Merge tag 'drm-next-2018-08-24' of git://anongit.freedesktop.org/drm/drm
[linux-2.6/btrfs-unstable.git] / net / core / flow_dissector.c
blobce9eeeb7c024c8ab98ca77a03317105c73b8e108
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/dst_metadata.h>
9 #include <net/ip.h>
10 #include <net/ipv6.h>
11 #include <net/gre.h>
12 #include <net/pptp.h>
13 #include <net/tipc.h>
14 #include <linux/igmp.h>
15 #include <linux/icmp.h>
16 #include <linux/sctp.h>
17 #include <linux/dccp.h>
18 #include <linux/if_tunnel.h>
19 #include <linux/if_pppox.h>
20 #include <linux/ppp_defs.h>
21 #include <linux/stddef.h>
22 #include <linux/if_ether.h>
23 #include <linux/mpls.h>
24 #include <linux/tcp.h>
25 #include <net/flow_dissector.h>
26 #include <scsi/fc/fc_fcoe.h>
27 #include <uapi/linux/batadv_packet.h>
29 static void dissector_set_key(struct flow_dissector *flow_dissector,
30 enum flow_dissector_key_id key_id)
32 flow_dissector->used_keys |= (1 << key_id);
35 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
36 const struct flow_dissector_key *key,
37 unsigned int key_count)
39 unsigned int i;
41 memset(flow_dissector, 0, sizeof(*flow_dissector));
43 for (i = 0; i < key_count; i++, key++) {
44 /* User should make sure that every key target offset is withing
45 * boundaries of unsigned short.
47 BUG_ON(key->offset > USHRT_MAX);
48 BUG_ON(dissector_uses_key(flow_dissector,
49 key->key_id));
51 dissector_set_key(flow_dissector, key->key_id);
52 flow_dissector->offset[key->key_id] = key->offset;
55 /* Ensure that the dissector always includes control and basic key.
56 * That way we are able to avoid handling lack of these in fast path.
58 BUG_ON(!dissector_uses_key(flow_dissector,
59 FLOW_DISSECTOR_KEY_CONTROL));
60 BUG_ON(!dissector_uses_key(flow_dissector,
61 FLOW_DISSECTOR_KEY_BASIC));
63 EXPORT_SYMBOL(skb_flow_dissector_init);
65 /**
66 * skb_flow_get_be16 - extract be16 entity
67 * @skb: sk_buff to extract from
68 * @poff: offset to extract at
69 * @data: raw buffer pointer to the packet
70 * @hlen: packet header length
72 * The function will try to retrieve a be32 entity at
73 * offset poff
75 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
76 void *data, int hlen)
78 __be16 *u, _u;
80 u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
81 if (u)
82 return *u;
84 return 0;
87 /**
88 * __skb_flow_get_ports - extract the upper layer ports and return them
89 * @skb: sk_buff to extract the ports from
90 * @thoff: transport header offset
91 * @ip_proto: protocol for which to get port offset
92 * @data: raw buffer pointer to the packet, if NULL use skb->data
93 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
95 * The function will try to retrieve the ports at offset thoff + poff where poff
96 * is the protocol port offset returned from proto_ports_offset
98 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
99 void *data, int hlen)
101 int poff = proto_ports_offset(ip_proto);
103 if (!data) {
104 data = skb->data;
105 hlen = skb_headlen(skb);
108 if (poff >= 0) {
109 __be32 *ports, _ports;
111 ports = __skb_header_pointer(skb, thoff + poff,
112 sizeof(_ports), data, hlen, &_ports);
113 if (ports)
114 return *ports;
117 return 0;
119 EXPORT_SYMBOL(__skb_flow_get_ports);
121 static void
122 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
123 struct flow_dissector *flow_dissector,
124 void *target_container)
126 struct flow_dissector_key_control *ctrl;
128 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
129 return;
131 ctrl = skb_flow_dissector_target(flow_dissector,
132 FLOW_DISSECTOR_KEY_ENC_CONTROL,
133 target_container);
134 ctrl->addr_type = type;
137 void
138 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
139 struct flow_dissector *flow_dissector,
140 void *target_container)
142 struct ip_tunnel_info *info;
143 struct ip_tunnel_key *key;
145 /* A quick check to see if there might be something to do. */
146 if (!dissector_uses_key(flow_dissector,
147 FLOW_DISSECTOR_KEY_ENC_KEYID) &&
148 !dissector_uses_key(flow_dissector,
149 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
150 !dissector_uses_key(flow_dissector,
151 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
152 !dissector_uses_key(flow_dissector,
153 FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
154 !dissector_uses_key(flow_dissector,
155 FLOW_DISSECTOR_KEY_ENC_PORTS) &&
156 !dissector_uses_key(flow_dissector,
157 FLOW_DISSECTOR_KEY_ENC_IP) &&
158 !dissector_uses_key(flow_dissector,
159 FLOW_DISSECTOR_KEY_ENC_OPTS))
160 return;
162 info = skb_tunnel_info(skb);
163 if (!info)
164 return;
166 key = &info->key;
168 switch (ip_tunnel_info_af(info)) {
169 case AF_INET:
170 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
171 flow_dissector,
172 target_container);
173 if (dissector_uses_key(flow_dissector,
174 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
175 struct flow_dissector_key_ipv4_addrs *ipv4;
177 ipv4 = skb_flow_dissector_target(flow_dissector,
178 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
179 target_container);
180 ipv4->src = key->u.ipv4.src;
181 ipv4->dst = key->u.ipv4.dst;
183 break;
184 case AF_INET6:
185 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
186 flow_dissector,
187 target_container);
188 if (dissector_uses_key(flow_dissector,
189 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
190 struct flow_dissector_key_ipv6_addrs *ipv6;
192 ipv6 = skb_flow_dissector_target(flow_dissector,
193 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
194 target_container);
195 ipv6->src = key->u.ipv6.src;
196 ipv6->dst = key->u.ipv6.dst;
198 break;
201 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
202 struct flow_dissector_key_keyid *keyid;
204 keyid = skb_flow_dissector_target(flow_dissector,
205 FLOW_DISSECTOR_KEY_ENC_KEYID,
206 target_container);
207 keyid->keyid = tunnel_id_to_key32(key->tun_id);
210 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
211 struct flow_dissector_key_ports *tp;
213 tp = skb_flow_dissector_target(flow_dissector,
214 FLOW_DISSECTOR_KEY_ENC_PORTS,
215 target_container);
216 tp->src = key->tp_src;
217 tp->dst = key->tp_dst;
220 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
221 struct flow_dissector_key_ip *ip;
223 ip = skb_flow_dissector_target(flow_dissector,
224 FLOW_DISSECTOR_KEY_ENC_IP,
225 target_container);
226 ip->tos = key->tos;
227 ip->ttl = key->ttl;
230 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
231 struct flow_dissector_key_enc_opts *enc_opt;
233 enc_opt = skb_flow_dissector_target(flow_dissector,
234 FLOW_DISSECTOR_KEY_ENC_OPTS,
235 target_container);
237 if (info->options_len) {
238 enc_opt->len = info->options_len;
239 ip_tunnel_info_opts_get(enc_opt->data, info);
240 enc_opt->dst_opt_type = info->key.tun_flags &
241 TUNNEL_OPTIONS_PRESENT;
245 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
247 static enum flow_dissect_ret
248 __skb_flow_dissect_mpls(const struct sk_buff *skb,
249 struct flow_dissector *flow_dissector,
250 void *target_container, void *data, int nhoff, int hlen)
252 struct flow_dissector_key_keyid *key_keyid;
253 struct mpls_label *hdr, _hdr[2];
254 u32 entry, label;
256 if (!dissector_uses_key(flow_dissector,
257 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
258 !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
259 return FLOW_DISSECT_RET_OUT_GOOD;
261 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
262 hlen, &_hdr);
263 if (!hdr)
264 return FLOW_DISSECT_RET_OUT_BAD;
266 entry = ntohl(hdr[0].entry);
267 label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
269 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
270 struct flow_dissector_key_mpls *key_mpls;
272 key_mpls = skb_flow_dissector_target(flow_dissector,
273 FLOW_DISSECTOR_KEY_MPLS,
274 target_container);
275 key_mpls->mpls_label = label;
276 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
277 >> MPLS_LS_TTL_SHIFT;
278 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
279 >> MPLS_LS_TC_SHIFT;
280 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
281 >> MPLS_LS_S_SHIFT;
284 if (label == MPLS_LABEL_ENTROPY) {
285 key_keyid = skb_flow_dissector_target(flow_dissector,
286 FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
287 target_container);
288 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
290 return FLOW_DISSECT_RET_OUT_GOOD;
293 static enum flow_dissect_ret
294 __skb_flow_dissect_arp(const struct sk_buff *skb,
295 struct flow_dissector *flow_dissector,
296 void *target_container, void *data, int nhoff, int hlen)
298 struct flow_dissector_key_arp *key_arp;
299 struct {
300 unsigned char ar_sha[ETH_ALEN];
301 unsigned char ar_sip[4];
302 unsigned char ar_tha[ETH_ALEN];
303 unsigned char ar_tip[4];
304 } *arp_eth, _arp_eth;
305 const struct arphdr *arp;
306 struct arphdr _arp;
308 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
309 return FLOW_DISSECT_RET_OUT_GOOD;
311 arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
312 hlen, &_arp);
313 if (!arp)
314 return FLOW_DISSECT_RET_OUT_BAD;
316 if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
317 arp->ar_pro != htons(ETH_P_IP) ||
318 arp->ar_hln != ETH_ALEN ||
319 arp->ar_pln != 4 ||
320 (arp->ar_op != htons(ARPOP_REPLY) &&
321 arp->ar_op != htons(ARPOP_REQUEST)))
322 return FLOW_DISSECT_RET_OUT_BAD;
324 arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
325 sizeof(_arp_eth), data,
326 hlen, &_arp_eth);
327 if (!arp_eth)
328 return FLOW_DISSECT_RET_OUT_BAD;
330 key_arp = skb_flow_dissector_target(flow_dissector,
331 FLOW_DISSECTOR_KEY_ARP,
332 target_container);
334 memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
335 memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
337 /* Only store the lower byte of the opcode;
338 * this covers ARPOP_REPLY and ARPOP_REQUEST.
340 key_arp->op = ntohs(arp->ar_op) & 0xff;
342 ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
343 ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
345 return FLOW_DISSECT_RET_OUT_GOOD;
348 static enum flow_dissect_ret
349 __skb_flow_dissect_gre(const struct sk_buff *skb,
350 struct flow_dissector_key_control *key_control,
351 struct flow_dissector *flow_dissector,
352 void *target_container, void *data,
353 __be16 *p_proto, int *p_nhoff, int *p_hlen,
354 unsigned int flags)
356 struct flow_dissector_key_keyid *key_keyid;
357 struct gre_base_hdr *hdr, _hdr;
358 int offset = 0;
359 u16 gre_ver;
361 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
362 data, *p_hlen, &_hdr);
363 if (!hdr)
364 return FLOW_DISSECT_RET_OUT_BAD;
366 /* Only look inside GRE without routing */
367 if (hdr->flags & GRE_ROUTING)
368 return FLOW_DISSECT_RET_OUT_GOOD;
370 /* Only look inside GRE for version 0 and 1 */
371 gre_ver = ntohs(hdr->flags & GRE_VERSION);
372 if (gre_ver > 1)
373 return FLOW_DISSECT_RET_OUT_GOOD;
375 *p_proto = hdr->protocol;
376 if (gre_ver) {
377 /* Version1 must be PPTP, and check the flags */
378 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
379 return FLOW_DISSECT_RET_OUT_GOOD;
382 offset += sizeof(struct gre_base_hdr);
384 if (hdr->flags & GRE_CSUM)
385 offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
386 sizeof(((struct gre_full_hdr *) 0)->reserved1);
388 if (hdr->flags & GRE_KEY) {
389 const __be32 *keyid;
390 __be32 _keyid;
392 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
393 sizeof(_keyid),
394 data, *p_hlen, &_keyid);
395 if (!keyid)
396 return FLOW_DISSECT_RET_OUT_BAD;
398 if (dissector_uses_key(flow_dissector,
399 FLOW_DISSECTOR_KEY_GRE_KEYID)) {
400 key_keyid = skb_flow_dissector_target(flow_dissector,
401 FLOW_DISSECTOR_KEY_GRE_KEYID,
402 target_container);
403 if (gre_ver == 0)
404 key_keyid->keyid = *keyid;
405 else
406 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
408 offset += sizeof(((struct gre_full_hdr *) 0)->key);
411 if (hdr->flags & GRE_SEQ)
412 offset += sizeof(((struct pptp_gre_header *) 0)->seq);
414 if (gre_ver == 0) {
415 if (*p_proto == htons(ETH_P_TEB)) {
416 const struct ethhdr *eth;
417 struct ethhdr _eth;
419 eth = __skb_header_pointer(skb, *p_nhoff + offset,
420 sizeof(_eth),
421 data, *p_hlen, &_eth);
422 if (!eth)
423 return FLOW_DISSECT_RET_OUT_BAD;
424 *p_proto = eth->h_proto;
425 offset += sizeof(*eth);
427 /* Cap headers that we access via pointers at the
428 * end of the Ethernet header as our maximum alignment
429 * at that point is only 2 bytes.
431 if (NET_IP_ALIGN)
432 *p_hlen = *p_nhoff + offset;
434 } else { /* version 1, must be PPTP */
435 u8 _ppp_hdr[PPP_HDRLEN];
436 u8 *ppp_hdr;
438 if (hdr->flags & GRE_ACK)
439 offset += sizeof(((struct pptp_gre_header *) 0)->ack);
441 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
442 sizeof(_ppp_hdr),
443 data, *p_hlen, _ppp_hdr);
444 if (!ppp_hdr)
445 return FLOW_DISSECT_RET_OUT_BAD;
447 switch (PPP_PROTOCOL(ppp_hdr)) {
448 case PPP_IP:
449 *p_proto = htons(ETH_P_IP);
450 break;
451 case PPP_IPV6:
452 *p_proto = htons(ETH_P_IPV6);
453 break;
454 default:
455 /* Could probably catch some more like MPLS */
456 break;
459 offset += PPP_HDRLEN;
462 *p_nhoff += offset;
463 key_control->flags |= FLOW_DIS_ENCAPSULATION;
464 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
465 return FLOW_DISSECT_RET_OUT_GOOD;
467 return FLOW_DISSECT_RET_PROTO_AGAIN;
471 * __skb_flow_dissect_batadv() - dissect batman-adv header
472 * @skb: sk_buff to with the batman-adv header
473 * @key_control: flow dissectors control key
474 * @data: raw buffer pointer to the packet, if NULL use skb->data
475 * @p_proto: pointer used to update the protocol to process next
476 * @p_nhoff: pointer used to update inner network header offset
477 * @hlen: packet header length
478 * @flags: any combination of FLOW_DISSECTOR_F_*
480 * ETH_P_BATMAN packets are tried to be dissected. Only
481 * &struct batadv_unicast packets are actually processed because they contain an
482 * inner ethernet header and are usually followed by actual network header. This
483 * allows the flow dissector to continue processing the packet.
485 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
486 * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
487 * otherwise FLOW_DISSECT_RET_OUT_BAD
489 static enum flow_dissect_ret
490 __skb_flow_dissect_batadv(const struct sk_buff *skb,
491 struct flow_dissector_key_control *key_control,
492 void *data, __be16 *p_proto, int *p_nhoff, int hlen,
493 unsigned int flags)
495 struct {
496 struct batadv_unicast_packet batadv_unicast;
497 struct ethhdr eth;
498 } *hdr, _hdr;
500 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
501 &_hdr);
502 if (!hdr)
503 return FLOW_DISSECT_RET_OUT_BAD;
505 if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
506 return FLOW_DISSECT_RET_OUT_BAD;
508 if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
509 return FLOW_DISSECT_RET_OUT_BAD;
511 *p_proto = hdr->eth.h_proto;
512 *p_nhoff += sizeof(*hdr);
514 key_control->flags |= FLOW_DIS_ENCAPSULATION;
515 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
516 return FLOW_DISSECT_RET_OUT_GOOD;
518 return FLOW_DISSECT_RET_PROTO_AGAIN;
521 static void
522 __skb_flow_dissect_tcp(const struct sk_buff *skb,
523 struct flow_dissector *flow_dissector,
524 void *target_container, void *data, int thoff, int hlen)
526 struct flow_dissector_key_tcp *key_tcp;
527 struct tcphdr *th, _th;
529 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
530 return;
532 th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
533 if (!th)
534 return;
536 if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
537 return;
539 key_tcp = skb_flow_dissector_target(flow_dissector,
540 FLOW_DISSECTOR_KEY_TCP,
541 target_container);
542 key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
545 static void
546 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
547 struct flow_dissector *flow_dissector,
548 void *target_container, void *data, const struct iphdr *iph)
550 struct flow_dissector_key_ip *key_ip;
552 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
553 return;
555 key_ip = skb_flow_dissector_target(flow_dissector,
556 FLOW_DISSECTOR_KEY_IP,
557 target_container);
558 key_ip->tos = iph->tos;
559 key_ip->ttl = iph->ttl;
562 static void
563 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
564 struct flow_dissector *flow_dissector,
565 void *target_container, void *data, const struct ipv6hdr *iph)
567 struct flow_dissector_key_ip *key_ip;
569 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
570 return;
572 key_ip = skb_flow_dissector_target(flow_dissector,
573 FLOW_DISSECTOR_KEY_IP,
574 target_container);
575 key_ip->tos = ipv6_get_dsfield(iph);
576 key_ip->ttl = iph->hop_limit;
579 /* Maximum number of protocol headers that can be parsed in
580 * __skb_flow_dissect
582 #define MAX_FLOW_DISSECT_HDRS 15
584 static bool skb_flow_dissect_allowed(int *num_hdrs)
586 ++*num_hdrs;
588 return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
592 * __skb_flow_dissect - extract the flow_keys struct and return it
593 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
594 * @flow_dissector: list of keys to dissect
595 * @target_container: target structure to put dissected values into
596 * @data: raw buffer pointer to the packet, if NULL use skb->data
597 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
598 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
599 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
601 * The function will try to retrieve individual keys into target specified
602 * by flow_dissector from either the skbuff or a raw buffer specified by the
603 * rest parameters.
605 * Caller must take care of zeroing target container memory.
607 bool __skb_flow_dissect(const struct sk_buff *skb,
608 struct flow_dissector *flow_dissector,
609 void *target_container,
610 void *data, __be16 proto, int nhoff, int hlen,
611 unsigned int flags)
613 struct flow_dissector_key_control *key_control;
614 struct flow_dissector_key_basic *key_basic;
615 struct flow_dissector_key_addrs *key_addrs;
616 struct flow_dissector_key_ports *key_ports;
617 struct flow_dissector_key_icmp *key_icmp;
618 struct flow_dissector_key_tags *key_tags;
619 struct flow_dissector_key_vlan *key_vlan;
620 enum flow_dissect_ret fdret;
621 enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
622 int num_hdrs = 0;
623 u8 ip_proto = 0;
624 bool ret;
626 if (!data) {
627 data = skb->data;
628 proto = skb_vlan_tag_present(skb) ?
629 skb->vlan_proto : skb->protocol;
630 nhoff = skb_network_offset(skb);
631 hlen = skb_headlen(skb);
632 #if IS_ENABLED(CONFIG_NET_DSA)
633 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
634 const struct dsa_device_ops *ops;
635 int offset;
637 ops = skb->dev->dsa_ptr->tag_ops;
638 if (ops->flow_dissect &&
639 !ops->flow_dissect(skb, &proto, &offset)) {
640 hlen -= offset;
641 nhoff += offset;
644 #endif
647 /* It is ensured by skb_flow_dissector_init() that control key will
648 * be always present.
650 key_control = skb_flow_dissector_target(flow_dissector,
651 FLOW_DISSECTOR_KEY_CONTROL,
652 target_container);
654 /* It is ensured by skb_flow_dissector_init() that basic key will
655 * be always present.
657 key_basic = skb_flow_dissector_target(flow_dissector,
658 FLOW_DISSECTOR_KEY_BASIC,
659 target_container);
661 if (dissector_uses_key(flow_dissector,
662 FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
663 struct ethhdr *eth = eth_hdr(skb);
664 struct flow_dissector_key_eth_addrs *key_eth_addrs;
666 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
667 FLOW_DISSECTOR_KEY_ETH_ADDRS,
668 target_container);
669 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
672 proto_again:
673 fdret = FLOW_DISSECT_RET_CONTINUE;
675 switch (proto) {
676 case htons(ETH_P_IP): {
677 const struct iphdr *iph;
678 struct iphdr _iph;
680 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
681 if (!iph || iph->ihl < 5) {
682 fdret = FLOW_DISSECT_RET_OUT_BAD;
683 break;
686 nhoff += iph->ihl * 4;
688 ip_proto = iph->protocol;
690 if (dissector_uses_key(flow_dissector,
691 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
692 key_addrs = skb_flow_dissector_target(flow_dissector,
693 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
694 target_container);
696 memcpy(&key_addrs->v4addrs, &iph->saddr,
697 sizeof(key_addrs->v4addrs));
698 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
701 if (ip_is_fragment(iph)) {
702 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
704 if (iph->frag_off & htons(IP_OFFSET)) {
705 fdret = FLOW_DISSECT_RET_OUT_GOOD;
706 break;
707 } else {
708 key_control->flags |= FLOW_DIS_FIRST_FRAG;
709 if (!(flags &
710 FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
711 fdret = FLOW_DISSECT_RET_OUT_GOOD;
712 break;
717 __skb_flow_dissect_ipv4(skb, flow_dissector,
718 target_container, data, iph);
720 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
721 fdret = FLOW_DISSECT_RET_OUT_GOOD;
722 break;
725 break;
727 case htons(ETH_P_IPV6): {
728 const struct ipv6hdr *iph;
729 struct ipv6hdr _iph;
731 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
732 if (!iph) {
733 fdret = FLOW_DISSECT_RET_OUT_BAD;
734 break;
737 ip_proto = iph->nexthdr;
738 nhoff += sizeof(struct ipv6hdr);
740 if (dissector_uses_key(flow_dissector,
741 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
742 key_addrs = skb_flow_dissector_target(flow_dissector,
743 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
744 target_container);
746 memcpy(&key_addrs->v6addrs, &iph->saddr,
747 sizeof(key_addrs->v6addrs));
748 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
751 if ((dissector_uses_key(flow_dissector,
752 FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
753 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
754 ip6_flowlabel(iph)) {
755 __be32 flow_label = ip6_flowlabel(iph);
757 if (dissector_uses_key(flow_dissector,
758 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
759 key_tags = skb_flow_dissector_target(flow_dissector,
760 FLOW_DISSECTOR_KEY_FLOW_LABEL,
761 target_container);
762 key_tags->flow_label = ntohl(flow_label);
764 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
765 fdret = FLOW_DISSECT_RET_OUT_GOOD;
766 break;
770 __skb_flow_dissect_ipv6(skb, flow_dissector,
771 target_container, data, iph);
773 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
774 fdret = FLOW_DISSECT_RET_OUT_GOOD;
776 break;
778 case htons(ETH_P_8021AD):
779 case htons(ETH_P_8021Q): {
780 const struct vlan_hdr *vlan = NULL;
781 struct vlan_hdr _vlan;
782 __be16 saved_vlan_tpid = proto;
784 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
785 skb && skb_vlan_tag_present(skb)) {
786 proto = skb->protocol;
787 } else {
788 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
789 data, hlen, &_vlan);
790 if (!vlan) {
791 fdret = FLOW_DISSECT_RET_OUT_BAD;
792 break;
795 proto = vlan->h_vlan_encapsulated_proto;
796 nhoff += sizeof(*vlan);
799 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
800 dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
801 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
802 dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
803 } else {
804 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
805 break;
808 if (dissector_uses_key(flow_dissector, dissector_vlan)) {
809 key_vlan = skb_flow_dissector_target(flow_dissector,
810 dissector_vlan,
811 target_container);
813 if (!vlan) {
814 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
815 key_vlan->vlan_priority =
816 (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
817 } else {
818 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
819 VLAN_VID_MASK;
820 key_vlan->vlan_priority =
821 (ntohs(vlan->h_vlan_TCI) &
822 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
824 key_vlan->vlan_tpid = saved_vlan_tpid;
827 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
828 break;
830 case htons(ETH_P_PPP_SES): {
831 struct {
832 struct pppoe_hdr hdr;
833 __be16 proto;
834 } *hdr, _hdr;
835 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
836 if (!hdr) {
837 fdret = FLOW_DISSECT_RET_OUT_BAD;
838 break;
841 proto = hdr->proto;
842 nhoff += PPPOE_SES_HLEN;
843 switch (proto) {
844 case htons(PPP_IP):
845 proto = htons(ETH_P_IP);
846 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
847 break;
848 case htons(PPP_IPV6):
849 proto = htons(ETH_P_IPV6);
850 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
851 break;
852 default:
853 fdret = FLOW_DISSECT_RET_OUT_BAD;
854 break;
856 break;
858 case htons(ETH_P_TIPC): {
859 struct tipc_basic_hdr *hdr, _hdr;
861 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
862 data, hlen, &_hdr);
863 if (!hdr) {
864 fdret = FLOW_DISSECT_RET_OUT_BAD;
865 break;
868 if (dissector_uses_key(flow_dissector,
869 FLOW_DISSECTOR_KEY_TIPC)) {
870 key_addrs = skb_flow_dissector_target(flow_dissector,
871 FLOW_DISSECTOR_KEY_TIPC,
872 target_container);
873 key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
874 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
876 fdret = FLOW_DISSECT_RET_OUT_GOOD;
877 break;
880 case htons(ETH_P_MPLS_UC):
881 case htons(ETH_P_MPLS_MC):
882 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
883 target_container, data,
884 nhoff, hlen);
885 break;
886 case htons(ETH_P_FCOE):
887 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
888 fdret = FLOW_DISSECT_RET_OUT_BAD;
889 break;
892 nhoff += FCOE_HEADER_LEN;
893 fdret = FLOW_DISSECT_RET_OUT_GOOD;
894 break;
896 case htons(ETH_P_ARP):
897 case htons(ETH_P_RARP):
898 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
899 target_container, data,
900 nhoff, hlen);
901 break;
903 case htons(ETH_P_BATMAN):
904 fdret = __skb_flow_dissect_batadv(skb, key_control, data,
905 &proto, &nhoff, hlen, flags);
906 break;
908 default:
909 fdret = FLOW_DISSECT_RET_OUT_BAD;
910 break;
913 /* Process result of proto processing */
914 switch (fdret) {
915 case FLOW_DISSECT_RET_OUT_GOOD:
916 goto out_good;
917 case FLOW_DISSECT_RET_PROTO_AGAIN:
918 if (skb_flow_dissect_allowed(&num_hdrs))
919 goto proto_again;
920 goto out_good;
921 case FLOW_DISSECT_RET_CONTINUE:
922 case FLOW_DISSECT_RET_IPPROTO_AGAIN:
923 break;
924 case FLOW_DISSECT_RET_OUT_BAD:
925 default:
926 goto out_bad;
929 ip_proto_again:
930 fdret = FLOW_DISSECT_RET_CONTINUE;
932 switch (ip_proto) {
933 case IPPROTO_GRE:
934 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
935 target_container, data,
936 &proto, &nhoff, &hlen, flags);
937 break;
939 case NEXTHDR_HOP:
940 case NEXTHDR_ROUTING:
941 case NEXTHDR_DEST: {
942 u8 _opthdr[2], *opthdr;
944 if (proto != htons(ETH_P_IPV6))
945 break;
947 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
948 data, hlen, &_opthdr);
949 if (!opthdr) {
950 fdret = FLOW_DISSECT_RET_OUT_BAD;
951 break;
954 ip_proto = opthdr[0];
955 nhoff += (opthdr[1] + 1) << 3;
957 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
958 break;
960 case NEXTHDR_FRAGMENT: {
961 struct frag_hdr _fh, *fh;
963 if (proto != htons(ETH_P_IPV6))
964 break;
966 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
967 data, hlen, &_fh);
969 if (!fh) {
970 fdret = FLOW_DISSECT_RET_OUT_BAD;
971 break;
974 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
976 nhoff += sizeof(_fh);
977 ip_proto = fh->nexthdr;
979 if (!(fh->frag_off & htons(IP6_OFFSET))) {
980 key_control->flags |= FLOW_DIS_FIRST_FRAG;
981 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
982 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
983 break;
987 fdret = FLOW_DISSECT_RET_OUT_GOOD;
988 break;
990 case IPPROTO_IPIP:
991 proto = htons(ETH_P_IP);
993 key_control->flags |= FLOW_DIS_ENCAPSULATION;
994 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
995 fdret = FLOW_DISSECT_RET_OUT_GOOD;
996 break;
999 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1000 break;
1002 case IPPROTO_IPV6:
1003 proto = htons(ETH_P_IPV6);
1005 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1006 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1007 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1008 break;
1011 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1012 break;
1015 case IPPROTO_MPLS:
1016 proto = htons(ETH_P_MPLS_UC);
1017 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1018 break;
1020 case IPPROTO_TCP:
1021 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1022 data, nhoff, hlen);
1023 break;
1025 default:
1026 break;
1029 if (dissector_uses_key(flow_dissector,
1030 FLOW_DISSECTOR_KEY_PORTS)) {
1031 key_ports = skb_flow_dissector_target(flow_dissector,
1032 FLOW_DISSECTOR_KEY_PORTS,
1033 target_container);
1034 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1035 data, hlen);
1038 if (dissector_uses_key(flow_dissector,
1039 FLOW_DISSECTOR_KEY_ICMP)) {
1040 key_icmp = skb_flow_dissector_target(flow_dissector,
1041 FLOW_DISSECTOR_KEY_ICMP,
1042 target_container);
1043 key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
1046 /* Process result of IP proto processing */
1047 switch (fdret) {
1048 case FLOW_DISSECT_RET_PROTO_AGAIN:
1049 if (skb_flow_dissect_allowed(&num_hdrs))
1050 goto proto_again;
1051 break;
1052 case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1053 if (skb_flow_dissect_allowed(&num_hdrs))
1054 goto ip_proto_again;
1055 break;
1056 case FLOW_DISSECT_RET_OUT_GOOD:
1057 case FLOW_DISSECT_RET_CONTINUE:
1058 break;
1059 case FLOW_DISSECT_RET_OUT_BAD:
1060 default:
1061 goto out_bad;
1064 out_good:
1065 ret = true;
1067 out:
1068 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1069 key_basic->n_proto = proto;
1070 key_basic->ip_proto = ip_proto;
1072 return ret;
1074 out_bad:
1075 ret = false;
1076 goto out;
1078 EXPORT_SYMBOL(__skb_flow_dissect);
1080 static u32 hashrnd __read_mostly;
1081 static __always_inline void __flow_hash_secret_init(void)
1083 net_get_random_once(&hashrnd, sizeof(hashrnd));
1086 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
1087 u32 keyval)
1089 return jhash2(words, length, keyval);
1092 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
1094 const void *p = flow;
1096 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
1097 return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
1100 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1102 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1103 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1104 BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1105 sizeof(*flow) - sizeof(flow->addrs));
1107 switch (flow->control.addr_type) {
1108 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1109 diff -= sizeof(flow->addrs.v4addrs);
1110 break;
1111 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1112 diff -= sizeof(flow->addrs.v6addrs);
1113 break;
1114 case FLOW_DISSECTOR_KEY_TIPC:
1115 diff -= sizeof(flow->addrs.tipckey);
1116 break;
1118 return (sizeof(*flow) - diff) / sizeof(u32);
1121 __be32 flow_get_u32_src(const struct flow_keys *flow)
1123 switch (flow->control.addr_type) {
1124 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1125 return flow->addrs.v4addrs.src;
1126 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1127 return (__force __be32)ipv6_addr_hash(
1128 &flow->addrs.v6addrs.src);
1129 case FLOW_DISSECTOR_KEY_TIPC:
1130 return flow->addrs.tipckey.key;
1131 default:
1132 return 0;
1135 EXPORT_SYMBOL(flow_get_u32_src);
1137 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1139 switch (flow->control.addr_type) {
1140 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1141 return flow->addrs.v4addrs.dst;
1142 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1143 return (__force __be32)ipv6_addr_hash(
1144 &flow->addrs.v6addrs.dst);
1145 default:
1146 return 0;
1149 EXPORT_SYMBOL(flow_get_u32_dst);
1151 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1153 int addr_diff, i;
1155 switch (keys->control.addr_type) {
1156 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1157 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1158 (__force u32)keys->addrs.v4addrs.src;
1159 if ((addr_diff < 0) ||
1160 (addr_diff == 0 &&
1161 ((__force u16)keys->ports.dst <
1162 (__force u16)keys->ports.src))) {
1163 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1164 swap(keys->ports.src, keys->ports.dst);
1166 break;
1167 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1168 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1169 &keys->addrs.v6addrs.src,
1170 sizeof(keys->addrs.v6addrs.dst));
1171 if ((addr_diff < 0) ||
1172 (addr_diff == 0 &&
1173 ((__force u16)keys->ports.dst <
1174 (__force u16)keys->ports.src))) {
1175 for (i = 0; i < 4; i++)
1176 swap(keys->addrs.v6addrs.src.s6_addr32[i],
1177 keys->addrs.v6addrs.dst.s6_addr32[i]);
1178 swap(keys->ports.src, keys->ports.dst);
1180 break;
1184 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
1186 u32 hash;
1188 __flow_hash_consistentify(keys);
1190 hash = __flow_hash_words(flow_keys_hash_start(keys),
1191 flow_keys_hash_length(keys), keyval);
1192 if (!hash)
1193 hash = 1;
1195 return hash;
1198 u32 flow_hash_from_keys(struct flow_keys *keys)
1200 __flow_hash_secret_init();
1201 return __flow_hash_from_keys(keys, hashrnd);
1203 EXPORT_SYMBOL(flow_hash_from_keys);
1205 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1206 struct flow_keys *keys, u32 keyval)
1208 skb_flow_dissect_flow_keys(skb, keys,
1209 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1211 return __flow_hash_from_keys(keys, keyval);
1214 struct _flow_keys_digest_data {
1215 __be16 n_proto;
1216 u8 ip_proto;
1217 u8 padding;
1218 __be32 ports;
1219 __be32 src;
1220 __be32 dst;
1223 void make_flow_keys_digest(struct flow_keys_digest *digest,
1224 const struct flow_keys *flow)
1226 struct _flow_keys_digest_data *data =
1227 (struct _flow_keys_digest_data *)digest;
1229 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1231 memset(digest, 0, sizeof(*digest));
1233 data->n_proto = flow->basic.n_proto;
1234 data->ip_proto = flow->basic.ip_proto;
1235 data->ports = flow->ports.ports;
1236 data->src = flow->addrs.v4addrs.src;
1237 data->dst = flow->addrs.v4addrs.dst;
1239 EXPORT_SYMBOL(make_flow_keys_digest);
1241 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1243 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1245 struct flow_keys keys;
1247 __flow_hash_secret_init();
1249 memset(&keys, 0, sizeof(keys));
1250 __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
1251 NULL, 0, 0, 0,
1252 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1254 return __flow_hash_from_keys(&keys, hashrnd);
1256 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1259 * __skb_get_hash: calculate a flow hash
1260 * @skb: sk_buff to calculate flow hash from
1262 * This function calculates a flow hash based on src/dst addresses
1263 * and src/dst port numbers. Sets hash in skb to non-zero hash value
1264 * on success, zero indicates no valid hash. Also, sets l4_hash in skb
1265 * if hash is a canonical 4-tuple hash over transport ports.
1267 void __skb_get_hash(struct sk_buff *skb)
1269 struct flow_keys keys;
1270 u32 hash;
1272 __flow_hash_secret_init();
1274 hash = ___skb_get_hash(skb, &keys, hashrnd);
1276 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1278 EXPORT_SYMBOL(__skb_get_hash);
1280 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1282 struct flow_keys keys;
1284 return ___skb_get_hash(skb, &keys, perturb);
1286 EXPORT_SYMBOL(skb_get_hash_perturb);
1288 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1289 const struct flow_keys_basic *keys, int hlen)
1291 u32 poff = keys->control.thoff;
1293 /* skip L4 headers for fragments after the first */
1294 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1295 !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1296 return poff;
1298 switch (keys->basic.ip_proto) {
1299 case IPPROTO_TCP: {
1300 /* access doff as u8 to avoid unaligned access */
1301 const u8 *doff;
1302 u8 _doff;
1304 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1305 data, hlen, &_doff);
1306 if (!doff)
1307 return poff;
1309 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1310 break;
1312 case IPPROTO_UDP:
1313 case IPPROTO_UDPLITE:
1314 poff += sizeof(struct udphdr);
1315 break;
1316 /* For the rest, we do not really care about header
1317 * extensions at this point for now.
1319 case IPPROTO_ICMP:
1320 poff += sizeof(struct icmphdr);
1321 break;
1322 case IPPROTO_ICMPV6:
1323 poff += sizeof(struct icmp6hdr);
1324 break;
1325 case IPPROTO_IGMP:
1326 poff += sizeof(struct igmphdr);
1327 break;
1328 case IPPROTO_DCCP:
1329 poff += sizeof(struct dccp_hdr);
1330 break;
1331 case IPPROTO_SCTP:
1332 poff += sizeof(struct sctphdr);
1333 break;
1336 return poff;
1340 * skb_get_poff - get the offset to the payload
1341 * @skb: sk_buff to get the payload offset from
1343 * The function will get the offset to the payload as far as it could
1344 * be dissected. The main user is currently BPF, so that we can dynamically
1345 * truncate packets without needing to push actual payload to the user
1346 * space and can analyze headers only, instead.
1348 u32 skb_get_poff(const struct sk_buff *skb)
1350 struct flow_keys_basic keys;
1352 if (!skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
1353 return 0;
1355 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1358 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1360 memset(keys, 0, sizeof(*keys));
1362 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1363 sizeof(keys->addrs.v6addrs.src));
1364 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1365 sizeof(keys->addrs.v6addrs.dst));
1366 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1367 keys->ports.src = fl6->fl6_sport;
1368 keys->ports.dst = fl6->fl6_dport;
1369 keys->keyid.keyid = fl6->fl6_gre_key;
1370 keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1371 keys->basic.ip_proto = fl6->flowi6_proto;
1373 return flow_hash_from_keys(keys);
1375 EXPORT_SYMBOL(__get_hash_from_flowi6);
1377 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1379 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1380 .offset = offsetof(struct flow_keys, control),
1383 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1384 .offset = offsetof(struct flow_keys, basic),
1387 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1388 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1391 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1392 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1395 .key_id = FLOW_DISSECTOR_KEY_TIPC,
1396 .offset = offsetof(struct flow_keys, addrs.tipckey),
1399 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1400 .offset = offsetof(struct flow_keys, ports),
1403 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1404 .offset = offsetof(struct flow_keys, vlan),
1407 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1408 .offset = offsetof(struct flow_keys, tags),
1411 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1412 .offset = offsetof(struct flow_keys, keyid),
1416 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1418 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1419 .offset = offsetof(struct flow_keys, control),
1422 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1423 .offset = offsetof(struct flow_keys, basic),
1426 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1427 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1430 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1431 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1434 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1435 .offset = offsetof(struct flow_keys, ports),
1439 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1441 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1442 .offset = offsetof(struct flow_keys, control),
1445 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1446 .offset = offsetof(struct flow_keys, basic),
1450 struct flow_dissector flow_keys_dissector __read_mostly;
1451 EXPORT_SYMBOL(flow_keys_dissector);
1453 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1454 EXPORT_SYMBOL(flow_keys_basic_dissector);
1456 static int __init init_default_flow_dissectors(void)
1458 skb_flow_dissector_init(&flow_keys_dissector,
1459 flow_keys_dissector_keys,
1460 ARRAY_SIZE(flow_keys_dissector_keys));
1461 skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1462 flow_keys_dissector_symmetric_keys,
1463 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1464 skb_flow_dissector_init(&flow_keys_basic_dissector,
1465 flow_keys_basic_dissector_keys,
1466 ARRAY_SIZE(flow_keys_basic_dissector_keys));
1467 return 0;
1470 core_initcall(init_default_flow_dissectors);