /* shouldn't get here during regular operation */
1710 netdev_err(adapter->netdev,
1711 "AMS: Invalid media type found, returning\n");
1712 break;
1714 wr32(E1000_CTRL_EXT, ctrl_ext);
1718 * igb_up - Open the interface and prepare it to handle traffic
1719 * @adapter: board private structure
1721 int igb_up(struct igb_adapter *adapter)
1723 struct e1000_hw *hw = &adapter->hw;
1724 int i;
1726 /* hardware has been reset, we need to reload some things */
1727 igb_configure(adapter);
1729 clear_bit(__IGB_DOWN, &adapter->state);
1731 for (i = 0; i < adapter->num_q_vectors; i++)
1732 napi_enable(&(adapter->q_vector[i]->napi));
1734 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1735 igb_configure_msix(adapter);
1736 else
1737 igb_assign_vector(adapter->q_vector[0], 0);
1739 /* Clear any pending interrupts. */
1740 rd32(E1000_ICR);
1741 igb_irq_enable(adapter);
1743 /* notify VFs that reset has been completed */
1744 if (adapter->vfs_allocated_count) {
1745 u32 reg_data = rd32(E1000_CTRL_EXT);
1747 reg_data |= E1000_CTRL_EXT_PFRSTD;
1748 wr32(E1000_CTRL_EXT, reg_data);
1751 netif_tx_start_all_queues(adapter->netdev);
1753 /* start the watchdog. */
1754 hw->mac.get_link_status = 1;
1755 schedule_work(&adapter->watchdog_task);
1757 if ((adapter->flags & IGB_FLAG_EEE) &&
1758 (!hw->dev_spec._82575.eee_disable))
1759 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1761 return 0;
1764 void igb_down(struct igb_adapter *adapter)
1766 struct net_device *netdev = adapter->netdev;
1767 struct e1000_hw *hw = &adapter->hw;
1768 u32 tctl, rctl;
1769 int i;
1771 /* signal that we're down so the interrupt handler does not
1772 * reschedule our watchdog timer
1774 set_bit(__IGB_DOWN, &adapter->state);
1776 /* disable receives in the hardware */
1777 rctl = rd32(E1000_RCTL);
1778 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1779 /* flush and sleep below */
1781 netif_tx_stop_all_queues(netdev);
1783 /* disable transmits in the hardware */
1784 tctl = rd32(E1000_TCTL);
1785 tctl &= ~E1000_TCTL_EN;
1786 wr32(E1000_TCTL, tctl);
1787 /* flush both disables and wait for them to finish */
1788 wrfl();
1789 usleep_range(10000, 11000);
1791 igb_irq_disable(adapter);
1793 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1795 for (i = 0; i < adapter->num_q_vectors; i++) {
1796 if (adapter->q_vector[i]) {
1797 napi_synchronize(&adapter->q_vector[i]->napi);
1798 napi_disable(&adapter->q_vector[i]->napi);
1803 del_timer_sync(&adapter->watchdog_timer);
1804 del_timer_sync(&adapter->phy_info_timer);
1806 netif_carrier_off(netdev);
1808 /* record the stats before reset*/
1809 spin_lock(&adapter->stats64_lock);
1810 igb_update_stats(adapter, &adapter->stats64);
1811 spin_unlock(&adapter->stats64_lock);
1813 adapter->link_speed = 0;
1814 adapter->link_duplex = 0;
1816 if (!pci_channel_offline(adapter->pdev))
1817 igb_reset(adapter);
1818 igb_clean_all_tx_rings(adapter);
1819 igb_clean_all_rx_rings(adapter);
1820 #ifdef CONFIG_IGB_DCA
1822 /* since we reset the hardware DCA settings were cleared */
1823 igb_setup_dca(adapter);
1824 #endif
1827 void igb_reinit_locked(struct igb_adapter *adapter)
1829 WARN_ON(in_interrupt());
1830 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1831 usleep_range(1000, 2000);
1832 igb_down(adapter);
1833 igb_up(adapter);
1834 clear_bit(__IGB_RESETTING, &adapter->state);
1837 /** igb_enable_mas - Media Autosense re-enable after swap
1839 * @adapter: adapter struct
1841 static s32 igb_enable_mas(struct igb_adapter *adapter)
1843 struct e1000_hw *hw = &adapter->hw;
1844 u32 connsw;
1845 s32 ret_val = 0;
1847 connsw = rd32(E1000_CONNSW);
1848 if (!(hw->phy.media_type == e1000_media_type_copper))
1849 return ret_val;
1851 /* configure for SerDes media detect */
1852 if (!(connsw & E1000_CONNSW_SERDESD)) {
1853 connsw |= E1000_CONNSW_ENRGSRC;
1854 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1855 wr32(E1000_CONNSW, connsw);
1856 wrfl();
1857 } else if (connsw & E1000_CONNSW_SERDESD) {
1858 /* already SerDes, no need to enable anything */
1859 return ret_val;
1860 } else {
1861 netdev_info(adapter->netdev,
1862 "MAS: Unable to configure feature, disabling..\n");
1863 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1865 return ret_val;
1868 void igb_reset(struct igb_adapter *adapter)
1870 struct pci_dev *pdev = adapter->pdev;
1871 struct e1000_hw *hw = &adapter->hw;
1872 struct e1000_mac_info *mac = &hw->mac;
1873 struct e1000_fc_info *fc = &hw->fc;
1874 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1876 /* Repartition Pba for greater than 9k mtu
1877 * To take effect CTRL.RST is required.
1879 switch (mac->type) {
1880 case e1000_i350:
1881 case e1000_i354:
1882 case e1000_82580:
1883 pba = rd32(E1000_RXPBS);
1884 pba = igb_rxpbs_adjust_82580(pba);
1885 break;
1886 case e1000_82576:
1887 pba = rd32(E1000_RXPBS);
1888 pba &= E1000_RXPBS_SIZE_MASK_82576;
1889 break;
1890 case e1000_82575:
1891 case e1000_i210:
1892 case e1000_i211:
1893 default:
1894 pba = E1000_PBA_34K;
1895 break;
1898 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1899 (mac->type < e1000_82576)) {
1900 /* adjust PBA for jumbo frames */
1901 wr32(E1000_PBA, pba);
1903 /* To maintain wire speed transmits, the Tx FIFO should be
1904 * large enough to accommodate two full transmit packets,
1905 * rounded up to the next 1KB and expressed in KB. Likewise,
1906 * the Rx FIFO should be large enough to accommodate at least
1907 * one full receive packet and is similarly rounded up and
1908 * expressed in KB.
1910 pba = rd32(E1000_PBA);
1911 /* upper 16 bits has Tx packet buffer allocation size in KB */
1912 tx_space = pba >> 16;
1913 /* lower 16 bits has Rx packet buffer allocation size in KB */
1914 pba &= 0xffff;
1915 /* the Tx fifo also stores 16 bytes of information about the Tx
1916 * but don't include ethernet FCS because hardware appends it
1918 min_tx_space = (adapter->max_frame_size +
1919 sizeof(union e1000_adv_tx_desc) -
1920 ETH_FCS_LEN) * 2;
1921 min_tx_space = ALIGN(min_tx_space, 1024);
1922 min_tx_space >>= 10;
1923 /* software strips receive CRC, so leave room for it */
1924 min_rx_space = adapter->max_frame_size;
1925 min_rx_space = ALIGN(min_rx_space, 1024);
1926 min_rx_space >>= 10;
1928 /* If current Tx allocation is less than the min Tx FIFO size,
1929 * and the min Tx FIFO size is less than the current Rx FIFO
1930 * allocation, take space away from current Rx allocation
1932 if (tx_space < min_tx_space &&
1933 ((min_tx_space - tx_space) < pba)) {
1934 pba = pba - (min_tx_space - tx_space);
1936 /* if short on Rx space, Rx wins and must trump Tx
1937 * adjustment
1939 if (pba < min_rx_space)
1940 pba = min_rx_space;
1942 wr32(E1000_PBA, pba);
1945 /* flow control settings */
1946 /* The high water mark must be low enough to fit one full frame
1947 * (or the size used for early receive) above it in the Rx FIFO.
1948 * Set it to the lower of:
1949 * - 90% of the Rx FIFO size, or
1950 * - the full Rx FIFO size minus one full frame
1952 hwm = min(((pba << 10) * 9 / 10),
1953 ((pba << 10) - 2 * adapter->max_frame_size));
1955 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1956 fc->low_water = fc->high_water - 16;
1957 fc->pause_time = 0xFFFF;
1958 fc->send_xon = 1;
1959 fc->current_mode = fc->requested_mode;
1961 /* disable receive for all VFs and wait one second */
1962 if (adapter->vfs_allocated_count) {
1963 int i;
1965 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1966 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1968 /* ping all the active vfs to let them know we are going down */
1969 igb_ping_all_vfs(adapter);
1971 /* disable transmits and receives */
1972 wr32(E1000_VFRE, 0);
1973 wr32(E1000_VFTE, 0);
1976 /* Allow time for pending master requests to run */
1977 hw->mac.ops.reset_hw(hw);
1978 wr32(E1000_WUC, 0);
1980 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1981 /* need to resetup here after media swap */
1982 adapter->ei.get_invariants(hw);
1983 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1985 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1986 if (igb_enable_mas(adapter))
1987 dev_err(&pdev->dev,
1988 "Error enabling Media Auto Sense\n");
1990 if (hw->mac.ops.init_hw(hw))
1991 dev_err(&pdev->dev, "Hardware Error\n");
1993 /* Flow control settings reset on hardware reset, so guarantee flow
1994 * control is off when forcing speed.
1996 if (!hw->mac.autoneg)
1997 igb_force_mac_fc(hw);
1999 igb_init_dmac(adapter, pba);
2000 #ifdef CONFIG_IGB_HWMON
2001 /* Re-initialize the thermal sensor on i350 devices. */
2002 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2003 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2004 /* If present, re-initialize the external thermal sensor
2005 * interface.
2007 if (adapter->ets)
2008 mac->ops.init_thermal_sensor_thresh(hw);
2011 #endif
2012 /* Re-establish EEE setting */
2013 if (hw->phy.media_type == e1000_media_type_copper) {
2014 switch (mac->type) {
2015 case e1000_i350:
2016 case e1000_i210:
2017 case e1000_i211:
2018 igb_set_eee_i350(hw, true, true);
2019 break;
2020 case e1000_i354:
2021 igb_set_eee_i354(hw, true, true);
2022 break;
2023 default:
2024 break;
2027 if (!netif_running(adapter->netdev))
2028 igb_power_down_link(adapter);
2030 igb_update_mng_vlan(adapter);
2032 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2033 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2035 /* Re-enable PTP, where applicable. */
2036 igb_ptp_reset(adapter);
2038 igb_get_phy_info(hw);
2041 static netdev_features_t igb_fix_features(struct net_device *netdev,
2042 netdev_features_t features)
2044 /* Since there is no support for separate Rx/Tx vlan accel
2045 * enable/disable make sure Tx flag is always in same state as Rx.
2047 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2048 features |= NETIF_F_HW_VLAN_CTAG_TX;
2049 else
2050 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2052 return features;
2055 static int igb_set_features(struct net_device *netdev,
2056 netdev_features_t features)
2058 netdev_features_t changed = netdev->features ^ features;
2059 struct igb_adapter *adapter = netdev_priv(netdev);
2061 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2062 igb_vlan_mode(netdev, features);
2064 if (!(changed & NETIF_F_RXALL))
2065 return 0;
2067 netdev->features = features;
2069 if (netif_running(netdev))
2070 igb_reinit_locked(adapter);
2071 else
2072 igb_reset(adapter);
2074 return 0;
2077 static const struct net_device_ops igb_netdev_ops = {
2078 .ndo_open = igb_open,
2079 .ndo_stop = igb_close,
2080 .ndo_start_xmit = igb_xmit_frame,
2081 .ndo_get_stats64 = igb_get_stats64,
2082 .ndo_set_rx_mode = igb_set_rx_mode,
2083 .ndo_set_mac_address = igb_set_mac,
2084 .ndo_change_mtu = igb_change_mtu,
2085 .ndo_do_ioctl = igb_ioctl,
2086 .ndo_tx_timeout = igb_tx_timeout,
2087 .ndo_validate_addr = eth_validate_addr,
2088 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2089 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2090 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2091 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2092 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2093 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2094 .ndo_get_vf_config = igb_ndo_get_vf_config,
2095 #ifdef CONFIG_NET_POLL_CONTROLLER
2096 .ndo_poll_controller = igb_netpoll,
2097 #endif
2098 .ndo_fix_features = igb_fix_features,
2099 .ndo_set_features = igb_set_features,
2103 * igb_set_fw_version - Configure version string for ethtool
2104 * @adapter: adapter struct
2106 void igb_set_fw_version(struct igb_adapter *adapter)
2108 struct e1000_hw *hw = &adapter->hw;
2109 struct e1000_fw_version fw;
2111 igb_get_fw_version(hw, &fw);
2113 switch (hw->mac.type) {
2114 case e1000_i210:
2115 case e1000_i211:
2116 if (!(igb_get_flash_presence_i210(hw))) {
2117 snprintf(adapter->fw_version,
2118 sizeof(adapter->fw_version),
2119 "%2d.%2d-%d",
2120 fw.invm_major, fw.invm_minor,
2121 fw.invm_img_type);
2122 break;
2124 /* fall through */
2125 default:
2126 /* if option is rom valid, display its version too */
2127 if (fw.or_valid) {
2128 snprintf(adapter->fw_version,
2129 sizeof(adapter->fw_version),
2130 "%d.%d, 0x%08x, %d.%d.%d",
2131 fw.eep_major, fw.eep_minor, fw.etrack_id,
2132 fw.or_major, fw.or_build, fw.or_patch);
2133 /* no option rom */
2134 } else if (fw.etrack_id != 0X0000) {
2135 snprintf(adapter->fw_version,
2136 sizeof(adapter->fw_version),
2137 "%d.%d, 0x%08x",
2138 fw.eep_major, fw.eep_minor, fw.etrack_id);
2139 } else {
2140 snprintf(adapter->fw_version,
2141 sizeof(adapter->fw_version),
2142 "%d.%d.%d",
2143 fw.eep_major, fw.eep_minor, fw.eep_build);
2145 break;
2150 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2152 * @adapter: adapter struct
2154 static void igb_init_mas(struct igb_adapter *adapter)
2156 struct e1000_hw *hw = &adapter->hw;
2157 u16 eeprom_data;
2159 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2160 switch (hw->bus.func) {
2161 case E1000_FUNC_0:
2162 if (eeprom_data & IGB_MAS_ENABLE_0) {
2163 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2164 netdev_info(adapter->netdev,
2165 "MAS: Enabling Media Autosense for port %d\n",
2166 hw->bus.func);
2168 break;
2169 case E1000_FUNC_1:
2170 if (eeprom_data & IGB_MAS_ENABLE_1) {
2171 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2172 netdev_info(adapter->netdev,
2173 "MAS: Enabling Media Autosense for port %d\n",
2174 hw->bus.func);
2176 break;
2177 case E1000_FUNC_2:
2178 if (eeprom_data & IGB_MAS_ENABLE_2) {
2179 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2180 netdev_info(adapter->netdev,
2181 "MAS: Enabling Media Autosense for port %d\n",
2182 hw->bus.func);
2184 break;
2185 case E1000_FUNC_3:
2186 if (eeprom_data & IGB_MAS_ENABLE_3) {
2187 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2188 netdev_info(adapter->netdev,
2189 "MAS: Enabling Media Autosense for port %d\n",
2190 hw->bus.func);
2192 break;
2193 default:
2194 /* Shouldn't get here */
2195 netdev_err(adapter->netdev,
2196 "MAS: Invalid port configuration, returning\n");
2197 break;
2202 * igb_init_i2c - Init I2C interface
2203 * @adapter: pointer to adapter structure
2205 static s32 igb_init_i2c(struct igb_adapter *adapter)
2207 s32 status = 0;
2209 /* I2C interface supported on i350 devices */
2210 if (adapter->hw.mac.type != e1000_i350)
2211 return 0;
2213 /* Initialize the i2c bus which is controlled by the registers.
2214 * This bus will use the i2c_algo_bit structue that implements
2215 * the protocol through toggling of the 4 bits in the register.
2217 adapter->i2c_adap.owner = THIS_MODULE;
2218 adapter->i2c_algo = igb_i2c_algo;
2219 adapter->i2c_algo.data = adapter;
2220 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2221 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2222 strlcpy(adapter->i2c_adap.name, "igb BB",
2223 sizeof(adapter->i2c_adap.name));
2224 status = i2c_bit_add_bus(&adapter->i2c_adap);
2225 return status;
2229 * igb_probe - Device Initialization Routine
2230 * @pdev: PCI device information struct
2231 * @ent: entry in igb_pci_tbl
2233 * Returns 0 on success, negative on failure
2235 * igb_probe initializes an adapter identified by a pci_dev structure.
2236 * The OS initialization, configuring of the adapter private structure,
2237 * and a hardware reset occur.
2239 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2241 struct net_device *netdev;
2242 struct igb_adapter *adapter;
2243 struct e1000_hw *hw;
2244 u16 eeprom_data = 0;
2245 s32 ret_val;
2246 static int global_quad_port_a; /* global quad port a indication */
2247 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2248 int err, pci_using_dac;
2249 u8 part_str[E1000_PBANUM_LENGTH];
2251 /* Catch broken hardware that put the wrong VF device ID in
2252 * the PCIe SR-IOV capability.
2254 if (pdev->is_virtfn) {
2255 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2256 pci_name(pdev), pdev->vendor, pdev->device);
2257 return -EINVAL;
2260 err = pci_enable_device_mem(pdev);
2261 if (err)
2262 return err;
2264 pci_using_dac = 0;
2265 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2266 if (!err) {
2267 pci_using_dac = 1;
2268 } else {
2269 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2270 if (err) {
2271 dev_err(&pdev->dev,
2272 "No usable DMA configuration, aborting\n");
2273 goto err_dma;
2277 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2278 IORESOURCE_MEM),
2279 igb_driver_name);
2280 if (err)
2281 goto err_pci_reg;
2283 pci_enable_pcie_error_reporting(pdev);
2285 pci_set_master(pdev);
2286 pci_save_state(pdev);
2288 err = -ENOMEM;
2289 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2290 IGB_MAX_TX_QUEUES);
2291 if (!netdev)
2292 goto err_alloc_etherdev;
2294 SET_NETDEV_DEV(netdev, &pdev->dev);
2296 pci_set_drvdata(pdev, netdev);
2297 adapter = netdev_priv(netdev);
2298 adapter->netdev = netdev;
2299 adapter->pdev = pdev;
2300 hw = &adapter->hw;
2301 hw->back = adapter;
2302 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2304 err = -EIO;
2305 hw->hw_addr = pci_iomap(pdev, 0, 0);
2306 if (!hw->hw_addr)
2307 goto err_ioremap;
2309 netdev->netdev_ops = &igb_netdev_ops;
2310 igb_set_ethtool_ops(netdev);
2311 netdev->watchdog_timeo = 5 * HZ;
2313 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2315 netdev->mem_start = pci_resource_start(pdev, 0);
2316 netdev->mem_end = pci_resource_end(pdev, 0);
2318 /* PCI config space info */
2319 hw->vendor_id = pdev->vendor;
2320 hw->device_id = pdev->device;
2321 hw->revision_id = pdev->revision;
2322 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2323 hw->subsystem_device_id = pdev->subsystem_device;
2325 /* Copy the default MAC, PHY and NVM function pointers */
2326 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2327 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2328 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2329 /* Initialize skew-specific constants */
2330 err = ei->get_invariants(hw);
2331 if (err)
2332 goto err_sw_init;
2334 /* setup the private structure */
2335 err = igb_sw_init(adapter);
2336 if (err)
2337 goto err_sw_init;
2339 igb_get_bus_info_pcie(hw);
2341 hw->phy.autoneg_wait_to_complete = false;
2343 /* Copper options */
2344 if (hw->phy.media_type == e1000_media_type_copper) {
2345 hw->phy.mdix = AUTO_ALL_MODES;
2346 hw->phy.disable_polarity_correction = false;
2347 hw->phy.ms_type = e1000_ms_hw_default;
2350 if (igb_check_reset_block(hw))
2351 dev_info(&pdev->dev,
2352 "PHY reset is blocked due to SOL/IDER session.\n");
2354 /* features is initialized to 0 in allocation, it might have bits
2355 * set by igb_sw_init so we should use an or instead of an
2356 * assignment.
2358 netdev->features |= NETIF_F_SG |
2359 NETIF_F_IP_CSUM |
2360 NETIF_F_IPV6_CSUM |
2361 NETIF_F_TSO |
2362 NETIF_F_TSO6 |
2363 NETIF_F_RXHASH |
2364 NETIF_F_RXCSUM |
2365 NETIF_F_HW_VLAN_CTAG_RX |
2366 NETIF_F_HW_VLAN_CTAG_TX;
2368 /* copy netdev features into list of user selectable features */
2369 netdev->hw_features |= netdev->features;
2370 netdev->hw_features |= NETIF_F_RXALL;
2372 /* set this bit last since it cannot be part of hw_features */
2373 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2375 netdev->vlan_features |= NETIF_F_TSO |
2376 NETIF_F_TSO6 |
2377 NETIF_F_IP_CSUM |
2378 NETIF_F_IPV6_CSUM |
2379 NETIF_F_SG;
2381 netdev->priv_flags |= IFF_SUPP_NOFCS;
2383 if (pci_using_dac) {
2384 netdev->features |= NETIF_F_HIGHDMA;
2385 netdev->vlan_features |= NETIF_F_HIGHDMA;
2388 if (hw->mac.type >= e1000_82576) {
2389 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2390 netdev->features |= NETIF_F_SCTP_CSUM;
2393 netdev->priv_flags |= IFF_UNICAST_FLT;
2395 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2397 /* before reading the NVM, reset the controller to put the device in a
2398 * known good starting state
2400 hw->mac.ops.reset_hw(hw);
2402 /* make sure the NVM is good , i211/i210 parts can have special NVM
2403 * that doesn't contain a checksum
2405 switch (hw->mac.type) {
2406 case e1000_i210:
2407 case e1000_i211:
2408 if (igb_get_flash_presence_i210(hw)) {
2409 if (hw->nvm.ops.validate(hw) < 0) {
2410 dev_err(&pdev->dev,
2411 "The NVM Checksum Is Not Valid\n");
2412 err = -EIO;
2413 goto err_eeprom;
2416 break;
2417 default:
2418 if (hw->nvm.ops.validate(hw) < 0) {
2419 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2420 err = -EIO;
2421 goto err_eeprom;
2423 break;
2426 /* copy the MAC address out of the NVM */
2427 if (hw->mac.ops.read_mac_addr(hw))
2428 dev_err(&pdev->dev, "NVM Read Error\n");
2430 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2432 if (!is_valid_ether_addr(netdev->dev_addr)) {
2433 dev_err(&pdev->dev, "Invalid MAC Address\n");
2434 err = -EIO;
2435 goto err_eeprom;
2438 /* get firmware version for ethtool -i */
2439 igb_set_fw_version(adapter);
2441 /* configure RXPBSIZE and TXPBSIZE */
2442 if (hw->mac.type == e1000_i210) {
2443 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2444 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2447 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2448 (unsigned long) adapter);
2449 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2450 (unsigned long) adapter);
2452 INIT_WORK(&adapter->reset_task, igb_reset_task);
2453 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2455 /* Initialize link properties that are user-changeable */
2456 adapter->fc_autoneg = true;
2457 hw->mac.autoneg = true;
2458 hw->phy.autoneg_advertised = 0x2f;
2460 hw->fc.requested_mode = e1000_fc_default;
2461 hw->fc.current_mode = e1000_fc_default;
2463 igb_validate_mdi_setting(hw);
2465 /* By default, support wake on port A */
2466 if (hw->bus.func == 0)
2467 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2469 /* Check the NVM for wake support on non-port A ports */
2470 if (hw->mac.type >= e1000_82580)
2471 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2472 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2473 &eeprom_data);
2474 else if (hw->bus.func == 1)
2475 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2477 if (eeprom_data & IGB_EEPROM_APME)
2478 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2480 /* now that we have the eeprom settings, apply the special cases where
2481 * the eeprom may be wrong or the board simply won't support wake on
2482 * lan on a particular port
2484 switch (pdev->device) {
2485 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2486 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2487 break;
2488 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2489 case E1000_DEV_ID_82576_FIBER:
2490 case E1000_DEV_ID_82576_SERDES:
2491 /* Wake events only supported on port A for dual fiber
2492 * regardless of eeprom setting
2494 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2495 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2496 break;
2497 case E1000_DEV_ID_82576_QUAD_COPPER:
2498 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2499 /* if quad port adapter, disable WoL on all but port A */
2500 if (global_quad_port_a != 0)
2501 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2502 else
2503 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2504 /* Reset for multiple quad port adapters */
2505 if (++global_quad_port_a == 4)
2506 global_quad_port_a = 0;
2507 break;
2508 default:
2509 /* If the device can't wake, don't set software support */
2510 if (!device_can_wakeup(&adapter->pdev->dev))
2511 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2514 /* initialize the wol settings based on the eeprom settings */
2515 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2516 adapter->wol |= E1000_WUFC_MAG;
2518 /* Some vendors want WoL disabled by default, but still supported */
2519 if ((hw->mac.type == e1000_i350) &&
2520 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2521 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2522 adapter->wol = 0;
2525 device_set_wakeup_enable(&adapter->pdev->dev,
2526 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2528 /* reset the hardware with the new settings */
2529 igb_reset(adapter);
2531 /* Init the I2C interface */
2532 err = igb_init_i2c(adapter);
2533 if (err) {
2534 dev_err(&pdev->dev, "failed to init i2c interface\n");
2535 goto err_eeprom;
2538 /* let the f/w know that the h/w is now under the control of the
2539 * driver.
2541 igb_get_hw_control(adapter);
2543 strcpy(netdev->name, "eth%d");
2544 err = register_netdev(netdev);
2545 if (err)
2546 goto err_register;
2548 /* carrier off reporting is important to ethtool even BEFORE open */
2549 netif_carrier_off(netdev);
2551 #ifdef CONFIG_IGB_DCA
2552 if (dca_add_requester(&pdev->dev) == 0) {
2553 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2554 dev_info(&pdev->dev, "DCA enabled\n");
2555 igb_setup_dca(adapter);
2558 #endif
2559 #ifdef CONFIG_IGB_HWMON
2560 /* Initialize the thermal sensor on i350 devices. */
2561 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2562 u16 ets_word;
2564 /* Read the NVM to determine if this i350 device supports an
2565 * external thermal sensor.
2567 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2568 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2569 adapter->ets = true;
2570 else
2571 adapter->ets = false;
2572 if (igb_sysfs_init(adapter))
2573 dev_err(&pdev->dev,
2574 "failed to allocate sysfs resources\n");
2575 } else {
2576 adapter->ets = false;
2578 #endif
2579 /* Check if Media Autosense is enabled */
2580 adapter->ei = *ei;
2581 if (hw->dev_spec._82575.mas_capable)
2582 igb_init_mas(adapter);
2584 /* do hw tstamp init after resetting */
2585 igb_ptp_init(adapter);
2587 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2588 /* print bus type/speed/width info, not applicable to i354 */
2589 if (hw->mac.type != e1000_i354) {
2590 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2591 netdev->name,
2592 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2593 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2594 "unknown"),
2595 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2596 "Width x4" :
2597 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2598 "Width x2" :
2599 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2600 "Width x1" : "unknown"), netdev->dev_addr);
2603 if ((hw->mac.type >= e1000_i210 ||
2604 igb_get_flash_presence_i210(hw))) {
2605 ret_val = igb_read_part_string(hw, part_str,
2606 E1000_PBANUM_LENGTH);
2607 } else {
2608 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2611 if (ret_val)
2612 strcpy(part_str, "Unknown");
2613 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2614 dev_info(&pdev->dev,
2615 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2616 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2617 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2618 adapter->num_rx_queues, adapter->num_tx_queues);
2619 if (hw->phy.media_type == e1000_media_type_copper) {
2620 switch (hw->mac.type) {
2621 case e1000_i350:
2622 case e1000_i210:
2623 case e1000_i211:
2624 /* Enable EEE for internal copper PHY devices */
2625 err = igb_set_eee_i350(hw, true, true);
2626 if ((!err) &&
2627 (!hw->dev_spec._82575.eee_disable)) {
2628 adapter->eee_advert =
2629 MDIO_EEE_100TX | MDIO_EEE_1000T;
2630 adapter->flags |= IGB_FLAG_EEE;
2632 break;
2633 case e1000_i354:
2634 if ((rd32(E1000_CTRL_EXT) &
2635 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2636 err = igb_set_eee_i354(hw, true, true);
2637 if ((!err) &&
2638 (!hw->dev_spec._82575.eee_disable)) {
2639 adapter->eee_advert =
2640 MDIO_EEE_100TX | MDIO_EEE_1000T;
2641 adapter->flags |= IGB_FLAG_EEE;
2644 break;
2645 default:
2646 break;
2649 pm_runtime_put_noidle(&pdev->dev);
2650 return 0;
2652 err_register:
2653 igb_release_hw_control(adapter);
2654 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2655 err_eeprom:
2656 if (!igb_check_reset_block(hw))
2657 igb_reset_phy(hw);
2659 if (hw->flash_address)
2660 iounmap(hw->flash_address);
2661 err_sw_init:
2662 igb_clear_interrupt_scheme(adapter);
2663 pci_iounmap(pdev, hw->hw_addr);
2664 err_ioremap:
2665 free_netdev(netdev);
2666 err_alloc_etherdev:
2667 pci_release_selected_regions(pdev,
2668 pci_select_bars(pdev, IORESOURCE_MEM));
2669 err_pci_reg:
2670 err_dma:
2671 pci_disable_device(pdev);
2672 return err;
2675 #ifdef CONFIG_PCI_IOV
2676 static int igb_disable_sriov(struct pci_dev *pdev)
2678 struct net_device *netdev = pci_get_drvdata(pdev);
2679 struct igb_adapter *adapter = netdev_priv(netdev);
2680 struct e1000_hw *hw = &adapter->hw;
2682 /* reclaim resources allocated to VFs */
2683 if (adapter->vf_data) {
2684 /* disable iov and allow time for transactions to clear */
2685 if (pci_vfs_assigned(pdev)) {
2686 dev_warn(&pdev->dev,
2687 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2688 return -EPERM;
2689 } else {
2690 pci_disable_sriov(pdev);
2691 msleep(500);
2694 kfree(adapter->vf_data);
2695 adapter->vf_data = NULL;
2696 adapter->vfs_allocated_count = 0;
2697 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2698 wrfl();
2699 msleep(100);
2700 dev_info(&pdev->dev, "IOV Disabled\n");
2702 /* Re-enable DMA Coalescing flag since IOV is turned off */
2703 adapter->flags |= IGB_FLAG_DMAC;
2706 return 0;
2709 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2711 struct net_device *netdev = pci_get_drvdata(pdev);
2712 struct igb_adapter *adapter = netdev_priv(netdev);
2713 int old_vfs = pci_num_vf(pdev);
2714 int err = 0;
2715 int i;
2717 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2718 err = -EPERM;
2719 goto out;
2721 if (!num_vfs)
2722 goto out;
2724 if (old_vfs) {
2725 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2726 old_vfs, max_vfs);
2727 adapter->vfs_allocated_count = old_vfs;
2728 } else
2729 adapter->vfs_allocated_count = num_vfs;
2731 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2732 sizeof(struct vf_data_storage), GFP_KERNEL);
2734 /* if allocation failed then we do not support SR-IOV */
2735 if (!adapter->vf_data) {
2736 adapter->vfs_allocated_count = 0;
2737 dev_err(&pdev->dev,
2738 "Unable to allocate memory for VF Data Storage\n");
2739 err = -ENOMEM;
2740 goto out;
2743 /* only call pci_enable_sriov() if no VFs are allocated already */
2744 if (!old_vfs) {
2745 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2746 if (err)
2747 goto err_out;
2749 dev_info(&pdev->dev, "%d VFs allocated\n",
2750 adapter->vfs_allocated_count);
2751 for (i = 0; i < adapter->vfs_allocated_count; i++)
2752 igb_vf_configure(adapter, i);
2754 /* DMA Coalescing is not supported in IOV mode. */
2755 adapter->flags &= ~IGB_FLAG_DMAC;
2756 goto out;
2758 err_out:
2759 kfree(adapter->vf_data);
2760 adapter->vf_data = NULL;
2761 adapter->vfs_allocated_count = 0;
2762 out:
2763 return err;
2766 #endif
2768 * igb_remove_i2c - Cleanup I2C interface
2769 * @adapter: pointer to adapter structure
2771 static void igb_remove_i2c(struct igb_adapter *adapter)
2773 /* free the adapter bus structure */
2774 i2c_del_adapter(&adapter->i2c_adap);
2778 * igb_remove - Device Removal Routine
2779 * @pdev: PCI device information struct
2781 * igb_remove is called by the PCI subsystem to alert the driver
2782 * that it should release a PCI device. The could be caused by a
2783 * Hot-Plug event, or because the driver is going to be removed from
2784 * memory.
2786 static void igb_remove(struct pci_dev *pdev)
2788 struct net_device *netdev = pci_get_drvdata(pdev);
2789 struct igb_adapter *adapter = netdev_priv(netdev);
2790 struct e1000_hw *hw = &adapter->hw;
2792 pm_runtime_get_noresume(&pdev->dev);
2793 #ifdef CONFIG_IGB_HWMON
2794 igb_sysfs_exit(adapter);
2795 #endif
2796 igb_remove_i2c(adapter);
2797 igb_ptp_stop(adapter);
2798 /* The watchdog timer may be rescheduled, so explicitly
2799 * disable watchdog from being rescheduled.
2801 set_bit(__IGB_DOWN, &adapter->state);
2802 del_timer_sync(&adapter->watchdog_timer);
2803 del_timer_sync(&adapter->phy_info_timer);
2805 cancel_work_sync(&adapter->reset_task);
2806 cancel_work_sync(&adapter->watchdog_task);
2808 #ifdef CONFIG_IGB_DCA
2809 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2810 dev_info(&pdev->dev, "DCA disabled\n");
2811 dca_remove_requester(&pdev->dev);
2812 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2813 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2815 #endif
2817 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2818 * would have already happened in close and is redundant.
2820 igb_release_hw_control(adapter);
2822 unregister_netdev(netdev);
2824 igb_clear_interrupt_scheme(adapter);
2826 #ifdef CONFIG_PCI_IOV
2827 igb_disable_sriov(pdev);
2828 #endif
2830 pci_iounmap(pdev, hw->hw_addr);
2831 if (hw->flash_address)
2832 iounmap(hw->flash_address);
2833 pci_release_selected_regions(pdev,
2834 pci_select_bars(pdev, IORESOURCE_MEM));
2836 kfree(adapter->shadow_vfta);
2837 free_netdev(netdev);
2839 pci_disable_pcie_error_reporting(pdev);
2841 pci_disable_device(pdev);
2845 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2846 * @adapter: board private structure to initialize
2848 * This function initializes the vf specific data storage and then attempts to
2849 * allocate the VFs. The reason for ordering it this way is because it is much
2850 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2851 * the memory for the VFs.
2853 static void igb_probe_vfs(struct igb_adapter *adapter)
2855 #ifdef CONFIG_PCI_IOV
2856 struct pci_dev *pdev = adapter->pdev;
2857 struct e1000_hw *hw = &adapter->hw;
2859 /* Virtualization features not supported on i210 family. */
2860 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2861 return;
2863 pci_sriov_set_totalvfs(pdev, 7);
2864 igb_pci_enable_sriov(pdev, max_vfs);
2866 #endif /* CONFIG_PCI_IOV */
2869 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2871 struct e1000_hw *hw = &adapter->hw;
2872 u32 max_rss_queues;
2874 /* Determine the maximum number of RSS queues supported. */
2875 switch (hw->mac.type) {
2876 case e1000_i211:
2877 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2878 break;
2879 case e1000_82575:
2880 case e1000_i210:
2881 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2882 break;
2883 case e1000_i350:
2884 /* I350 cannot do RSS and SR-IOV at the same time */
2885 if (!!adapter->vfs_allocated_count) {
2886 max_rss_queues = 1;
2887 break;
2889 /* fall through */
2890 case e1000_82576:
2891 if (!!adapter->vfs_allocated_count) {
2892 max_rss_queues = 2;
2893 break;
2895 /* fall through */
2896 case e1000_82580:
2897 case e1000_i354:
2898 default:
2899 max_rss_queues = IGB_MAX_RX_QUEUES;
2900 break;
2903 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2905 /* Determine if we need to pair queues. */
2906 switch (hw->mac.type) {
2907 case e1000_82575:
2908 case e1000_i211:
2909 /* Device supports enough interrupts without queue pairing. */
2910 break;
2911 case e1000_82576:
2912 /* If VFs are going to be allocated with RSS queues then we
2913 * should pair the queues in order to conserve interrupts due
2914 * to limited supply.
2916 if ((adapter->rss_queues > 1) &&
2917 (adapter->vfs_allocated_count > 6))
2918 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2919 /* fall through */
2920 case e1000_82580:
2921 case e1000_i350:
2922 case e1000_i354:
2923 case e1000_i210:
2924 default:
2925 /* If rss_queues > half of max_rss_queues, pair the queues in
2926 * order to conserve interrupts due to limited supply.
2928 if (adapter->rss_queues > (max_rss_queues / 2))
2929 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2930 break;
2935 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2936 * @adapter: board private structure to initialize
2938 * igb_sw_init initializes the Adapter private data structure.
2939 * Fields are initialized based on PCI device information and
2940 * OS network device settings (MTU size).
2942 static int igb_sw_init(struct igb_adapter *adapter)
2944 struct e1000_hw *hw = &adapter->hw;
2945 struct net_device *netdev = adapter->netdev;
2946 struct pci_dev *pdev = adapter->pdev;
2948 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2950 /* set default ring sizes */
2951 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2952 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2954 /* set default ITR values */
2955 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2956 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2958 /* set default work limits */
2959 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2961 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2962 VLAN_HLEN;
2963 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2965 spin_lock_init(&adapter->stats64_lock);
2966 #ifdef CONFIG_PCI_IOV
2967 switch (hw->mac.type) {
2968 case e1000_82576:
2969 case e1000_i350:
2970 if (max_vfs > 7) {
2971 dev_warn(&pdev->dev,
2972 "Maximum of 7 VFs per PF, using max\n");
2973 max_vfs = adapter->vfs_allocated_count = 7;
2974 } else
2975 adapter->vfs_allocated_count = max_vfs;
2976 if (adapter->vfs_allocated_count)
2977 dev_warn(&pdev->dev,
2978 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2979 break;
2980 default:
2981 break;
2983 #endif /* CONFIG_PCI_IOV */
2985 igb_init_queue_configuration(adapter);
2987 /* Setup and initialize a copy of the hw vlan table array */
2988 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2989 GFP_ATOMIC);
2991 /* This call may decrease the number of queues */
2992 if (igb_init_interrupt_scheme(adapter, true)) {
2993 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2994 return -ENOMEM;
2997 igb_probe_vfs(adapter);
2999 /* Explicitly disable IRQ since the NIC can be in any state. */
3000 igb_irq_disable(adapter);
3002 if (hw->mac.type >= e1000_i350)
3003 adapter->flags &= ~IGB_FLAG_DMAC;
3005 set_bit(__IGB_DOWN, &adapter->state);
3006 return 0;
3010 * igb_open - Called when a network interface is made active
3011 * @netdev: network interface device structure
3013 * Returns 0 on success, negative value on failure
3015 * The open entry point is called when a network interface is made
3016 * active by the system (IFF_UP). At this point all resources needed
3017 * for transmit and receive operations are allocated, the interrupt
3018 * handler is registered with the OS, the watchdog timer is started,
3019 * and the stack is notified that the interface is ready.
3021 static int __igb_open(struct net_device *netdev, bool resuming)
3023 struct igb_adapter *adapter = netdev_priv(netdev);
3024 struct e1000_hw *hw = &adapter->hw;
3025 struct pci_dev *pdev = adapter->pdev;
3026 int err;
3027 int i;
3029 /* disallow open during test */
3030 if (test_bit(__IGB_TESTING, &adapter->state)) {
3031 WARN_ON(resuming);
3032 return -EBUSY;
3035 if (!resuming)
3036 pm_runtime_get_sync(&pdev->dev);
3038 netif_carrier_off(netdev);
3040 /* allocate transmit descriptors */
3041 err = igb_setup_all_tx_resources(adapter);
3042 if (err)
3043 goto err_setup_tx;
3045 /* allocate receive descriptors */
3046 err = igb_setup_all_rx_resources(adapter);
3047 if (err)
3048 goto err_setup_rx;
3050 igb_power_up_link(adapter);
3052 /* before we allocate an interrupt, we must be ready to handle it.
3053 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3054 * as soon as we call pci_request_irq, so we have to setup our
3055 * clean_rx handler before we do so.
3057 igb_configure(adapter);
3059 err = igb_request_irq(adapter);
3060 if (err)
3061 goto err_req_irq;
3063 /* Notify the stack of the actual queue counts. */
3064 err = netif_set_real_num_tx_queues(adapter->netdev,
3065 adapter->num_tx_queues);
3066 if (err)
3067 goto err_set_queues;
3069 err = netif_set_real_num_rx_queues(adapter->netdev,
3070 adapter->num_rx_queues);
3071 if (err)
3072 goto err_set_queues;
3074 /* From here on the code is the same as igb_up() */
3075 clear_bit(__IGB_DOWN, &adapter->state);
3077 for (i = 0; i < adapter->num_q_vectors; i++)
3078 napi_enable(&(adapter->q_vector[i]->napi));
3080 /* Clear any pending interrupts. */
3081 rd32(E1000_ICR);
3083 igb_irq_enable(adapter);
3085 /* notify VFs that reset has been completed */
3086 if (adapter->vfs_allocated_count) {
3087 u32 reg_data = rd32(E1000_CTRL_EXT);
3089 reg_data |= E1000_CTRL_EXT_PFRSTD;
3090 wr32(E1000_CTRL_EXT, reg_data);
3093 netif_tx_start_all_queues(netdev);
3095 if (!resuming)
3096 pm_runtime_put(&pdev->dev);
3098 /* start the watchdog. */
3099 hw->mac.get_link_status = 1;
3100 schedule_work(&adapter->watchdog_task);
3102 return 0;
3104 err_set_queues:
3105 igb_free_irq(adapter);
3106 err_req_irq:
3107 igb_release_hw_control(adapter);
3108 igb_power_down_link(adapter);
3109 igb_free_all_rx_resources(adapter);
3110 err_setup_rx:
3111 igb_free_all_tx_resources(adapter);
3112 err_setup_tx:
3113 igb_reset(adapter);
3114 if (!resuming)
3115 pm_runtime_put(&pdev->dev);
3117 return err;
3120 static int igb_open(struct net_device *netdev)
3122 return __igb_open(netdev, false);
3126 * igb_close - Disables a network interface
3127 * @netdev: network interface device structure
3129 * Returns 0, this is not allowed to fail
3131 * The close entry point is called when an interface is de-activated
3132 * by the OS. The hardware is still under the driver's control, but
3133 * needs to be disabled. A global MAC reset is issued to stop the
3134 * hardware, and all transmit and receive resources are freed.
3136 static int __igb_close(struct net_device *netdev, bool suspending)
3138 struct igb_adapter *adapter = netdev_priv(netdev);
3139 struct pci_dev *pdev = adapter->pdev;
3141 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3143 if (!suspending)
3144 pm_runtime_get_sync(&pdev->dev);
3146 igb_down(adapter);
3147 igb_free_irq(adapter);
3149 igb_free_all_tx_resources(adapter);
3150 igb_free_all_rx_resources(adapter);
3152 if (!suspending)
3153 pm_runtime_put_sync(&pdev->dev);
3154 return 0;
3157 static int igb_close(struct net_device *netdev)
3159 return __igb_close(netdev, false);
3163 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3164 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3166 * Return 0 on success, negative on failure
3168 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3170 struct device *dev = tx_ring->dev;
3171 int size;
3173 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3175 tx_ring->tx_buffer_info = vzalloc(size);
3176 if (!tx_ring->tx_buffer_info)
3177 goto err;
3179 /* round up to nearest 4K */
3180 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3181 tx_ring->size = ALIGN(tx_ring->size, 4096);
3183 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3184 &tx_ring->dma, GFP_KERNEL);
3185 if (!tx_ring->desc)
3186 goto err;
3188 tx_ring->next_to_use = 0;
3189 tx_ring->next_to_clean = 0;
3191 return 0;
3193 err:
3194 vfree(tx_ring->tx_buffer_info);
3195 tx_ring->tx_buffer_info = NULL;
3196 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3197 return -ENOMEM;
3201 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3202 * (Descriptors) for all queues
3203 * @adapter: board private structure
3205 * Return 0 on success, negative on failure
3207 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3209 struct pci_dev *pdev = adapter->pdev;
3210 int i, err = 0;
3212 for (i = 0; i < adapter->num_tx_queues; i++) {
3213 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3214 if (err) {
3215 dev_err(&pdev->dev,
3216 "Allocation for Tx Queue %u failed\n", i);
3217 for (i--; i >= 0; i--)
3218 igb_free_tx_resources(adapter->tx_ring[i]);
3219 break;
3223 return err;
3227 * igb_setup_tctl - configure the transmit control registers
3228 * @adapter: Board private structure
3230 void igb_setup_tctl(struct igb_adapter *adapter)
3232 struct e1000_hw *hw = &adapter->hw;
3233 u32 tctl;
3235 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3236 wr32(E1000_TXDCTL(0), 0);
3238 /* Program the Transmit Control Register */
3239 tctl = rd32(E1000_TCTL);
3240 tctl &= ~E1000_TCTL_CT;
3241 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3242 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3244 igb_config_collision_dist(hw);
3246 /* Enable transmits */
3247 tctl |= E1000_TCTL_EN;
3249 wr32(E1000_TCTL, tctl);
3253 * igb_configure_tx_ring - Configure transmit ring after Reset
3254 * @adapter: board private structure
3255 * @ring: tx ring to configure
3257 * Configure a transmit ring after a reset.
3259 void igb_configure_tx_ring(struct igb_adapter *adapter,
3260 struct igb_ring *ring)
3262 struct e1000_hw *hw = &adapter->hw;
3263 u32 txdctl = 0;
3264 u64 tdba = ring->dma;
3265 int reg_idx = ring->reg_idx;
3267 /* disable the queue */
3268 wr32(E1000_TXDCTL(reg_idx), 0);
3269 wrfl();
3270 mdelay(10);
3272 wr32(E1000_TDLEN(reg_idx),
3273 ring->count * sizeof(union e1000_adv_tx_desc));
3274 wr32(E1000_TDBAL(reg_idx),
3275 tdba & 0x00000000ffffffffULL);
3276 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3278 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3279 wr32(E1000_TDH(reg_idx), 0);
3280 writel(0, ring->tail);
3282 txdctl |= IGB_TX_PTHRESH;
3283 txdctl |= IGB_TX_HTHRESH << 8;
3284 txdctl |= IGB_TX_WTHRESH << 16;
3286 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3287 wr32(E1000_TXDCTL(reg_idx), txdctl);
3291 * igb_configure_tx - Configure transmit Unit after Reset
3292 * @adapter: board private structure
3294 * Configure the Tx unit of the MAC after a reset.
3296 static void igb_configure_tx(struct igb_adapter *adapter)
3298 int i;
3300 for (i = 0; i < adapter->num_tx_queues; i++)
3301 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3305 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3306 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3308 * Returns 0 on success, negative on failure
3310 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3312 struct device *dev = rx_ring->dev;
3313 int size;
3315 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3317 rx_ring->rx_buffer_info = vzalloc(size);
3318 if (!rx_ring->rx_buffer_info)
3319 goto err;
3321 /* Round up to nearest 4K */
3322 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3323 rx_ring->size = ALIGN(rx_ring->size, 4096);
3325 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3326 &rx_ring->dma, GFP_KERNEL);
3327 if (!rx_ring->desc)
3328 goto err;
3330 rx_ring->next_to_alloc = 0;
3331 rx_ring->next_to_clean = 0;
3332 rx_ring->next_to_use = 0;
3334 return 0;
3336 err:
3337 vfree(rx_ring->rx_buffer_info);
3338 rx_ring->rx_buffer_info = NULL;
3339 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3340 return -ENOMEM;
3344 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3345 * (Descriptors) for all queues
3346 * @adapter: board private structure
3348 * Return 0 on success, negative on failure
3350 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3352 struct pci_dev *pdev = adapter->pdev;
3353 int i, err = 0;
3355 for (i = 0; i < adapter->num_rx_queues; i++) {
3356 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3357 if (err) {
3358 dev_err(&pdev->dev,
3359 "Allocation for Rx Queue %u failed\n", i);
3360 for (i--; i >= 0; i--)
3361 igb_free_rx_resources(adapter->rx_ring[i]);
3362 break;
3366 return err;
3370 * igb_setup_mrqc - configure the multiple receive queue control registers
3371 * @adapter: Board private structure
3373 static void igb_setup_mrqc(struct igb_adapter *adapter)
3375 struct e1000_hw *hw = &adapter->hw;
3376 u32 mrqc, rxcsum;
3377 u32 j, num_rx_queues;
3378 u32 rss_key[10];
3380 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3381 for (j = 0; j < 10; j++)
3382 wr32(E1000_RSSRK(j), rss_key[j]);
3384 num_rx_queues = adapter->rss_queues;
3386 switch (hw->mac.type) {
3387 case e1000_82576:
3388 /* 82576 supports 2 RSS queues for SR-IOV */
3389 if (adapter->vfs_allocated_count)
3390 num_rx_queues = 2;
3391 break;
3392 default:
3393 break;
3396 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3397 for (j = 0; j < IGB_RETA_SIZE; j++)
3398 adapter->rss_indir_tbl[j] =
3399 (j * num_rx_queues) / IGB_RETA_SIZE;
3400 adapter->rss_indir_tbl_init = num_rx_queues;
3402 igb_write_rss_indir_tbl(adapter);
3404 /* Disable raw packet checksumming so that RSS hash is placed in
3405 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3406 * offloads as they are enabled by default
3408 rxcsum = rd32(E1000_RXCSUM);
3409 rxcsum |= E1000_RXCSUM_PCSD;
3411 if (adapter->hw.mac.type >= e1000_82576)
3412 /* Enable Receive Checksum Offload for SCTP */
3413 rxcsum |= E1000_RXCSUM_CRCOFL;
3415 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3416 wr32(E1000_RXCSUM, rxcsum);
3418 /* Generate RSS hash based on packet types, TCP/UDP
3419 * port numbers and/or IPv4/v6 src and dst addresses
3421 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3422 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3423 E1000_MRQC_RSS_FIELD_IPV6 |
3424 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3425 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3427 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3428 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3429 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3430 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3432 /* If VMDq is enabled then we set the appropriate mode for that, else
3433 * we default to RSS so that an RSS hash is calculated per packet even
3434 * if we are only using one queue
3436 if (adapter->vfs_allocated_count) {
3437 if (hw->mac.type > e1000_82575) {
3438 /* Set the default pool for the PF's first queue */
3439 u32 vtctl = rd32(E1000_VT_CTL);
3441 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3442 E1000_VT_CTL_DISABLE_DEF_POOL);
3443 vtctl |= adapter->vfs_allocated_count <<
3444 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3445 wr32(E1000_VT_CTL, vtctl);
3447 if (adapter->rss_queues > 1)
3448 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3449 else
3450 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3451 } else {
3452 if (hw->mac.type != e1000_i211)
3453 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3455 igb_vmm_control(adapter);
3457 wr32(E1000_MRQC, mrqc);
3461 * igb_setup_rctl - configure the receive control registers
3462 * @adapter: Board private structure
3464 void igb_setup_rctl(struct igb_adapter *adapter)
3466 struct e1000_hw *hw = &adapter->hw;
3467 u32 rctl;
3469 rctl = rd32(E1000_RCTL);
3471 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3472 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3474 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3475 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3477 /* enable stripping of CRC. It's unlikely this will break BMC
3478 * redirection as it did with e1000. Newer features require
3479 * that the HW strips the CRC.
3481 rctl |= E1000_RCTL_SECRC;
3483 /* disable store bad packets and clear size bits. */
3484 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3486 /* enable LPE to prevent packets larger than max_frame_size */
3487 rctl |= E1000_RCTL_LPE;
3489 /* disable queue 0 to prevent tail write w/o re-config */
3490 wr32(E1000_RXDCTL(0), 0);
3492 /* Attention!!! For SR-IOV PF driver operations you must enable
3493 * queue drop for all VF and PF queues to prevent head of line blocking
3494 * if an un-trusted VF does not provide descriptors to hardware.
3496 if (adapter->vfs_allocated_count) {
3497 /* set all queue drop enable bits */
3498 wr32(E1000_QDE, ALL_QUEUES);
3501 /* This is useful for sniffing bad packets. */
3502 if (adapter->netdev->features & NETIF_F_RXALL) {
3503 /* UPE and MPE will be handled by normal PROMISC logic
3504 * in e1000e_set_rx_mode
3506 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3507 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3508 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3510 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3511 E1000_RCTL_DPF | /* Allow filtered pause */
3512 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3513 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3514 * and that breaks VLANs.
3518 wr32(E1000_RCTL, rctl);
3521 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3522 int vfn)
3524 struct e1000_hw *hw = &adapter->hw;
3525 u32 vmolr;
3527 /* if it isn't the PF check to see if VFs are enabled and
3528 * increase the size to support vlan tags
3530 if (vfn < adapter->vfs_allocated_count &&
3531 adapter->vf_data[vfn].vlans_enabled)
3532 size += VLAN_TAG_SIZE;
3534 vmolr = rd32(E1000_VMOLR(vfn));
3535 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3536 vmolr |= size | E1000_VMOLR_LPE;
3537 wr32(E1000_VMOLR(vfn), vmolr);
3539 return 0;
3543 * igb_rlpml_set - set maximum receive packet size
3544 * @adapter: board private structure
3546 * Configure maximum receivable packet size.
3548 static void igb_rlpml_set(struct igb_adapter *adapter)
3550 u32 max_frame_size = adapter->max_frame_size;
3551 struct e1000_hw *hw = &adapter->hw;
3552 u16 pf_id = adapter->vfs_allocated_count;
3554 if (pf_id) {
3555 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3556 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3557 * to our max jumbo frame size, in case we need to enable
3558 * jumbo frames on one of the rings later.
3559 * This will not pass over-length frames into the default
3560 * queue because it's gated by the VMOLR.RLPML.
3562 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3565 wr32(E1000_RLPML, max_frame_size);
3568 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3569 int vfn, bool aupe)
3571 struct e1000_hw *hw = &adapter->hw;
3572 u32 vmolr;
3574 /* This register exists only on 82576 and newer so if we are older then
3575 * we should exit and do nothing
3577 if (hw->mac.type < e1000_82576)
3578 return;
3580 vmolr = rd32(E1000_VMOLR(vfn));
3581 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3582 if (hw->mac.type == e1000_i350) {
3583 u32 dvmolr;
3585 dvmolr = rd32(E1000_DVMOLR(vfn));
3586 dvmolr |= E1000_DVMOLR_STRVLAN;
3587 wr32(E1000_DVMOLR(vfn), dvmolr);
3589 if (aupe)
3590 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3591 else
3592 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3594 /* clear all bits that might not be set */
3595 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3597 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3598 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3599 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3600 * multicast packets
3602 if (vfn <= adapter->vfs_allocated_count)
3603 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3605 wr32(E1000_VMOLR(vfn), vmolr);
3609 * igb_configure_rx_ring - Configure a receive ring after Reset
3610 * @adapter: board private structure
3611 * @ring: receive ring to be configured
3613 * Configure the Rx unit of the MAC after a reset.
3615 void igb_configure_rx_ring(struct igb_adapter *adapter,
3616 struct igb_ring *ring)
3618 struct e1000_hw *hw = &adapter->hw;
3619 u64 rdba = ring->dma;
3620 int reg_idx = ring->reg_idx;
3621 u32 srrctl = 0, rxdctl = 0;
3623 /* disable the queue */
3624 wr32(E1000_RXDCTL(reg_idx), 0);
3626 /* Set DMA base address registers */
3627 wr32(E1000_RDBAL(reg_idx),
3628 rdba & 0x00000000ffffffffULL);
3629 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3630 wr32(E1000_RDLEN(reg_idx),
3631 ring->count * sizeof(union e1000_adv_rx_desc));
3633 /* initialize head and tail */
3634 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3635 wr32(E1000_RDH(reg_idx), 0);
3636 writel(0, ring->tail);
3638 /* set descriptor configuration */
3639 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3640 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3641 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3642 if (hw->mac.type >= e1000_82580)
3643 srrctl |= E1000_SRRCTL_TIMESTAMP;
3644 /* Only set Drop Enable if we are supporting multiple queues */
3645 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3646 srrctl |= E1000_SRRCTL_DROP_EN;
3648 wr32(E1000_SRRCTL(reg_idx), srrctl);
3650 /* set filtering for VMDQ pools */
3651 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3653 rxdctl |= IGB_RX_PTHRESH;
3654 rxdctl |= IGB_RX_HTHRESH << 8;
3655 rxdctl |= IGB_RX_WTHRESH << 16;
3657 /* enable receive descriptor fetching */
3658 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3659 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3663 * igb_configure_rx - Configure receive Unit after Reset
3664 * @adapter: board private structure
3666 * Configure the Rx unit of the MAC after a reset.
3668 static void igb_configure_rx(struct igb_adapter *adapter)
3670 int i;
3672 /* set UTA to appropriate mode */
3673 igb_set_uta(adapter);
3675 /* set the correct pool for the PF default MAC address in entry 0 */
3676 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3677 adapter->vfs_allocated_count);
3679 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3680 * the Base and Length of the Rx Descriptor Ring
3682 for (i = 0; i < adapter->num_rx_queues; i++)
3683 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3687 * igb_free_tx_resources - Free Tx Resources per Queue
3688 * @tx_ring: Tx descriptor ring for a specific queue
3690 * Free all transmit software resources
3692 void igb_free_tx_resources(struct igb_ring *tx_ring)
3694 igb_clean_tx_ring(tx_ring);
3696 vfree(tx_ring->tx_buffer_info);
3697 tx_ring->tx_buffer_info = NULL;
3699 /* if not set, then don't free */
3700 if (!tx_ring->desc)
3701 return;
3703 dma_free_coherent(tx_ring->dev, tx_ring->size,
3704 tx_ring->desc, tx_ring->dma);
3706 tx_ring->desc = NULL;
3710 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3711 * @adapter: board private structure
3713 * Free all transmit software resources
3715 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3717 int i;
3719 for (i = 0; i < adapter->num_tx_queues; i++)
3720 if (adapter->tx_ring[i])
3721 igb_free_tx_resources(adapter->tx_ring[i]);
3724 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3725 struct igb_tx_buffer *tx_buffer)
3727 if (tx_buffer->skb) {
3728 dev_kfree_skb_any(tx_buffer->skb);
3729 if (dma_unmap_len(tx_buffer, len))
3730 dma_unmap_single(ring->dev,
3731 dma_unmap_addr(tx_buffer, dma),
3732 dma_unmap_len(tx_buffer, len),
3733 DMA_TO_DEVICE);
3734 } else if (dma_unmap_len(tx_buffer, len)) {
3735 dma_unmap_page(ring->dev,
3736 dma_unmap_addr(tx_buffer, dma),
3737 dma_unmap_len(tx_buffer, len),
3738 DMA_TO_DEVICE);
3740 tx_buffer->next_to_watch = NULL;
3741 tx_buffer->skb = NULL;
3742 dma_unmap_len_set(tx_buffer, len, 0);
3743 /* buffer_info must be completely set up in the transmit path */
3747 * igb_clean_tx_ring - Free Tx Buffers
3748 * @tx_ring: ring to be cleaned
3750 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3752 struct igb_tx_buffer *buffer_info;
3753 unsigned long size;
3754 u16 i;
3756 if (!tx_ring->tx_buffer_info)
3757 return;
3758 /* Free all the Tx ring sk_buffs */
3760 for (i = 0; i < tx_ring->count; i++) {
3761 buffer_info = &tx_ring->tx_buffer_info[i];
3762 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3765 netdev_tx_reset_queue(txring_txq(tx_ring));
3767 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3768 memset(tx_ring->tx_buffer_info, 0, size);
3770 /* Zero out the descriptor ring */
3771 memset(tx_ring->desc, 0, tx_ring->size);
3773 tx_ring->next_to_use = 0;
3774 tx_ring->next_to_clean = 0;
3778 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3779 * @adapter: board private structure
3781 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3783 int i;
3785 for (i = 0; i < adapter->num_tx_queues; i++)
3786 if (adapter->tx_ring[i])
3787 igb_clean_tx_ring(adapter->tx_ring[i]);
3791 * igb_free_rx_resources - Free Rx Resources
3792 * @rx_ring: ring to clean the resources from
3794 * Free all receive software resources
3796 void igb_free_rx_resources(struct igb_ring *rx_ring)
3798 igb_clean_rx_ring(rx_ring);
3800 vfree(rx_ring->rx_buffer_info);
3801 rx_ring->rx_buffer_info = NULL;
3803 /* if not set, then don't free */
3804 if (!rx_ring->desc)
3805 return;
3807 dma_free_coherent(rx_ring->dev, rx_ring->size,
3808 rx_ring->desc, rx_ring->dma);
3810 rx_ring->desc = NULL;
3814 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3815 * @adapter: board private structure
3817 * Free all receive software resources
3819 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3821 int i;
3823 for (i = 0; i < adapter->num_rx_queues; i++)
3824 if (adapter->rx_ring[i])
3825 igb_free_rx_resources(adapter->rx_ring[i]);
3829 * igb_clean_rx_ring - Free Rx Buffers per Queue
3830 * @rx_ring: ring to free buffers from
3832 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3834 unsigned long size;
3835 u16 i;
3837 if (rx_ring->skb)
3838 dev_kfree_skb(rx_ring->skb);
3839 rx_ring->skb = NULL;
3841 if (!rx_ring->rx_buffer_info)
3842 return;
3844 /* Free all the Rx ring sk_buffs */
3845 for (i = 0; i < rx_ring->count; i++) {
3846 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3848 if (!buffer_info->page)
3849 continue;
3851 dma_unmap_page(rx_ring->dev,
3852 buffer_info->dma,
3853 PAGE_SIZE,
3854 DMA_FROM_DEVICE);
3855 __free_page(buffer_info->page);
3857 buffer_info->page = NULL;
3860 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3861 memset(rx_ring->rx_buffer_info, 0, size);
3863 /* Zero out the descriptor ring */
3864 memset(rx_ring->desc, 0, rx_ring->size);
3866 rx_ring->next_to_alloc = 0;
3867 rx_ring->next_to_clean = 0;
3868 rx_ring->next_to_use = 0;
3872 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3873 * @adapter: board private structure
3875 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3877 int i;
3879 for (i = 0; i < adapter->num_rx_queues; i++)
3880 if (adapter->rx_ring[i])
3881 igb_clean_rx_ring(adapter->rx_ring[i]);
3885 * igb_set_mac - Change the Ethernet Address of the NIC
3886 * @netdev: network interface device structure
3887 * @p: pointer to an address structure
3889 * Returns 0 on success, negative on failure
3891 static int igb_set_mac(struct net_device *netdev, void *p)
3893 struct igb_adapter *adapter = netdev_priv(netdev);
3894 struct e1000_hw *hw = &adapter->hw;
3895 struct sockaddr *addr = p;
3897 if (!is_valid_ether_addr(addr->sa_data))
3898 return -EADDRNOTAVAIL;
3900 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3901 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3903 /* set the correct pool for the new PF MAC address in entry 0 */
3904 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3905 adapter->vfs_allocated_count);
3907 return 0;
3911 * igb_write_mc_addr_list - write multicast addresses to MTA
3912 * @netdev: network interface device structure
3914 * Writes multicast address list to the MTA hash table.
3915 * Returns: -ENOMEM on failure
3916 * 0 on no addresses written
3917 * X on writing X addresses to MTA
3919 static int igb_write_mc_addr_list(struct net_device *netdev)
3921 struct igb_adapter *adapter = netdev_priv(netdev);
3922 struct e1000_hw *hw = &adapter->hw;
3923 struct netdev_hw_addr *ha;
3924 u8 *mta_list;
3925 int i;
3927 if (netdev_mc_empty(netdev)) {
3928 /* nothing to program, so clear mc list */
3929 igb_update_mc_addr_list(hw, NULL, 0);
3930 igb_restore_vf_multicasts(adapter);
3931 return 0;
3934 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3935 if (!mta_list)
3936 return -ENOMEM;
3938 /* The shared function expects a packed array of only addresses. */
3939 i = 0;
3940 netdev_for_each_mc_addr(ha, netdev)
3941 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3943 igb_update_mc_addr_list(hw, mta_list, i);
3944 kfree(mta_list);
3946 return netdev_mc_count(netdev);
3950 * igb_write_uc_addr_list - write unicast addresses to RAR table
3951 * @netdev: network interface device structure
3953 * Writes unicast address list to the RAR table.
3954 * Returns: -ENOMEM on failure/insufficient address space
3955 * 0 on no addresses written
3956 * X on writing X addresses to the RAR table
3958 static int igb_write_uc_addr_list(struct net_device *netdev)
3960 struct igb_adapter *adapter = netdev_priv(netdev);
3961 struct e1000_hw *hw = &adapter->hw;
3962 unsigned int vfn = adapter->vfs_allocated_count;
3963 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3964 int count = 0;
3966 /* return ENOMEM indicating insufficient memory for addresses */
3967 if (netdev_uc_count(netdev) > rar_entries)
3968 return -ENOMEM;
3970 if (!netdev_uc_empty(netdev) && rar_entries) {
3971 struct netdev_hw_addr *ha;
3973 netdev_for_each_uc_addr(ha, netdev) {
3974 if (!rar_entries)
3975 break;
3976 igb_rar_set_qsel(adapter, ha->addr,
3977 rar_entries--,
3978 vfn);
3979 count++;
3982 /* write the addresses in reverse order to avoid write combining */
3983 for (; rar_entries > 0 ; rar_entries--) {
3984 wr32(E1000_RAH(rar_entries), 0);
3985 wr32(E1000_RAL(rar_entries), 0);
3987 wrfl();
3989 return count;
3993 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3994 * @netdev: network interface device structure
3996 * The set_rx_mode entry point is called whenever the unicast or multicast
3997 * address lists or the network interface flags are updated. This routine is
3998 * responsible for configuring the hardware for proper unicast, multicast,
3999 * promiscuous mode, and all-multi behavior.
4001 static void igb_set_rx_mode(struct net_device *netdev)
4003 struct igb_adapter *adapter = netdev_priv(netdev);
4004 struct e1000_hw *hw = &adapter->hw;
4005 unsigned int vfn = adapter->vfs_allocated_count;
4006 u32 rctl, vmolr = 0;
4007 int count;
4009 /* Check for Promiscuous and All Multicast modes */
4010 rctl = rd32(E1000_RCTL);
4012 /* clear the effected bits */
4013 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4015 if (netdev->flags & IFF_PROMISC) {
4016 /* retain VLAN HW filtering if in VT mode */
4017 if (adapter->vfs_allocated_count)
4018 rctl |= E1000_RCTL_VFE;
4019 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4020 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4021 } else {
4022 if (netdev->flags & IFF_ALLMULTI) {
4023 rctl |= E1000_RCTL_MPE;
4024 vmolr |= E1000_VMOLR_MPME;
4025 } else {
4026 /* Write addresses to the MTA, if the attempt fails
4027 * then we should just turn on promiscuous mode so
4028 * that we can at least receive multicast traffic
4030 count = igb_write_mc_addr_list(netdev);
4031 if (count < 0) {
4032 rctl |= E1000_RCTL_MPE;
4033 vmolr |= E1000_VMOLR_MPME;
4034 } else if (count) {
4035 vmolr |= E1000_VMOLR_ROMPE;
4038 /* Write addresses to available RAR registers, if there is not
4039 * sufficient space to store all the addresses then enable
4040 * unicast promiscuous mode
4042 count = igb_write_uc_addr_list(netdev);
4043 if (count < 0) {
4044 rctl |= E1000_RCTL_UPE;
4045 vmolr |= E1000_VMOLR_ROPE;
4047 rctl |= E1000_RCTL_VFE;
4049 wr32(E1000_RCTL, rctl);
4051 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4052 * the VMOLR to enable the appropriate modes. Without this workaround
4053 * we will have issues with VLAN tag stripping not being done for frames
4054 * that are only arriving because we are the default pool
4056 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4057 return;
4059 vmolr |= rd32(E1000_VMOLR(vfn)) &
4060 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4061 wr32(E1000_VMOLR(vfn), vmolr);
4062 igb_restore_vf_multicasts(adapter);
4065 static void igb_check_wvbr(struct igb_adapter *adapter)
4067 struct e1000_hw *hw = &adapter->hw;
4068 u32 wvbr = 0;
4070 switch (hw->mac.type) {
4071 case e1000_82576:
4072 case e1000_i350:
4073 wvbr = rd32(E1000_WVBR);
4074 if (!wvbr)
4075 return;
4076 break;
4077 default:
4078 break;
4081 adapter->wvbr |= wvbr;
4084 #define IGB_STAGGERED_QUEUE_OFFSET 8
4086 static void igb_spoof_check(struct igb_adapter *adapter)
4088 int j;
4090 if (!adapter->wvbr)
4091 return;
4093 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4094 if (adapter->wvbr & (1 << j) ||
4095 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4096 dev_warn(&adapter->pdev->dev,
4097 "Spoof event(s) detected on VF %d\n", j);
4098 adapter->wvbr &=
4099 ~((1 << j) |
4100 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4105 /* Need to wait a few seconds after link up to get diagnostic information from
4106 * the phy
4108 static void igb_update_phy_info(unsigned long data)
4110 struct igb_adapter *adapter = (struct igb_adapter *) data;
4111 igb_get_phy_info(&adapter->hw);
4115 * igb_has_link - check shared code for link and determine up/down
4116 * @adapter: pointer to driver private info
4118 bool igb_has_link(struct igb_adapter *adapter)
4120 struct e1000_hw *hw = &adapter->hw;
4121 bool link_active = false;
4123 /* get_link_status is set on LSC (link status) interrupt or
4124 * rx sequence error interrupt. get_link_status will stay
4125 * false until the e1000_check_for_link establishes link
4126 * for copper adapters ONLY
4128 switch (hw->phy.media_type) {
4129 case e1000_media_type_copper:
4130 if (!hw->mac.get_link_status)
4131 return true;
4132 case e1000_media_type_internal_serdes:
4133 hw->mac.ops.check_for_link(hw);
4134 link_active = !hw->mac.get_link_status;
4135 break;
4136 default:
4137 case e1000_media_type_unknown:
4138 break;
4141 if (((hw->mac.type == e1000_i210) ||
4142 (hw->mac.type == e1000_i211)) &&
4143 (hw->phy.id == I210_I_PHY_ID)) {
4144 if (!netif_carrier_ok(adapter->netdev)) {
4145 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4146 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4147 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4148 adapter->link_check_timeout = jiffies;
4152 return link_active;
4155 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4157 bool ret = false;
4158 u32 ctrl_ext, thstat;
4160 /* check for thermal sensor event on i350 copper only */
4161 if (hw->mac.type == e1000_i350) {
4162 thstat = rd32(E1000_THSTAT);
4163 ctrl_ext = rd32(E1000_CTRL_EXT);
4165 if ((hw->phy.media_type == e1000_media_type_copper) &&
4166 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4167 ret = !!(thstat & event);
4170 return ret;
4174 * igb_check_lvmmc - check for malformed packets received
4175 * and indicated in LVMMC register
4176 * @adapter: pointer to adapter
4178 static void igb_check_lvmmc(struct igb_adapter *adapter)
4180 struct e1000_hw *hw = &adapter->hw;
4181 u32 lvmmc;
4183 lvmmc = rd32(E1000_LVMMC);
4184 if (lvmmc) {
4185 if (unlikely(net_ratelimit())) {
4186 netdev_warn(adapter->netdev,
4187 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4188 lvmmc);
4194 * igb_watchdog - Timer Call-back
4195 * @data: pointer to adapter cast into an unsigned long
4197 static void igb_watchdog(unsigned long data)
4199 struct igb_adapter *adapter = (struct igb_adapter *)data;
4200 /* Do the rest outside of interrupt context */
4201 schedule_work(&adapter->watchdog_task);
4204 static void igb_watchdog_task(struct work_struct *work)
4206 struct igb_adapter *adapter = container_of(work,
4207 struct igb_adapter,
4208 watchdog_task);
4209 struct e1000_hw *hw = &adapter->hw;
4210 struct e1000_phy_info *phy = &hw->phy;
4211 struct net_device *netdev = adapter->netdev;
4212 u32 link;
4213 int i;
4214 u32 connsw;
4216 link = igb_has_link(adapter);
4218 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4219 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4220 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4221 else
4222 link = false;
4225 /* Force link down if we have fiber to swap to */
4226 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4227 if (hw->phy.media_type == e1000_media_type_copper) {
4228 connsw = rd32(E1000_CONNSW);
4229 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4230 link = 0;
4233 if (link) {
4234 /* Perform a reset if the media type changed. */
4235 if (hw->dev_spec._82575.media_changed) {
4236 hw->dev_spec._82575.media_changed = false;
4237 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4238 igb_reset(adapter);
4240 /* Cancel scheduled suspend requests. */
4241 pm_runtime_resume(netdev->dev.parent);
4243 if (!netif_carrier_ok(netdev)) {
4244 u32 ctrl;
4246 hw->mac.ops.get_speed_and_duplex(hw,
4247 &adapter->link_speed,
4248 &adapter->link_duplex);
4250 ctrl = rd32(E1000_CTRL);
4251 /* Links status message must follow this format */
4252 netdev_info(netdev,
4253 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4254 netdev->name,
4255 adapter->link_speed,
4256 adapter->link_duplex == FULL_DUPLEX ?
4257 "Full" : "Half",
4258 (ctrl & E1000_CTRL_TFCE) &&
4259 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4260 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4261 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4263 /* disable EEE if enabled */
4264 if ((adapter->flags & IGB_FLAG_EEE) &&
4265 (adapter->link_duplex == HALF_DUPLEX)) {
4266 dev_info(&adapter->pdev->dev,
4267 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4268 adapter->hw.dev_spec._82575.eee_disable = true;
4269 adapter->flags &= ~IGB_FLAG_EEE;
4272 /* check if SmartSpeed worked */
4273 igb_check_downshift(hw);
4274 if (phy->speed_downgraded)
4275 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4277 /* check for thermal sensor event */
4278 if (igb_thermal_sensor_event(hw,
4279 E1000_THSTAT_LINK_THROTTLE))
4280 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4282 /* adjust timeout factor according to speed/duplex */
4283 adapter->tx_timeout_factor = 1;
4284 switch (adapter->link_speed) {
4285 case SPEED_10:
4286 adapter->tx_timeout_factor = 14;
4287 break;
4288 case SPEED_100:
4289 /* maybe add some timeout factor ? */
4290 break;
4293 netif_carrier_on(netdev);
4295 igb_ping_all_vfs(adapter);
4296 igb_check_vf_rate_limit(adapter);
4298 /* link state has changed, schedule phy info update */
4299 if (!test_bit(__IGB_DOWN, &adapter->state))
4300 mod_timer(&adapter->phy_info_timer,
4301 round_jiffies(jiffies + 2 * HZ));
4303 } else {
4304 if (netif_carrier_ok(netdev)) {
4305 adapter->link_speed = 0;
4306 adapter->link_duplex = 0;
4308 /* check for thermal sensor event */
4309 if (igb_thermal_sensor_event(hw,
4310 E1000_THSTAT_PWR_DOWN)) {
4311 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4314 /* Links status message must follow this format */
4315 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4316 netdev->name);
4317 netif_carrier_off(netdev);
4319 igb_ping_all_vfs(adapter);
4321 /* link state has changed, schedule phy info update */
4322 if (!test_bit(__IGB_DOWN, &adapter->state))
4323 mod_timer(&adapter->phy_info_timer,
4324 round_jiffies(jiffies + 2 * HZ));
4326 /* link is down, time to check for alternate media */
4327 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4328 igb_check_swap_media(adapter);
4329 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4330 schedule_work(&adapter->reset_task);
4331 /* return immediately */
4332 return;
4335 pm_schedule_suspend(netdev->dev.parent,
4336 MSEC_PER_SEC * 5);
4338 /* also check for alternate media here */
4339 } else if (!netif_carrier_ok(netdev) &&
4340 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4341 igb_check_swap_media(adapter);
4342 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4343 schedule_work(&adapter->reset_task);
4344 /* return immediately */
4345 return;
4350 spin_lock(&adapter->stats64_lock);
4351 igb_update_stats(adapter, &adapter->stats64);
4352 spin_unlock(&adapter->stats64_lock);
4354 for (i = 0; i < adapter->num_tx_queues; i++) {
4355 struct igb_ring *tx_ring = adapter->tx_ring[i];
4356 if (!netif_carrier_ok(netdev)) {
4357 /* We've lost link, so the controller stops DMA,
4358 * but we've got queued Tx work that's never going
4359 * to get done, so reset controller to flush Tx.
4360 * (Do the reset outside of interrupt context).
4362 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4363 adapter->tx_timeout_count++;
4364 schedule_work(&adapter->reset_task);
4365 /* return immediately since reset is imminent */
4366 return;
4370 /* Force detection of hung controller every watchdog period */
4371 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4374 /* Cause software interrupt to ensure Rx ring is cleaned */
4375 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4376 u32 eics = 0;
4378 for (i = 0; i < adapter->num_q_vectors; i++)
4379 eics |= adapter->q_vector[i]->eims_value;
4380 wr32(E1000_EICS, eics);
4381 } else {
4382 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4385 igb_spoof_check(adapter);
4386 igb_ptp_rx_hang(adapter);
4388 /* Check LVMMC register on i350/i354 only */
4389 if ((adapter->hw.mac.type == e1000_i350) ||
4390 (adapter->hw.mac.type == e1000_i354))
4391 igb_check_lvmmc(adapter);
4393 /* Reset the timer */
4394 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4395 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4396 mod_timer(&adapter->watchdog_timer,
4397 round_jiffies(jiffies + HZ));
4398 else
4399 mod_timer(&adapter->watchdog_timer,
4400 round_jiffies(jiffies + 2 * HZ));
4404 enum latency_range {
4405 lowest_latency = 0,
4406 low_latency = 1,
4407 bulk_latency = 2,
4408 latency_invalid = 255
4412 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4413 * @q_vector: pointer to q_vector
4415 * Stores a new ITR value based on strictly on packet size. This
4416 * algorithm is less sophisticated than that used in igb_update_itr,
4417 * due to the difficulty of synchronizing statistics across multiple
4418 * receive rings. The divisors and thresholds used by this function
4419 * were determined based on theoretical maximum wire speed and testing
4420 * data, in order to minimize response time while increasing bulk
4421 * throughput.
4422 * This functionality is controlled by ethtool's coalescing settings.
4423 * NOTE: This function is called only when operating in a multiqueue
4424 * receive environment.
4426 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4428 int new_val = q_vector->itr_val;
4429 int avg_wire_size = 0;
4430 struct igb_adapter *adapter = q_vector->adapter;
4431 unsigned int packets;
4433 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4434 * ints/sec - ITR timer value of 120 ticks.
4436 if (adapter->link_speed != SPEED_1000) {
4437 new_val = IGB_4K_ITR;
4438 goto set_itr_val;
4441 packets = q_vector->rx.total_packets;
4442 if (packets)
4443 avg_wire_size = q_vector->rx.total_bytes / packets;
4445 packets = q_vector->tx.total_packets;
4446 if (packets)
4447 avg_wire_size = max_t(u32, avg_wire_size,
4448 q_vector->tx.total_bytes / packets);
4450 /* if avg_wire_size isn't set no work was done */
4451 if (!avg_wire_size)
4452 goto clear_counts;
4454 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4455 avg_wire_size += 24;
4457 /* Don't starve jumbo frames */
4458 avg_wire_size = min(avg_wire_size, 3000);
4460 /* Give a little boost to mid-size frames */
4461 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4462 new_val = avg_wire_size / 3;
4463 else
4464 new_val = avg_wire_size / 2;
4466 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4467 if (new_val < IGB_20K_ITR &&
4468 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4469 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4470 new_val = IGB_20K_ITR;
4472 set_itr_val:
4473 if (new_val != q_vector->itr_val) {
4474 q_vector->itr_val = new_val;
4475 q_vector->set_itr = 1;
4477 clear_counts:
4478 q_vector->rx.total_bytes = 0;
4479 q_vector->rx.total_packets = 0;
4480 q_vector->tx.total_bytes = 0;
4481 q_vector->tx.total_packets = 0;
4485 * igb_update_itr - update the dynamic ITR value based on statistics
4486 * @q_vector: pointer to q_vector
4487 * @ring_container: ring info to update the itr for
4489 * Stores a new ITR value based on packets and byte
4490 * counts during the last interrupt. The advantage of per interrupt
4491 * computation is faster updates and more accurate ITR for the current
4492 * traffic pattern. Constants in this function were computed
4493 * based on theoretical maximum wire speed and thresholds were set based
4494 * on testing data as well as attempting to minimize response time
4495 * while increasing bulk throughput.
4496 * This functionality is controlled by ethtool's coalescing settings.
4497 * NOTE: These calculations are only valid when operating in a single-
4498 * queue environment.
4500 static void igb_update_itr(struct igb_q_vector *q_vector,
4501 struct igb_ring_container *ring_container)
4503 unsigned int packets = ring_container->total_packets;
4504 unsigned int bytes = ring_container->total_bytes;
4505 u8 itrval = ring_container->itr;
4507 /* no packets, exit with status unchanged */
4508 if (packets == 0)
4509 return;
4511 switch (itrval) {
4512 case lowest_latency:
4513 /* handle TSO and jumbo frames */
4514 if (bytes/packets > 8000)
4515 itrval = bulk_latency;
4516 else if ((packets < 5) && (bytes > 512))
4517 itrval = low_latency;
4518 break;
4519 case low_latency: /* 50 usec aka 20000 ints/s */
4520 if (bytes > 10000) {
4521 /* this if handles the TSO accounting */
4522 if (bytes/packets > 8000)
4523 itrval = bulk_latency;
4524 else if ((packets < 10) || ((bytes/packets) > 1200))
4525 itrval = bulk_latency;
4526 else if ((packets > 35))
4527 itrval = lowest_latency;
4528 } else if (bytes/packets > 2000) {
4529 itrval = bulk_latency;
4530 } else if (packets <= 2 && bytes < 512) {
4531 itrval = lowest_latency;
4533 break;
4534 case bulk_latency: /* 250 usec aka 4000 ints/s */
4535 if (bytes > 25000) {
4536 if (packets > 35)
4537 itrval = low_latency;
4538 } else if (bytes < 1500) {
4539 itrval = low_latency;
4541 break;
4544 /* clear work counters since we have the values we need */
4545 ring_container->total_bytes = 0;
4546 ring_container->total_packets = 0;
4548 /* write updated itr to ring container */
4549 ring_container->itr = itrval;
4552 static void igb_set_itr(struct igb_q_vector *q_vector)
4554 struct igb_adapter *adapter = q_vector->adapter;
4555 u32 new_itr = q_vector->itr_val;
4556 u8 current_itr = 0;
4558 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4559 if (adapter->link_speed != SPEED_1000) {
4560 current_itr = 0;
4561 new_itr = IGB_4K_ITR;
4562 goto set_itr_now;
4565 igb_update_itr(q_vector, &q_vector->tx);
4566 igb_update_itr(q_vector, &q_vector->rx);
4568 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4570 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4571 if (current_itr == lowest_latency &&
4572 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4573 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4574 current_itr = low_latency;
4576 switch (current_itr) {
4577 /* counts and packets in update_itr are dependent on these numbers */
4578 case lowest_latency:
4579 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4580 break;
4581 case low_latency:
4582 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4583 break;
4584 case bulk_latency:
4585 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4586 break;
4587 default:
4588 break;
4591 set_itr_now:
4592 if (new_itr != q_vector->itr_val) {
4593 /* this attempts to bias the interrupt rate towards Bulk
4594 * by adding intermediate steps when interrupt rate is
4595 * increasing
4597 new_itr = new_itr > q_vector->itr_val ?
4598 max((new_itr * q_vector->itr_val) /
4599 (new_itr + (q_vector->itr_val >> 2)),
4600 new_itr) : new_itr;
4601 /* Don't write the value here; it resets the adapter's
4602 * internal timer, and causes us to delay far longer than
4603 * we should between interrupts. Instead, we write the ITR
4604 * value at the beginning of the next interrupt so the timing
4605 * ends up being correct.
4607 q_vector->itr_val = new_itr;
4608 q_vector->set_itr = 1;
4612 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4613 u32 type_tucmd, u32 mss_l4len_idx)
4615 struct e1000_adv_tx_context_desc *context_desc;
4616 u16 i = tx_ring->next_to_use;
4618 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4620 i++;
4621 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4623 /* set bits to identify this as an advanced context descriptor */
4624 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4626 /* For 82575, context index must be unique per ring. */
4627 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4628 mss_l4len_idx |= tx_ring->reg_idx << 4;
4630 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4631 context_desc->seqnum_seed = 0;
4632 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4633 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4636 static int igb_tso(struct igb_ring *tx_ring,
4637 struct igb_tx_buffer *first,
4638 u8 *hdr_len)
4640 struct sk_buff *skb = first->skb;
4641 u32 vlan_macip_lens, type_tucmd;
4642 u32 mss_l4len_idx, l4len;
4643 int err;
4645 if (skb->ip_summed != CHECKSUM_PARTIAL)
4646 return 0;
4648 if (!skb_is_gso(skb))
4649 return 0;
4651 err = skb_cow_head(skb, 0);
4652 if (err < 0)
4653 return err;
4655 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4656 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4658 if (first->protocol == htons(ETH_P_IP)) {
4659 struct iphdr *iph = ip_hdr(skb);
4660 iph->tot_len = 0;
4661 iph->check = 0;
4662 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4663 iph->daddr, 0,
4664 IPPROTO_TCP,
4666 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4667 first->tx_flags |= IGB_TX_FLAGS_TSO |
4668 IGB_TX_FLAGS_CSUM |
4669 IGB_TX_FLAGS_IPV4;
4670 } else if (skb_is_gso_v6(skb)) {
4671 ipv6_hdr(skb)->payload_len = 0;
4672 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4673 &ipv6_hdr(skb)->daddr,
4674 0, IPPROTO_TCP, 0);
4675 first->tx_flags |= IGB_TX_FLAGS_TSO |
4676 IGB_TX_FLAGS_CSUM;
4679 /* compute header lengths */
4680 l4len = tcp_hdrlen(skb);
4681 *hdr_len = skb_transport_offset(skb) + l4len;
4683 /* update gso size and bytecount with header size */
4684 first->gso_segs = skb_shinfo(skb)->gso_segs;
4685 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4687 /* MSS L4LEN IDX */
4688 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4689 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4691 /* VLAN MACLEN IPLEN */
4692 vlan_macip_lens = skb_network_header_len(skb);
4693 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4694 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4696 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4698 return 1;
4701 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4703 struct sk_buff *skb = first->skb;
4704 u32 vlan_macip_lens = 0;
4705 u32 mss_l4len_idx = 0;
4706 u32 type_tucmd = 0;
4708 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4709 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4710 return;
4711 } else {
4712 u8 l4_hdr = 0;
4714 switch (first->protocol) {
4715 case htons(ETH_P_IP):
4716 vlan_macip_lens |= skb_network_header_len(skb);
4717 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4718 l4_hdr = ip_hdr(skb)->protocol;
4719 break;
4720 case htons(ETH_P_IPV6):
4721 vlan_macip_lens |= skb_network_header_len(skb);
4722 l4_hdr = ipv6_hdr(skb)->nexthdr;
4723 break;
4724 default:
4725 if (unlikely(net_ratelimit())) {
4726 dev_warn(tx_ring->dev,
4727 "partial checksum but proto=%x!\n",
4728 first->protocol);
4730 break;
4733 switch (l4_hdr) {
4734 case IPPROTO_TCP:
4735 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4736 mss_l4len_idx = tcp_hdrlen(skb) <<
4737 E1000_ADVTXD_L4LEN_SHIFT;
4738 break;
4739 case IPPROTO_SCTP:
4740 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4741 mss_l4len_idx = sizeof(struct sctphdr) <<
4742 E1000_ADVTXD_L4LEN_SHIFT;
4743 break;
4744 case IPPROTO_UDP:
4745 mss_l4len_idx = sizeof(struct udphdr) <<
4746 E1000_ADVTXD_L4LEN_SHIFT;
4747 break;
4748 default:
4749 if (unlikely(net_ratelimit())) {
4750 dev_warn(tx_ring->dev,
4751 "partial checksum but l4 proto=%x!\n",
4752 l4_hdr);
4754 break;
4757 /* update TX checksum flag */
4758 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4761 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4762 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4764 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4767 #define IGB_SET_FLAG(_input, _flag, _result) \
4768 ((_flag <= _result) ? \
4769 ((u32)(_input & _flag) * (_result / _flag)) : \
4770 ((u32)(_input & _flag) / (_flag / _result)))
4772 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4774 /* set type for advanced descriptor with frame checksum insertion */
4775 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4776 E1000_ADVTXD_DCMD_DEXT |
4777 E1000_ADVTXD_DCMD_IFCS;
4779 /* set HW vlan bit if vlan is present */
4780 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4781 (E1000_ADVTXD_DCMD_VLE));
4783 /* set segmentation bits for TSO */
4784 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4785 (E1000_ADVTXD_DCMD_TSE));
4787 /* set timestamp bit if present */
4788 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4789 (E1000_ADVTXD_MAC_TSTAMP));
4791 /* insert frame checksum */
4792 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4794 return cmd_type;
4797 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4798 union e1000_adv_tx_desc *tx_desc,
4799 u32 tx_flags, unsigned int paylen)
4801 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4803 /* 82575 requires a unique index per ring */
4804 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4805 olinfo_status |= tx_ring->reg_idx << 4;
4807 /* insert L4 checksum */
4808 olinfo_status |= IGB_SET_FLAG(tx_flags,
4809 IGB_TX_FLAGS_CSUM,
4810 (E1000_TXD_POPTS_TXSM << 8));
4812 /* insert IPv4 checksum */
4813 olinfo_status |= IGB_SET_FLAG(tx_flags,
4814 IGB_TX_FLAGS_IPV4,
4815 (E1000_TXD_POPTS_IXSM << 8));
4817 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4820 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4822 struct net_device *netdev = tx_ring->netdev;
4824 netif_stop_subqueue(netdev, tx_ring->queue_index);
4826 /* Herbert's original patch had:
4827 * smp_mb__after_netif_stop_queue();
4828 * but since that doesn't exist yet, just open code it.
4830 smp_mb();
4832 /* We need to check again in a case another CPU has just
4833 * made room available.
4835 if (igb_desc_unused(tx_ring) < size)
4836 return -EBUSY;
4838 /* A reprieve! */
4839 netif_wake_subqueue(netdev, tx_ring->queue_index);
4841 u64_stats_update_begin(&tx_ring->tx_syncp2);
4842 tx_ring->tx_stats.restart_queue2++;
4843 u64_stats_update_end(&tx_ring->tx_syncp2);
4845 return 0;
4848 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4850 if (igb_desc_unused(tx_ring) >= size)
4851 return 0;
4852 return __igb_maybe_stop_tx(tx_ring, size);
4855 static void igb_tx_map(struct igb_ring *tx_ring,
4856 struct igb_tx_buffer *first,
4857 const u8 hdr_len)
4859 struct sk_buff *skb = first->skb;
4860 struct igb_tx_buffer *tx_buffer;
4861 union e1000_adv_tx_desc *tx_desc;
4862 struct skb_frag_struct *frag;
4863 dma_addr_t dma;
4864 unsigned int data_len, size;
4865 u32 tx_flags = first->tx_flags;
4866 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4867 u16 i = tx_ring->next_to_use;
4869 tx_desc = IGB_TX_DESC(tx_ring, i);
4871 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4873 size = skb_headlen(skb);
4874 data_len = skb->data_len;
4876 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4878 tx_buffer = first;
4880 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4881 if (dma_mapping_error(tx_ring->dev, dma))
4882 goto dma_error;
4884 /* record length, and DMA address */
4885 dma_unmap_len_set(tx_buffer, len, size);
4886 dma_unmap_addr_set(tx_buffer, dma, dma);
4888 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4890 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4891 tx_desc->read.cmd_type_len =
4892 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4894 i++;
4895 tx_desc++;
4896 if (i == tx_ring->count) {
4897 tx_desc = IGB_TX_DESC(tx_ring, 0);
4898 i = 0;
4900 tx_desc->read.olinfo_status = 0;
4902 dma += IGB_MAX_DATA_PER_TXD;
4903 size -= IGB_MAX_DATA_PER_TXD;
4905 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4908 if (likely(!data_len))
4909 break;
4911 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4913 i++;
4914 tx_desc++;
4915 if (i == tx_ring->count) {
4916 tx_desc = IGB_TX_DESC(tx_ring, 0);
4917 i = 0;
4919 tx_desc->read.olinfo_status = 0;
4921 size = skb_frag_size(frag);
4922 data_len -= size;
4924 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4925 size, DMA_TO_DEVICE);
4927 tx_buffer = &tx_ring->tx_buffer_info[i];
4930 /* write last descriptor with RS and EOP bits */
4931 cmd_type |= size | IGB_TXD_DCMD;
4932 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4934 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4936 /* set the timestamp */
4937 first->time_stamp = jiffies;
4939 /* Force memory writes to complete before letting h/w know there
4940 * are new descriptors to fetch. (Only applicable for weak-ordered
4941 * memory model archs, such as IA-64).
4943 * We also need this memory barrier to make certain all of the
4944 * status bits have been updated before next_to_watch is written.
4946 wmb();
4948 /* set next_to_watch value indicating a packet is present */
4949 first->next_to_watch = tx_desc;
4951 i++;
4952 if (i == tx_ring->count)
4953 i = 0;
4955 tx_ring->next_to_use = i;
4957 /* Make sure there is space in the ring for the next send. */
4958 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4960 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4961 writel(i, tx_ring->tail);
4963 /* we need this if more than one processor can write to our tail
4964 * at a time, it synchronizes IO on IA64/Altix systems
4966 mmiowb();
4968 return;
4970 dma_error:
4971 dev_err(tx_ring->dev, "TX DMA map failed\n");
4973 /* clear dma mappings for failed tx_buffer_info map */
4974 for (;;) {
4975 tx_buffer = &tx_ring->tx_buffer_info[i];
4976 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4977 if (tx_buffer == first)
4978 break;
4979 if (i == 0)
4980 i = tx_ring->count;
4981 i--;
4984 tx_ring->next_to_use = i;
4987 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4988 struct igb_ring *tx_ring)
4990 struct igb_tx_buffer *first;
4991 int tso;
4992 u32 tx_flags = 0;
4993 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4994 __be16 protocol = vlan_get_protocol(skb);
4995 u8 hdr_len = 0;
4997 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4998 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4999 * + 2 desc gap to keep tail from touching head,
5000 * + 1 desc for context descriptor,
5001 * otherwise try next time
5003 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
5004 unsigned short f;
5006 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5007 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5008 } else {
5009 count += skb_shinfo(skb)->nr_frags;
5012 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5013 /* this is a hard error */
5014 return NETDEV_TX_BUSY;
5017 /* record the location of the first descriptor for this packet */
5018 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5019 first->skb = skb;
5020 first->bytecount = skb->len;
5021 first->gso_segs = 1;
5023 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5024 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5026 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5027 &adapter->state)) {
5028 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5029 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5031 adapter->ptp_tx_skb = skb_get(skb);
5032 adapter->ptp_tx_start = jiffies;
5033 if (adapter->hw.mac.type == e1000_82576)
5034 schedule_work(&adapter->ptp_tx_work);
5038 skb_tx_timestamp(skb);
5040 if (vlan_tx_tag_present(skb)) {
5041 tx_flags |= IGB_TX_FLAGS_VLAN;
5042 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5045 /* record initial flags and protocol */
5046 first->tx_flags = tx_flags;
5047 first->protocol = protocol;
5049 tso = igb_tso(tx_ring, first, &hdr_len);
5050 if (tso < 0)
5051 goto out_drop;
5052 else if (!tso)
5053 igb_tx_csum(tx_ring, first);
5055 igb_tx_map(tx_ring, first, hdr_len);
5057 return NETDEV_TX_OK;
5059 out_drop:
5060 igb_unmap_and_free_tx_resource(tx_ring, first);
5062 return NETDEV_TX_OK;
5065 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5066 struct sk_buff *skb)
5068 unsigned int r_idx = skb->queue_mapping;
5070 if (r_idx >= adapter->num_tx_queues)
5071 r_idx = r_idx % adapter->num_tx_queues;
5073 return adapter->tx_ring[r_idx];
5076 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5077 struct net_device *netdev)
5079 struct igb_adapter *adapter = netdev_priv(netdev);
5081 if (test_bit(__IGB_DOWN, &adapter->state)) {
5082 dev_kfree_skb_any(skb);
5083 return NETDEV_TX_OK;
5086 if (skb->len <= 0) {
5087 dev_kfree_skb_any(skb);
5088 return NETDEV_TX_OK;
5091 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5092 * in order to meet this minimum size requirement.
5094 if (unlikely(skb->len < 17)) {
5095 if (skb_pad(skb, 17 - skb->len))
5096 return NETDEV_TX_OK;
5097 skb->len = 17;
5098 skb_set_tail_pointer(skb, 17);
5101 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5105 * igb_tx_timeout - Respond to a Tx Hang
5106 * @netdev: network interface device structure
5108 static void igb_tx_timeout(struct net_device *netdev)
5110 struct igb_adapter *adapter = netdev_priv(netdev);
5111 struct e1000_hw *hw = &adapter->hw;
5113 /* Do the reset outside of interrupt context */
5114 adapter->tx_timeout_count++;
5116 if (hw->mac.type >= e1000_82580)
5117 hw->dev_spec._82575.global_device_reset = true;
5119 schedule_work(&adapter->reset_task);
5120 wr32(E1000_EICS,
5121 (adapter->eims_enable_mask & ~adapter->eims_other));
5124 static void igb_reset_task(struct work_struct *work)
5126 struct igb_adapter *adapter;
5127 adapter = container_of(work, struct igb_adapter, reset_task);
5129 igb_dump(adapter);
5130 netdev_err(adapter->netdev, "Reset adapter\n");
5131 igb_reinit_locked(adapter);
5135 * igb_get_stats64 - Get System Network Statistics
5136 * @netdev: network interface device structure
5137 * @stats: rtnl_link_stats64 pointer
5139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5140 struct rtnl_link_stats64 *stats)
5142 struct igb_adapter *adapter = netdev_priv(netdev);
5144 spin_lock(&adapter->stats64_lock);
5145 igb_update_stats(adapter, &adapter->stats64);
5146 memcpy(stats, &adapter->stats64, sizeof(*stats));
5147 spin_unlock(&adapter->stats64_lock);
5149 return stats;
5153 * igb_change_mtu - Change the Maximum Transfer Unit
5154 * @netdev: network interface device structure
5155 * @new_mtu: new value for maximum frame size
5157 * Returns 0 on success, negative on failure
5159 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5161 struct igb_adapter *adapter = netdev_priv(netdev);
5162 struct pci_dev *pdev = adapter->pdev;
5163 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5165 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5166 dev_err(&pdev->dev, "Invalid MTU setting\n");
5167 return -EINVAL;
5170 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5171 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5172 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5173 return -EINVAL;
5176 /* adjust max frame to be at least the size of a standard frame */
5177 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5178 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5180 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5181 usleep_range(1000, 2000);
5183 /* igb_down has a dependency on max_frame_size */
5184 adapter->max_frame_size = max_frame;
5186 if (netif_running(netdev))
5187 igb_down(adapter);
5189 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5190 netdev->mtu, new_mtu);
5191 netdev->mtu = new_mtu;
5193 if (netif_running(netdev))
5194 igb_up(adapter);
5195 else
5196 igb_reset(adapter);
5198 clear_bit(__IGB_RESETTING, &adapter->state);
5200 return 0;
5204 * igb_update_stats - Update the board statistics counters
5205 * @adapter: board private structure
5207 void igb_update_stats(struct igb_adapter *adapter,
5208 struct rtnl_link_stats64 *net_stats)
5210 struct e1000_hw *hw = &adapter->hw;
5211 struct pci_dev *pdev = adapter->pdev;
5212 u32 reg, mpc;
5213 int i;
5214 u64 bytes, packets;
5215 unsigned int start;
5216 u64 _bytes, _packets;
5218 /* Prevent stats update while adapter is being reset, or if the pci
5219 * connection is down.
5221 if (adapter->link_speed == 0)
5222 return;
5223 if (pci_channel_offline(pdev))
5224 return;
5226 bytes = 0;
5227 packets = 0;
5229 rcu_read_lock();
5230 for (i = 0; i < adapter->num_rx_queues; i++) {
5231 struct igb_ring *ring = adapter->rx_ring[i];
5232 u32 rqdpc = rd32(E1000_RQDPC(i));
5233 if (hw->mac.type >= e1000_i210)
5234 wr32(E1000_RQDPC(i), 0);
5236 if (rqdpc) {
5237 ring->rx_stats.drops += rqdpc;
5238 net_stats->rx_fifo_errors += rqdpc;
5241 do {
5242 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5243 _bytes = ring->rx_stats.bytes;
5244 _packets = ring->rx_stats.packets;
5245 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5246 bytes += _bytes;
5247 packets += _packets;
5250 net_stats->rx_bytes = bytes;
5251 net_stats->rx_packets = packets;
5253 bytes = 0;
5254 packets = 0;
5255 for (i = 0; i < adapter->num_tx_queues; i++) {
5256 struct igb_ring *ring = adapter->tx_ring[i];
5257 do {
5258 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5259 _bytes = ring->tx_stats.bytes;
5260 _packets = ring->tx_stats.packets;
5261 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5262 bytes += _bytes;
5263 packets += _packets;
5265 net_stats->tx_bytes = bytes;
5266 net_stats->tx_packets = packets;
5267 rcu_read_unlock();
5269 /* read stats registers */
5270 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5271 adapter->stats.gprc += rd32(E1000_GPRC);
5272 adapter->stats.gorc += rd32(E1000_GORCL);
5273 rd32(E1000_GORCH); /* clear GORCL */
5274 adapter->stats.bprc += rd32(E1000_BPRC);
5275 adapter->stats.mprc += rd32(E1000_MPRC);
5276 adapter->stats.roc += rd32(E1000_ROC);
5278 adapter->stats.prc64 += rd32(E1000_PRC64);
5279 adapter->stats.prc127 += rd32(E1000_PRC127);
5280 adapter->stats.prc255 += rd32(E1000_PRC255);
5281 adapter->stats.prc511 += rd32(E1000_PRC511);
5282 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5283 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5284 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5285 adapter->stats.sec += rd32(E1000_SEC);
5287 mpc = rd32(E1000_MPC);
5288 adapter->stats.mpc += mpc;
5289 net_stats->rx_fifo_errors += mpc;
5290 adapter->stats.scc += rd32(E1000_SCC);
5291 adapter->stats.ecol += rd32(E1000_ECOL);
5292 adapter->stats.mcc += rd32(E1000_MCC);
5293 adapter->stats.latecol += rd32(E1000_LATECOL);
5294 adapter->stats.dc += rd32(E1000_DC);
5295 adapter->stats.rlec += rd32(E1000_RLEC);
5296 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5297 adapter->stats.xontxc += rd32(E1000_XONTXC);
5298 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5299 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5300 adapter->stats.fcruc += rd32(E1000_FCRUC);
5301 adapter->stats.gptc += rd32(E1000_GPTC);
5302 adapter->stats.gotc += rd32(E1000_GOTCL);
5303 rd32(E1000_GOTCH); /* clear GOTCL */
5304 adapter->stats.rnbc += rd32(E1000_RNBC);
5305 adapter->stats.ruc += rd32(E1000_RUC);
5306 adapter->stats.rfc += rd32(E1000_RFC);
5307 adapter->stats.rjc += rd32(E1000_RJC);
5308 adapter->stats.tor += rd32(E1000_TORH);
5309 adapter->stats.tot += rd32(E1000_TOTH);
5310 adapter->stats.tpr += rd32(E1000_TPR);
5312 adapter->stats.ptc64 += rd32(E1000_PTC64);
5313 adapter->stats.ptc127 += rd32(E1000_PTC127);
5314 adapter->stats.ptc255 += rd32(E1000_PTC255);
5315 adapter->stats.ptc511 += rd32(E1000_PTC511);
5316 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5317 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5319 adapter->stats.mptc += rd32(E1000_MPTC);
5320 adapter->stats.bptc += rd32(E1000_BPTC);
5322 adapter->stats.tpt += rd32(E1000_TPT);
5323 adapter->stats.colc += rd32(E1000_COLC);
5325 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5326 /* read internal phy specific stats */
5327 reg = rd32(E1000_CTRL_EXT);
5328 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5329 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5331 /* this stat has invalid values on i210/i211 */
5332 if ((hw->mac.type != e1000_i210) &&
5333 (hw->mac.type != e1000_i211))
5334 adapter->stats.tncrs += rd32(E1000_TNCRS);
5337 adapter->stats.tsctc += rd32(E1000_TSCTC);
5338 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5340 adapter->stats.iac += rd32(E1000_IAC);
5341 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5342 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5343 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5344 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5345 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5346 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5347 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5348 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5350 /* Fill out the OS statistics structure */
5351 net_stats->multicast = adapter->stats.mprc;
5352 net_stats->collisions = adapter->stats.colc;
5354 /* Rx Errors */
5356 /* RLEC on some newer hardware can be incorrect so build
5357 * our own version based on RUC and ROC
5359 net_stats->rx_errors = adapter->stats.rxerrc +
5360 adapter->stats.crcerrs + adapter->stats.algnerrc +
5361 adapter->stats.ruc + adapter->stats.roc +
5362 adapter->stats.cexterr;
5363 net_stats->rx_length_errors = adapter->stats.ruc +
5364 adapter->stats.roc;
5365 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5366 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5367 net_stats->rx_missed_errors = adapter->stats.mpc;
5369 /* Tx Errors */
5370 net_stats->tx_errors = adapter->stats.ecol +
5371 adapter->stats.latecol;
5372 net_stats->tx_aborted_errors = adapter->stats.ecol;
5373 net_stats->tx_window_errors = adapter->stats.latecol;
5374 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5376 /* Tx Dropped needs to be maintained elsewhere */
5378 /* Management Stats */
5379 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5380 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5381 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5383 /* OS2BMC Stats */
5384 reg = rd32(E1000_MANC);
5385 if (reg & E1000_MANC_EN_BMC2OS) {
5386 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5387 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5388 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5389 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5393 static irqreturn_t igb_msix_other(int irq, void *data)
5395 struct igb_adapter *adapter = data;
5396 struct e1000_hw *hw = &adapter->hw;
5397 u32 icr = rd32(E1000_ICR);
5398 /* reading ICR causes bit 31 of EICR to be cleared */
5400 if (icr & E1000_ICR_DRSTA)
5401 schedule_work(&adapter->reset_task);
5403 if (icr & E1000_ICR_DOUTSYNC) {
5404 /* HW is reporting DMA is out of sync */
5405 adapter->stats.doosync++;
5406 /* The DMA Out of Sync is also indication of a spoof event
5407 * in IOV mode. Check the Wrong VM Behavior register to
5408 * see if it is really a spoof event.
5410 igb_check_wvbr(adapter);
5413 /* Check for a mailbox event */
5414 if (icr & E1000_ICR_VMMB)
5415 igb_msg_task(adapter);
5417 if (icr & E1000_ICR_LSC) {
5418 hw->mac.get_link_status = 1;
5419 /* guard against interrupt when we're going down */
5420 if (!test_bit(__IGB_DOWN, &adapter->state))
5421 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5424 if (icr & E1000_ICR_TS) {
5425 u32 tsicr = rd32(E1000_TSICR);
5427 if (tsicr & E1000_TSICR_TXTS) {
5428 /* acknowledge the interrupt */
5429 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5430 /* retrieve hardware timestamp */
5431 schedule_work(&adapter->ptp_tx_work);
5435 wr32(E1000_EIMS, adapter->eims_other);
5437 return IRQ_HANDLED;
5440 static void igb_write_itr(struct igb_q_vector *q_vector)
5442 struct igb_adapter *adapter = q_vector->adapter;
5443 u32 itr_val = q_vector->itr_val & 0x7FFC;
5445 if (!q_vector->set_itr)
5446 return;
5448 if (!itr_val)
5449 itr_val = 0x4;
5451 if (adapter->hw.mac.type == e1000_82575)
5452 itr_val |= itr_val << 16;
5453 else
5454 itr_val |= E1000_EITR_CNT_IGNR;
5456 writel(itr_val, q_vector->itr_register);
5457 q_vector->set_itr = 0;
5460 static irqreturn_t igb_msix_ring(int irq, void *data)
5462 struct igb_q_vector *q_vector = data;
5464 /* Write the ITR value calculated from the previous interrupt. */
5465 igb_write_itr(q_vector);
5467 napi_schedule(&q_vector->napi);
5469 return IRQ_HANDLED;
5472 #ifdef CONFIG_IGB_DCA
5473 static void igb_update_tx_dca(struct igb_adapter *adapter,
5474 struct igb_ring *tx_ring,
5475 int cpu)
5477 struct e1000_hw *hw = &adapter->hw;
5478 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5480 if (hw->mac.type != e1000_82575)
5481 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5483 /* We can enable relaxed ordering for reads, but not writes when
5484 * DCA is enabled. This is due to a known issue in some chipsets
5485 * which will cause the DCA tag to be cleared.
5487 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5488 E1000_DCA_TXCTRL_DATA_RRO_EN |
5489 E1000_DCA_TXCTRL_DESC_DCA_EN;
5491 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5494 static void igb_update_rx_dca(struct igb_adapter *adapter,
5495 struct igb_ring *rx_ring,
5496 int cpu)
5498 struct e1000_hw *hw = &adapter->hw;
5499 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5501 if (hw->mac.type != e1000_82575)
5502 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5504 /* We can enable relaxed ordering for reads, but not writes when
5505 * DCA is enabled. This is due to a known issue in some chipsets
5506 * which will cause the DCA tag to be cleared.
5508 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5509 E1000_DCA_RXCTRL_DESC_DCA_EN;
5511 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5514 static void igb_update_dca(struct igb_q_vector *q_vector)
5516 struct igb_adapter *adapter = q_vector->adapter;
5517 int cpu = get_cpu();
5519 if (q_vector->cpu == cpu)
5520 goto out_no_update;
5522 if (q_vector->tx.ring)
5523 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5525 if (q_vector->rx.ring)
5526 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5528 q_vector->cpu = cpu;
5529 out_no_update:
5530 put_cpu();
5533 static void igb_setup_dca(struct igb_adapter *adapter)
5535 struct e1000_hw *hw = &adapter->hw;
5536 int i;
5538 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5539 return;
5541 /* Always use CB2 mode, difference is masked in the CB driver. */
5542 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5544 for (i = 0; i < adapter->num_q_vectors; i++) {
5545 adapter->q_vector[i]->cpu = -1;
5546 igb_update_dca(adapter->q_vector[i]);
5550 static int __igb_notify_dca(struct device *dev, void *data)
5552 struct net_device *netdev = dev_get_drvdata(dev);
5553 struct igb_adapter *adapter = netdev_priv(netdev);
5554 struct pci_dev *pdev = adapter->pdev;
5555 struct e1000_hw *hw = &adapter->hw;
5556 unsigned long event = *(unsigned long *)data;
5558 switch (event) {
5559 case DCA_PROVIDER_ADD:
5560 /* if already enabled, don't do it again */
5561 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5562 break;
5563 if (dca_add_requester(dev) == 0) {
5564 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5565 dev_info(&pdev->dev, "DCA enabled\n");
5566 igb_setup_dca(adapter);
5567 break;
5569 /* Fall Through since DCA is disabled. */
5570 case DCA_PROVIDER_REMOVE:
5571 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5572 /* without this a class_device is left
5573 * hanging around in the sysfs model
5575 dca_remove_requester(dev);
5576 dev_info(&pdev->dev, "DCA disabled\n");
5577 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5578 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5580 break;
5583 return 0;
5586 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5587 void *p)
5589 int ret_val;
5591 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5592 __igb_notify_dca);
5594 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5596 #endif /* CONFIG_IGB_DCA */
5598 #ifdef CONFIG_PCI_IOV
5599 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5601 unsigned char mac_addr[ETH_ALEN];
5603 eth_zero_addr(mac_addr);
5604 igb_set_vf_mac(adapter, vf, mac_addr);
5606 /* By default spoof check is enabled for all VFs */
5607 adapter->vf_data[vf].spoofchk_enabled = true;
5609 return 0;
5612 #endif
5613 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5615 struct e1000_hw *hw = &adapter->hw;
5616 u32 ping;
5617 int i;
5619 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5620 ping = E1000_PF_CONTROL_MSG;
5621 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5622 ping |= E1000_VT_MSGTYPE_CTS;
5623 igb_write_mbx(hw, &ping, 1, i);
5627 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5629 struct e1000_hw *hw = &adapter->hw;
5630 u32 vmolr = rd32(E1000_VMOLR(vf));
5631 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5633 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5634 IGB_VF_FLAG_MULTI_PROMISC);
5635 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5637 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5638 vmolr |= E1000_VMOLR_MPME;
5639 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5640 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5641 } else {
5642 /* if we have hashes and we are clearing a multicast promisc
5643 * flag we need to write the hashes to the MTA as this step
5644 * was previously skipped
5646 if (vf_data->num_vf_mc_hashes > 30) {
5647 vmolr |= E1000_VMOLR_MPME;
5648 } else if (vf_data->num_vf_mc_hashes) {
5649 int j;
5651 vmolr |= E1000_VMOLR_ROMPE;
5652 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5653 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5657 wr32(E1000_VMOLR(vf), vmolr);
5659 /* there are flags left unprocessed, likely not supported */
5660 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5661 return -EINVAL;
5663 return 0;
5666 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5667 u32 *msgbuf, u32 vf)
5669 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5670 u16 *hash_list = (u16 *)&msgbuf[1];
5671 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5672 int i;
5674 /* salt away the number of multicast addresses assigned
5675 * to this VF for later use to restore when the PF multi cast
5676 * list changes
5678 vf_data->num_vf_mc_hashes = n;
5680 /* only up to 30 hash values supported */
5681 if (n > 30)
5682 n = 30;
5684 /* store the hashes for later use */
5685 for (i = 0; i < n; i++)
5686 vf_data->vf_mc_hashes[i] = hash_list[i];
5688 /* Flush and reset the mta with the new values */
5689 igb_set_rx_mode(adapter->netdev);
5691 return 0;
5694 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5696 struct e1000_hw *hw = &adapter->hw;
5697 struct vf_data_storage *vf_data;
5698 int i, j;
5700 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5701 u32 vmolr = rd32(E1000_VMOLR(i));
5703 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5705 vf_data = &adapter->vf_data[i];
5707 if ((vf_data->num_vf_mc_hashes > 30) ||
5708 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5709 vmolr |= E1000_VMOLR_MPME;
5710 } else if (vf_data->num_vf_mc_hashes) {
5711 vmolr |= E1000_VMOLR_ROMPE;
5712 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5713 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5715 wr32(E1000_VMOLR(i), vmolr);
5719 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5721 struct e1000_hw *hw = &adapter->hw;
5722 u32 pool_mask, reg, vid;
5723 int i;
5725 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5727 /* Find the vlan filter for this id */
5728 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5729 reg = rd32(E1000_VLVF(i));
5731 /* remove the vf from the pool */
5732 reg &= ~pool_mask;
5734 /* if pool is empty then remove entry from vfta */
5735 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5736 (reg & E1000_VLVF_VLANID_ENABLE)) {
5737 reg = 0;
5738 vid = reg & E1000_VLVF_VLANID_MASK;
5739 igb_vfta_set(hw, vid, false);
5742 wr32(E1000_VLVF(i), reg);
5745 adapter->vf_data[vf].vlans_enabled = 0;
5748 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5750 struct e1000_hw *hw = &adapter->hw;
5751 u32 reg, i;
5753 /* The vlvf table only exists on 82576 hardware and newer */
5754 if (hw->mac.type < e1000_82576)
5755 return -1;
5757 /* we only need to do this if VMDq is enabled */
5758 if (!adapter->vfs_allocated_count)
5759 return -1;
5761 /* Find the vlan filter for this id */
5762 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5763 reg = rd32(E1000_VLVF(i));
5764 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5765 vid == (reg & E1000_VLVF_VLANID_MASK))
5766 break;
5769 if (add) {
5770 if (i == E1000_VLVF_ARRAY_SIZE) {
5771 /* Did not find a matching VLAN ID entry that was
5772 * enabled. Search for a free filter entry, i.e.
5773 * one without the enable bit set
5775 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5776 reg = rd32(E1000_VLVF(i));
5777 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5778 break;
5781 if (i < E1000_VLVF_ARRAY_SIZE) {
5782 /* Found an enabled/available entry */
5783 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5785 /* if !enabled we need to set this up in vfta */
5786 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5787 /* add VID to filter table */
5788 igb_vfta_set(hw, vid, true);
5789 reg |= E1000_VLVF_VLANID_ENABLE;
5791 reg &= ~E1000_VLVF_VLANID_MASK;
5792 reg |= vid;
5793 wr32(E1000_VLVF(i), reg);
5795 /* do not modify RLPML for PF devices */
5796 if (vf >= adapter->vfs_allocated_count)
5797 return 0;
5799 if (!adapter->vf_data[vf].vlans_enabled) {
5800 u32 size;
5802 reg = rd32(E1000_VMOLR(vf));
5803 size = reg & E1000_VMOLR_RLPML_MASK;
5804 size += 4;
5805 reg &= ~E1000_VMOLR_RLPML_MASK;
5806 reg |= size;
5807 wr32(E1000_VMOLR(vf), reg);
5810 adapter->vf_data[vf].vlans_enabled++;
5812 } else {
5813 if (i < E1000_VLVF_ARRAY_SIZE) {
5814 /* remove vf from the pool */
5815 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5816 /* if pool is empty then remove entry from vfta */
5817 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5818 reg = 0;
5819 igb_vfta_set(hw, vid, false);
5821 wr32(E1000_VLVF(i), reg);
5823 /* do not modify RLPML for PF devices */
5824 if (vf >= adapter->vfs_allocated_count)
5825 return 0;
5827 adapter->vf_data[vf].vlans_enabled--;
5828 if (!adapter->vf_data[vf].vlans_enabled) {
5829 u32 size;
5831 reg = rd32(E1000_VMOLR(vf));
5832 size = reg & E1000_VMOLR_RLPML_MASK;
5833 size -= 4;
5834 reg &= ~E1000_VMOLR_RLPML_MASK;
5835 reg |= size;
5836 wr32(E1000_VMOLR(vf), reg);
5840 return 0;
5843 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5845 struct e1000_hw *hw = &adapter->hw;
5847 if (vid)
5848 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5849 else
5850 wr32(E1000_VMVIR(vf), 0);
5853 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5854 int vf, u16 vlan, u8 qos)
5856 int err = 0;
5857 struct igb_adapter *adapter = netdev_priv(netdev);
5859 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5860 return -EINVAL;
5861 if (vlan || qos) {
5862 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5863 if (err)
5864 goto out;
5865 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5866 igb_set_vmolr(adapter, vf, !vlan);
5867 adapter->vf_data[vf].pf_vlan = vlan;
5868 adapter->vf_data[vf].pf_qos = qos;
5869 dev_info(&adapter->pdev->dev,
5870 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5871 if (test_bit(__IGB_DOWN, &adapter->state)) {
5872 dev_warn(&adapter->pdev->dev,
5873 "The VF VLAN has been set, but the PF device is not up.\n");
5874 dev_warn(&adapter->pdev->dev,
5875 "Bring the PF device up before attempting to use the VF device.\n");
5877 } else {
5878 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5879 false, vf);
5880 igb_set_vmvir(adapter, vlan, vf);
5881 igb_set_vmolr(adapter, vf, true);
5882 adapter->vf_data[vf].pf_vlan = 0;
5883 adapter->vf_data[vf].pf_qos = 0;
5885 out:
5886 return err;
5889 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5891 struct e1000_hw *hw = &adapter->hw;
5892 int i;
5893 u32 reg;
5895 /* Find the vlan filter for this id */
5896 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5897 reg = rd32(E1000_VLVF(i));
5898 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5899 vid == (reg & E1000_VLVF_VLANID_MASK))
5900 break;
5903 if (i >= E1000_VLVF_ARRAY_SIZE)
5904 i = -1;
5906 return i;
5909 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5911 struct e1000_hw *hw = &adapter->hw;
5912 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5913 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5914 int err = 0;
5916 /* If in promiscuous mode we need to make sure the PF also has
5917 * the VLAN filter set.
5919 if (add && (adapter->netdev->flags & IFF_PROMISC))
5920 err = igb_vlvf_set(adapter, vid, add,
5921 adapter->vfs_allocated_count);
5922 if (err)
5923 goto out;
5925 err = igb_vlvf_set(adapter, vid, add, vf);
5927 if (err)
5928 goto out;
5930 /* Go through all the checks to see if the VLAN filter should
5931 * be wiped completely.
5933 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5934 u32 vlvf, bits;
5935 int regndx = igb_find_vlvf_entry(adapter, vid);
5937 if (regndx < 0)
5938 goto out;
5939 /* See if any other pools are set for this VLAN filter
5940 * entry other than the PF.
5942 vlvf = bits = rd32(E1000_VLVF(regndx));
5943 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5944 adapter->vfs_allocated_count);
5945 /* If the filter was removed then ensure PF pool bit
5946 * is cleared if the PF only added itself to the pool
5947 * because the PF is in promiscuous mode.
5949 if ((vlvf & VLAN_VID_MASK) == vid &&
5950 !test_bit(vid, adapter->active_vlans) &&
5951 !bits)
5952 igb_vlvf_set(adapter, vid, add,
5953 adapter->vfs_allocated_count);
5956 out:
5957 return err;
5960 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5962 /* clear flags - except flag that indicates PF has set the MAC */
5963 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5964 adapter->vf_data[vf].last_nack = jiffies;
5966 /* reset offloads to defaults */
5967 igb_set_vmolr(adapter, vf, true);
5969 /* reset vlans for device */
5970 igb_clear_vf_vfta(adapter, vf);
5971 if (adapter->vf_data[vf].pf_vlan)
5972 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5973 adapter->vf_data[vf].pf_vlan,
5974 adapter->vf_data[vf].pf_qos);
5975 else
5976 igb_clear_vf_vfta(adapter, vf);
5978 /* reset multicast table array for vf */
5979 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5981 /* Flush and reset the mta with the new values */
5982 igb_set_rx_mode(adapter->netdev);
5985 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5987 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5989 /* clear mac address as we were hotplug removed/added */
5990 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5991 eth_zero_addr(vf_mac);
5993 /* process remaining reset events */
5994 igb_vf_reset(adapter, vf);
5997 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5999 struct e1000_hw *hw = &adapter->hw;
6000 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6001 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6002 u32 reg, msgbuf[3];
6003 u8 *addr = (u8 *)(&msgbuf[1]);
6005 /* process all the same items cleared in a function level reset */
6006 igb_vf_reset(adapter, vf);
6008 /* set vf mac address */
6009 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6011 /* enable transmit and receive for vf */
6012 reg = rd32(E1000_VFTE);
6013 wr32(E1000_VFTE, reg | (1 << vf));
6014 reg = rd32(E1000_VFRE);
6015 wr32(E1000_VFRE, reg | (1 << vf));
6017 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6019 /* reply to reset with ack and vf mac address */
6020 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6021 memcpy(addr, vf_mac, ETH_ALEN);
6022 igb_write_mbx(hw, msgbuf, 3, vf);
6025 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6027 /* The VF MAC Address is stored in a packed array of bytes
6028 * starting at the second 32 bit word of the msg array
6030 unsigned char *addr = (char *)&msg[1];
6031 int err = -1;
6033 if (is_valid_ether_addr(addr))
6034 err = igb_set_vf_mac(adapter, vf, addr);
6036 return err;
6039 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6041 struct e1000_hw *hw = &adapter->hw;
6042 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6043 u32 msg = E1000_VT_MSGTYPE_NACK;
6045 /* if device isn't clear to send it shouldn't be reading either */
6046 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6047 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6048 igb_write_mbx(hw, &msg, 1, vf);
6049 vf_data->last_nack = jiffies;
6053 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6055 struct pci_dev *pdev = adapter->pdev;
6056 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6057 struct e1000_hw *hw = &adapter->hw;
6058 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6059 s32 retval;
6061 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6063 if (retval) {
6064 /* if receive failed revoke VF CTS stats and restart init */
6065 dev_err(&pdev->dev, "Error receiving message from VF\n");
6066 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6067 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6068 return;
6069 goto out;
6072 /* this is a message we already processed, do nothing */
6073 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6074 return;
6076 /* until the vf completes a reset it should not be
6077 * allowed to start any configuration.
6079 if (msgbuf[0] == E1000_VF_RESET) {
6080 igb_vf_reset_msg(adapter, vf);
6081 return;
6084 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6085 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6086 return;
6087 retval = -1;
6088 goto out;
6091 switch ((msgbuf[0] & 0xFFFF)) {
6092 case E1000_VF_SET_MAC_ADDR:
6093 retval = -EINVAL;
6094 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6095 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6096 else
6097 dev_warn(&pdev->dev,
6098 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6099 vf);
6100 break;
6101 case E1000_VF_SET_PROMISC:
6102 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6103 break;
6104 case E1000_VF_SET_MULTICAST:
6105 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6106 break;
6107 case E1000_VF_SET_LPE:
6108 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6109 break;
6110 case E1000_VF_SET_VLAN:
6111 retval = -1;
6112 if (vf_data->pf_vlan)
6113 dev_warn(&pdev->dev,
6114 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6115 vf);
6116 else
6117 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6118 break;
6119 default:
6120 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6121 retval = -1;
6122 break;
6125 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6126 out:
6127 /* notify the VF of the results of what it sent us */
6128 if (retval)
6129 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6130 else
6131 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6133 igb_write_mbx(hw, msgbuf, 1, vf);
6136 static void igb_msg_task(struct igb_adapter *adapter)
6138 struct e1000_hw *hw = &adapter->hw;
6139 u32 vf;
6141 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6142 /* process any reset requests */
6143 if (!igb_check_for_rst(hw, vf))
6144 igb_vf_reset_event(adapter, vf);
6146 /* process any messages pending */
6147 if (!igb_check_for_msg(hw, vf))
6148 igb_rcv_msg_from_vf(adapter, vf);
6150 /* process any acks */
6151 if (!igb_check_for_ack(hw, vf))
6152 igb_rcv_ack_from_vf(adapter, vf);
6157 * igb_set_uta - Set unicast filter table address
6158 * @adapter: board private structure
6160 * The unicast table address is a register array of 32-bit registers.
6161 * The table is meant to be used in a way similar to how the MTA is used
6162 * however due to certain limitations in the hardware it is necessary to
6163 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6164 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6166 static void igb_set_uta(struct igb_adapter *adapter)
6168 struct e1000_hw *hw = &adapter->hw;
6169 int i;
6171 /* The UTA table only exists on 82576 hardware and newer */
6172 if (hw->mac.type < e1000_82576)
6173 return;
6175 /* we only need to do this if VMDq is enabled */
6176 if (!adapter->vfs_allocated_count)
6177 return;
6179 for (i = 0; i < hw->mac.uta_reg_count; i++)
6180 array_wr32(E1000_UTA, i, ~0);
6184 * igb_intr_msi - Interrupt Handler
6185 * @irq: interrupt number
6186 * @data: pointer to a network interface device structure
6188 static irqreturn_t igb_intr_msi(int irq, void *data)
6190 struct igb_adapter *adapter = data;
6191 struct igb_q_vector *q_vector = adapter->q_vector[0];
6192 struct e1000_hw *hw = &adapter->hw;
6193 /* read ICR disables interrupts using IAM */
6194 u32 icr = rd32(E1000_ICR);
6196 igb_write_itr(q_vector);
6198 if (icr & E1000_ICR_DRSTA)
6199 schedule_work(&adapter->reset_task);
6201 if (icr & E1000_ICR_DOUTSYNC) {
6202 /* HW is reporting DMA is out of sync */
6203 adapter->stats.doosync++;
6206 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6207 hw->mac.get_link_status = 1;
6208 if (!test_bit(__IGB_DOWN, &adapter->state))
6209 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6212 if (icr & E1000_ICR_TS) {
6213 u32 tsicr = rd32(E1000_TSICR);
6215 if (tsicr & E1000_TSICR_TXTS) {
6216 /* acknowledge the interrupt */
6217 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6218 /* retrieve hardware timestamp */
6219 schedule_work(&adapter->ptp_tx_work);
6223 napi_schedule(&q_vector->napi);
6225 return IRQ_HANDLED;
6229 * igb_intr - Legacy Interrupt Handler
6230 * @irq: interrupt number
6231 * @data: pointer to a network interface device structure
6233 static irqreturn_t igb_intr(int irq, void *data)
6235 struct igb_adapter *adapter = data;
6236 struct igb_q_vector *q_vector = adapter->q_vector[0];
6237 struct e1000_hw *hw = &adapter->hw;
6238 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6239 * need for the IMC write
6241 u32 icr = rd32(E1000_ICR);
6243 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6244 * not set, then the adapter didn't send an interrupt
6246 if (!(icr & E1000_ICR_INT_ASSERTED))
6247 return IRQ_NONE;
6249 igb_write_itr(q_vector);
6251 if (icr & E1000_ICR_DRSTA)
6252 schedule_work(&adapter->reset_task);
6254 if (icr & E1000_ICR_DOUTSYNC) {
6255 /* HW is reporting DMA is out of sync */
6256 adapter->stats.doosync++;
6259 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6260 hw->mac.get_link_status = 1;
6261 /* guard against interrupt when we're going down */
6262 if (!test_bit(__IGB_DOWN, &adapter->state))
6263 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6266 if (icr & E1000_ICR_TS) {
6267 u32 tsicr = rd32(E1000_TSICR);
6269 if (tsicr & E1000_TSICR_TXTS) {
6270 /* acknowledge the interrupt */
6271 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6272 /* retrieve hardware timestamp */
6273 schedule_work(&adapter->ptp_tx_work);
6277 napi_schedule(&q_vector->napi);
6279 return IRQ_HANDLED;
6282 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6284 struct igb_adapter *adapter = q_vector->adapter;
6285 struct e1000_hw *hw = &adapter->hw;
6287 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6288 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6289 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6290 igb_set_itr(q_vector);
6291 else
6292 igb_update_ring_itr(q_vector);
6295 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6296 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6297 wr32(E1000_EIMS, q_vector->eims_value);
6298 else
6299 igb_irq_enable(adapter);
6304 * igb_poll - NAPI Rx polling callback
6305 * @napi: napi polling structure
6306 * @budget: count of how many packets we should handle
6308 static int igb_poll(struct napi_struct *napi, int budget)
6310 struct igb_q_vector *q_vector = container_of(napi,
6311 struct igb_q_vector,
6312 napi);
6313 bool clean_complete = true;
6315 #ifdef CONFIG_IGB_DCA
6316 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6317 igb_update_dca(q_vector);
6318 #endif
6319 if (q_vector->tx.ring)
6320 clean_complete = igb_clean_tx_irq(q_vector);
6322 if (q_vector->rx.ring)
6323 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6325 /* If all work not completed, return budget and keep polling */
6326 if (!clean_complete)
6327 return budget;
6329 /* If not enough Rx work done, exit the polling mode */
6330 napi_complete(napi);
6331 igb_ring_irq_enable(q_vector);
6333 return 0;
6337 * igb_clean_tx_irq - Reclaim resources after transmit completes
6338 * @q_vector: pointer to q_vector containing needed info
6340 * returns true if ring is completely cleaned
6342 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6344 struct igb_adapter *adapter = q_vector->adapter;
6345 struct igb_ring *tx_ring = q_vector->tx.ring;
6346 struct igb_tx_buffer *tx_buffer;
6347 union e1000_adv_tx_desc *tx_desc;
6348 unsigned int total_bytes = 0, total_packets = 0;
6349 unsigned int budget = q_vector->tx.work_limit;
6350 unsigned int i = tx_ring->next_to_clean;
6352 if (test_bit(__IGB_DOWN, &adapter->state))
6353 return true;
6355 tx_buffer = &tx_ring->tx_buffer_info[i];
6356 tx_desc = IGB_TX_DESC(tx_ring, i);
6357 i -= tx_ring->count;
6359 do {
6360 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6362 /* if next_to_watch is not set then there is no work pending */
6363 if (!eop_desc)
6364 break;
6366 /* prevent any other reads prior to eop_desc */
6367 read_barrier_depends();
6369 /* if DD is not set pending work has not been completed */
6370 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6371 break;
6373 /* clear next_to_watch to prevent false hangs */
6374 tx_buffer->next_to_watch = NULL;
6376 /* update the statistics for this packet */
6377 total_bytes += tx_buffer->bytecount;
6378 total_packets += tx_buffer->gso_segs;
6380 /* free the skb */
6381 dev_consume_skb_any(tx_buffer->skb);
6383 /* unmap skb header data */
6384 dma_unmap_single(tx_ring->dev,
6385 dma_unmap_addr(tx_buffer, dma),
6386 dma_unmap_len(tx_buffer, len),
6387 DMA_TO_DEVICE);
6389 /* clear tx_buffer data */
6390 tx_buffer->skb = NULL;
6391 dma_unmap_len_set(tx_buffer, len, 0);
6393 /* clear last DMA location and unmap remaining buffers */
6394 while (tx_desc != eop_desc) {
6395 tx_buffer++;
6396 tx_desc++;
6397 i++;
6398 if (unlikely(!i)) {
6399 i -= tx_ring->count;
6400 tx_buffer = tx_ring->tx_buffer_info;
6401 tx_desc = IGB_TX_DESC(tx_ring, 0);
6404 /* unmap any remaining paged data */
6405 if (dma_unmap_len(tx_buffer, len)) {
6406 dma_unmap_page(tx_ring->dev,
6407 dma_unmap_addr(tx_buffer, dma),
6408 dma_unmap_len(tx_buffer, len),
6409 DMA_TO_DEVICE);
6410 dma_unmap_len_set(tx_buffer, len, 0);
6414 /* move us one more past the eop_desc for start of next pkt */
6415 tx_buffer++;
6416 tx_desc++;
6417 i++;
6418 if (unlikely(!i)) {
6419 i -= tx_ring->count;
6420 tx_buffer = tx_ring->tx_buffer_info;
6421 tx_desc = IGB_TX_DESC(tx_ring, 0);
6424 /* issue prefetch for next Tx descriptor */
6425 prefetch(tx_desc);
6427 /* update budget accounting */
6428 budget--;
6429 } while (likely(budget));
6431 netdev_tx_completed_queue(txring_txq(tx_ring),
6432 total_packets, total_bytes);
6433 i += tx_ring->count;
6434 tx_ring->next_to_clean = i;
6435 u64_stats_update_begin(&tx_ring->tx_syncp);
6436 tx_ring->tx_stats.bytes += total_bytes;
6437 tx_ring->tx_stats.packets += total_packets;
6438 u64_stats_update_end(&tx_ring->tx_syncp);
6439 q_vector->tx.total_bytes += total_bytes;
6440 q_vector->tx.total_packets += total_packets;
6442 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6443 struct e1000_hw *hw = &adapter->hw;
6445 /* Detect a transmit hang in hardware, this serializes the
6446 * check with the clearing of time_stamp and movement of i
6448 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6449 if (tx_buffer->next_to_watch &&
6450 time_after(jiffies, tx_buffer->time_stamp +
6451 (adapter->tx_timeout_factor * HZ)) &&
6452 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6454 /* detected Tx unit hang */
6455 dev_err(tx_ring->dev,
6456 "Detected Tx Unit Hang\n"
6457 " Tx Queue <%d>\n"
6458 " TDH <%x>\n"
6459 " TDT <%x>\n"
6460 " next_to_use <%x>\n"
6461 " next_to_clean <%x>\n"
6462 "buffer_info[next_to_clean]\n"
6463 " time_stamp <%lx>\n"
6464 " next_to_watch <%p>\n"
6465 " jiffies <%lx>\n"
6466 " desc.status <%x>\n",
6467 tx_ring->queue_index,
6468 rd32(E1000_TDH(tx_ring->reg_idx)),
6469 readl(tx_ring->tail),
6470 tx_ring->next_to_use,
6471 tx_ring->next_to_clean,
6472 tx_buffer->time_stamp,
6473 tx_buffer->next_to_watch,
6474 jiffies,
6475 tx_buffer->next_to_watch->wb.status);
6476 netif_stop_subqueue(tx_ring->netdev,
6477 tx_ring->queue_index);
6479 /* we are about to reset, no point in enabling stuff */
6480 return true;
6484 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6485 if (unlikely(total_packets &&
6486 netif_carrier_ok(tx_ring->netdev) &&
6487 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6488 /* Make sure that anybody stopping the queue after this
6489 * sees the new next_to_clean.
6491 smp_mb();
6492 if (__netif_subqueue_stopped(tx_ring->netdev,
6493 tx_ring->queue_index) &&
6494 !(test_bit(__IGB_DOWN, &adapter->state))) {
6495 netif_wake_subqueue(tx_ring->netdev,
6496 tx_ring->queue_index);
6498 u64_stats_update_begin(&tx_ring->tx_syncp);
6499 tx_ring->tx_stats.restart_queue++;
6500 u64_stats_update_end(&tx_ring->tx_syncp);
6504 return !!budget;
6508 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6509 * @rx_ring: rx descriptor ring to store buffers on
6510 * @old_buff: donor buffer to have page reused
6512 * Synchronizes page for reuse by the adapter
6514 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6515 struct igb_rx_buffer *old_buff)
6517 struct igb_rx_buffer *new_buff;
6518 u16 nta = rx_ring->next_to_alloc;
6520 new_buff = &rx_ring->rx_buffer_info[nta];
6522 /* update, and store next to alloc */
6523 nta++;
6524 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6526 /* transfer page from old buffer to new buffer */
6527 *new_buff = *old_buff;
6529 /* sync the buffer for use by the device */
6530 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6531 old_buff->page_offset,
6532 IGB_RX_BUFSZ,
6533 DMA_FROM_DEVICE);
6536 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6537 struct page *page,
6538 unsigned int truesize)
6540 /* avoid re-using remote pages */
6541 if (unlikely(page_to_nid(page) != numa_node_id()))
6542 return false;
6544 if (unlikely(page->pfmemalloc))
6545 return false;
6547 #if (PAGE_SIZE < 8192)
6548 /* if we are only owner of page we can reuse it */
6549 if (unlikely(page_count(page) != 1))
6550 return false;
6552 /* flip page offset to other buffer */
6553 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6555 /* Even if we own the page, we are not allowed to use atomic_set()
6556 * This would break get_page_unless_zero() users.
6558 atomic_inc(&page->_count);
6559 #else
6560 /* move offset up to the next cache line */
6561 rx_buffer->page_offset += truesize;
6563 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6564 return false;
6566 /* bump ref count on page before it is given to the stack */
6567 get_page(page);
6568 #endif
6570 return true;
6574 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6575 * @rx_ring: rx descriptor ring to transact packets on
6576 * @rx_buffer: buffer containing page to add
6577 * @rx_desc: descriptor containing length of buffer written by hardware
6578 * @skb: sk_buff to place the data into
6580 * This function will add the data contained in rx_buffer->page to the skb.
6581 * This is done either through a direct copy if the data in the buffer is
6582 * less than the skb header size, otherwise it will just attach the page as
6583 * a frag to the skb.
6585 * The function will then update the page offset if necessary and return
6586 * true if the buffer can be reused by the adapter.
6588 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6589 struct igb_rx_buffer *rx_buffer,
6590 union e1000_adv_rx_desc *rx_desc,
6591 struct sk_buff *skb)
6593 struct page *page = rx_buffer->page;
6594 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6595 #if (PAGE_SIZE < 8192)
6596 unsigned int truesize = IGB_RX_BUFSZ;
6597 #else
6598 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6599 #endif
6601 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6602 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6604 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6605 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6606 va += IGB_TS_HDR_LEN;
6607 size -= IGB_TS_HDR_LEN;
6610 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6612 /* we can reuse buffer as-is, just make sure it is local */
6613 if (likely((page_to_nid(page) == numa_node_id()) &&
6614 !page->pfmemalloc))
6615 return true;
6617 /* this page cannot be reused so discard it */
6618 put_page(page);
6619 return false;
6622 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6623 rx_buffer->page_offset, size, truesize);
6625 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6628 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6629 union e1000_adv_rx_desc *rx_desc,
6630 struct sk_buff *skb)
6632 struct igb_rx_buffer *rx_buffer;
6633 struct page *page;
6635 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6637 page = rx_buffer->page;
6638 prefetchw(page);
6640 if (likely(!skb)) {
6641 void *page_addr = page_address(page) +
6642 rx_buffer->page_offset;
6644 /* prefetch first cache line of first page */
6645 prefetch(page_addr);
6646 #if L1_CACHE_BYTES < 128
6647 prefetch(page_addr + L1_CACHE_BYTES);
6648 #endif
6650 /* allocate a skb to store the frags */
6651 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6652 IGB_RX_HDR_LEN);
6653 if (unlikely(!skb)) {
6654 rx_ring->rx_stats.alloc_failed++;
6655 return NULL;
6658 /* we will be copying header into skb->data in
6659 * pskb_may_pull so it is in our interest to prefetch
6660 * it now to avoid a possible cache miss
6662 prefetchw(skb->data);
6665 /* we are reusing so sync this buffer for CPU use */
6666 dma_sync_single_range_for_cpu(rx_ring->dev,
6667 rx_buffer->dma,
6668 rx_buffer->page_offset,
6669 IGB_RX_BUFSZ,
6670 DMA_FROM_DEVICE);
6672 /* pull page into skb */
6673 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6674 /* hand second half of page back to the ring */
6675 igb_reuse_rx_page(rx_ring, rx_buffer);
6676 } else {
6677 /* we are not reusing the buffer so unmap it */
6678 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6679 PAGE_SIZE, DMA_FROM_DEVICE);
6682 /* clear contents of rx_buffer */
6683 rx_buffer->page = NULL;
6685 return skb;
6688 static inline void igb_rx_checksum(struct igb_ring *ring,
6689 union e1000_adv_rx_desc *rx_desc,
6690 struct sk_buff *skb)
6692 skb_checksum_none_assert(skb);
6694 /* Ignore Checksum bit is set */
6695 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6696 return;
6698 /* Rx checksum disabled via ethtool */
6699 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6700 return;
6702 /* TCP/UDP checksum error bit is set */
6703 if (igb_test_staterr(rx_desc,
6704 E1000_RXDEXT_STATERR_TCPE |
6705 E1000_RXDEXT_STATERR_IPE)) {
6706 /* work around errata with sctp packets where the TCPE aka
6707 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6708 * packets, (aka let the stack check the crc32c)
6710 if (!((skb->len == 60) &&
6711 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6712 u64_stats_update_begin(&ring->rx_syncp);
6713 ring->rx_stats.csum_err++;
6714 u64_stats_update_end(&ring->rx_syncp);
6716 /* let the stack verify checksum errors */
6717 return;
6719 /* It must be a TCP or UDP packet with a valid checksum */
6720 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6721 E1000_RXD_STAT_UDPCS))
6722 skb->ip_summed = CHECKSUM_UNNECESSARY;
6724 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6725 le32_to_cpu(rx_desc->wb.upper.status_error));
6728 static inline void igb_rx_hash(struct igb_ring *ring,
6729 union e1000_adv_rx_desc *rx_desc,
6730 struct sk_buff *skb)
6732 if (ring->netdev->features & NETIF_F_RXHASH)
6733 skb_set_hash(skb,
6734 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6735 PKT_HASH_TYPE_L3);
6739 * igb_is_non_eop - process handling of non-EOP buffers
6740 * @rx_ring: Rx ring being processed
6741 * @rx_desc: Rx descriptor for current buffer
6742 * @skb: current socket buffer containing buffer in progress
6744 * This function updates next to clean. If the buffer is an EOP buffer
6745 * this function exits returning false, otherwise it will place the
6746 * sk_buff in the next buffer to be chained and return true indicating
6747 * that this is in fact a non-EOP buffer.
6749 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6750 union e1000_adv_rx_desc *rx_desc)
6752 u32 ntc = rx_ring->next_to_clean + 1;
6754 /* fetch, update, and store next to clean */
6755 ntc = (ntc < rx_ring->count) ? ntc : 0;
6756 rx_ring->next_to_clean = ntc;
6758 prefetch(IGB_RX_DESC(rx_ring, ntc));
6760 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6761 return false;
6763 return true;
6767 * igb_pull_tail - igb specific version of skb_pull_tail
6768 * @rx_ring: rx descriptor ring packet is being transacted on
6769 * @rx_desc: pointer to the EOP Rx descriptor
6770 * @skb: pointer to current skb being adjusted
6772 * This function is an igb specific version of __pskb_pull_tail. The
6773 * main difference between this version and the original function is that
6774 * this function can make several assumptions about the state of things
6775 * that allow for significant optimizations versus the standard function.
6776 * As a result we can do things like drop a frag and maintain an accurate
6777 * truesize for the skb.
6779 static void igb_pull_tail(struct igb_ring *rx_ring,
6780 union e1000_adv_rx_desc *rx_desc,
6781 struct sk_buff *skb)
6783 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6784 unsigned char *va;
6785 unsigned int pull_len;
6787 /* it is valid to use page_address instead of kmap since we are
6788 * working with pages allocated out of the lomem pool per
6789 * alloc_page(GFP_ATOMIC)
6791 va = skb_frag_address(frag);
6793 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6794 /* retrieve timestamp from buffer */
6795 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6797 /* update pointers to remove timestamp header */
6798 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6799 frag->page_offset += IGB_TS_HDR_LEN;
6800 skb->data_len -= IGB_TS_HDR_LEN;
6801 skb->len -= IGB_TS_HDR_LEN;
6803 /* move va to start of packet data */
6804 va += IGB_TS_HDR_LEN;
6807 /* we need the header to contain the greater of either ETH_HLEN or
6808 * 60 bytes if the skb->len is less than 60 for skb_pad.
6810 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6812 /* align pull length to size of long to optimize memcpy performance */
6813 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6815 /* update all of the pointers */
6816 skb_frag_size_sub(frag, pull_len);
6817 frag->page_offset += pull_len;
6818 skb->data_len -= pull_len;
6819 skb->tail += pull_len;
6823 * igb_cleanup_headers - Correct corrupted or empty headers
6824 * @rx_ring: rx descriptor ring packet is being transacted on
6825 * @rx_desc: pointer to the EOP Rx descriptor
6826 * @skb: pointer to current skb being fixed
6828 * Address the case where we are pulling data in on pages only
6829 * and as such no data is present in the skb header.
6831 * In addition if skb is not at least 60 bytes we need to pad it so that
6832 * it is large enough to qualify as a valid Ethernet frame.
6834 * Returns true if an error was encountered and skb was freed.
6836 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6837 union e1000_adv_rx_desc *rx_desc,
6838 struct sk_buff *skb)
6840 if (unlikely((igb_test_staterr(rx_desc,
6841 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6842 struct net_device *netdev = rx_ring->netdev;
6843 if (!(netdev->features & NETIF_F_RXALL)) {
6844 dev_kfree_skb_any(skb);
6845 return true;
6849 /* place header in linear portion of buffer */
6850 if (skb_is_nonlinear(skb))
6851 igb_pull_tail(rx_ring, rx_desc, skb);
6853 /* if skb_pad returns an error the skb was freed */
6854 if (unlikely(skb->len < 60)) {
6855 int pad_len = 60 - skb->len;
6857 if (skb_pad(skb, pad_len))
6858 return true;
6859 __skb_put(skb, pad_len);
6862 return false;
6866 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6867 * @rx_ring: rx descriptor ring packet is being transacted on
6868 * @rx_desc: pointer to the EOP Rx descriptor
6869 * @skb: pointer to current skb being populated
6871 * This function checks the ring, descriptor, and packet information in
6872 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6873 * other fields within the skb.
6875 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6876 union e1000_adv_rx_desc *rx_desc,
6877 struct sk_buff *skb)
6879 struct net_device *dev = rx_ring->netdev;
6881 igb_rx_hash(rx_ring, rx_desc, skb);
6883 igb_rx_checksum(rx_ring, rx_desc, skb);
6885 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6886 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6887 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6889 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6890 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6891 u16 vid;
6893 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6894 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6895 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6896 else
6897 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6899 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6902 skb_record_rx_queue(skb, rx_ring->queue_index);
6904 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6907 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6909 struct igb_ring *rx_ring = q_vector->rx.ring;
6910 struct sk_buff *skb = rx_ring->skb;
6911 unsigned int total_bytes = 0, total_packets = 0;
6912 u16 cleaned_count = igb_desc_unused(rx_ring);
6914 while (likely(total_packets < budget)) {
6915 union e1000_adv_rx_desc *rx_desc;
6917 /* return some buffers to hardware, one at a time is too slow */
6918 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6919 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6920 cleaned_count = 0;
6923 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6925 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6926 break;
6928 /* This memory barrier is needed to keep us from reading
6929 * any other fields out of the rx_desc until we know the
6930 * RXD_STAT_DD bit is set
6932 rmb();
6934 /* retrieve a buffer from the ring */
6935 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6937 /* exit if we failed to retrieve a buffer */
6938 if (!skb)
6939 break;
6941 cleaned_count++;
6943 /* fetch next buffer in frame if non-eop */
6944 if (igb_is_non_eop(rx_ring, rx_desc))
6945 continue;
6947 /* verify the packet layout is correct */
6948 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6949 skb = NULL;
6950 continue;
6953 /* probably a little skewed due to removing CRC */
6954 total_bytes += skb->len;
6956 /* populate checksum, timestamp, VLAN, and protocol */
6957 igb_process_skb_fields(rx_ring, rx_desc, skb);
6959 napi_gro_receive(&q_vector->napi, skb);
6961 /* reset skb pointer */
6962 skb = NULL;
6964 /* update budget accounting */
6965 total_packets++;
6968 /* place incomplete frames back on ring for completion */
6969 rx_ring->skb = skb;
6971 u64_stats_update_begin(&rx_ring->rx_syncp);
6972 rx_ring->rx_stats.packets += total_packets;
6973 rx_ring->rx_stats.bytes += total_bytes;
6974 u64_stats_update_end(&rx_ring->rx_syncp);
6975 q_vector->rx.total_packets += total_packets;
6976 q_vector->rx.total_bytes += total_bytes;
6978 if (cleaned_count)
6979 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6981 return total_packets < budget;
6984 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6985 struct igb_rx_buffer *bi)
6987 struct page *page = bi->page;
6988 dma_addr_t dma;
6990 /* since we are recycling buffers we should seldom need to alloc */
6991 if (likely(page))
6992 return true;
6994 /* alloc new page for storage */
6995 page = dev_alloc_page();
6996 if (unlikely(!page)) {
6997 rx_ring->rx_stats.alloc_failed++;
6998 return false;
7001 /* map page for use */
7002 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7004 /* if mapping failed free memory back to system since
7005 * there isn't much point in holding memory we can't use
7007 if (dma_mapping_error(rx_ring->dev, dma)) {
7008 __free_page(page);
7010 rx_ring->rx_stats.alloc_failed++;
7011 return false;
7014 bi->dma = dma;
7015 bi->page = page;
7016 bi->page_offset = 0;
7018 return true;
7022 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7023 * @adapter: address of board private structure
7025 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7027 union e1000_adv_rx_desc *rx_desc;
7028 struct igb_rx_buffer *bi;
7029 u16 i = rx_ring->next_to_use;
7031 /* nothing to do */
7032 if (!cleaned_count)
7033 return;
7035 rx_desc = IGB_RX_DESC(rx_ring, i);
7036 bi = &rx_ring->rx_buffer_info[i];
7037 i -= rx_ring->count;
7039 do {
7040 if (!igb_alloc_mapped_page(rx_ring, bi))
7041 break;
7043 /* Refresh the desc even if buffer_addrs didn't change
7044 * because each write-back erases this info.
7046 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7048 rx_desc++;
7049 bi++;
7050 i++;
7051 if (unlikely(!i)) {
7052 rx_desc = IGB_RX_DESC(rx_ring, 0);
7053 bi = rx_ring->rx_buffer_info;
7054 i -= rx_ring->count;
7057 /* clear the hdr_addr for the next_to_use descriptor */
7058 rx_desc->read.hdr_addr = 0;
7060 cleaned_count--;
7061 } while (cleaned_count);
7063 i += rx_ring->count;
7065 if (rx_ring->next_to_use != i) {
7066 /* record the next descriptor to use */
7067 rx_ring->next_to_use = i;
7069 /* update next to alloc since we have filled the ring */
7070 rx_ring->next_to_alloc = i;
7072 /* Force memory writes to complete before letting h/w
7073 * know there are new descriptors to fetch. (Only
7074 * applicable for weak-ordered memory model archs,
7075 * such as IA-64).
7077 wmb();
7078 writel(i, rx_ring->tail);
7083 * igb_mii_ioctl -
7084 * @netdev:
7085 * @ifreq:
7086 * @cmd:
7088 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7090 struct igb_adapter *adapter = netdev_priv(netdev);
7091 struct mii_ioctl_data *data = if_mii(ifr);
7093 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7094 return -EOPNOTSUPP;
7096 switch (cmd) {
7097 case SIOCGMIIPHY:
7098 data->phy_id = adapter->hw.phy.addr;
7099 break;
7100 case SIOCGMIIREG:
7101 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7102 &data->val_out))
7103 return -EIO;
7104 break;
7105 case SIOCSMIIREG:
7106 default:
7107 return -EOPNOTSUPP;
7109 return 0;
7113 * igb_ioctl -
7114 * @netdev:
7115 * @ifreq:
7116 * @cmd:
7118 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7120 switch (cmd) {
7121 case SIOCGMIIPHY:
7122 case SIOCGMIIREG:
7123 case SIOCSMIIREG:
7124 return igb_mii_ioctl(netdev, ifr, cmd);
7125 case SIOCGHWTSTAMP:
7126 return igb_ptp_get_ts_config(netdev, ifr);
7127 case SIOCSHWTSTAMP:
7128 return igb_ptp_set_ts_config(netdev, ifr);
7129 default:
7130 return -EOPNOTSUPP;
7134 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7136 struct igb_adapter *adapter = hw->back;
7138 pci_read_config_word(adapter->pdev, reg, value);
7141 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7143 struct igb_adapter *adapter = hw->back;
7145 pci_write_config_word(adapter->pdev, reg, *value);
7148 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7150 struct igb_adapter *adapter = hw->back;
7152 if (pcie_capability_read_word(adapter->pdev, reg, value))
7153 return -E1000_ERR_CONFIG;
7155 return 0;
7158 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7160 struct igb_adapter *adapter = hw->back;
7162 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7163 return -E1000_ERR_CONFIG;
7165 return 0;
7168 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7170 struct igb_adapter *adapter = netdev_priv(netdev);
7171 struct e1000_hw *hw = &adapter->hw;
7172 u32 ctrl, rctl;
7173 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7175 if (enable) {
7176 /* enable VLAN tag insert/strip */
7177 ctrl = rd32(E1000_CTRL);
7178 ctrl |= E1000_CTRL_VME;
7179 wr32(E1000_CTRL, ctrl);
7181 /* Disable CFI check */
7182 rctl = rd32(E1000_RCTL);
7183 rctl &= ~E1000_RCTL_CFIEN;
7184 wr32(E1000_RCTL, rctl);
7185 } else {
7186 /* disable VLAN tag insert/strip */
7187 ctrl = rd32(E1000_CTRL);
7188 ctrl &= ~E1000_CTRL_VME;
7189 wr32(E1000_CTRL, ctrl);
7192 igb_rlpml_set(adapter);
7195 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7196 __be16 proto, u16 vid)
7198 struct igb_adapter *adapter = netdev_priv(netdev);
7199 struct e1000_hw *hw = &adapter->hw;
7200 int pf_id = adapter->vfs_allocated_count;
7202 /* attempt to add filter to vlvf array */
7203 igb_vlvf_set(adapter, vid, true, pf_id);
7205 /* add the filter since PF can receive vlans w/o entry in vlvf */
7206 igb_vfta_set(hw, vid, true);
7208 set_bit(vid, adapter->active_vlans);
7210 return 0;
7213 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7214 __be16 proto, u16 vid)
7216 struct igb_adapter *adapter = netdev_priv(netdev);
7217 struct e1000_hw *hw = &adapter->hw;
7218 int pf_id = adapter->vfs_allocated_count;
7219 s32 err;
7221 /* remove vlan from VLVF table array */
7222 err = igb_vlvf_set(adapter, vid, false, pf_id);
7224 /* if vid was not present in VLVF just remove it from table */
7225 if (err)
7226 igb_vfta_set(hw, vid, false);
7228 clear_bit(vid, adapter->active_vlans);
7230 return 0;
7233 static void igb_restore_vlan(struct igb_adapter *adapter)
7235 u16 vid;
7237 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7239 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7240 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7243 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7245 struct pci_dev *pdev = adapter->pdev;
7246 struct e1000_mac_info *mac = &adapter->hw.mac;
7248 mac->autoneg = 0;
7250 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7251 * for the switch() below to work
7253 if ((spd & 1) || (dplx & ~1))
7254 goto err_inval;
7256 /* Fiber NIC's only allow 1000 gbps Full duplex
7257 * and 100Mbps Full duplex for 100baseFx sfp
7259 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7260 switch (spd + dplx) {
7261 case SPEED_10 + DUPLEX_HALF:
7262 case SPEED_10 + DUPLEX_FULL:
7263 case SPEED_100 + DUPLEX_HALF:
7264 goto err_inval;
7265 default:
7266 break;
7270 switch (spd + dplx) {
7271 case SPEED_10 + DUPLEX_HALF:
7272 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7273 break;
7274 case SPEED_10 + DUPLEX_FULL:
7275 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7276 break;
7277 case SPEED_100 + DUPLEX_HALF:
7278 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7279 break;
7280 case SPEED_100 + DUPLEX_FULL:
7281 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7282 break;
7283 case SPEED_1000 + DUPLEX_FULL:
7284 mac->autoneg = 1;
7285 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7286 break;
7287 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7288 default:
7289 goto err_inval;
7292 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7293 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7295 return 0;
7297 err_inval:
7298 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7299 return -EINVAL;
7302 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7303 bool runtime)
7305 struct net_device *netdev = pci_get_drvdata(pdev);
7306 struct igb_adapter *adapter = netdev_priv(netdev);
7307 struct e1000_hw *hw = &adapter->hw;
7308 u32 ctrl, rctl, status;
7309 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7310 #ifdef CONFIG_PM
7311 int retval = 0;
7312 #endif
7314 netif_device_detach(netdev);
7316 if (netif_running(netdev))
7317 __igb_close(netdev, true);
7319 igb_clear_interrupt_scheme(adapter);
7321 #ifdef CONFIG_PM
7322 retval = pci_save_state(pdev);
7323 if (retval)
7324 return retval;
7325 #endif
7327 status = rd32(E1000_STATUS);
7328 if (status & E1000_STATUS_LU)
7329 wufc &= ~E1000_WUFC_LNKC;
7331 if (wufc) {
7332 igb_setup_rctl(adapter);
7333 igb_set_rx_mode(netdev);
7335 /* turn on all-multi mode if wake on multicast is enabled */
7336 if (wufc & E1000_WUFC_MC) {
7337 rctl = rd32(E1000_RCTL);
7338 rctl |= E1000_RCTL_MPE;
7339 wr32(E1000_RCTL, rctl);
7342 ctrl = rd32(E1000_CTRL);
7343 /* advertise wake from D3Cold */
7344 #define E1000_CTRL_ADVD3WUC 0x00100000
7345 /* phy power management enable */
7346 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7347 ctrl |= E1000_CTRL_ADVD3WUC;
7348 wr32(E1000_CTRL, ctrl);
7350 /* Allow time for pending master requests to run */
7351 igb_disable_pcie_master(hw);
7353 wr32(E1000_WUC, E1000_WUC_PME_EN);
7354 wr32(E1000_WUFC, wufc);
7355 } else {
7356 wr32(E1000_WUC, 0);
7357 wr32(E1000_WUFC, 0);
7360 *enable_wake = wufc || adapter->en_mng_pt;
7361 if (!*enable_wake)
7362 igb_power_down_link(adapter);
7363 else
7364 igb_power_up_link(adapter);
7366 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7367 * would have already happened in close and is redundant.
7369 igb_release_hw_control(adapter);
7371 pci_disable_device(pdev);
7373 return 0;
7376 #ifdef CONFIG_PM
7377 #ifdef CONFIG_PM_SLEEP
7378 static int igb_suspend(struct device *dev)
7380 int retval;
7381 bool wake;
7382 struct pci_dev *pdev = to_pci_dev(dev);
7384 retval = __igb_shutdown(pdev, &wake, 0);
7385 if (retval)
7386 return retval;
7388 if (wake) {
7389 pci_prepare_to_sleep(pdev);
7390 } else {
7391 pci_wake_from_d3(pdev, false);
7392 pci_set_power_state(pdev, PCI_D3hot);
7395 return 0;
7397 #endif /* CONFIG_PM_SLEEP */
7399 static int igb_resume(struct device *dev)
7401 struct pci_dev *pdev = to_pci_dev(dev);
7402 struct net_device *netdev = pci_get_drvdata(pdev);
7403 struct igb_adapter *adapter = netdev_priv(netdev);
7404 struct e1000_hw *hw = &adapter->hw;
7405 u32 err;
7407 pci_set_power_state(pdev, PCI_D0);
7408 pci_restore_state(pdev);
7409 pci_save_state(pdev);
7411 if (!pci_device_is_present(pdev))
7412 return -ENODEV;
7413 err = pci_enable_device_mem(pdev);
7414 if (err) {
7415 dev_err(&pdev->dev,
7416 "igb: Cannot enable PCI device from suspend\n");
7417 return err;
7419 pci_set_master(pdev);
7421 pci_enable_wake(pdev, PCI_D3hot, 0);
7422 pci_enable_wake(pdev, PCI_D3cold, 0);
7424 if (igb_init_interrupt_scheme(adapter, true)) {
7425 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7426 return -ENOMEM;
7429 igb_reset(adapter);
7431 /* let the f/w know that the h/w is now under the control of the
7432 * driver.
7434 igb_get_hw_control(adapter);
7436 wr32(E1000_WUS, ~0);
7438 if (netdev->flags & IFF_UP) {
7439 rtnl_lock();
7440 err = __igb_open(netdev, true);
7441 rtnl_unlock();
7442 if (err)
7443 return err;
7446 netif_device_attach(netdev);
7447 return 0;
7450 #ifdef CONFIG_PM_RUNTIME
7451 static int igb_runtime_idle(struct device *dev)
7453 struct pci_dev *pdev = to_pci_dev(dev);
7454 struct net_device *netdev = pci_get_drvdata(pdev);
7455 struct igb_adapter *adapter = netdev_priv(netdev);
7457 if (!igb_has_link(adapter))
7458 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7460 return -EBUSY;
7463 static int igb_runtime_suspend(struct device *dev)
7465 struct pci_dev *pdev = to_pci_dev(dev);
7466 int retval;
7467 bool wake;
7469 retval = __igb_shutdown(pdev, &wake, 1);
7470 if (retval)
7471 return retval;
7473 if (wake) {
7474 pci_prepare_to_sleep(pdev);
7475 } else {
7476 pci_wake_from_d3(pdev, false);
7477 pci_set_power_state(pdev, PCI_D3hot);
7480 return 0;
7483 static int igb_runtime_resume(struct device *dev)
7485 return igb_resume(dev);
7487 #endif /* CONFIG_PM_RUNTIME */
7488 #endif
7490 static void igb_shutdown(struct pci_dev *pdev)
7492 bool wake;
7494 __igb_shutdown(pdev, &wake, 0);
7496 if (system_state == SYSTEM_POWER_OFF) {
7497 pci_wake_from_d3(pdev, wake);
7498 pci_set_power_state(pdev, PCI_D3hot);
7502 #ifdef CONFIG_PCI_IOV
7503 static int igb_sriov_reinit(struct pci_dev *dev)
7505 struct net_device *netdev = pci_get_drvdata(dev);
7506 struct igb_adapter *adapter = netdev_priv(netdev);
7507 struct pci_dev *pdev = adapter->pdev;
7509 rtnl_lock();
7511 if (netif_running(netdev))
7512 igb_close(netdev);
7513 else
7514 igb_reset(adapter);
7516 igb_clear_interrupt_scheme(adapter);
7518 igb_init_queue_configuration(adapter);
7520 if (igb_init_interrupt_scheme(adapter, true)) {
7521 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7522 return -ENOMEM;
7525 if (netif_running(netdev))
7526 igb_open(netdev);
7528 rtnl_unlock();
7530 return 0;
7533 static int igb_pci_disable_sriov(struct pci_dev *dev)
7535 int err = igb_disable_sriov(dev);
7537 if (!err)
7538 err = igb_sriov_reinit(dev);
7540 return err;
7543 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7545 int err = igb_enable_sriov(dev, num_vfs);
7547 if (err)
7548 goto out;
7550 err = igb_sriov_reinit(dev);
7551 if (!err)
7552 return num_vfs;
7554 out:
7555 return err;
7558 #endif
7559 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7561 #ifdef CONFIG_PCI_IOV
7562 if (num_vfs == 0)
7563 return igb_pci_disable_sriov(dev);
7564 else
7565 return igb_pci_enable_sriov(dev, num_vfs);
7566 #endif
7567 return 0;
7570 #ifdef CONFIG_NET_POLL_CONTROLLER
7571 /* Polling 'interrupt' - used by things like netconsole to send skbs
7572 * without having to re-enable interrupts. It's not called while
7573 * the interrupt routine is executing.
7575 static void igb_netpoll(struct net_device *netdev)
7577 struct igb_adapter *adapter = netdev_priv(netdev);
7578 struct e1000_hw *hw = &adapter->hw;
7579 struct igb_q_vector *q_vector;
7580 int i;
7582 for (i = 0; i < adapter->num_q_vectors; i++) {
7583 q_vector = adapter->q_vector[i];
7584 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7585 wr32(E1000_EIMC, q_vector->eims_value);
7586 else
7587 igb_irq_disable(adapter);
7588 napi_schedule(&q_vector->napi);
7591 #endif /* CONFIG_NET_POLL_CONTROLLER */
7594 * igb_io_error_detected - called when PCI error is detected
7595 * @pdev: Pointer to PCI device
7596 * @state: The current pci connection state
7598 * This function is called after a PCI bus error affecting
7599 * this device has been detected.
7601 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7602 pci_channel_state_t state)
7604 struct net_device *netdev = pci_get_drvdata(pdev);
7605 struct igb_adapter *adapter = netdev_priv(netdev);
7607 netif_device_detach(netdev);
7609 if (state == pci_channel_io_perm_failure)
7610 return PCI_ERS_RESULT_DISCONNECT;
7612 if (netif_running(netdev))
7613 igb_down(adapter);
7614 pci_disable_device(pdev);
7616 /* Request a slot slot reset. */
7617 return PCI_ERS_RESULT_NEED_RESET;
7621 * igb_io_slot_reset - called after the pci bus has been reset.
7622 * @pdev: Pointer to PCI device
7624 * Restart the card from scratch, as if from a cold-boot. Implementation
7625 * resembles the first-half of the igb_resume routine.
7627 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7629 struct net_device *netdev = pci_get_drvdata(pdev);
7630 struct igb_adapter *adapter = netdev_priv(netdev);
7631 struct e1000_hw *hw = &adapter->hw;
7632 pci_ers_result_t result;
7633 int err;
7635 if (pci_enable_device_mem(pdev)) {
7636 dev_err(&pdev->dev,
7637 "Cannot re-enable PCI device after reset.\n");
7638 result = PCI_ERS_RESULT_DISCONNECT;
7639 } else {
7640 pci_set_master(pdev);
7641 pci_restore_state(pdev);
7642 pci_save_state(pdev);
7644 pci_enable_wake(pdev, PCI_D3hot, 0);
7645 pci_enable_wake(pdev, PCI_D3cold, 0);
7647 igb_reset(adapter);
7648 wr32(E1000_WUS, ~0);
7649 result = PCI_ERS_RESULT_RECOVERED;
7652 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7653 if (err) {
7654 dev_err(&pdev->dev,
7655 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7656 err);
7657 /* non-fatal, continue */
7660 return result;
7664 * igb_io_resume - called when traffic can start flowing again.
7665 * @pdev: Pointer to PCI device
7667 * This callback is called when the error recovery driver tells us that
7668 * its OK to resume normal operation. Implementation resembles the
7669 * second-half of the igb_resume routine.
7671 static void igb_io_resume(struct pci_dev *pdev)
7673 struct net_device *netdev = pci_get_drvdata(pdev);
7674 struct igb_adapter *adapter = netdev_priv(netdev);
7676 if (netif_running(netdev)) {
7677 if (igb_up(adapter)) {
7678 dev_err(&pdev->dev, "igb_up failed after reset\n");
7679 return;
7683 netif_device_attach(netdev);
7685 /* let the f/w know that the h/w is now under the control of the
7686 * driver.
7688 igb_get_hw_control(adapter);
7691 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7692 u8 qsel)
7694 u32 rar_low, rar_high;
7695 struct e1000_hw *hw = &adapter->hw;
7697 /* HW expects these in little endian so we reverse the byte order
7698 * from network order (big endian) to little endian
7700 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7701 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7702 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7704 /* Indicate to hardware the Address is Valid. */
7705 rar_high |= E1000_RAH_AV;
7707 if (hw->mac.type == e1000_82575)
7708 rar_high |= E1000_RAH_POOL_1 * qsel;
7709 else
7710 rar_high |= E1000_RAH_POOL_1 << qsel;
7712 wr32(E1000_RAL(index), rar_low);
7713 wrfl();
7714 wr32(E1000_RAH(index), rar_high);
7715 wrfl();
7718 static int igb_set_vf_mac(struct igb_adapter *adapter,
7719 int vf, unsigned char *mac_addr)
7721 struct e1000_hw *hw = &adapter->hw;
7722 /* VF MAC addresses start at end of receive addresses and moves
7723 * towards the first, as a result a collision should not be possible
7725 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7727 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7729 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7731 return 0;
7734 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7736 struct igb_adapter *adapter = netdev_priv(netdev);
7737 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7738 return -EINVAL;
7739 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7740 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7741 dev_info(&adapter->pdev->dev,
7742 "Reload the VF driver to make this change effective.");
7743 if (test_bit(__IGB_DOWN, &adapter->state)) {
7744 dev_warn(&adapter->pdev->dev,
7745 "The VF MAC address has been set, but the PF device is not up.\n");
7746 dev_warn(&adapter->pdev->dev,
7747 "Bring the PF device up before attempting to use the VF device.\n");
7749 return igb_set_vf_mac(adapter, vf, mac);
7752 static int igb_link_mbps(int internal_link_speed)
7754 switch (internal_link_speed) {
7755 case SPEED_100:
7756 return 100;
7757 case SPEED_1000:
7758 return 1000;
7759 default:
7760 return 0;
7764 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7765 int link_speed)
7767 int rf_dec, rf_int;
7768 u32 bcnrc_val;
7770 if (tx_rate != 0) {
7771 /* Calculate the rate factor values to set */
7772 rf_int = link_speed / tx_rate;
7773 rf_dec = (link_speed - (rf_int * tx_rate));
7774 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7775 tx_rate;
7777 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7778 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7779 E1000_RTTBCNRC_RF_INT_MASK);
7780 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7781 } else {
7782 bcnrc_val = 0;
7785 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7786 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7787 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7789 wr32(E1000_RTTBCNRM, 0x14);
7790 wr32(E1000_RTTBCNRC, bcnrc_val);
7793 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7795 int actual_link_speed, i;
7796 bool reset_rate = false;
7798 /* VF TX rate limit was not set or not supported */
7799 if ((adapter->vf_rate_link_speed == 0) ||
7800 (adapter->hw.mac.type != e1000_82576))
7801 return;
7803 actual_link_speed = igb_link_mbps(adapter->link_speed);
7804 if (actual_link_speed != adapter->vf_rate_link_speed) {
7805 reset_rate = true;
7806 adapter->vf_rate_link_speed = 0;
7807 dev_info(&adapter->pdev->dev,
7808 "Link speed has been changed. VF Transmit rate is disabled\n");
7811 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7812 if (reset_rate)
7813 adapter->vf_data[i].tx_rate = 0;
7815 igb_set_vf_rate_limit(&adapter->hw, i,
7816 adapter->vf_data[i].tx_rate,
7817 actual_link_speed);
7821 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7822 int min_tx_rate, int max_tx_rate)
7824 struct igb_adapter *adapter = netdev_priv(netdev);
7825 struct e1000_hw *hw = &adapter->hw;
7826 int actual_link_speed;
7828 if (hw->mac.type != e1000_82576)
7829 return -EOPNOTSUPP;
7831 if (min_tx_rate)
7832 return -EINVAL;
7834 actual_link_speed = igb_link_mbps(adapter->link_speed);
7835 if ((vf >= adapter->vfs_allocated_count) ||
7836 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7837 (max_tx_rate < 0) ||
7838 (max_tx_rate > actual_link_speed))
7839 return -EINVAL;
7841 adapter->vf_rate_link_speed = actual_link_speed;
7842 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7843 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7845 return 0;
7848 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7849 bool setting)
7851 struct igb_adapter *adapter = netdev_priv(netdev);
7852 struct e1000_hw *hw = &adapter->hw;
7853 u32 reg_val, reg_offset;
7855 if (!adapter->vfs_allocated_count)
7856 return -EOPNOTSUPP;
7858 if (vf >= adapter->vfs_allocated_count)
7859 return -EINVAL;
7861 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7862 reg_val = rd32(reg_offset);
7863 if (setting)
7864 reg_val |= ((1 << vf) |
7865 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7866 else
7867 reg_val &= ~((1 << vf) |
7868 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7869 wr32(reg_offset, reg_val);
7871 adapter->vf_data[vf].spoofchk_enabled = setting;
7872 return 0;
7875 static int igb_ndo_get_vf_config(struct net_device *netdev,
7876 int vf, struct ifla_vf_info *ivi)
7878 struct igb_adapter *adapter = netdev_priv(netdev);
7879 if (vf >= adapter->vfs_allocated_count)
7880 return -EINVAL;
7881 ivi->vf = vf;
7882 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7883 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7884 ivi->min_tx_rate = 0;
7885 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7886 ivi->qos = adapter->vf_data[vf].pf_qos;
7887 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7888 return 0;
7891 static void igb_vmm_control(struct igb_adapter *adapter)
7893 struct e1000_hw *hw = &adapter->hw;
7894 u32 reg;
7896 switch (hw->mac.type) {
7897 case e1000_82575:
7898 case e1000_i210:
7899 case e1000_i211:
7900 case e1000_i354:
7901 default:
7902 /* replication is not supported for 82575 */
7903 return;
7904 case e1000_82576:
7905 /* notify HW that the MAC is adding vlan tags */
7906 reg = rd32(E1000_DTXCTL);
7907 reg |= E1000_DTXCTL_VLAN_ADDED;
7908 wr32(E1000_DTXCTL, reg);
7909 /* Fall through */
7910 case e1000_82580:
7911 /* enable replication vlan tag stripping */
7912 reg = rd32(E1000_RPLOLR);
7913 reg |= E1000_RPLOLR_STRVLAN;
7914 wr32(E1000_RPLOLR, reg);
7915 /* Fall through */
7916 case e1000_i350:
7917 /* none of the above registers are supported by i350 */
7918 break;
7921 if (adapter->vfs_allocated_count) {
7922 igb_vmdq_set_loopback_pf(hw, true);
7923 igb_vmdq_set_replication_pf(hw, true);
7924 igb_vmdq_set_anti_spoofing_pf(hw, true,
7925 adapter->vfs_allocated_count);
7926 } else {
7927 igb_vmdq_set_loopback_pf(hw, false);
7928 igb_vmdq_set_replication_pf(hw, false);
7932 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7934 struct e1000_hw *hw = &adapter->hw;
7935 u32 dmac_thr;
7936 u16 hwm;
7938 if (hw->mac.type > e1000_82580) {
7939 if (adapter->flags & IGB_FLAG_DMAC) {
7940 u32 reg;
7942 /* force threshold to 0. */
7943 wr32(E1000_DMCTXTH, 0);
7945 /* DMA Coalescing high water mark needs to be greater
7946 * than the Rx threshold. Set hwm to PBA - max frame
7947 * size in 16B units, capping it at PBA - 6KB.
7949 hwm = 64 * pba - adapter->max_frame_size / 16;
7950 if (hwm < 64 * (pba - 6))
7951 hwm = 64 * (pba - 6);
7952 reg = rd32(E1000_FCRTC);
7953 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7954 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7955 & E1000_FCRTC_RTH_COAL_MASK);
7956 wr32(E1000_FCRTC, reg);
7958 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7959 * frame size, capping it at PBA - 10KB.
7961 dmac_thr = pba - adapter->max_frame_size / 512;
7962 if (dmac_thr < pba - 10)
7963 dmac_thr = pba - 10;
7964 reg = rd32(E1000_DMACR);
7965 reg &= ~E1000_DMACR_DMACTHR_MASK;
7966 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7967 & E1000_DMACR_DMACTHR_MASK);
7969 /* transition to L0x or L1 if available..*/
7970 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7972 /* watchdog timer= +-1000 usec in 32usec intervals */
7973 reg |= (1000 >> 5);
7975 /* Disable BMC-to-OS Watchdog Enable */
7976 if (hw->mac.type != e1000_i354)
7977 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7979 wr32(E1000_DMACR, reg);
7981 /* no lower threshold to disable
7982 * coalescing(smart fifb)-UTRESH=0
7984 wr32(E1000_DMCRTRH, 0);
7986 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7988 wr32(E1000_DMCTLX, reg);
7990 /* free space in tx packet buffer to wake from
7991 * DMA coal
7993 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7994 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7996 /* make low power state decision controlled
7997 * by DMA coal
7999 reg = rd32(E1000_PCIEMISC);
8000 reg &= ~E1000_PCIEMISC_LX_DECISION;
8001 wr32(E1000_PCIEMISC, reg);
8002 } /* endif adapter->dmac is not disabled */
8003 } else if (hw->mac.type == e1000_82580) {
8004 u32 reg = rd32(E1000_PCIEMISC);
8006 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8007 wr32(E1000_DMACR, 0);
8012 * igb_read_i2c_byte - Reads 8 bit word over I2C
8013 * @hw: pointer to hardware structure
8014 * @byte_offset: byte offset to read
8015 * @dev_addr: device address
8016 * @data: value read
8018 * Performs byte read operation over I2C interface at
8019 * a specified device address.
8021 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8022 u8 dev_addr, u8 *data)
8024 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8025 struct i2c_client *this_client = adapter->i2c_client;
8026 s32 status;
8027 u16 swfw_mask = 0;
8029 if (!this_client)
8030 return E1000_ERR_I2C;
8032 swfw_mask = E1000_SWFW_PHY0_SM;
8034 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8035 return E1000_ERR_SWFW_SYNC;
8037 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8038 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8040 if (status < 0)
8041 return E1000_ERR_I2C;
8042 else {
8043 *data = status;
8044 return 0;
8049 * igb_write_i2c_byte - Writes 8 bit word over I2C
8050 * @hw: pointer to hardware structure
8051 * @byte_offset: byte offset to write
8052 * @dev_addr: device address
8053 * @data: value to write
8055 * Performs byte write operation over I2C interface at
8056 * a specified device address.
8058 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8059 u8 dev_addr, u8 data)
8061 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8062 struct i2c_client *this_client = adapter->i2c_client;
8063 s32 status;
8064 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8066 if (!this_client)
8067 return E1000_ERR_I2C;
8069 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8070 return E1000_ERR_SWFW_SYNC;
8071 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8072 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8074 if (status)
8075 return E1000_ERR_I2C;
8076 else
8077 return 0;
8081 int igb_reinit_queues(struct igb_adapter *adapter)
8083 struct net_device *netdev = adapter->netdev;
8084 struct pci_dev *pdev = adapter->pdev;
8085 int err = 0;
8087 if (netif_running(netdev))
8088 igb_close(netdev);
8090 igb_reset_interrupt_capability(adapter);
8092 if (igb_init_interrupt_scheme(adapter, true)) {
8093 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8094 return -ENOMEM;
8097 if (netif_running(netdev))
8098 err = igb_open(netdev);
8100 return err;
8102 /* igb_main.c */