Merge tag 'drm-next-2018-08-24' of git://anongit.freedesktop.org/drm/drm
[linux-2.6/btrfs-unstable.git] / net / core / dev.c
blob325fc5088370b5b0f06daaaf990c5cee86dfecce
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
150 #include "net-sysfs.h"
152 #define MAX_GRO_SKBS 8
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly; /* Taps */
161 static struct list_head offload_base __read_mostly;
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170 * semaphore.
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
190 static DEFINE_MUTEX(ifalias_mutex);
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 static seqcount_t devnet_rename_seq;
200 static inline void dev_base_seq_inc(struct net *net)
202 while (++net->dev_base_seq == 0)
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 static inline void rps_lock(struct softnet_data *sd)
220 #ifdef CONFIG_RPS
221 spin_lock(&sd->input_pkt_queue.lock);
222 #endif
225 static inline void rps_unlock(struct softnet_data *sd)
227 #ifdef CONFIG_RPS
228 spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
235 struct net *net = dev_net(dev);
237 ASSERT_RTNL();
239 write_lock_bh(&dev_base_lock);
240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 hlist_add_head_rcu(&dev->index_hlist,
243 dev_index_hash(net, dev->ifindex));
244 write_unlock_bh(&dev_base_lock);
246 dev_base_seq_inc(net);
249 /* Device list removal
250 * caller must respect a RCU grace period before freeing/reusing dev
252 static void unlist_netdevice(struct net_device *dev)
254 ASSERT_RTNL();
256 /* Unlink dev from the device chain */
257 write_lock_bh(&dev_base_lock);
258 list_del_rcu(&dev->dev_list);
259 hlist_del_rcu(&dev->name_hlist);
260 hlist_del_rcu(&dev->index_hlist);
261 write_unlock_bh(&dev_base_lock);
263 dev_base_seq_inc(dev_net(dev));
267 * Our notifier list
270 static RAW_NOTIFIER_HEAD(netdev_chain);
273 * Device drivers call our routines to queue packets here. We empty the
274 * queue in the local softnet handler.
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 #ifdef CONFIG_LOCKDEP
282 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283 * according to dev->type
285 static const unsigned short netdev_lock_type[] = {
286 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 static const char *const netdev_lock_name[] = {
303 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 int i;
326 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327 if (netdev_lock_type[i] == dev_type)
328 return i;
329 /* the last key is used by default */
330 return ARRAY_SIZE(netdev_lock_type) - 1;
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334 unsigned short dev_type)
336 int i;
338 i = netdev_lock_pos(dev_type);
339 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340 netdev_lock_name[i]);
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 int i;
347 i = netdev_lock_pos(dev->type);
348 lockdep_set_class_and_name(&dev->addr_list_lock,
349 &netdev_addr_lock_key[i],
350 netdev_lock_name[i]);
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354 unsigned short dev_type)
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
360 #endif
362 /*******************************************************************************
364 * Protocol management and registration routines
366 *******************************************************************************/
370 * Add a protocol ID to the list. Now that the input handler is
371 * smarter we can dispense with all the messy stuff that used to be
372 * here.
374 * BEWARE!!! Protocol handlers, mangling input packets,
375 * MUST BE last in hash buckets and checking protocol handlers
376 * MUST start from promiscuous ptype_all chain in net_bh.
377 * It is true now, do not change it.
378 * Explanation follows: if protocol handler, mangling packet, will
379 * be the first on list, it is not able to sense, that packet
380 * is cloned and should be copied-on-write, so that it will
381 * change it and subsequent readers will get broken packet.
382 * --ANK (980803)
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 if (pt->type == htons(ETH_P_ALL))
388 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389 else
390 return pt->dev ? &pt->dev->ptype_specific :
391 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 * dev_add_pack - add packet handler
396 * @pt: packet type declaration
398 * Add a protocol handler to the networking stack. The passed &packet_type
399 * is linked into kernel lists and may not be freed until it has been
400 * removed from the kernel lists.
402 * This call does not sleep therefore it can not
403 * guarantee all CPU's that are in middle of receiving packets
404 * will see the new packet type (until the next received packet).
407 void dev_add_pack(struct packet_type *pt)
409 struct list_head *head = ptype_head(pt);
411 spin_lock(&ptype_lock);
412 list_add_rcu(&pt->list, head);
413 spin_unlock(&ptype_lock);
415 EXPORT_SYMBOL(dev_add_pack);
418 * __dev_remove_pack - remove packet handler
419 * @pt: packet type declaration
421 * Remove a protocol handler that was previously added to the kernel
422 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
423 * from the kernel lists and can be freed or reused once this function
424 * returns.
426 * The packet type might still be in use by receivers
427 * and must not be freed until after all the CPU's have gone
428 * through a quiescent state.
430 void __dev_remove_pack(struct packet_type *pt)
432 struct list_head *head = ptype_head(pt);
433 struct packet_type *pt1;
435 spin_lock(&ptype_lock);
437 list_for_each_entry(pt1, head, list) {
438 if (pt == pt1) {
439 list_del_rcu(&pt->list);
440 goto out;
444 pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446 spin_unlock(&ptype_lock);
448 EXPORT_SYMBOL(__dev_remove_pack);
451 * dev_remove_pack - remove packet handler
452 * @pt: packet type declaration
454 * Remove a protocol handler that was previously added to the kernel
455 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
456 * from the kernel lists and can be freed or reused once this function
457 * returns.
459 * This call sleeps to guarantee that no CPU is looking at the packet
460 * type after return.
462 void dev_remove_pack(struct packet_type *pt)
464 __dev_remove_pack(pt);
466 synchronize_net();
468 EXPORT_SYMBOL(dev_remove_pack);
472 * dev_add_offload - register offload handlers
473 * @po: protocol offload declaration
475 * Add protocol offload handlers to the networking stack. The passed
476 * &proto_offload is linked into kernel lists and may not be freed until
477 * it has been removed from the kernel lists.
479 * This call does not sleep therefore it can not
480 * guarantee all CPU's that are in middle of receiving packets
481 * will see the new offload handlers (until the next received packet).
483 void dev_add_offload(struct packet_offload *po)
485 struct packet_offload *elem;
487 spin_lock(&offload_lock);
488 list_for_each_entry(elem, &offload_base, list) {
489 if (po->priority < elem->priority)
490 break;
492 list_add_rcu(&po->list, elem->list.prev);
493 spin_unlock(&offload_lock);
495 EXPORT_SYMBOL(dev_add_offload);
498 * __dev_remove_offload - remove offload handler
499 * @po: packet offload declaration
501 * Remove a protocol offload handler that was previously added to the
502 * kernel offload handlers by dev_add_offload(). The passed &offload_type
503 * is removed from the kernel lists and can be freed or reused once this
504 * function returns.
506 * The packet type might still be in use by receivers
507 * and must not be freed until after all the CPU's have gone
508 * through a quiescent state.
510 static void __dev_remove_offload(struct packet_offload *po)
512 struct list_head *head = &offload_base;
513 struct packet_offload *po1;
515 spin_lock(&offload_lock);
517 list_for_each_entry(po1, head, list) {
518 if (po == po1) {
519 list_del_rcu(&po->list);
520 goto out;
524 pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526 spin_unlock(&offload_lock);
530 * dev_remove_offload - remove packet offload handler
531 * @po: packet offload declaration
533 * Remove a packet offload handler that was previously added to the kernel
534 * offload handlers by dev_add_offload(). The passed &offload_type is
535 * removed from the kernel lists and can be freed or reused once this
536 * function returns.
538 * This call sleeps to guarantee that no CPU is looking at the packet
539 * type after return.
541 void dev_remove_offload(struct packet_offload *po)
543 __dev_remove_offload(po);
545 synchronize_net();
547 EXPORT_SYMBOL(dev_remove_offload);
549 /******************************************************************************
551 * Device Boot-time Settings Routines
553 ******************************************************************************/
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
559 * netdev_boot_setup_add - add new setup entry
560 * @name: name of the device
561 * @map: configured settings for the device
563 * Adds new setup entry to the dev_boot_setup list. The function
564 * returns 0 on error and 1 on success. This is a generic routine to
565 * all netdevices.
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 struct netdev_boot_setup *s;
570 int i;
572 s = dev_boot_setup;
573 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575 memset(s[i].name, 0, sizeof(s[i].name));
576 strlcpy(s[i].name, name, IFNAMSIZ);
577 memcpy(&s[i].map, map, sizeof(s[i].map));
578 break;
582 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 * netdev_boot_setup_check - check boot time settings
587 * @dev: the netdevice
589 * Check boot time settings for the device.
590 * The found settings are set for the device to be used
591 * later in the device probing.
592 * Returns 0 if no settings found, 1 if they are.
594 int netdev_boot_setup_check(struct net_device *dev)
596 struct netdev_boot_setup *s = dev_boot_setup;
597 int i;
599 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601 !strcmp(dev->name, s[i].name)) {
602 dev->irq = s[i].map.irq;
603 dev->base_addr = s[i].map.base_addr;
604 dev->mem_start = s[i].map.mem_start;
605 dev->mem_end = s[i].map.mem_end;
606 return 1;
609 return 0;
611 EXPORT_SYMBOL(netdev_boot_setup_check);
615 * netdev_boot_base - get address from boot time settings
616 * @prefix: prefix for network device
617 * @unit: id for network device
619 * Check boot time settings for the base address of device.
620 * The found settings are set for the device to be used
621 * later in the device probing.
622 * Returns 0 if no settings found.
624 unsigned long netdev_boot_base(const char *prefix, int unit)
626 const struct netdev_boot_setup *s = dev_boot_setup;
627 char name[IFNAMSIZ];
628 int i;
630 sprintf(name, "%s%d", prefix, unit);
633 * If device already registered then return base of 1
634 * to indicate not to probe for this interface
636 if (__dev_get_by_name(&init_net, name))
637 return 1;
639 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640 if (!strcmp(name, s[i].name))
641 return s[i].map.base_addr;
642 return 0;
646 * Saves at boot time configured settings for any netdevice.
648 int __init netdev_boot_setup(char *str)
650 int ints[5];
651 struct ifmap map;
653 str = get_options(str, ARRAY_SIZE(ints), ints);
654 if (!str || !*str)
655 return 0;
657 /* Save settings */
658 memset(&map, 0, sizeof(map));
659 if (ints[0] > 0)
660 map.irq = ints[1];
661 if (ints[0] > 1)
662 map.base_addr = ints[2];
663 if (ints[0] > 2)
664 map.mem_start = ints[3];
665 if (ints[0] > 3)
666 map.mem_end = ints[4];
668 /* Add new entry to the list */
669 return netdev_boot_setup_add(str, &map);
672 __setup("netdev=", netdev_boot_setup);
674 /*******************************************************************************
676 * Device Interface Subroutines
678 *******************************************************************************/
681 * dev_get_iflink - get 'iflink' value of a interface
682 * @dev: targeted interface
684 * Indicates the ifindex the interface is linked to.
685 * Physical interfaces have the same 'ifindex' and 'iflink' values.
688 int dev_get_iflink(const struct net_device *dev)
690 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691 return dev->netdev_ops->ndo_get_iflink(dev);
693 return dev->ifindex;
695 EXPORT_SYMBOL(dev_get_iflink);
698 * dev_fill_metadata_dst - Retrieve tunnel egress information.
699 * @dev: targeted interface
700 * @skb: The packet.
702 * For better visibility of tunnel traffic OVS needs to retrieve
703 * egress tunnel information for a packet. Following API allows
704 * user to get this info.
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 struct ip_tunnel_info *info;
710 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
711 return -EINVAL;
713 info = skb_tunnel_info_unclone(skb);
714 if (!info)
715 return -ENOMEM;
716 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717 return -EINVAL;
719 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
724 * __dev_get_by_name - find a device by its name
725 * @net: the applicable net namespace
726 * @name: name to find
728 * Find an interface by name. Must be called under RTNL semaphore
729 * or @dev_base_lock. If the name is found a pointer to the device
730 * is returned. If the name is not found then %NULL is returned. The
731 * reference counters are not incremented so the caller must be
732 * careful with locks.
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 struct net_device *dev;
738 struct hlist_head *head = dev_name_hash(net, name);
740 hlist_for_each_entry(dev, head, name_hlist)
741 if (!strncmp(dev->name, name, IFNAMSIZ))
742 return dev;
744 return NULL;
746 EXPORT_SYMBOL(__dev_get_by_name);
749 * dev_get_by_name_rcu - find a device by its name
750 * @net: the applicable net namespace
751 * @name: name to find
753 * Find an interface by name.
754 * If the name is found a pointer to the device is returned.
755 * If the name is not found then %NULL is returned.
756 * The reference counters are not incremented so the caller must be
757 * careful with locks. The caller must hold RCU lock.
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 struct net_device *dev;
763 struct hlist_head *head = dev_name_hash(net, name);
765 hlist_for_each_entry_rcu(dev, head, name_hlist)
766 if (!strncmp(dev->name, name, IFNAMSIZ))
767 return dev;
769 return NULL;
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
774 * dev_get_by_name - find a device by its name
775 * @net: the applicable net namespace
776 * @name: name to find
778 * Find an interface by name. This can be called from any
779 * context and does its own locking. The returned handle has
780 * the usage count incremented and the caller must use dev_put() to
781 * release it when it is no longer needed. %NULL is returned if no
782 * matching device is found.
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 struct net_device *dev;
789 rcu_read_lock();
790 dev = dev_get_by_name_rcu(net, name);
791 if (dev)
792 dev_hold(dev);
793 rcu_read_unlock();
794 return dev;
796 EXPORT_SYMBOL(dev_get_by_name);
799 * __dev_get_by_index - find a device by its ifindex
800 * @net: the applicable net namespace
801 * @ifindex: index of device
803 * Search for an interface by index. Returns %NULL if the device
804 * is not found or a pointer to the device. The device has not
805 * had its reference counter increased so the caller must be careful
806 * about locking. The caller must hold either the RTNL semaphore
807 * or @dev_base_lock.
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 struct net_device *dev;
813 struct hlist_head *head = dev_index_hash(net, ifindex);
815 hlist_for_each_entry(dev, head, index_hlist)
816 if (dev->ifindex == ifindex)
817 return dev;
819 return NULL;
821 EXPORT_SYMBOL(__dev_get_by_index);
824 * dev_get_by_index_rcu - find a device by its ifindex
825 * @net: the applicable net namespace
826 * @ifindex: index of device
828 * Search for an interface by index. Returns %NULL if the device
829 * is not found or a pointer to the device. The device has not
830 * had its reference counter increased so the caller must be careful
831 * about locking. The caller must hold RCU lock.
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 struct net_device *dev;
837 struct hlist_head *head = dev_index_hash(net, ifindex);
839 hlist_for_each_entry_rcu(dev, head, index_hlist)
840 if (dev->ifindex == ifindex)
841 return dev;
843 return NULL;
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
849 * dev_get_by_index - find a device by its ifindex
850 * @net: the applicable net namespace
851 * @ifindex: index of device
853 * Search for an interface by index. Returns NULL if the device
854 * is not found or a pointer to the device. The device returned has
855 * had a reference added and the pointer is safe until the user calls
856 * dev_put to indicate they have finished with it.
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 struct net_device *dev;
863 rcu_read_lock();
864 dev = dev_get_by_index_rcu(net, ifindex);
865 if (dev)
866 dev_hold(dev);
867 rcu_read_unlock();
868 return dev;
870 EXPORT_SYMBOL(dev_get_by_index);
873 * dev_get_by_napi_id - find a device by napi_id
874 * @napi_id: ID of the NAPI struct
876 * Search for an interface by NAPI ID. Returns %NULL if the device
877 * is not found or a pointer to the device. The device has not had
878 * its reference counter increased so the caller must be careful
879 * about locking. The caller must hold RCU lock.
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 struct napi_struct *napi;
886 WARN_ON_ONCE(!rcu_read_lock_held());
888 if (napi_id < MIN_NAPI_ID)
889 return NULL;
891 napi = napi_by_id(napi_id);
893 return napi ? napi->dev : NULL;
895 EXPORT_SYMBOL(dev_get_by_napi_id);
898 * netdev_get_name - get a netdevice name, knowing its ifindex.
899 * @net: network namespace
900 * @name: a pointer to the buffer where the name will be stored.
901 * @ifindex: the ifindex of the interface to get the name from.
903 * The use of raw_seqcount_begin() and cond_resched() before
904 * retrying is required as we want to give the writers a chance
905 * to complete when CONFIG_PREEMPT is not set.
907 int netdev_get_name(struct net *net, char *name, int ifindex)
909 struct net_device *dev;
910 unsigned int seq;
912 retry:
913 seq = raw_seqcount_begin(&devnet_rename_seq);
914 rcu_read_lock();
915 dev = dev_get_by_index_rcu(net, ifindex);
916 if (!dev) {
917 rcu_read_unlock();
918 return -ENODEV;
921 strcpy(name, dev->name);
922 rcu_read_unlock();
923 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
924 cond_resched();
925 goto retry;
928 return 0;
932 * dev_getbyhwaddr_rcu - find a device by its hardware address
933 * @net: the applicable net namespace
934 * @type: media type of device
935 * @ha: hardware address
937 * Search for an interface by MAC address. Returns NULL if the device
938 * is not found or a pointer to the device.
939 * The caller must hold RCU or RTNL.
940 * The returned device has not had its ref count increased
941 * and the caller must therefore be careful about locking
945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946 const char *ha)
948 struct net_device *dev;
950 for_each_netdev_rcu(net, dev)
951 if (dev->type == type &&
952 !memcmp(dev->dev_addr, ha, dev->addr_len))
953 return dev;
955 return NULL;
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 struct net_device *dev;
963 ASSERT_RTNL();
964 for_each_netdev(net, dev)
965 if (dev->type == type)
966 return dev;
968 return NULL;
970 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 struct net_device *dev, *ret = NULL;
976 rcu_read_lock();
977 for_each_netdev_rcu(net, dev)
978 if (dev->type == type) {
979 dev_hold(dev);
980 ret = dev;
981 break;
983 rcu_read_unlock();
984 return ret;
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
989 * __dev_get_by_flags - find any device with given flags
990 * @net: the applicable net namespace
991 * @if_flags: IFF_* values
992 * @mask: bitmask of bits in if_flags to check
994 * Search for any interface with the given flags. Returns NULL if a device
995 * is not found or a pointer to the device. Must be called inside
996 * rtnl_lock(), and result refcount is unchanged.
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000 unsigned short mask)
1002 struct net_device *dev, *ret;
1004 ASSERT_RTNL();
1006 ret = NULL;
1007 for_each_netdev(net, dev) {
1008 if (((dev->flags ^ if_flags) & mask) == 0) {
1009 ret = dev;
1010 break;
1013 return ret;
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1018 * dev_valid_name - check if name is okay for network device
1019 * @name: name string
1021 * Network device names need to be valid file names to
1022 * to allow sysfs to work. We also disallow any kind of
1023 * whitespace.
1025 bool dev_valid_name(const char *name)
1027 if (*name == '\0')
1028 return false;
1029 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030 return false;
1031 if (!strcmp(name, ".") || !strcmp(name, ".."))
1032 return false;
1034 while (*name) {
1035 if (*name == '/' || *name == ':' || isspace(*name))
1036 return false;
1037 name++;
1039 return true;
1041 EXPORT_SYMBOL(dev_valid_name);
1044 * __dev_alloc_name - allocate a name for a device
1045 * @net: network namespace to allocate the device name in
1046 * @name: name format string
1047 * @buf: scratch buffer and result name string
1049 * Passed a format string - eg "lt%d" it will try and find a suitable
1050 * id. It scans list of devices to build up a free map, then chooses
1051 * the first empty slot. The caller must hold the dev_base or rtnl lock
1052 * while allocating the name and adding the device in order to avoid
1053 * duplicates.
1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055 * Returns the number of the unit assigned or a negative errno code.
1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 int i = 0;
1061 const char *p;
1062 const int max_netdevices = 8*PAGE_SIZE;
1063 unsigned long *inuse;
1064 struct net_device *d;
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1069 p = strchr(name, '%');
1070 if (p) {
1072 * Verify the string as this thing may have come from
1073 * the user. There must be either one "%d" and no other "%"
1074 * characters.
1076 if (p[1] != 'd' || strchr(p + 2, '%'))
1077 return -EINVAL;
1079 /* Use one page as a bit array of possible slots */
1080 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1081 if (!inuse)
1082 return -ENOMEM;
1084 for_each_netdev(net, d) {
1085 if (!sscanf(d->name, name, &i))
1086 continue;
1087 if (i < 0 || i >= max_netdevices)
1088 continue;
1090 /* avoid cases where sscanf is not exact inverse of printf */
1091 snprintf(buf, IFNAMSIZ, name, i);
1092 if (!strncmp(buf, d->name, IFNAMSIZ))
1093 set_bit(i, inuse);
1096 i = find_first_zero_bit(inuse, max_netdevices);
1097 free_page((unsigned long) inuse);
1100 snprintf(buf, IFNAMSIZ, name, i);
1101 if (!__dev_get_by_name(net, buf))
1102 return i;
1104 /* It is possible to run out of possible slots
1105 * when the name is long and there isn't enough space left
1106 * for the digits, or if all bits are used.
1108 return -ENFILE;
1111 static int dev_alloc_name_ns(struct net *net,
1112 struct net_device *dev,
1113 const char *name)
1115 char buf[IFNAMSIZ];
1116 int ret;
1118 BUG_ON(!net);
1119 ret = __dev_alloc_name(net, name, buf);
1120 if (ret >= 0)
1121 strlcpy(dev->name, buf, IFNAMSIZ);
1122 return ret;
1126 * dev_alloc_name - allocate a name for a device
1127 * @dev: device
1128 * @name: name format string
1130 * Passed a format string - eg "lt%d" it will try and find a suitable
1131 * id. It scans list of devices to build up a free map, then chooses
1132 * the first empty slot. The caller must hold the dev_base or rtnl lock
1133 * while allocating the name and adding the device in order to avoid
1134 * duplicates.
1135 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136 * Returns the number of the unit assigned or a negative errno code.
1139 int dev_alloc_name(struct net_device *dev, const char *name)
1141 return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 EXPORT_SYMBOL(dev_alloc_name);
1145 int dev_get_valid_name(struct net *net, struct net_device *dev,
1146 const char *name)
1148 BUG_ON(!net);
1150 if (!dev_valid_name(name))
1151 return -EINVAL;
1153 if (strchr(name, '%'))
1154 return dev_alloc_name_ns(net, dev, name);
1155 else if (__dev_get_by_name(net, name))
1156 return -EEXIST;
1157 else if (dev->name != name)
1158 strlcpy(dev->name, name, IFNAMSIZ);
1160 return 0;
1162 EXPORT_SYMBOL(dev_get_valid_name);
1165 * dev_change_name - change name of a device
1166 * @dev: device
1167 * @newname: name (or format string) must be at least IFNAMSIZ
1169 * Change name of a device, can pass format strings "eth%d".
1170 * for wildcarding.
1172 int dev_change_name(struct net_device *dev, const char *newname)
1174 unsigned char old_assign_type;
1175 char oldname[IFNAMSIZ];
1176 int err = 0;
1177 int ret;
1178 struct net *net;
1180 ASSERT_RTNL();
1181 BUG_ON(!dev_net(dev));
1183 net = dev_net(dev);
1184 if (dev->flags & IFF_UP)
1185 return -EBUSY;
1187 write_seqcount_begin(&devnet_rename_seq);
1189 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1190 write_seqcount_end(&devnet_rename_seq);
1191 return 0;
1194 memcpy(oldname, dev->name, IFNAMSIZ);
1196 err = dev_get_valid_name(net, dev, newname);
1197 if (err < 0) {
1198 write_seqcount_end(&devnet_rename_seq);
1199 return err;
1202 if (oldname[0] && !strchr(oldname, '%'))
1203 netdev_info(dev, "renamed from %s\n", oldname);
1205 old_assign_type = dev->name_assign_type;
1206 dev->name_assign_type = NET_NAME_RENAMED;
1208 rollback:
1209 ret = device_rename(&dev->dev, dev->name);
1210 if (ret) {
1211 memcpy(dev->name, oldname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 write_seqcount_end(&devnet_rename_seq);
1214 return ret;
1217 write_seqcount_end(&devnet_rename_seq);
1219 netdev_adjacent_rename_links(dev, oldname);
1221 write_lock_bh(&dev_base_lock);
1222 hlist_del_rcu(&dev->name_hlist);
1223 write_unlock_bh(&dev_base_lock);
1225 synchronize_rcu();
1227 write_lock_bh(&dev_base_lock);
1228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1229 write_unlock_bh(&dev_base_lock);
1231 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1232 ret = notifier_to_errno(ret);
1234 if (ret) {
1235 /* err >= 0 after dev_alloc_name() or stores the first errno */
1236 if (err >= 0) {
1237 err = ret;
1238 write_seqcount_begin(&devnet_rename_seq);
1239 memcpy(dev->name, oldname, IFNAMSIZ);
1240 memcpy(oldname, newname, IFNAMSIZ);
1241 dev->name_assign_type = old_assign_type;
1242 old_assign_type = NET_NAME_RENAMED;
1243 goto rollback;
1244 } else {
1245 pr_err("%s: name change rollback failed: %d\n",
1246 dev->name, ret);
1250 return err;
1254 * dev_set_alias - change ifalias of a device
1255 * @dev: device
1256 * @alias: name up to IFALIASZ
1257 * @len: limit of bytes to copy from info
1259 * Set ifalias for a device,
1261 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 struct dev_ifalias *new_alias = NULL;
1265 if (len >= IFALIASZ)
1266 return -EINVAL;
1268 if (len) {
1269 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1270 if (!new_alias)
1271 return -ENOMEM;
1273 memcpy(new_alias->ifalias, alias, len);
1274 new_alias->ifalias[len] = 0;
1277 mutex_lock(&ifalias_mutex);
1278 rcu_swap_protected(dev->ifalias, new_alias,
1279 mutex_is_locked(&ifalias_mutex));
1280 mutex_unlock(&ifalias_mutex);
1282 if (new_alias)
1283 kfree_rcu(new_alias, rcuhead);
1285 return len;
1287 EXPORT_SYMBOL(dev_set_alias);
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
1292 * @name: buffer to store name of ifalias
1293 * @len: size of buffer
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1309 return ret;
1313 * netdev_features_change - device changes features
1314 * @dev: device to cause notification
1316 * Called to indicate a device has changed features.
1318 void netdev_features_change(struct net_device *dev)
1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 EXPORT_SYMBOL(netdev_features_change);
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1332 void netdev_state_change(struct net_device *dev)
1334 if (dev->flags & IFF_UP) {
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 &change_info.info);
1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1344 EXPORT_SYMBOL(netdev_state_change);
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1356 void netdev_notify_peers(struct net_device *dev)
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 rtnl_unlock();
1363 EXPORT_SYMBOL(netdev_notify_peers);
1365 static int __dev_open(struct net_device *dev)
1367 const struct net_device_ops *ops = dev->netdev_ops;
1368 int ret;
1370 ASSERT_RTNL();
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1379 netpoll_poll_disable(dev);
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1386 set_bit(__LINK_STATE_START, &dev->state);
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1394 netpoll_poll_enable(dev);
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1399 dev->flags |= IFF_UP;
1400 dev_set_rx_mode(dev);
1401 dev_activate(dev);
1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1405 return ret;
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1420 int dev_open(struct net_device *dev)
1422 int ret;
1424 if (dev->flags & IFF_UP)
1425 return 0;
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1434 return ret;
1436 EXPORT_SYMBOL(dev_open);
1438 static void __dev_close_many(struct list_head *head)
1440 struct net_device *dev;
1442 ASSERT_RTNL();
1443 might_sleep();
1445 list_for_each_entry(dev, head, close_list) {
1446 /* Temporarily disable netpoll until the interface is down */
1447 netpoll_poll_disable(dev);
1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451 clear_bit(__LINK_STATE_START, &dev->state);
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1459 smp_mb__after_atomic(); /* Commit netif_running(). */
1462 dev_deactivate_many(head);
1464 list_for_each_entry(dev, head, close_list) {
1465 const struct net_device_ops *ops = dev->netdev_ops;
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1477 dev->flags &= ~IFF_UP;
1478 netpoll_poll_enable(dev);
1482 static void __dev_close(struct net_device *dev)
1484 LIST_HEAD(single);
1486 list_add(&dev->close_list, &single);
1487 __dev_close_many(&single);
1488 list_del(&single);
1491 void dev_close_many(struct list_head *head, bool unlink)
1493 struct net_device *dev, *tmp;
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
1497 if (!(dev->flags & IFF_UP))
1498 list_del_init(&dev->close_list);
1500 __dev_close_many(head);
1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 if (unlink)
1506 list_del_init(&dev->close_list);
1509 EXPORT_SYMBOL(dev_close_many);
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1520 void dev_close(struct net_device *dev)
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1525 list_add(&dev->close_list, &single);
1526 dev_close_many(&single, true);
1527 list_del(&single);
1530 EXPORT_SYMBOL(dev_close);
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1541 void dev_disable_lro(struct net_device *dev)
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
1555 EXPORT_SYMBOL(dev_disable_lro);
1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559 * @dev: device
1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1562 * called under RTNL. This is needed if Generic XDP is installed on
1563 * the device.
1565 static void dev_disable_gro_hw(struct net_device *dev)
1567 dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 netdev_update_features(dev);
1570 if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 #define N(val) \
1577 case NETDEV_##val: \
1578 return "NETDEV_" __stringify(val);
1579 switch (cmd) {
1580 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590 #undef N
1591 return "UNKNOWN_NETDEV_EVENT";
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596 struct net_device *dev)
1598 struct netdev_notifier_info info = {
1599 .dev = dev,
1602 return nb->notifier_call(nb, val, &info);
1605 static int dev_boot_phase = 1;
1608 * register_netdevice_notifier - register a network notifier block
1609 * @nb: notifier
1611 * Register a notifier to be called when network device events occur.
1612 * The notifier passed is linked into the kernel structures and must
1613 * not be reused until it has been unregistered. A negative errno code
1614 * is returned on a failure.
1616 * When registered all registration and up events are replayed
1617 * to the new notifier to allow device to have a race free
1618 * view of the network device list.
1621 int register_netdevice_notifier(struct notifier_block *nb)
1623 struct net_device *dev;
1624 struct net_device *last;
1625 struct net *net;
1626 int err;
1628 /* Close race with setup_net() and cleanup_net() */
1629 down_write(&pernet_ops_rwsem);
1630 rtnl_lock();
1631 err = raw_notifier_chain_register(&netdev_chain, nb);
1632 if (err)
1633 goto unlock;
1634 if (dev_boot_phase)
1635 goto unlock;
1636 for_each_net(net) {
1637 for_each_netdev(net, dev) {
1638 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 err = notifier_to_errno(err);
1640 if (err)
1641 goto rollback;
1643 if (!(dev->flags & IFF_UP))
1644 continue;
1646 call_netdevice_notifier(nb, NETDEV_UP, dev);
1650 unlock:
1651 rtnl_unlock();
1652 up_write(&pernet_ops_rwsem);
1653 return err;
1655 rollback:
1656 last = dev;
1657 for_each_net(net) {
1658 for_each_netdev(net, dev) {
1659 if (dev == last)
1660 goto outroll;
1662 if (dev->flags & IFF_UP) {
1663 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 dev);
1665 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1671 outroll:
1672 raw_notifier_chain_unregister(&netdev_chain, nb);
1673 goto unlock;
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1678 * unregister_netdevice_notifier - unregister a network notifier block
1679 * @nb: notifier
1681 * Unregister a notifier previously registered by
1682 * register_netdevice_notifier(). The notifier is unlinked into the
1683 * kernel structures and may then be reused. A negative errno code
1684 * is returned on a failure.
1686 * After unregistering unregister and down device events are synthesized
1687 * for all devices on the device list to the removed notifier to remove
1688 * the need for special case cleanup code.
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1693 struct net_device *dev;
1694 struct net *net;
1695 int err;
1697 /* Close race with setup_net() and cleanup_net() */
1698 down_write(&pernet_ops_rwsem);
1699 rtnl_lock();
1700 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701 if (err)
1702 goto unlock;
1704 for_each_net(net) {
1705 for_each_netdev(net, dev) {
1706 if (dev->flags & IFF_UP) {
1707 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708 dev);
1709 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1714 unlock:
1715 rtnl_unlock();
1716 up_write(&pernet_ops_rwsem);
1717 return err;
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1722 * call_netdevice_notifiers_info - call all network notifier blocks
1723 * @val: value passed unmodified to notifier function
1724 * @info: notifier information data
1726 * Call all network notifier blocks. Parameters and return value
1727 * are as for raw_notifier_call_chain().
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731 struct netdev_notifier_info *info)
1733 ASSERT_RTNL();
1734 return raw_notifier_call_chain(&netdev_chain, val, info);
1738 * call_netdevice_notifiers - call all network notifier blocks
1739 * @val: value passed unmodified to notifier function
1740 * @dev: net_device pointer passed unmodified to notifier function
1742 * Call all network notifier blocks. Parameters and return value
1743 * are as for raw_notifier_call_chain().
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748 struct netdev_notifier_info info = {
1749 .dev = dev,
1752 return call_netdevice_notifiers_info(val, &info);
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1756 #ifdef CONFIG_NET_INGRESS
1757 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1759 void net_inc_ingress_queue(void)
1761 static_branch_inc(&ingress_needed_key);
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765 void net_dec_ingress_queue(void)
1767 static_branch_dec(&ingress_needed_key);
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770 #endif
1772 #ifdef CONFIG_NET_EGRESS
1773 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1775 void net_inc_egress_queue(void)
1777 static_branch_inc(&egress_needed_key);
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781 void net_dec_egress_queue(void)
1783 static_branch_dec(&egress_needed_key);
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786 #endif
1788 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred;
1791 static atomic_t netstamp_wanted;
1792 static void netstamp_clear(struct work_struct *work)
1794 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795 int wanted;
1797 wanted = atomic_add_return(deferred, &netstamp_wanted);
1798 if (wanted > 0)
1799 static_branch_enable(&netstamp_needed_key);
1800 else
1801 static_branch_disable(&netstamp_needed_key);
1803 static DECLARE_WORK(netstamp_work, netstamp_clear);
1804 #endif
1806 void net_enable_timestamp(void)
1808 #ifdef HAVE_JUMP_LABEL
1809 int wanted;
1811 while (1) {
1812 wanted = atomic_read(&netstamp_wanted);
1813 if (wanted <= 0)
1814 break;
1815 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816 return;
1818 atomic_inc(&netstamp_needed_deferred);
1819 schedule_work(&netstamp_work);
1820 #else
1821 static_branch_inc(&netstamp_needed_key);
1822 #endif
1824 EXPORT_SYMBOL(net_enable_timestamp);
1826 void net_disable_timestamp(void)
1828 #ifdef HAVE_JUMP_LABEL
1829 int wanted;
1831 while (1) {
1832 wanted = atomic_read(&netstamp_wanted);
1833 if (wanted <= 1)
1834 break;
1835 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836 return;
1838 atomic_dec(&netstamp_needed_deferred);
1839 schedule_work(&netstamp_work);
1840 #else
1841 static_branch_dec(&netstamp_needed_key);
1842 #endif
1844 EXPORT_SYMBOL(net_disable_timestamp);
1846 static inline void net_timestamp_set(struct sk_buff *skb)
1848 skb->tstamp = 0;
1849 if (static_branch_unlikely(&netstamp_needed_key))
1850 __net_timestamp(skb);
1853 #define net_timestamp_check(COND, SKB) \
1854 if (static_branch_unlikely(&netstamp_needed_key)) { \
1855 if ((COND) && !(SKB)->tstamp) \
1856 __net_timestamp(SKB); \
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861 unsigned int len;
1863 if (!(dev->flags & IFF_UP))
1864 return false;
1866 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867 if (skb->len <= len)
1868 return true;
1870 /* if TSO is enabled, we don't care about the length as the packet
1871 * could be forwarded without being segmented before
1873 if (skb_is_gso(skb))
1874 return true;
1876 return false;
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882 int ret = ____dev_forward_skb(dev, skb);
1884 if (likely(!ret)) {
1885 skb->protocol = eth_type_trans(skb, dev);
1886 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1889 return ret;
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1894 * dev_forward_skb - loopback an skb to another netif
1896 * @dev: destination network device
1897 * @skb: buffer to forward
1899 * return values:
1900 * NET_RX_SUCCESS (no congestion)
1901 * NET_RX_DROP (packet was dropped, but freed)
1903 * dev_forward_skb can be used for injecting an skb from the
1904 * start_xmit function of one device into the receive queue
1905 * of another device.
1907 * The receiving device may be in another namespace, so
1908 * we have to clear all information in the skb that could
1909 * impact namespace isolation.
1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915 EXPORT_SYMBOL_GPL(dev_forward_skb);
1917 static inline int deliver_skb(struct sk_buff *skb,
1918 struct packet_type *pt_prev,
1919 struct net_device *orig_dev)
1921 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922 return -ENOMEM;
1923 refcount_inc(&skb->users);
1924 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928 struct packet_type **pt,
1929 struct net_device *orig_dev,
1930 __be16 type,
1931 struct list_head *ptype_list)
1933 struct packet_type *ptype, *pt_prev = *pt;
1935 list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 if (ptype->type != type)
1937 continue;
1938 if (pt_prev)
1939 deliver_skb(skb, pt_prev, orig_dev);
1940 pt_prev = ptype;
1942 *pt = pt_prev;
1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947 if (!ptype->af_packet_priv || !skb->sk)
1948 return false;
1950 if (ptype->id_match)
1951 return ptype->id_match(ptype, skb->sk);
1952 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953 return true;
1955 return false;
1959 * Support routine. Sends outgoing frames to any network
1960 * taps currently in use.
1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965 struct packet_type *ptype;
1966 struct sk_buff *skb2 = NULL;
1967 struct packet_type *pt_prev = NULL;
1968 struct list_head *ptype_list = &ptype_all;
1970 rcu_read_lock();
1971 again:
1972 list_for_each_entry_rcu(ptype, ptype_list, list) {
1973 /* Never send packets back to the socket
1974 * they originated from - MvS (miquels@drinkel.ow.org)
1976 if (skb_loop_sk(ptype, skb))
1977 continue;
1979 if (pt_prev) {
1980 deliver_skb(skb2, pt_prev, skb->dev);
1981 pt_prev = ptype;
1982 continue;
1985 /* need to clone skb, done only once */
1986 skb2 = skb_clone(skb, GFP_ATOMIC);
1987 if (!skb2)
1988 goto out_unlock;
1990 net_timestamp_set(skb2);
1992 /* skb->nh should be correctly
1993 * set by sender, so that the second statement is
1994 * just protection against buggy protocols.
1996 skb_reset_mac_header(skb2);
1998 if (skb_network_header(skb2) < skb2->data ||
1999 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001 ntohs(skb2->protocol),
2002 dev->name);
2003 skb_reset_network_header(skb2);
2006 skb2->transport_header = skb2->network_header;
2007 skb2->pkt_type = PACKET_OUTGOING;
2008 pt_prev = ptype;
2011 if (ptype_list == &ptype_all) {
2012 ptype_list = &dev->ptype_all;
2013 goto again;
2015 out_unlock:
2016 if (pt_prev) {
2017 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019 else
2020 kfree_skb(skb2);
2022 rcu_read_unlock();
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2027 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028 * @dev: Network device
2029 * @txq: number of queues available
2031 * If real_num_tx_queues is changed the tc mappings may no longer be
2032 * valid. To resolve this verify the tc mapping remains valid and if
2033 * not NULL the mapping. With no priorities mapping to this
2034 * offset/count pair it will no longer be used. In the worst case TC0
2035 * is invalid nothing can be done so disable priority mappings. If is
2036 * expected that drivers will fix this mapping if they can before
2037 * calling netif_set_real_num_tx_queues.
2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 int i;
2042 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044 /* If TC0 is invalidated disable TC mapping */
2045 if (tc->offset + tc->count > txq) {
2046 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047 dev->num_tc = 0;
2048 return;
2051 /* Invalidated prio to tc mappings set to TC0 */
2052 for (i = 1; i < TC_BITMASK + 1; i++) {
2053 int q = netdev_get_prio_tc_map(dev, i);
2055 tc = &dev->tc_to_txq[q];
2056 if (tc->offset + tc->count > txq) {
2057 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058 i, q);
2059 netdev_set_prio_tc_map(dev, i, 0);
2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 if (dev->num_tc) {
2067 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068 int i;
2070 /* walk through the TCs and see if it falls into any of them */
2071 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 if ((txq - tc->offset) < tc->count)
2073 return i;
2076 /* didn't find it, just return -1 to indicate no match */
2077 return -1;
2080 return 0;
2082 EXPORT_SYMBOL(netdev_txq_to_tc);
2084 #ifdef CONFIG_XPS
2085 struct static_key xps_needed __read_mostly;
2086 EXPORT_SYMBOL(xps_needed);
2087 struct static_key xps_rxqs_needed __read_mostly;
2088 EXPORT_SYMBOL(xps_rxqs_needed);
2089 static DEFINE_MUTEX(xps_map_mutex);
2090 #define xmap_dereference(P) \
2091 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2093 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2094 int tci, u16 index)
2096 struct xps_map *map = NULL;
2097 int pos;
2099 if (dev_maps)
2100 map = xmap_dereference(dev_maps->attr_map[tci]);
2101 if (!map)
2102 return false;
2104 for (pos = map->len; pos--;) {
2105 if (map->queues[pos] != index)
2106 continue;
2108 if (map->len > 1) {
2109 map->queues[pos] = map->queues[--map->len];
2110 break;
2113 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2114 kfree_rcu(map, rcu);
2115 return false;
2118 return true;
2121 static bool remove_xps_queue_cpu(struct net_device *dev,
2122 struct xps_dev_maps *dev_maps,
2123 int cpu, u16 offset, u16 count)
2125 int num_tc = dev->num_tc ? : 1;
2126 bool active = false;
2127 int tci;
2129 for (tci = cpu * num_tc; num_tc--; tci++) {
2130 int i, j;
2132 for (i = count, j = offset; i--; j++) {
2133 if (!remove_xps_queue(dev_maps, tci, j))
2134 break;
2137 active |= i < 0;
2140 return active;
2143 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2144 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2145 u16 offset, u16 count, bool is_rxqs_map)
2147 bool active = false;
2148 int i, j;
2150 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2151 j < nr_ids;)
2152 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2153 count);
2154 if (!active) {
2155 if (is_rxqs_map) {
2156 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2157 } else {
2158 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2160 for (i = offset + (count - 1); count--; i--)
2161 netdev_queue_numa_node_write(
2162 netdev_get_tx_queue(dev, i),
2163 NUMA_NO_NODE);
2165 kfree_rcu(dev_maps, rcu);
2169 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2170 u16 count)
2172 const unsigned long *possible_mask = NULL;
2173 struct xps_dev_maps *dev_maps;
2174 unsigned int nr_ids;
2176 if (!static_key_false(&xps_needed))
2177 return;
2179 cpus_read_lock();
2180 mutex_lock(&xps_map_mutex);
2182 if (static_key_false(&xps_rxqs_needed)) {
2183 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2184 if (dev_maps) {
2185 nr_ids = dev->num_rx_queues;
2186 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2187 offset, count, true);
2191 dev_maps = xmap_dereference(dev->xps_cpus_map);
2192 if (!dev_maps)
2193 goto out_no_maps;
2195 if (num_possible_cpus() > 1)
2196 possible_mask = cpumask_bits(cpu_possible_mask);
2197 nr_ids = nr_cpu_ids;
2198 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2199 false);
2201 out_no_maps:
2202 if (static_key_enabled(&xps_rxqs_needed))
2203 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2205 static_key_slow_dec_cpuslocked(&xps_needed);
2206 mutex_unlock(&xps_map_mutex);
2207 cpus_read_unlock();
2210 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2212 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2215 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2216 u16 index, bool is_rxqs_map)
2218 struct xps_map *new_map;
2219 int alloc_len = XPS_MIN_MAP_ALLOC;
2220 int i, pos;
2222 for (pos = 0; map && pos < map->len; pos++) {
2223 if (map->queues[pos] != index)
2224 continue;
2225 return map;
2228 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2229 if (map) {
2230 if (pos < map->alloc_len)
2231 return map;
2233 alloc_len = map->alloc_len * 2;
2236 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2237 * map
2239 if (is_rxqs_map)
2240 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2241 else
2242 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2243 cpu_to_node(attr_index));
2244 if (!new_map)
2245 return NULL;
2247 for (i = 0; i < pos; i++)
2248 new_map->queues[i] = map->queues[i];
2249 new_map->alloc_len = alloc_len;
2250 new_map->len = pos;
2252 return new_map;
2255 /* Must be called under cpus_read_lock */
2256 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2257 u16 index, bool is_rxqs_map)
2259 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2260 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2261 int i, j, tci, numa_node_id = -2;
2262 int maps_sz, num_tc = 1, tc = 0;
2263 struct xps_map *map, *new_map;
2264 bool active = false;
2265 unsigned int nr_ids;
2267 if (dev->num_tc) {
2268 /* Do not allow XPS on subordinate device directly */
2269 num_tc = dev->num_tc;
2270 if (num_tc < 0)
2271 return -EINVAL;
2273 /* If queue belongs to subordinate dev use its map */
2274 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2276 tc = netdev_txq_to_tc(dev, index);
2277 if (tc < 0)
2278 return -EINVAL;
2281 mutex_lock(&xps_map_mutex);
2282 if (is_rxqs_map) {
2283 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2284 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2285 nr_ids = dev->num_rx_queues;
2286 } else {
2287 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2288 if (num_possible_cpus() > 1) {
2289 online_mask = cpumask_bits(cpu_online_mask);
2290 possible_mask = cpumask_bits(cpu_possible_mask);
2292 dev_maps = xmap_dereference(dev->xps_cpus_map);
2293 nr_ids = nr_cpu_ids;
2296 if (maps_sz < L1_CACHE_BYTES)
2297 maps_sz = L1_CACHE_BYTES;
2299 /* allocate memory for queue storage */
2300 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2301 j < nr_ids;) {
2302 if (!new_dev_maps)
2303 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2304 if (!new_dev_maps) {
2305 mutex_unlock(&xps_map_mutex);
2306 return -ENOMEM;
2309 tci = j * num_tc + tc;
2310 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2311 NULL;
2313 map = expand_xps_map(map, j, index, is_rxqs_map);
2314 if (!map)
2315 goto error;
2317 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2320 if (!new_dev_maps)
2321 goto out_no_new_maps;
2323 static_key_slow_inc_cpuslocked(&xps_needed);
2324 if (is_rxqs_map)
2325 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2327 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2328 j < nr_ids;) {
2329 /* copy maps belonging to foreign traffic classes */
2330 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2331 /* fill in the new device map from the old device map */
2332 map = xmap_dereference(dev_maps->attr_map[tci]);
2333 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2336 /* We need to explicitly update tci as prevous loop
2337 * could break out early if dev_maps is NULL.
2339 tci = j * num_tc + tc;
2341 if (netif_attr_test_mask(j, mask, nr_ids) &&
2342 netif_attr_test_online(j, online_mask, nr_ids)) {
2343 /* add tx-queue to CPU/rx-queue maps */
2344 int pos = 0;
2346 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2347 while ((pos < map->len) && (map->queues[pos] != index))
2348 pos++;
2350 if (pos == map->len)
2351 map->queues[map->len++] = index;
2352 #ifdef CONFIG_NUMA
2353 if (!is_rxqs_map) {
2354 if (numa_node_id == -2)
2355 numa_node_id = cpu_to_node(j);
2356 else if (numa_node_id != cpu_to_node(j))
2357 numa_node_id = -1;
2359 #endif
2360 } else if (dev_maps) {
2361 /* fill in the new device map from the old device map */
2362 map = xmap_dereference(dev_maps->attr_map[tci]);
2363 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2366 /* copy maps belonging to foreign traffic classes */
2367 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2368 /* fill in the new device map from the old device map */
2369 map = xmap_dereference(dev_maps->attr_map[tci]);
2370 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2374 if (is_rxqs_map)
2375 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2376 else
2377 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2379 /* Cleanup old maps */
2380 if (!dev_maps)
2381 goto out_no_old_maps;
2383 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2384 j < nr_ids;) {
2385 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2386 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2387 map = xmap_dereference(dev_maps->attr_map[tci]);
2388 if (map && map != new_map)
2389 kfree_rcu(map, rcu);
2393 kfree_rcu(dev_maps, rcu);
2395 out_no_old_maps:
2396 dev_maps = new_dev_maps;
2397 active = true;
2399 out_no_new_maps:
2400 if (!is_rxqs_map) {
2401 /* update Tx queue numa node */
2402 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2403 (numa_node_id >= 0) ?
2404 numa_node_id : NUMA_NO_NODE);
2407 if (!dev_maps)
2408 goto out_no_maps;
2410 /* removes tx-queue from unused CPUs/rx-queues */
2411 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2412 j < nr_ids;) {
2413 for (i = tc, tci = j * num_tc; i--; tci++)
2414 active |= remove_xps_queue(dev_maps, tci, index);
2415 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2416 !netif_attr_test_online(j, online_mask, nr_ids))
2417 active |= remove_xps_queue(dev_maps, tci, index);
2418 for (i = num_tc - tc, tci++; --i; tci++)
2419 active |= remove_xps_queue(dev_maps, tci, index);
2422 /* free map if not active */
2423 if (!active) {
2424 if (is_rxqs_map)
2425 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2426 else
2427 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2428 kfree_rcu(dev_maps, rcu);
2431 out_no_maps:
2432 mutex_unlock(&xps_map_mutex);
2434 return 0;
2435 error:
2436 /* remove any maps that we added */
2437 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2438 j < nr_ids;) {
2439 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2440 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2441 map = dev_maps ?
2442 xmap_dereference(dev_maps->attr_map[tci]) :
2443 NULL;
2444 if (new_map && new_map != map)
2445 kfree(new_map);
2449 mutex_unlock(&xps_map_mutex);
2451 kfree(new_dev_maps);
2452 return -ENOMEM;
2454 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2456 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2457 u16 index)
2459 int ret;
2461 cpus_read_lock();
2462 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2463 cpus_read_unlock();
2465 return ret;
2467 EXPORT_SYMBOL(netif_set_xps_queue);
2469 #endif
2470 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2472 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2474 /* Unbind any subordinate channels */
2475 while (txq-- != &dev->_tx[0]) {
2476 if (txq->sb_dev)
2477 netdev_unbind_sb_channel(dev, txq->sb_dev);
2481 void netdev_reset_tc(struct net_device *dev)
2483 #ifdef CONFIG_XPS
2484 netif_reset_xps_queues_gt(dev, 0);
2485 #endif
2486 netdev_unbind_all_sb_channels(dev);
2488 /* Reset TC configuration of device */
2489 dev->num_tc = 0;
2490 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2491 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2493 EXPORT_SYMBOL(netdev_reset_tc);
2495 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2497 if (tc >= dev->num_tc)
2498 return -EINVAL;
2500 #ifdef CONFIG_XPS
2501 netif_reset_xps_queues(dev, offset, count);
2502 #endif
2503 dev->tc_to_txq[tc].count = count;
2504 dev->tc_to_txq[tc].offset = offset;
2505 return 0;
2507 EXPORT_SYMBOL(netdev_set_tc_queue);
2509 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2511 if (num_tc > TC_MAX_QUEUE)
2512 return -EINVAL;
2514 #ifdef CONFIG_XPS
2515 netif_reset_xps_queues_gt(dev, 0);
2516 #endif
2517 netdev_unbind_all_sb_channels(dev);
2519 dev->num_tc = num_tc;
2520 return 0;
2522 EXPORT_SYMBOL(netdev_set_num_tc);
2524 void netdev_unbind_sb_channel(struct net_device *dev,
2525 struct net_device *sb_dev)
2527 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2529 #ifdef CONFIG_XPS
2530 netif_reset_xps_queues_gt(sb_dev, 0);
2531 #endif
2532 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2533 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2535 while (txq-- != &dev->_tx[0]) {
2536 if (txq->sb_dev == sb_dev)
2537 txq->sb_dev = NULL;
2540 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2542 int netdev_bind_sb_channel_queue(struct net_device *dev,
2543 struct net_device *sb_dev,
2544 u8 tc, u16 count, u16 offset)
2546 /* Make certain the sb_dev and dev are already configured */
2547 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2548 return -EINVAL;
2550 /* We cannot hand out queues we don't have */
2551 if ((offset + count) > dev->real_num_tx_queues)
2552 return -EINVAL;
2554 /* Record the mapping */
2555 sb_dev->tc_to_txq[tc].count = count;
2556 sb_dev->tc_to_txq[tc].offset = offset;
2558 /* Provide a way for Tx queue to find the tc_to_txq map or
2559 * XPS map for itself.
2561 while (count--)
2562 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2564 return 0;
2566 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2568 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2570 /* Do not use a multiqueue device to represent a subordinate channel */
2571 if (netif_is_multiqueue(dev))
2572 return -ENODEV;
2574 /* We allow channels 1 - 32767 to be used for subordinate channels.
2575 * Channel 0 is meant to be "native" mode and used only to represent
2576 * the main root device. We allow writing 0 to reset the device back
2577 * to normal mode after being used as a subordinate channel.
2579 if (channel > S16_MAX)
2580 return -EINVAL;
2582 dev->num_tc = -channel;
2584 return 0;
2586 EXPORT_SYMBOL(netdev_set_sb_channel);
2589 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2590 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2592 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2594 bool disabling;
2595 int rc;
2597 disabling = txq < dev->real_num_tx_queues;
2599 if (txq < 1 || txq > dev->num_tx_queues)
2600 return -EINVAL;
2602 if (dev->reg_state == NETREG_REGISTERED ||
2603 dev->reg_state == NETREG_UNREGISTERING) {
2604 ASSERT_RTNL();
2606 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2607 txq);
2608 if (rc)
2609 return rc;
2611 if (dev->num_tc)
2612 netif_setup_tc(dev, txq);
2614 dev->real_num_tx_queues = txq;
2616 if (disabling) {
2617 synchronize_net();
2618 qdisc_reset_all_tx_gt(dev, txq);
2619 #ifdef CONFIG_XPS
2620 netif_reset_xps_queues_gt(dev, txq);
2621 #endif
2623 } else {
2624 dev->real_num_tx_queues = txq;
2627 return 0;
2629 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2631 #ifdef CONFIG_SYSFS
2633 * netif_set_real_num_rx_queues - set actual number of RX queues used
2634 * @dev: Network device
2635 * @rxq: Actual number of RX queues
2637 * This must be called either with the rtnl_lock held or before
2638 * registration of the net device. Returns 0 on success, or a
2639 * negative error code. If called before registration, it always
2640 * succeeds.
2642 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2644 int rc;
2646 if (rxq < 1 || rxq > dev->num_rx_queues)
2647 return -EINVAL;
2649 if (dev->reg_state == NETREG_REGISTERED) {
2650 ASSERT_RTNL();
2652 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2653 rxq);
2654 if (rc)
2655 return rc;
2658 dev->real_num_rx_queues = rxq;
2659 return 0;
2661 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2662 #endif
2665 * netif_get_num_default_rss_queues - default number of RSS queues
2667 * This routine should set an upper limit on the number of RSS queues
2668 * used by default by multiqueue devices.
2670 int netif_get_num_default_rss_queues(void)
2672 return is_kdump_kernel() ?
2673 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2675 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2677 static void __netif_reschedule(struct Qdisc *q)
2679 struct softnet_data *sd;
2680 unsigned long flags;
2682 local_irq_save(flags);
2683 sd = this_cpu_ptr(&softnet_data);
2684 q->next_sched = NULL;
2685 *sd->output_queue_tailp = q;
2686 sd->output_queue_tailp = &q->next_sched;
2687 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2688 local_irq_restore(flags);
2691 void __netif_schedule(struct Qdisc *q)
2693 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2694 __netif_reschedule(q);
2696 EXPORT_SYMBOL(__netif_schedule);
2698 struct dev_kfree_skb_cb {
2699 enum skb_free_reason reason;
2702 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2704 return (struct dev_kfree_skb_cb *)skb->cb;
2707 void netif_schedule_queue(struct netdev_queue *txq)
2709 rcu_read_lock();
2710 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2711 struct Qdisc *q = rcu_dereference(txq->qdisc);
2713 __netif_schedule(q);
2715 rcu_read_unlock();
2717 EXPORT_SYMBOL(netif_schedule_queue);
2719 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2721 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2722 struct Qdisc *q;
2724 rcu_read_lock();
2725 q = rcu_dereference(dev_queue->qdisc);
2726 __netif_schedule(q);
2727 rcu_read_unlock();
2730 EXPORT_SYMBOL(netif_tx_wake_queue);
2732 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2734 unsigned long flags;
2736 if (unlikely(!skb))
2737 return;
2739 if (likely(refcount_read(&skb->users) == 1)) {
2740 smp_rmb();
2741 refcount_set(&skb->users, 0);
2742 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2743 return;
2745 get_kfree_skb_cb(skb)->reason = reason;
2746 local_irq_save(flags);
2747 skb->next = __this_cpu_read(softnet_data.completion_queue);
2748 __this_cpu_write(softnet_data.completion_queue, skb);
2749 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2750 local_irq_restore(flags);
2752 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2754 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2756 if (in_irq() || irqs_disabled())
2757 __dev_kfree_skb_irq(skb, reason);
2758 else
2759 dev_kfree_skb(skb);
2761 EXPORT_SYMBOL(__dev_kfree_skb_any);
2765 * netif_device_detach - mark device as removed
2766 * @dev: network device
2768 * Mark device as removed from system and therefore no longer available.
2770 void netif_device_detach(struct net_device *dev)
2772 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2773 netif_running(dev)) {
2774 netif_tx_stop_all_queues(dev);
2777 EXPORT_SYMBOL(netif_device_detach);
2780 * netif_device_attach - mark device as attached
2781 * @dev: network device
2783 * Mark device as attached from system and restart if needed.
2785 void netif_device_attach(struct net_device *dev)
2787 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2788 netif_running(dev)) {
2789 netif_tx_wake_all_queues(dev);
2790 __netdev_watchdog_up(dev);
2793 EXPORT_SYMBOL(netif_device_attach);
2796 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2797 * to be used as a distribution range.
2799 static u16 skb_tx_hash(const struct net_device *dev,
2800 const struct net_device *sb_dev,
2801 struct sk_buff *skb)
2803 u32 hash;
2804 u16 qoffset = 0;
2805 u16 qcount = dev->real_num_tx_queues;
2807 if (dev->num_tc) {
2808 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2810 qoffset = sb_dev->tc_to_txq[tc].offset;
2811 qcount = sb_dev->tc_to_txq[tc].count;
2814 if (skb_rx_queue_recorded(skb)) {
2815 hash = skb_get_rx_queue(skb);
2816 while (unlikely(hash >= qcount))
2817 hash -= qcount;
2818 return hash + qoffset;
2821 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2824 static void skb_warn_bad_offload(const struct sk_buff *skb)
2826 static const netdev_features_t null_features;
2827 struct net_device *dev = skb->dev;
2828 const char *name = "";
2830 if (!net_ratelimit())
2831 return;
2833 if (dev) {
2834 if (dev->dev.parent)
2835 name = dev_driver_string(dev->dev.parent);
2836 else
2837 name = netdev_name(dev);
2839 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2840 "gso_type=%d ip_summed=%d\n",
2841 name, dev ? &dev->features : &null_features,
2842 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2843 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2844 skb_shinfo(skb)->gso_type, skb->ip_summed);
2848 * Invalidate hardware checksum when packet is to be mangled, and
2849 * complete checksum manually on outgoing path.
2851 int skb_checksum_help(struct sk_buff *skb)
2853 __wsum csum;
2854 int ret = 0, offset;
2856 if (skb->ip_summed == CHECKSUM_COMPLETE)
2857 goto out_set_summed;
2859 if (unlikely(skb_shinfo(skb)->gso_size)) {
2860 skb_warn_bad_offload(skb);
2861 return -EINVAL;
2864 /* Before computing a checksum, we should make sure no frag could
2865 * be modified by an external entity : checksum could be wrong.
2867 if (skb_has_shared_frag(skb)) {
2868 ret = __skb_linearize(skb);
2869 if (ret)
2870 goto out;
2873 offset = skb_checksum_start_offset(skb);
2874 BUG_ON(offset >= skb_headlen(skb));
2875 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2877 offset += skb->csum_offset;
2878 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2880 if (skb_cloned(skb) &&
2881 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2882 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2883 if (ret)
2884 goto out;
2887 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2888 out_set_summed:
2889 skb->ip_summed = CHECKSUM_NONE;
2890 out:
2891 return ret;
2893 EXPORT_SYMBOL(skb_checksum_help);
2895 int skb_crc32c_csum_help(struct sk_buff *skb)
2897 __le32 crc32c_csum;
2898 int ret = 0, offset, start;
2900 if (skb->ip_summed != CHECKSUM_PARTIAL)
2901 goto out;
2903 if (unlikely(skb_is_gso(skb)))
2904 goto out;
2906 /* Before computing a checksum, we should make sure no frag could
2907 * be modified by an external entity : checksum could be wrong.
2909 if (unlikely(skb_has_shared_frag(skb))) {
2910 ret = __skb_linearize(skb);
2911 if (ret)
2912 goto out;
2914 start = skb_checksum_start_offset(skb);
2915 offset = start + offsetof(struct sctphdr, checksum);
2916 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2917 ret = -EINVAL;
2918 goto out;
2920 if (skb_cloned(skb) &&
2921 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2922 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2923 if (ret)
2924 goto out;
2926 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2927 skb->len - start, ~(__u32)0,
2928 crc32c_csum_stub));
2929 *(__le32 *)(skb->data + offset) = crc32c_csum;
2930 skb->ip_summed = CHECKSUM_NONE;
2931 skb->csum_not_inet = 0;
2932 out:
2933 return ret;
2936 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2938 __be16 type = skb->protocol;
2940 /* Tunnel gso handlers can set protocol to ethernet. */
2941 if (type == htons(ETH_P_TEB)) {
2942 struct ethhdr *eth;
2944 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2945 return 0;
2947 eth = (struct ethhdr *)skb->data;
2948 type = eth->h_proto;
2951 return __vlan_get_protocol(skb, type, depth);
2955 * skb_mac_gso_segment - mac layer segmentation handler.
2956 * @skb: buffer to segment
2957 * @features: features for the output path (see dev->features)
2959 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2960 netdev_features_t features)
2962 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2963 struct packet_offload *ptype;
2964 int vlan_depth = skb->mac_len;
2965 __be16 type = skb_network_protocol(skb, &vlan_depth);
2967 if (unlikely(!type))
2968 return ERR_PTR(-EINVAL);
2970 __skb_pull(skb, vlan_depth);
2972 rcu_read_lock();
2973 list_for_each_entry_rcu(ptype, &offload_base, list) {
2974 if (ptype->type == type && ptype->callbacks.gso_segment) {
2975 segs = ptype->callbacks.gso_segment(skb, features);
2976 break;
2979 rcu_read_unlock();
2981 __skb_push(skb, skb->data - skb_mac_header(skb));
2983 return segs;
2985 EXPORT_SYMBOL(skb_mac_gso_segment);
2988 /* openvswitch calls this on rx path, so we need a different check.
2990 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2992 if (tx_path)
2993 return skb->ip_summed != CHECKSUM_PARTIAL &&
2994 skb->ip_summed != CHECKSUM_UNNECESSARY;
2996 return skb->ip_summed == CHECKSUM_NONE;
3000 * __skb_gso_segment - Perform segmentation on skb.
3001 * @skb: buffer to segment
3002 * @features: features for the output path (see dev->features)
3003 * @tx_path: whether it is called in TX path
3005 * This function segments the given skb and returns a list of segments.
3007 * It may return NULL if the skb requires no segmentation. This is
3008 * only possible when GSO is used for verifying header integrity.
3010 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3012 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3013 netdev_features_t features, bool tx_path)
3015 struct sk_buff *segs;
3017 if (unlikely(skb_needs_check(skb, tx_path))) {
3018 int err;
3020 /* We're going to init ->check field in TCP or UDP header */
3021 err = skb_cow_head(skb, 0);
3022 if (err < 0)
3023 return ERR_PTR(err);
3026 /* Only report GSO partial support if it will enable us to
3027 * support segmentation on this frame without needing additional
3028 * work.
3030 if (features & NETIF_F_GSO_PARTIAL) {
3031 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3032 struct net_device *dev = skb->dev;
3034 partial_features |= dev->features & dev->gso_partial_features;
3035 if (!skb_gso_ok(skb, features | partial_features))
3036 features &= ~NETIF_F_GSO_PARTIAL;
3039 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3040 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3042 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3043 SKB_GSO_CB(skb)->encap_level = 0;
3045 skb_reset_mac_header(skb);
3046 skb_reset_mac_len(skb);
3048 segs = skb_mac_gso_segment(skb, features);
3050 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3051 skb_warn_bad_offload(skb);
3053 return segs;
3055 EXPORT_SYMBOL(__skb_gso_segment);
3057 /* Take action when hardware reception checksum errors are detected. */
3058 #ifdef CONFIG_BUG
3059 void netdev_rx_csum_fault(struct net_device *dev)
3061 if (net_ratelimit()) {
3062 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3063 dump_stack();
3066 EXPORT_SYMBOL(netdev_rx_csum_fault);
3067 #endif
3069 /* XXX: check that highmem exists at all on the given machine. */
3070 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3072 #ifdef CONFIG_HIGHMEM
3073 int i;
3075 if (!(dev->features & NETIF_F_HIGHDMA)) {
3076 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3077 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3079 if (PageHighMem(skb_frag_page(frag)))
3080 return 1;
3083 #endif
3084 return 0;
3087 /* If MPLS offload request, verify we are testing hardware MPLS features
3088 * instead of standard features for the netdev.
3090 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3091 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3092 netdev_features_t features,
3093 __be16 type)
3095 if (eth_p_mpls(type))
3096 features &= skb->dev->mpls_features;
3098 return features;
3100 #else
3101 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3102 netdev_features_t features,
3103 __be16 type)
3105 return features;
3107 #endif
3109 static netdev_features_t harmonize_features(struct sk_buff *skb,
3110 netdev_features_t features)
3112 int tmp;
3113 __be16 type;
3115 type = skb_network_protocol(skb, &tmp);
3116 features = net_mpls_features(skb, features, type);
3118 if (skb->ip_summed != CHECKSUM_NONE &&
3119 !can_checksum_protocol(features, type)) {
3120 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3122 if (illegal_highdma(skb->dev, skb))
3123 features &= ~NETIF_F_SG;
3125 return features;
3128 netdev_features_t passthru_features_check(struct sk_buff *skb,
3129 struct net_device *dev,
3130 netdev_features_t features)
3132 return features;
3134 EXPORT_SYMBOL(passthru_features_check);
3136 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3137 struct net_device *dev,
3138 netdev_features_t features)
3140 return vlan_features_check(skb, features);
3143 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3144 struct net_device *dev,
3145 netdev_features_t features)
3147 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3149 if (gso_segs > dev->gso_max_segs)
3150 return features & ~NETIF_F_GSO_MASK;
3152 /* Support for GSO partial features requires software
3153 * intervention before we can actually process the packets
3154 * so we need to strip support for any partial features now
3155 * and we can pull them back in after we have partially
3156 * segmented the frame.
3158 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3159 features &= ~dev->gso_partial_features;
3161 /* Make sure to clear the IPv4 ID mangling feature if the
3162 * IPv4 header has the potential to be fragmented.
3164 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3165 struct iphdr *iph = skb->encapsulation ?
3166 inner_ip_hdr(skb) : ip_hdr(skb);
3168 if (!(iph->frag_off & htons(IP_DF)))
3169 features &= ~NETIF_F_TSO_MANGLEID;
3172 return features;
3175 netdev_features_t netif_skb_features(struct sk_buff *skb)
3177 struct net_device *dev = skb->dev;
3178 netdev_features_t features = dev->features;
3180 if (skb_is_gso(skb))
3181 features = gso_features_check(skb, dev, features);
3183 /* If encapsulation offload request, verify we are testing
3184 * hardware encapsulation features instead of standard
3185 * features for the netdev
3187 if (skb->encapsulation)
3188 features &= dev->hw_enc_features;
3190 if (skb_vlan_tagged(skb))
3191 features = netdev_intersect_features(features,
3192 dev->vlan_features |
3193 NETIF_F_HW_VLAN_CTAG_TX |
3194 NETIF_F_HW_VLAN_STAG_TX);
3196 if (dev->netdev_ops->ndo_features_check)
3197 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3198 features);
3199 else
3200 features &= dflt_features_check(skb, dev, features);
3202 return harmonize_features(skb, features);
3204 EXPORT_SYMBOL(netif_skb_features);
3206 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3207 struct netdev_queue *txq, bool more)
3209 unsigned int len;
3210 int rc;
3212 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3213 dev_queue_xmit_nit(skb, dev);
3215 len = skb->len;
3216 trace_net_dev_start_xmit(skb, dev);
3217 rc = netdev_start_xmit(skb, dev, txq, more);
3218 trace_net_dev_xmit(skb, rc, dev, len);
3220 return rc;
3223 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3224 struct netdev_queue *txq, int *ret)
3226 struct sk_buff *skb = first;
3227 int rc = NETDEV_TX_OK;
3229 while (skb) {
3230 struct sk_buff *next = skb->next;
3232 skb->next = NULL;
3233 rc = xmit_one(skb, dev, txq, next != NULL);
3234 if (unlikely(!dev_xmit_complete(rc))) {
3235 skb->next = next;
3236 goto out;
3239 skb = next;
3240 if (netif_xmit_stopped(txq) && skb) {
3241 rc = NETDEV_TX_BUSY;
3242 break;
3246 out:
3247 *ret = rc;
3248 return skb;
3251 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3252 netdev_features_t features)
3254 if (skb_vlan_tag_present(skb) &&
3255 !vlan_hw_offload_capable(features, skb->vlan_proto))
3256 skb = __vlan_hwaccel_push_inside(skb);
3257 return skb;
3260 int skb_csum_hwoffload_help(struct sk_buff *skb,
3261 const netdev_features_t features)
3263 if (unlikely(skb->csum_not_inet))
3264 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3265 skb_crc32c_csum_help(skb);
3267 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3269 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3271 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3273 netdev_features_t features;
3275 features = netif_skb_features(skb);
3276 skb = validate_xmit_vlan(skb, features);
3277 if (unlikely(!skb))
3278 goto out_null;
3280 skb = sk_validate_xmit_skb(skb, dev);
3281 if (unlikely(!skb))
3282 goto out_null;
3284 if (netif_needs_gso(skb, features)) {
3285 struct sk_buff *segs;
3287 segs = skb_gso_segment(skb, features);
3288 if (IS_ERR(segs)) {
3289 goto out_kfree_skb;
3290 } else if (segs) {
3291 consume_skb(skb);
3292 skb = segs;
3294 } else {
3295 if (skb_needs_linearize(skb, features) &&
3296 __skb_linearize(skb))
3297 goto out_kfree_skb;
3299 /* If packet is not checksummed and device does not
3300 * support checksumming for this protocol, complete
3301 * checksumming here.
3303 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3304 if (skb->encapsulation)
3305 skb_set_inner_transport_header(skb,
3306 skb_checksum_start_offset(skb));
3307 else
3308 skb_set_transport_header(skb,
3309 skb_checksum_start_offset(skb));
3310 if (skb_csum_hwoffload_help(skb, features))
3311 goto out_kfree_skb;
3315 skb = validate_xmit_xfrm(skb, features, again);
3317 return skb;
3319 out_kfree_skb:
3320 kfree_skb(skb);
3321 out_null:
3322 atomic_long_inc(&dev->tx_dropped);
3323 return NULL;
3326 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3328 struct sk_buff *next, *head = NULL, *tail;
3330 for (; skb != NULL; skb = next) {
3331 next = skb->next;
3332 skb->next = NULL;
3334 /* in case skb wont be segmented, point to itself */
3335 skb->prev = skb;
3337 skb = validate_xmit_skb(skb, dev, again);
3338 if (!skb)
3339 continue;
3341 if (!head)
3342 head = skb;
3343 else
3344 tail->next = skb;
3345 /* If skb was segmented, skb->prev points to
3346 * the last segment. If not, it still contains skb.
3348 tail = skb->prev;
3350 return head;
3352 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3354 static void qdisc_pkt_len_init(struct sk_buff *skb)
3356 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3358 qdisc_skb_cb(skb)->pkt_len = skb->len;
3360 /* To get more precise estimation of bytes sent on wire,
3361 * we add to pkt_len the headers size of all segments
3363 if (shinfo->gso_size) {
3364 unsigned int hdr_len;
3365 u16 gso_segs = shinfo->gso_segs;
3367 /* mac layer + network layer */
3368 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3370 /* + transport layer */
3371 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3372 const struct tcphdr *th;
3373 struct tcphdr _tcphdr;
3375 th = skb_header_pointer(skb, skb_transport_offset(skb),
3376 sizeof(_tcphdr), &_tcphdr);
3377 if (likely(th))
3378 hdr_len += __tcp_hdrlen(th);
3379 } else {
3380 struct udphdr _udphdr;
3382 if (skb_header_pointer(skb, skb_transport_offset(skb),
3383 sizeof(_udphdr), &_udphdr))
3384 hdr_len += sizeof(struct udphdr);
3387 if (shinfo->gso_type & SKB_GSO_DODGY)
3388 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3389 shinfo->gso_size);
3391 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3395 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3396 struct net_device *dev,
3397 struct netdev_queue *txq)
3399 spinlock_t *root_lock = qdisc_lock(q);
3400 struct sk_buff *to_free = NULL;
3401 bool contended;
3402 int rc;
3404 qdisc_calculate_pkt_len(skb, q);
3406 if (q->flags & TCQ_F_NOLOCK) {
3407 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3408 __qdisc_drop(skb, &to_free);
3409 rc = NET_XMIT_DROP;
3410 } else {
3411 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3412 qdisc_run(q);
3415 if (unlikely(to_free))
3416 kfree_skb_list(to_free);
3417 return rc;
3421 * Heuristic to force contended enqueues to serialize on a
3422 * separate lock before trying to get qdisc main lock.
3423 * This permits qdisc->running owner to get the lock more
3424 * often and dequeue packets faster.
3426 contended = qdisc_is_running(q);
3427 if (unlikely(contended))
3428 spin_lock(&q->busylock);
3430 spin_lock(root_lock);
3431 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3432 __qdisc_drop(skb, &to_free);
3433 rc = NET_XMIT_DROP;
3434 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3435 qdisc_run_begin(q)) {
3437 * This is a work-conserving queue; there are no old skbs
3438 * waiting to be sent out; and the qdisc is not running -
3439 * xmit the skb directly.
3442 qdisc_bstats_update(q, skb);
3444 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3445 if (unlikely(contended)) {
3446 spin_unlock(&q->busylock);
3447 contended = false;
3449 __qdisc_run(q);
3452 qdisc_run_end(q);
3453 rc = NET_XMIT_SUCCESS;
3454 } else {
3455 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3456 if (qdisc_run_begin(q)) {
3457 if (unlikely(contended)) {
3458 spin_unlock(&q->busylock);
3459 contended = false;
3461 __qdisc_run(q);
3462 qdisc_run_end(q);
3465 spin_unlock(root_lock);
3466 if (unlikely(to_free))
3467 kfree_skb_list(to_free);
3468 if (unlikely(contended))
3469 spin_unlock(&q->busylock);
3470 return rc;
3473 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3474 static void skb_update_prio(struct sk_buff *skb)
3476 const struct netprio_map *map;
3477 const struct sock *sk;
3478 unsigned int prioidx;
3480 if (skb->priority)
3481 return;
3482 map = rcu_dereference_bh(skb->dev->priomap);
3483 if (!map)
3484 return;
3485 sk = skb_to_full_sk(skb);
3486 if (!sk)
3487 return;
3489 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3491 if (prioidx < map->priomap_len)
3492 skb->priority = map->priomap[prioidx];
3494 #else
3495 #define skb_update_prio(skb)
3496 #endif
3498 DEFINE_PER_CPU(int, xmit_recursion);
3499 EXPORT_SYMBOL(xmit_recursion);
3502 * dev_loopback_xmit - loop back @skb
3503 * @net: network namespace this loopback is happening in
3504 * @sk: sk needed to be a netfilter okfn
3505 * @skb: buffer to transmit
3507 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3509 skb_reset_mac_header(skb);
3510 __skb_pull(skb, skb_network_offset(skb));
3511 skb->pkt_type = PACKET_LOOPBACK;
3512 skb->ip_summed = CHECKSUM_UNNECESSARY;
3513 WARN_ON(!skb_dst(skb));
3514 skb_dst_force(skb);
3515 netif_rx_ni(skb);
3516 return 0;
3518 EXPORT_SYMBOL(dev_loopback_xmit);
3520 #ifdef CONFIG_NET_EGRESS
3521 static struct sk_buff *
3522 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3524 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3525 struct tcf_result cl_res;
3527 if (!miniq)
3528 return skb;
3530 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3531 mini_qdisc_bstats_cpu_update(miniq, skb);
3533 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3534 case TC_ACT_OK:
3535 case TC_ACT_RECLASSIFY:
3536 skb->tc_index = TC_H_MIN(cl_res.classid);
3537 break;
3538 case TC_ACT_SHOT:
3539 mini_qdisc_qstats_cpu_drop(miniq);
3540 *ret = NET_XMIT_DROP;
3541 kfree_skb(skb);
3542 return NULL;
3543 case TC_ACT_STOLEN:
3544 case TC_ACT_QUEUED:
3545 case TC_ACT_TRAP:
3546 *ret = NET_XMIT_SUCCESS;
3547 consume_skb(skb);
3548 return NULL;
3549 case TC_ACT_REDIRECT:
3550 /* No need to push/pop skb's mac_header here on egress! */
3551 skb_do_redirect(skb);
3552 *ret = NET_XMIT_SUCCESS;
3553 return NULL;
3554 default:
3555 break;
3558 return skb;
3560 #endif /* CONFIG_NET_EGRESS */
3562 #ifdef CONFIG_XPS
3563 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3564 struct xps_dev_maps *dev_maps, unsigned int tci)
3566 struct xps_map *map;
3567 int queue_index = -1;
3569 if (dev->num_tc) {
3570 tci *= dev->num_tc;
3571 tci += netdev_get_prio_tc_map(dev, skb->priority);
3574 map = rcu_dereference(dev_maps->attr_map[tci]);
3575 if (map) {
3576 if (map->len == 1)
3577 queue_index = map->queues[0];
3578 else
3579 queue_index = map->queues[reciprocal_scale(
3580 skb_get_hash(skb), map->len)];
3581 if (unlikely(queue_index >= dev->real_num_tx_queues))
3582 queue_index = -1;
3584 return queue_index;
3586 #endif
3588 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3589 struct sk_buff *skb)
3591 #ifdef CONFIG_XPS
3592 struct xps_dev_maps *dev_maps;
3593 struct sock *sk = skb->sk;
3594 int queue_index = -1;
3596 if (!static_key_false(&xps_needed))
3597 return -1;
3599 rcu_read_lock();
3600 if (!static_key_false(&xps_rxqs_needed))
3601 goto get_cpus_map;
3603 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3604 if (dev_maps) {
3605 int tci = sk_rx_queue_get(sk);
3607 if (tci >= 0 && tci < dev->num_rx_queues)
3608 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3609 tci);
3612 get_cpus_map:
3613 if (queue_index < 0) {
3614 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3615 if (dev_maps) {
3616 unsigned int tci = skb->sender_cpu - 1;
3618 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3619 tci);
3622 rcu_read_unlock();
3624 return queue_index;
3625 #else
3626 return -1;
3627 #endif
3630 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3631 struct net_device *sb_dev,
3632 select_queue_fallback_t fallback)
3634 return 0;
3636 EXPORT_SYMBOL(dev_pick_tx_zero);
3638 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3639 struct net_device *sb_dev,
3640 select_queue_fallback_t fallback)
3642 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3644 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3646 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3647 struct net_device *sb_dev)
3649 struct sock *sk = skb->sk;
3650 int queue_index = sk_tx_queue_get(sk);
3652 sb_dev = sb_dev ? : dev;
3654 if (queue_index < 0 || skb->ooo_okay ||
3655 queue_index >= dev->real_num_tx_queues) {
3656 int new_index = get_xps_queue(dev, sb_dev, skb);
3658 if (new_index < 0)
3659 new_index = skb_tx_hash(dev, sb_dev, skb);
3661 if (queue_index != new_index && sk &&
3662 sk_fullsock(sk) &&
3663 rcu_access_pointer(sk->sk_dst_cache))
3664 sk_tx_queue_set(sk, new_index);
3666 queue_index = new_index;
3669 return queue_index;
3672 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3673 struct sk_buff *skb,
3674 struct net_device *sb_dev)
3676 int queue_index = 0;
3678 #ifdef CONFIG_XPS
3679 u32 sender_cpu = skb->sender_cpu - 1;
3681 if (sender_cpu >= (u32)NR_CPUS)
3682 skb->sender_cpu = raw_smp_processor_id() + 1;
3683 #endif
3685 if (dev->real_num_tx_queues != 1) {
3686 const struct net_device_ops *ops = dev->netdev_ops;
3688 if (ops->ndo_select_queue)
3689 queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3690 __netdev_pick_tx);
3691 else
3692 queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3694 queue_index = netdev_cap_txqueue(dev, queue_index);
3697 skb_set_queue_mapping(skb, queue_index);
3698 return netdev_get_tx_queue(dev, queue_index);
3702 * __dev_queue_xmit - transmit a buffer
3703 * @skb: buffer to transmit
3704 * @sb_dev: suboordinate device used for L2 forwarding offload
3706 * Queue a buffer for transmission to a network device. The caller must
3707 * have set the device and priority and built the buffer before calling
3708 * this function. The function can be called from an interrupt.
3710 * A negative errno code is returned on a failure. A success does not
3711 * guarantee the frame will be transmitted as it may be dropped due
3712 * to congestion or traffic shaping.
3714 * -----------------------------------------------------------------------------------
3715 * I notice this method can also return errors from the queue disciplines,
3716 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3717 * be positive.
3719 * Regardless of the return value, the skb is consumed, so it is currently
3720 * difficult to retry a send to this method. (You can bump the ref count
3721 * before sending to hold a reference for retry if you are careful.)
3723 * When calling this method, interrupts MUST be enabled. This is because
3724 * the BH enable code must have IRQs enabled so that it will not deadlock.
3725 * --BLG
3727 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3729 struct net_device *dev = skb->dev;
3730 struct netdev_queue *txq;
3731 struct Qdisc *q;
3732 int rc = -ENOMEM;
3733 bool again = false;
3735 skb_reset_mac_header(skb);
3737 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3738 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3740 /* Disable soft irqs for various locks below. Also
3741 * stops preemption for RCU.
3743 rcu_read_lock_bh();
3745 skb_update_prio(skb);
3747 qdisc_pkt_len_init(skb);
3748 #ifdef CONFIG_NET_CLS_ACT
3749 skb->tc_at_ingress = 0;
3750 # ifdef CONFIG_NET_EGRESS
3751 if (static_branch_unlikely(&egress_needed_key)) {
3752 skb = sch_handle_egress(skb, &rc, dev);
3753 if (!skb)
3754 goto out;
3756 # endif
3757 #endif
3758 /* If device/qdisc don't need skb->dst, release it right now while
3759 * its hot in this cpu cache.
3761 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3762 skb_dst_drop(skb);
3763 else
3764 skb_dst_force(skb);
3766 txq = netdev_pick_tx(dev, skb, sb_dev);
3767 q = rcu_dereference_bh(txq->qdisc);
3769 trace_net_dev_queue(skb);
3770 if (q->enqueue) {
3771 rc = __dev_xmit_skb(skb, q, dev, txq);
3772 goto out;
3775 /* The device has no queue. Common case for software devices:
3776 * loopback, all the sorts of tunnels...
3778 * Really, it is unlikely that netif_tx_lock protection is necessary
3779 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3780 * counters.)
3781 * However, it is possible, that they rely on protection
3782 * made by us here.
3784 * Check this and shot the lock. It is not prone from deadlocks.
3785 *Either shot noqueue qdisc, it is even simpler 8)
3787 if (dev->flags & IFF_UP) {
3788 int cpu = smp_processor_id(); /* ok because BHs are off */
3790 if (txq->xmit_lock_owner != cpu) {
3791 if (unlikely(__this_cpu_read(xmit_recursion) >
3792 XMIT_RECURSION_LIMIT))
3793 goto recursion_alert;
3795 skb = validate_xmit_skb(skb, dev, &again);
3796 if (!skb)
3797 goto out;
3799 HARD_TX_LOCK(dev, txq, cpu);
3801 if (!netif_xmit_stopped(txq)) {
3802 __this_cpu_inc(xmit_recursion);
3803 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3804 __this_cpu_dec(xmit_recursion);
3805 if (dev_xmit_complete(rc)) {
3806 HARD_TX_UNLOCK(dev, txq);
3807 goto out;
3810 HARD_TX_UNLOCK(dev, txq);
3811 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3812 dev->name);
3813 } else {
3814 /* Recursion is detected! It is possible,
3815 * unfortunately
3817 recursion_alert:
3818 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3819 dev->name);
3823 rc = -ENETDOWN;
3824 rcu_read_unlock_bh();
3826 atomic_long_inc(&dev->tx_dropped);
3827 kfree_skb_list(skb);
3828 return rc;
3829 out:
3830 rcu_read_unlock_bh();
3831 return rc;
3834 int dev_queue_xmit(struct sk_buff *skb)
3836 return __dev_queue_xmit(skb, NULL);
3838 EXPORT_SYMBOL(dev_queue_xmit);
3840 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3842 return __dev_queue_xmit(skb, sb_dev);
3844 EXPORT_SYMBOL(dev_queue_xmit_accel);
3846 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3848 struct net_device *dev = skb->dev;
3849 struct sk_buff *orig_skb = skb;
3850 struct netdev_queue *txq;
3851 int ret = NETDEV_TX_BUSY;
3852 bool again = false;
3854 if (unlikely(!netif_running(dev) ||
3855 !netif_carrier_ok(dev)))
3856 goto drop;
3858 skb = validate_xmit_skb_list(skb, dev, &again);
3859 if (skb != orig_skb)
3860 goto drop;
3862 skb_set_queue_mapping(skb, queue_id);
3863 txq = skb_get_tx_queue(dev, skb);
3865 local_bh_disable();
3867 HARD_TX_LOCK(dev, txq, smp_processor_id());
3868 if (!netif_xmit_frozen_or_drv_stopped(txq))
3869 ret = netdev_start_xmit(skb, dev, txq, false);
3870 HARD_TX_UNLOCK(dev, txq);
3872 local_bh_enable();
3874 if (!dev_xmit_complete(ret))
3875 kfree_skb(skb);
3877 return ret;
3878 drop:
3879 atomic_long_inc(&dev->tx_dropped);
3880 kfree_skb_list(skb);
3881 return NET_XMIT_DROP;
3883 EXPORT_SYMBOL(dev_direct_xmit);
3885 /*************************************************************************
3886 * Receiver routines
3887 *************************************************************************/
3889 int netdev_max_backlog __read_mostly = 1000;
3890 EXPORT_SYMBOL(netdev_max_backlog);
3892 int netdev_tstamp_prequeue __read_mostly = 1;
3893 int netdev_budget __read_mostly = 300;
3894 unsigned int __read_mostly netdev_budget_usecs = 2000;
3895 int weight_p __read_mostly = 64; /* old backlog weight */
3896 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3897 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3898 int dev_rx_weight __read_mostly = 64;
3899 int dev_tx_weight __read_mostly = 64;
3901 /* Called with irq disabled */
3902 static inline void ____napi_schedule(struct softnet_data *sd,
3903 struct napi_struct *napi)
3905 list_add_tail(&napi->poll_list, &sd->poll_list);
3906 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3909 #ifdef CONFIG_RPS
3911 /* One global table that all flow-based protocols share. */
3912 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3913 EXPORT_SYMBOL(rps_sock_flow_table);
3914 u32 rps_cpu_mask __read_mostly;
3915 EXPORT_SYMBOL(rps_cpu_mask);
3917 struct static_key rps_needed __read_mostly;
3918 EXPORT_SYMBOL(rps_needed);
3919 struct static_key rfs_needed __read_mostly;
3920 EXPORT_SYMBOL(rfs_needed);
3922 static struct rps_dev_flow *
3923 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3924 struct rps_dev_flow *rflow, u16 next_cpu)
3926 if (next_cpu < nr_cpu_ids) {
3927 #ifdef CONFIG_RFS_ACCEL
3928 struct netdev_rx_queue *rxqueue;
3929 struct rps_dev_flow_table *flow_table;
3930 struct rps_dev_flow *old_rflow;
3931 u32 flow_id;
3932 u16 rxq_index;
3933 int rc;
3935 /* Should we steer this flow to a different hardware queue? */
3936 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3937 !(dev->features & NETIF_F_NTUPLE))
3938 goto out;
3939 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3940 if (rxq_index == skb_get_rx_queue(skb))
3941 goto out;
3943 rxqueue = dev->_rx + rxq_index;
3944 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3945 if (!flow_table)
3946 goto out;
3947 flow_id = skb_get_hash(skb) & flow_table->mask;
3948 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3949 rxq_index, flow_id);
3950 if (rc < 0)
3951 goto out;
3952 old_rflow = rflow;
3953 rflow = &flow_table->flows[flow_id];
3954 rflow->filter = rc;
3955 if (old_rflow->filter == rflow->filter)
3956 old_rflow->filter = RPS_NO_FILTER;
3957 out:
3958 #endif
3959 rflow->last_qtail =
3960 per_cpu(softnet_data, next_cpu).input_queue_head;
3963 rflow->cpu = next_cpu;
3964 return rflow;
3968 * get_rps_cpu is called from netif_receive_skb and returns the target
3969 * CPU from the RPS map of the receiving queue for a given skb.
3970 * rcu_read_lock must be held on entry.
3972 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3973 struct rps_dev_flow **rflowp)
3975 const struct rps_sock_flow_table *sock_flow_table;
3976 struct netdev_rx_queue *rxqueue = dev->_rx;
3977 struct rps_dev_flow_table *flow_table;
3978 struct rps_map *map;
3979 int cpu = -1;
3980 u32 tcpu;
3981 u32 hash;
3983 if (skb_rx_queue_recorded(skb)) {
3984 u16 index = skb_get_rx_queue(skb);
3986 if (unlikely(index >= dev->real_num_rx_queues)) {
3987 WARN_ONCE(dev->real_num_rx_queues > 1,
3988 "%s received packet on queue %u, but number "
3989 "of RX queues is %u\n",
3990 dev->name, index, dev->real_num_rx_queues);
3991 goto done;
3993 rxqueue += index;
3996 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3998 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3999 map = rcu_dereference(rxqueue->rps_map);
4000 if (!flow_table && !map)
4001 goto done;
4003 skb_reset_network_header(skb);
4004 hash = skb_get_hash(skb);
4005 if (!hash)
4006 goto done;
4008 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4009 if (flow_table && sock_flow_table) {
4010 struct rps_dev_flow *rflow;
4011 u32 next_cpu;
4012 u32 ident;
4014 /* First check into global flow table if there is a match */
4015 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4016 if ((ident ^ hash) & ~rps_cpu_mask)
4017 goto try_rps;
4019 next_cpu = ident & rps_cpu_mask;
4021 /* OK, now we know there is a match,
4022 * we can look at the local (per receive queue) flow table
4024 rflow = &flow_table->flows[hash & flow_table->mask];
4025 tcpu = rflow->cpu;
4028 * If the desired CPU (where last recvmsg was done) is
4029 * different from current CPU (one in the rx-queue flow
4030 * table entry), switch if one of the following holds:
4031 * - Current CPU is unset (>= nr_cpu_ids).
4032 * - Current CPU is offline.
4033 * - The current CPU's queue tail has advanced beyond the
4034 * last packet that was enqueued using this table entry.
4035 * This guarantees that all previous packets for the flow
4036 * have been dequeued, thus preserving in order delivery.
4038 if (unlikely(tcpu != next_cpu) &&
4039 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4040 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4041 rflow->last_qtail)) >= 0)) {
4042 tcpu = next_cpu;
4043 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4046 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4047 *rflowp = rflow;
4048 cpu = tcpu;
4049 goto done;
4053 try_rps:
4055 if (map) {
4056 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4057 if (cpu_online(tcpu)) {
4058 cpu = tcpu;
4059 goto done;
4063 done:
4064 return cpu;
4067 #ifdef CONFIG_RFS_ACCEL
4070 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4071 * @dev: Device on which the filter was set
4072 * @rxq_index: RX queue index
4073 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4074 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4076 * Drivers that implement ndo_rx_flow_steer() should periodically call
4077 * this function for each installed filter and remove the filters for
4078 * which it returns %true.
4080 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4081 u32 flow_id, u16 filter_id)
4083 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4084 struct rps_dev_flow_table *flow_table;
4085 struct rps_dev_flow *rflow;
4086 bool expire = true;
4087 unsigned int cpu;
4089 rcu_read_lock();
4090 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4091 if (flow_table && flow_id <= flow_table->mask) {
4092 rflow = &flow_table->flows[flow_id];
4093 cpu = READ_ONCE(rflow->cpu);
4094 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4095 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4096 rflow->last_qtail) <
4097 (int)(10 * flow_table->mask)))
4098 expire = false;
4100 rcu_read_unlock();
4101 return expire;
4103 EXPORT_SYMBOL(rps_may_expire_flow);
4105 #endif /* CONFIG_RFS_ACCEL */
4107 /* Called from hardirq (IPI) context */
4108 static void rps_trigger_softirq(void *data)
4110 struct softnet_data *sd = data;
4112 ____napi_schedule(sd, &sd->backlog);
4113 sd->received_rps++;
4116 #endif /* CONFIG_RPS */
4119 * Check if this softnet_data structure is another cpu one
4120 * If yes, queue it to our IPI list and return 1
4121 * If no, return 0
4123 static int rps_ipi_queued(struct softnet_data *sd)
4125 #ifdef CONFIG_RPS
4126 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4128 if (sd != mysd) {
4129 sd->rps_ipi_next = mysd->rps_ipi_list;
4130 mysd->rps_ipi_list = sd;
4132 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4133 return 1;
4135 #endif /* CONFIG_RPS */
4136 return 0;
4139 #ifdef CONFIG_NET_FLOW_LIMIT
4140 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4141 #endif
4143 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4145 #ifdef CONFIG_NET_FLOW_LIMIT
4146 struct sd_flow_limit *fl;
4147 struct softnet_data *sd;
4148 unsigned int old_flow, new_flow;
4150 if (qlen < (netdev_max_backlog >> 1))
4151 return false;
4153 sd = this_cpu_ptr(&softnet_data);
4155 rcu_read_lock();
4156 fl = rcu_dereference(sd->flow_limit);
4157 if (fl) {
4158 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4159 old_flow = fl->history[fl->history_head];
4160 fl->history[fl->history_head] = new_flow;
4162 fl->history_head++;
4163 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4165 if (likely(fl->buckets[old_flow]))
4166 fl->buckets[old_flow]--;
4168 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4169 fl->count++;
4170 rcu_read_unlock();
4171 return true;
4174 rcu_read_unlock();
4175 #endif
4176 return false;
4180 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4181 * queue (may be a remote CPU queue).
4183 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4184 unsigned int *qtail)
4186 struct softnet_data *sd;
4187 unsigned long flags;
4188 unsigned int qlen;
4190 sd = &per_cpu(softnet_data, cpu);
4192 local_irq_save(flags);
4194 rps_lock(sd);
4195 if (!netif_running(skb->dev))
4196 goto drop;
4197 qlen = skb_queue_len(&sd->input_pkt_queue);
4198 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4199 if (qlen) {
4200 enqueue:
4201 __skb_queue_tail(&sd->input_pkt_queue, skb);
4202 input_queue_tail_incr_save(sd, qtail);
4203 rps_unlock(sd);
4204 local_irq_restore(flags);
4205 return NET_RX_SUCCESS;
4208 /* Schedule NAPI for backlog device
4209 * We can use non atomic operation since we own the queue lock
4211 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4212 if (!rps_ipi_queued(sd))
4213 ____napi_schedule(sd, &sd->backlog);
4215 goto enqueue;
4218 drop:
4219 sd->dropped++;
4220 rps_unlock(sd);
4222 local_irq_restore(flags);
4224 atomic_long_inc(&skb->dev->rx_dropped);
4225 kfree_skb(skb);
4226 return NET_RX_DROP;
4229 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4231 struct net_device *dev = skb->dev;
4232 struct netdev_rx_queue *rxqueue;
4234 rxqueue = dev->_rx;
4236 if (skb_rx_queue_recorded(skb)) {
4237 u16 index = skb_get_rx_queue(skb);
4239 if (unlikely(index >= dev->real_num_rx_queues)) {
4240 WARN_ONCE(dev->real_num_rx_queues > 1,
4241 "%s received packet on queue %u, but number "
4242 "of RX queues is %u\n",
4243 dev->name, index, dev->real_num_rx_queues);
4245 return rxqueue; /* Return first rxqueue */
4247 rxqueue += index;
4249 return rxqueue;
4252 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4253 struct xdp_buff *xdp,
4254 struct bpf_prog *xdp_prog)
4256 struct netdev_rx_queue *rxqueue;
4257 void *orig_data, *orig_data_end;
4258 u32 metalen, act = XDP_DROP;
4259 int hlen, off;
4260 u32 mac_len;
4262 /* Reinjected packets coming from act_mirred or similar should
4263 * not get XDP generic processing.
4265 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4266 return XDP_PASS;
4268 /* XDP packets must be linear and must have sufficient headroom
4269 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4270 * native XDP provides, thus we need to do it here as well.
4272 if (skb_is_nonlinear(skb) ||
4273 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4274 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4275 int troom = skb->tail + skb->data_len - skb->end;
4277 /* In case we have to go down the path and also linearize,
4278 * then lets do the pskb_expand_head() work just once here.
4280 if (pskb_expand_head(skb,
4281 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4282 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4283 goto do_drop;
4284 if (skb_linearize(skb))
4285 goto do_drop;
4288 /* The XDP program wants to see the packet starting at the MAC
4289 * header.
4291 mac_len = skb->data - skb_mac_header(skb);
4292 hlen = skb_headlen(skb) + mac_len;
4293 xdp->data = skb->data - mac_len;
4294 xdp->data_meta = xdp->data;
4295 xdp->data_end = xdp->data + hlen;
4296 xdp->data_hard_start = skb->data - skb_headroom(skb);
4297 orig_data_end = xdp->data_end;
4298 orig_data = xdp->data;
4300 rxqueue = netif_get_rxqueue(skb);
4301 xdp->rxq = &rxqueue->xdp_rxq;
4303 act = bpf_prog_run_xdp(xdp_prog, xdp);
4305 off = xdp->data - orig_data;
4306 if (off > 0)
4307 __skb_pull(skb, off);
4308 else if (off < 0)
4309 __skb_push(skb, -off);
4310 skb->mac_header += off;
4312 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4313 * pckt.
4315 off = orig_data_end - xdp->data_end;
4316 if (off != 0) {
4317 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4318 skb->len -= off;
4322 switch (act) {
4323 case XDP_REDIRECT:
4324 case XDP_TX:
4325 __skb_push(skb, mac_len);
4326 break;
4327 case XDP_PASS:
4328 metalen = xdp->data - xdp->data_meta;
4329 if (metalen)
4330 skb_metadata_set(skb, metalen);
4331 break;
4332 default:
4333 bpf_warn_invalid_xdp_action(act);
4334 /* fall through */
4335 case XDP_ABORTED:
4336 trace_xdp_exception(skb->dev, xdp_prog, act);
4337 /* fall through */
4338 case XDP_DROP:
4339 do_drop:
4340 kfree_skb(skb);
4341 break;
4344 return act;
4347 /* When doing generic XDP we have to bypass the qdisc layer and the
4348 * network taps in order to match in-driver-XDP behavior.
4350 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4352 struct net_device *dev = skb->dev;
4353 struct netdev_queue *txq;
4354 bool free_skb = true;
4355 int cpu, rc;
4357 txq = netdev_pick_tx(dev, skb, NULL);
4358 cpu = smp_processor_id();
4359 HARD_TX_LOCK(dev, txq, cpu);
4360 if (!netif_xmit_stopped(txq)) {
4361 rc = netdev_start_xmit(skb, dev, txq, 0);
4362 if (dev_xmit_complete(rc))
4363 free_skb = false;
4365 HARD_TX_UNLOCK(dev, txq);
4366 if (free_skb) {
4367 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4368 kfree_skb(skb);
4371 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4373 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4375 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4377 if (xdp_prog) {
4378 struct xdp_buff xdp;
4379 u32 act;
4380 int err;
4382 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4383 if (act != XDP_PASS) {
4384 switch (act) {
4385 case XDP_REDIRECT:
4386 err = xdp_do_generic_redirect(skb->dev, skb,
4387 &xdp, xdp_prog);
4388 if (err)
4389 goto out_redir;
4390 break;
4391 case XDP_TX:
4392 generic_xdp_tx(skb, xdp_prog);
4393 break;
4395 return XDP_DROP;
4398 return XDP_PASS;
4399 out_redir:
4400 kfree_skb(skb);
4401 return XDP_DROP;
4403 EXPORT_SYMBOL_GPL(do_xdp_generic);
4405 static int netif_rx_internal(struct sk_buff *skb)
4407 int ret;
4409 net_timestamp_check(netdev_tstamp_prequeue, skb);
4411 trace_netif_rx(skb);
4413 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4414 int ret;
4416 preempt_disable();
4417 rcu_read_lock();
4418 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4419 rcu_read_unlock();
4420 preempt_enable();
4422 /* Consider XDP consuming the packet a success from
4423 * the netdev point of view we do not want to count
4424 * this as an error.
4426 if (ret != XDP_PASS)
4427 return NET_RX_SUCCESS;
4430 #ifdef CONFIG_RPS
4431 if (static_key_false(&rps_needed)) {
4432 struct rps_dev_flow voidflow, *rflow = &voidflow;
4433 int cpu;
4435 preempt_disable();
4436 rcu_read_lock();
4438 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4439 if (cpu < 0)
4440 cpu = smp_processor_id();
4442 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4444 rcu_read_unlock();
4445 preempt_enable();
4446 } else
4447 #endif
4449 unsigned int qtail;
4451 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4452 put_cpu();
4454 return ret;
4458 * netif_rx - post buffer to the network code
4459 * @skb: buffer to post
4461 * This function receives a packet from a device driver and queues it for
4462 * the upper (protocol) levels to process. It always succeeds. The buffer
4463 * may be dropped during processing for congestion control or by the
4464 * protocol layers.
4466 * return values:
4467 * NET_RX_SUCCESS (no congestion)
4468 * NET_RX_DROP (packet was dropped)
4472 int netif_rx(struct sk_buff *skb)
4474 trace_netif_rx_entry(skb);
4476 return netif_rx_internal(skb);
4478 EXPORT_SYMBOL(netif_rx);
4480 int netif_rx_ni(struct sk_buff *skb)
4482 int err;
4484 trace_netif_rx_ni_entry(skb);
4486 preempt_disable();
4487 err = netif_rx_internal(skb);
4488 if (local_softirq_pending())
4489 do_softirq();
4490 preempt_enable();
4492 return err;
4494 EXPORT_SYMBOL(netif_rx_ni);
4496 static __latent_entropy void net_tx_action(struct softirq_action *h)
4498 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4500 if (sd->completion_queue) {
4501 struct sk_buff *clist;
4503 local_irq_disable();
4504 clist = sd->completion_queue;
4505 sd->completion_queue = NULL;
4506 local_irq_enable();
4508 while (clist) {
4509 struct sk_buff *skb = clist;
4511 clist = clist->next;
4513 WARN_ON(refcount_read(&skb->users));
4514 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4515 trace_consume_skb(skb);
4516 else
4517 trace_kfree_skb(skb, net_tx_action);
4519 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4520 __kfree_skb(skb);
4521 else
4522 __kfree_skb_defer(skb);
4525 __kfree_skb_flush();
4528 if (sd->output_queue) {
4529 struct Qdisc *head;
4531 local_irq_disable();
4532 head = sd->output_queue;
4533 sd->output_queue = NULL;
4534 sd->output_queue_tailp = &sd->output_queue;
4535 local_irq_enable();
4537 while (head) {
4538 struct Qdisc *q = head;
4539 spinlock_t *root_lock = NULL;
4541 head = head->next_sched;
4543 if (!(q->flags & TCQ_F_NOLOCK)) {
4544 root_lock = qdisc_lock(q);
4545 spin_lock(root_lock);
4547 /* We need to make sure head->next_sched is read
4548 * before clearing __QDISC_STATE_SCHED
4550 smp_mb__before_atomic();
4551 clear_bit(__QDISC_STATE_SCHED, &q->state);
4552 qdisc_run(q);
4553 if (root_lock)
4554 spin_unlock(root_lock);
4558 xfrm_dev_backlog(sd);
4561 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4562 /* This hook is defined here for ATM LANE */
4563 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4564 unsigned char *addr) __read_mostly;
4565 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4566 #endif
4568 static inline struct sk_buff *
4569 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4570 struct net_device *orig_dev)
4572 #ifdef CONFIG_NET_CLS_ACT
4573 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4574 struct tcf_result cl_res;
4576 /* If there's at least one ingress present somewhere (so
4577 * we get here via enabled static key), remaining devices
4578 * that are not configured with an ingress qdisc will bail
4579 * out here.
4581 if (!miniq)
4582 return skb;
4584 if (*pt_prev) {
4585 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4586 *pt_prev = NULL;
4589 qdisc_skb_cb(skb)->pkt_len = skb->len;
4590 skb->tc_at_ingress = 1;
4591 mini_qdisc_bstats_cpu_update(miniq, skb);
4593 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4594 case TC_ACT_OK:
4595 case TC_ACT_RECLASSIFY:
4596 skb->tc_index = TC_H_MIN(cl_res.classid);
4597 break;
4598 case TC_ACT_SHOT:
4599 mini_qdisc_qstats_cpu_drop(miniq);
4600 kfree_skb(skb);
4601 return NULL;
4602 case TC_ACT_STOLEN:
4603 case TC_ACT_QUEUED:
4604 case TC_ACT_TRAP:
4605 consume_skb(skb);
4606 return NULL;
4607 case TC_ACT_REDIRECT:
4608 /* skb_mac_header check was done by cls/act_bpf, so
4609 * we can safely push the L2 header back before
4610 * redirecting to another netdev
4612 __skb_push(skb, skb->mac_len);
4613 skb_do_redirect(skb);
4614 return NULL;
4615 case TC_ACT_REINSERT:
4616 /* this does not scrub the packet, and updates stats on error */
4617 skb_tc_reinsert(skb, &cl_res);
4618 return NULL;
4619 default:
4620 break;
4622 #endif /* CONFIG_NET_CLS_ACT */
4623 return skb;
4627 * netdev_is_rx_handler_busy - check if receive handler is registered
4628 * @dev: device to check
4630 * Check if a receive handler is already registered for a given device.
4631 * Return true if there one.
4633 * The caller must hold the rtnl_mutex.
4635 bool netdev_is_rx_handler_busy(struct net_device *dev)
4637 ASSERT_RTNL();
4638 return dev && rtnl_dereference(dev->rx_handler);
4640 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4643 * netdev_rx_handler_register - register receive handler
4644 * @dev: device to register a handler for
4645 * @rx_handler: receive handler to register
4646 * @rx_handler_data: data pointer that is used by rx handler
4648 * Register a receive handler for a device. This handler will then be
4649 * called from __netif_receive_skb. A negative errno code is returned
4650 * on a failure.
4652 * The caller must hold the rtnl_mutex.
4654 * For a general description of rx_handler, see enum rx_handler_result.
4656 int netdev_rx_handler_register(struct net_device *dev,
4657 rx_handler_func_t *rx_handler,
4658 void *rx_handler_data)
4660 if (netdev_is_rx_handler_busy(dev))
4661 return -EBUSY;
4663 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4664 return -EINVAL;
4666 /* Note: rx_handler_data must be set before rx_handler */
4667 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4668 rcu_assign_pointer(dev->rx_handler, rx_handler);
4670 return 0;
4672 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4675 * netdev_rx_handler_unregister - unregister receive handler
4676 * @dev: device to unregister a handler from
4678 * Unregister a receive handler from a device.
4680 * The caller must hold the rtnl_mutex.
4682 void netdev_rx_handler_unregister(struct net_device *dev)
4685 ASSERT_RTNL();
4686 RCU_INIT_POINTER(dev->rx_handler, NULL);
4687 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4688 * section has a guarantee to see a non NULL rx_handler_data
4689 * as well.
4691 synchronize_net();
4692 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4694 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4697 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4698 * the special handling of PFMEMALLOC skbs.
4700 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4702 switch (skb->protocol) {
4703 case htons(ETH_P_ARP):
4704 case htons(ETH_P_IP):
4705 case htons(ETH_P_IPV6):
4706 case htons(ETH_P_8021Q):
4707 case htons(ETH_P_8021AD):
4708 return true;
4709 default:
4710 return false;
4714 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4715 int *ret, struct net_device *orig_dev)
4717 #ifdef CONFIG_NETFILTER_INGRESS
4718 if (nf_hook_ingress_active(skb)) {
4719 int ingress_retval;
4721 if (*pt_prev) {
4722 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4723 *pt_prev = NULL;
4726 rcu_read_lock();
4727 ingress_retval = nf_hook_ingress(skb);
4728 rcu_read_unlock();
4729 return ingress_retval;
4731 #endif /* CONFIG_NETFILTER_INGRESS */
4732 return 0;
4735 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4736 struct packet_type **ppt_prev)
4738 struct packet_type *ptype, *pt_prev;
4739 rx_handler_func_t *rx_handler;
4740 struct net_device *orig_dev;
4741 bool deliver_exact = false;
4742 int ret = NET_RX_DROP;
4743 __be16 type;
4745 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4747 trace_netif_receive_skb(skb);
4749 orig_dev = skb->dev;
4751 skb_reset_network_header(skb);
4752 if (!skb_transport_header_was_set(skb))
4753 skb_reset_transport_header(skb);
4754 skb_reset_mac_len(skb);
4756 pt_prev = NULL;
4758 another_round:
4759 skb->skb_iif = skb->dev->ifindex;
4761 __this_cpu_inc(softnet_data.processed);
4763 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4764 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4765 skb = skb_vlan_untag(skb);
4766 if (unlikely(!skb))
4767 goto out;
4770 if (skb_skip_tc_classify(skb))
4771 goto skip_classify;
4773 if (pfmemalloc)
4774 goto skip_taps;
4776 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4777 if (pt_prev)
4778 ret = deliver_skb(skb, pt_prev, orig_dev);
4779 pt_prev = ptype;
4782 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4783 if (pt_prev)
4784 ret = deliver_skb(skb, pt_prev, orig_dev);
4785 pt_prev = ptype;
4788 skip_taps:
4789 #ifdef CONFIG_NET_INGRESS
4790 if (static_branch_unlikely(&ingress_needed_key)) {
4791 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4792 if (!skb)
4793 goto out;
4795 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4796 goto out;
4798 #endif
4799 skb_reset_tc(skb);
4800 skip_classify:
4801 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4802 goto drop;
4804 if (skb_vlan_tag_present(skb)) {
4805 if (pt_prev) {
4806 ret = deliver_skb(skb, pt_prev, orig_dev);
4807 pt_prev = NULL;
4809 if (vlan_do_receive(&skb))
4810 goto another_round;
4811 else if (unlikely(!skb))
4812 goto out;
4815 rx_handler = rcu_dereference(skb->dev->rx_handler);
4816 if (rx_handler) {
4817 if (pt_prev) {
4818 ret = deliver_skb(skb, pt_prev, orig_dev);
4819 pt_prev = NULL;
4821 switch (rx_handler(&skb)) {
4822 case RX_HANDLER_CONSUMED:
4823 ret = NET_RX_SUCCESS;
4824 goto out;
4825 case RX_HANDLER_ANOTHER:
4826 goto another_round;
4827 case RX_HANDLER_EXACT:
4828 deliver_exact = true;
4829 case RX_HANDLER_PASS:
4830 break;
4831 default:
4832 BUG();
4836 if (unlikely(skb_vlan_tag_present(skb))) {
4837 if (skb_vlan_tag_get_id(skb))
4838 skb->pkt_type = PACKET_OTHERHOST;
4839 /* Note: we might in the future use prio bits
4840 * and set skb->priority like in vlan_do_receive()
4841 * For the time being, just ignore Priority Code Point
4843 skb->vlan_tci = 0;
4846 type = skb->protocol;
4848 /* deliver only exact match when indicated */
4849 if (likely(!deliver_exact)) {
4850 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4851 &ptype_base[ntohs(type) &
4852 PTYPE_HASH_MASK]);
4855 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4856 &orig_dev->ptype_specific);
4858 if (unlikely(skb->dev != orig_dev)) {
4859 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4860 &skb->dev->ptype_specific);
4863 if (pt_prev) {
4864 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4865 goto drop;
4866 *ppt_prev = pt_prev;
4867 } else {
4868 drop:
4869 if (!deliver_exact)
4870 atomic_long_inc(&skb->dev->rx_dropped);
4871 else
4872 atomic_long_inc(&skb->dev->rx_nohandler);
4873 kfree_skb(skb);
4874 /* Jamal, now you will not able to escape explaining
4875 * me how you were going to use this. :-)
4877 ret = NET_RX_DROP;
4880 out:
4881 return ret;
4884 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4886 struct net_device *orig_dev = skb->dev;
4887 struct packet_type *pt_prev = NULL;
4888 int ret;
4890 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4891 if (pt_prev)
4892 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4893 return ret;
4897 * netif_receive_skb_core - special purpose version of netif_receive_skb
4898 * @skb: buffer to process
4900 * More direct receive version of netif_receive_skb(). It should
4901 * only be used by callers that have a need to skip RPS and Generic XDP.
4902 * Caller must also take care of handling if (page_is_)pfmemalloc.
4904 * This function may only be called from softirq context and interrupts
4905 * should be enabled.
4907 * Return values (usually ignored):
4908 * NET_RX_SUCCESS: no congestion
4909 * NET_RX_DROP: packet was dropped
4911 int netif_receive_skb_core(struct sk_buff *skb)
4913 int ret;
4915 rcu_read_lock();
4916 ret = __netif_receive_skb_one_core(skb, false);
4917 rcu_read_unlock();
4919 return ret;
4921 EXPORT_SYMBOL(netif_receive_skb_core);
4923 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4924 struct packet_type *pt_prev,
4925 struct net_device *orig_dev)
4927 struct sk_buff *skb, *next;
4929 if (!pt_prev)
4930 return;
4931 if (list_empty(head))
4932 return;
4933 if (pt_prev->list_func != NULL)
4934 pt_prev->list_func(head, pt_prev, orig_dev);
4935 else
4936 list_for_each_entry_safe(skb, next, head, list)
4937 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4940 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4942 /* Fast-path assumptions:
4943 * - There is no RX handler.
4944 * - Only one packet_type matches.
4945 * If either of these fails, we will end up doing some per-packet
4946 * processing in-line, then handling the 'last ptype' for the whole
4947 * sublist. This can't cause out-of-order delivery to any single ptype,
4948 * because the 'last ptype' must be constant across the sublist, and all
4949 * other ptypes are handled per-packet.
4951 /* Current (common) ptype of sublist */
4952 struct packet_type *pt_curr = NULL;
4953 /* Current (common) orig_dev of sublist */
4954 struct net_device *od_curr = NULL;
4955 struct list_head sublist;
4956 struct sk_buff *skb, *next;
4958 INIT_LIST_HEAD(&sublist);
4959 list_for_each_entry_safe(skb, next, head, list) {
4960 struct net_device *orig_dev = skb->dev;
4961 struct packet_type *pt_prev = NULL;
4963 list_del(&skb->list);
4964 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4965 if (!pt_prev)
4966 continue;
4967 if (pt_curr != pt_prev || od_curr != orig_dev) {
4968 /* dispatch old sublist */
4969 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4970 /* start new sublist */
4971 INIT_LIST_HEAD(&sublist);
4972 pt_curr = pt_prev;
4973 od_curr = orig_dev;
4975 list_add_tail(&skb->list, &sublist);
4978 /* dispatch final sublist */
4979 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4982 static int __netif_receive_skb(struct sk_buff *skb)
4984 int ret;
4986 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4987 unsigned int noreclaim_flag;
4990 * PFMEMALLOC skbs are special, they should
4991 * - be delivered to SOCK_MEMALLOC sockets only
4992 * - stay away from userspace
4993 * - have bounded memory usage
4995 * Use PF_MEMALLOC as this saves us from propagating the allocation
4996 * context down to all allocation sites.
4998 noreclaim_flag = memalloc_noreclaim_save();
4999 ret = __netif_receive_skb_one_core(skb, true);
5000 memalloc_noreclaim_restore(noreclaim_flag);
5001 } else
5002 ret = __netif_receive_skb_one_core(skb, false);
5004 return ret;
5007 static void __netif_receive_skb_list(struct list_head *head)
5009 unsigned long noreclaim_flag = 0;
5010 struct sk_buff *skb, *next;
5011 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5013 list_for_each_entry_safe(skb, next, head, list) {
5014 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5015 struct list_head sublist;
5017 /* Handle the previous sublist */
5018 list_cut_before(&sublist, head, &skb->list);
5019 if (!list_empty(&sublist))
5020 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5021 pfmemalloc = !pfmemalloc;
5022 /* See comments in __netif_receive_skb */
5023 if (pfmemalloc)
5024 noreclaim_flag = memalloc_noreclaim_save();
5025 else
5026 memalloc_noreclaim_restore(noreclaim_flag);
5029 /* Handle the remaining sublist */
5030 if (!list_empty(head))
5031 __netif_receive_skb_list_core(head, pfmemalloc);
5032 /* Restore pflags */
5033 if (pfmemalloc)
5034 memalloc_noreclaim_restore(noreclaim_flag);
5037 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5039 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5040 struct bpf_prog *new = xdp->prog;
5041 int ret = 0;
5043 switch (xdp->command) {
5044 case XDP_SETUP_PROG:
5045 rcu_assign_pointer(dev->xdp_prog, new);
5046 if (old)
5047 bpf_prog_put(old);
5049 if (old && !new) {
5050 static_branch_dec(&generic_xdp_needed_key);
5051 } else if (new && !old) {
5052 static_branch_inc(&generic_xdp_needed_key);
5053 dev_disable_lro(dev);
5054 dev_disable_gro_hw(dev);
5056 break;
5058 case XDP_QUERY_PROG:
5059 xdp->prog_id = old ? old->aux->id : 0;
5060 break;
5062 default:
5063 ret = -EINVAL;
5064 break;
5067 return ret;
5070 static int netif_receive_skb_internal(struct sk_buff *skb)
5072 int ret;
5074 net_timestamp_check(netdev_tstamp_prequeue, skb);
5076 if (skb_defer_rx_timestamp(skb))
5077 return NET_RX_SUCCESS;
5079 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5080 int ret;
5082 preempt_disable();
5083 rcu_read_lock();
5084 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5085 rcu_read_unlock();
5086 preempt_enable();
5088 if (ret != XDP_PASS)
5089 return NET_RX_DROP;
5092 rcu_read_lock();
5093 #ifdef CONFIG_RPS
5094 if (static_key_false(&rps_needed)) {
5095 struct rps_dev_flow voidflow, *rflow = &voidflow;
5096 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5098 if (cpu >= 0) {
5099 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5100 rcu_read_unlock();
5101 return ret;
5104 #endif
5105 ret = __netif_receive_skb(skb);
5106 rcu_read_unlock();
5107 return ret;
5110 static void netif_receive_skb_list_internal(struct list_head *head)
5112 struct bpf_prog *xdp_prog = NULL;
5113 struct sk_buff *skb, *next;
5114 struct list_head sublist;
5116 INIT_LIST_HEAD(&sublist);
5117 list_for_each_entry_safe(skb, next, head, list) {
5118 net_timestamp_check(netdev_tstamp_prequeue, skb);
5119 list_del(&skb->list);
5120 if (!skb_defer_rx_timestamp(skb))
5121 list_add_tail(&skb->list, &sublist);
5123 list_splice_init(&sublist, head);
5125 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5126 preempt_disable();
5127 rcu_read_lock();
5128 list_for_each_entry_safe(skb, next, head, list) {
5129 xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5130 list_del(&skb->list);
5131 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5132 list_add_tail(&skb->list, &sublist);
5134 rcu_read_unlock();
5135 preempt_enable();
5136 /* Put passed packets back on main list */
5137 list_splice_init(&sublist, head);
5140 rcu_read_lock();
5141 #ifdef CONFIG_RPS
5142 if (static_key_false(&rps_needed)) {
5143 list_for_each_entry_safe(skb, next, head, list) {
5144 struct rps_dev_flow voidflow, *rflow = &voidflow;
5145 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5147 if (cpu >= 0) {
5148 /* Will be handled, remove from list */
5149 list_del(&skb->list);
5150 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5154 #endif
5155 __netif_receive_skb_list(head);
5156 rcu_read_unlock();
5160 * netif_receive_skb - process receive buffer from network
5161 * @skb: buffer to process
5163 * netif_receive_skb() is the main receive data processing function.
5164 * It always succeeds. The buffer may be dropped during processing
5165 * for congestion control or by the protocol layers.
5167 * This function may only be called from softirq context and interrupts
5168 * should be enabled.
5170 * Return values (usually ignored):
5171 * NET_RX_SUCCESS: no congestion
5172 * NET_RX_DROP: packet was dropped
5174 int netif_receive_skb(struct sk_buff *skb)
5176 trace_netif_receive_skb_entry(skb);
5178 return netif_receive_skb_internal(skb);
5180 EXPORT_SYMBOL(netif_receive_skb);
5183 * netif_receive_skb_list - process many receive buffers from network
5184 * @head: list of skbs to process.
5186 * Since return value of netif_receive_skb() is normally ignored, and
5187 * wouldn't be meaningful for a list, this function returns void.
5189 * This function may only be called from softirq context and interrupts
5190 * should be enabled.
5192 void netif_receive_skb_list(struct list_head *head)
5194 struct sk_buff *skb;
5196 if (list_empty(head))
5197 return;
5198 list_for_each_entry(skb, head, list)
5199 trace_netif_receive_skb_list_entry(skb);
5200 netif_receive_skb_list_internal(head);
5202 EXPORT_SYMBOL(netif_receive_skb_list);
5204 DEFINE_PER_CPU(struct work_struct, flush_works);
5206 /* Network device is going away, flush any packets still pending */
5207 static void flush_backlog(struct work_struct *work)
5209 struct sk_buff *skb, *tmp;
5210 struct softnet_data *sd;
5212 local_bh_disable();
5213 sd = this_cpu_ptr(&softnet_data);
5215 local_irq_disable();
5216 rps_lock(sd);
5217 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5218 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5219 __skb_unlink(skb, &sd->input_pkt_queue);
5220 kfree_skb(skb);
5221 input_queue_head_incr(sd);
5224 rps_unlock(sd);
5225 local_irq_enable();
5227 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5228 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5229 __skb_unlink(skb, &sd->process_queue);
5230 kfree_skb(skb);
5231 input_queue_head_incr(sd);
5234 local_bh_enable();
5237 static void flush_all_backlogs(void)
5239 unsigned int cpu;
5241 get_online_cpus();
5243 for_each_online_cpu(cpu)
5244 queue_work_on(cpu, system_highpri_wq,
5245 per_cpu_ptr(&flush_works, cpu));
5247 for_each_online_cpu(cpu)
5248 flush_work(per_cpu_ptr(&flush_works, cpu));
5250 put_online_cpus();
5253 static int napi_gro_complete(struct sk_buff *skb)
5255 struct packet_offload *ptype;
5256 __be16 type = skb->protocol;
5257 struct list_head *head = &offload_base;
5258 int err = -ENOENT;
5260 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5262 if (NAPI_GRO_CB(skb)->count == 1) {
5263 skb_shinfo(skb)->gso_size = 0;
5264 goto out;
5267 rcu_read_lock();
5268 list_for_each_entry_rcu(ptype, head, list) {
5269 if (ptype->type != type || !ptype->callbacks.gro_complete)
5270 continue;
5272 err = ptype->callbacks.gro_complete(skb, 0);
5273 break;
5275 rcu_read_unlock();
5277 if (err) {
5278 WARN_ON(&ptype->list == head);
5279 kfree_skb(skb);
5280 return NET_RX_SUCCESS;
5283 out:
5284 return netif_receive_skb_internal(skb);
5287 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5288 bool flush_old)
5290 struct list_head *head = &napi->gro_hash[index].list;
5291 struct sk_buff *skb, *p;
5293 list_for_each_entry_safe_reverse(skb, p, head, list) {
5294 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5295 return;
5296 list_del(&skb->list);
5297 skb->next = NULL;
5298 napi_gro_complete(skb);
5299 napi->gro_hash[index].count--;
5302 if (!napi->gro_hash[index].count)
5303 __clear_bit(index, &napi->gro_bitmask);
5306 /* napi->gro_hash[].list contains packets ordered by age.
5307 * youngest packets at the head of it.
5308 * Complete skbs in reverse order to reduce latencies.
5310 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5312 u32 i;
5314 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5315 if (test_bit(i, &napi->gro_bitmask))
5316 __napi_gro_flush_chain(napi, i, flush_old);
5319 EXPORT_SYMBOL(napi_gro_flush);
5321 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5322 struct sk_buff *skb)
5324 unsigned int maclen = skb->dev->hard_header_len;
5325 u32 hash = skb_get_hash_raw(skb);
5326 struct list_head *head;
5327 struct sk_buff *p;
5329 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5330 list_for_each_entry(p, head, list) {
5331 unsigned long diffs;
5333 NAPI_GRO_CB(p)->flush = 0;
5335 if (hash != skb_get_hash_raw(p)) {
5336 NAPI_GRO_CB(p)->same_flow = 0;
5337 continue;
5340 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5341 diffs |= p->vlan_tci ^ skb->vlan_tci;
5342 diffs |= skb_metadata_dst_cmp(p, skb);
5343 diffs |= skb_metadata_differs(p, skb);
5344 if (maclen == ETH_HLEN)
5345 diffs |= compare_ether_header(skb_mac_header(p),
5346 skb_mac_header(skb));
5347 else if (!diffs)
5348 diffs = memcmp(skb_mac_header(p),
5349 skb_mac_header(skb),
5350 maclen);
5351 NAPI_GRO_CB(p)->same_flow = !diffs;
5354 return head;
5357 static void skb_gro_reset_offset(struct sk_buff *skb)
5359 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5360 const skb_frag_t *frag0 = &pinfo->frags[0];
5362 NAPI_GRO_CB(skb)->data_offset = 0;
5363 NAPI_GRO_CB(skb)->frag0 = NULL;
5364 NAPI_GRO_CB(skb)->frag0_len = 0;
5366 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5367 pinfo->nr_frags &&
5368 !PageHighMem(skb_frag_page(frag0))) {
5369 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5370 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5371 skb_frag_size(frag0),
5372 skb->end - skb->tail);
5376 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5378 struct skb_shared_info *pinfo = skb_shinfo(skb);
5380 BUG_ON(skb->end - skb->tail < grow);
5382 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5384 skb->data_len -= grow;
5385 skb->tail += grow;
5387 pinfo->frags[0].page_offset += grow;
5388 skb_frag_size_sub(&pinfo->frags[0], grow);
5390 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5391 skb_frag_unref(skb, 0);
5392 memmove(pinfo->frags, pinfo->frags + 1,
5393 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5397 static void gro_flush_oldest(struct list_head *head)
5399 struct sk_buff *oldest;
5401 oldest = list_last_entry(head, struct sk_buff, list);
5403 /* We are called with head length >= MAX_GRO_SKBS, so this is
5404 * impossible.
5406 if (WARN_ON_ONCE(!oldest))
5407 return;
5409 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5410 * SKB to the chain.
5412 list_del(&oldest->list);
5413 napi_gro_complete(oldest);
5416 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5418 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5419 struct list_head *head = &offload_base;
5420 struct packet_offload *ptype;
5421 __be16 type = skb->protocol;
5422 struct list_head *gro_head;
5423 struct sk_buff *pp = NULL;
5424 enum gro_result ret;
5425 int same_flow;
5426 int grow;
5428 if (netif_elide_gro(skb->dev))
5429 goto normal;
5431 gro_head = gro_list_prepare(napi, skb);
5433 rcu_read_lock();
5434 list_for_each_entry_rcu(ptype, head, list) {
5435 if (ptype->type != type || !ptype->callbacks.gro_receive)
5436 continue;
5438 skb_set_network_header(skb, skb_gro_offset(skb));
5439 skb_reset_mac_len(skb);
5440 NAPI_GRO_CB(skb)->same_flow = 0;
5441 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5442 NAPI_GRO_CB(skb)->free = 0;
5443 NAPI_GRO_CB(skb)->encap_mark = 0;
5444 NAPI_GRO_CB(skb)->recursion_counter = 0;
5445 NAPI_GRO_CB(skb)->is_fou = 0;
5446 NAPI_GRO_CB(skb)->is_atomic = 1;
5447 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5449 /* Setup for GRO checksum validation */
5450 switch (skb->ip_summed) {
5451 case CHECKSUM_COMPLETE:
5452 NAPI_GRO_CB(skb)->csum = skb->csum;
5453 NAPI_GRO_CB(skb)->csum_valid = 1;
5454 NAPI_GRO_CB(skb)->csum_cnt = 0;
5455 break;
5456 case CHECKSUM_UNNECESSARY:
5457 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5458 NAPI_GRO_CB(skb)->csum_valid = 0;
5459 break;
5460 default:
5461 NAPI_GRO_CB(skb)->csum_cnt = 0;
5462 NAPI_GRO_CB(skb)->csum_valid = 0;
5465 pp = ptype->callbacks.gro_receive(gro_head, skb);
5466 break;
5468 rcu_read_unlock();
5470 if (&ptype->list == head)
5471 goto normal;
5473 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5474 ret = GRO_CONSUMED;
5475 goto ok;
5478 same_flow = NAPI_GRO_CB(skb)->same_flow;
5479 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5481 if (pp) {
5482 list_del(&pp->list);
5483 pp->next = NULL;
5484 napi_gro_complete(pp);
5485 napi->gro_hash[hash].count--;
5488 if (same_flow)
5489 goto ok;
5491 if (NAPI_GRO_CB(skb)->flush)
5492 goto normal;
5494 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5495 gro_flush_oldest(gro_head);
5496 } else {
5497 napi->gro_hash[hash].count++;
5499 NAPI_GRO_CB(skb)->count = 1;
5500 NAPI_GRO_CB(skb)->age = jiffies;
5501 NAPI_GRO_CB(skb)->last = skb;
5502 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5503 list_add(&skb->list, gro_head);
5504 ret = GRO_HELD;
5506 pull:
5507 grow = skb_gro_offset(skb) - skb_headlen(skb);
5508 if (grow > 0)
5509 gro_pull_from_frag0(skb, grow);
5511 if (napi->gro_hash[hash].count) {
5512 if (!test_bit(hash, &napi->gro_bitmask))
5513 __set_bit(hash, &napi->gro_bitmask);
5514 } else if (test_bit(hash, &napi->gro_bitmask)) {
5515 __clear_bit(hash, &napi->gro_bitmask);
5518 return ret;
5520 normal:
5521 ret = GRO_NORMAL;
5522 goto pull;
5525 struct packet_offload *gro_find_receive_by_type(__be16 type)
5527 struct list_head *offload_head = &offload_base;
5528 struct packet_offload *ptype;
5530 list_for_each_entry_rcu(ptype, offload_head, list) {
5531 if (ptype->type != type || !ptype->callbacks.gro_receive)
5532 continue;
5533 return ptype;
5535 return NULL;
5537 EXPORT_SYMBOL(gro_find_receive_by_type);
5539 struct packet_offload *gro_find_complete_by_type(__be16 type)
5541 struct list_head *offload_head = &offload_base;
5542 struct packet_offload *ptype;
5544 list_for_each_entry_rcu(ptype, offload_head, list) {
5545 if (ptype->type != type || !ptype->callbacks.gro_complete)
5546 continue;
5547 return ptype;
5549 return NULL;
5551 EXPORT_SYMBOL(gro_find_complete_by_type);
5553 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5555 skb_dst_drop(skb);
5556 secpath_reset(skb);
5557 kmem_cache_free(skbuff_head_cache, skb);
5560 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5562 switch (ret) {
5563 case GRO_NORMAL:
5564 if (netif_receive_skb_internal(skb))
5565 ret = GRO_DROP;
5566 break;
5568 case GRO_DROP:
5569 kfree_skb(skb);
5570 break;
5572 case GRO_MERGED_FREE:
5573 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5574 napi_skb_free_stolen_head(skb);
5575 else
5576 __kfree_skb(skb);
5577 break;
5579 case GRO_HELD:
5580 case GRO_MERGED:
5581 case GRO_CONSUMED:
5582 break;
5585 return ret;
5588 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5590 skb_mark_napi_id(skb, napi);
5591 trace_napi_gro_receive_entry(skb);
5593 skb_gro_reset_offset(skb);
5595 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5597 EXPORT_SYMBOL(napi_gro_receive);
5599 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5601 if (unlikely(skb->pfmemalloc)) {
5602 consume_skb(skb);
5603 return;
5605 __skb_pull(skb, skb_headlen(skb));
5606 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5607 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5608 skb->vlan_tci = 0;
5609 skb->dev = napi->dev;
5610 skb->skb_iif = 0;
5611 skb->encapsulation = 0;
5612 skb_shinfo(skb)->gso_type = 0;
5613 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5614 secpath_reset(skb);
5616 napi->skb = skb;
5619 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5621 struct sk_buff *skb = napi->skb;
5623 if (!skb) {
5624 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5625 if (skb) {
5626 napi->skb = skb;
5627 skb_mark_napi_id(skb, napi);
5630 return skb;
5632 EXPORT_SYMBOL(napi_get_frags);
5634 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5635 struct sk_buff *skb,
5636 gro_result_t ret)
5638 switch (ret) {
5639 case GRO_NORMAL:
5640 case GRO_HELD:
5641 __skb_push(skb, ETH_HLEN);
5642 skb->protocol = eth_type_trans(skb, skb->dev);
5643 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5644 ret = GRO_DROP;
5645 break;
5647 case GRO_DROP:
5648 napi_reuse_skb(napi, skb);
5649 break;
5651 case GRO_MERGED_FREE:
5652 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5653 napi_skb_free_stolen_head(skb);
5654 else
5655 napi_reuse_skb(napi, skb);
5656 break;
5658 case GRO_MERGED:
5659 case GRO_CONSUMED:
5660 break;
5663 return ret;
5666 /* Upper GRO stack assumes network header starts at gro_offset=0
5667 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5668 * We copy ethernet header into skb->data to have a common layout.
5670 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5672 struct sk_buff *skb = napi->skb;
5673 const struct ethhdr *eth;
5674 unsigned int hlen = sizeof(*eth);
5676 napi->skb = NULL;
5678 skb_reset_mac_header(skb);
5679 skb_gro_reset_offset(skb);
5681 eth = skb_gro_header_fast(skb, 0);
5682 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5683 eth = skb_gro_header_slow(skb, hlen, 0);
5684 if (unlikely(!eth)) {
5685 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5686 __func__, napi->dev->name);
5687 napi_reuse_skb(napi, skb);
5688 return NULL;
5690 } else {
5691 gro_pull_from_frag0(skb, hlen);
5692 NAPI_GRO_CB(skb)->frag0 += hlen;
5693 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5695 __skb_pull(skb, hlen);
5698 * This works because the only protocols we care about don't require
5699 * special handling.
5700 * We'll fix it up properly in napi_frags_finish()
5702 skb->protocol = eth->h_proto;
5704 return skb;
5707 gro_result_t napi_gro_frags(struct napi_struct *napi)
5709 struct sk_buff *skb = napi_frags_skb(napi);
5711 if (!skb)
5712 return GRO_DROP;
5714 trace_napi_gro_frags_entry(skb);
5716 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5718 EXPORT_SYMBOL(napi_gro_frags);
5720 /* Compute the checksum from gro_offset and return the folded value
5721 * after adding in any pseudo checksum.
5723 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5725 __wsum wsum;
5726 __sum16 sum;
5728 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5730 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5731 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5732 if (likely(!sum)) {
5733 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5734 !skb->csum_complete_sw)
5735 netdev_rx_csum_fault(skb->dev);
5738 NAPI_GRO_CB(skb)->csum = wsum;
5739 NAPI_GRO_CB(skb)->csum_valid = 1;
5741 return sum;
5743 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5745 static void net_rps_send_ipi(struct softnet_data *remsd)
5747 #ifdef CONFIG_RPS
5748 while (remsd) {
5749 struct softnet_data *next = remsd->rps_ipi_next;
5751 if (cpu_online(remsd->cpu))
5752 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5753 remsd = next;
5755 #endif
5759 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5760 * Note: called with local irq disabled, but exits with local irq enabled.
5762 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5764 #ifdef CONFIG_RPS
5765 struct softnet_data *remsd = sd->rps_ipi_list;
5767 if (remsd) {
5768 sd->rps_ipi_list = NULL;
5770 local_irq_enable();
5772 /* Send pending IPI's to kick RPS processing on remote cpus. */
5773 net_rps_send_ipi(remsd);
5774 } else
5775 #endif
5776 local_irq_enable();
5779 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5781 #ifdef CONFIG_RPS
5782 return sd->rps_ipi_list != NULL;
5783 #else
5784 return false;
5785 #endif
5788 static int process_backlog(struct napi_struct *napi, int quota)
5790 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5791 bool again = true;
5792 int work = 0;
5794 /* Check if we have pending ipi, its better to send them now,
5795 * not waiting net_rx_action() end.
5797 if (sd_has_rps_ipi_waiting(sd)) {
5798 local_irq_disable();
5799 net_rps_action_and_irq_enable(sd);
5802 napi->weight = dev_rx_weight;
5803 while (again) {
5804 struct sk_buff *skb;
5806 while ((skb = __skb_dequeue(&sd->process_queue))) {
5807 rcu_read_lock();
5808 __netif_receive_skb(skb);
5809 rcu_read_unlock();
5810 input_queue_head_incr(sd);
5811 if (++work >= quota)
5812 return work;
5816 local_irq_disable();
5817 rps_lock(sd);
5818 if (skb_queue_empty(&sd->input_pkt_queue)) {
5820 * Inline a custom version of __napi_complete().
5821 * only current cpu owns and manipulates this napi,
5822 * and NAPI_STATE_SCHED is the only possible flag set
5823 * on backlog.
5824 * We can use a plain write instead of clear_bit(),
5825 * and we dont need an smp_mb() memory barrier.
5827 napi->state = 0;
5828 again = false;
5829 } else {
5830 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5831 &sd->process_queue);
5833 rps_unlock(sd);
5834 local_irq_enable();
5837 return work;
5841 * __napi_schedule - schedule for receive
5842 * @n: entry to schedule
5844 * The entry's receive function will be scheduled to run.
5845 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5847 void __napi_schedule(struct napi_struct *n)
5849 unsigned long flags;
5851 local_irq_save(flags);
5852 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5853 local_irq_restore(flags);
5855 EXPORT_SYMBOL(__napi_schedule);
5858 * napi_schedule_prep - check if napi can be scheduled
5859 * @n: napi context
5861 * Test if NAPI routine is already running, and if not mark
5862 * it as running. This is used as a condition variable
5863 * insure only one NAPI poll instance runs. We also make
5864 * sure there is no pending NAPI disable.
5866 bool napi_schedule_prep(struct napi_struct *n)
5868 unsigned long val, new;
5870 do {
5871 val = READ_ONCE(n->state);
5872 if (unlikely(val & NAPIF_STATE_DISABLE))
5873 return false;
5874 new = val | NAPIF_STATE_SCHED;
5876 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5877 * This was suggested by Alexander Duyck, as compiler
5878 * emits better code than :
5879 * if (val & NAPIF_STATE_SCHED)
5880 * new |= NAPIF_STATE_MISSED;
5882 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5883 NAPIF_STATE_MISSED;
5884 } while (cmpxchg(&n->state, val, new) != val);
5886 return !(val & NAPIF_STATE_SCHED);
5888 EXPORT_SYMBOL(napi_schedule_prep);
5891 * __napi_schedule_irqoff - schedule for receive
5892 * @n: entry to schedule
5894 * Variant of __napi_schedule() assuming hard irqs are masked
5896 void __napi_schedule_irqoff(struct napi_struct *n)
5898 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5900 EXPORT_SYMBOL(__napi_schedule_irqoff);
5902 bool napi_complete_done(struct napi_struct *n, int work_done)
5904 unsigned long flags, val, new;
5907 * 1) Don't let napi dequeue from the cpu poll list
5908 * just in case its running on a different cpu.
5909 * 2) If we are busy polling, do nothing here, we have
5910 * the guarantee we will be called later.
5912 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5913 NAPIF_STATE_IN_BUSY_POLL)))
5914 return false;
5916 if (n->gro_bitmask) {
5917 unsigned long timeout = 0;
5919 if (work_done)
5920 timeout = n->dev->gro_flush_timeout;
5922 if (timeout)
5923 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5924 HRTIMER_MODE_REL_PINNED);
5925 else
5926 napi_gro_flush(n, false);
5928 if (unlikely(!list_empty(&n->poll_list))) {
5929 /* If n->poll_list is not empty, we need to mask irqs */
5930 local_irq_save(flags);
5931 list_del_init(&n->poll_list);
5932 local_irq_restore(flags);
5935 do {
5936 val = READ_ONCE(n->state);
5938 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5940 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5942 /* If STATE_MISSED was set, leave STATE_SCHED set,
5943 * because we will call napi->poll() one more time.
5944 * This C code was suggested by Alexander Duyck to help gcc.
5946 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5947 NAPIF_STATE_SCHED;
5948 } while (cmpxchg(&n->state, val, new) != val);
5950 if (unlikely(val & NAPIF_STATE_MISSED)) {
5951 __napi_schedule(n);
5952 return false;
5955 return true;
5957 EXPORT_SYMBOL(napi_complete_done);
5959 /* must be called under rcu_read_lock(), as we dont take a reference */
5960 static struct napi_struct *napi_by_id(unsigned int napi_id)
5962 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5963 struct napi_struct *napi;
5965 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5966 if (napi->napi_id == napi_id)
5967 return napi;
5969 return NULL;
5972 #if defined(CONFIG_NET_RX_BUSY_POLL)
5974 #define BUSY_POLL_BUDGET 8
5976 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5978 int rc;
5980 /* Busy polling means there is a high chance device driver hard irq
5981 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5982 * set in napi_schedule_prep().
5983 * Since we are about to call napi->poll() once more, we can safely
5984 * clear NAPI_STATE_MISSED.
5986 * Note: x86 could use a single "lock and ..." instruction
5987 * to perform these two clear_bit()
5989 clear_bit(NAPI_STATE_MISSED, &napi->state);
5990 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5992 local_bh_disable();
5994 /* All we really want here is to re-enable device interrupts.
5995 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5997 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5998 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5999 netpoll_poll_unlock(have_poll_lock);
6000 if (rc == BUSY_POLL_BUDGET)
6001 __napi_schedule(napi);
6002 local_bh_enable();
6005 void napi_busy_loop(unsigned int napi_id,
6006 bool (*loop_end)(void *, unsigned long),
6007 void *loop_end_arg)
6009 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6010 int (*napi_poll)(struct napi_struct *napi, int budget);
6011 void *have_poll_lock = NULL;
6012 struct napi_struct *napi;
6014 restart:
6015 napi_poll = NULL;
6017 rcu_read_lock();
6019 napi = napi_by_id(napi_id);
6020 if (!napi)
6021 goto out;
6023 preempt_disable();
6024 for (;;) {
6025 int work = 0;
6027 local_bh_disable();
6028 if (!napi_poll) {
6029 unsigned long val = READ_ONCE(napi->state);
6031 /* If multiple threads are competing for this napi,
6032 * we avoid dirtying napi->state as much as we can.
6034 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6035 NAPIF_STATE_IN_BUSY_POLL))
6036 goto count;
6037 if (cmpxchg(&napi->state, val,
6038 val | NAPIF_STATE_IN_BUSY_POLL |
6039 NAPIF_STATE_SCHED) != val)
6040 goto count;
6041 have_poll_lock = netpoll_poll_lock(napi);
6042 napi_poll = napi->poll;
6044 work = napi_poll(napi, BUSY_POLL_BUDGET);
6045 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6046 count:
6047 if (work > 0)
6048 __NET_ADD_STATS(dev_net(napi->dev),
6049 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6050 local_bh_enable();
6052 if (!loop_end || loop_end(loop_end_arg, start_time))
6053 break;
6055 if (unlikely(need_resched())) {
6056 if (napi_poll)
6057 busy_poll_stop(napi, have_poll_lock);
6058 preempt_enable();
6059 rcu_read_unlock();
6060 cond_resched();
6061 if (loop_end(loop_end_arg, start_time))
6062 return;
6063 goto restart;
6065 cpu_relax();
6067 if (napi_poll)
6068 busy_poll_stop(napi, have_poll_lock);
6069 preempt_enable();
6070 out:
6071 rcu_read_unlock();
6073 EXPORT_SYMBOL(napi_busy_loop);
6075 #endif /* CONFIG_NET_RX_BUSY_POLL */
6077 static void napi_hash_add(struct napi_struct *napi)
6079 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6080 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6081 return;
6083 spin_lock(&napi_hash_lock);
6085 /* 0..NR_CPUS range is reserved for sender_cpu use */
6086 do {
6087 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6088 napi_gen_id = MIN_NAPI_ID;
6089 } while (napi_by_id(napi_gen_id));
6090 napi->napi_id = napi_gen_id;
6092 hlist_add_head_rcu(&napi->napi_hash_node,
6093 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6095 spin_unlock(&napi_hash_lock);
6098 /* Warning : caller is responsible to make sure rcu grace period
6099 * is respected before freeing memory containing @napi
6101 bool napi_hash_del(struct napi_struct *napi)
6103 bool rcu_sync_needed = false;
6105 spin_lock(&napi_hash_lock);
6107 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6108 rcu_sync_needed = true;
6109 hlist_del_rcu(&napi->napi_hash_node);
6111 spin_unlock(&napi_hash_lock);
6112 return rcu_sync_needed;
6114 EXPORT_SYMBOL_GPL(napi_hash_del);
6116 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6118 struct napi_struct *napi;
6120 napi = container_of(timer, struct napi_struct, timer);
6122 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6123 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6125 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6126 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6127 __napi_schedule_irqoff(napi);
6129 return HRTIMER_NORESTART;
6132 static void init_gro_hash(struct napi_struct *napi)
6134 int i;
6136 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6137 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6138 napi->gro_hash[i].count = 0;
6140 napi->gro_bitmask = 0;
6143 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6144 int (*poll)(struct napi_struct *, int), int weight)
6146 INIT_LIST_HEAD(&napi->poll_list);
6147 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6148 napi->timer.function = napi_watchdog;
6149 init_gro_hash(napi);
6150 napi->skb = NULL;
6151 napi->poll = poll;
6152 if (weight > NAPI_POLL_WEIGHT)
6153 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6154 weight, dev->name);
6155 napi->weight = weight;
6156 list_add(&napi->dev_list, &dev->napi_list);
6157 napi->dev = dev;
6158 #ifdef CONFIG_NETPOLL
6159 napi->poll_owner = -1;
6160 #endif
6161 set_bit(NAPI_STATE_SCHED, &napi->state);
6162 napi_hash_add(napi);
6164 EXPORT_SYMBOL(netif_napi_add);
6166 void napi_disable(struct napi_struct *n)
6168 might_sleep();
6169 set_bit(NAPI_STATE_DISABLE, &n->state);
6171 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6172 msleep(1);
6173 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6174 msleep(1);
6176 hrtimer_cancel(&n->timer);
6178 clear_bit(NAPI_STATE_DISABLE, &n->state);
6180 EXPORT_SYMBOL(napi_disable);
6182 static void flush_gro_hash(struct napi_struct *napi)
6184 int i;
6186 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6187 struct sk_buff *skb, *n;
6189 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6190 kfree_skb(skb);
6191 napi->gro_hash[i].count = 0;
6195 /* Must be called in process context */
6196 void netif_napi_del(struct napi_struct *napi)
6198 might_sleep();
6199 if (napi_hash_del(napi))
6200 synchronize_net();
6201 list_del_init(&napi->dev_list);
6202 napi_free_frags(napi);
6204 flush_gro_hash(napi);
6205 napi->gro_bitmask = 0;
6207 EXPORT_SYMBOL(netif_napi_del);
6209 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6211 void *have;
6212 int work, weight;
6214 list_del_init(&n->poll_list);
6216 have = netpoll_poll_lock(n);
6218 weight = n->weight;
6220 /* This NAPI_STATE_SCHED test is for avoiding a race
6221 * with netpoll's poll_napi(). Only the entity which
6222 * obtains the lock and sees NAPI_STATE_SCHED set will
6223 * actually make the ->poll() call. Therefore we avoid
6224 * accidentally calling ->poll() when NAPI is not scheduled.
6226 work = 0;
6227 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6228 work = n->poll(n, weight);
6229 trace_napi_poll(n, work, weight);
6232 WARN_ON_ONCE(work > weight);
6234 if (likely(work < weight))
6235 goto out_unlock;
6237 /* Drivers must not modify the NAPI state if they
6238 * consume the entire weight. In such cases this code
6239 * still "owns" the NAPI instance and therefore can
6240 * move the instance around on the list at-will.
6242 if (unlikely(napi_disable_pending(n))) {
6243 napi_complete(n);
6244 goto out_unlock;
6247 if (n->gro_bitmask) {
6248 /* flush too old packets
6249 * If HZ < 1000, flush all packets.
6251 napi_gro_flush(n, HZ >= 1000);
6254 /* Some drivers may have called napi_schedule
6255 * prior to exhausting their budget.
6257 if (unlikely(!list_empty(&n->poll_list))) {
6258 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6259 n->dev ? n->dev->name : "backlog");
6260 goto out_unlock;
6263 list_add_tail(&n->poll_list, repoll);
6265 out_unlock:
6266 netpoll_poll_unlock(have);
6268 return work;
6271 static __latent_entropy void net_rx_action(struct softirq_action *h)
6273 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6274 unsigned long time_limit = jiffies +
6275 usecs_to_jiffies(netdev_budget_usecs);
6276 int budget = netdev_budget;
6277 LIST_HEAD(list);
6278 LIST_HEAD(repoll);
6280 local_irq_disable();
6281 list_splice_init(&sd->poll_list, &list);
6282 local_irq_enable();
6284 for (;;) {
6285 struct napi_struct *n;
6287 if (list_empty(&list)) {
6288 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6289 goto out;
6290 break;
6293 n = list_first_entry(&list, struct napi_struct, poll_list);
6294 budget -= napi_poll(n, &repoll);
6296 /* If softirq window is exhausted then punt.
6297 * Allow this to run for 2 jiffies since which will allow
6298 * an average latency of 1.5/HZ.
6300 if (unlikely(budget <= 0 ||
6301 time_after_eq(jiffies, time_limit))) {
6302 sd->time_squeeze++;
6303 break;
6307 local_irq_disable();
6309 list_splice_tail_init(&sd->poll_list, &list);
6310 list_splice_tail(&repoll, &list);
6311 list_splice(&list, &sd->poll_list);
6312 if (!list_empty(&sd->poll_list))
6313 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6315 net_rps_action_and_irq_enable(sd);
6316 out:
6317 __kfree_skb_flush();
6320 struct netdev_adjacent {
6321 struct net_device *dev;
6323 /* upper master flag, there can only be one master device per list */
6324 bool master;
6326 /* counter for the number of times this device was added to us */
6327 u16 ref_nr;
6329 /* private field for the users */
6330 void *private;
6332 struct list_head list;
6333 struct rcu_head rcu;
6336 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6337 struct list_head *adj_list)
6339 struct netdev_adjacent *adj;
6341 list_for_each_entry(adj, adj_list, list) {
6342 if (adj->dev == adj_dev)
6343 return adj;
6345 return NULL;
6348 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6350 struct net_device *dev = data;
6352 return upper_dev == dev;
6356 * netdev_has_upper_dev - Check if device is linked to an upper device
6357 * @dev: device
6358 * @upper_dev: upper device to check
6360 * Find out if a device is linked to specified upper device and return true
6361 * in case it is. Note that this checks only immediate upper device,
6362 * not through a complete stack of devices. The caller must hold the RTNL lock.
6364 bool netdev_has_upper_dev(struct net_device *dev,
6365 struct net_device *upper_dev)
6367 ASSERT_RTNL();
6369 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6370 upper_dev);
6372 EXPORT_SYMBOL(netdev_has_upper_dev);
6375 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6376 * @dev: device
6377 * @upper_dev: upper device to check
6379 * Find out if a device is linked to specified upper device and return true
6380 * in case it is. Note that this checks the entire upper device chain.
6381 * The caller must hold rcu lock.
6384 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6385 struct net_device *upper_dev)
6387 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6388 upper_dev);
6390 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6393 * netdev_has_any_upper_dev - Check if device is linked to some device
6394 * @dev: device
6396 * Find out if a device is linked to an upper device and return true in case
6397 * it is. The caller must hold the RTNL lock.
6399 bool netdev_has_any_upper_dev(struct net_device *dev)
6401 ASSERT_RTNL();
6403 return !list_empty(&dev->adj_list.upper);
6405 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6408 * netdev_master_upper_dev_get - Get master upper device
6409 * @dev: device
6411 * Find a master upper device and return pointer to it or NULL in case
6412 * it's not there. The caller must hold the RTNL lock.
6414 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6416 struct netdev_adjacent *upper;
6418 ASSERT_RTNL();
6420 if (list_empty(&dev->adj_list.upper))
6421 return NULL;
6423 upper = list_first_entry(&dev->adj_list.upper,
6424 struct netdev_adjacent, list);
6425 if (likely(upper->master))
6426 return upper->dev;
6427 return NULL;
6429 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6432 * netdev_has_any_lower_dev - Check if device is linked to some device
6433 * @dev: device
6435 * Find out if a device is linked to a lower device and return true in case
6436 * it is. The caller must hold the RTNL lock.
6438 static bool netdev_has_any_lower_dev(struct net_device *dev)
6440 ASSERT_RTNL();
6442 return !list_empty(&dev->adj_list.lower);
6445 void *netdev_adjacent_get_private(struct list_head *adj_list)
6447 struct netdev_adjacent *adj;
6449 adj = list_entry(adj_list, struct netdev_adjacent, list);
6451 return adj->private;
6453 EXPORT_SYMBOL(netdev_adjacent_get_private);
6456 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6457 * @dev: device
6458 * @iter: list_head ** of the current position
6460 * Gets the next device from the dev's upper list, starting from iter
6461 * position. The caller must hold RCU read lock.
6463 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6464 struct list_head **iter)
6466 struct netdev_adjacent *upper;
6468 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6470 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6472 if (&upper->list == &dev->adj_list.upper)
6473 return NULL;
6475 *iter = &upper->list;
6477 return upper->dev;
6479 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6481 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6482 struct list_head **iter)
6484 struct netdev_adjacent *upper;
6486 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6488 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6490 if (&upper->list == &dev->adj_list.upper)
6491 return NULL;
6493 *iter = &upper->list;
6495 return upper->dev;
6498 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6499 int (*fn)(struct net_device *dev,
6500 void *data),
6501 void *data)
6503 struct net_device *udev;
6504 struct list_head *iter;
6505 int ret;
6507 for (iter = &dev->adj_list.upper,
6508 udev = netdev_next_upper_dev_rcu(dev, &iter);
6509 udev;
6510 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6511 /* first is the upper device itself */
6512 ret = fn(udev, data);
6513 if (ret)
6514 return ret;
6516 /* then look at all of its upper devices */
6517 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6518 if (ret)
6519 return ret;
6522 return 0;
6524 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6527 * netdev_lower_get_next_private - Get the next ->private from the
6528 * lower neighbour list
6529 * @dev: device
6530 * @iter: list_head ** of the current position
6532 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6533 * list, starting from iter position. The caller must hold either hold the
6534 * RTNL lock or its own locking that guarantees that the neighbour lower
6535 * list will remain unchanged.
6537 void *netdev_lower_get_next_private(struct net_device *dev,
6538 struct list_head **iter)
6540 struct netdev_adjacent *lower;
6542 lower = list_entry(*iter, struct netdev_adjacent, list);
6544 if (&lower->list == &dev->adj_list.lower)
6545 return NULL;
6547 *iter = lower->list.next;
6549 return lower->private;
6551 EXPORT_SYMBOL(netdev_lower_get_next_private);
6554 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6555 * lower neighbour list, RCU
6556 * variant
6557 * @dev: device
6558 * @iter: list_head ** of the current position
6560 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6561 * list, starting from iter position. The caller must hold RCU read lock.
6563 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6564 struct list_head **iter)
6566 struct netdev_adjacent *lower;
6568 WARN_ON_ONCE(!rcu_read_lock_held());
6570 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6572 if (&lower->list == &dev->adj_list.lower)
6573 return NULL;
6575 *iter = &lower->list;
6577 return lower->private;
6579 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6582 * netdev_lower_get_next - Get the next device from the lower neighbour
6583 * list
6584 * @dev: device
6585 * @iter: list_head ** of the current position
6587 * Gets the next netdev_adjacent from the dev's lower neighbour
6588 * list, starting from iter position. The caller must hold RTNL lock or
6589 * its own locking that guarantees that the neighbour lower
6590 * list will remain unchanged.
6592 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6594 struct netdev_adjacent *lower;
6596 lower = list_entry(*iter, struct netdev_adjacent, list);
6598 if (&lower->list == &dev->adj_list.lower)
6599 return NULL;
6601 *iter = lower->list.next;
6603 return lower->dev;
6605 EXPORT_SYMBOL(netdev_lower_get_next);
6607 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6608 struct list_head **iter)
6610 struct netdev_adjacent *lower;
6612 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6614 if (&lower->list == &dev->adj_list.lower)
6615 return NULL;
6617 *iter = &lower->list;
6619 return lower->dev;
6622 int netdev_walk_all_lower_dev(struct net_device *dev,
6623 int (*fn)(struct net_device *dev,
6624 void *data),
6625 void *data)
6627 struct net_device *ldev;
6628 struct list_head *iter;
6629 int ret;
6631 for (iter = &dev->adj_list.lower,
6632 ldev = netdev_next_lower_dev(dev, &iter);
6633 ldev;
6634 ldev = netdev_next_lower_dev(dev, &iter)) {
6635 /* first is the lower device itself */
6636 ret = fn(ldev, data);
6637 if (ret)
6638 return ret;
6640 /* then look at all of its lower devices */
6641 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6642 if (ret)
6643 return ret;
6646 return 0;
6648 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6650 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6651 struct list_head **iter)
6653 struct netdev_adjacent *lower;
6655 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6656 if (&lower->list == &dev->adj_list.lower)
6657 return NULL;
6659 *iter = &lower->list;
6661 return lower->dev;
6664 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6665 int (*fn)(struct net_device *dev,
6666 void *data),
6667 void *data)
6669 struct net_device *ldev;
6670 struct list_head *iter;
6671 int ret;
6673 for (iter = &dev->adj_list.lower,
6674 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6675 ldev;
6676 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6677 /* first is the lower device itself */
6678 ret = fn(ldev, data);
6679 if (ret)
6680 return ret;
6682 /* then look at all of its lower devices */
6683 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6684 if (ret)
6685 return ret;
6688 return 0;
6690 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6693 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6694 * lower neighbour list, RCU
6695 * variant
6696 * @dev: device
6698 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6699 * list. The caller must hold RCU read lock.
6701 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6703 struct netdev_adjacent *lower;
6705 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6706 struct netdev_adjacent, list);
6707 if (lower)
6708 return lower->private;
6709 return NULL;
6711 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6714 * netdev_master_upper_dev_get_rcu - Get master upper device
6715 * @dev: device
6717 * Find a master upper device and return pointer to it or NULL in case
6718 * it's not there. The caller must hold the RCU read lock.
6720 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6722 struct netdev_adjacent *upper;
6724 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6725 struct netdev_adjacent, list);
6726 if (upper && likely(upper->master))
6727 return upper->dev;
6728 return NULL;
6730 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6732 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6733 struct net_device *adj_dev,
6734 struct list_head *dev_list)
6736 char linkname[IFNAMSIZ+7];
6738 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6739 "upper_%s" : "lower_%s", adj_dev->name);
6740 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6741 linkname);
6743 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6744 char *name,
6745 struct list_head *dev_list)
6747 char linkname[IFNAMSIZ+7];
6749 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6750 "upper_%s" : "lower_%s", name);
6751 sysfs_remove_link(&(dev->dev.kobj), linkname);
6754 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6755 struct net_device *adj_dev,
6756 struct list_head *dev_list)
6758 return (dev_list == &dev->adj_list.upper ||
6759 dev_list == &dev->adj_list.lower) &&
6760 net_eq(dev_net(dev), dev_net(adj_dev));
6763 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6764 struct net_device *adj_dev,
6765 struct list_head *dev_list,
6766 void *private, bool master)
6768 struct netdev_adjacent *adj;
6769 int ret;
6771 adj = __netdev_find_adj(adj_dev, dev_list);
6773 if (adj) {
6774 adj->ref_nr += 1;
6775 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6776 dev->name, adj_dev->name, adj->ref_nr);
6778 return 0;
6781 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6782 if (!adj)
6783 return -ENOMEM;
6785 adj->dev = adj_dev;
6786 adj->master = master;
6787 adj->ref_nr = 1;
6788 adj->private = private;
6789 dev_hold(adj_dev);
6791 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6792 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6794 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6795 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6796 if (ret)
6797 goto free_adj;
6800 /* Ensure that master link is always the first item in list. */
6801 if (master) {
6802 ret = sysfs_create_link(&(dev->dev.kobj),
6803 &(adj_dev->dev.kobj), "master");
6804 if (ret)
6805 goto remove_symlinks;
6807 list_add_rcu(&adj->list, dev_list);
6808 } else {
6809 list_add_tail_rcu(&adj->list, dev_list);
6812 return 0;
6814 remove_symlinks:
6815 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6816 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6817 free_adj:
6818 kfree(adj);
6819 dev_put(adj_dev);
6821 return ret;
6824 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6825 struct net_device *adj_dev,
6826 u16 ref_nr,
6827 struct list_head *dev_list)
6829 struct netdev_adjacent *adj;
6831 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6832 dev->name, adj_dev->name, ref_nr);
6834 adj = __netdev_find_adj(adj_dev, dev_list);
6836 if (!adj) {
6837 pr_err("Adjacency does not exist for device %s from %s\n",
6838 dev->name, adj_dev->name);
6839 WARN_ON(1);
6840 return;
6843 if (adj->ref_nr > ref_nr) {
6844 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6845 dev->name, adj_dev->name, ref_nr,
6846 adj->ref_nr - ref_nr);
6847 adj->ref_nr -= ref_nr;
6848 return;
6851 if (adj->master)
6852 sysfs_remove_link(&(dev->dev.kobj), "master");
6854 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6855 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6857 list_del_rcu(&adj->list);
6858 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6859 adj_dev->name, dev->name, adj_dev->name);
6860 dev_put(adj_dev);
6861 kfree_rcu(adj, rcu);
6864 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6865 struct net_device *upper_dev,
6866 struct list_head *up_list,
6867 struct list_head *down_list,
6868 void *private, bool master)
6870 int ret;
6872 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6873 private, master);
6874 if (ret)
6875 return ret;
6877 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6878 private, false);
6879 if (ret) {
6880 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6881 return ret;
6884 return 0;
6887 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6888 struct net_device *upper_dev,
6889 u16 ref_nr,
6890 struct list_head *up_list,
6891 struct list_head *down_list)
6893 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6894 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6897 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6898 struct net_device *upper_dev,
6899 void *private, bool master)
6901 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6902 &dev->adj_list.upper,
6903 &upper_dev->adj_list.lower,
6904 private, master);
6907 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6908 struct net_device *upper_dev)
6910 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6911 &dev->adj_list.upper,
6912 &upper_dev->adj_list.lower);
6915 static int __netdev_upper_dev_link(struct net_device *dev,
6916 struct net_device *upper_dev, bool master,
6917 void *upper_priv, void *upper_info,
6918 struct netlink_ext_ack *extack)
6920 struct netdev_notifier_changeupper_info changeupper_info = {
6921 .info = {
6922 .dev = dev,
6923 .extack = extack,
6925 .upper_dev = upper_dev,
6926 .master = master,
6927 .linking = true,
6928 .upper_info = upper_info,
6930 struct net_device *master_dev;
6931 int ret = 0;
6933 ASSERT_RTNL();
6935 if (dev == upper_dev)
6936 return -EBUSY;
6938 /* To prevent loops, check if dev is not upper device to upper_dev. */
6939 if (netdev_has_upper_dev(upper_dev, dev))
6940 return -EBUSY;
6942 if (!master) {
6943 if (netdev_has_upper_dev(dev, upper_dev))
6944 return -EEXIST;
6945 } else {
6946 master_dev = netdev_master_upper_dev_get(dev);
6947 if (master_dev)
6948 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6951 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6952 &changeupper_info.info);
6953 ret = notifier_to_errno(ret);
6954 if (ret)
6955 return ret;
6957 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6958 master);
6959 if (ret)
6960 return ret;
6962 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6963 &changeupper_info.info);
6964 ret = notifier_to_errno(ret);
6965 if (ret)
6966 goto rollback;
6968 return 0;
6970 rollback:
6971 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6973 return ret;
6977 * netdev_upper_dev_link - Add a link to the upper device
6978 * @dev: device
6979 * @upper_dev: new upper device
6980 * @extack: netlink extended ack
6982 * Adds a link to device which is upper to this one. The caller must hold
6983 * the RTNL lock. On a failure a negative errno code is returned.
6984 * On success the reference counts are adjusted and the function
6985 * returns zero.
6987 int netdev_upper_dev_link(struct net_device *dev,
6988 struct net_device *upper_dev,
6989 struct netlink_ext_ack *extack)
6991 return __netdev_upper_dev_link(dev, upper_dev, false,
6992 NULL, NULL, extack);
6994 EXPORT_SYMBOL(netdev_upper_dev_link);
6997 * netdev_master_upper_dev_link - Add a master link to the upper device
6998 * @dev: device
6999 * @upper_dev: new upper device
7000 * @upper_priv: upper device private
7001 * @upper_info: upper info to be passed down via notifier
7002 * @extack: netlink extended ack
7004 * Adds a link to device which is upper to this one. In this case, only
7005 * one master upper device can be linked, although other non-master devices
7006 * might be linked as well. The caller must hold the RTNL lock.
7007 * On a failure a negative errno code is returned. On success the reference
7008 * counts are adjusted and the function returns zero.
7010 int netdev_master_upper_dev_link(struct net_device *dev,
7011 struct net_device *upper_dev,
7012 void *upper_priv, void *upper_info,
7013 struct netlink_ext_ack *extack)
7015 return __netdev_upper_dev_link(dev, upper_dev, true,
7016 upper_priv, upper_info, extack);
7018 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7021 * netdev_upper_dev_unlink - Removes a link to upper device
7022 * @dev: device
7023 * @upper_dev: new upper device
7025 * Removes a link to device which is upper to this one. The caller must hold
7026 * the RTNL lock.
7028 void netdev_upper_dev_unlink(struct net_device *dev,
7029 struct net_device *upper_dev)
7031 struct netdev_notifier_changeupper_info changeupper_info = {
7032 .info = {
7033 .dev = dev,
7035 .upper_dev = upper_dev,
7036 .linking = false,
7039 ASSERT_RTNL();
7041 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7043 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7044 &changeupper_info.info);
7046 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7048 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7049 &changeupper_info.info);
7051 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7054 * netdev_bonding_info_change - Dispatch event about slave change
7055 * @dev: device
7056 * @bonding_info: info to dispatch
7058 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7059 * The caller must hold the RTNL lock.
7061 void netdev_bonding_info_change(struct net_device *dev,
7062 struct netdev_bonding_info *bonding_info)
7064 struct netdev_notifier_bonding_info info = {
7065 .info.dev = dev,
7068 memcpy(&info.bonding_info, bonding_info,
7069 sizeof(struct netdev_bonding_info));
7070 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7071 &info.info);
7073 EXPORT_SYMBOL(netdev_bonding_info_change);
7075 static void netdev_adjacent_add_links(struct net_device *dev)
7077 struct netdev_adjacent *iter;
7079 struct net *net = dev_net(dev);
7081 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7082 if (!net_eq(net, dev_net(iter->dev)))
7083 continue;
7084 netdev_adjacent_sysfs_add(iter->dev, dev,
7085 &iter->dev->adj_list.lower);
7086 netdev_adjacent_sysfs_add(dev, iter->dev,
7087 &dev->adj_list.upper);
7090 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7091 if (!net_eq(net, dev_net(iter->dev)))
7092 continue;
7093 netdev_adjacent_sysfs_add(iter->dev, dev,
7094 &iter->dev->adj_list.upper);
7095 netdev_adjacent_sysfs_add(dev, iter->dev,
7096 &dev->adj_list.lower);
7100 static void netdev_adjacent_del_links(struct net_device *dev)
7102 struct netdev_adjacent *iter;
7104 struct net *net = dev_net(dev);
7106 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7107 if (!net_eq(net, dev_net(iter->dev)))
7108 continue;
7109 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7110 &iter->dev->adj_list.lower);
7111 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7112 &dev->adj_list.upper);
7115 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7116 if (!net_eq(net, dev_net(iter->dev)))
7117 continue;
7118 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7119 &iter->dev->adj_list.upper);
7120 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7121 &dev->adj_list.lower);
7125 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7127 struct netdev_adjacent *iter;
7129 struct net *net = dev_net(dev);
7131 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7132 if (!net_eq(net, dev_net(iter->dev)))
7133 continue;
7134 netdev_adjacent_sysfs_del(iter->dev, oldname,
7135 &iter->dev->adj_list.lower);
7136 netdev_adjacent_sysfs_add(iter->dev, dev,
7137 &iter->dev->adj_list.lower);
7140 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7141 if (!net_eq(net, dev_net(iter->dev)))
7142 continue;
7143 netdev_adjacent_sysfs_del(iter->dev, oldname,
7144 &iter->dev->adj_list.upper);
7145 netdev_adjacent_sysfs_add(iter->dev, dev,
7146 &iter->dev->adj_list.upper);
7150 void *netdev_lower_dev_get_private(struct net_device *dev,
7151 struct net_device *lower_dev)
7153 struct netdev_adjacent *lower;
7155 if (!lower_dev)
7156 return NULL;
7157 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7158 if (!lower)
7159 return NULL;
7161 return lower->private;
7163 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7166 int dev_get_nest_level(struct net_device *dev)
7168 struct net_device *lower = NULL;
7169 struct list_head *iter;
7170 int max_nest = -1;
7171 int nest;
7173 ASSERT_RTNL();
7175 netdev_for_each_lower_dev(dev, lower, iter) {
7176 nest = dev_get_nest_level(lower);
7177 if (max_nest < nest)
7178 max_nest = nest;
7181 return max_nest + 1;
7183 EXPORT_SYMBOL(dev_get_nest_level);
7186 * netdev_lower_change - Dispatch event about lower device state change
7187 * @lower_dev: device
7188 * @lower_state_info: state to dispatch
7190 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7191 * The caller must hold the RTNL lock.
7193 void netdev_lower_state_changed(struct net_device *lower_dev,
7194 void *lower_state_info)
7196 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7197 .info.dev = lower_dev,
7200 ASSERT_RTNL();
7201 changelowerstate_info.lower_state_info = lower_state_info;
7202 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7203 &changelowerstate_info.info);
7205 EXPORT_SYMBOL(netdev_lower_state_changed);
7207 static void dev_change_rx_flags(struct net_device *dev, int flags)
7209 const struct net_device_ops *ops = dev->netdev_ops;
7211 if (ops->ndo_change_rx_flags)
7212 ops->ndo_change_rx_flags(dev, flags);
7215 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7217 unsigned int old_flags = dev->flags;
7218 kuid_t uid;
7219 kgid_t gid;
7221 ASSERT_RTNL();
7223 dev->flags |= IFF_PROMISC;
7224 dev->promiscuity += inc;
7225 if (dev->promiscuity == 0) {
7227 * Avoid overflow.
7228 * If inc causes overflow, untouch promisc and return error.
7230 if (inc < 0)
7231 dev->flags &= ~IFF_PROMISC;
7232 else {
7233 dev->promiscuity -= inc;
7234 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7235 dev->name);
7236 return -EOVERFLOW;
7239 if (dev->flags != old_flags) {
7240 pr_info("device %s %s promiscuous mode\n",
7241 dev->name,
7242 dev->flags & IFF_PROMISC ? "entered" : "left");
7243 if (audit_enabled) {
7244 current_uid_gid(&uid, &gid);
7245 audit_log(audit_context(), GFP_ATOMIC,
7246 AUDIT_ANOM_PROMISCUOUS,
7247 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7248 dev->name, (dev->flags & IFF_PROMISC),
7249 (old_flags & IFF_PROMISC),
7250 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7251 from_kuid(&init_user_ns, uid),
7252 from_kgid(&init_user_ns, gid),
7253 audit_get_sessionid(current));
7256 dev_change_rx_flags(dev, IFF_PROMISC);
7258 if (notify)
7259 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7260 return 0;
7264 * dev_set_promiscuity - update promiscuity count on a device
7265 * @dev: device
7266 * @inc: modifier
7268 * Add or remove promiscuity from a device. While the count in the device
7269 * remains above zero the interface remains promiscuous. Once it hits zero
7270 * the device reverts back to normal filtering operation. A negative inc
7271 * value is used to drop promiscuity on the device.
7272 * Return 0 if successful or a negative errno code on error.
7274 int dev_set_promiscuity(struct net_device *dev, int inc)
7276 unsigned int old_flags = dev->flags;
7277 int err;
7279 err = __dev_set_promiscuity(dev, inc, true);
7280 if (err < 0)
7281 return err;
7282 if (dev->flags != old_flags)
7283 dev_set_rx_mode(dev);
7284 return err;
7286 EXPORT_SYMBOL(dev_set_promiscuity);
7288 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7290 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7292 ASSERT_RTNL();
7294 dev->flags |= IFF_ALLMULTI;
7295 dev->allmulti += inc;
7296 if (dev->allmulti == 0) {
7298 * Avoid overflow.
7299 * If inc causes overflow, untouch allmulti and return error.
7301 if (inc < 0)
7302 dev->flags &= ~IFF_ALLMULTI;
7303 else {
7304 dev->allmulti -= inc;
7305 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7306 dev->name);
7307 return -EOVERFLOW;
7310 if (dev->flags ^ old_flags) {
7311 dev_change_rx_flags(dev, IFF_ALLMULTI);
7312 dev_set_rx_mode(dev);
7313 if (notify)
7314 __dev_notify_flags(dev, old_flags,
7315 dev->gflags ^ old_gflags);
7317 return 0;
7321 * dev_set_allmulti - update allmulti count on a device
7322 * @dev: device
7323 * @inc: modifier
7325 * Add or remove reception of all multicast frames to a device. While the
7326 * count in the device remains above zero the interface remains listening
7327 * to all interfaces. Once it hits zero the device reverts back to normal
7328 * filtering operation. A negative @inc value is used to drop the counter
7329 * when releasing a resource needing all multicasts.
7330 * Return 0 if successful or a negative errno code on error.
7333 int dev_set_allmulti(struct net_device *dev, int inc)
7335 return __dev_set_allmulti(dev, inc, true);
7337 EXPORT_SYMBOL(dev_set_allmulti);
7340 * Upload unicast and multicast address lists to device and
7341 * configure RX filtering. When the device doesn't support unicast
7342 * filtering it is put in promiscuous mode while unicast addresses
7343 * are present.
7345 void __dev_set_rx_mode(struct net_device *dev)
7347 const struct net_device_ops *ops = dev->netdev_ops;
7349 /* dev_open will call this function so the list will stay sane. */
7350 if (!(dev->flags&IFF_UP))
7351 return;
7353 if (!netif_device_present(dev))
7354 return;
7356 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7357 /* Unicast addresses changes may only happen under the rtnl,
7358 * therefore calling __dev_set_promiscuity here is safe.
7360 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7361 __dev_set_promiscuity(dev, 1, false);
7362 dev->uc_promisc = true;
7363 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7364 __dev_set_promiscuity(dev, -1, false);
7365 dev->uc_promisc = false;
7369 if (ops->ndo_set_rx_mode)
7370 ops->ndo_set_rx_mode(dev);
7373 void dev_set_rx_mode(struct net_device *dev)
7375 netif_addr_lock_bh(dev);
7376 __dev_set_rx_mode(dev);
7377 netif_addr_unlock_bh(dev);
7381 * dev_get_flags - get flags reported to userspace
7382 * @dev: device
7384 * Get the combination of flag bits exported through APIs to userspace.
7386 unsigned int dev_get_flags(const struct net_device *dev)
7388 unsigned int flags;
7390 flags = (dev->flags & ~(IFF_PROMISC |
7391 IFF_ALLMULTI |
7392 IFF_RUNNING |
7393 IFF_LOWER_UP |
7394 IFF_DORMANT)) |
7395 (dev->gflags & (IFF_PROMISC |
7396 IFF_ALLMULTI));
7398 if (netif_running(dev)) {
7399 if (netif_oper_up(dev))
7400 flags |= IFF_RUNNING;
7401 if (netif_carrier_ok(dev))
7402 flags |= IFF_LOWER_UP;
7403 if (netif_dormant(dev))
7404 flags |= IFF_DORMANT;
7407 return flags;
7409 EXPORT_SYMBOL(dev_get_flags);
7411 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7413 unsigned int old_flags = dev->flags;
7414 int ret;
7416 ASSERT_RTNL();
7419 * Set the flags on our device.
7422 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7423 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7424 IFF_AUTOMEDIA)) |
7425 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7426 IFF_ALLMULTI));
7429 * Load in the correct multicast list now the flags have changed.
7432 if ((old_flags ^ flags) & IFF_MULTICAST)
7433 dev_change_rx_flags(dev, IFF_MULTICAST);
7435 dev_set_rx_mode(dev);
7438 * Have we downed the interface. We handle IFF_UP ourselves
7439 * according to user attempts to set it, rather than blindly
7440 * setting it.
7443 ret = 0;
7444 if ((old_flags ^ flags) & IFF_UP) {
7445 if (old_flags & IFF_UP)
7446 __dev_close(dev);
7447 else
7448 ret = __dev_open(dev);
7451 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7452 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7453 unsigned int old_flags = dev->flags;
7455 dev->gflags ^= IFF_PROMISC;
7457 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7458 if (dev->flags != old_flags)
7459 dev_set_rx_mode(dev);
7462 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7463 * is important. Some (broken) drivers set IFF_PROMISC, when
7464 * IFF_ALLMULTI is requested not asking us and not reporting.
7466 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7467 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7469 dev->gflags ^= IFF_ALLMULTI;
7470 __dev_set_allmulti(dev, inc, false);
7473 return ret;
7476 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7477 unsigned int gchanges)
7479 unsigned int changes = dev->flags ^ old_flags;
7481 if (gchanges)
7482 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7484 if (changes & IFF_UP) {
7485 if (dev->flags & IFF_UP)
7486 call_netdevice_notifiers(NETDEV_UP, dev);
7487 else
7488 call_netdevice_notifiers(NETDEV_DOWN, dev);
7491 if (dev->flags & IFF_UP &&
7492 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7493 struct netdev_notifier_change_info change_info = {
7494 .info = {
7495 .dev = dev,
7497 .flags_changed = changes,
7500 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7505 * dev_change_flags - change device settings
7506 * @dev: device
7507 * @flags: device state flags
7509 * Change settings on device based state flags. The flags are
7510 * in the userspace exported format.
7512 int dev_change_flags(struct net_device *dev, unsigned int flags)
7514 int ret;
7515 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7517 ret = __dev_change_flags(dev, flags);
7518 if (ret < 0)
7519 return ret;
7521 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7522 __dev_notify_flags(dev, old_flags, changes);
7523 return ret;
7525 EXPORT_SYMBOL(dev_change_flags);
7527 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7529 const struct net_device_ops *ops = dev->netdev_ops;
7531 if (ops->ndo_change_mtu)
7532 return ops->ndo_change_mtu(dev, new_mtu);
7534 dev->mtu = new_mtu;
7535 return 0;
7537 EXPORT_SYMBOL(__dev_set_mtu);
7540 * dev_set_mtu_ext - Change maximum transfer unit
7541 * @dev: device
7542 * @new_mtu: new transfer unit
7543 * @extack: netlink extended ack
7545 * Change the maximum transfer size of the network device.
7547 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7548 struct netlink_ext_ack *extack)
7550 int err, orig_mtu;
7552 if (new_mtu == dev->mtu)
7553 return 0;
7555 /* MTU must be positive, and in range */
7556 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7557 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7558 return -EINVAL;
7561 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7562 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7563 return -EINVAL;
7566 if (!netif_device_present(dev))
7567 return -ENODEV;
7569 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7570 err = notifier_to_errno(err);
7571 if (err)
7572 return err;
7574 orig_mtu = dev->mtu;
7575 err = __dev_set_mtu(dev, new_mtu);
7577 if (!err) {
7578 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7579 err = notifier_to_errno(err);
7580 if (err) {
7581 /* setting mtu back and notifying everyone again,
7582 * so that they have a chance to revert changes.
7584 __dev_set_mtu(dev, orig_mtu);
7585 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7588 return err;
7591 int dev_set_mtu(struct net_device *dev, int new_mtu)
7593 struct netlink_ext_ack extack;
7594 int err;
7596 memset(&extack, 0, sizeof(extack));
7597 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7598 if (err && extack._msg)
7599 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7600 return err;
7602 EXPORT_SYMBOL(dev_set_mtu);
7605 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7606 * @dev: device
7607 * @new_len: new tx queue length
7609 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7611 unsigned int orig_len = dev->tx_queue_len;
7612 int res;
7614 if (new_len != (unsigned int)new_len)
7615 return -ERANGE;
7617 if (new_len != orig_len) {
7618 dev->tx_queue_len = new_len;
7619 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7620 res = notifier_to_errno(res);
7621 if (res)
7622 goto err_rollback;
7623 res = dev_qdisc_change_tx_queue_len(dev);
7624 if (res)
7625 goto err_rollback;
7628 return 0;
7630 err_rollback:
7631 netdev_err(dev, "refused to change device tx_queue_len\n");
7632 dev->tx_queue_len = orig_len;
7633 return res;
7637 * dev_set_group - Change group this device belongs to
7638 * @dev: device
7639 * @new_group: group this device should belong to
7641 void dev_set_group(struct net_device *dev, int new_group)
7643 dev->group = new_group;
7645 EXPORT_SYMBOL(dev_set_group);
7648 * dev_set_mac_address - Change Media Access Control Address
7649 * @dev: device
7650 * @sa: new address
7652 * Change the hardware (MAC) address of the device
7654 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7656 const struct net_device_ops *ops = dev->netdev_ops;
7657 int err;
7659 if (!ops->ndo_set_mac_address)
7660 return -EOPNOTSUPP;
7661 if (sa->sa_family != dev->type)
7662 return -EINVAL;
7663 if (!netif_device_present(dev))
7664 return -ENODEV;
7665 err = ops->ndo_set_mac_address(dev, sa);
7666 if (err)
7667 return err;
7668 dev->addr_assign_type = NET_ADDR_SET;
7669 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7670 add_device_randomness(dev->dev_addr, dev->addr_len);
7671 return 0;
7673 EXPORT_SYMBOL(dev_set_mac_address);
7676 * dev_change_carrier - Change device carrier
7677 * @dev: device
7678 * @new_carrier: new value
7680 * Change device carrier
7682 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7684 const struct net_device_ops *ops = dev->netdev_ops;
7686 if (!ops->ndo_change_carrier)
7687 return -EOPNOTSUPP;
7688 if (!netif_device_present(dev))
7689 return -ENODEV;
7690 return ops->ndo_change_carrier(dev, new_carrier);
7692 EXPORT_SYMBOL(dev_change_carrier);
7695 * dev_get_phys_port_id - Get device physical port ID
7696 * @dev: device
7697 * @ppid: port ID
7699 * Get device physical port ID
7701 int dev_get_phys_port_id(struct net_device *dev,
7702 struct netdev_phys_item_id *ppid)
7704 const struct net_device_ops *ops = dev->netdev_ops;
7706 if (!ops->ndo_get_phys_port_id)
7707 return -EOPNOTSUPP;
7708 return ops->ndo_get_phys_port_id(dev, ppid);
7710 EXPORT_SYMBOL(dev_get_phys_port_id);
7713 * dev_get_phys_port_name - Get device physical port name
7714 * @dev: device
7715 * @name: port name
7716 * @len: limit of bytes to copy to name
7718 * Get device physical port name
7720 int dev_get_phys_port_name(struct net_device *dev,
7721 char *name, size_t len)
7723 const struct net_device_ops *ops = dev->netdev_ops;
7725 if (!ops->ndo_get_phys_port_name)
7726 return -EOPNOTSUPP;
7727 return ops->ndo_get_phys_port_name(dev, name, len);
7729 EXPORT_SYMBOL(dev_get_phys_port_name);
7732 * dev_change_proto_down - update protocol port state information
7733 * @dev: device
7734 * @proto_down: new value
7736 * This info can be used by switch drivers to set the phys state of the
7737 * port.
7739 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7741 const struct net_device_ops *ops = dev->netdev_ops;
7743 if (!ops->ndo_change_proto_down)
7744 return -EOPNOTSUPP;
7745 if (!netif_device_present(dev))
7746 return -ENODEV;
7747 return ops->ndo_change_proto_down(dev, proto_down);
7749 EXPORT_SYMBOL(dev_change_proto_down);
7751 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7752 enum bpf_netdev_command cmd)
7754 struct netdev_bpf xdp;
7756 if (!bpf_op)
7757 return 0;
7759 memset(&xdp, 0, sizeof(xdp));
7760 xdp.command = cmd;
7762 /* Query must always succeed. */
7763 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7765 return xdp.prog_id;
7768 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7769 struct netlink_ext_ack *extack, u32 flags,
7770 struct bpf_prog *prog)
7772 struct netdev_bpf xdp;
7774 memset(&xdp, 0, sizeof(xdp));
7775 if (flags & XDP_FLAGS_HW_MODE)
7776 xdp.command = XDP_SETUP_PROG_HW;
7777 else
7778 xdp.command = XDP_SETUP_PROG;
7779 xdp.extack = extack;
7780 xdp.flags = flags;
7781 xdp.prog = prog;
7783 return bpf_op(dev, &xdp);
7786 static void dev_xdp_uninstall(struct net_device *dev)
7788 struct netdev_bpf xdp;
7789 bpf_op_t ndo_bpf;
7791 /* Remove generic XDP */
7792 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7794 /* Remove from the driver */
7795 ndo_bpf = dev->netdev_ops->ndo_bpf;
7796 if (!ndo_bpf)
7797 return;
7799 memset(&xdp, 0, sizeof(xdp));
7800 xdp.command = XDP_QUERY_PROG;
7801 WARN_ON(ndo_bpf(dev, &xdp));
7802 if (xdp.prog_id)
7803 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7804 NULL));
7806 /* Remove HW offload */
7807 memset(&xdp, 0, sizeof(xdp));
7808 xdp.command = XDP_QUERY_PROG_HW;
7809 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7810 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7811 NULL));
7815 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7816 * @dev: device
7817 * @extack: netlink extended ack
7818 * @fd: new program fd or negative value to clear
7819 * @flags: xdp-related flags
7821 * Set or clear a bpf program for a device
7823 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7824 int fd, u32 flags)
7826 const struct net_device_ops *ops = dev->netdev_ops;
7827 enum bpf_netdev_command query;
7828 struct bpf_prog *prog = NULL;
7829 bpf_op_t bpf_op, bpf_chk;
7830 int err;
7832 ASSERT_RTNL();
7834 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7836 bpf_op = bpf_chk = ops->ndo_bpf;
7837 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7838 return -EOPNOTSUPP;
7839 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7840 bpf_op = generic_xdp_install;
7841 if (bpf_op == bpf_chk)
7842 bpf_chk = generic_xdp_install;
7844 if (fd >= 0) {
7845 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7846 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7847 return -EEXIST;
7848 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7849 __dev_xdp_query(dev, bpf_op, query))
7850 return -EBUSY;
7852 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7853 bpf_op == ops->ndo_bpf);
7854 if (IS_ERR(prog))
7855 return PTR_ERR(prog);
7857 if (!(flags & XDP_FLAGS_HW_MODE) &&
7858 bpf_prog_is_dev_bound(prog->aux)) {
7859 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7860 bpf_prog_put(prog);
7861 return -EINVAL;
7865 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7866 if (err < 0 && prog)
7867 bpf_prog_put(prog);
7869 return err;
7873 * dev_new_index - allocate an ifindex
7874 * @net: the applicable net namespace
7876 * Returns a suitable unique value for a new device interface
7877 * number. The caller must hold the rtnl semaphore or the
7878 * dev_base_lock to be sure it remains unique.
7880 static int dev_new_index(struct net *net)
7882 int ifindex = net->ifindex;
7884 for (;;) {
7885 if (++ifindex <= 0)
7886 ifindex = 1;
7887 if (!__dev_get_by_index(net, ifindex))
7888 return net->ifindex = ifindex;
7892 /* Delayed registration/unregisteration */
7893 static LIST_HEAD(net_todo_list);
7894 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7896 static void net_set_todo(struct net_device *dev)
7898 list_add_tail(&dev->todo_list, &net_todo_list);
7899 dev_net(dev)->dev_unreg_count++;
7902 static void rollback_registered_many(struct list_head *head)
7904 struct net_device *dev, *tmp;
7905 LIST_HEAD(close_head);
7907 BUG_ON(dev_boot_phase);
7908 ASSERT_RTNL();
7910 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7911 /* Some devices call without registering
7912 * for initialization unwind. Remove those
7913 * devices and proceed with the remaining.
7915 if (dev->reg_state == NETREG_UNINITIALIZED) {
7916 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7917 dev->name, dev);
7919 WARN_ON(1);
7920 list_del(&dev->unreg_list);
7921 continue;
7923 dev->dismantle = true;
7924 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7927 /* If device is running, close it first. */
7928 list_for_each_entry(dev, head, unreg_list)
7929 list_add_tail(&dev->close_list, &close_head);
7930 dev_close_many(&close_head, true);
7932 list_for_each_entry(dev, head, unreg_list) {
7933 /* And unlink it from device chain. */
7934 unlist_netdevice(dev);
7936 dev->reg_state = NETREG_UNREGISTERING;
7938 flush_all_backlogs();
7940 synchronize_net();
7942 list_for_each_entry(dev, head, unreg_list) {
7943 struct sk_buff *skb = NULL;
7945 /* Shutdown queueing discipline. */
7946 dev_shutdown(dev);
7948 dev_xdp_uninstall(dev);
7950 /* Notify protocols, that we are about to destroy
7951 * this device. They should clean all the things.
7953 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7955 if (!dev->rtnl_link_ops ||
7956 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7957 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7958 GFP_KERNEL, NULL, 0);
7961 * Flush the unicast and multicast chains
7963 dev_uc_flush(dev);
7964 dev_mc_flush(dev);
7966 if (dev->netdev_ops->ndo_uninit)
7967 dev->netdev_ops->ndo_uninit(dev);
7969 if (skb)
7970 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7972 /* Notifier chain MUST detach us all upper devices. */
7973 WARN_ON(netdev_has_any_upper_dev(dev));
7974 WARN_ON(netdev_has_any_lower_dev(dev));
7976 /* Remove entries from kobject tree */
7977 netdev_unregister_kobject(dev);
7978 #ifdef CONFIG_XPS
7979 /* Remove XPS queueing entries */
7980 netif_reset_xps_queues_gt(dev, 0);
7981 #endif
7984 synchronize_net();
7986 list_for_each_entry(dev, head, unreg_list)
7987 dev_put(dev);
7990 static void rollback_registered(struct net_device *dev)
7992 LIST_HEAD(single);
7994 list_add(&dev->unreg_list, &single);
7995 rollback_registered_many(&single);
7996 list_del(&single);
7999 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8000 struct net_device *upper, netdev_features_t features)
8002 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8003 netdev_features_t feature;
8004 int feature_bit;
8006 for_each_netdev_feature(&upper_disables, feature_bit) {
8007 feature = __NETIF_F_BIT(feature_bit);
8008 if (!(upper->wanted_features & feature)
8009 && (features & feature)) {
8010 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8011 &feature, upper->name);
8012 features &= ~feature;
8016 return features;
8019 static void netdev_sync_lower_features(struct net_device *upper,
8020 struct net_device *lower, netdev_features_t features)
8022 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8023 netdev_features_t feature;
8024 int feature_bit;
8026 for_each_netdev_feature(&upper_disables, feature_bit) {
8027 feature = __NETIF_F_BIT(feature_bit);
8028 if (!(features & feature) && (lower->features & feature)) {
8029 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8030 &feature, lower->name);
8031 lower->wanted_features &= ~feature;
8032 netdev_update_features(lower);
8034 if (unlikely(lower->features & feature))
8035 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8036 &feature, lower->name);
8041 static netdev_features_t netdev_fix_features(struct net_device *dev,
8042 netdev_features_t features)
8044 /* Fix illegal checksum combinations */
8045 if ((features & NETIF_F_HW_CSUM) &&
8046 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8047 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8048 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8051 /* TSO requires that SG is present as well. */
8052 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8053 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8054 features &= ~NETIF_F_ALL_TSO;
8057 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8058 !(features & NETIF_F_IP_CSUM)) {
8059 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8060 features &= ~NETIF_F_TSO;
8061 features &= ~NETIF_F_TSO_ECN;
8064 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8065 !(features & NETIF_F_IPV6_CSUM)) {
8066 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8067 features &= ~NETIF_F_TSO6;
8070 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8071 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8072 features &= ~NETIF_F_TSO_MANGLEID;
8074 /* TSO ECN requires that TSO is present as well. */
8075 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8076 features &= ~NETIF_F_TSO_ECN;
8078 /* Software GSO depends on SG. */
8079 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8080 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8081 features &= ~NETIF_F_GSO;
8084 /* GSO partial features require GSO partial be set */
8085 if ((features & dev->gso_partial_features) &&
8086 !(features & NETIF_F_GSO_PARTIAL)) {
8087 netdev_dbg(dev,
8088 "Dropping partially supported GSO features since no GSO partial.\n");
8089 features &= ~dev->gso_partial_features;
8092 if (!(features & NETIF_F_RXCSUM)) {
8093 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8094 * successfully merged by hardware must also have the
8095 * checksum verified by hardware. If the user does not
8096 * want to enable RXCSUM, logically, we should disable GRO_HW.
8098 if (features & NETIF_F_GRO_HW) {
8099 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8100 features &= ~NETIF_F_GRO_HW;
8104 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8105 if (features & NETIF_F_RXFCS) {
8106 if (features & NETIF_F_LRO) {
8107 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8108 features &= ~NETIF_F_LRO;
8111 if (features & NETIF_F_GRO_HW) {
8112 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8113 features &= ~NETIF_F_GRO_HW;
8117 return features;
8120 int __netdev_update_features(struct net_device *dev)
8122 struct net_device *upper, *lower;
8123 netdev_features_t features;
8124 struct list_head *iter;
8125 int err = -1;
8127 ASSERT_RTNL();
8129 features = netdev_get_wanted_features(dev);
8131 if (dev->netdev_ops->ndo_fix_features)
8132 features = dev->netdev_ops->ndo_fix_features(dev, features);
8134 /* driver might be less strict about feature dependencies */
8135 features = netdev_fix_features(dev, features);
8137 /* some features can't be enabled if they're off an an upper device */
8138 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8139 features = netdev_sync_upper_features(dev, upper, features);
8141 if (dev->features == features)
8142 goto sync_lower;
8144 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8145 &dev->features, &features);
8147 if (dev->netdev_ops->ndo_set_features)
8148 err = dev->netdev_ops->ndo_set_features(dev, features);
8149 else
8150 err = 0;
8152 if (unlikely(err < 0)) {
8153 netdev_err(dev,
8154 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8155 err, &features, &dev->features);
8156 /* return non-0 since some features might have changed and
8157 * it's better to fire a spurious notification than miss it
8159 return -1;
8162 sync_lower:
8163 /* some features must be disabled on lower devices when disabled
8164 * on an upper device (think: bonding master or bridge)
8166 netdev_for_each_lower_dev(dev, lower, iter)
8167 netdev_sync_lower_features(dev, lower, features);
8169 if (!err) {
8170 netdev_features_t diff = features ^ dev->features;
8172 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8173 /* udp_tunnel_{get,drop}_rx_info both need
8174 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8175 * device, or they won't do anything.
8176 * Thus we need to update dev->features
8177 * *before* calling udp_tunnel_get_rx_info,
8178 * but *after* calling udp_tunnel_drop_rx_info.
8180 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8181 dev->features = features;
8182 udp_tunnel_get_rx_info(dev);
8183 } else {
8184 udp_tunnel_drop_rx_info(dev);
8188 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8189 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8190 dev->features = features;
8191 err |= vlan_get_rx_ctag_filter_info(dev);
8192 } else {
8193 vlan_drop_rx_ctag_filter_info(dev);
8197 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8198 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8199 dev->features = features;
8200 err |= vlan_get_rx_stag_filter_info(dev);
8201 } else {
8202 vlan_drop_rx_stag_filter_info(dev);
8206 dev->features = features;
8209 return err < 0 ? 0 : 1;
8213 * netdev_update_features - recalculate device features
8214 * @dev: the device to check
8216 * Recalculate dev->features set and send notifications if it
8217 * has changed. Should be called after driver or hardware dependent
8218 * conditions might have changed that influence the features.
8220 void netdev_update_features(struct net_device *dev)
8222 if (__netdev_update_features(dev))
8223 netdev_features_change(dev);
8225 EXPORT_SYMBOL(netdev_update_features);
8228 * netdev_change_features - recalculate device features
8229 * @dev: the device to check
8231 * Recalculate dev->features set and send notifications even
8232 * if they have not changed. Should be called instead of
8233 * netdev_update_features() if also dev->vlan_features might
8234 * have changed to allow the changes to be propagated to stacked
8235 * VLAN devices.
8237 void netdev_change_features(struct net_device *dev)
8239 __netdev_update_features(dev);
8240 netdev_features_change(dev);
8242 EXPORT_SYMBOL(netdev_change_features);
8245 * netif_stacked_transfer_operstate - transfer operstate
8246 * @rootdev: the root or lower level device to transfer state from
8247 * @dev: the device to transfer operstate to
8249 * Transfer operational state from root to device. This is normally
8250 * called when a stacking relationship exists between the root
8251 * device and the device(a leaf device).
8253 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8254 struct net_device *dev)
8256 if (rootdev->operstate == IF_OPER_DORMANT)
8257 netif_dormant_on(dev);
8258 else
8259 netif_dormant_off(dev);
8261 if (netif_carrier_ok(rootdev))
8262 netif_carrier_on(dev);
8263 else
8264 netif_carrier_off(dev);
8266 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8268 static int netif_alloc_rx_queues(struct net_device *dev)
8270 unsigned int i, count = dev->num_rx_queues;
8271 struct netdev_rx_queue *rx;
8272 size_t sz = count * sizeof(*rx);
8273 int err = 0;
8275 BUG_ON(count < 1);
8277 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8278 if (!rx)
8279 return -ENOMEM;
8281 dev->_rx = rx;
8283 for (i = 0; i < count; i++) {
8284 rx[i].dev = dev;
8286 /* XDP RX-queue setup */
8287 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8288 if (err < 0)
8289 goto err_rxq_info;
8291 return 0;
8293 err_rxq_info:
8294 /* Rollback successful reg's and free other resources */
8295 while (i--)
8296 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8297 kvfree(dev->_rx);
8298 dev->_rx = NULL;
8299 return err;
8302 static void netif_free_rx_queues(struct net_device *dev)
8304 unsigned int i, count = dev->num_rx_queues;
8306 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8307 if (!dev->_rx)
8308 return;
8310 for (i = 0; i < count; i++)
8311 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8313 kvfree(dev->_rx);
8316 static void netdev_init_one_queue(struct net_device *dev,
8317 struct netdev_queue *queue, void *_unused)
8319 /* Initialize queue lock */
8320 spin_lock_init(&queue->_xmit_lock);
8321 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8322 queue->xmit_lock_owner = -1;
8323 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8324 queue->dev = dev;
8325 #ifdef CONFIG_BQL
8326 dql_init(&queue->dql, HZ);
8327 #endif
8330 static void netif_free_tx_queues(struct net_device *dev)
8332 kvfree(dev->_tx);
8335 static int netif_alloc_netdev_queues(struct net_device *dev)
8337 unsigned int count = dev->num_tx_queues;
8338 struct netdev_queue *tx;
8339 size_t sz = count * sizeof(*tx);
8341 if (count < 1 || count > 0xffff)
8342 return -EINVAL;
8344 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8345 if (!tx)
8346 return -ENOMEM;
8348 dev->_tx = tx;
8350 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8351 spin_lock_init(&dev->tx_global_lock);
8353 return 0;
8356 void netif_tx_stop_all_queues(struct net_device *dev)
8358 unsigned int i;
8360 for (i = 0; i < dev->num_tx_queues; i++) {
8361 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8363 netif_tx_stop_queue(txq);
8366 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8369 * register_netdevice - register a network device
8370 * @dev: device to register
8372 * Take a completed network device structure and add it to the kernel
8373 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8374 * chain. 0 is returned on success. A negative errno code is returned
8375 * on a failure to set up the device, or if the name is a duplicate.
8377 * Callers must hold the rtnl semaphore. You may want
8378 * register_netdev() instead of this.
8380 * BUGS:
8381 * The locking appears insufficient to guarantee two parallel registers
8382 * will not get the same name.
8385 int register_netdevice(struct net_device *dev)
8387 int ret;
8388 struct net *net = dev_net(dev);
8390 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8391 NETDEV_FEATURE_COUNT);
8392 BUG_ON(dev_boot_phase);
8393 ASSERT_RTNL();
8395 might_sleep();
8397 /* When net_device's are persistent, this will be fatal. */
8398 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8399 BUG_ON(!net);
8401 spin_lock_init(&dev->addr_list_lock);
8402 netdev_set_addr_lockdep_class(dev);
8404 ret = dev_get_valid_name(net, dev, dev->name);
8405 if (ret < 0)
8406 goto out;
8408 /* Init, if this function is available */
8409 if (dev->netdev_ops->ndo_init) {
8410 ret = dev->netdev_ops->ndo_init(dev);
8411 if (ret) {
8412 if (ret > 0)
8413 ret = -EIO;
8414 goto out;
8418 if (((dev->hw_features | dev->features) &
8419 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8420 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8421 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8422 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8423 ret = -EINVAL;
8424 goto err_uninit;
8427 ret = -EBUSY;
8428 if (!dev->ifindex)
8429 dev->ifindex = dev_new_index(net);
8430 else if (__dev_get_by_index(net, dev->ifindex))
8431 goto err_uninit;
8433 /* Transfer changeable features to wanted_features and enable
8434 * software offloads (GSO and GRO).
8436 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8437 dev->features |= NETIF_F_SOFT_FEATURES;
8439 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8440 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8441 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8444 dev->wanted_features = dev->features & dev->hw_features;
8446 if (!(dev->flags & IFF_LOOPBACK))
8447 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8449 /* If IPv4 TCP segmentation offload is supported we should also
8450 * allow the device to enable segmenting the frame with the option
8451 * of ignoring a static IP ID value. This doesn't enable the
8452 * feature itself but allows the user to enable it later.
8454 if (dev->hw_features & NETIF_F_TSO)
8455 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8456 if (dev->vlan_features & NETIF_F_TSO)
8457 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8458 if (dev->mpls_features & NETIF_F_TSO)
8459 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8460 if (dev->hw_enc_features & NETIF_F_TSO)
8461 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8463 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8465 dev->vlan_features |= NETIF_F_HIGHDMA;
8467 /* Make NETIF_F_SG inheritable to tunnel devices.
8469 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8471 /* Make NETIF_F_SG inheritable to MPLS.
8473 dev->mpls_features |= NETIF_F_SG;
8475 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8476 ret = notifier_to_errno(ret);
8477 if (ret)
8478 goto err_uninit;
8480 ret = netdev_register_kobject(dev);
8481 if (ret)
8482 goto err_uninit;
8483 dev->reg_state = NETREG_REGISTERED;
8485 __netdev_update_features(dev);
8488 * Default initial state at registry is that the
8489 * device is present.
8492 set_bit(__LINK_STATE_PRESENT, &dev->state);
8494 linkwatch_init_dev(dev);
8496 dev_init_scheduler(dev);
8497 dev_hold(dev);
8498 list_netdevice(dev);
8499 add_device_randomness(dev->dev_addr, dev->addr_len);
8501 /* If the device has permanent device address, driver should
8502 * set dev_addr and also addr_assign_type should be set to
8503 * NET_ADDR_PERM (default value).
8505 if (dev->addr_assign_type == NET_ADDR_PERM)
8506 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8508 /* Notify protocols, that a new device appeared. */
8509 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8510 ret = notifier_to_errno(ret);
8511 if (ret) {
8512 rollback_registered(dev);
8513 dev->reg_state = NETREG_UNREGISTERED;
8516 * Prevent userspace races by waiting until the network
8517 * device is fully setup before sending notifications.
8519 if (!dev->rtnl_link_ops ||
8520 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8521 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8523 out:
8524 return ret;
8526 err_uninit:
8527 if (dev->netdev_ops->ndo_uninit)
8528 dev->netdev_ops->ndo_uninit(dev);
8529 if (dev->priv_destructor)
8530 dev->priv_destructor(dev);
8531 goto out;
8533 EXPORT_SYMBOL(register_netdevice);
8536 * init_dummy_netdev - init a dummy network device for NAPI
8537 * @dev: device to init
8539 * This takes a network device structure and initialize the minimum
8540 * amount of fields so it can be used to schedule NAPI polls without
8541 * registering a full blown interface. This is to be used by drivers
8542 * that need to tie several hardware interfaces to a single NAPI
8543 * poll scheduler due to HW limitations.
8545 int init_dummy_netdev(struct net_device *dev)
8547 /* Clear everything. Note we don't initialize spinlocks
8548 * are they aren't supposed to be taken by any of the
8549 * NAPI code and this dummy netdev is supposed to be
8550 * only ever used for NAPI polls
8552 memset(dev, 0, sizeof(struct net_device));
8554 /* make sure we BUG if trying to hit standard
8555 * register/unregister code path
8557 dev->reg_state = NETREG_DUMMY;
8559 /* NAPI wants this */
8560 INIT_LIST_HEAD(&dev->napi_list);
8562 /* a dummy interface is started by default */
8563 set_bit(__LINK_STATE_PRESENT, &dev->state);
8564 set_bit(__LINK_STATE_START, &dev->state);
8566 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8567 * because users of this 'device' dont need to change
8568 * its refcount.
8571 return 0;
8573 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8577 * register_netdev - register a network device
8578 * @dev: device to register
8580 * Take a completed network device structure and add it to the kernel
8581 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8582 * chain. 0 is returned on success. A negative errno code is returned
8583 * on a failure to set up the device, or if the name is a duplicate.
8585 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8586 * and expands the device name if you passed a format string to
8587 * alloc_netdev.
8589 int register_netdev(struct net_device *dev)
8591 int err;
8593 if (rtnl_lock_killable())
8594 return -EINTR;
8595 err = register_netdevice(dev);
8596 rtnl_unlock();
8597 return err;
8599 EXPORT_SYMBOL(register_netdev);
8601 int netdev_refcnt_read(const struct net_device *dev)
8603 int i, refcnt = 0;
8605 for_each_possible_cpu(i)
8606 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8607 return refcnt;
8609 EXPORT_SYMBOL(netdev_refcnt_read);
8612 * netdev_wait_allrefs - wait until all references are gone.
8613 * @dev: target net_device
8615 * This is called when unregistering network devices.
8617 * Any protocol or device that holds a reference should register
8618 * for netdevice notification, and cleanup and put back the
8619 * reference if they receive an UNREGISTER event.
8620 * We can get stuck here if buggy protocols don't correctly
8621 * call dev_put.
8623 static void netdev_wait_allrefs(struct net_device *dev)
8625 unsigned long rebroadcast_time, warning_time;
8626 int refcnt;
8628 linkwatch_forget_dev(dev);
8630 rebroadcast_time = warning_time = jiffies;
8631 refcnt = netdev_refcnt_read(dev);
8633 while (refcnt != 0) {
8634 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8635 rtnl_lock();
8637 /* Rebroadcast unregister notification */
8638 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8640 __rtnl_unlock();
8641 rcu_barrier();
8642 rtnl_lock();
8644 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8645 &dev->state)) {
8646 /* We must not have linkwatch events
8647 * pending on unregister. If this
8648 * happens, we simply run the queue
8649 * unscheduled, resulting in a noop
8650 * for this device.
8652 linkwatch_run_queue();
8655 __rtnl_unlock();
8657 rebroadcast_time = jiffies;
8660 msleep(250);
8662 refcnt = netdev_refcnt_read(dev);
8664 if (time_after(jiffies, warning_time + 10 * HZ)) {
8665 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8666 dev->name, refcnt);
8667 warning_time = jiffies;
8672 /* The sequence is:
8674 * rtnl_lock();
8675 * ...
8676 * register_netdevice(x1);
8677 * register_netdevice(x2);
8678 * ...
8679 * unregister_netdevice(y1);
8680 * unregister_netdevice(y2);
8681 * ...
8682 * rtnl_unlock();
8683 * free_netdev(y1);
8684 * free_netdev(y2);
8686 * We are invoked by rtnl_unlock().
8687 * This allows us to deal with problems:
8688 * 1) We can delete sysfs objects which invoke hotplug
8689 * without deadlocking with linkwatch via keventd.
8690 * 2) Since we run with the RTNL semaphore not held, we can sleep
8691 * safely in order to wait for the netdev refcnt to drop to zero.
8693 * We must not return until all unregister events added during
8694 * the interval the lock was held have been completed.
8696 void netdev_run_todo(void)
8698 struct list_head list;
8700 /* Snapshot list, allow later requests */
8701 list_replace_init(&net_todo_list, &list);
8703 __rtnl_unlock();
8706 /* Wait for rcu callbacks to finish before next phase */
8707 if (!list_empty(&list))
8708 rcu_barrier();
8710 while (!list_empty(&list)) {
8711 struct net_device *dev
8712 = list_first_entry(&list, struct net_device, todo_list);
8713 list_del(&dev->todo_list);
8715 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8716 pr_err("network todo '%s' but state %d\n",
8717 dev->name, dev->reg_state);
8718 dump_stack();
8719 continue;
8722 dev->reg_state = NETREG_UNREGISTERED;
8724 netdev_wait_allrefs(dev);
8726 /* paranoia */
8727 BUG_ON(netdev_refcnt_read(dev));
8728 BUG_ON(!list_empty(&dev->ptype_all));
8729 BUG_ON(!list_empty(&dev->ptype_specific));
8730 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8731 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8732 #if IS_ENABLED(CONFIG_DECNET)
8733 WARN_ON(dev->dn_ptr);
8734 #endif
8735 if (dev->priv_destructor)
8736 dev->priv_destructor(dev);
8737 if (dev->needs_free_netdev)
8738 free_netdev(dev);
8740 /* Report a network device has been unregistered */
8741 rtnl_lock();
8742 dev_net(dev)->dev_unreg_count--;
8743 __rtnl_unlock();
8744 wake_up(&netdev_unregistering_wq);
8746 /* Free network device */
8747 kobject_put(&dev->dev.kobj);
8751 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8752 * all the same fields in the same order as net_device_stats, with only
8753 * the type differing, but rtnl_link_stats64 may have additional fields
8754 * at the end for newer counters.
8756 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8757 const struct net_device_stats *netdev_stats)
8759 #if BITS_PER_LONG == 64
8760 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8761 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8762 /* zero out counters that only exist in rtnl_link_stats64 */
8763 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8764 sizeof(*stats64) - sizeof(*netdev_stats));
8765 #else
8766 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8767 const unsigned long *src = (const unsigned long *)netdev_stats;
8768 u64 *dst = (u64 *)stats64;
8770 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8771 for (i = 0; i < n; i++)
8772 dst[i] = src[i];
8773 /* zero out counters that only exist in rtnl_link_stats64 */
8774 memset((char *)stats64 + n * sizeof(u64), 0,
8775 sizeof(*stats64) - n * sizeof(u64));
8776 #endif
8778 EXPORT_SYMBOL(netdev_stats_to_stats64);
8781 * dev_get_stats - get network device statistics
8782 * @dev: device to get statistics from
8783 * @storage: place to store stats
8785 * Get network statistics from device. Return @storage.
8786 * The device driver may provide its own method by setting
8787 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8788 * otherwise the internal statistics structure is used.
8790 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8791 struct rtnl_link_stats64 *storage)
8793 const struct net_device_ops *ops = dev->netdev_ops;
8795 if (ops->ndo_get_stats64) {
8796 memset(storage, 0, sizeof(*storage));
8797 ops->ndo_get_stats64(dev, storage);
8798 } else if (ops->ndo_get_stats) {
8799 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8800 } else {
8801 netdev_stats_to_stats64(storage, &dev->stats);
8803 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8804 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8805 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8806 return storage;
8808 EXPORT_SYMBOL(dev_get_stats);
8810 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8812 struct netdev_queue *queue = dev_ingress_queue(dev);
8814 #ifdef CONFIG_NET_CLS_ACT
8815 if (queue)
8816 return queue;
8817 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8818 if (!queue)
8819 return NULL;
8820 netdev_init_one_queue(dev, queue, NULL);
8821 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8822 queue->qdisc_sleeping = &noop_qdisc;
8823 rcu_assign_pointer(dev->ingress_queue, queue);
8824 #endif
8825 return queue;
8828 static const struct ethtool_ops default_ethtool_ops;
8830 void netdev_set_default_ethtool_ops(struct net_device *dev,
8831 const struct ethtool_ops *ops)
8833 if (dev->ethtool_ops == &default_ethtool_ops)
8834 dev->ethtool_ops = ops;
8836 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8838 void netdev_freemem(struct net_device *dev)
8840 char *addr = (char *)dev - dev->padded;
8842 kvfree(addr);
8846 * alloc_netdev_mqs - allocate network device
8847 * @sizeof_priv: size of private data to allocate space for
8848 * @name: device name format string
8849 * @name_assign_type: origin of device name
8850 * @setup: callback to initialize device
8851 * @txqs: the number of TX subqueues to allocate
8852 * @rxqs: the number of RX subqueues to allocate
8854 * Allocates a struct net_device with private data area for driver use
8855 * and performs basic initialization. Also allocates subqueue structs
8856 * for each queue on the device.
8858 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8859 unsigned char name_assign_type,
8860 void (*setup)(struct net_device *),
8861 unsigned int txqs, unsigned int rxqs)
8863 struct net_device *dev;
8864 unsigned int alloc_size;
8865 struct net_device *p;
8867 BUG_ON(strlen(name) >= sizeof(dev->name));
8869 if (txqs < 1) {
8870 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8871 return NULL;
8874 if (rxqs < 1) {
8875 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8876 return NULL;
8879 alloc_size = sizeof(struct net_device);
8880 if (sizeof_priv) {
8881 /* ensure 32-byte alignment of private area */
8882 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8883 alloc_size += sizeof_priv;
8885 /* ensure 32-byte alignment of whole construct */
8886 alloc_size += NETDEV_ALIGN - 1;
8888 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8889 if (!p)
8890 return NULL;
8892 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8893 dev->padded = (char *)dev - (char *)p;
8895 dev->pcpu_refcnt = alloc_percpu(int);
8896 if (!dev->pcpu_refcnt)
8897 goto free_dev;
8899 if (dev_addr_init(dev))
8900 goto free_pcpu;
8902 dev_mc_init(dev);
8903 dev_uc_init(dev);
8905 dev_net_set(dev, &init_net);
8907 dev->gso_max_size = GSO_MAX_SIZE;
8908 dev->gso_max_segs = GSO_MAX_SEGS;
8910 INIT_LIST_HEAD(&dev->napi_list);
8911 INIT_LIST_HEAD(&dev->unreg_list);
8912 INIT_LIST_HEAD(&dev->close_list);
8913 INIT_LIST_HEAD(&dev->link_watch_list);
8914 INIT_LIST_HEAD(&dev->adj_list.upper);
8915 INIT_LIST_HEAD(&dev->adj_list.lower);
8916 INIT_LIST_HEAD(&dev->ptype_all);
8917 INIT_LIST_HEAD(&dev->ptype_specific);
8918 #ifdef CONFIG_NET_SCHED
8919 hash_init(dev->qdisc_hash);
8920 #endif
8921 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8922 setup(dev);
8924 if (!dev->tx_queue_len) {
8925 dev->priv_flags |= IFF_NO_QUEUE;
8926 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8929 dev->num_tx_queues = txqs;
8930 dev->real_num_tx_queues = txqs;
8931 if (netif_alloc_netdev_queues(dev))
8932 goto free_all;
8934 dev->num_rx_queues = rxqs;
8935 dev->real_num_rx_queues = rxqs;
8936 if (netif_alloc_rx_queues(dev))
8937 goto free_all;
8939 strcpy(dev->name, name);
8940 dev->name_assign_type = name_assign_type;
8941 dev->group = INIT_NETDEV_GROUP;
8942 if (!dev->ethtool_ops)
8943 dev->ethtool_ops = &default_ethtool_ops;
8945 nf_hook_ingress_init(dev);
8947 return dev;
8949 free_all:
8950 free_netdev(dev);
8951 return NULL;
8953 free_pcpu:
8954 free_percpu(dev->pcpu_refcnt);
8955 free_dev:
8956 netdev_freemem(dev);
8957 return NULL;
8959 EXPORT_SYMBOL(alloc_netdev_mqs);
8962 * free_netdev - free network device
8963 * @dev: device
8965 * This function does the last stage of destroying an allocated device
8966 * interface. The reference to the device object is released. If this
8967 * is the last reference then it will be freed.Must be called in process
8968 * context.
8970 void free_netdev(struct net_device *dev)
8972 struct napi_struct *p, *n;
8974 might_sleep();
8975 netif_free_tx_queues(dev);
8976 netif_free_rx_queues(dev);
8978 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8980 /* Flush device addresses */
8981 dev_addr_flush(dev);
8983 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8984 netif_napi_del(p);
8986 free_percpu(dev->pcpu_refcnt);
8987 dev->pcpu_refcnt = NULL;
8989 /* Compatibility with error handling in drivers */
8990 if (dev->reg_state == NETREG_UNINITIALIZED) {
8991 netdev_freemem(dev);
8992 return;
8995 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8996 dev->reg_state = NETREG_RELEASED;
8998 /* will free via device release */
8999 put_device(&dev->dev);
9001 EXPORT_SYMBOL(free_netdev);
9004 * synchronize_net - Synchronize with packet receive processing
9006 * Wait for packets currently being received to be done.
9007 * Does not block later packets from starting.
9009 void synchronize_net(void)
9011 might_sleep();
9012 if (rtnl_is_locked())
9013 synchronize_rcu_expedited();
9014 else
9015 synchronize_rcu();
9017 EXPORT_SYMBOL(synchronize_net);
9020 * unregister_netdevice_queue - remove device from the kernel
9021 * @dev: device
9022 * @head: list
9024 * This function shuts down a device interface and removes it
9025 * from the kernel tables.
9026 * If head not NULL, device is queued to be unregistered later.
9028 * Callers must hold the rtnl semaphore. You may want
9029 * unregister_netdev() instead of this.
9032 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9034 ASSERT_RTNL();
9036 if (head) {
9037 list_move_tail(&dev->unreg_list, head);
9038 } else {
9039 rollback_registered(dev);
9040 /* Finish processing unregister after unlock */
9041 net_set_todo(dev);
9044 EXPORT_SYMBOL(unregister_netdevice_queue);
9047 * unregister_netdevice_many - unregister many devices
9048 * @head: list of devices
9050 * Note: As most callers use a stack allocated list_head,
9051 * we force a list_del() to make sure stack wont be corrupted later.
9053 void unregister_netdevice_many(struct list_head *head)
9055 struct net_device *dev;
9057 if (!list_empty(head)) {
9058 rollback_registered_many(head);
9059 list_for_each_entry(dev, head, unreg_list)
9060 net_set_todo(dev);
9061 list_del(head);
9064 EXPORT_SYMBOL(unregister_netdevice_many);
9067 * unregister_netdev - remove device from the kernel
9068 * @dev: device
9070 * This function shuts down a device interface and removes it
9071 * from the kernel tables.
9073 * This is just a wrapper for unregister_netdevice that takes
9074 * the rtnl semaphore. In general you want to use this and not
9075 * unregister_netdevice.
9077 void unregister_netdev(struct net_device *dev)
9079 rtnl_lock();
9080 unregister_netdevice(dev);
9081 rtnl_unlock();
9083 EXPORT_SYMBOL(unregister_netdev);
9086 * dev_change_net_namespace - move device to different nethost namespace
9087 * @dev: device
9088 * @net: network namespace
9089 * @pat: If not NULL name pattern to try if the current device name
9090 * is already taken in the destination network namespace.
9092 * This function shuts down a device interface and moves it
9093 * to a new network namespace. On success 0 is returned, on
9094 * a failure a netagive errno code is returned.
9096 * Callers must hold the rtnl semaphore.
9099 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9101 int err, new_nsid, new_ifindex;
9103 ASSERT_RTNL();
9105 /* Don't allow namespace local devices to be moved. */
9106 err = -EINVAL;
9107 if (dev->features & NETIF_F_NETNS_LOCAL)
9108 goto out;
9110 /* Ensure the device has been registrered */
9111 if (dev->reg_state != NETREG_REGISTERED)
9112 goto out;
9114 /* Get out if there is nothing todo */
9115 err = 0;
9116 if (net_eq(dev_net(dev), net))
9117 goto out;
9119 /* Pick the destination device name, and ensure
9120 * we can use it in the destination network namespace.
9122 err = -EEXIST;
9123 if (__dev_get_by_name(net, dev->name)) {
9124 /* We get here if we can't use the current device name */
9125 if (!pat)
9126 goto out;
9127 err = dev_get_valid_name(net, dev, pat);
9128 if (err < 0)
9129 goto out;
9133 * And now a mini version of register_netdevice unregister_netdevice.
9136 /* If device is running close it first. */
9137 dev_close(dev);
9139 /* And unlink it from device chain */
9140 unlist_netdevice(dev);
9142 synchronize_net();
9144 /* Shutdown queueing discipline. */
9145 dev_shutdown(dev);
9147 /* Notify protocols, that we are about to destroy
9148 * this device. They should clean all the things.
9150 * Note that dev->reg_state stays at NETREG_REGISTERED.
9151 * This is wanted because this way 8021q and macvlan know
9152 * the device is just moving and can keep their slaves up.
9154 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9155 rcu_barrier();
9157 new_nsid = peernet2id_alloc(dev_net(dev), net);
9158 /* If there is an ifindex conflict assign a new one */
9159 if (__dev_get_by_index(net, dev->ifindex))
9160 new_ifindex = dev_new_index(net);
9161 else
9162 new_ifindex = dev->ifindex;
9164 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9165 new_ifindex);
9168 * Flush the unicast and multicast chains
9170 dev_uc_flush(dev);
9171 dev_mc_flush(dev);
9173 /* Send a netdev-removed uevent to the old namespace */
9174 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9175 netdev_adjacent_del_links(dev);
9177 /* Actually switch the network namespace */
9178 dev_net_set(dev, net);
9179 dev->ifindex = new_ifindex;
9181 /* Send a netdev-add uevent to the new namespace */
9182 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9183 netdev_adjacent_add_links(dev);
9185 /* Fixup kobjects */
9186 err = device_rename(&dev->dev, dev->name);
9187 WARN_ON(err);
9189 /* Add the device back in the hashes */
9190 list_netdevice(dev);
9192 /* Notify protocols, that a new device appeared. */
9193 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9196 * Prevent userspace races by waiting until the network
9197 * device is fully setup before sending notifications.
9199 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9201 synchronize_net();
9202 err = 0;
9203 out:
9204 return err;
9206 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9208 static int dev_cpu_dead(unsigned int oldcpu)
9210 struct sk_buff **list_skb;
9211 struct sk_buff *skb;
9212 unsigned int cpu;
9213 struct softnet_data *sd, *oldsd, *remsd = NULL;
9215 local_irq_disable();
9216 cpu = smp_processor_id();
9217 sd = &per_cpu(softnet_data, cpu);
9218 oldsd = &per_cpu(softnet_data, oldcpu);
9220 /* Find end of our completion_queue. */
9221 list_skb = &sd->completion_queue;
9222 while (*list_skb)
9223 list_skb = &(*list_skb)->next;
9224 /* Append completion queue from offline CPU. */
9225 *list_skb = oldsd->completion_queue;
9226 oldsd->completion_queue = NULL;
9228 /* Append output queue from offline CPU. */
9229 if (oldsd->output_queue) {
9230 *sd->output_queue_tailp = oldsd->output_queue;
9231 sd->output_queue_tailp = oldsd->output_queue_tailp;
9232 oldsd->output_queue = NULL;
9233 oldsd->output_queue_tailp = &oldsd->output_queue;
9235 /* Append NAPI poll list from offline CPU, with one exception :
9236 * process_backlog() must be called by cpu owning percpu backlog.
9237 * We properly handle process_queue & input_pkt_queue later.
9239 while (!list_empty(&oldsd->poll_list)) {
9240 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9241 struct napi_struct,
9242 poll_list);
9244 list_del_init(&napi->poll_list);
9245 if (napi->poll == process_backlog)
9246 napi->state = 0;
9247 else
9248 ____napi_schedule(sd, napi);
9251 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9252 local_irq_enable();
9254 #ifdef CONFIG_RPS
9255 remsd = oldsd->rps_ipi_list;
9256 oldsd->rps_ipi_list = NULL;
9257 #endif
9258 /* send out pending IPI's on offline CPU */
9259 net_rps_send_ipi(remsd);
9261 /* Process offline CPU's input_pkt_queue */
9262 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9263 netif_rx_ni(skb);
9264 input_queue_head_incr(oldsd);
9266 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9267 netif_rx_ni(skb);
9268 input_queue_head_incr(oldsd);
9271 return 0;
9275 * netdev_increment_features - increment feature set by one
9276 * @all: current feature set
9277 * @one: new feature set
9278 * @mask: mask feature set
9280 * Computes a new feature set after adding a device with feature set
9281 * @one to the master device with current feature set @all. Will not
9282 * enable anything that is off in @mask. Returns the new feature set.
9284 netdev_features_t netdev_increment_features(netdev_features_t all,
9285 netdev_features_t one, netdev_features_t mask)
9287 if (mask & NETIF_F_HW_CSUM)
9288 mask |= NETIF_F_CSUM_MASK;
9289 mask |= NETIF_F_VLAN_CHALLENGED;
9291 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9292 all &= one | ~NETIF_F_ALL_FOR_ALL;
9294 /* If one device supports hw checksumming, set for all. */
9295 if (all & NETIF_F_HW_CSUM)
9296 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9298 return all;
9300 EXPORT_SYMBOL(netdev_increment_features);
9302 static struct hlist_head * __net_init netdev_create_hash(void)
9304 int i;
9305 struct hlist_head *hash;
9307 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9308 if (hash != NULL)
9309 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9310 INIT_HLIST_HEAD(&hash[i]);
9312 return hash;
9315 /* Initialize per network namespace state */
9316 static int __net_init netdev_init(struct net *net)
9318 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9319 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9321 if (net != &init_net)
9322 INIT_LIST_HEAD(&net->dev_base_head);
9324 net->dev_name_head = netdev_create_hash();
9325 if (net->dev_name_head == NULL)
9326 goto err_name;
9328 net->dev_index_head = netdev_create_hash();
9329 if (net->dev_index_head == NULL)
9330 goto err_idx;
9332 return 0;
9334 err_idx:
9335 kfree(net->dev_name_head);
9336 err_name:
9337 return -ENOMEM;
9341 * netdev_drivername - network driver for the device
9342 * @dev: network device
9344 * Determine network driver for device.
9346 const char *netdev_drivername(const struct net_device *dev)
9348 const struct device_driver *driver;
9349 const struct device *parent;
9350 const char *empty = "";
9352 parent = dev->dev.parent;
9353 if (!parent)
9354 return empty;
9356 driver = parent->driver;
9357 if (driver && driver->name)
9358 return driver->name;
9359 return empty;
9362 static void __netdev_printk(const char *level, const struct net_device *dev,
9363 struct va_format *vaf)
9365 if (dev && dev->dev.parent) {
9366 dev_printk_emit(level[1] - '0',
9367 dev->dev.parent,
9368 "%s %s %s%s: %pV",
9369 dev_driver_string(dev->dev.parent),
9370 dev_name(dev->dev.parent),
9371 netdev_name(dev), netdev_reg_state(dev),
9372 vaf);
9373 } else if (dev) {
9374 printk("%s%s%s: %pV",
9375 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9376 } else {
9377 printk("%s(NULL net_device): %pV", level, vaf);
9381 void netdev_printk(const char *level, const struct net_device *dev,
9382 const char *format, ...)
9384 struct va_format vaf;
9385 va_list args;
9387 va_start(args, format);
9389 vaf.fmt = format;
9390 vaf.va = &args;
9392 __netdev_printk(level, dev, &vaf);
9394 va_end(args);
9396 EXPORT_SYMBOL(netdev_printk);
9398 #define define_netdev_printk_level(func, level) \
9399 void func(const struct net_device *dev, const char *fmt, ...) \
9401 struct va_format vaf; \
9402 va_list args; \
9404 va_start(args, fmt); \
9406 vaf.fmt = fmt; \
9407 vaf.va = &args; \
9409 __netdev_printk(level, dev, &vaf); \
9411 va_end(args); \
9413 EXPORT_SYMBOL(func);
9415 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9416 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9417 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9418 define_netdev_printk_level(netdev_err, KERN_ERR);
9419 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9420 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9421 define_netdev_printk_level(netdev_info, KERN_INFO);
9423 static void __net_exit netdev_exit(struct net *net)
9425 kfree(net->dev_name_head);
9426 kfree(net->dev_index_head);
9427 if (net != &init_net)
9428 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9431 static struct pernet_operations __net_initdata netdev_net_ops = {
9432 .init = netdev_init,
9433 .exit = netdev_exit,
9436 static void __net_exit default_device_exit(struct net *net)
9438 struct net_device *dev, *aux;
9440 * Push all migratable network devices back to the
9441 * initial network namespace
9443 rtnl_lock();
9444 for_each_netdev_safe(net, dev, aux) {
9445 int err;
9446 char fb_name[IFNAMSIZ];
9448 /* Ignore unmoveable devices (i.e. loopback) */
9449 if (dev->features & NETIF_F_NETNS_LOCAL)
9450 continue;
9452 /* Leave virtual devices for the generic cleanup */
9453 if (dev->rtnl_link_ops)
9454 continue;
9456 /* Push remaining network devices to init_net */
9457 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9458 err = dev_change_net_namespace(dev, &init_net, fb_name);
9459 if (err) {
9460 pr_emerg("%s: failed to move %s to init_net: %d\n",
9461 __func__, dev->name, err);
9462 BUG();
9465 rtnl_unlock();
9468 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9470 /* Return with the rtnl_lock held when there are no network
9471 * devices unregistering in any network namespace in net_list.
9473 struct net *net;
9474 bool unregistering;
9475 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9477 add_wait_queue(&netdev_unregistering_wq, &wait);
9478 for (;;) {
9479 unregistering = false;
9480 rtnl_lock();
9481 list_for_each_entry(net, net_list, exit_list) {
9482 if (net->dev_unreg_count > 0) {
9483 unregistering = true;
9484 break;
9487 if (!unregistering)
9488 break;
9489 __rtnl_unlock();
9491 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9493 remove_wait_queue(&netdev_unregistering_wq, &wait);
9496 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9498 /* At exit all network devices most be removed from a network
9499 * namespace. Do this in the reverse order of registration.
9500 * Do this across as many network namespaces as possible to
9501 * improve batching efficiency.
9503 struct net_device *dev;
9504 struct net *net;
9505 LIST_HEAD(dev_kill_list);
9507 /* To prevent network device cleanup code from dereferencing
9508 * loopback devices or network devices that have been freed
9509 * wait here for all pending unregistrations to complete,
9510 * before unregistring the loopback device and allowing the
9511 * network namespace be freed.
9513 * The netdev todo list containing all network devices
9514 * unregistrations that happen in default_device_exit_batch
9515 * will run in the rtnl_unlock() at the end of
9516 * default_device_exit_batch.
9518 rtnl_lock_unregistering(net_list);
9519 list_for_each_entry(net, net_list, exit_list) {
9520 for_each_netdev_reverse(net, dev) {
9521 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9522 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9523 else
9524 unregister_netdevice_queue(dev, &dev_kill_list);
9527 unregister_netdevice_many(&dev_kill_list);
9528 rtnl_unlock();
9531 static struct pernet_operations __net_initdata default_device_ops = {
9532 .exit = default_device_exit,
9533 .exit_batch = default_device_exit_batch,
9537 * Initialize the DEV module. At boot time this walks the device list and
9538 * unhooks any devices that fail to initialise (normally hardware not
9539 * present) and leaves us with a valid list of present and active devices.
9544 * This is called single threaded during boot, so no need
9545 * to take the rtnl semaphore.
9547 static int __init net_dev_init(void)
9549 int i, rc = -ENOMEM;
9551 BUG_ON(!dev_boot_phase);
9553 if (dev_proc_init())
9554 goto out;
9556 if (netdev_kobject_init())
9557 goto out;
9559 INIT_LIST_HEAD(&ptype_all);
9560 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9561 INIT_LIST_HEAD(&ptype_base[i]);
9563 INIT_LIST_HEAD(&offload_base);
9565 if (register_pernet_subsys(&netdev_net_ops))
9566 goto out;
9569 * Initialise the packet receive queues.
9572 for_each_possible_cpu(i) {
9573 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9574 struct softnet_data *sd = &per_cpu(softnet_data, i);
9576 INIT_WORK(flush, flush_backlog);
9578 skb_queue_head_init(&sd->input_pkt_queue);
9579 skb_queue_head_init(&sd->process_queue);
9580 #ifdef CONFIG_XFRM_OFFLOAD
9581 skb_queue_head_init(&sd->xfrm_backlog);
9582 #endif
9583 INIT_LIST_HEAD(&sd->poll_list);
9584 sd->output_queue_tailp = &sd->output_queue;
9585 #ifdef CONFIG_RPS
9586 sd->csd.func = rps_trigger_softirq;
9587 sd->csd.info = sd;
9588 sd->cpu = i;
9589 #endif
9591 init_gro_hash(&sd->backlog);
9592 sd->backlog.poll = process_backlog;
9593 sd->backlog.weight = weight_p;
9596 dev_boot_phase = 0;
9598 /* The loopback device is special if any other network devices
9599 * is present in a network namespace the loopback device must
9600 * be present. Since we now dynamically allocate and free the
9601 * loopback device ensure this invariant is maintained by
9602 * keeping the loopback device as the first device on the
9603 * list of network devices. Ensuring the loopback devices
9604 * is the first device that appears and the last network device
9605 * that disappears.
9607 if (register_pernet_device(&loopback_net_ops))
9608 goto out;
9610 if (register_pernet_device(&default_device_ops))
9611 goto out;
9613 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9614 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9616 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9617 NULL, dev_cpu_dead);
9618 WARN_ON(rc < 0);
9619 rc = 0;
9620 out:
9621 return rc;
9624 subsys_initcall(net_dev_init);