Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6/btrfs-unstable.git] / drivers / input / input.c
blob0f175f55782b4113e37229a5f47d37a27f8cf7bd
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
49 static DEFINE_MUTEX(input_mutex);
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
53 static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
56 return code <= max && test_bit(code, bm);
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
72 return value;
75 static void input_start_autorepeat(struct input_dev *dev, int code)
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
86 static void input_stop_autorepeat(struct input_dev *dev)
88 del_timer(&dev->timer);
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
96 static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
103 for (v = vals; v != vals + count; v++) {
104 if (handler->filter &&
105 handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
112 count = end - vals;
113 if (!count)
114 return 0;
116 if (handler->events)
117 handler->events(handle, vals, count);
118 else if (handler->event)
119 for (v = vals; v != end; v++)
120 handler->event(handle, v->type, v->code, v->value);
122 return count;
126 * Pass values first through all filters and then, if event has not been
127 * filtered out, through all open handles. This function is called with
128 * dev->event_lock held and interrupts disabled.
130 static void input_pass_values(struct input_dev *dev,
131 struct input_value *vals, unsigned int count)
133 struct input_handle *handle;
134 struct input_value *v;
136 if (!count)
137 return;
139 rcu_read_lock();
141 handle = rcu_dereference(dev->grab);
142 if (handle) {
143 count = input_to_handler(handle, vals, count);
144 } else {
145 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
146 if (handle->open)
147 count = input_to_handler(handle, vals, count);
150 rcu_read_unlock();
152 add_input_randomness(vals->type, vals->code, vals->value);
154 /* trigger auto repeat for key events */
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
165 static void input_pass_event(struct input_dev *dev,
166 unsigned int type, unsigned int code, int value)
168 struct input_value vals[] = { { type, code, value } };
170 input_pass_values(dev, vals, ARRAY_SIZE(vals));
174 * Generate software autorepeat event. Note that we take
175 * dev->event_lock here to avoid racing with input_event
176 * which may cause keys get "stuck".
178 static void input_repeat_key(unsigned long data)
180 struct input_dev *dev = (void *) data;
181 unsigned long flags;
183 spin_lock_irqsave(&dev->event_lock, flags);
185 if (test_bit(dev->repeat_key, dev->key) &&
186 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
187 struct input_value vals[] = {
188 { EV_KEY, dev->repeat_key, 2 },
189 input_value_sync
192 input_pass_values(dev, vals, ARRAY_SIZE(vals));
194 if (dev->rep[REP_PERIOD])
195 mod_timer(&dev->timer, jiffies +
196 msecs_to_jiffies(dev->rep[REP_PERIOD]));
199 spin_unlock_irqrestore(&dev->event_lock, flags);
202 #define INPUT_IGNORE_EVENT 0
203 #define INPUT_PASS_TO_HANDLERS 1
204 #define INPUT_PASS_TO_DEVICE 2
205 #define INPUT_SLOT 4
206 #define INPUT_FLUSH 8
207 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
209 static int input_handle_abs_event(struct input_dev *dev,
210 unsigned int code, int *pval)
212 struct input_mt *mt = dev->mt;
213 bool is_mt_event;
214 int *pold;
216 if (code == ABS_MT_SLOT) {
218 * "Stage" the event; we'll flush it later, when we
219 * get actual touch data.
221 if (mt && *pval >= 0 && *pval < mt->num_slots)
222 mt->slot = *pval;
224 return INPUT_IGNORE_EVENT;
227 is_mt_event = input_is_mt_value(code);
229 if (!is_mt_event) {
230 pold = &dev->absinfo[code].value;
231 } else if (mt) {
232 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
233 } else {
235 * Bypass filtering for multi-touch events when
236 * not employing slots.
238 pold = NULL;
241 if (pold) {
242 *pval = input_defuzz_abs_event(*pval, *pold,
243 dev->absinfo[code].fuzz);
244 if (*pold == *pval)
245 return INPUT_IGNORE_EVENT;
247 *pold = *pval;
250 /* Flush pending "slot" event */
251 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
252 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
253 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
256 return INPUT_PASS_TO_HANDLERS;
259 static int input_get_disposition(struct input_dev *dev,
260 unsigned int type, unsigned int code, int *pval)
262 int disposition = INPUT_IGNORE_EVENT;
263 int value = *pval;
265 switch (type) {
267 case EV_SYN:
268 switch (code) {
269 case SYN_CONFIG:
270 disposition = INPUT_PASS_TO_ALL;
271 break;
273 case SYN_REPORT:
274 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
275 break;
276 case SYN_MT_REPORT:
277 disposition = INPUT_PASS_TO_HANDLERS;
278 break;
280 break;
282 case EV_KEY:
283 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
285 /* auto-repeat bypasses state updates */
286 if (value == 2) {
287 disposition = INPUT_PASS_TO_HANDLERS;
288 break;
291 if (!!test_bit(code, dev->key) != !!value) {
293 __change_bit(code, dev->key);
294 disposition = INPUT_PASS_TO_HANDLERS;
297 break;
299 case EV_SW:
300 if (is_event_supported(code, dev->swbit, SW_MAX) &&
301 !!test_bit(code, dev->sw) != !!value) {
303 __change_bit(code, dev->sw);
304 disposition = INPUT_PASS_TO_HANDLERS;
306 break;
308 case EV_ABS:
309 if (is_event_supported(code, dev->absbit, ABS_MAX))
310 disposition = input_handle_abs_event(dev, code, &value);
312 break;
314 case EV_REL:
315 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
316 disposition = INPUT_PASS_TO_HANDLERS;
318 break;
320 case EV_MSC:
321 if (is_event_supported(code, dev->mscbit, MSC_MAX))
322 disposition = INPUT_PASS_TO_ALL;
324 break;
326 case EV_LED:
327 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
328 !!test_bit(code, dev->led) != !!value) {
330 __change_bit(code, dev->led);
331 disposition = INPUT_PASS_TO_ALL;
333 break;
335 case EV_SND:
336 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
338 if (!!test_bit(code, dev->snd) != !!value)
339 __change_bit(code, dev->snd);
340 disposition = INPUT_PASS_TO_ALL;
342 break;
344 case EV_REP:
345 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
346 dev->rep[code] = value;
347 disposition = INPUT_PASS_TO_ALL;
349 break;
351 case EV_FF:
352 if (value >= 0)
353 disposition = INPUT_PASS_TO_ALL;
354 break;
356 case EV_PWR:
357 disposition = INPUT_PASS_TO_ALL;
358 break;
361 *pval = value;
362 return disposition;
365 static void input_handle_event(struct input_dev *dev,
366 unsigned int type, unsigned int code, int value)
368 int disposition;
370 disposition = input_get_disposition(dev, type, code, &value);
372 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
373 dev->event(dev, type, code, value);
375 if (!dev->vals)
376 return;
378 if (disposition & INPUT_PASS_TO_HANDLERS) {
379 struct input_value *v;
381 if (disposition & INPUT_SLOT) {
382 v = &dev->vals[dev->num_vals++];
383 v->type = EV_ABS;
384 v->code = ABS_MT_SLOT;
385 v->value = dev->mt->slot;
388 v = &dev->vals[dev->num_vals++];
389 v->type = type;
390 v->code = code;
391 v->value = value;
394 if (disposition & INPUT_FLUSH) {
395 if (dev->num_vals >= 2)
396 input_pass_values(dev, dev->vals, dev->num_vals);
397 dev->num_vals = 0;
398 } else if (dev->num_vals >= dev->max_vals - 2) {
399 dev->vals[dev->num_vals++] = input_value_sync;
400 input_pass_values(dev, dev->vals, dev->num_vals);
401 dev->num_vals = 0;
407 * input_event() - report new input event
408 * @dev: device that generated the event
409 * @type: type of the event
410 * @code: event code
411 * @value: value of the event
413 * This function should be used by drivers implementing various input
414 * devices to report input events. See also input_inject_event().
416 * NOTE: input_event() may be safely used right after input device was
417 * allocated with input_allocate_device(), even before it is registered
418 * with input_register_device(), but the event will not reach any of the
419 * input handlers. Such early invocation of input_event() may be used
420 * to 'seed' initial state of a switch or initial position of absolute
421 * axis, etc.
423 void input_event(struct input_dev *dev,
424 unsigned int type, unsigned int code, int value)
426 unsigned long flags;
428 if (is_event_supported(type, dev->evbit, EV_MAX)) {
430 spin_lock_irqsave(&dev->event_lock, flags);
431 input_handle_event(dev, type, code, value);
432 spin_unlock_irqrestore(&dev->event_lock, flags);
435 EXPORT_SYMBOL(input_event);
438 * input_inject_event() - send input event from input handler
439 * @handle: input handle to send event through
440 * @type: type of the event
441 * @code: event code
442 * @value: value of the event
444 * Similar to input_event() but will ignore event if device is
445 * "grabbed" and handle injecting event is not the one that owns
446 * the device.
448 void input_inject_event(struct input_handle *handle,
449 unsigned int type, unsigned int code, int value)
451 struct input_dev *dev = handle->dev;
452 struct input_handle *grab;
453 unsigned long flags;
455 if (is_event_supported(type, dev->evbit, EV_MAX)) {
456 spin_lock_irqsave(&dev->event_lock, flags);
458 rcu_read_lock();
459 grab = rcu_dereference(dev->grab);
460 if (!grab || grab == handle)
461 input_handle_event(dev, type, code, value);
462 rcu_read_unlock();
464 spin_unlock_irqrestore(&dev->event_lock, flags);
467 EXPORT_SYMBOL(input_inject_event);
470 * input_alloc_absinfo - allocates array of input_absinfo structs
471 * @dev: the input device emitting absolute events
473 * If the absinfo struct the caller asked for is already allocated, this
474 * functions will not do anything.
476 void input_alloc_absinfo(struct input_dev *dev)
478 if (!dev->absinfo)
479 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
480 GFP_KERNEL);
482 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
484 EXPORT_SYMBOL(input_alloc_absinfo);
486 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
487 int min, int max, int fuzz, int flat)
489 struct input_absinfo *absinfo;
491 input_alloc_absinfo(dev);
492 if (!dev->absinfo)
493 return;
495 absinfo = &dev->absinfo[axis];
496 absinfo->minimum = min;
497 absinfo->maximum = max;
498 absinfo->fuzz = fuzz;
499 absinfo->flat = flat;
501 __set_bit(EV_ABS, dev->evbit);
502 __set_bit(axis, dev->absbit);
504 EXPORT_SYMBOL(input_set_abs_params);
508 * input_grab_device - grabs device for exclusive use
509 * @handle: input handle that wants to own the device
511 * When a device is grabbed by an input handle all events generated by
512 * the device are delivered only to this handle. Also events injected
513 * by other input handles are ignored while device is grabbed.
515 int input_grab_device(struct input_handle *handle)
517 struct input_dev *dev = handle->dev;
518 int retval;
520 retval = mutex_lock_interruptible(&dev->mutex);
521 if (retval)
522 return retval;
524 if (dev->grab) {
525 retval = -EBUSY;
526 goto out;
529 rcu_assign_pointer(dev->grab, handle);
531 out:
532 mutex_unlock(&dev->mutex);
533 return retval;
535 EXPORT_SYMBOL(input_grab_device);
537 static void __input_release_device(struct input_handle *handle)
539 struct input_dev *dev = handle->dev;
540 struct input_handle *grabber;
542 grabber = rcu_dereference_protected(dev->grab,
543 lockdep_is_held(&dev->mutex));
544 if (grabber == handle) {
545 rcu_assign_pointer(dev->grab, NULL);
546 /* Make sure input_pass_event() notices that grab is gone */
547 synchronize_rcu();
549 list_for_each_entry(handle, &dev->h_list, d_node)
550 if (handle->open && handle->handler->start)
551 handle->handler->start(handle);
556 * input_release_device - release previously grabbed device
557 * @handle: input handle that owns the device
559 * Releases previously grabbed device so that other input handles can
560 * start receiving input events. Upon release all handlers attached
561 * to the device have their start() method called so they have a change
562 * to synchronize device state with the rest of the system.
564 void input_release_device(struct input_handle *handle)
566 struct input_dev *dev = handle->dev;
568 mutex_lock(&dev->mutex);
569 __input_release_device(handle);
570 mutex_unlock(&dev->mutex);
572 EXPORT_SYMBOL(input_release_device);
575 * input_open_device - open input device
576 * @handle: handle through which device is being accessed
578 * This function should be called by input handlers when they
579 * want to start receive events from given input device.
581 int input_open_device(struct input_handle *handle)
583 struct input_dev *dev = handle->dev;
584 int retval;
586 retval = mutex_lock_interruptible(&dev->mutex);
587 if (retval)
588 return retval;
590 if (dev->going_away) {
591 retval = -ENODEV;
592 goto out;
595 handle->open++;
597 if (!dev->users++ && dev->open)
598 retval = dev->open(dev);
600 if (retval) {
601 dev->users--;
602 if (!--handle->open) {
604 * Make sure we are not delivering any more events
605 * through this handle
607 synchronize_rcu();
611 out:
612 mutex_unlock(&dev->mutex);
613 return retval;
615 EXPORT_SYMBOL(input_open_device);
617 int input_flush_device(struct input_handle *handle, struct file *file)
619 struct input_dev *dev = handle->dev;
620 int retval;
622 retval = mutex_lock_interruptible(&dev->mutex);
623 if (retval)
624 return retval;
626 if (dev->flush)
627 retval = dev->flush(dev, file);
629 mutex_unlock(&dev->mutex);
630 return retval;
632 EXPORT_SYMBOL(input_flush_device);
635 * input_close_device - close input device
636 * @handle: handle through which device is being accessed
638 * This function should be called by input handlers when they
639 * want to stop receive events from given input device.
641 void input_close_device(struct input_handle *handle)
643 struct input_dev *dev = handle->dev;
645 mutex_lock(&dev->mutex);
647 __input_release_device(handle);
649 if (!--dev->users && dev->close)
650 dev->close(dev);
652 if (!--handle->open) {
654 * synchronize_rcu() makes sure that input_pass_event()
655 * completed and that no more input events are delivered
656 * through this handle
658 synchronize_rcu();
661 mutex_unlock(&dev->mutex);
663 EXPORT_SYMBOL(input_close_device);
666 * Simulate keyup events for all keys that are marked as pressed.
667 * The function must be called with dev->event_lock held.
669 static void input_dev_release_keys(struct input_dev *dev)
671 int code;
673 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
674 for (code = 0; code <= KEY_MAX; code++) {
675 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
676 __test_and_clear_bit(code, dev->key)) {
677 input_pass_event(dev, EV_KEY, code, 0);
680 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
685 * Prepare device for unregistering
687 static void input_disconnect_device(struct input_dev *dev)
689 struct input_handle *handle;
692 * Mark device as going away. Note that we take dev->mutex here
693 * not to protect access to dev->going_away but rather to ensure
694 * that there are no threads in the middle of input_open_device()
696 mutex_lock(&dev->mutex);
697 dev->going_away = true;
698 mutex_unlock(&dev->mutex);
700 spin_lock_irq(&dev->event_lock);
703 * Simulate keyup events for all pressed keys so that handlers
704 * are not left with "stuck" keys. The driver may continue
705 * generate events even after we done here but they will not
706 * reach any handlers.
708 input_dev_release_keys(dev);
710 list_for_each_entry(handle, &dev->h_list, d_node)
711 handle->open = 0;
713 spin_unlock_irq(&dev->event_lock);
717 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
718 * @ke: keymap entry containing scancode to be converted.
719 * @scancode: pointer to the location where converted scancode should
720 * be stored.
722 * This function is used to convert scancode stored in &struct keymap_entry
723 * into scalar form understood by legacy keymap handling methods. These
724 * methods expect scancodes to be represented as 'unsigned int'.
726 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
727 unsigned int *scancode)
729 switch (ke->len) {
730 case 1:
731 *scancode = *((u8 *)ke->scancode);
732 break;
734 case 2:
735 *scancode = *((u16 *)ke->scancode);
736 break;
738 case 4:
739 *scancode = *((u32 *)ke->scancode);
740 break;
742 default:
743 return -EINVAL;
746 return 0;
748 EXPORT_SYMBOL(input_scancode_to_scalar);
751 * Those routines handle the default case where no [gs]etkeycode() is
752 * defined. In this case, an array indexed by the scancode is used.
755 static unsigned int input_fetch_keycode(struct input_dev *dev,
756 unsigned int index)
758 switch (dev->keycodesize) {
759 case 1:
760 return ((u8 *)dev->keycode)[index];
762 case 2:
763 return ((u16 *)dev->keycode)[index];
765 default:
766 return ((u32 *)dev->keycode)[index];
770 static int input_default_getkeycode(struct input_dev *dev,
771 struct input_keymap_entry *ke)
773 unsigned int index;
774 int error;
776 if (!dev->keycodesize)
777 return -EINVAL;
779 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
780 index = ke->index;
781 else {
782 error = input_scancode_to_scalar(ke, &index);
783 if (error)
784 return error;
787 if (index >= dev->keycodemax)
788 return -EINVAL;
790 ke->keycode = input_fetch_keycode(dev, index);
791 ke->index = index;
792 ke->len = sizeof(index);
793 memcpy(ke->scancode, &index, sizeof(index));
795 return 0;
798 static int input_default_setkeycode(struct input_dev *dev,
799 const struct input_keymap_entry *ke,
800 unsigned int *old_keycode)
802 unsigned int index;
803 int error;
804 int i;
806 if (!dev->keycodesize)
807 return -EINVAL;
809 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
810 index = ke->index;
811 } else {
812 error = input_scancode_to_scalar(ke, &index);
813 if (error)
814 return error;
817 if (index >= dev->keycodemax)
818 return -EINVAL;
820 if (dev->keycodesize < sizeof(ke->keycode) &&
821 (ke->keycode >> (dev->keycodesize * 8)))
822 return -EINVAL;
824 switch (dev->keycodesize) {
825 case 1: {
826 u8 *k = (u8 *)dev->keycode;
827 *old_keycode = k[index];
828 k[index] = ke->keycode;
829 break;
831 case 2: {
832 u16 *k = (u16 *)dev->keycode;
833 *old_keycode = k[index];
834 k[index] = ke->keycode;
835 break;
837 default: {
838 u32 *k = (u32 *)dev->keycode;
839 *old_keycode = k[index];
840 k[index] = ke->keycode;
841 break;
845 __clear_bit(*old_keycode, dev->keybit);
846 __set_bit(ke->keycode, dev->keybit);
848 for (i = 0; i < dev->keycodemax; i++) {
849 if (input_fetch_keycode(dev, i) == *old_keycode) {
850 __set_bit(*old_keycode, dev->keybit);
851 break; /* Setting the bit twice is useless, so break */
855 return 0;
859 * input_get_keycode - retrieve keycode currently mapped to a given scancode
860 * @dev: input device which keymap is being queried
861 * @ke: keymap entry
863 * This function should be called by anyone interested in retrieving current
864 * keymap. Presently evdev handlers use it.
866 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
868 unsigned long flags;
869 int retval;
871 spin_lock_irqsave(&dev->event_lock, flags);
872 retval = dev->getkeycode(dev, ke);
873 spin_unlock_irqrestore(&dev->event_lock, flags);
875 return retval;
877 EXPORT_SYMBOL(input_get_keycode);
880 * input_set_keycode - attribute a keycode to a given scancode
881 * @dev: input device which keymap is being updated
882 * @ke: new keymap entry
884 * This function should be called by anyone needing to update current
885 * keymap. Presently keyboard and evdev handlers use it.
887 int input_set_keycode(struct input_dev *dev,
888 const struct input_keymap_entry *ke)
890 unsigned long flags;
891 unsigned int old_keycode;
892 int retval;
894 if (ke->keycode > KEY_MAX)
895 return -EINVAL;
897 spin_lock_irqsave(&dev->event_lock, flags);
899 retval = dev->setkeycode(dev, ke, &old_keycode);
900 if (retval)
901 goto out;
903 /* Make sure KEY_RESERVED did not get enabled. */
904 __clear_bit(KEY_RESERVED, dev->keybit);
907 * Simulate keyup event if keycode is not present
908 * in the keymap anymore
910 if (test_bit(EV_KEY, dev->evbit) &&
911 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
912 __test_and_clear_bit(old_keycode, dev->key)) {
913 struct input_value vals[] = {
914 { EV_KEY, old_keycode, 0 },
915 input_value_sync
918 input_pass_values(dev, vals, ARRAY_SIZE(vals));
921 out:
922 spin_unlock_irqrestore(&dev->event_lock, flags);
924 return retval;
926 EXPORT_SYMBOL(input_set_keycode);
928 static const struct input_device_id *input_match_device(struct input_handler *handler,
929 struct input_dev *dev)
931 const struct input_device_id *id;
933 for (id = handler->id_table; id->flags || id->driver_info; id++) {
935 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
936 if (id->bustype != dev->id.bustype)
937 continue;
939 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
940 if (id->vendor != dev->id.vendor)
941 continue;
943 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
944 if (id->product != dev->id.product)
945 continue;
947 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
948 if (id->version != dev->id.version)
949 continue;
951 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
952 continue;
954 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
955 continue;
957 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
958 continue;
960 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
961 continue;
963 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
964 continue;
966 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
967 continue;
969 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
970 continue;
972 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
973 continue;
975 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
976 continue;
978 if (!handler->match || handler->match(handler, dev))
979 return id;
982 return NULL;
985 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
987 const struct input_device_id *id;
988 int error;
990 id = input_match_device(handler, dev);
991 if (!id)
992 return -ENODEV;
994 error = handler->connect(handler, dev, id);
995 if (error && error != -ENODEV)
996 pr_err("failed to attach handler %s to device %s, error: %d\n",
997 handler->name, kobject_name(&dev->dev.kobj), error);
999 return error;
1002 #ifdef CONFIG_COMPAT
1004 static int input_bits_to_string(char *buf, int buf_size,
1005 unsigned long bits, bool skip_empty)
1007 int len = 0;
1009 if (INPUT_COMPAT_TEST) {
1010 u32 dword = bits >> 32;
1011 if (dword || !skip_empty)
1012 len += snprintf(buf, buf_size, "%x ", dword);
1014 dword = bits & 0xffffffffUL;
1015 if (dword || !skip_empty || len)
1016 len += snprintf(buf + len, max(buf_size - len, 0),
1017 "%x", dword);
1018 } else {
1019 if (bits || !skip_empty)
1020 len += snprintf(buf, buf_size, "%lx", bits);
1023 return len;
1026 #else /* !CONFIG_COMPAT */
1028 static int input_bits_to_string(char *buf, int buf_size,
1029 unsigned long bits, bool skip_empty)
1031 return bits || !skip_empty ?
1032 snprintf(buf, buf_size, "%lx", bits) : 0;
1035 #endif
1037 #ifdef CONFIG_PROC_FS
1039 static struct proc_dir_entry *proc_bus_input_dir;
1040 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1041 static int input_devices_state;
1043 static inline void input_wakeup_procfs_readers(void)
1045 input_devices_state++;
1046 wake_up(&input_devices_poll_wait);
1049 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1051 poll_wait(file, &input_devices_poll_wait, wait);
1052 if (file->f_version != input_devices_state) {
1053 file->f_version = input_devices_state;
1054 return POLLIN | POLLRDNORM;
1057 return 0;
1060 union input_seq_state {
1061 struct {
1062 unsigned short pos;
1063 bool mutex_acquired;
1065 void *p;
1068 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1070 union input_seq_state *state = (union input_seq_state *)&seq->private;
1071 int error;
1073 /* We need to fit into seq->private pointer */
1074 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1076 error = mutex_lock_interruptible(&input_mutex);
1077 if (error) {
1078 state->mutex_acquired = false;
1079 return ERR_PTR(error);
1082 state->mutex_acquired = true;
1084 return seq_list_start(&input_dev_list, *pos);
1087 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1089 return seq_list_next(v, &input_dev_list, pos);
1092 static void input_seq_stop(struct seq_file *seq, void *v)
1094 union input_seq_state *state = (union input_seq_state *)&seq->private;
1096 if (state->mutex_acquired)
1097 mutex_unlock(&input_mutex);
1100 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1101 unsigned long *bitmap, int max)
1103 int i;
1104 bool skip_empty = true;
1105 char buf[18];
1107 seq_printf(seq, "B: %s=", name);
1109 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1110 if (input_bits_to_string(buf, sizeof(buf),
1111 bitmap[i], skip_empty)) {
1112 skip_empty = false;
1113 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1118 * If no output was produced print a single 0.
1120 if (skip_empty)
1121 seq_puts(seq, "0");
1123 seq_putc(seq, '\n');
1126 static int input_devices_seq_show(struct seq_file *seq, void *v)
1128 struct input_dev *dev = container_of(v, struct input_dev, node);
1129 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1130 struct input_handle *handle;
1132 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1133 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1135 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1136 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1137 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1138 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1139 seq_printf(seq, "H: Handlers=");
1141 list_for_each_entry(handle, &dev->h_list, d_node)
1142 seq_printf(seq, "%s ", handle->name);
1143 seq_putc(seq, '\n');
1145 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1147 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1148 if (test_bit(EV_KEY, dev->evbit))
1149 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1150 if (test_bit(EV_REL, dev->evbit))
1151 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1152 if (test_bit(EV_ABS, dev->evbit))
1153 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1154 if (test_bit(EV_MSC, dev->evbit))
1155 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1156 if (test_bit(EV_LED, dev->evbit))
1157 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1158 if (test_bit(EV_SND, dev->evbit))
1159 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1160 if (test_bit(EV_FF, dev->evbit))
1161 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1162 if (test_bit(EV_SW, dev->evbit))
1163 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1165 seq_putc(seq, '\n');
1167 kfree(path);
1168 return 0;
1171 static const struct seq_operations input_devices_seq_ops = {
1172 .start = input_devices_seq_start,
1173 .next = input_devices_seq_next,
1174 .stop = input_seq_stop,
1175 .show = input_devices_seq_show,
1178 static int input_proc_devices_open(struct inode *inode, struct file *file)
1180 return seq_open(file, &input_devices_seq_ops);
1183 static const struct file_operations input_devices_fileops = {
1184 .owner = THIS_MODULE,
1185 .open = input_proc_devices_open,
1186 .poll = input_proc_devices_poll,
1187 .read = seq_read,
1188 .llseek = seq_lseek,
1189 .release = seq_release,
1192 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1194 union input_seq_state *state = (union input_seq_state *)&seq->private;
1195 int error;
1197 /* We need to fit into seq->private pointer */
1198 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1200 error = mutex_lock_interruptible(&input_mutex);
1201 if (error) {
1202 state->mutex_acquired = false;
1203 return ERR_PTR(error);
1206 state->mutex_acquired = true;
1207 state->pos = *pos;
1209 return seq_list_start(&input_handler_list, *pos);
1212 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1214 union input_seq_state *state = (union input_seq_state *)&seq->private;
1216 state->pos = *pos + 1;
1217 return seq_list_next(v, &input_handler_list, pos);
1220 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1222 struct input_handler *handler = container_of(v, struct input_handler, node);
1223 union input_seq_state *state = (union input_seq_state *)&seq->private;
1225 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1226 if (handler->filter)
1227 seq_puts(seq, " (filter)");
1228 if (handler->legacy_minors)
1229 seq_printf(seq, " Minor=%d", handler->minor);
1230 seq_putc(seq, '\n');
1232 return 0;
1235 static const struct seq_operations input_handlers_seq_ops = {
1236 .start = input_handlers_seq_start,
1237 .next = input_handlers_seq_next,
1238 .stop = input_seq_stop,
1239 .show = input_handlers_seq_show,
1242 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1244 return seq_open(file, &input_handlers_seq_ops);
1247 static const struct file_operations input_handlers_fileops = {
1248 .owner = THIS_MODULE,
1249 .open = input_proc_handlers_open,
1250 .read = seq_read,
1251 .llseek = seq_lseek,
1252 .release = seq_release,
1255 static int __init input_proc_init(void)
1257 struct proc_dir_entry *entry;
1259 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1260 if (!proc_bus_input_dir)
1261 return -ENOMEM;
1263 entry = proc_create("devices", 0, proc_bus_input_dir,
1264 &input_devices_fileops);
1265 if (!entry)
1266 goto fail1;
1268 entry = proc_create("handlers", 0, proc_bus_input_dir,
1269 &input_handlers_fileops);
1270 if (!entry)
1271 goto fail2;
1273 return 0;
1275 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1276 fail1: remove_proc_entry("bus/input", NULL);
1277 return -ENOMEM;
1280 static void input_proc_exit(void)
1282 remove_proc_entry("devices", proc_bus_input_dir);
1283 remove_proc_entry("handlers", proc_bus_input_dir);
1284 remove_proc_entry("bus/input", NULL);
1287 #else /* !CONFIG_PROC_FS */
1288 static inline void input_wakeup_procfs_readers(void) { }
1289 static inline int input_proc_init(void) { return 0; }
1290 static inline void input_proc_exit(void) { }
1291 #endif
1293 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1294 static ssize_t input_dev_show_##name(struct device *dev, \
1295 struct device_attribute *attr, \
1296 char *buf) \
1298 struct input_dev *input_dev = to_input_dev(dev); \
1300 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1301 input_dev->name ? input_dev->name : ""); \
1303 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1305 INPUT_DEV_STRING_ATTR_SHOW(name);
1306 INPUT_DEV_STRING_ATTR_SHOW(phys);
1307 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1309 static int input_print_modalias_bits(char *buf, int size,
1310 char name, unsigned long *bm,
1311 unsigned int min_bit, unsigned int max_bit)
1313 int len = 0, i;
1315 len += snprintf(buf, max(size, 0), "%c", name);
1316 for (i = min_bit; i < max_bit; i++)
1317 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1318 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1319 return len;
1322 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1323 int add_cr)
1325 int len;
1327 len = snprintf(buf, max(size, 0),
1328 "input:b%04Xv%04Xp%04Xe%04X-",
1329 id->id.bustype, id->id.vendor,
1330 id->id.product, id->id.version);
1332 len += input_print_modalias_bits(buf + len, size - len,
1333 'e', id->evbit, 0, EV_MAX);
1334 len += input_print_modalias_bits(buf + len, size - len,
1335 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1336 len += input_print_modalias_bits(buf + len, size - len,
1337 'r', id->relbit, 0, REL_MAX);
1338 len += input_print_modalias_bits(buf + len, size - len,
1339 'a', id->absbit, 0, ABS_MAX);
1340 len += input_print_modalias_bits(buf + len, size - len,
1341 'm', id->mscbit, 0, MSC_MAX);
1342 len += input_print_modalias_bits(buf + len, size - len,
1343 'l', id->ledbit, 0, LED_MAX);
1344 len += input_print_modalias_bits(buf + len, size - len,
1345 's', id->sndbit, 0, SND_MAX);
1346 len += input_print_modalias_bits(buf + len, size - len,
1347 'f', id->ffbit, 0, FF_MAX);
1348 len += input_print_modalias_bits(buf + len, size - len,
1349 'w', id->swbit, 0, SW_MAX);
1351 if (add_cr)
1352 len += snprintf(buf + len, max(size - len, 0), "\n");
1354 return len;
1357 static ssize_t input_dev_show_modalias(struct device *dev,
1358 struct device_attribute *attr,
1359 char *buf)
1361 struct input_dev *id = to_input_dev(dev);
1362 ssize_t len;
1364 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1366 return min_t(int, len, PAGE_SIZE);
1368 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1370 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1371 int max, int add_cr);
1373 static ssize_t input_dev_show_properties(struct device *dev,
1374 struct device_attribute *attr,
1375 char *buf)
1377 struct input_dev *input_dev = to_input_dev(dev);
1378 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1379 INPUT_PROP_MAX, true);
1380 return min_t(int, len, PAGE_SIZE);
1382 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1384 static struct attribute *input_dev_attrs[] = {
1385 &dev_attr_name.attr,
1386 &dev_attr_phys.attr,
1387 &dev_attr_uniq.attr,
1388 &dev_attr_modalias.attr,
1389 &dev_attr_properties.attr,
1390 NULL
1393 static struct attribute_group input_dev_attr_group = {
1394 .attrs = input_dev_attrs,
1397 #define INPUT_DEV_ID_ATTR(name) \
1398 static ssize_t input_dev_show_id_##name(struct device *dev, \
1399 struct device_attribute *attr, \
1400 char *buf) \
1402 struct input_dev *input_dev = to_input_dev(dev); \
1403 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1405 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1407 INPUT_DEV_ID_ATTR(bustype);
1408 INPUT_DEV_ID_ATTR(vendor);
1409 INPUT_DEV_ID_ATTR(product);
1410 INPUT_DEV_ID_ATTR(version);
1412 static struct attribute *input_dev_id_attrs[] = {
1413 &dev_attr_bustype.attr,
1414 &dev_attr_vendor.attr,
1415 &dev_attr_product.attr,
1416 &dev_attr_version.attr,
1417 NULL
1420 static struct attribute_group input_dev_id_attr_group = {
1421 .name = "id",
1422 .attrs = input_dev_id_attrs,
1425 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1426 int max, int add_cr)
1428 int i;
1429 int len = 0;
1430 bool skip_empty = true;
1432 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1433 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1434 bitmap[i], skip_empty);
1435 if (len) {
1436 skip_empty = false;
1437 if (i > 0)
1438 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1443 * If no output was produced print a single 0.
1445 if (len == 0)
1446 len = snprintf(buf, buf_size, "%d", 0);
1448 if (add_cr)
1449 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1451 return len;
1454 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1455 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1456 struct device_attribute *attr, \
1457 char *buf) \
1459 struct input_dev *input_dev = to_input_dev(dev); \
1460 int len = input_print_bitmap(buf, PAGE_SIZE, \
1461 input_dev->bm##bit, ev##_MAX, \
1462 true); \
1463 return min_t(int, len, PAGE_SIZE); \
1465 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1467 INPUT_DEV_CAP_ATTR(EV, ev);
1468 INPUT_DEV_CAP_ATTR(KEY, key);
1469 INPUT_DEV_CAP_ATTR(REL, rel);
1470 INPUT_DEV_CAP_ATTR(ABS, abs);
1471 INPUT_DEV_CAP_ATTR(MSC, msc);
1472 INPUT_DEV_CAP_ATTR(LED, led);
1473 INPUT_DEV_CAP_ATTR(SND, snd);
1474 INPUT_DEV_CAP_ATTR(FF, ff);
1475 INPUT_DEV_CAP_ATTR(SW, sw);
1477 static struct attribute *input_dev_caps_attrs[] = {
1478 &dev_attr_ev.attr,
1479 &dev_attr_key.attr,
1480 &dev_attr_rel.attr,
1481 &dev_attr_abs.attr,
1482 &dev_attr_msc.attr,
1483 &dev_attr_led.attr,
1484 &dev_attr_snd.attr,
1485 &dev_attr_ff.attr,
1486 &dev_attr_sw.attr,
1487 NULL
1490 static struct attribute_group input_dev_caps_attr_group = {
1491 .name = "capabilities",
1492 .attrs = input_dev_caps_attrs,
1495 static const struct attribute_group *input_dev_attr_groups[] = {
1496 &input_dev_attr_group,
1497 &input_dev_id_attr_group,
1498 &input_dev_caps_attr_group,
1499 NULL
1502 static void input_dev_release(struct device *device)
1504 struct input_dev *dev = to_input_dev(device);
1506 input_ff_destroy(dev);
1507 input_mt_destroy_slots(dev);
1508 kfree(dev->absinfo);
1509 kfree(dev->vals);
1510 kfree(dev);
1512 module_put(THIS_MODULE);
1516 * Input uevent interface - loading event handlers based on
1517 * device bitfields.
1519 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1520 const char *name, unsigned long *bitmap, int max)
1522 int len;
1524 if (add_uevent_var(env, "%s", name))
1525 return -ENOMEM;
1527 len = input_print_bitmap(&env->buf[env->buflen - 1],
1528 sizeof(env->buf) - env->buflen,
1529 bitmap, max, false);
1530 if (len >= (sizeof(env->buf) - env->buflen))
1531 return -ENOMEM;
1533 env->buflen += len;
1534 return 0;
1537 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1538 struct input_dev *dev)
1540 int len;
1542 if (add_uevent_var(env, "MODALIAS="))
1543 return -ENOMEM;
1545 len = input_print_modalias(&env->buf[env->buflen - 1],
1546 sizeof(env->buf) - env->buflen,
1547 dev, 0);
1548 if (len >= (sizeof(env->buf) - env->buflen))
1549 return -ENOMEM;
1551 env->buflen += len;
1552 return 0;
1555 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1556 do { \
1557 int err = add_uevent_var(env, fmt, val); \
1558 if (err) \
1559 return err; \
1560 } while (0)
1562 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1563 do { \
1564 int err = input_add_uevent_bm_var(env, name, bm, max); \
1565 if (err) \
1566 return err; \
1567 } while (0)
1569 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1570 do { \
1571 int err = input_add_uevent_modalias_var(env, dev); \
1572 if (err) \
1573 return err; \
1574 } while (0)
1576 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1578 struct input_dev *dev = to_input_dev(device);
1580 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1581 dev->id.bustype, dev->id.vendor,
1582 dev->id.product, dev->id.version);
1583 if (dev->name)
1584 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1585 if (dev->phys)
1586 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1587 if (dev->uniq)
1588 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1590 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1592 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1593 if (test_bit(EV_KEY, dev->evbit))
1594 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1595 if (test_bit(EV_REL, dev->evbit))
1596 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1597 if (test_bit(EV_ABS, dev->evbit))
1598 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1599 if (test_bit(EV_MSC, dev->evbit))
1600 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1601 if (test_bit(EV_LED, dev->evbit))
1602 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1603 if (test_bit(EV_SND, dev->evbit))
1604 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1605 if (test_bit(EV_FF, dev->evbit))
1606 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1607 if (test_bit(EV_SW, dev->evbit))
1608 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1610 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1612 return 0;
1615 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1616 do { \
1617 int i; \
1618 bool active; \
1620 if (!test_bit(EV_##type, dev->evbit)) \
1621 break; \
1623 for (i = 0; i < type##_MAX; i++) { \
1624 if (!test_bit(i, dev->bits##bit)) \
1625 continue; \
1627 active = test_bit(i, dev->bits); \
1628 if (!active && !on) \
1629 continue; \
1631 dev->event(dev, EV_##type, i, on ? active : 0); \
1633 } while (0)
1635 static void input_dev_toggle(struct input_dev *dev, bool activate)
1637 if (!dev->event)
1638 return;
1640 INPUT_DO_TOGGLE(dev, LED, led, activate);
1641 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1643 if (activate && test_bit(EV_REP, dev->evbit)) {
1644 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1645 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1650 * input_reset_device() - reset/restore the state of input device
1651 * @dev: input device whose state needs to be reset
1653 * This function tries to reset the state of an opened input device and
1654 * bring internal state and state if the hardware in sync with each other.
1655 * We mark all keys as released, restore LED state, repeat rate, etc.
1657 void input_reset_device(struct input_dev *dev)
1659 unsigned long flags;
1661 mutex_lock(&dev->mutex);
1662 spin_lock_irqsave(&dev->event_lock, flags);
1664 input_dev_toggle(dev, true);
1665 input_dev_release_keys(dev);
1667 spin_unlock_irqrestore(&dev->event_lock, flags);
1668 mutex_unlock(&dev->mutex);
1670 EXPORT_SYMBOL(input_reset_device);
1672 #ifdef CONFIG_PM_SLEEP
1673 static int input_dev_suspend(struct device *dev)
1675 struct input_dev *input_dev = to_input_dev(dev);
1677 spin_lock_irq(&input_dev->event_lock);
1680 * Keys that are pressed now are unlikely to be
1681 * still pressed when we resume.
1683 input_dev_release_keys(input_dev);
1685 /* Turn off LEDs and sounds, if any are active. */
1686 input_dev_toggle(input_dev, false);
1688 spin_unlock_irq(&input_dev->event_lock);
1690 return 0;
1693 static int input_dev_resume(struct device *dev)
1695 struct input_dev *input_dev = to_input_dev(dev);
1697 spin_lock_irq(&input_dev->event_lock);
1699 /* Restore state of LEDs and sounds, if any were active. */
1700 input_dev_toggle(input_dev, true);
1702 spin_unlock_irq(&input_dev->event_lock);
1704 return 0;
1707 static int input_dev_freeze(struct device *dev)
1709 struct input_dev *input_dev = to_input_dev(dev);
1711 spin_lock_irq(&input_dev->event_lock);
1714 * Keys that are pressed now are unlikely to be
1715 * still pressed when we resume.
1717 input_dev_release_keys(input_dev);
1719 spin_unlock_irq(&input_dev->event_lock);
1721 return 0;
1724 static int input_dev_poweroff(struct device *dev)
1726 struct input_dev *input_dev = to_input_dev(dev);
1728 spin_lock_irq(&input_dev->event_lock);
1730 /* Turn off LEDs and sounds, if any are active. */
1731 input_dev_toggle(input_dev, false);
1733 spin_unlock_irq(&input_dev->event_lock);
1735 return 0;
1738 static const struct dev_pm_ops input_dev_pm_ops = {
1739 .suspend = input_dev_suspend,
1740 .resume = input_dev_resume,
1741 .freeze = input_dev_freeze,
1742 .poweroff = input_dev_poweroff,
1743 .restore = input_dev_resume,
1745 #endif /* CONFIG_PM */
1747 static struct device_type input_dev_type = {
1748 .groups = input_dev_attr_groups,
1749 .release = input_dev_release,
1750 .uevent = input_dev_uevent,
1751 #ifdef CONFIG_PM_SLEEP
1752 .pm = &input_dev_pm_ops,
1753 #endif
1756 static char *input_devnode(struct device *dev, umode_t *mode)
1758 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1761 struct class input_class = {
1762 .name = "input",
1763 .devnode = input_devnode,
1765 EXPORT_SYMBOL_GPL(input_class);
1768 * input_allocate_device - allocate memory for new input device
1770 * Returns prepared struct input_dev or %NULL.
1772 * NOTE: Use input_free_device() to free devices that have not been
1773 * registered; input_unregister_device() should be used for already
1774 * registered devices.
1776 struct input_dev *input_allocate_device(void)
1778 static atomic_t input_no = ATOMIC_INIT(0);
1779 struct input_dev *dev;
1781 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1782 if (dev) {
1783 dev->dev.type = &input_dev_type;
1784 dev->dev.class = &input_class;
1785 device_initialize(&dev->dev);
1786 mutex_init(&dev->mutex);
1787 spin_lock_init(&dev->event_lock);
1788 init_timer(&dev->timer);
1789 INIT_LIST_HEAD(&dev->h_list);
1790 INIT_LIST_HEAD(&dev->node);
1792 dev_set_name(&dev->dev, "input%lu",
1793 (unsigned long) atomic_inc_return(&input_no) - 1);
1795 __module_get(THIS_MODULE);
1798 return dev;
1800 EXPORT_SYMBOL(input_allocate_device);
1802 struct input_devres {
1803 struct input_dev *input;
1806 static int devm_input_device_match(struct device *dev, void *res, void *data)
1808 struct input_devres *devres = res;
1810 return devres->input == data;
1813 static void devm_input_device_release(struct device *dev, void *res)
1815 struct input_devres *devres = res;
1816 struct input_dev *input = devres->input;
1818 dev_dbg(dev, "%s: dropping reference to %s\n",
1819 __func__, dev_name(&input->dev));
1820 input_put_device(input);
1824 * devm_input_allocate_device - allocate managed input device
1825 * @dev: device owning the input device being created
1827 * Returns prepared struct input_dev or %NULL.
1829 * Managed input devices do not need to be explicitly unregistered or
1830 * freed as it will be done automatically when owner device unbinds from
1831 * its driver (or binding fails). Once managed input device is allocated,
1832 * it is ready to be set up and registered in the same fashion as regular
1833 * input device. There are no special devm_input_device_[un]register()
1834 * variants, regular ones work with both managed and unmanaged devices,
1835 * should you need them. In most cases however, managed input device need
1836 * not be explicitly unregistered or freed.
1838 * NOTE: the owner device is set up as parent of input device and users
1839 * should not override it.
1841 struct input_dev *devm_input_allocate_device(struct device *dev)
1843 struct input_dev *input;
1844 struct input_devres *devres;
1846 devres = devres_alloc(devm_input_device_release,
1847 sizeof(struct input_devres), GFP_KERNEL);
1848 if (!devres)
1849 return NULL;
1851 input = input_allocate_device();
1852 if (!input) {
1853 devres_free(devres);
1854 return NULL;
1857 input->dev.parent = dev;
1858 input->devres_managed = true;
1860 devres->input = input;
1861 devres_add(dev, devres);
1863 return input;
1865 EXPORT_SYMBOL(devm_input_allocate_device);
1868 * input_free_device - free memory occupied by input_dev structure
1869 * @dev: input device to free
1871 * This function should only be used if input_register_device()
1872 * was not called yet or if it failed. Once device was registered
1873 * use input_unregister_device() and memory will be freed once last
1874 * reference to the device is dropped.
1876 * Device should be allocated by input_allocate_device().
1878 * NOTE: If there are references to the input device then memory
1879 * will not be freed until last reference is dropped.
1881 void input_free_device(struct input_dev *dev)
1883 if (dev) {
1884 if (dev->devres_managed)
1885 WARN_ON(devres_destroy(dev->dev.parent,
1886 devm_input_device_release,
1887 devm_input_device_match,
1888 dev));
1889 input_put_device(dev);
1892 EXPORT_SYMBOL(input_free_device);
1895 * input_set_capability - mark device as capable of a certain event
1896 * @dev: device that is capable of emitting or accepting event
1897 * @type: type of the event (EV_KEY, EV_REL, etc...)
1898 * @code: event code
1900 * In addition to setting up corresponding bit in appropriate capability
1901 * bitmap the function also adjusts dev->evbit.
1903 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1905 switch (type) {
1906 case EV_KEY:
1907 __set_bit(code, dev->keybit);
1908 break;
1910 case EV_REL:
1911 __set_bit(code, dev->relbit);
1912 break;
1914 case EV_ABS:
1915 input_alloc_absinfo(dev);
1916 if (!dev->absinfo)
1917 return;
1919 __set_bit(code, dev->absbit);
1920 break;
1922 case EV_MSC:
1923 __set_bit(code, dev->mscbit);
1924 break;
1926 case EV_SW:
1927 __set_bit(code, dev->swbit);
1928 break;
1930 case EV_LED:
1931 __set_bit(code, dev->ledbit);
1932 break;
1934 case EV_SND:
1935 __set_bit(code, dev->sndbit);
1936 break;
1938 case EV_FF:
1939 __set_bit(code, dev->ffbit);
1940 break;
1942 case EV_PWR:
1943 /* do nothing */
1944 break;
1946 default:
1947 pr_err("input_set_capability: unknown type %u (code %u)\n",
1948 type, code);
1949 dump_stack();
1950 return;
1953 __set_bit(type, dev->evbit);
1955 EXPORT_SYMBOL(input_set_capability);
1957 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1959 int mt_slots;
1960 int i;
1961 unsigned int events;
1963 if (dev->mt) {
1964 mt_slots = dev->mt->num_slots;
1965 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1966 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1967 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1968 mt_slots = clamp(mt_slots, 2, 32);
1969 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1970 mt_slots = 2;
1971 } else {
1972 mt_slots = 0;
1975 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1977 for (i = 0; i < ABS_CNT; i++) {
1978 if (test_bit(i, dev->absbit)) {
1979 if (input_is_mt_axis(i))
1980 events += mt_slots;
1981 else
1982 events++;
1986 for (i = 0; i < REL_CNT; i++)
1987 if (test_bit(i, dev->relbit))
1988 events++;
1990 /* Make room for KEY and MSC events */
1991 events += 7;
1993 return events;
1996 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1997 do { \
1998 if (!test_bit(EV_##type, dev->evbit)) \
1999 memset(dev->bits##bit, 0, \
2000 sizeof(dev->bits##bit)); \
2001 } while (0)
2003 static void input_cleanse_bitmasks(struct input_dev *dev)
2005 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2006 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2007 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2008 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2009 INPUT_CLEANSE_BITMASK(dev, LED, led);
2010 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2011 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2012 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2015 static void __input_unregister_device(struct input_dev *dev)
2017 struct input_handle *handle, *next;
2019 input_disconnect_device(dev);
2021 mutex_lock(&input_mutex);
2023 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2024 handle->handler->disconnect(handle);
2025 WARN_ON(!list_empty(&dev->h_list));
2027 del_timer_sync(&dev->timer);
2028 list_del_init(&dev->node);
2030 input_wakeup_procfs_readers();
2032 mutex_unlock(&input_mutex);
2034 device_del(&dev->dev);
2037 static void devm_input_device_unregister(struct device *dev, void *res)
2039 struct input_devres *devres = res;
2040 struct input_dev *input = devres->input;
2042 dev_dbg(dev, "%s: unregistering device %s\n",
2043 __func__, dev_name(&input->dev));
2044 __input_unregister_device(input);
2048 * input_register_device - register device with input core
2049 * @dev: device to be registered
2051 * This function registers device with input core. The device must be
2052 * allocated with input_allocate_device() and all it's capabilities
2053 * set up before registering.
2054 * If function fails the device must be freed with input_free_device().
2055 * Once device has been successfully registered it can be unregistered
2056 * with input_unregister_device(); input_free_device() should not be
2057 * called in this case.
2059 * Note that this function is also used to register managed input devices
2060 * (ones allocated with devm_input_allocate_device()). Such managed input
2061 * devices need not be explicitly unregistered or freed, their tear down
2062 * is controlled by the devres infrastructure. It is also worth noting
2063 * that tear down of managed input devices is internally a 2-step process:
2064 * registered managed input device is first unregistered, but stays in
2065 * memory and can still handle input_event() calls (although events will
2066 * not be delivered anywhere). The freeing of managed input device will
2067 * happen later, when devres stack is unwound to the point where device
2068 * allocation was made.
2070 int input_register_device(struct input_dev *dev)
2072 struct input_devres *devres = NULL;
2073 struct input_handler *handler;
2074 unsigned int packet_size;
2075 const char *path;
2076 int error;
2078 if (dev->devres_managed) {
2079 devres = devres_alloc(devm_input_device_unregister,
2080 sizeof(struct input_devres), GFP_KERNEL);
2081 if (!devres)
2082 return -ENOMEM;
2084 devres->input = dev;
2087 /* Every input device generates EV_SYN/SYN_REPORT events. */
2088 __set_bit(EV_SYN, dev->evbit);
2090 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2091 __clear_bit(KEY_RESERVED, dev->keybit);
2093 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2094 input_cleanse_bitmasks(dev);
2096 packet_size = input_estimate_events_per_packet(dev);
2097 if (dev->hint_events_per_packet < packet_size)
2098 dev->hint_events_per_packet = packet_size;
2100 dev->max_vals = dev->hint_events_per_packet + 2;
2101 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2102 if (!dev->vals) {
2103 error = -ENOMEM;
2104 goto err_devres_free;
2108 * If delay and period are pre-set by the driver, then autorepeating
2109 * is handled by the driver itself and we don't do it in input.c.
2111 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2112 dev->timer.data = (long) dev;
2113 dev->timer.function = input_repeat_key;
2114 dev->rep[REP_DELAY] = 250;
2115 dev->rep[REP_PERIOD] = 33;
2118 if (!dev->getkeycode)
2119 dev->getkeycode = input_default_getkeycode;
2121 if (!dev->setkeycode)
2122 dev->setkeycode = input_default_setkeycode;
2124 error = device_add(&dev->dev);
2125 if (error)
2126 goto err_free_vals;
2128 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2129 pr_info("%s as %s\n",
2130 dev->name ? dev->name : "Unspecified device",
2131 path ? path : "N/A");
2132 kfree(path);
2134 error = mutex_lock_interruptible(&input_mutex);
2135 if (error)
2136 goto err_device_del;
2138 list_add_tail(&dev->node, &input_dev_list);
2140 list_for_each_entry(handler, &input_handler_list, node)
2141 input_attach_handler(dev, handler);
2143 input_wakeup_procfs_readers();
2145 mutex_unlock(&input_mutex);
2147 if (dev->devres_managed) {
2148 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2149 __func__, dev_name(&dev->dev));
2150 devres_add(dev->dev.parent, devres);
2152 return 0;
2154 err_device_del:
2155 device_del(&dev->dev);
2156 err_free_vals:
2157 kfree(dev->vals);
2158 dev->vals = NULL;
2159 err_devres_free:
2160 devres_free(devres);
2161 return error;
2163 EXPORT_SYMBOL(input_register_device);
2166 * input_unregister_device - unregister previously registered device
2167 * @dev: device to be unregistered
2169 * This function unregisters an input device. Once device is unregistered
2170 * the caller should not try to access it as it may get freed at any moment.
2172 void input_unregister_device(struct input_dev *dev)
2174 if (dev->devres_managed) {
2175 WARN_ON(devres_destroy(dev->dev.parent,
2176 devm_input_device_unregister,
2177 devm_input_device_match,
2178 dev));
2179 __input_unregister_device(dev);
2181 * We do not do input_put_device() here because it will be done
2182 * when 2nd devres fires up.
2184 } else {
2185 __input_unregister_device(dev);
2186 input_put_device(dev);
2189 EXPORT_SYMBOL(input_unregister_device);
2192 * input_register_handler - register a new input handler
2193 * @handler: handler to be registered
2195 * This function registers a new input handler (interface) for input
2196 * devices in the system and attaches it to all input devices that
2197 * are compatible with the handler.
2199 int input_register_handler(struct input_handler *handler)
2201 struct input_dev *dev;
2202 int error;
2204 error = mutex_lock_interruptible(&input_mutex);
2205 if (error)
2206 return error;
2208 INIT_LIST_HEAD(&handler->h_list);
2210 list_add_tail(&handler->node, &input_handler_list);
2212 list_for_each_entry(dev, &input_dev_list, node)
2213 input_attach_handler(dev, handler);
2215 input_wakeup_procfs_readers();
2217 mutex_unlock(&input_mutex);
2218 return 0;
2220 EXPORT_SYMBOL(input_register_handler);
2223 * input_unregister_handler - unregisters an input handler
2224 * @handler: handler to be unregistered
2226 * This function disconnects a handler from its input devices and
2227 * removes it from lists of known handlers.
2229 void input_unregister_handler(struct input_handler *handler)
2231 struct input_handle *handle, *next;
2233 mutex_lock(&input_mutex);
2235 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2236 handler->disconnect(handle);
2237 WARN_ON(!list_empty(&handler->h_list));
2239 list_del_init(&handler->node);
2241 input_wakeup_procfs_readers();
2243 mutex_unlock(&input_mutex);
2245 EXPORT_SYMBOL(input_unregister_handler);
2248 * input_handler_for_each_handle - handle iterator
2249 * @handler: input handler to iterate
2250 * @data: data for the callback
2251 * @fn: function to be called for each handle
2253 * Iterate over @bus's list of devices, and call @fn for each, passing
2254 * it @data and stop when @fn returns a non-zero value. The function is
2255 * using RCU to traverse the list and therefore may be usind in atonic
2256 * contexts. The @fn callback is invoked from RCU critical section and
2257 * thus must not sleep.
2259 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2260 int (*fn)(struct input_handle *, void *))
2262 struct input_handle *handle;
2263 int retval = 0;
2265 rcu_read_lock();
2267 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2268 retval = fn(handle, data);
2269 if (retval)
2270 break;
2273 rcu_read_unlock();
2275 return retval;
2277 EXPORT_SYMBOL(input_handler_for_each_handle);
2280 * input_register_handle - register a new input handle
2281 * @handle: handle to register
2283 * This function puts a new input handle onto device's
2284 * and handler's lists so that events can flow through
2285 * it once it is opened using input_open_device().
2287 * This function is supposed to be called from handler's
2288 * connect() method.
2290 int input_register_handle(struct input_handle *handle)
2292 struct input_handler *handler = handle->handler;
2293 struct input_dev *dev = handle->dev;
2294 int error;
2297 * We take dev->mutex here to prevent race with
2298 * input_release_device().
2300 error = mutex_lock_interruptible(&dev->mutex);
2301 if (error)
2302 return error;
2305 * Filters go to the head of the list, normal handlers
2306 * to the tail.
2308 if (handler->filter)
2309 list_add_rcu(&handle->d_node, &dev->h_list);
2310 else
2311 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2313 mutex_unlock(&dev->mutex);
2316 * Since we are supposed to be called from ->connect()
2317 * which is mutually exclusive with ->disconnect()
2318 * we can't be racing with input_unregister_handle()
2319 * and so separate lock is not needed here.
2321 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2323 if (handler->start)
2324 handler->start(handle);
2326 return 0;
2328 EXPORT_SYMBOL(input_register_handle);
2331 * input_unregister_handle - unregister an input handle
2332 * @handle: handle to unregister
2334 * This function removes input handle from device's
2335 * and handler's lists.
2337 * This function is supposed to be called from handler's
2338 * disconnect() method.
2340 void input_unregister_handle(struct input_handle *handle)
2342 struct input_dev *dev = handle->dev;
2344 list_del_rcu(&handle->h_node);
2347 * Take dev->mutex to prevent race with input_release_device().
2349 mutex_lock(&dev->mutex);
2350 list_del_rcu(&handle->d_node);
2351 mutex_unlock(&dev->mutex);
2353 synchronize_rcu();
2355 EXPORT_SYMBOL(input_unregister_handle);
2358 * input_get_new_minor - allocates a new input minor number
2359 * @legacy_base: beginning or the legacy range to be searched
2360 * @legacy_num: size of legacy range
2361 * @allow_dynamic: whether we can also take ID from the dynamic range
2363 * This function allocates a new device minor for from input major namespace.
2364 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2365 * parameters and whether ID can be allocated from dynamic range if there are
2366 * no free IDs in legacy range.
2368 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2369 bool allow_dynamic)
2372 * This function should be called from input handler's ->connect()
2373 * methods, which are serialized with input_mutex, so no additional
2374 * locking is needed here.
2376 if (legacy_base >= 0) {
2377 int minor = ida_simple_get(&input_ida,
2378 legacy_base,
2379 legacy_base + legacy_num,
2380 GFP_KERNEL);
2381 if (minor >= 0 || !allow_dynamic)
2382 return minor;
2385 return ida_simple_get(&input_ida,
2386 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2387 GFP_KERNEL);
2389 EXPORT_SYMBOL(input_get_new_minor);
2392 * input_free_minor - release previously allocated minor
2393 * @minor: minor to be released
2395 * This function releases previously allocated input minor so that it can be
2396 * reused later.
2398 void input_free_minor(unsigned int minor)
2400 ida_simple_remove(&input_ida, minor);
2402 EXPORT_SYMBOL(input_free_minor);
2404 static int __init input_init(void)
2406 int err;
2408 err = class_register(&input_class);
2409 if (err) {
2410 pr_err("unable to register input_dev class\n");
2411 return err;
2414 err = input_proc_init();
2415 if (err)
2416 goto fail1;
2418 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2419 INPUT_MAX_CHAR_DEVICES, "input");
2420 if (err) {
2421 pr_err("unable to register char major %d", INPUT_MAJOR);
2422 goto fail2;
2425 return 0;
2427 fail2: input_proc_exit();
2428 fail1: class_unregister(&input_class);
2429 return err;
2432 static void __exit input_exit(void)
2434 input_proc_exit();
2435 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2436 INPUT_MAX_CHAR_DEVICES);
2437 class_unregister(&input_class);
2440 subsys_initcall(input_init);
2441 module_exit(input_exit);