2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
150 #include "net-sysfs.h"
152 #define MAX_GRO_SKBS 8
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 static DEFINE_SPINLOCK(ptype_lock
);
158 static DEFINE_SPINLOCK(offload_lock
);
159 struct list_head ptype_base
[PTYPE_HASH_SIZE
] __read_mostly
;
160 struct list_head ptype_all __read_mostly
; /* Taps */
161 static struct list_head offload_base __read_mostly
;
163 static int netif_rx_internal(struct sk_buff
*skb
);
164 static int call_netdevice_notifiers_info(unsigned long val
,
165 struct netdev_notifier_info
*info
);
166 static struct napi_struct
*napi_by_id(unsigned int napi_id
);
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
187 DEFINE_RWLOCK(dev_base_lock
);
188 EXPORT_SYMBOL(dev_base_lock
);
190 static DEFINE_MUTEX(ifalias_mutex
);
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock
);
195 static unsigned int napi_gen_id
= NR_CPUS
;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash
, 8);
198 static seqcount_t devnet_rename_seq
;
200 static inline void dev_base_seq_inc(struct net
*net
)
202 while (++net
->dev_base_seq
== 0)
206 static inline struct hlist_head
*dev_name_hash(struct net
*net
, const char *name
)
208 unsigned int hash
= full_name_hash(net
, name
, strnlen(name
, IFNAMSIZ
));
210 return &net
->dev_name_head
[hash_32(hash
, NETDEV_HASHBITS
)];
213 static inline struct hlist_head
*dev_index_hash(struct net
*net
, int ifindex
)
215 return &net
->dev_index_head
[ifindex
& (NETDEV_HASHENTRIES
- 1)];
218 static inline void rps_lock(struct softnet_data
*sd
)
221 spin_lock(&sd
->input_pkt_queue
.lock
);
225 static inline void rps_unlock(struct softnet_data
*sd
)
228 spin_unlock(&sd
->input_pkt_queue
.lock
);
232 /* Device list insertion */
233 static void list_netdevice(struct net_device
*dev
)
235 struct net
*net
= dev_net(dev
);
239 write_lock_bh(&dev_base_lock
);
240 list_add_tail_rcu(&dev
->dev_list
, &net
->dev_base_head
);
241 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
242 hlist_add_head_rcu(&dev
->index_hlist
,
243 dev_index_hash(net
, dev
->ifindex
));
244 write_unlock_bh(&dev_base_lock
);
246 dev_base_seq_inc(net
);
249 /* Device list removal
250 * caller must respect a RCU grace period before freeing/reusing dev
252 static void unlist_netdevice(struct net_device
*dev
)
256 /* Unlink dev from the device chain */
257 write_lock_bh(&dev_base_lock
);
258 list_del_rcu(&dev
->dev_list
);
259 hlist_del_rcu(&dev
->name_hlist
);
260 hlist_del_rcu(&dev
->index_hlist
);
261 write_unlock_bh(&dev_base_lock
);
263 dev_base_seq_inc(dev_net(dev
));
270 static RAW_NOTIFIER_HEAD(netdev_chain
);
273 * Device drivers call our routines to queue packets here. We empty the
274 * queue in the local softnet handler.
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data
, softnet_data
);
278 EXPORT_PER_CPU_SYMBOL(softnet_data
);
280 #ifdef CONFIG_LOCKDEP
282 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283 * according to dev->type
285 static const unsigned short netdev_lock_type
[] = {
286 ARPHRD_NETROM
, ARPHRD_ETHER
, ARPHRD_EETHER
, ARPHRD_AX25
,
287 ARPHRD_PRONET
, ARPHRD_CHAOS
, ARPHRD_IEEE802
, ARPHRD_ARCNET
,
288 ARPHRD_APPLETLK
, ARPHRD_DLCI
, ARPHRD_ATM
, ARPHRD_METRICOM
,
289 ARPHRD_IEEE1394
, ARPHRD_EUI64
, ARPHRD_INFINIBAND
, ARPHRD_SLIP
,
290 ARPHRD_CSLIP
, ARPHRD_SLIP6
, ARPHRD_CSLIP6
, ARPHRD_RSRVD
,
291 ARPHRD_ADAPT
, ARPHRD_ROSE
, ARPHRD_X25
, ARPHRD_HWX25
,
292 ARPHRD_PPP
, ARPHRD_CISCO
, ARPHRD_LAPB
, ARPHRD_DDCMP
,
293 ARPHRD_RAWHDLC
, ARPHRD_TUNNEL
, ARPHRD_TUNNEL6
, ARPHRD_FRAD
,
294 ARPHRD_SKIP
, ARPHRD_LOOPBACK
, ARPHRD_LOCALTLK
, ARPHRD_FDDI
,
295 ARPHRD_BIF
, ARPHRD_SIT
, ARPHRD_IPDDP
, ARPHRD_IPGRE
,
296 ARPHRD_PIMREG
, ARPHRD_HIPPI
, ARPHRD_ASH
, ARPHRD_ECONET
,
297 ARPHRD_IRDA
, ARPHRD_FCPP
, ARPHRD_FCAL
, ARPHRD_FCPL
,
298 ARPHRD_FCFABRIC
, ARPHRD_IEEE80211
, ARPHRD_IEEE80211_PRISM
,
299 ARPHRD_IEEE80211_RADIOTAP
, ARPHRD_PHONET
, ARPHRD_PHONET_PIPE
,
300 ARPHRD_IEEE802154
, ARPHRD_VOID
, ARPHRD_NONE
};
302 static const char *const netdev_lock_name
[] = {
303 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 static struct lock_class_key netdev_xmit_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
320 static struct lock_class_key netdev_addr_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type
)
326 for (i
= 0; i
< ARRAY_SIZE(netdev_lock_type
); i
++)
327 if (netdev_lock_type
[i
] == dev_type
)
329 /* the last key is used by default */
330 return ARRAY_SIZE(netdev_lock_type
) - 1;
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
334 unsigned short dev_type
)
338 i
= netdev_lock_pos(dev_type
);
339 lockdep_set_class_and_name(lock
, &netdev_xmit_lock_key
[i
],
340 netdev_lock_name
[i
]);
343 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
347 i
= netdev_lock_pos(dev
->type
);
348 lockdep_set_class_and_name(&dev
->addr_list_lock
,
349 &netdev_addr_lock_key
[i
],
350 netdev_lock_name
[i
]);
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
354 unsigned short dev_type
)
357 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
362 /*******************************************************************************
364 * Protocol management and registration routines
366 *******************************************************************************/
370 * Add a protocol ID to the list. Now that the input handler is
371 * smarter we can dispense with all the messy stuff that used to be
374 * BEWARE!!! Protocol handlers, mangling input packets,
375 * MUST BE last in hash buckets and checking protocol handlers
376 * MUST start from promiscuous ptype_all chain in net_bh.
377 * It is true now, do not change it.
378 * Explanation follows: if protocol handler, mangling packet, will
379 * be the first on list, it is not able to sense, that packet
380 * is cloned and should be copied-on-write, so that it will
381 * change it and subsequent readers will get broken packet.
385 static inline struct list_head
*ptype_head(const struct packet_type
*pt
)
387 if (pt
->type
== htons(ETH_P_ALL
))
388 return pt
->dev
? &pt
->dev
->ptype_all
: &ptype_all
;
390 return pt
->dev
? &pt
->dev
->ptype_specific
:
391 &ptype_base
[ntohs(pt
->type
) & PTYPE_HASH_MASK
];
395 * dev_add_pack - add packet handler
396 * @pt: packet type declaration
398 * Add a protocol handler to the networking stack. The passed &packet_type
399 * is linked into kernel lists and may not be freed until it has been
400 * removed from the kernel lists.
402 * This call does not sleep therefore it can not
403 * guarantee all CPU's that are in middle of receiving packets
404 * will see the new packet type (until the next received packet).
407 void dev_add_pack(struct packet_type
*pt
)
409 struct list_head
*head
= ptype_head(pt
);
411 spin_lock(&ptype_lock
);
412 list_add_rcu(&pt
->list
, head
);
413 spin_unlock(&ptype_lock
);
415 EXPORT_SYMBOL(dev_add_pack
);
418 * __dev_remove_pack - remove packet handler
419 * @pt: packet type declaration
421 * Remove a protocol handler that was previously added to the kernel
422 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
423 * from the kernel lists and can be freed or reused once this function
426 * The packet type might still be in use by receivers
427 * and must not be freed until after all the CPU's have gone
428 * through a quiescent state.
430 void __dev_remove_pack(struct packet_type
*pt
)
432 struct list_head
*head
= ptype_head(pt
);
433 struct packet_type
*pt1
;
435 spin_lock(&ptype_lock
);
437 list_for_each_entry(pt1
, head
, list
) {
439 list_del_rcu(&pt
->list
);
444 pr_warn("dev_remove_pack: %p not found\n", pt
);
446 spin_unlock(&ptype_lock
);
448 EXPORT_SYMBOL(__dev_remove_pack
);
451 * dev_remove_pack - remove packet handler
452 * @pt: packet type declaration
454 * Remove a protocol handler that was previously added to the kernel
455 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
456 * from the kernel lists and can be freed or reused once this function
459 * This call sleeps to guarantee that no CPU is looking at the packet
462 void dev_remove_pack(struct packet_type
*pt
)
464 __dev_remove_pack(pt
);
468 EXPORT_SYMBOL(dev_remove_pack
);
472 * dev_add_offload - register offload handlers
473 * @po: protocol offload declaration
475 * Add protocol offload handlers to the networking stack. The passed
476 * &proto_offload is linked into kernel lists and may not be freed until
477 * it has been removed from the kernel lists.
479 * This call does not sleep therefore it can not
480 * guarantee all CPU's that are in middle of receiving packets
481 * will see the new offload handlers (until the next received packet).
483 void dev_add_offload(struct packet_offload
*po
)
485 struct packet_offload
*elem
;
487 spin_lock(&offload_lock
);
488 list_for_each_entry(elem
, &offload_base
, list
) {
489 if (po
->priority
< elem
->priority
)
492 list_add_rcu(&po
->list
, elem
->list
.prev
);
493 spin_unlock(&offload_lock
);
495 EXPORT_SYMBOL(dev_add_offload
);
498 * __dev_remove_offload - remove offload handler
499 * @po: packet offload declaration
501 * Remove a protocol offload handler that was previously added to the
502 * kernel offload handlers by dev_add_offload(). The passed &offload_type
503 * is removed from the kernel lists and can be freed or reused once this
506 * The packet type might still be in use by receivers
507 * and must not be freed until after all the CPU's have gone
508 * through a quiescent state.
510 static void __dev_remove_offload(struct packet_offload
*po
)
512 struct list_head
*head
= &offload_base
;
513 struct packet_offload
*po1
;
515 spin_lock(&offload_lock
);
517 list_for_each_entry(po1
, head
, list
) {
519 list_del_rcu(&po
->list
);
524 pr_warn("dev_remove_offload: %p not found\n", po
);
526 spin_unlock(&offload_lock
);
530 * dev_remove_offload - remove packet offload handler
531 * @po: packet offload declaration
533 * Remove a packet offload handler that was previously added to the kernel
534 * offload handlers by dev_add_offload(). The passed &offload_type is
535 * removed from the kernel lists and can be freed or reused once this
538 * This call sleeps to guarantee that no CPU is looking at the packet
541 void dev_remove_offload(struct packet_offload
*po
)
543 __dev_remove_offload(po
);
547 EXPORT_SYMBOL(dev_remove_offload
);
549 /******************************************************************************
551 * Device Boot-time Settings Routines
553 ******************************************************************************/
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup
[NETDEV_BOOT_SETUP_MAX
];
559 * netdev_boot_setup_add - add new setup entry
560 * @name: name of the device
561 * @map: configured settings for the device
563 * Adds new setup entry to the dev_boot_setup list. The function
564 * returns 0 on error and 1 on success. This is a generic routine to
567 static int netdev_boot_setup_add(char *name
, struct ifmap
*map
)
569 struct netdev_boot_setup
*s
;
573 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
574 if (s
[i
].name
[0] == '\0' || s
[i
].name
[0] == ' ') {
575 memset(s
[i
].name
, 0, sizeof(s
[i
].name
));
576 strlcpy(s
[i
].name
, name
, IFNAMSIZ
);
577 memcpy(&s
[i
].map
, map
, sizeof(s
[i
].map
));
582 return i
>= NETDEV_BOOT_SETUP_MAX
? 0 : 1;
586 * netdev_boot_setup_check - check boot time settings
587 * @dev: the netdevice
589 * Check boot time settings for the device.
590 * The found settings are set for the device to be used
591 * later in the device probing.
592 * Returns 0 if no settings found, 1 if they are.
594 int netdev_boot_setup_check(struct net_device
*dev
)
596 struct netdev_boot_setup
*s
= dev_boot_setup
;
599 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
600 if (s
[i
].name
[0] != '\0' && s
[i
].name
[0] != ' ' &&
601 !strcmp(dev
->name
, s
[i
].name
)) {
602 dev
->irq
= s
[i
].map
.irq
;
603 dev
->base_addr
= s
[i
].map
.base_addr
;
604 dev
->mem_start
= s
[i
].map
.mem_start
;
605 dev
->mem_end
= s
[i
].map
.mem_end
;
611 EXPORT_SYMBOL(netdev_boot_setup_check
);
615 * netdev_boot_base - get address from boot time settings
616 * @prefix: prefix for network device
617 * @unit: id for network device
619 * Check boot time settings for the base address of device.
620 * The found settings are set for the device to be used
621 * later in the device probing.
622 * Returns 0 if no settings found.
624 unsigned long netdev_boot_base(const char *prefix
, int unit
)
626 const struct netdev_boot_setup
*s
= dev_boot_setup
;
630 sprintf(name
, "%s%d", prefix
, unit
);
633 * If device already registered then return base of 1
634 * to indicate not to probe for this interface
636 if (__dev_get_by_name(&init_net
, name
))
639 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++)
640 if (!strcmp(name
, s
[i
].name
))
641 return s
[i
].map
.base_addr
;
646 * Saves at boot time configured settings for any netdevice.
648 int __init
netdev_boot_setup(char *str
)
653 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
658 memset(&map
, 0, sizeof(map
));
662 map
.base_addr
= ints
[2];
664 map
.mem_start
= ints
[3];
666 map
.mem_end
= ints
[4];
668 /* Add new entry to the list */
669 return netdev_boot_setup_add(str
, &map
);
672 __setup("netdev=", netdev_boot_setup
);
674 /*******************************************************************************
676 * Device Interface Subroutines
678 *******************************************************************************/
681 * dev_get_iflink - get 'iflink' value of a interface
682 * @dev: targeted interface
684 * Indicates the ifindex the interface is linked to.
685 * Physical interfaces have the same 'ifindex' and 'iflink' values.
688 int dev_get_iflink(const struct net_device
*dev
)
690 if (dev
->netdev_ops
&& dev
->netdev_ops
->ndo_get_iflink
)
691 return dev
->netdev_ops
->ndo_get_iflink(dev
);
695 EXPORT_SYMBOL(dev_get_iflink
);
698 * dev_fill_metadata_dst - Retrieve tunnel egress information.
699 * @dev: targeted interface
702 * For better visibility of tunnel traffic OVS needs to retrieve
703 * egress tunnel information for a packet. Following API allows
704 * user to get this info.
706 int dev_fill_metadata_dst(struct net_device
*dev
, struct sk_buff
*skb
)
708 struct ip_tunnel_info
*info
;
710 if (!dev
->netdev_ops
|| !dev
->netdev_ops
->ndo_fill_metadata_dst
)
713 info
= skb_tunnel_info_unclone(skb
);
716 if (unlikely(!(info
->mode
& IP_TUNNEL_INFO_TX
)))
719 return dev
->netdev_ops
->ndo_fill_metadata_dst(dev
, skb
);
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst
);
724 * __dev_get_by_name - find a device by its name
725 * @net: the applicable net namespace
726 * @name: name to find
728 * Find an interface by name. Must be called under RTNL semaphore
729 * or @dev_base_lock. If the name is found a pointer to the device
730 * is returned. If the name is not found then %NULL is returned. The
731 * reference counters are not incremented so the caller must be
732 * careful with locks.
735 struct net_device
*__dev_get_by_name(struct net
*net
, const char *name
)
737 struct net_device
*dev
;
738 struct hlist_head
*head
= dev_name_hash(net
, name
);
740 hlist_for_each_entry(dev
, head
, name_hlist
)
741 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
746 EXPORT_SYMBOL(__dev_get_by_name
);
749 * dev_get_by_name_rcu - find a device by its name
750 * @net: the applicable net namespace
751 * @name: name to find
753 * Find an interface by name.
754 * If the name is found a pointer to the device is returned.
755 * If the name is not found then %NULL is returned.
756 * The reference counters are not incremented so the caller must be
757 * careful with locks. The caller must hold RCU lock.
760 struct net_device
*dev_get_by_name_rcu(struct net
*net
, const char *name
)
762 struct net_device
*dev
;
763 struct hlist_head
*head
= dev_name_hash(net
, name
);
765 hlist_for_each_entry_rcu(dev
, head
, name_hlist
)
766 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
771 EXPORT_SYMBOL(dev_get_by_name_rcu
);
774 * dev_get_by_name - find a device by its name
775 * @net: the applicable net namespace
776 * @name: name to find
778 * Find an interface by name. This can be called from any
779 * context and does its own locking. The returned handle has
780 * the usage count incremented and the caller must use dev_put() to
781 * release it when it is no longer needed. %NULL is returned if no
782 * matching device is found.
785 struct net_device
*dev_get_by_name(struct net
*net
, const char *name
)
787 struct net_device
*dev
;
790 dev
= dev_get_by_name_rcu(net
, name
);
796 EXPORT_SYMBOL(dev_get_by_name
);
799 * __dev_get_by_index - find a device by its ifindex
800 * @net: the applicable net namespace
801 * @ifindex: index of device
803 * Search for an interface by index. Returns %NULL if the device
804 * is not found or a pointer to the device. The device has not
805 * had its reference counter increased so the caller must be careful
806 * about locking. The caller must hold either the RTNL semaphore
810 struct net_device
*__dev_get_by_index(struct net
*net
, int ifindex
)
812 struct net_device
*dev
;
813 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
815 hlist_for_each_entry(dev
, head
, index_hlist
)
816 if (dev
->ifindex
== ifindex
)
821 EXPORT_SYMBOL(__dev_get_by_index
);
824 * dev_get_by_index_rcu - find a device by its ifindex
825 * @net: the applicable net namespace
826 * @ifindex: index of device
828 * Search for an interface by index. Returns %NULL if the device
829 * is not found or a pointer to the device. The device has not
830 * had its reference counter increased so the caller must be careful
831 * about locking. The caller must hold RCU lock.
834 struct net_device
*dev_get_by_index_rcu(struct net
*net
, int ifindex
)
836 struct net_device
*dev
;
837 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
839 hlist_for_each_entry_rcu(dev
, head
, index_hlist
)
840 if (dev
->ifindex
== ifindex
)
845 EXPORT_SYMBOL(dev_get_by_index_rcu
);
849 * dev_get_by_index - find a device by its ifindex
850 * @net: the applicable net namespace
851 * @ifindex: index of device
853 * Search for an interface by index. Returns NULL if the device
854 * is not found or a pointer to the device. The device returned has
855 * had a reference added and the pointer is safe until the user calls
856 * dev_put to indicate they have finished with it.
859 struct net_device
*dev_get_by_index(struct net
*net
, int ifindex
)
861 struct net_device
*dev
;
864 dev
= dev_get_by_index_rcu(net
, ifindex
);
870 EXPORT_SYMBOL(dev_get_by_index
);
873 * dev_get_by_napi_id - find a device by napi_id
874 * @napi_id: ID of the NAPI struct
876 * Search for an interface by NAPI ID. Returns %NULL if the device
877 * is not found or a pointer to the device. The device has not had
878 * its reference counter increased so the caller must be careful
879 * about locking. The caller must hold RCU lock.
882 struct net_device
*dev_get_by_napi_id(unsigned int napi_id
)
884 struct napi_struct
*napi
;
886 WARN_ON_ONCE(!rcu_read_lock_held());
888 if (napi_id
< MIN_NAPI_ID
)
891 napi
= napi_by_id(napi_id
);
893 return napi
? napi
->dev
: NULL
;
895 EXPORT_SYMBOL(dev_get_by_napi_id
);
898 * netdev_get_name - get a netdevice name, knowing its ifindex.
899 * @net: network namespace
900 * @name: a pointer to the buffer where the name will be stored.
901 * @ifindex: the ifindex of the interface to get the name from.
903 * The use of raw_seqcount_begin() and cond_resched() before
904 * retrying is required as we want to give the writers a chance
905 * to complete when CONFIG_PREEMPT is not set.
907 int netdev_get_name(struct net
*net
, char *name
, int ifindex
)
909 struct net_device
*dev
;
913 seq
= raw_seqcount_begin(&devnet_rename_seq
);
915 dev
= dev_get_by_index_rcu(net
, ifindex
);
921 strcpy(name
, dev
->name
);
923 if (read_seqcount_retry(&devnet_rename_seq
, seq
)) {
932 * dev_getbyhwaddr_rcu - find a device by its hardware address
933 * @net: the applicable net namespace
934 * @type: media type of device
935 * @ha: hardware address
937 * Search for an interface by MAC address. Returns NULL if the device
938 * is not found or a pointer to the device.
939 * The caller must hold RCU or RTNL.
940 * The returned device has not had its ref count increased
941 * and the caller must therefore be careful about locking
945 struct net_device
*dev_getbyhwaddr_rcu(struct net
*net
, unsigned short type
,
948 struct net_device
*dev
;
950 for_each_netdev_rcu(net
, dev
)
951 if (dev
->type
== type
&&
952 !memcmp(dev
->dev_addr
, ha
, dev
->addr_len
))
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu
);
959 struct net_device
*__dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
961 struct net_device
*dev
;
964 for_each_netdev(net
, dev
)
965 if (dev
->type
== type
)
970 EXPORT_SYMBOL(__dev_getfirstbyhwtype
);
972 struct net_device
*dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
974 struct net_device
*dev
, *ret
= NULL
;
977 for_each_netdev_rcu(net
, dev
)
978 if (dev
->type
== type
) {
986 EXPORT_SYMBOL(dev_getfirstbyhwtype
);
989 * __dev_get_by_flags - find any device with given flags
990 * @net: the applicable net namespace
991 * @if_flags: IFF_* values
992 * @mask: bitmask of bits in if_flags to check
994 * Search for any interface with the given flags. Returns NULL if a device
995 * is not found or a pointer to the device. Must be called inside
996 * rtnl_lock(), and result refcount is unchanged.
999 struct net_device
*__dev_get_by_flags(struct net
*net
, unsigned short if_flags
,
1000 unsigned short mask
)
1002 struct net_device
*dev
, *ret
;
1007 for_each_netdev(net
, dev
) {
1008 if (((dev
->flags
^ if_flags
) & mask
) == 0) {
1015 EXPORT_SYMBOL(__dev_get_by_flags
);
1018 * dev_valid_name - check if name is okay for network device
1019 * @name: name string
1021 * Network device names need to be valid file names to
1022 * to allow sysfs to work. We also disallow any kind of
1025 bool dev_valid_name(const char *name
)
1029 if (strnlen(name
, IFNAMSIZ
) == IFNAMSIZ
)
1031 if (!strcmp(name
, ".") || !strcmp(name
, ".."))
1035 if (*name
== '/' || *name
== ':' || isspace(*name
))
1041 EXPORT_SYMBOL(dev_valid_name
);
1044 * __dev_alloc_name - allocate a name for a device
1045 * @net: network namespace to allocate the device name in
1046 * @name: name format string
1047 * @buf: scratch buffer and result name string
1049 * Passed a format string - eg "lt%d" it will try and find a suitable
1050 * id. It scans list of devices to build up a free map, then chooses
1051 * the first empty slot. The caller must hold the dev_base or rtnl lock
1052 * while allocating the name and adding the device in order to avoid
1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055 * Returns the number of the unit assigned or a negative errno code.
1058 static int __dev_alloc_name(struct net
*net
, const char *name
, char *buf
)
1062 const int max_netdevices
= 8*PAGE_SIZE
;
1063 unsigned long *inuse
;
1064 struct net_device
*d
;
1066 if (!dev_valid_name(name
))
1069 p
= strchr(name
, '%');
1072 * Verify the string as this thing may have come from
1073 * the user. There must be either one "%d" and no other "%"
1076 if (p
[1] != 'd' || strchr(p
+ 2, '%'))
1079 /* Use one page as a bit array of possible slots */
1080 inuse
= (unsigned long *) get_zeroed_page(GFP_ATOMIC
);
1084 for_each_netdev(net
, d
) {
1085 if (!sscanf(d
->name
, name
, &i
))
1087 if (i
< 0 || i
>= max_netdevices
)
1090 /* avoid cases where sscanf is not exact inverse of printf */
1091 snprintf(buf
, IFNAMSIZ
, name
, i
);
1092 if (!strncmp(buf
, d
->name
, IFNAMSIZ
))
1096 i
= find_first_zero_bit(inuse
, max_netdevices
);
1097 free_page((unsigned long) inuse
);
1100 snprintf(buf
, IFNAMSIZ
, name
, i
);
1101 if (!__dev_get_by_name(net
, buf
))
1104 /* It is possible to run out of possible slots
1105 * when the name is long and there isn't enough space left
1106 * for the digits, or if all bits are used.
1111 static int dev_alloc_name_ns(struct net
*net
,
1112 struct net_device
*dev
,
1119 ret
= __dev_alloc_name(net
, name
, buf
);
1121 strlcpy(dev
->name
, buf
, IFNAMSIZ
);
1126 * dev_alloc_name - allocate a name for a device
1128 * @name: name format string
1130 * Passed a format string - eg "lt%d" it will try and find a suitable
1131 * id. It scans list of devices to build up a free map, then chooses
1132 * the first empty slot. The caller must hold the dev_base or rtnl lock
1133 * while allocating the name and adding the device in order to avoid
1135 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136 * Returns the number of the unit assigned or a negative errno code.
1139 int dev_alloc_name(struct net_device
*dev
, const char *name
)
1141 return dev_alloc_name_ns(dev_net(dev
), dev
, name
);
1143 EXPORT_SYMBOL(dev_alloc_name
);
1145 int dev_get_valid_name(struct net
*net
, struct net_device
*dev
,
1150 if (!dev_valid_name(name
))
1153 if (strchr(name
, '%'))
1154 return dev_alloc_name_ns(net
, dev
, name
);
1155 else if (__dev_get_by_name(net
, name
))
1157 else if (dev
->name
!= name
)
1158 strlcpy(dev
->name
, name
, IFNAMSIZ
);
1162 EXPORT_SYMBOL(dev_get_valid_name
);
1165 * dev_change_name - change name of a device
1167 * @newname: name (or format string) must be at least IFNAMSIZ
1169 * Change name of a device, can pass format strings "eth%d".
1172 int dev_change_name(struct net_device
*dev
, const char *newname
)
1174 unsigned char old_assign_type
;
1175 char oldname
[IFNAMSIZ
];
1181 BUG_ON(!dev_net(dev
));
1184 if (dev
->flags
& IFF_UP
)
1187 write_seqcount_begin(&devnet_rename_seq
);
1189 if (strncmp(newname
, dev
->name
, IFNAMSIZ
) == 0) {
1190 write_seqcount_end(&devnet_rename_seq
);
1194 memcpy(oldname
, dev
->name
, IFNAMSIZ
);
1196 err
= dev_get_valid_name(net
, dev
, newname
);
1198 write_seqcount_end(&devnet_rename_seq
);
1202 if (oldname
[0] && !strchr(oldname
, '%'))
1203 netdev_info(dev
, "renamed from %s\n", oldname
);
1205 old_assign_type
= dev
->name_assign_type
;
1206 dev
->name_assign_type
= NET_NAME_RENAMED
;
1209 ret
= device_rename(&dev
->dev
, dev
->name
);
1211 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1212 dev
->name_assign_type
= old_assign_type
;
1213 write_seqcount_end(&devnet_rename_seq
);
1217 write_seqcount_end(&devnet_rename_seq
);
1219 netdev_adjacent_rename_links(dev
, oldname
);
1221 write_lock_bh(&dev_base_lock
);
1222 hlist_del_rcu(&dev
->name_hlist
);
1223 write_unlock_bh(&dev_base_lock
);
1227 write_lock_bh(&dev_base_lock
);
1228 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
1229 write_unlock_bh(&dev_base_lock
);
1231 ret
= call_netdevice_notifiers(NETDEV_CHANGENAME
, dev
);
1232 ret
= notifier_to_errno(ret
);
1235 /* err >= 0 after dev_alloc_name() or stores the first errno */
1238 write_seqcount_begin(&devnet_rename_seq
);
1239 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1240 memcpy(oldname
, newname
, IFNAMSIZ
);
1241 dev
->name_assign_type
= old_assign_type
;
1242 old_assign_type
= NET_NAME_RENAMED
;
1245 pr_err("%s: name change rollback failed: %d\n",
1254 * dev_set_alias - change ifalias of a device
1256 * @alias: name up to IFALIASZ
1257 * @len: limit of bytes to copy from info
1259 * Set ifalias for a device,
1261 int dev_set_alias(struct net_device
*dev
, const char *alias
, size_t len
)
1263 struct dev_ifalias
*new_alias
= NULL
;
1265 if (len
>= IFALIASZ
)
1269 new_alias
= kmalloc(sizeof(*new_alias
) + len
+ 1, GFP_KERNEL
);
1273 memcpy(new_alias
->ifalias
, alias
, len
);
1274 new_alias
->ifalias
[len
] = 0;
1277 mutex_lock(&ifalias_mutex
);
1278 rcu_swap_protected(dev
->ifalias
, new_alias
,
1279 mutex_is_locked(&ifalias_mutex
));
1280 mutex_unlock(&ifalias_mutex
);
1283 kfree_rcu(new_alias
, rcuhead
);
1287 EXPORT_SYMBOL(dev_set_alias
);
1290 * dev_get_alias - get ifalias of a device
1292 * @name: buffer to store name of ifalias
1293 * @len: size of buffer
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1298 int dev_get_alias(const struct net_device
*dev
, char *name
, size_t len
)
1300 const struct dev_ifalias
*alias
;
1304 alias
= rcu_dereference(dev
->ifalias
);
1306 ret
= snprintf(name
, len
, "%s", alias
->ifalias
);
1313 * netdev_features_change - device changes features
1314 * @dev: device to cause notification
1316 * Called to indicate a device has changed features.
1318 void netdev_features_change(struct net_device
*dev
)
1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE
, dev
);
1322 EXPORT_SYMBOL(netdev_features_change
);
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1332 void netdev_state_change(struct net_device
*dev
)
1334 if (dev
->flags
& IFF_UP
) {
1335 struct netdev_notifier_change_info change_info
= {
1339 call_netdevice_notifiers_info(NETDEV_CHANGE
,
1341 rtmsg_ifinfo(RTM_NEWLINK
, dev
, 0, GFP_KERNEL
);
1344 EXPORT_SYMBOL(netdev_state_change
);
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1356 void netdev_notify_peers(struct net_device
*dev
)
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS
, dev
);
1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP
, dev
);
1363 EXPORT_SYMBOL(netdev_notify_peers
);
1365 static int __dev_open(struct net_device
*dev
)
1367 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1372 if (!netif_device_present(dev
))
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1379 netpoll_poll_disable(dev
);
1381 ret
= call_netdevice_notifiers(NETDEV_PRE_UP
, dev
);
1382 ret
= notifier_to_errno(ret
);
1386 set_bit(__LINK_STATE_START
, &dev
->state
);
1388 if (ops
->ndo_validate_addr
)
1389 ret
= ops
->ndo_validate_addr(dev
);
1391 if (!ret
&& ops
->ndo_open
)
1392 ret
= ops
->ndo_open(dev
);
1394 netpoll_poll_enable(dev
);
1397 clear_bit(__LINK_STATE_START
, &dev
->state
);
1399 dev
->flags
|= IFF_UP
;
1400 dev_set_rx_mode(dev
);
1402 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1420 int dev_open(struct net_device
*dev
)
1424 if (dev
->flags
& IFF_UP
)
1427 ret
= __dev_open(dev
);
1431 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1432 call_netdevice_notifiers(NETDEV_UP
, dev
);
1436 EXPORT_SYMBOL(dev_open
);
1438 static void __dev_close_many(struct list_head
*head
)
1440 struct net_device
*dev
;
1445 list_for_each_entry(dev
, head
, close_list
) {
1446 /* Temporarily disable netpoll until the interface is down */
1447 netpoll_poll_disable(dev
);
1449 call_netdevice_notifiers(NETDEV_GOING_DOWN
, dev
);
1451 clear_bit(__LINK_STATE_START
, &dev
->state
);
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1459 smp_mb__after_atomic(); /* Commit netif_running(). */
1462 dev_deactivate_many(head
);
1464 list_for_each_entry(dev
, head
, close_list
) {
1465 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1471 * We allow it to be called even after a DETACH hot-plug
1477 dev
->flags
&= ~IFF_UP
;
1478 netpoll_poll_enable(dev
);
1482 static void __dev_close(struct net_device
*dev
)
1486 list_add(&dev
->close_list
, &single
);
1487 __dev_close_many(&single
);
1491 void dev_close_many(struct list_head
*head
, bool unlink
)
1493 struct net_device
*dev
, *tmp
;
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev
, tmp
, head
, close_list
)
1497 if (!(dev
->flags
& IFF_UP
))
1498 list_del_init(&dev
->close_list
);
1500 __dev_close_many(head
);
1502 list_for_each_entry_safe(dev
, tmp
, head
, close_list
) {
1503 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1504 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
1506 list_del_init(&dev
->close_list
);
1509 EXPORT_SYMBOL(dev_close_many
);
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1520 void dev_close(struct net_device
*dev
)
1522 if (dev
->flags
& IFF_UP
) {
1525 list_add(&dev
->close_list
, &single
);
1526 dev_close_many(&single
, true);
1530 EXPORT_SYMBOL(dev_close
);
1534 * dev_disable_lro - disable Large Receive Offload on a device
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1541 void dev_disable_lro(struct net_device
*dev
)
1543 struct net_device
*lower_dev
;
1544 struct list_head
*iter
;
1546 dev
->wanted_features
&= ~NETIF_F_LRO
;
1547 netdev_update_features(dev
);
1549 if (unlikely(dev
->features
& NETIF_F_LRO
))
1550 netdev_WARN(dev
, "failed to disable LRO!\n");
1552 netdev_for_each_lower_dev(dev
, lower_dev
, iter
)
1553 dev_disable_lro(lower_dev
);
1555 EXPORT_SYMBOL(dev_disable_lro
);
1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1562 * called under RTNL. This is needed if Generic XDP is installed on
1565 static void dev_disable_gro_hw(struct net_device
*dev
)
1567 dev
->wanted_features
&= ~NETIF_F_GRO_HW
;
1568 netdev_update_features(dev
);
1570 if (unlikely(dev
->features
& NETIF_F_GRO_HW
))
1571 netdev_WARN(dev
, "failed to disable GRO_HW!\n");
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd
)
1577 case NETDEV_##val: \
1578 return "NETDEV_" __stringify(val);
1580 N(UP
) N(DOWN
) N(REBOOT
) N(CHANGE
) N(REGISTER
) N(UNREGISTER
)
1581 N(CHANGEMTU
) N(CHANGEADDR
) N(GOING_DOWN
) N(CHANGENAME
) N(FEAT_CHANGE
)
1582 N(BONDING_FAILOVER
) N(PRE_UP
) N(PRE_TYPE_CHANGE
) N(POST_TYPE_CHANGE
)
1583 N(POST_INIT
) N(RELEASE
) N(NOTIFY_PEERS
) N(JOIN
) N(CHANGEUPPER
)
1584 N(RESEND_IGMP
) N(PRECHANGEMTU
) N(CHANGEINFODATA
) N(BONDING_INFO
)
1585 N(PRECHANGEUPPER
) N(CHANGELOWERSTATE
) N(UDP_TUNNEL_PUSH_INFO
)
1586 N(UDP_TUNNEL_DROP_INFO
) N(CHANGE_TX_QUEUE_LEN
)
1587 N(CVLAN_FILTER_PUSH_INFO
) N(CVLAN_FILTER_DROP_INFO
)
1588 N(SVLAN_FILTER_PUSH_INFO
) N(SVLAN_FILTER_DROP_INFO
)
1591 return "UNKNOWN_NETDEV_EVENT";
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name
);
1595 static int call_netdevice_notifier(struct notifier_block
*nb
, unsigned long val
,
1596 struct net_device
*dev
)
1598 struct netdev_notifier_info info
= {
1602 return nb
->notifier_call(nb
, val
, &info
);
1605 static int dev_boot_phase
= 1;
1608 * register_netdevice_notifier - register a network notifier block
1611 * Register a notifier to be called when network device events occur.
1612 * The notifier passed is linked into the kernel structures and must
1613 * not be reused until it has been unregistered. A negative errno code
1614 * is returned on a failure.
1616 * When registered all registration and up events are replayed
1617 * to the new notifier to allow device to have a race free
1618 * view of the network device list.
1621 int register_netdevice_notifier(struct notifier_block
*nb
)
1623 struct net_device
*dev
;
1624 struct net_device
*last
;
1628 /* Close race with setup_net() and cleanup_net() */
1629 down_write(&pernet_ops_rwsem
);
1631 err
= raw_notifier_chain_register(&netdev_chain
, nb
);
1637 for_each_netdev(net
, dev
) {
1638 err
= call_netdevice_notifier(nb
, NETDEV_REGISTER
, dev
);
1639 err
= notifier_to_errno(err
);
1643 if (!(dev
->flags
& IFF_UP
))
1646 call_netdevice_notifier(nb
, NETDEV_UP
, dev
);
1652 up_write(&pernet_ops_rwsem
);
1658 for_each_netdev(net
, dev
) {
1662 if (dev
->flags
& IFF_UP
) {
1663 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1665 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1667 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1672 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1675 EXPORT_SYMBOL(register_netdevice_notifier
);
1678 * unregister_netdevice_notifier - unregister a network notifier block
1681 * Unregister a notifier previously registered by
1682 * register_netdevice_notifier(). The notifier is unlinked into the
1683 * kernel structures and may then be reused. A negative errno code
1684 * is returned on a failure.
1686 * After unregistering unregister and down device events are synthesized
1687 * for all devices on the device list to the removed notifier to remove
1688 * the need for special case cleanup code.
1691 int unregister_netdevice_notifier(struct notifier_block
*nb
)
1693 struct net_device
*dev
;
1697 /* Close race with setup_net() and cleanup_net() */
1698 down_write(&pernet_ops_rwsem
);
1700 err
= raw_notifier_chain_unregister(&netdev_chain
, nb
);
1705 for_each_netdev(net
, dev
) {
1706 if (dev
->flags
& IFF_UP
) {
1707 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1709 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1711 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1716 up_write(&pernet_ops_rwsem
);
1719 EXPORT_SYMBOL(unregister_netdevice_notifier
);
1722 * call_netdevice_notifiers_info - call all network notifier blocks
1723 * @val: value passed unmodified to notifier function
1724 * @info: notifier information data
1726 * Call all network notifier blocks. Parameters and return value
1727 * are as for raw_notifier_call_chain().
1730 static int call_netdevice_notifiers_info(unsigned long val
,
1731 struct netdev_notifier_info
*info
)
1734 return raw_notifier_call_chain(&netdev_chain
, val
, info
);
1738 * call_netdevice_notifiers - call all network notifier blocks
1739 * @val: value passed unmodified to notifier function
1740 * @dev: net_device pointer passed unmodified to notifier function
1742 * Call all network notifier blocks. Parameters and return value
1743 * are as for raw_notifier_call_chain().
1746 int call_netdevice_notifiers(unsigned long val
, struct net_device
*dev
)
1748 struct netdev_notifier_info info
= {
1752 return call_netdevice_notifiers_info(val
, &info
);
1754 EXPORT_SYMBOL(call_netdevice_notifiers
);
1756 #ifdef CONFIG_NET_INGRESS
1757 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key
);
1759 void net_inc_ingress_queue(void)
1761 static_branch_inc(&ingress_needed_key
);
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue
);
1765 void net_dec_ingress_queue(void)
1767 static_branch_dec(&ingress_needed_key
);
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue
);
1772 #ifdef CONFIG_NET_EGRESS
1773 static DEFINE_STATIC_KEY_FALSE(egress_needed_key
);
1775 void net_inc_egress_queue(void)
1777 static_branch_inc(&egress_needed_key
);
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue
);
1781 void net_dec_egress_queue(void)
1783 static_branch_dec(&egress_needed_key
);
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue
);
1788 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key
);
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred
;
1791 static atomic_t netstamp_wanted
;
1792 static void netstamp_clear(struct work_struct
*work
)
1794 int deferred
= atomic_xchg(&netstamp_needed_deferred
, 0);
1797 wanted
= atomic_add_return(deferred
, &netstamp_wanted
);
1799 static_branch_enable(&netstamp_needed_key
);
1801 static_branch_disable(&netstamp_needed_key
);
1803 static DECLARE_WORK(netstamp_work
, netstamp_clear
);
1806 void net_enable_timestamp(void)
1808 #ifdef HAVE_JUMP_LABEL
1812 wanted
= atomic_read(&netstamp_wanted
);
1815 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
+ 1) == wanted
)
1818 atomic_inc(&netstamp_needed_deferred
);
1819 schedule_work(&netstamp_work
);
1821 static_branch_inc(&netstamp_needed_key
);
1824 EXPORT_SYMBOL(net_enable_timestamp
);
1826 void net_disable_timestamp(void)
1828 #ifdef HAVE_JUMP_LABEL
1832 wanted
= atomic_read(&netstamp_wanted
);
1835 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
- 1) == wanted
)
1838 atomic_dec(&netstamp_needed_deferred
);
1839 schedule_work(&netstamp_work
);
1841 static_branch_dec(&netstamp_needed_key
);
1844 EXPORT_SYMBOL(net_disable_timestamp
);
1846 static inline void net_timestamp_set(struct sk_buff
*skb
)
1849 if (static_branch_unlikely(&netstamp_needed_key
))
1850 __net_timestamp(skb
);
1853 #define net_timestamp_check(COND, SKB) \
1854 if (static_branch_unlikely(&netstamp_needed_key)) { \
1855 if ((COND) && !(SKB)->tstamp) \
1856 __net_timestamp(SKB); \
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1863 if (!(dev
->flags
& IFF_UP
))
1866 len
= dev
->mtu
+ dev
->hard_header_len
+ VLAN_HLEN
;
1867 if (skb
->len
<= len
)
1870 /* if TSO is enabled, we don't care about the length as the packet
1871 * could be forwarded without being segmented before
1873 if (skb_is_gso(skb
))
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable
);
1880 int __dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1882 int ret
= ____dev_forward_skb(dev
, skb
);
1885 skb
->protocol
= eth_type_trans(skb
, dev
);
1886 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_HLEN
);
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb
);
1894 * dev_forward_skb - loopback an skb to another netif
1896 * @dev: destination network device
1897 * @skb: buffer to forward
1900 * NET_RX_SUCCESS (no congestion)
1901 * NET_RX_DROP (packet was dropped, but freed)
1903 * dev_forward_skb can be used for injecting an skb from the
1904 * start_xmit function of one device into the receive queue
1905 * of another device.
1907 * The receiving device may be in another namespace, so
1908 * we have to clear all information in the skb that could
1909 * impact namespace isolation.
1911 int dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1913 return __dev_forward_skb(dev
, skb
) ?: netif_rx_internal(skb
);
1915 EXPORT_SYMBOL_GPL(dev_forward_skb
);
1917 static inline int deliver_skb(struct sk_buff
*skb
,
1918 struct packet_type
*pt_prev
,
1919 struct net_device
*orig_dev
)
1921 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
1923 refcount_inc(&skb
->users
);
1924 return pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
1927 static inline void deliver_ptype_list_skb(struct sk_buff
*skb
,
1928 struct packet_type
**pt
,
1929 struct net_device
*orig_dev
,
1931 struct list_head
*ptype_list
)
1933 struct packet_type
*ptype
, *pt_prev
= *pt
;
1935 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1936 if (ptype
->type
!= type
)
1939 deliver_skb(skb
, pt_prev
, orig_dev
);
1945 static inline bool skb_loop_sk(struct packet_type
*ptype
, struct sk_buff
*skb
)
1947 if (!ptype
->af_packet_priv
|| !skb
->sk
)
1950 if (ptype
->id_match
)
1951 return ptype
->id_match(ptype
, skb
->sk
);
1952 else if ((struct sock
*)ptype
->af_packet_priv
== skb
->sk
)
1959 * Support routine. Sends outgoing frames to any network
1960 * taps currently in use.
1963 void dev_queue_xmit_nit(struct sk_buff
*skb
, struct net_device
*dev
)
1965 struct packet_type
*ptype
;
1966 struct sk_buff
*skb2
= NULL
;
1967 struct packet_type
*pt_prev
= NULL
;
1968 struct list_head
*ptype_list
= &ptype_all
;
1972 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1973 /* Never send packets back to the socket
1974 * they originated from - MvS (miquels@drinkel.ow.org)
1976 if (skb_loop_sk(ptype
, skb
))
1980 deliver_skb(skb2
, pt_prev
, skb
->dev
);
1985 /* need to clone skb, done only once */
1986 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1990 net_timestamp_set(skb2
);
1992 /* skb->nh should be correctly
1993 * set by sender, so that the second statement is
1994 * just protection against buggy protocols.
1996 skb_reset_mac_header(skb2
);
1998 if (skb_network_header(skb2
) < skb2
->data
||
1999 skb_network_header(skb2
) > skb_tail_pointer(skb2
)) {
2000 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001 ntohs(skb2
->protocol
),
2003 skb_reset_network_header(skb2
);
2006 skb2
->transport_header
= skb2
->network_header
;
2007 skb2
->pkt_type
= PACKET_OUTGOING
;
2011 if (ptype_list
== &ptype_all
) {
2012 ptype_list
= &dev
->ptype_all
;
2017 if (!skb_orphan_frags_rx(skb2
, GFP_ATOMIC
))
2018 pt_prev
->func(skb2
, skb
->dev
, pt_prev
, skb
->dev
);
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit
);
2027 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028 * @dev: Network device
2029 * @txq: number of queues available
2031 * If real_num_tx_queues is changed the tc mappings may no longer be
2032 * valid. To resolve this verify the tc mapping remains valid and if
2033 * not NULL the mapping. With no priorities mapping to this
2034 * offset/count pair it will no longer be used. In the worst case TC0
2035 * is invalid nothing can be done so disable priority mappings. If is
2036 * expected that drivers will fix this mapping if they can before
2037 * calling netif_set_real_num_tx_queues.
2039 static void netif_setup_tc(struct net_device
*dev
, unsigned int txq
)
2042 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2044 /* If TC0 is invalidated disable TC mapping */
2045 if (tc
->offset
+ tc
->count
> txq
) {
2046 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2051 /* Invalidated prio to tc mappings set to TC0 */
2052 for (i
= 1; i
< TC_BITMASK
+ 1; i
++) {
2053 int q
= netdev_get_prio_tc_map(dev
, i
);
2055 tc
= &dev
->tc_to_txq
[q
];
2056 if (tc
->offset
+ tc
->count
> txq
) {
2057 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059 netdev_set_prio_tc_map(dev
, i
, 0);
2064 int netdev_txq_to_tc(struct net_device
*dev
, unsigned int txq
)
2067 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2070 /* walk through the TCs and see if it falls into any of them */
2071 for (i
= 0; i
< TC_MAX_QUEUE
; i
++, tc
++) {
2072 if ((txq
- tc
->offset
) < tc
->count
)
2076 /* didn't find it, just return -1 to indicate no match */
2082 EXPORT_SYMBOL(netdev_txq_to_tc
);
2085 struct static_key xps_needed __read_mostly
;
2086 EXPORT_SYMBOL(xps_needed
);
2087 struct static_key xps_rxqs_needed __read_mostly
;
2088 EXPORT_SYMBOL(xps_rxqs_needed
);
2089 static DEFINE_MUTEX(xps_map_mutex
);
2090 #define xmap_dereference(P) \
2091 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2093 static bool remove_xps_queue(struct xps_dev_maps
*dev_maps
,
2096 struct xps_map
*map
= NULL
;
2100 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2104 for (pos
= map
->len
; pos
--;) {
2105 if (map
->queues
[pos
] != index
)
2109 map
->queues
[pos
] = map
->queues
[--map
->len
];
2113 RCU_INIT_POINTER(dev_maps
->attr_map
[tci
], NULL
);
2114 kfree_rcu(map
, rcu
);
2121 static bool remove_xps_queue_cpu(struct net_device
*dev
,
2122 struct xps_dev_maps
*dev_maps
,
2123 int cpu
, u16 offset
, u16 count
)
2125 int num_tc
= dev
->num_tc
? : 1;
2126 bool active
= false;
2129 for (tci
= cpu
* num_tc
; num_tc
--; tci
++) {
2132 for (i
= count
, j
= offset
; i
--; j
++) {
2133 if (!remove_xps_queue(dev_maps
, tci
, j
))
2143 static void clean_xps_maps(struct net_device
*dev
, const unsigned long *mask
,
2144 struct xps_dev_maps
*dev_maps
, unsigned int nr_ids
,
2145 u16 offset
, u16 count
, bool is_rxqs_map
)
2147 bool active
= false;
2150 for (j
= -1; j
= netif_attrmask_next(j
, mask
, nr_ids
),
2152 active
|= remove_xps_queue_cpu(dev
, dev_maps
, j
, offset
,
2156 RCU_INIT_POINTER(dev
->xps_rxqs_map
, NULL
);
2158 RCU_INIT_POINTER(dev
->xps_cpus_map
, NULL
);
2160 for (i
= offset
+ (count
- 1); count
--; i
--)
2161 netdev_queue_numa_node_write(
2162 netdev_get_tx_queue(dev
, i
),
2165 kfree_rcu(dev_maps
, rcu
);
2169 static void netif_reset_xps_queues(struct net_device
*dev
, u16 offset
,
2172 const unsigned long *possible_mask
= NULL
;
2173 struct xps_dev_maps
*dev_maps
;
2174 unsigned int nr_ids
;
2176 if (!static_key_false(&xps_needed
))
2180 mutex_lock(&xps_map_mutex
);
2182 if (static_key_false(&xps_rxqs_needed
)) {
2183 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2185 nr_ids
= dev
->num_rx_queues
;
2186 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
,
2187 offset
, count
, true);
2191 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2195 if (num_possible_cpus() > 1)
2196 possible_mask
= cpumask_bits(cpu_possible_mask
);
2197 nr_ids
= nr_cpu_ids
;
2198 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
, offset
, count
,
2202 if (static_key_enabled(&xps_rxqs_needed
))
2203 static_key_slow_dec_cpuslocked(&xps_rxqs_needed
);
2205 static_key_slow_dec_cpuslocked(&xps_needed
);
2206 mutex_unlock(&xps_map_mutex
);
2210 static void netif_reset_xps_queues_gt(struct net_device
*dev
, u16 index
)
2212 netif_reset_xps_queues(dev
, index
, dev
->num_tx_queues
- index
);
2215 static struct xps_map
*expand_xps_map(struct xps_map
*map
, int attr_index
,
2216 u16 index
, bool is_rxqs_map
)
2218 struct xps_map
*new_map
;
2219 int alloc_len
= XPS_MIN_MAP_ALLOC
;
2222 for (pos
= 0; map
&& pos
< map
->len
; pos
++) {
2223 if (map
->queues
[pos
] != index
)
2228 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2230 if (pos
< map
->alloc_len
)
2233 alloc_len
= map
->alloc_len
* 2;
2236 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2240 new_map
= kzalloc(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
);
2242 new_map
= kzalloc_node(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
,
2243 cpu_to_node(attr_index
));
2247 for (i
= 0; i
< pos
; i
++)
2248 new_map
->queues
[i
] = map
->queues
[i
];
2249 new_map
->alloc_len
= alloc_len
;
2255 /* Must be called under cpus_read_lock */
2256 int __netif_set_xps_queue(struct net_device
*dev
, const unsigned long *mask
,
2257 u16 index
, bool is_rxqs_map
)
2259 const unsigned long *online_mask
= NULL
, *possible_mask
= NULL
;
2260 struct xps_dev_maps
*dev_maps
, *new_dev_maps
= NULL
;
2261 int i
, j
, tci
, numa_node_id
= -2;
2262 int maps_sz
, num_tc
= 1, tc
= 0;
2263 struct xps_map
*map
, *new_map
;
2264 bool active
= false;
2265 unsigned int nr_ids
;
2268 /* Do not allow XPS on subordinate device directly */
2269 num_tc
= dev
->num_tc
;
2273 /* If queue belongs to subordinate dev use its map */
2274 dev
= netdev_get_tx_queue(dev
, index
)->sb_dev
? : dev
;
2276 tc
= netdev_txq_to_tc(dev
, index
);
2281 mutex_lock(&xps_map_mutex
);
2283 maps_sz
= XPS_RXQ_DEV_MAPS_SIZE(num_tc
, dev
->num_rx_queues
);
2284 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2285 nr_ids
= dev
->num_rx_queues
;
2287 maps_sz
= XPS_CPU_DEV_MAPS_SIZE(num_tc
);
2288 if (num_possible_cpus() > 1) {
2289 online_mask
= cpumask_bits(cpu_online_mask
);
2290 possible_mask
= cpumask_bits(cpu_possible_mask
);
2292 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2293 nr_ids
= nr_cpu_ids
;
2296 if (maps_sz
< L1_CACHE_BYTES
)
2297 maps_sz
= L1_CACHE_BYTES
;
2299 /* allocate memory for queue storage */
2300 for (j
= -1; j
= netif_attrmask_next_and(j
, online_mask
, mask
, nr_ids
),
2303 new_dev_maps
= kzalloc(maps_sz
, GFP_KERNEL
);
2304 if (!new_dev_maps
) {
2305 mutex_unlock(&xps_map_mutex
);
2309 tci
= j
* num_tc
+ tc
;
2310 map
= dev_maps
? xmap_dereference(dev_maps
->attr_map
[tci
]) :
2313 map
= expand_xps_map(map
, j
, index
, is_rxqs_map
);
2317 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2321 goto out_no_new_maps
;
2323 static_key_slow_inc_cpuslocked(&xps_needed
);
2325 static_key_slow_inc_cpuslocked(&xps_rxqs_needed
);
2327 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2329 /* copy maps belonging to foreign traffic classes */
2330 for (i
= tc
, tci
= j
* num_tc
; dev_maps
&& i
--; tci
++) {
2331 /* fill in the new device map from the old device map */
2332 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2333 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2336 /* We need to explicitly update tci as prevous loop
2337 * could break out early if dev_maps is NULL.
2339 tci
= j
* num_tc
+ tc
;
2341 if (netif_attr_test_mask(j
, mask
, nr_ids
) &&
2342 netif_attr_test_online(j
, online_mask
, nr_ids
)) {
2343 /* add tx-queue to CPU/rx-queue maps */
2346 map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2347 while ((pos
< map
->len
) && (map
->queues
[pos
] != index
))
2350 if (pos
== map
->len
)
2351 map
->queues
[map
->len
++] = index
;
2354 if (numa_node_id
== -2)
2355 numa_node_id
= cpu_to_node(j
);
2356 else if (numa_node_id
!= cpu_to_node(j
))
2360 } else if (dev_maps
) {
2361 /* fill in the new device map from the old device map */
2362 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2363 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2366 /* copy maps belonging to foreign traffic classes */
2367 for (i
= num_tc
- tc
, tci
++; dev_maps
&& --i
; tci
++) {
2368 /* fill in the new device map from the old device map */
2369 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2370 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2375 rcu_assign_pointer(dev
->xps_rxqs_map
, new_dev_maps
);
2377 rcu_assign_pointer(dev
->xps_cpus_map
, new_dev_maps
);
2379 /* Cleanup old maps */
2381 goto out_no_old_maps
;
2383 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2385 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2386 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2387 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2388 if (map
&& map
!= new_map
)
2389 kfree_rcu(map
, rcu
);
2393 kfree_rcu(dev_maps
, rcu
);
2396 dev_maps
= new_dev_maps
;
2401 /* update Tx queue numa node */
2402 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, index
),
2403 (numa_node_id
>= 0) ?
2404 numa_node_id
: NUMA_NO_NODE
);
2410 /* removes tx-queue from unused CPUs/rx-queues */
2411 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2413 for (i
= tc
, tci
= j
* num_tc
; i
--; tci
++)
2414 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2415 if (!netif_attr_test_mask(j
, mask
, nr_ids
) ||
2416 !netif_attr_test_online(j
, online_mask
, nr_ids
))
2417 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2418 for (i
= num_tc
- tc
, tci
++; --i
; tci
++)
2419 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2422 /* free map if not active */
2425 RCU_INIT_POINTER(dev
->xps_rxqs_map
, NULL
);
2427 RCU_INIT_POINTER(dev
->xps_cpus_map
, NULL
);
2428 kfree_rcu(dev_maps
, rcu
);
2432 mutex_unlock(&xps_map_mutex
);
2436 /* remove any maps that we added */
2437 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2439 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2440 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2442 xmap_dereference(dev_maps
->attr_map
[tci
]) :
2444 if (new_map
&& new_map
!= map
)
2449 mutex_unlock(&xps_map_mutex
);
2451 kfree(new_dev_maps
);
2454 EXPORT_SYMBOL_GPL(__netif_set_xps_queue
);
2456 int netif_set_xps_queue(struct net_device
*dev
, const struct cpumask
*mask
,
2462 ret
= __netif_set_xps_queue(dev
, cpumask_bits(mask
), index
, false);
2467 EXPORT_SYMBOL(netif_set_xps_queue
);
2470 static void netdev_unbind_all_sb_channels(struct net_device
*dev
)
2472 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2474 /* Unbind any subordinate channels */
2475 while (txq
-- != &dev
->_tx
[0]) {
2477 netdev_unbind_sb_channel(dev
, txq
->sb_dev
);
2481 void netdev_reset_tc(struct net_device
*dev
)
2484 netif_reset_xps_queues_gt(dev
, 0);
2486 netdev_unbind_all_sb_channels(dev
);
2488 /* Reset TC configuration of device */
2490 memset(dev
->tc_to_txq
, 0, sizeof(dev
->tc_to_txq
));
2491 memset(dev
->prio_tc_map
, 0, sizeof(dev
->prio_tc_map
));
2493 EXPORT_SYMBOL(netdev_reset_tc
);
2495 int netdev_set_tc_queue(struct net_device
*dev
, u8 tc
, u16 count
, u16 offset
)
2497 if (tc
>= dev
->num_tc
)
2501 netif_reset_xps_queues(dev
, offset
, count
);
2503 dev
->tc_to_txq
[tc
].count
= count
;
2504 dev
->tc_to_txq
[tc
].offset
= offset
;
2507 EXPORT_SYMBOL(netdev_set_tc_queue
);
2509 int netdev_set_num_tc(struct net_device
*dev
, u8 num_tc
)
2511 if (num_tc
> TC_MAX_QUEUE
)
2515 netif_reset_xps_queues_gt(dev
, 0);
2517 netdev_unbind_all_sb_channels(dev
);
2519 dev
->num_tc
= num_tc
;
2522 EXPORT_SYMBOL(netdev_set_num_tc
);
2524 void netdev_unbind_sb_channel(struct net_device
*dev
,
2525 struct net_device
*sb_dev
)
2527 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2530 netif_reset_xps_queues_gt(sb_dev
, 0);
2532 memset(sb_dev
->tc_to_txq
, 0, sizeof(sb_dev
->tc_to_txq
));
2533 memset(sb_dev
->prio_tc_map
, 0, sizeof(sb_dev
->prio_tc_map
));
2535 while (txq
-- != &dev
->_tx
[0]) {
2536 if (txq
->sb_dev
== sb_dev
)
2540 EXPORT_SYMBOL(netdev_unbind_sb_channel
);
2542 int netdev_bind_sb_channel_queue(struct net_device
*dev
,
2543 struct net_device
*sb_dev
,
2544 u8 tc
, u16 count
, u16 offset
)
2546 /* Make certain the sb_dev and dev are already configured */
2547 if (sb_dev
->num_tc
>= 0 || tc
>= dev
->num_tc
)
2550 /* We cannot hand out queues we don't have */
2551 if ((offset
+ count
) > dev
->real_num_tx_queues
)
2554 /* Record the mapping */
2555 sb_dev
->tc_to_txq
[tc
].count
= count
;
2556 sb_dev
->tc_to_txq
[tc
].offset
= offset
;
2558 /* Provide a way for Tx queue to find the tc_to_txq map or
2559 * XPS map for itself.
2562 netdev_get_tx_queue(dev
, count
+ offset
)->sb_dev
= sb_dev
;
2566 EXPORT_SYMBOL(netdev_bind_sb_channel_queue
);
2568 int netdev_set_sb_channel(struct net_device
*dev
, u16 channel
)
2570 /* Do not use a multiqueue device to represent a subordinate channel */
2571 if (netif_is_multiqueue(dev
))
2574 /* We allow channels 1 - 32767 to be used for subordinate channels.
2575 * Channel 0 is meant to be "native" mode and used only to represent
2576 * the main root device. We allow writing 0 to reset the device back
2577 * to normal mode after being used as a subordinate channel.
2579 if (channel
> S16_MAX
)
2582 dev
->num_tc
= -channel
;
2586 EXPORT_SYMBOL(netdev_set_sb_channel
);
2589 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2590 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2592 int netif_set_real_num_tx_queues(struct net_device
*dev
, unsigned int txq
)
2597 disabling
= txq
< dev
->real_num_tx_queues
;
2599 if (txq
< 1 || txq
> dev
->num_tx_queues
)
2602 if (dev
->reg_state
== NETREG_REGISTERED
||
2603 dev
->reg_state
== NETREG_UNREGISTERING
) {
2606 rc
= netdev_queue_update_kobjects(dev
, dev
->real_num_tx_queues
,
2612 netif_setup_tc(dev
, txq
);
2614 dev
->real_num_tx_queues
= txq
;
2618 qdisc_reset_all_tx_gt(dev
, txq
);
2620 netif_reset_xps_queues_gt(dev
, txq
);
2624 dev
->real_num_tx_queues
= txq
;
2629 EXPORT_SYMBOL(netif_set_real_num_tx_queues
);
2633 * netif_set_real_num_rx_queues - set actual number of RX queues used
2634 * @dev: Network device
2635 * @rxq: Actual number of RX queues
2637 * This must be called either with the rtnl_lock held or before
2638 * registration of the net device. Returns 0 on success, or a
2639 * negative error code. If called before registration, it always
2642 int netif_set_real_num_rx_queues(struct net_device
*dev
, unsigned int rxq
)
2646 if (rxq
< 1 || rxq
> dev
->num_rx_queues
)
2649 if (dev
->reg_state
== NETREG_REGISTERED
) {
2652 rc
= net_rx_queue_update_kobjects(dev
, dev
->real_num_rx_queues
,
2658 dev
->real_num_rx_queues
= rxq
;
2661 EXPORT_SYMBOL(netif_set_real_num_rx_queues
);
2665 * netif_get_num_default_rss_queues - default number of RSS queues
2667 * This routine should set an upper limit on the number of RSS queues
2668 * used by default by multiqueue devices.
2670 int netif_get_num_default_rss_queues(void)
2672 return is_kdump_kernel() ?
2673 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES
, num_online_cpus());
2675 EXPORT_SYMBOL(netif_get_num_default_rss_queues
);
2677 static void __netif_reschedule(struct Qdisc
*q
)
2679 struct softnet_data
*sd
;
2680 unsigned long flags
;
2682 local_irq_save(flags
);
2683 sd
= this_cpu_ptr(&softnet_data
);
2684 q
->next_sched
= NULL
;
2685 *sd
->output_queue_tailp
= q
;
2686 sd
->output_queue_tailp
= &q
->next_sched
;
2687 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2688 local_irq_restore(flags
);
2691 void __netif_schedule(struct Qdisc
*q
)
2693 if (!test_and_set_bit(__QDISC_STATE_SCHED
, &q
->state
))
2694 __netif_reschedule(q
);
2696 EXPORT_SYMBOL(__netif_schedule
);
2698 struct dev_kfree_skb_cb
{
2699 enum skb_free_reason reason
;
2702 static struct dev_kfree_skb_cb
*get_kfree_skb_cb(const struct sk_buff
*skb
)
2704 return (struct dev_kfree_skb_cb
*)skb
->cb
;
2707 void netif_schedule_queue(struct netdev_queue
*txq
)
2710 if (!(txq
->state
& QUEUE_STATE_ANY_XOFF
)) {
2711 struct Qdisc
*q
= rcu_dereference(txq
->qdisc
);
2713 __netif_schedule(q
);
2717 EXPORT_SYMBOL(netif_schedule_queue
);
2719 void netif_tx_wake_queue(struct netdev_queue
*dev_queue
)
2721 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF
, &dev_queue
->state
)) {
2725 q
= rcu_dereference(dev_queue
->qdisc
);
2726 __netif_schedule(q
);
2730 EXPORT_SYMBOL(netif_tx_wake_queue
);
2732 void __dev_kfree_skb_irq(struct sk_buff
*skb
, enum skb_free_reason reason
)
2734 unsigned long flags
;
2739 if (likely(refcount_read(&skb
->users
) == 1)) {
2741 refcount_set(&skb
->users
, 0);
2742 } else if (likely(!refcount_dec_and_test(&skb
->users
))) {
2745 get_kfree_skb_cb(skb
)->reason
= reason
;
2746 local_irq_save(flags
);
2747 skb
->next
= __this_cpu_read(softnet_data
.completion_queue
);
2748 __this_cpu_write(softnet_data
.completion_queue
, skb
);
2749 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2750 local_irq_restore(flags
);
2752 EXPORT_SYMBOL(__dev_kfree_skb_irq
);
2754 void __dev_kfree_skb_any(struct sk_buff
*skb
, enum skb_free_reason reason
)
2756 if (in_irq() || irqs_disabled())
2757 __dev_kfree_skb_irq(skb
, reason
);
2761 EXPORT_SYMBOL(__dev_kfree_skb_any
);
2765 * netif_device_detach - mark device as removed
2766 * @dev: network device
2768 * Mark device as removed from system and therefore no longer available.
2770 void netif_device_detach(struct net_device
*dev
)
2772 if (test_and_clear_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2773 netif_running(dev
)) {
2774 netif_tx_stop_all_queues(dev
);
2777 EXPORT_SYMBOL(netif_device_detach
);
2780 * netif_device_attach - mark device as attached
2781 * @dev: network device
2783 * Mark device as attached from system and restart if needed.
2785 void netif_device_attach(struct net_device
*dev
)
2787 if (!test_and_set_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2788 netif_running(dev
)) {
2789 netif_tx_wake_all_queues(dev
);
2790 __netdev_watchdog_up(dev
);
2793 EXPORT_SYMBOL(netif_device_attach
);
2796 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2797 * to be used as a distribution range.
2799 static u16
skb_tx_hash(const struct net_device
*dev
,
2800 const struct net_device
*sb_dev
,
2801 struct sk_buff
*skb
)
2805 u16 qcount
= dev
->real_num_tx_queues
;
2808 u8 tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
2810 qoffset
= sb_dev
->tc_to_txq
[tc
].offset
;
2811 qcount
= sb_dev
->tc_to_txq
[tc
].count
;
2814 if (skb_rx_queue_recorded(skb
)) {
2815 hash
= skb_get_rx_queue(skb
);
2816 while (unlikely(hash
>= qcount
))
2818 return hash
+ qoffset
;
2821 return (u16
) reciprocal_scale(skb_get_hash(skb
), qcount
) + qoffset
;
2824 static void skb_warn_bad_offload(const struct sk_buff
*skb
)
2826 static const netdev_features_t null_features
;
2827 struct net_device
*dev
= skb
->dev
;
2828 const char *name
= "";
2830 if (!net_ratelimit())
2834 if (dev
->dev
.parent
)
2835 name
= dev_driver_string(dev
->dev
.parent
);
2837 name
= netdev_name(dev
);
2839 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2840 "gso_type=%d ip_summed=%d\n",
2841 name
, dev
? &dev
->features
: &null_features
,
2842 skb
->sk
? &skb
->sk
->sk_route_caps
: &null_features
,
2843 skb
->len
, skb
->data_len
, skb_shinfo(skb
)->gso_size
,
2844 skb_shinfo(skb
)->gso_type
, skb
->ip_summed
);
2848 * Invalidate hardware checksum when packet is to be mangled, and
2849 * complete checksum manually on outgoing path.
2851 int skb_checksum_help(struct sk_buff
*skb
)
2854 int ret
= 0, offset
;
2856 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2857 goto out_set_summed
;
2859 if (unlikely(skb_shinfo(skb
)->gso_size
)) {
2860 skb_warn_bad_offload(skb
);
2864 /* Before computing a checksum, we should make sure no frag could
2865 * be modified by an external entity : checksum could be wrong.
2867 if (skb_has_shared_frag(skb
)) {
2868 ret
= __skb_linearize(skb
);
2873 offset
= skb_checksum_start_offset(skb
);
2874 BUG_ON(offset
>= skb_headlen(skb
));
2875 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
2877 offset
+= skb
->csum_offset
;
2878 BUG_ON(offset
+ sizeof(__sum16
) > skb_headlen(skb
));
2880 if (skb_cloned(skb
) &&
2881 !skb_clone_writable(skb
, offset
+ sizeof(__sum16
))) {
2882 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2887 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
) ?: CSUM_MANGLED_0
;
2889 skb
->ip_summed
= CHECKSUM_NONE
;
2893 EXPORT_SYMBOL(skb_checksum_help
);
2895 int skb_crc32c_csum_help(struct sk_buff
*skb
)
2898 int ret
= 0, offset
, start
;
2900 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2903 if (unlikely(skb_is_gso(skb
)))
2906 /* Before computing a checksum, we should make sure no frag could
2907 * be modified by an external entity : checksum could be wrong.
2909 if (unlikely(skb_has_shared_frag(skb
))) {
2910 ret
= __skb_linearize(skb
);
2914 start
= skb_checksum_start_offset(skb
);
2915 offset
= start
+ offsetof(struct sctphdr
, checksum
);
2916 if (WARN_ON_ONCE(offset
>= skb_headlen(skb
))) {
2920 if (skb_cloned(skb
) &&
2921 !skb_clone_writable(skb
, offset
+ sizeof(__le32
))) {
2922 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2926 crc32c_csum
= cpu_to_le32(~__skb_checksum(skb
, start
,
2927 skb
->len
- start
, ~(__u32
)0,
2929 *(__le32
*)(skb
->data
+ offset
) = crc32c_csum
;
2930 skb
->ip_summed
= CHECKSUM_NONE
;
2931 skb
->csum_not_inet
= 0;
2936 __be16
skb_network_protocol(struct sk_buff
*skb
, int *depth
)
2938 __be16 type
= skb
->protocol
;
2940 /* Tunnel gso handlers can set protocol to ethernet. */
2941 if (type
== htons(ETH_P_TEB
)) {
2944 if (unlikely(!pskb_may_pull(skb
, sizeof(struct ethhdr
))))
2947 eth
= (struct ethhdr
*)skb
->data
;
2948 type
= eth
->h_proto
;
2951 return __vlan_get_protocol(skb
, type
, depth
);
2955 * skb_mac_gso_segment - mac layer segmentation handler.
2956 * @skb: buffer to segment
2957 * @features: features for the output path (see dev->features)
2959 struct sk_buff
*skb_mac_gso_segment(struct sk_buff
*skb
,
2960 netdev_features_t features
)
2962 struct sk_buff
*segs
= ERR_PTR(-EPROTONOSUPPORT
);
2963 struct packet_offload
*ptype
;
2964 int vlan_depth
= skb
->mac_len
;
2965 __be16 type
= skb_network_protocol(skb
, &vlan_depth
);
2967 if (unlikely(!type
))
2968 return ERR_PTR(-EINVAL
);
2970 __skb_pull(skb
, vlan_depth
);
2973 list_for_each_entry_rcu(ptype
, &offload_base
, list
) {
2974 if (ptype
->type
== type
&& ptype
->callbacks
.gso_segment
) {
2975 segs
= ptype
->callbacks
.gso_segment(skb
, features
);
2981 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
2985 EXPORT_SYMBOL(skb_mac_gso_segment
);
2988 /* openvswitch calls this on rx path, so we need a different check.
2990 static inline bool skb_needs_check(struct sk_buff
*skb
, bool tx_path
)
2993 return skb
->ip_summed
!= CHECKSUM_PARTIAL
&&
2994 skb
->ip_summed
!= CHECKSUM_UNNECESSARY
;
2996 return skb
->ip_summed
== CHECKSUM_NONE
;
3000 * __skb_gso_segment - Perform segmentation on skb.
3001 * @skb: buffer to segment
3002 * @features: features for the output path (see dev->features)
3003 * @tx_path: whether it is called in TX path
3005 * This function segments the given skb and returns a list of segments.
3007 * It may return NULL if the skb requires no segmentation. This is
3008 * only possible when GSO is used for verifying header integrity.
3010 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3012 struct sk_buff
*__skb_gso_segment(struct sk_buff
*skb
,
3013 netdev_features_t features
, bool tx_path
)
3015 struct sk_buff
*segs
;
3017 if (unlikely(skb_needs_check(skb
, tx_path
))) {
3020 /* We're going to init ->check field in TCP or UDP header */
3021 err
= skb_cow_head(skb
, 0);
3023 return ERR_PTR(err
);
3026 /* Only report GSO partial support if it will enable us to
3027 * support segmentation on this frame without needing additional
3030 if (features
& NETIF_F_GSO_PARTIAL
) {
3031 netdev_features_t partial_features
= NETIF_F_GSO_ROBUST
;
3032 struct net_device
*dev
= skb
->dev
;
3034 partial_features
|= dev
->features
& dev
->gso_partial_features
;
3035 if (!skb_gso_ok(skb
, features
| partial_features
))
3036 features
&= ~NETIF_F_GSO_PARTIAL
;
3039 BUILD_BUG_ON(SKB_SGO_CB_OFFSET
+
3040 sizeof(*SKB_GSO_CB(skb
)) > sizeof(skb
->cb
));
3042 SKB_GSO_CB(skb
)->mac_offset
= skb_headroom(skb
);
3043 SKB_GSO_CB(skb
)->encap_level
= 0;
3045 skb_reset_mac_header(skb
);
3046 skb_reset_mac_len(skb
);
3048 segs
= skb_mac_gso_segment(skb
, features
);
3050 if (unlikely(skb_needs_check(skb
, tx_path
) && !IS_ERR(segs
)))
3051 skb_warn_bad_offload(skb
);
3055 EXPORT_SYMBOL(__skb_gso_segment
);
3057 /* Take action when hardware reception checksum errors are detected. */
3059 void netdev_rx_csum_fault(struct net_device
*dev
)
3061 if (net_ratelimit()) {
3062 pr_err("%s: hw csum failure\n", dev
? dev
->name
: "<unknown>");
3066 EXPORT_SYMBOL(netdev_rx_csum_fault
);
3069 /* XXX: check that highmem exists at all on the given machine. */
3070 static int illegal_highdma(struct net_device
*dev
, struct sk_buff
*skb
)
3072 #ifdef CONFIG_HIGHMEM
3075 if (!(dev
->features
& NETIF_F_HIGHDMA
)) {
3076 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3077 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3079 if (PageHighMem(skb_frag_page(frag
)))
3087 /* If MPLS offload request, verify we are testing hardware MPLS features
3088 * instead of standard features for the netdev.
3090 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3091 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3092 netdev_features_t features
,
3095 if (eth_p_mpls(type
))
3096 features
&= skb
->dev
->mpls_features
;
3101 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3102 netdev_features_t features
,
3109 static netdev_features_t
harmonize_features(struct sk_buff
*skb
,
3110 netdev_features_t features
)
3115 type
= skb_network_protocol(skb
, &tmp
);
3116 features
= net_mpls_features(skb
, features
, type
);
3118 if (skb
->ip_summed
!= CHECKSUM_NONE
&&
3119 !can_checksum_protocol(features
, type
)) {
3120 features
&= ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
3122 if (illegal_highdma(skb
->dev
, skb
))
3123 features
&= ~NETIF_F_SG
;
3128 netdev_features_t
passthru_features_check(struct sk_buff
*skb
,
3129 struct net_device
*dev
,
3130 netdev_features_t features
)
3134 EXPORT_SYMBOL(passthru_features_check
);
3136 static netdev_features_t
dflt_features_check(struct sk_buff
*skb
,
3137 struct net_device
*dev
,
3138 netdev_features_t features
)
3140 return vlan_features_check(skb
, features
);
3143 static netdev_features_t
gso_features_check(const struct sk_buff
*skb
,
3144 struct net_device
*dev
,
3145 netdev_features_t features
)
3147 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
;
3149 if (gso_segs
> dev
->gso_max_segs
)
3150 return features
& ~NETIF_F_GSO_MASK
;
3152 /* Support for GSO partial features requires software
3153 * intervention before we can actually process the packets
3154 * so we need to strip support for any partial features now
3155 * and we can pull them back in after we have partially
3156 * segmented the frame.
3158 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
))
3159 features
&= ~dev
->gso_partial_features
;
3161 /* Make sure to clear the IPv4 ID mangling feature if the
3162 * IPv4 header has the potential to be fragmented.
3164 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
3165 struct iphdr
*iph
= skb
->encapsulation
?
3166 inner_ip_hdr(skb
) : ip_hdr(skb
);
3168 if (!(iph
->frag_off
& htons(IP_DF
)))
3169 features
&= ~NETIF_F_TSO_MANGLEID
;
3175 netdev_features_t
netif_skb_features(struct sk_buff
*skb
)
3177 struct net_device
*dev
= skb
->dev
;
3178 netdev_features_t features
= dev
->features
;
3180 if (skb_is_gso(skb
))
3181 features
= gso_features_check(skb
, dev
, features
);
3183 /* If encapsulation offload request, verify we are testing
3184 * hardware encapsulation features instead of standard
3185 * features for the netdev
3187 if (skb
->encapsulation
)
3188 features
&= dev
->hw_enc_features
;
3190 if (skb_vlan_tagged(skb
))
3191 features
= netdev_intersect_features(features
,
3192 dev
->vlan_features
|
3193 NETIF_F_HW_VLAN_CTAG_TX
|
3194 NETIF_F_HW_VLAN_STAG_TX
);
3196 if (dev
->netdev_ops
->ndo_features_check
)
3197 features
&= dev
->netdev_ops
->ndo_features_check(skb
, dev
,
3200 features
&= dflt_features_check(skb
, dev
, features
);
3202 return harmonize_features(skb
, features
);
3204 EXPORT_SYMBOL(netif_skb_features
);
3206 static int xmit_one(struct sk_buff
*skb
, struct net_device
*dev
,
3207 struct netdev_queue
*txq
, bool more
)
3212 if (!list_empty(&ptype_all
) || !list_empty(&dev
->ptype_all
))
3213 dev_queue_xmit_nit(skb
, dev
);
3216 trace_net_dev_start_xmit(skb
, dev
);
3217 rc
= netdev_start_xmit(skb
, dev
, txq
, more
);
3218 trace_net_dev_xmit(skb
, rc
, dev
, len
);
3223 struct sk_buff
*dev_hard_start_xmit(struct sk_buff
*first
, struct net_device
*dev
,
3224 struct netdev_queue
*txq
, int *ret
)
3226 struct sk_buff
*skb
= first
;
3227 int rc
= NETDEV_TX_OK
;
3230 struct sk_buff
*next
= skb
->next
;
3233 rc
= xmit_one(skb
, dev
, txq
, next
!= NULL
);
3234 if (unlikely(!dev_xmit_complete(rc
))) {
3240 if (netif_xmit_stopped(txq
) && skb
) {
3241 rc
= NETDEV_TX_BUSY
;
3251 static struct sk_buff
*validate_xmit_vlan(struct sk_buff
*skb
,
3252 netdev_features_t features
)
3254 if (skb_vlan_tag_present(skb
) &&
3255 !vlan_hw_offload_capable(features
, skb
->vlan_proto
))
3256 skb
= __vlan_hwaccel_push_inside(skb
);
3260 int skb_csum_hwoffload_help(struct sk_buff
*skb
,
3261 const netdev_features_t features
)
3263 if (unlikely(skb
->csum_not_inet
))
3264 return !!(features
& NETIF_F_SCTP_CRC
) ? 0 :
3265 skb_crc32c_csum_help(skb
);
3267 return !!(features
& NETIF_F_CSUM_MASK
) ? 0 : skb_checksum_help(skb
);
3269 EXPORT_SYMBOL(skb_csum_hwoffload_help
);
3271 static struct sk_buff
*validate_xmit_skb(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3273 netdev_features_t features
;
3275 features
= netif_skb_features(skb
);
3276 skb
= validate_xmit_vlan(skb
, features
);
3280 skb
= sk_validate_xmit_skb(skb
, dev
);
3284 if (netif_needs_gso(skb
, features
)) {
3285 struct sk_buff
*segs
;
3287 segs
= skb_gso_segment(skb
, features
);
3295 if (skb_needs_linearize(skb
, features
) &&
3296 __skb_linearize(skb
))
3299 /* If packet is not checksummed and device does not
3300 * support checksumming for this protocol, complete
3301 * checksumming here.
3303 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3304 if (skb
->encapsulation
)
3305 skb_set_inner_transport_header(skb
,
3306 skb_checksum_start_offset(skb
));
3308 skb_set_transport_header(skb
,
3309 skb_checksum_start_offset(skb
));
3310 if (skb_csum_hwoffload_help(skb
, features
))
3315 skb
= validate_xmit_xfrm(skb
, features
, again
);
3322 atomic_long_inc(&dev
->tx_dropped
);
3326 struct sk_buff
*validate_xmit_skb_list(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3328 struct sk_buff
*next
, *head
= NULL
, *tail
;
3330 for (; skb
!= NULL
; skb
= next
) {
3334 /* in case skb wont be segmented, point to itself */
3337 skb
= validate_xmit_skb(skb
, dev
, again
);
3345 /* If skb was segmented, skb->prev points to
3346 * the last segment. If not, it still contains skb.
3352 EXPORT_SYMBOL_GPL(validate_xmit_skb_list
);
3354 static void qdisc_pkt_len_init(struct sk_buff
*skb
)
3356 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3358 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3360 /* To get more precise estimation of bytes sent on wire,
3361 * we add to pkt_len the headers size of all segments
3363 if (shinfo
->gso_size
) {
3364 unsigned int hdr_len
;
3365 u16 gso_segs
= shinfo
->gso_segs
;
3367 /* mac layer + network layer */
3368 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
3370 /* + transport layer */
3371 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
3372 const struct tcphdr
*th
;
3373 struct tcphdr _tcphdr
;
3375 th
= skb_header_pointer(skb
, skb_transport_offset(skb
),
3376 sizeof(_tcphdr
), &_tcphdr
);
3378 hdr_len
+= __tcp_hdrlen(th
);
3380 struct udphdr _udphdr
;
3382 if (skb_header_pointer(skb
, skb_transport_offset(skb
),
3383 sizeof(_udphdr
), &_udphdr
))
3384 hdr_len
+= sizeof(struct udphdr
);
3387 if (shinfo
->gso_type
& SKB_GSO_DODGY
)
3388 gso_segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
3391 qdisc_skb_cb(skb
)->pkt_len
+= (gso_segs
- 1) * hdr_len
;
3395 static inline int __dev_xmit_skb(struct sk_buff
*skb
, struct Qdisc
*q
,
3396 struct net_device
*dev
,
3397 struct netdev_queue
*txq
)
3399 spinlock_t
*root_lock
= qdisc_lock(q
);
3400 struct sk_buff
*to_free
= NULL
;
3404 qdisc_calculate_pkt_len(skb
, q
);
3406 if (q
->flags
& TCQ_F_NOLOCK
) {
3407 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3408 __qdisc_drop(skb
, &to_free
);
3411 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3415 if (unlikely(to_free
))
3416 kfree_skb_list(to_free
);
3421 * Heuristic to force contended enqueues to serialize on a
3422 * separate lock before trying to get qdisc main lock.
3423 * This permits qdisc->running owner to get the lock more
3424 * often and dequeue packets faster.
3426 contended
= qdisc_is_running(q
);
3427 if (unlikely(contended
))
3428 spin_lock(&q
->busylock
);
3430 spin_lock(root_lock
);
3431 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3432 __qdisc_drop(skb
, &to_free
);
3434 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && !qdisc_qlen(q
) &&
3435 qdisc_run_begin(q
)) {
3437 * This is a work-conserving queue; there are no old skbs
3438 * waiting to be sent out; and the qdisc is not running -
3439 * xmit the skb directly.
3442 qdisc_bstats_update(q
, skb
);
3444 if (sch_direct_xmit(skb
, q
, dev
, txq
, root_lock
, true)) {
3445 if (unlikely(contended
)) {
3446 spin_unlock(&q
->busylock
);
3453 rc
= NET_XMIT_SUCCESS
;
3455 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3456 if (qdisc_run_begin(q
)) {
3457 if (unlikely(contended
)) {
3458 spin_unlock(&q
->busylock
);
3465 spin_unlock(root_lock
);
3466 if (unlikely(to_free
))
3467 kfree_skb_list(to_free
);
3468 if (unlikely(contended
))
3469 spin_unlock(&q
->busylock
);
3473 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3474 static void skb_update_prio(struct sk_buff
*skb
)
3476 const struct netprio_map
*map
;
3477 const struct sock
*sk
;
3478 unsigned int prioidx
;
3482 map
= rcu_dereference_bh(skb
->dev
->priomap
);
3485 sk
= skb_to_full_sk(skb
);
3489 prioidx
= sock_cgroup_prioidx(&sk
->sk_cgrp_data
);
3491 if (prioidx
< map
->priomap_len
)
3492 skb
->priority
= map
->priomap
[prioidx
];
3495 #define skb_update_prio(skb)
3498 DEFINE_PER_CPU(int, xmit_recursion
);
3499 EXPORT_SYMBOL(xmit_recursion
);
3502 * dev_loopback_xmit - loop back @skb
3503 * @net: network namespace this loopback is happening in
3504 * @sk: sk needed to be a netfilter okfn
3505 * @skb: buffer to transmit
3507 int dev_loopback_xmit(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
3509 skb_reset_mac_header(skb
);
3510 __skb_pull(skb
, skb_network_offset(skb
));
3511 skb
->pkt_type
= PACKET_LOOPBACK
;
3512 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3513 WARN_ON(!skb_dst(skb
));
3518 EXPORT_SYMBOL(dev_loopback_xmit
);
3520 #ifdef CONFIG_NET_EGRESS
3521 static struct sk_buff
*
3522 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
3524 struct mini_Qdisc
*miniq
= rcu_dereference_bh(dev
->miniq_egress
);
3525 struct tcf_result cl_res
;
3530 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3531 mini_qdisc_bstats_cpu_update(miniq
, skb
);
3533 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
3535 case TC_ACT_RECLASSIFY
:
3536 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
3539 mini_qdisc_qstats_cpu_drop(miniq
);
3540 *ret
= NET_XMIT_DROP
;
3546 *ret
= NET_XMIT_SUCCESS
;
3549 case TC_ACT_REDIRECT
:
3550 /* No need to push/pop skb's mac_header here on egress! */
3551 skb_do_redirect(skb
);
3552 *ret
= NET_XMIT_SUCCESS
;
3560 #endif /* CONFIG_NET_EGRESS */
3563 static int __get_xps_queue_idx(struct net_device
*dev
, struct sk_buff
*skb
,
3564 struct xps_dev_maps
*dev_maps
, unsigned int tci
)
3566 struct xps_map
*map
;
3567 int queue_index
= -1;
3571 tci
+= netdev_get_prio_tc_map(dev
, skb
->priority
);
3574 map
= rcu_dereference(dev_maps
->attr_map
[tci
]);
3577 queue_index
= map
->queues
[0];
3579 queue_index
= map
->queues
[reciprocal_scale(
3580 skb_get_hash(skb
), map
->len
)];
3581 if (unlikely(queue_index
>= dev
->real_num_tx_queues
))
3588 static int get_xps_queue(struct net_device
*dev
, struct net_device
*sb_dev
,
3589 struct sk_buff
*skb
)
3592 struct xps_dev_maps
*dev_maps
;
3593 struct sock
*sk
= skb
->sk
;
3594 int queue_index
= -1;
3596 if (!static_key_false(&xps_needed
))
3600 if (!static_key_false(&xps_rxqs_needed
))
3603 dev_maps
= rcu_dereference(sb_dev
->xps_rxqs_map
);
3605 int tci
= sk_rx_queue_get(sk
);
3607 if (tci
>= 0 && tci
< dev
->num_rx_queues
)
3608 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3613 if (queue_index
< 0) {
3614 dev_maps
= rcu_dereference(sb_dev
->xps_cpus_map
);
3616 unsigned int tci
= skb
->sender_cpu
- 1;
3618 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3630 u16
dev_pick_tx_zero(struct net_device
*dev
, struct sk_buff
*skb
,
3631 struct net_device
*sb_dev
,
3632 select_queue_fallback_t fallback
)
3636 EXPORT_SYMBOL(dev_pick_tx_zero
);
3638 u16
dev_pick_tx_cpu_id(struct net_device
*dev
, struct sk_buff
*skb
,
3639 struct net_device
*sb_dev
,
3640 select_queue_fallback_t fallback
)
3642 return (u16
)raw_smp_processor_id() % dev
->real_num_tx_queues
;
3644 EXPORT_SYMBOL(dev_pick_tx_cpu_id
);
3646 static u16
__netdev_pick_tx(struct net_device
*dev
, struct sk_buff
*skb
,
3647 struct net_device
*sb_dev
)
3649 struct sock
*sk
= skb
->sk
;
3650 int queue_index
= sk_tx_queue_get(sk
);
3652 sb_dev
= sb_dev
? : dev
;
3654 if (queue_index
< 0 || skb
->ooo_okay
||
3655 queue_index
>= dev
->real_num_tx_queues
) {
3656 int new_index
= get_xps_queue(dev
, sb_dev
, skb
);
3659 new_index
= skb_tx_hash(dev
, sb_dev
, skb
);
3661 if (queue_index
!= new_index
&& sk
&&
3663 rcu_access_pointer(sk
->sk_dst_cache
))
3664 sk_tx_queue_set(sk
, new_index
);
3666 queue_index
= new_index
;
3672 struct netdev_queue
*netdev_pick_tx(struct net_device
*dev
,
3673 struct sk_buff
*skb
,
3674 struct net_device
*sb_dev
)
3676 int queue_index
= 0;
3679 u32 sender_cpu
= skb
->sender_cpu
- 1;
3681 if (sender_cpu
>= (u32
)NR_CPUS
)
3682 skb
->sender_cpu
= raw_smp_processor_id() + 1;
3685 if (dev
->real_num_tx_queues
!= 1) {
3686 const struct net_device_ops
*ops
= dev
->netdev_ops
;
3688 if (ops
->ndo_select_queue
)
3689 queue_index
= ops
->ndo_select_queue(dev
, skb
, sb_dev
,
3692 queue_index
= __netdev_pick_tx(dev
, skb
, sb_dev
);
3694 queue_index
= netdev_cap_txqueue(dev
, queue_index
);
3697 skb_set_queue_mapping(skb
, queue_index
);
3698 return netdev_get_tx_queue(dev
, queue_index
);
3702 * __dev_queue_xmit - transmit a buffer
3703 * @skb: buffer to transmit
3704 * @sb_dev: suboordinate device used for L2 forwarding offload
3706 * Queue a buffer for transmission to a network device. The caller must
3707 * have set the device and priority and built the buffer before calling
3708 * this function. The function can be called from an interrupt.
3710 * A negative errno code is returned on a failure. A success does not
3711 * guarantee the frame will be transmitted as it may be dropped due
3712 * to congestion or traffic shaping.
3714 * -----------------------------------------------------------------------------------
3715 * I notice this method can also return errors from the queue disciplines,
3716 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3719 * Regardless of the return value, the skb is consumed, so it is currently
3720 * difficult to retry a send to this method. (You can bump the ref count
3721 * before sending to hold a reference for retry if you are careful.)
3723 * When calling this method, interrupts MUST be enabled. This is because
3724 * the BH enable code must have IRQs enabled so that it will not deadlock.
3727 static int __dev_queue_xmit(struct sk_buff
*skb
, struct net_device
*sb_dev
)
3729 struct net_device
*dev
= skb
->dev
;
3730 struct netdev_queue
*txq
;
3735 skb_reset_mac_header(skb
);
3737 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_SCHED_TSTAMP
))
3738 __skb_tstamp_tx(skb
, NULL
, skb
->sk
, SCM_TSTAMP_SCHED
);
3740 /* Disable soft irqs for various locks below. Also
3741 * stops preemption for RCU.
3745 skb_update_prio(skb
);
3747 qdisc_pkt_len_init(skb
);
3748 #ifdef CONFIG_NET_CLS_ACT
3749 skb
->tc_at_ingress
= 0;
3750 # ifdef CONFIG_NET_EGRESS
3751 if (static_branch_unlikely(&egress_needed_key
)) {
3752 skb
= sch_handle_egress(skb
, &rc
, dev
);
3758 /* If device/qdisc don't need skb->dst, release it right now while
3759 * its hot in this cpu cache.
3761 if (dev
->priv_flags
& IFF_XMIT_DST_RELEASE
)
3766 txq
= netdev_pick_tx(dev
, skb
, sb_dev
);
3767 q
= rcu_dereference_bh(txq
->qdisc
);
3769 trace_net_dev_queue(skb
);
3771 rc
= __dev_xmit_skb(skb
, q
, dev
, txq
);
3775 /* The device has no queue. Common case for software devices:
3776 * loopback, all the sorts of tunnels...
3778 * Really, it is unlikely that netif_tx_lock protection is necessary
3779 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3781 * However, it is possible, that they rely on protection
3784 * Check this and shot the lock. It is not prone from deadlocks.
3785 *Either shot noqueue qdisc, it is even simpler 8)
3787 if (dev
->flags
& IFF_UP
) {
3788 int cpu
= smp_processor_id(); /* ok because BHs are off */
3790 if (txq
->xmit_lock_owner
!= cpu
) {
3791 if (unlikely(__this_cpu_read(xmit_recursion
) >
3792 XMIT_RECURSION_LIMIT
))
3793 goto recursion_alert
;
3795 skb
= validate_xmit_skb(skb
, dev
, &again
);
3799 HARD_TX_LOCK(dev
, txq
, cpu
);
3801 if (!netif_xmit_stopped(txq
)) {
3802 __this_cpu_inc(xmit_recursion
);
3803 skb
= dev_hard_start_xmit(skb
, dev
, txq
, &rc
);
3804 __this_cpu_dec(xmit_recursion
);
3805 if (dev_xmit_complete(rc
)) {
3806 HARD_TX_UNLOCK(dev
, txq
);
3810 HARD_TX_UNLOCK(dev
, txq
);
3811 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3814 /* Recursion is detected! It is possible,
3818 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3824 rcu_read_unlock_bh();
3826 atomic_long_inc(&dev
->tx_dropped
);
3827 kfree_skb_list(skb
);
3830 rcu_read_unlock_bh();
3834 int dev_queue_xmit(struct sk_buff
*skb
)
3836 return __dev_queue_xmit(skb
, NULL
);
3838 EXPORT_SYMBOL(dev_queue_xmit
);
3840 int dev_queue_xmit_accel(struct sk_buff
*skb
, struct net_device
*sb_dev
)
3842 return __dev_queue_xmit(skb
, sb_dev
);
3844 EXPORT_SYMBOL(dev_queue_xmit_accel
);
3846 int dev_direct_xmit(struct sk_buff
*skb
, u16 queue_id
)
3848 struct net_device
*dev
= skb
->dev
;
3849 struct sk_buff
*orig_skb
= skb
;
3850 struct netdev_queue
*txq
;
3851 int ret
= NETDEV_TX_BUSY
;
3854 if (unlikely(!netif_running(dev
) ||
3855 !netif_carrier_ok(dev
)))
3858 skb
= validate_xmit_skb_list(skb
, dev
, &again
);
3859 if (skb
!= orig_skb
)
3862 skb_set_queue_mapping(skb
, queue_id
);
3863 txq
= skb_get_tx_queue(dev
, skb
);
3867 HARD_TX_LOCK(dev
, txq
, smp_processor_id());
3868 if (!netif_xmit_frozen_or_drv_stopped(txq
))
3869 ret
= netdev_start_xmit(skb
, dev
, txq
, false);
3870 HARD_TX_UNLOCK(dev
, txq
);
3874 if (!dev_xmit_complete(ret
))
3879 atomic_long_inc(&dev
->tx_dropped
);
3880 kfree_skb_list(skb
);
3881 return NET_XMIT_DROP
;
3883 EXPORT_SYMBOL(dev_direct_xmit
);
3885 /*************************************************************************
3887 *************************************************************************/
3889 int netdev_max_backlog __read_mostly
= 1000;
3890 EXPORT_SYMBOL(netdev_max_backlog
);
3892 int netdev_tstamp_prequeue __read_mostly
= 1;
3893 int netdev_budget __read_mostly
= 300;
3894 unsigned int __read_mostly netdev_budget_usecs
= 2000;
3895 int weight_p __read_mostly
= 64; /* old backlog weight */
3896 int dev_weight_rx_bias __read_mostly
= 1; /* bias for backlog weight */
3897 int dev_weight_tx_bias __read_mostly
= 1; /* bias for output_queue quota */
3898 int dev_rx_weight __read_mostly
= 64;
3899 int dev_tx_weight __read_mostly
= 64;
3901 /* Called with irq disabled */
3902 static inline void ____napi_schedule(struct softnet_data
*sd
,
3903 struct napi_struct
*napi
)
3905 list_add_tail(&napi
->poll_list
, &sd
->poll_list
);
3906 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
3911 /* One global table that all flow-based protocols share. */
3912 struct rps_sock_flow_table __rcu
*rps_sock_flow_table __read_mostly
;
3913 EXPORT_SYMBOL(rps_sock_flow_table
);
3914 u32 rps_cpu_mask __read_mostly
;
3915 EXPORT_SYMBOL(rps_cpu_mask
);
3917 struct static_key rps_needed __read_mostly
;
3918 EXPORT_SYMBOL(rps_needed
);
3919 struct static_key rfs_needed __read_mostly
;
3920 EXPORT_SYMBOL(rfs_needed
);
3922 static struct rps_dev_flow
*
3923 set_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3924 struct rps_dev_flow
*rflow
, u16 next_cpu
)
3926 if (next_cpu
< nr_cpu_ids
) {
3927 #ifdef CONFIG_RFS_ACCEL
3928 struct netdev_rx_queue
*rxqueue
;
3929 struct rps_dev_flow_table
*flow_table
;
3930 struct rps_dev_flow
*old_rflow
;
3935 /* Should we steer this flow to a different hardware queue? */
3936 if (!skb_rx_queue_recorded(skb
) || !dev
->rx_cpu_rmap
||
3937 !(dev
->features
& NETIF_F_NTUPLE
))
3939 rxq_index
= cpu_rmap_lookup_index(dev
->rx_cpu_rmap
, next_cpu
);
3940 if (rxq_index
== skb_get_rx_queue(skb
))
3943 rxqueue
= dev
->_rx
+ rxq_index
;
3944 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3947 flow_id
= skb_get_hash(skb
) & flow_table
->mask
;
3948 rc
= dev
->netdev_ops
->ndo_rx_flow_steer(dev
, skb
,
3949 rxq_index
, flow_id
);
3953 rflow
= &flow_table
->flows
[flow_id
];
3955 if (old_rflow
->filter
== rflow
->filter
)
3956 old_rflow
->filter
= RPS_NO_FILTER
;
3960 per_cpu(softnet_data
, next_cpu
).input_queue_head
;
3963 rflow
->cpu
= next_cpu
;
3968 * get_rps_cpu is called from netif_receive_skb and returns the target
3969 * CPU from the RPS map of the receiving queue for a given skb.
3970 * rcu_read_lock must be held on entry.
3972 static int get_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3973 struct rps_dev_flow
**rflowp
)
3975 const struct rps_sock_flow_table
*sock_flow_table
;
3976 struct netdev_rx_queue
*rxqueue
= dev
->_rx
;
3977 struct rps_dev_flow_table
*flow_table
;
3978 struct rps_map
*map
;
3983 if (skb_rx_queue_recorded(skb
)) {
3984 u16 index
= skb_get_rx_queue(skb
);
3986 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
3987 WARN_ONCE(dev
->real_num_rx_queues
> 1,
3988 "%s received packet on queue %u, but number "
3989 "of RX queues is %u\n",
3990 dev
->name
, index
, dev
->real_num_rx_queues
);
3996 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3998 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3999 map
= rcu_dereference(rxqueue
->rps_map
);
4000 if (!flow_table
&& !map
)
4003 skb_reset_network_header(skb
);
4004 hash
= skb_get_hash(skb
);
4008 sock_flow_table
= rcu_dereference(rps_sock_flow_table
);
4009 if (flow_table
&& sock_flow_table
) {
4010 struct rps_dev_flow
*rflow
;
4014 /* First check into global flow table if there is a match */
4015 ident
= sock_flow_table
->ents
[hash
& sock_flow_table
->mask
];
4016 if ((ident
^ hash
) & ~rps_cpu_mask
)
4019 next_cpu
= ident
& rps_cpu_mask
;
4021 /* OK, now we know there is a match,
4022 * we can look at the local (per receive queue) flow table
4024 rflow
= &flow_table
->flows
[hash
& flow_table
->mask
];
4028 * If the desired CPU (where last recvmsg was done) is
4029 * different from current CPU (one in the rx-queue flow
4030 * table entry), switch if one of the following holds:
4031 * - Current CPU is unset (>= nr_cpu_ids).
4032 * - Current CPU is offline.
4033 * - The current CPU's queue tail has advanced beyond the
4034 * last packet that was enqueued using this table entry.
4035 * This guarantees that all previous packets for the flow
4036 * have been dequeued, thus preserving in order delivery.
4038 if (unlikely(tcpu
!= next_cpu
) &&
4039 (tcpu
>= nr_cpu_ids
|| !cpu_online(tcpu
) ||
4040 ((int)(per_cpu(softnet_data
, tcpu
).input_queue_head
-
4041 rflow
->last_qtail
)) >= 0)) {
4043 rflow
= set_rps_cpu(dev
, skb
, rflow
, next_cpu
);
4046 if (tcpu
< nr_cpu_ids
&& cpu_online(tcpu
)) {
4056 tcpu
= map
->cpus
[reciprocal_scale(hash
, map
->len
)];
4057 if (cpu_online(tcpu
)) {
4067 #ifdef CONFIG_RFS_ACCEL
4070 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4071 * @dev: Device on which the filter was set
4072 * @rxq_index: RX queue index
4073 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4074 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4076 * Drivers that implement ndo_rx_flow_steer() should periodically call
4077 * this function for each installed filter and remove the filters for
4078 * which it returns %true.
4080 bool rps_may_expire_flow(struct net_device
*dev
, u16 rxq_index
,
4081 u32 flow_id
, u16 filter_id
)
4083 struct netdev_rx_queue
*rxqueue
= dev
->_rx
+ rxq_index
;
4084 struct rps_dev_flow_table
*flow_table
;
4085 struct rps_dev_flow
*rflow
;
4090 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4091 if (flow_table
&& flow_id
<= flow_table
->mask
) {
4092 rflow
= &flow_table
->flows
[flow_id
];
4093 cpu
= READ_ONCE(rflow
->cpu
);
4094 if (rflow
->filter
== filter_id
&& cpu
< nr_cpu_ids
&&
4095 ((int)(per_cpu(softnet_data
, cpu
).input_queue_head
-
4096 rflow
->last_qtail
) <
4097 (int)(10 * flow_table
->mask
)))
4103 EXPORT_SYMBOL(rps_may_expire_flow
);
4105 #endif /* CONFIG_RFS_ACCEL */
4107 /* Called from hardirq (IPI) context */
4108 static void rps_trigger_softirq(void *data
)
4110 struct softnet_data
*sd
= data
;
4112 ____napi_schedule(sd
, &sd
->backlog
);
4116 #endif /* CONFIG_RPS */
4119 * Check if this softnet_data structure is another cpu one
4120 * If yes, queue it to our IPI list and return 1
4123 static int rps_ipi_queued(struct softnet_data
*sd
)
4126 struct softnet_data
*mysd
= this_cpu_ptr(&softnet_data
);
4129 sd
->rps_ipi_next
= mysd
->rps_ipi_list
;
4130 mysd
->rps_ipi_list
= sd
;
4132 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4135 #endif /* CONFIG_RPS */
4139 #ifdef CONFIG_NET_FLOW_LIMIT
4140 int netdev_flow_limit_table_len __read_mostly
= (1 << 12);
4143 static bool skb_flow_limit(struct sk_buff
*skb
, unsigned int qlen
)
4145 #ifdef CONFIG_NET_FLOW_LIMIT
4146 struct sd_flow_limit
*fl
;
4147 struct softnet_data
*sd
;
4148 unsigned int old_flow
, new_flow
;
4150 if (qlen
< (netdev_max_backlog
>> 1))
4153 sd
= this_cpu_ptr(&softnet_data
);
4156 fl
= rcu_dereference(sd
->flow_limit
);
4158 new_flow
= skb_get_hash(skb
) & (fl
->num_buckets
- 1);
4159 old_flow
= fl
->history
[fl
->history_head
];
4160 fl
->history
[fl
->history_head
] = new_flow
;
4163 fl
->history_head
&= FLOW_LIMIT_HISTORY
- 1;
4165 if (likely(fl
->buckets
[old_flow
]))
4166 fl
->buckets
[old_flow
]--;
4168 if (++fl
->buckets
[new_flow
] > (FLOW_LIMIT_HISTORY
>> 1)) {
4180 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4181 * queue (may be a remote CPU queue).
4183 static int enqueue_to_backlog(struct sk_buff
*skb
, int cpu
,
4184 unsigned int *qtail
)
4186 struct softnet_data
*sd
;
4187 unsigned long flags
;
4190 sd
= &per_cpu(softnet_data
, cpu
);
4192 local_irq_save(flags
);
4195 if (!netif_running(skb
->dev
))
4197 qlen
= skb_queue_len(&sd
->input_pkt_queue
);
4198 if (qlen
<= netdev_max_backlog
&& !skb_flow_limit(skb
, qlen
)) {
4201 __skb_queue_tail(&sd
->input_pkt_queue
, skb
);
4202 input_queue_tail_incr_save(sd
, qtail
);
4204 local_irq_restore(flags
);
4205 return NET_RX_SUCCESS
;
4208 /* Schedule NAPI for backlog device
4209 * We can use non atomic operation since we own the queue lock
4211 if (!__test_and_set_bit(NAPI_STATE_SCHED
, &sd
->backlog
.state
)) {
4212 if (!rps_ipi_queued(sd
))
4213 ____napi_schedule(sd
, &sd
->backlog
);
4222 local_irq_restore(flags
);
4224 atomic_long_inc(&skb
->dev
->rx_dropped
);
4229 static struct netdev_rx_queue
*netif_get_rxqueue(struct sk_buff
*skb
)
4231 struct net_device
*dev
= skb
->dev
;
4232 struct netdev_rx_queue
*rxqueue
;
4236 if (skb_rx_queue_recorded(skb
)) {
4237 u16 index
= skb_get_rx_queue(skb
);
4239 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4240 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4241 "%s received packet on queue %u, but number "
4242 "of RX queues is %u\n",
4243 dev
->name
, index
, dev
->real_num_rx_queues
);
4245 return rxqueue
; /* Return first rxqueue */
4252 static u32
netif_receive_generic_xdp(struct sk_buff
*skb
,
4253 struct xdp_buff
*xdp
,
4254 struct bpf_prog
*xdp_prog
)
4256 struct netdev_rx_queue
*rxqueue
;
4257 void *orig_data
, *orig_data_end
;
4258 u32 metalen
, act
= XDP_DROP
;
4262 /* Reinjected packets coming from act_mirred or similar should
4263 * not get XDP generic processing.
4265 if (skb_cloned(skb
) || skb_is_tc_redirected(skb
))
4268 /* XDP packets must be linear and must have sufficient headroom
4269 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4270 * native XDP provides, thus we need to do it here as well.
4272 if (skb_is_nonlinear(skb
) ||
4273 skb_headroom(skb
) < XDP_PACKET_HEADROOM
) {
4274 int hroom
= XDP_PACKET_HEADROOM
- skb_headroom(skb
);
4275 int troom
= skb
->tail
+ skb
->data_len
- skb
->end
;
4277 /* In case we have to go down the path and also linearize,
4278 * then lets do the pskb_expand_head() work just once here.
4280 if (pskb_expand_head(skb
,
4281 hroom
> 0 ? ALIGN(hroom
, NET_SKB_PAD
) : 0,
4282 troom
> 0 ? troom
+ 128 : 0, GFP_ATOMIC
))
4284 if (skb_linearize(skb
))
4288 /* The XDP program wants to see the packet starting at the MAC
4291 mac_len
= skb
->data
- skb_mac_header(skb
);
4292 hlen
= skb_headlen(skb
) + mac_len
;
4293 xdp
->data
= skb
->data
- mac_len
;
4294 xdp
->data_meta
= xdp
->data
;
4295 xdp
->data_end
= xdp
->data
+ hlen
;
4296 xdp
->data_hard_start
= skb
->data
- skb_headroom(skb
);
4297 orig_data_end
= xdp
->data_end
;
4298 orig_data
= xdp
->data
;
4300 rxqueue
= netif_get_rxqueue(skb
);
4301 xdp
->rxq
= &rxqueue
->xdp_rxq
;
4303 act
= bpf_prog_run_xdp(xdp_prog
, xdp
);
4305 off
= xdp
->data
- orig_data
;
4307 __skb_pull(skb
, off
);
4309 __skb_push(skb
, -off
);
4310 skb
->mac_header
+= off
;
4312 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4315 off
= orig_data_end
- xdp
->data_end
;
4317 skb_set_tail_pointer(skb
, xdp
->data_end
- xdp
->data
);
4325 __skb_push(skb
, mac_len
);
4328 metalen
= xdp
->data
- xdp
->data_meta
;
4330 skb_metadata_set(skb
, metalen
);
4333 bpf_warn_invalid_xdp_action(act
);
4336 trace_xdp_exception(skb
->dev
, xdp_prog
, act
);
4347 /* When doing generic XDP we have to bypass the qdisc layer and the
4348 * network taps in order to match in-driver-XDP behavior.
4350 void generic_xdp_tx(struct sk_buff
*skb
, struct bpf_prog
*xdp_prog
)
4352 struct net_device
*dev
= skb
->dev
;
4353 struct netdev_queue
*txq
;
4354 bool free_skb
= true;
4357 txq
= netdev_pick_tx(dev
, skb
, NULL
);
4358 cpu
= smp_processor_id();
4359 HARD_TX_LOCK(dev
, txq
, cpu
);
4360 if (!netif_xmit_stopped(txq
)) {
4361 rc
= netdev_start_xmit(skb
, dev
, txq
, 0);
4362 if (dev_xmit_complete(rc
))
4365 HARD_TX_UNLOCK(dev
, txq
);
4367 trace_xdp_exception(dev
, xdp_prog
, XDP_TX
);
4371 EXPORT_SYMBOL_GPL(generic_xdp_tx
);
4373 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key
);
4375 int do_xdp_generic(struct bpf_prog
*xdp_prog
, struct sk_buff
*skb
)
4378 struct xdp_buff xdp
;
4382 act
= netif_receive_generic_xdp(skb
, &xdp
, xdp_prog
);
4383 if (act
!= XDP_PASS
) {
4386 err
= xdp_do_generic_redirect(skb
->dev
, skb
,
4392 generic_xdp_tx(skb
, xdp_prog
);
4403 EXPORT_SYMBOL_GPL(do_xdp_generic
);
4405 static int netif_rx_internal(struct sk_buff
*skb
)
4409 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4411 trace_netif_rx(skb
);
4413 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
4418 ret
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
4422 /* Consider XDP consuming the packet a success from
4423 * the netdev point of view we do not want to count
4426 if (ret
!= XDP_PASS
)
4427 return NET_RX_SUCCESS
;
4431 if (static_key_false(&rps_needed
)) {
4432 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4438 cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4440 cpu
= smp_processor_id();
4442 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4451 ret
= enqueue_to_backlog(skb
, get_cpu(), &qtail
);
4458 * netif_rx - post buffer to the network code
4459 * @skb: buffer to post
4461 * This function receives a packet from a device driver and queues it for
4462 * the upper (protocol) levels to process. It always succeeds. The buffer
4463 * may be dropped during processing for congestion control or by the
4467 * NET_RX_SUCCESS (no congestion)
4468 * NET_RX_DROP (packet was dropped)
4472 int netif_rx(struct sk_buff
*skb
)
4474 trace_netif_rx_entry(skb
);
4476 return netif_rx_internal(skb
);
4478 EXPORT_SYMBOL(netif_rx
);
4480 int netif_rx_ni(struct sk_buff
*skb
)
4484 trace_netif_rx_ni_entry(skb
);
4487 err
= netif_rx_internal(skb
);
4488 if (local_softirq_pending())
4494 EXPORT_SYMBOL(netif_rx_ni
);
4496 static __latent_entropy
void net_tx_action(struct softirq_action
*h
)
4498 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
4500 if (sd
->completion_queue
) {
4501 struct sk_buff
*clist
;
4503 local_irq_disable();
4504 clist
= sd
->completion_queue
;
4505 sd
->completion_queue
= NULL
;
4509 struct sk_buff
*skb
= clist
;
4511 clist
= clist
->next
;
4513 WARN_ON(refcount_read(&skb
->users
));
4514 if (likely(get_kfree_skb_cb(skb
)->reason
== SKB_REASON_CONSUMED
))
4515 trace_consume_skb(skb
);
4517 trace_kfree_skb(skb
, net_tx_action
);
4519 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
4522 __kfree_skb_defer(skb
);
4525 __kfree_skb_flush();
4528 if (sd
->output_queue
) {
4531 local_irq_disable();
4532 head
= sd
->output_queue
;
4533 sd
->output_queue
= NULL
;
4534 sd
->output_queue_tailp
= &sd
->output_queue
;
4538 struct Qdisc
*q
= head
;
4539 spinlock_t
*root_lock
= NULL
;
4541 head
= head
->next_sched
;
4543 if (!(q
->flags
& TCQ_F_NOLOCK
)) {
4544 root_lock
= qdisc_lock(q
);
4545 spin_lock(root_lock
);
4547 /* We need to make sure head->next_sched is read
4548 * before clearing __QDISC_STATE_SCHED
4550 smp_mb__before_atomic();
4551 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
4554 spin_unlock(root_lock
);
4558 xfrm_dev_backlog(sd
);
4561 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4562 /* This hook is defined here for ATM LANE */
4563 int (*br_fdb_test_addr_hook
)(struct net_device
*dev
,
4564 unsigned char *addr
) __read_mostly
;
4565 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook
);
4568 static inline struct sk_buff
*
4569 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
4570 struct net_device
*orig_dev
)
4572 #ifdef CONFIG_NET_CLS_ACT
4573 struct mini_Qdisc
*miniq
= rcu_dereference_bh(skb
->dev
->miniq_ingress
);
4574 struct tcf_result cl_res
;
4576 /* If there's at least one ingress present somewhere (so
4577 * we get here via enabled static key), remaining devices
4578 * that are not configured with an ingress qdisc will bail
4585 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4589 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
4590 skb
->tc_at_ingress
= 1;
4591 mini_qdisc_bstats_cpu_update(miniq
, skb
);
4593 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
4595 case TC_ACT_RECLASSIFY
:
4596 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
4599 mini_qdisc_qstats_cpu_drop(miniq
);
4607 case TC_ACT_REDIRECT
:
4608 /* skb_mac_header check was done by cls/act_bpf, so
4609 * we can safely push the L2 header back before
4610 * redirecting to another netdev
4612 __skb_push(skb
, skb
->mac_len
);
4613 skb_do_redirect(skb
);
4615 case TC_ACT_REINSERT
:
4616 /* this does not scrub the packet, and updates stats on error */
4617 skb_tc_reinsert(skb
, &cl_res
);
4622 #endif /* CONFIG_NET_CLS_ACT */
4627 * netdev_is_rx_handler_busy - check if receive handler is registered
4628 * @dev: device to check
4630 * Check if a receive handler is already registered for a given device.
4631 * Return true if there one.
4633 * The caller must hold the rtnl_mutex.
4635 bool netdev_is_rx_handler_busy(struct net_device
*dev
)
4638 return dev
&& rtnl_dereference(dev
->rx_handler
);
4640 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy
);
4643 * netdev_rx_handler_register - register receive handler
4644 * @dev: device to register a handler for
4645 * @rx_handler: receive handler to register
4646 * @rx_handler_data: data pointer that is used by rx handler
4648 * Register a receive handler for a device. This handler will then be
4649 * called from __netif_receive_skb. A negative errno code is returned
4652 * The caller must hold the rtnl_mutex.
4654 * For a general description of rx_handler, see enum rx_handler_result.
4656 int netdev_rx_handler_register(struct net_device
*dev
,
4657 rx_handler_func_t
*rx_handler
,
4658 void *rx_handler_data
)
4660 if (netdev_is_rx_handler_busy(dev
))
4663 if (dev
->priv_flags
& IFF_NO_RX_HANDLER
)
4666 /* Note: rx_handler_data must be set before rx_handler */
4667 rcu_assign_pointer(dev
->rx_handler_data
, rx_handler_data
);
4668 rcu_assign_pointer(dev
->rx_handler
, rx_handler
);
4672 EXPORT_SYMBOL_GPL(netdev_rx_handler_register
);
4675 * netdev_rx_handler_unregister - unregister receive handler
4676 * @dev: device to unregister a handler from
4678 * Unregister a receive handler from a device.
4680 * The caller must hold the rtnl_mutex.
4682 void netdev_rx_handler_unregister(struct net_device
*dev
)
4686 RCU_INIT_POINTER(dev
->rx_handler
, NULL
);
4687 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4688 * section has a guarantee to see a non NULL rx_handler_data
4692 RCU_INIT_POINTER(dev
->rx_handler_data
, NULL
);
4694 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister
);
4697 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4698 * the special handling of PFMEMALLOC skbs.
4700 static bool skb_pfmemalloc_protocol(struct sk_buff
*skb
)
4702 switch (skb
->protocol
) {
4703 case htons(ETH_P_ARP
):
4704 case htons(ETH_P_IP
):
4705 case htons(ETH_P_IPV6
):
4706 case htons(ETH_P_8021Q
):
4707 case htons(ETH_P_8021AD
):
4714 static inline int nf_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
,
4715 int *ret
, struct net_device
*orig_dev
)
4717 #ifdef CONFIG_NETFILTER_INGRESS
4718 if (nf_hook_ingress_active(skb
)) {
4722 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4727 ingress_retval
= nf_hook_ingress(skb
);
4729 return ingress_retval
;
4731 #endif /* CONFIG_NETFILTER_INGRESS */
4735 static int __netif_receive_skb_core(struct sk_buff
*skb
, bool pfmemalloc
,
4736 struct packet_type
**ppt_prev
)
4738 struct packet_type
*ptype
, *pt_prev
;
4739 rx_handler_func_t
*rx_handler
;
4740 struct net_device
*orig_dev
;
4741 bool deliver_exact
= false;
4742 int ret
= NET_RX_DROP
;
4745 net_timestamp_check(!netdev_tstamp_prequeue
, skb
);
4747 trace_netif_receive_skb(skb
);
4749 orig_dev
= skb
->dev
;
4751 skb_reset_network_header(skb
);
4752 if (!skb_transport_header_was_set(skb
))
4753 skb_reset_transport_header(skb
);
4754 skb_reset_mac_len(skb
);
4759 skb
->skb_iif
= skb
->dev
->ifindex
;
4761 __this_cpu_inc(softnet_data
.processed
);
4763 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
4764 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
4765 skb
= skb_vlan_untag(skb
);
4770 if (skb_skip_tc_classify(skb
))
4776 list_for_each_entry_rcu(ptype
, &ptype_all
, list
) {
4778 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4782 list_for_each_entry_rcu(ptype
, &skb
->dev
->ptype_all
, list
) {
4784 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4789 #ifdef CONFIG_NET_INGRESS
4790 if (static_branch_unlikely(&ingress_needed_key
)) {
4791 skb
= sch_handle_ingress(skb
, &pt_prev
, &ret
, orig_dev
);
4795 if (nf_ingress(skb
, &pt_prev
, &ret
, orig_dev
) < 0)
4801 if (pfmemalloc
&& !skb_pfmemalloc_protocol(skb
))
4804 if (skb_vlan_tag_present(skb
)) {
4806 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4809 if (vlan_do_receive(&skb
))
4811 else if (unlikely(!skb
))
4815 rx_handler
= rcu_dereference(skb
->dev
->rx_handler
);
4818 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4821 switch (rx_handler(&skb
)) {
4822 case RX_HANDLER_CONSUMED
:
4823 ret
= NET_RX_SUCCESS
;
4825 case RX_HANDLER_ANOTHER
:
4827 case RX_HANDLER_EXACT
:
4828 deliver_exact
= true;
4829 case RX_HANDLER_PASS
:
4836 if (unlikely(skb_vlan_tag_present(skb
))) {
4837 if (skb_vlan_tag_get_id(skb
))
4838 skb
->pkt_type
= PACKET_OTHERHOST
;
4839 /* Note: we might in the future use prio bits
4840 * and set skb->priority like in vlan_do_receive()
4841 * For the time being, just ignore Priority Code Point
4846 type
= skb
->protocol
;
4848 /* deliver only exact match when indicated */
4849 if (likely(!deliver_exact
)) {
4850 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4851 &ptype_base
[ntohs(type
) &
4855 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4856 &orig_dev
->ptype_specific
);
4858 if (unlikely(skb
->dev
!= orig_dev
)) {
4859 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4860 &skb
->dev
->ptype_specific
);
4864 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
4866 *ppt_prev
= pt_prev
;
4870 atomic_long_inc(&skb
->dev
->rx_dropped
);
4872 atomic_long_inc(&skb
->dev
->rx_nohandler
);
4874 /* Jamal, now you will not able to escape explaining
4875 * me how you were going to use this. :-)
4884 static int __netif_receive_skb_one_core(struct sk_buff
*skb
, bool pfmemalloc
)
4886 struct net_device
*orig_dev
= skb
->dev
;
4887 struct packet_type
*pt_prev
= NULL
;
4890 ret
= __netif_receive_skb_core(skb
, pfmemalloc
, &pt_prev
);
4892 ret
= pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
4897 * netif_receive_skb_core - special purpose version of netif_receive_skb
4898 * @skb: buffer to process
4900 * More direct receive version of netif_receive_skb(). It should
4901 * only be used by callers that have a need to skip RPS and Generic XDP.
4902 * Caller must also take care of handling if (page_is_)pfmemalloc.
4904 * This function may only be called from softirq context and interrupts
4905 * should be enabled.
4907 * Return values (usually ignored):
4908 * NET_RX_SUCCESS: no congestion
4909 * NET_RX_DROP: packet was dropped
4911 int netif_receive_skb_core(struct sk_buff
*skb
)
4916 ret
= __netif_receive_skb_one_core(skb
, false);
4921 EXPORT_SYMBOL(netif_receive_skb_core
);
4923 static inline void __netif_receive_skb_list_ptype(struct list_head
*head
,
4924 struct packet_type
*pt_prev
,
4925 struct net_device
*orig_dev
)
4927 struct sk_buff
*skb
, *next
;
4931 if (list_empty(head
))
4933 if (pt_prev
->list_func
!= NULL
)
4934 pt_prev
->list_func(head
, pt_prev
, orig_dev
);
4936 list_for_each_entry_safe(skb
, next
, head
, list
)
4937 pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
4940 static void __netif_receive_skb_list_core(struct list_head
*head
, bool pfmemalloc
)
4942 /* Fast-path assumptions:
4943 * - There is no RX handler.
4944 * - Only one packet_type matches.
4945 * If either of these fails, we will end up doing some per-packet
4946 * processing in-line, then handling the 'last ptype' for the whole
4947 * sublist. This can't cause out-of-order delivery to any single ptype,
4948 * because the 'last ptype' must be constant across the sublist, and all
4949 * other ptypes are handled per-packet.
4951 /* Current (common) ptype of sublist */
4952 struct packet_type
*pt_curr
= NULL
;
4953 /* Current (common) orig_dev of sublist */
4954 struct net_device
*od_curr
= NULL
;
4955 struct list_head sublist
;
4956 struct sk_buff
*skb
, *next
;
4958 INIT_LIST_HEAD(&sublist
);
4959 list_for_each_entry_safe(skb
, next
, head
, list
) {
4960 struct net_device
*orig_dev
= skb
->dev
;
4961 struct packet_type
*pt_prev
= NULL
;
4963 list_del(&skb
->list
);
4964 __netif_receive_skb_core(skb
, pfmemalloc
, &pt_prev
);
4967 if (pt_curr
!= pt_prev
|| od_curr
!= orig_dev
) {
4968 /* dispatch old sublist */
4969 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
4970 /* start new sublist */
4971 INIT_LIST_HEAD(&sublist
);
4975 list_add_tail(&skb
->list
, &sublist
);
4978 /* dispatch final sublist */
4979 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
4982 static int __netif_receive_skb(struct sk_buff
*skb
)
4986 if (sk_memalloc_socks() && skb_pfmemalloc(skb
)) {
4987 unsigned int noreclaim_flag
;
4990 * PFMEMALLOC skbs are special, they should
4991 * - be delivered to SOCK_MEMALLOC sockets only
4992 * - stay away from userspace
4993 * - have bounded memory usage
4995 * Use PF_MEMALLOC as this saves us from propagating the allocation
4996 * context down to all allocation sites.
4998 noreclaim_flag
= memalloc_noreclaim_save();
4999 ret
= __netif_receive_skb_one_core(skb
, true);
5000 memalloc_noreclaim_restore(noreclaim_flag
);
5002 ret
= __netif_receive_skb_one_core(skb
, false);
5007 static void __netif_receive_skb_list(struct list_head
*head
)
5009 unsigned long noreclaim_flag
= 0;
5010 struct sk_buff
*skb
, *next
;
5011 bool pfmemalloc
= false; /* Is current sublist PF_MEMALLOC? */
5013 list_for_each_entry_safe(skb
, next
, head
, list
) {
5014 if ((sk_memalloc_socks() && skb_pfmemalloc(skb
)) != pfmemalloc
) {
5015 struct list_head sublist
;
5017 /* Handle the previous sublist */
5018 list_cut_before(&sublist
, head
, &skb
->list
);
5019 if (!list_empty(&sublist
))
5020 __netif_receive_skb_list_core(&sublist
, pfmemalloc
);
5021 pfmemalloc
= !pfmemalloc
;
5022 /* See comments in __netif_receive_skb */
5024 noreclaim_flag
= memalloc_noreclaim_save();
5026 memalloc_noreclaim_restore(noreclaim_flag
);
5029 /* Handle the remaining sublist */
5030 if (!list_empty(head
))
5031 __netif_receive_skb_list_core(head
, pfmemalloc
);
5032 /* Restore pflags */
5034 memalloc_noreclaim_restore(noreclaim_flag
);
5037 static int generic_xdp_install(struct net_device
*dev
, struct netdev_bpf
*xdp
)
5039 struct bpf_prog
*old
= rtnl_dereference(dev
->xdp_prog
);
5040 struct bpf_prog
*new = xdp
->prog
;
5043 switch (xdp
->command
) {
5044 case XDP_SETUP_PROG
:
5045 rcu_assign_pointer(dev
->xdp_prog
, new);
5050 static_branch_dec(&generic_xdp_needed_key
);
5051 } else if (new && !old
) {
5052 static_branch_inc(&generic_xdp_needed_key
);
5053 dev_disable_lro(dev
);
5054 dev_disable_gro_hw(dev
);
5058 case XDP_QUERY_PROG
:
5059 xdp
->prog_id
= old
? old
->aux
->id
: 0;
5070 static int netif_receive_skb_internal(struct sk_buff
*skb
)
5074 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5076 if (skb_defer_rx_timestamp(skb
))
5077 return NET_RX_SUCCESS
;
5079 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
5084 ret
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
5088 if (ret
!= XDP_PASS
)
5094 if (static_key_false(&rps_needed
)) {
5095 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5096 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5099 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5105 ret
= __netif_receive_skb(skb
);
5110 static void netif_receive_skb_list_internal(struct list_head
*head
)
5112 struct bpf_prog
*xdp_prog
= NULL
;
5113 struct sk_buff
*skb
, *next
;
5114 struct list_head sublist
;
5116 INIT_LIST_HEAD(&sublist
);
5117 list_for_each_entry_safe(skb
, next
, head
, list
) {
5118 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5119 list_del(&skb
->list
);
5120 if (!skb_defer_rx_timestamp(skb
))
5121 list_add_tail(&skb
->list
, &sublist
);
5123 list_splice_init(&sublist
, head
);
5125 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
5128 list_for_each_entry_safe(skb
, next
, head
, list
) {
5129 xdp_prog
= rcu_dereference(skb
->dev
->xdp_prog
);
5130 list_del(&skb
->list
);
5131 if (do_xdp_generic(xdp_prog
, skb
) == XDP_PASS
)
5132 list_add_tail(&skb
->list
, &sublist
);
5136 /* Put passed packets back on main list */
5137 list_splice_init(&sublist
, head
);
5142 if (static_key_false(&rps_needed
)) {
5143 list_for_each_entry_safe(skb
, next
, head
, list
) {
5144 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5145 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5148 /* Will be handled, remove from list */
5149 list_del(&skb
->list
);
5150 enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5155 __netif_receive_skb_list(head
);
5160 * netif_receive_skb - process receive buffer from network
5161 * @skb: buffer to process
5163 * netif_receive_skb() is the main receive data processing function.
5164 * It always succeeds. The buffer may be dropped during processing
5165 * for congestion control or by the protocol layers.
5167 * This function may only be called from softirq context and interrupts
5168 * should be enabled.
5170 * Return values (usually ignored):
5171 * NET_RX_SUCCESS: no congestion
5172 * NET_RX_DROP: packet was dropped
5174 int netif_receive_skb(struct sk_buff
*skb
)
5176 trace_netif_receive_skb_entry(skb
);
5178 return netif_receive_skb_internal(skb
);
5180 EXPORT_SYMBOL(netif_receive_skb
);
5183 * netif_receive_skb_list - process many receive buffers from network
5184 * @head: list of skbs to process.
5186 * Since return value of netif_receive_skb() is normally ignored, and
5187 * wouldn't be meaningful for a list, this function returns void.
5189 * This function may only be called from softirq context and interrupts
5190 * should be enabled.
5192 void netif_receive_skb_list(struct list_head
*head
)
5194 struct sk_buff
*skb
;
5196 if (list_empty(head
))
5198 list_for_each_entry(skb
, head
, list
)
5199 trace_netif_receive_skb_list_entry(skb
);
5200 netif_receive_skb_list_internal(head
);
5202 EXPORT_SYMBOL(netif_receive_skb_list
);
5204 DEFINE_PER_CPU(struct work_struct
, flush_works
);
5206 /* Network device is going away, flush any packets still pending */
5207 static void flush_backlog(struct work_struct
*work
)
5209 struct sk_buff
*skb
, *tmp
;
5210 struct softnet_data
*sd
;
5213 sd
= this_cpu_ptr(&softnet_data
);
5215 local_irq_disable();
5217 skb_queue_walk_safe(&sd
->input_pkt_queue
, skb
, tmp
) {
5218 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5219 __skb_unlink(skb
, &sd
->input_pkt_queue
);
5221 input_queue_head_incr(sd
);
5227 skb_queue_walk_safe(&sd
->process_queue
, skb
, tmp
) {
5228 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5229 __skb_unlink(skb
, &sd
->process_queue
);
5231 input_queue_head_incr(sd
);
5237 static void flush_all_backlogs(void)
5243 for_each_online_cpu(cpu
)
5244 queue_work_on(cpu
, system_highpri_wq
,
5245 per_cpu_ptr(&flush_works
, cpu
));
5247 for_each_online_cpu(cpu
)
5248 flush_work(per_cpu_ptr(&flush_works
, cpu
));
5253 static int napi_gro_complete(struct sk_buff
*skb
)
5255 struct packet_offload
*ptype
;
5256 __be16 type
= skb
->protocol
;
5257 struct list_head
*head
= &offload_base
;
5260 BUILD_BUG_ON(sizeof(struct napi_gro_cb
) > sizeof(skb
->cb
));
5262 if (NAPI_GRO_CB(skb
)->count
== 1) {
5263 skb_shinfo(skb
)->gso_size
= 0;
5268 list_for_each_entry_rcu(ptype
, head
, list
) {
5269 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5272 err
= ptype
->callbacks
.gro_complete(skb
, 0);
5278 WARN_ON(&ptype
->list
== head
);
5280 return NET_RX_SUCCESS
;
5284 return netif_receive_skb_internal(skb
);
5287 static void __napi_gro_flush_chain(struct napi_struct
*napi
, u32 index
,
5290 struct list_head
*head
= &napi
->gro_hash
[index
].list
;
5291 struct sk_buff
*skb
, *p
;
5293 list_for_each_entry_safe_reverse(skb
, p
, head
, list
) {
5294 if (flush_old
&& NAPI_GRO_CB(skb
)->age
== jiffies
)
5296 list_del(&skb
->list
);
5298 napi_gro_complete(skb
);
5299 napi
->gro_hash
[index
].count
--;
5302 if (!napi
->gro_hash
[index
].count
)
5303 __clear_bit(index
, &napi
->gro_bitmask
);
5306 /* napi->gro_hash[].list contains packets ordered by age.
5307 * youngest packets at the head of it.
5308 * Complete skbs in reverse order to reduce latencies.
5310 void napi_gro_flush(struct napi_struct
*napi
, bool flush_old
)
5314 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
5315 if (test_bit(i
, &napi
->gro_bitmask
))
5316 __napi_gro_flush_chain(napi
, i
, flush_old
);
5319 EXPORT_SYMBOL(napi_gro_flush
);
5321 static struct list_head
*gro_list_prepare(struct napi_struct
*napi
,
5322 struct sk_buff
*skb
)
5324 unsigned int maclen
= skb
->dev
->hard_header_len
;
5325 u32 hash
= skb_get_hash_raw(skb
);
5326 struct list_head
*head
;
5329 head
= &napi
->gro_hash
[hash
& (GRO_HASH_BUCKETS
- 1)].list
;
5330 list_for_each_entry(p
, head
, list
) {
5331 unsigned long diffs
;
5333 NAPI_GRO_CB(p
)->flush
= 0;
5335 if (hash
!= skb_get_hash_raw(p
)) {
5336 NAPI_GRO_CB(p
)->same_flow
= 0;
5340 diffs
= (unsigned long)p
->dev
^ (unsigned long)skb
->dev
;
5341 diffs
|= p
->vlan_tci
^ skb
->vlan_tci
;
5342 diffs
|= skb_metadata_dst_cmp(p
, skb
);
5343 diffs
|= skb_metadata_differs(p
, skb
);
5344 if (maclen
== ETH_HLEN
)
5345 diffs
|= compare_ether_header(skb_mac_header(p
),
5346 skb_mac_header(skb
));
5348 diffs
= memcmp(skb_mac_header(p
),
5349 skb_mac_header(skb
),
5351 NAPI_GRO_CB(p
)->same_flow
= !diffs
;
5357 static void skb_gro_reset_offset(struct sk_buff
*skb
)
5359 const struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5360 const skb_frag_t
*frag0
= &pinfo
->frags
[0];
5362 NAPI_GRO_CB(skb
)->data_offset
= 0;
5363 NAPI_GRO_CB(skb
)->frag0
= NULL
;
5364 NAPI_GRO_CB(skb
)->frag0_len
= 0;
5366 if (skb_mac_header(skb
) == skb_tail_pointer(skb
) &&
5368 !PageHighMem(skb_frag_page(frag0
))) {
5369 NAPI_GRO_CB(skb
)->frag0
= skb_frag_address(frag0
);
5370 NAPI_GRO_CB(skb
)->frag0_len
= min_t(unsigned int,
5371 skb_frag_size(frag0
),
5372 skb
->end
- skb
->tail
);
5376 static void gro_pull_from_frag0(struct sk_buff
*skb
, int grow
)
5378 struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5380 BUG_ON(skb
->end
- skb
->tail
< grow
);
5382 memcpy(skb_tail_pointer(skb
), NAPI_GRO_CB(skb
)->frag0
, grow
);
5384 skb
->data_len
-= grow
;
5387 pinfo
->frags
[0].page_offset
+= grow
;
5388 skb_frag_size_sub(&pinfo
->frags
[0], grow
);
5390 if (unlikely(!skb_frag_size(&pinfo
->frags
[0]))) {
5391 skb_frag_unref(skb
, 0);
5392 memmove(pinfo
->frags
, pinfo
->frags
+ 1,
5393 --pinfo
->nr_frags
* sizeof(pinfo
->frags
[0]));
5397 static void gro_flush_oldest(struct list_head
*head
)
5399 struct sk_buff
*oldest
;
5401 oldest
= list_last_entry(head
, struct sk_buff
, list
);
5403 /* We are called with head length >= MAX_GRO_SKBS, so this is
5406 if (WARN_ON_ONCE(!oldest
))
5409 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5412 list_del(&oldest
->list
);
5413 napi_gro_complete(oldest
);
5416 static enum gro_result
dev_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5418 u32 hash
= skb_get_hash_raw(skb
) & (GRO_HASH_BUCKETS
- 1);
5419 struct list_head
*head
= &offload_base
;
5420 struct packet_offload
*ptype
;
5421 __be16 type
= skb
->protocol
;
5422 struct list_head
*gro_head
;
5423 struct sk_buff
*pp
= NULL
;
5424 enum gro_result ret
;
5428 if (netif_elide_gro(skb
->dev
))
5431 gro_head
= gro_list_prepare(napi
, skb
);
5434 list_for_each_entry_rcu(ptype
, head
, list
) {
5435 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5438 skb_set_network_header(skb
, skb_gro_offset(skb
));
5439 skb_reset_mac_len(skb
);
5440 NAPI_GRO_CB(skb
)->same_flow
= 0;
5441 NAPI_GRO_CB(skb
)->flush
= skb_is_gso(skb
) || skb_has_frag_list(skb
);
5442 NAPI_GRO_CB(skb
)->free
= 0;
5443 NAPI_GRO_CB(skb
)->encap_mark
= 0;
5444 NAPI_GRO_CB(skb
)->recursion_counter
= 0;
5445 NAPI_GRO_CB(skb
)->is_fou
= 0;
5446 NAPI_GRO_CB(skb
)->is_atomic
= 1;
5447 NAPI_GRO_CB(skb
)->gro_remcsum_start
= 0;
5449 /* Setup for GRO checksum validation */
5450 switch (skb
->ip_summed
) {
5451 case CHECKSUM_COMPLETE
:
5452 NAPI_GRO_CB(skb
)->csum
= skb
->csum
;
5453 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5454 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5456 case CHECKSUM_UNNECESSARY
:
5457 NAPI_GRO_CB(skb
)->csum_cnt
= skb
->csum_level
+ 1;
5458 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5461 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5462 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5465 pp
= ptype
->callbacks
.gro_receive(gro_head
, skb
);
5470 if (&ptype
->list
== head
)
5473 if (IS_ERR(pp
) && PTR_ERR(pp
) == -EINPROGRESS
) {
5478 same_flow
= NAPI_GRO_CB(skb
)->same_flow
;
5479 ret
= NAPI_GRO_CB(skb
)->free
? GRO_MERGED_FREE
: GRO_MERGED
;
5482 list_del(&pp
->list
);
5484 napi_gro_complete(pp
);
5485 napi
->gro_hash
[hash
].count
--;
5491 if (NAPI_GRO_CB(skb
)->flush
)
5494 if (unlikely(napi
->gro_hash
[hash
].count
>= MAX_GRO_SKBS
)) {
5495 gro_flush_oldest(gro_head
);
5497 napi
->gro_hash
[hash
].count
++;
5499 NAPI_GRO_CB(skb
)->count
= 1;
5500 NAPI_GRO_CB(skb
)->age
= jiffies
;
5501 NAPI_GRO_CB(skb
)->last
= skb
;
5502 skb_shinfo(skb
)->gso_size
= skb_gro_len(skb
);
5503 list_add(&skb
->list
, gro_head
);
5507 grow
= skb_gro_offset(skb
) - skb_headlen(skb
);
5509 gro_pull_from_frag0(skb
, grow
);
5511 if (napi
->gro_hash
[hash
].count
) {
5512 if (!test_bit(hash
, &napi
->gro_bitmask
))
5513 __set_bit(hash
, &napi
->gro_bitmask
);
5514 } else if (test_bit(hash
, &napi
->gro_bitmask
)) {
5515 __clear_bit(hash
, &napi
->gro_bitmask
);
5525 struct packet_offload
*gro_find_receive_by_type(__be16 type
)
5527 struct list_head
*offload_head
= &offload_base
;
5528 struct packet_offload
*ptype
;
5530 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5531 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5537 EXPORT_SYMBOL(gro_find_receive_by_type
);
5539 struct packet_offload
*gro_find_complete_by_type(__be16 type
)
5541 struct list_head
*offload_head
= &offload_base
;
5542 struct packet_offload
*ptype
;
5544 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5545 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5551 EXPORT_SYMBOL(gro_find_complete_by_type
);
5553 static void napi_skb_free_stolen_head(struct sk_buff
*skb
)
5557 kmem_cache_free(skbuff_head_cache
, skb
);
5560 static gro_result_t
napi_skb_finish(gro_result_t ret
, struct sk_buff
*skb
)
5564 if (netif_receive_skb_internal(skb
))
5572 case GRO_MERGED_FREE
:
5573 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5574 napi_skb_free_stolen_head(skb
);
5588 gro_result_t
napi_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5590 skb_mark_napi_id(skb
, napi
);
5591 trace_napi_gro_receive_entry(skb
);
5593 skb_gro_reset_offset(skb
);
5595 return napi_skb_finish(dev_gro_receive(napi
, skb
), skb
);
5597 EXPORT_SYMBOL(napi_gro_receive
);
5599 static void napi_reuse_skb(struct napi_struct
*napi
, struct sk_buff
*skb
)
5601 if (unlikely(skb
->pfmemalloc
)) {
5605 __skb_pull(skb
, skb_headlen(skb
));
5606 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5607 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
- skb_headroom(skb
));
5609 skb
->dev
= napi
->dev
;
5611 skb
->encapsulation
= 0;
5612 skb_shinfo(skb
)->gso_type
= 0;
5613 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
5619 struct sk_buff
*napi_get_frags(struct napi_struct
*napi
)
5621 struct sk_buff
*skb
= napi
->skb
;
5624 skb
= napi_alloc_skb(napi
, GRO_MAX_HEAD
);
5627 skb_mark_napi_id(skb
, napi
);
5632 EXPORT_SYMBOL(napi_get_frags
);
5634 static gro_result_t
napi_frags_finish(struct napi_struct
*napi
,
5635 struct sk_buff
*skb
,
5641 __skb_push(skb
, ETH_HLEN
);
5642 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
5643 if (ret
== GRO_NORMAL
&& netif_receive_skb_internal(skb
))
5648 napi_reuse_skb(napi
, skb
);
5651 case GRO_MERGED_FREE
:
5652 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5653 napi_skb_free_stolen_head(skb
);
5655 napi_reuse_skb(napi
, skb
);
5666 /* Upper GRO stack assumes network header starts at gro_offset=0
5667 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5668 * We copy ethernet header into skb->data to have a common layout.
5670 static struct sk_buff
*napi_frags_skb(struct napi_struct
*napi
)
5672 struct sk_buff
*skb
= napi
->skb
;
5673 const struct ethhdr
*eth
;
5674 unsigned int hlen
= sizeof(*eth
);
5678 skb_reset_mac_header(skb
);
5679 skb_gro_reset_offset(skb
);
5681 eth
= skb_gro_header_fast(skb
, 0);
5682 if (unlikely(skb_gro_header_hard(skb
, hlen
))) {
5683 eth
= skb_gro_header_slow(skb
, hlen
, 0);
5684 if (unlikely(!eth
)) {
5685 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5686 __func__
, napi
->dev
->name
);
5687 napi_reuse_skb(napi
, skb
);
5691 gro_pull_from_frag0(skb
, hlen
);
5692 NAPI_GRO_CB(skb
)->frag0
+= hlen
;
5693 NAPI_GRO_CB(skb
)->frag0_len
-= hlen
;
5695 __skb_pull(skb
, hlen
);
5698 * This works because the only protocols we care about don't require
5700 * We'll fix it up properly in napi_frags_finish()
5702 skb
->protocol
= eth
->h_proto
;
5707 gro_result_t
napi_gro_frags(struct napi_struct
*napi
)
5709 struct sk_buff
*skb
= napi_frags_skb(napi
);
5714 trace_napi_gro_frags_entry(skb
);
5716 return napi_frags_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
5718 EXPORT_SYMBOL(napi_gro_frags
);
5720 /* Compute the checksum from gro_offset and return the folded value
5721 * after adding in any pseudo checksum.
5723 __sum16
__skb_gro_checksum_complete(struct sk_buff
*skb
)
5728 wsum
= skb_checksum(skb
, skb_gro_offset(skb
), skb_gro_len(skb
), 0);
5730 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5731 sum
= csum_fold(csum_add(NAPI_GRO_CB(skb
)->csum
, wsum
));
5733 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
5734 !skb
->csum_complete_sw
)
5735 netdev_rx_csum_fault(skb
->dev
);
5738 NAPI_GRO_CB(skb
)->csum
= wsum
;
5739 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5743 EXPORT_SYMBOL(__skb_gro_checksum_complete
);
5745 static void net_rps_send_ipi(struct softnet_data
*remsd
)
5749 struct softnet_data
*next
= remsd
->rps_ipi_next
;
5751 if (cpu_online(remsd
->cpu
))
5752 smp_call_function_single_async(remsd
->cpu
, &remsd
->csd
);
5759 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5760 * Note: called with local irq disabled, but exits with local irq enabled.
5762 static void net_rps_action_and_irq_enable(struct softnet_data
*sd
)
5765 struct softnet_data
*remsd
= sd
->rps_ipi_list
;
5768 sd
->rps_ipi_list
= NULL
;
5772 /* Send pending IPI's to kick RPS processing on remote cpus. */
5773 net_rps_send_ipi(remsd
);
5779 static bool sd_has_rps_ipi_waiting(struct softnet_data
*sd
)
5782 return sd
->rps_ipi_list
!= NULL
;
5788 static int process_backlog(struct napi_struct
*napi
, int quota
)
5790 struct softnet_data
*sd
= container_of(napi
, struct softnet_data
, backlog
);
5794 /* Check if we have pending ipi, its better to send them now,
5795 * not waiting net_rx_action() end.
5797 if (sd_has_rps_ipi_waiting(sd
)) {
5798 local_irq_disable();
5799 net_rps_action_and_irq_enable(sd
);
5802 napi
->weight
= dev_rx_weight
;
5804 struct sk_buff
*skb
;
5806 while ((skb
= __skb_dequeue(&sd
->process_queue
))) {
5808 __netif_receive_skb(skb
);
5810 input_queue_head_incr(sd
);
5811 if (++work
>= quota
)
5816 local_irq_disable();
5818 if (skb_queue_empty(&sd
->input_pkt_queue
)) {
5820 * Inline a custom version of __napi_complete().
5821 * only current cpu owns and manipulates this napi,
5822 * and NAPI_STATE_SCHED is the only possible flag set
5824 * We can use a plain write instead of clear_bit(),
5825 * and we dont need an smp_mb() memory barrier.
5830 skb_queue_splice_tail_init(&sd
->input_pkt_queue
,
5831 &sd
->process_queue
);
5841 * __napi_schedule - schedule for receive
5842 * @n: entry to schedule
5844 * The entry's receive function will be scheduled to run.
5845 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5847 void __napi_schedule(struct napi_struct
*n
)
5849 unsigned long flags
;
5851 local_irq_save(flags
);
5852 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5853 local_irq_restore(flags
);
5855 EXPORT_SYMBOL(__napi_schedule
);
5858 * napi_schedule_prep - check if napi can be scheduled
5861 * Test if NAPI routine is already running, and if not mark
5862 * it as running. This is used as a condition variable
5863 * insure only one NAPI poll instance runs. We also make
5864 * sure there is no pending NAPI disable.
5866 bool napi_schedule_prep(struct napi_struct
*n
)
5868 unsigned long val
, new;
5871 val
= READ_ONCE(n
->state
);
5872 if (unlikely(val
& NAPIF_STATE_DISABLE
))
5874 new = val
| NAPIF_STATE_SCHED
;
5876 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5877 * This was suggested by Alexander Duyck, as compiler
5878 * emits better code than :
5879 * if (val & NAPIF_STATE_SCHED)
5880 * new |= NAPIF_STATE_MISSED;
5882 new |= (val
& NAPIF_STATE_SCHED
) / NAPIF_STATE_SCHED
*
5884 } while (cmpxchg(&n
->state
, val
, new) != val
);
5886 return !(val
& NAPIF_STATE_SCHED
);
5888 EXPORT_SYMBOL(napi_schedule_prep
);
5891 * __napi_schedule_irqoff - schedule for receive
5892 * @n: entry to schedule
5894 * Variant of __napi_schedule() assuming hard irqs are masked
5896 void __napi_schedule_irqoff(struct napi_struct
*n
)
5898 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5900 EXPORT_SYMBOL(__napi_schedule_irqoff
);
5902 bool napi_complete_done(struct napi_struct
*n
, int work_done
)
5904 unsigned long flags
, val
, new;
5907 * 1) Don't let napi dequeue from the cpu poll list
5908 * just in case its running on a different cpu.
5909 * 2) If we are busy polling, do nothing here, we have
5910 * the guarantee we will be called later.
5912 if (unlikely(n
->state
& (NAPIF_STATE_NPSVC
|
5913 NAPIF_STATE_IN_BUSY_POLL
)))
5916 if (n
->gro_bitmask
) {
5917 unsigned long timeout
= 0;
5920 timeout
= n
->dev
->gro_flush_timeout
;
5923 hrtimer_start(&n
->timer
, ns_to_ktime(timeout
),
5924 HRTIMER_MODE_REL_PINNED
);
5926 napi_gro_flush(n
, false);
5928 if (unlikely(!list_empty(&n
->poll_list
))) {
5929 /* If n->poll_list is not empty, we need to mask irqs */
5930 local_irq_save(flags
);
5931 list_del_init(&n
->poll_list
);
5932 local_irq_restore(flags
);
5936 val
= READ_ONCE(n
->state
);
5938 WARN_ON_ONCE(!(val
& NAPIF_STATE_SCHED
));
5940 new = val
& ~(NAPIF_STATE_MISSED
| NAPIF_STATE_SCHED
);
5942 /* If STATE_MISSED was set, leave STATE_SCHED set,
5943 * because we will call napi->poll() one more time.
5944 * This C code was suggested by Alexander Duyck to help gcc.
5946 new |= (val
& NAPIF_STATE_MISSED
) / NAPIF_STATE_MISSED
*
5948 } while (cmpxchg(&n
->state
, val
, new) != val
);
5950 if (unlikely(val
& NAPIF_STATE_MISSED
)) {
5957 EXPORT_SYMBOL(napi_complete_done
);
5959 /* must be called under rcu_read_lock(), as we dont take a reference */
5960 static struct napi_struct
*napi_by_id(unsigned int napi_id
)
5962 unsigned int hash
= napi_id
% HASH_SIZE(napi_hash
);
5963 struct napi_struct
*napi
;
5965 hlist_for_each_entry_rcu(napi
, &napi_hash
[hash
], napi_hash_node
)
5966 if (napi
->napi_id
== napi_id
)
5972 #if defined(CONFIG_NET_RX_BUSY_POLL)
5974 #define BUSY_POLL_BUDGET 8
5976 static void busy_poll_stop(struct napi_struct
*napi
, void *have_poll_lock
)
5980 /* Busy polling means there is a high chance device driver hard irq
5981 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5982 * set in napi_schedule_prep().
5983 * Since we are about to call napi->poll() once more, we can safely
5984 * clear NAPI_STATE_MISSED.
5986 * Note: x86 could use a single "lock and ..." instruction
5987 * to perform these two clear_bit()
5989 clear_bit(NAPI_STATE_MISSED
, &napi
->state
);
5990 clear_bit(NAPI_STATE_IN_BUSY_POLL
, &napi
->state
);
5994 /* All we really want here is to re-enable device interrupts.
5995 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5997 rc
= napi
->poll(napi
, BUSY_POLL_BUDGET
);
5998 trace_napi_poll(napi
, rc
, BUSY_POLL_BUDGET
);
5999 netpoll_poll_unlock(have_poll_lock
);
6000 if (rc
== BUSY_POLL_BUDGET
)
6001 __napi_schedule(napi
);
6005 void napi_busy_loop(unsigned int napi_id
,
6006 bool (*loop_end
)(void *, unsigned long),
6009 unsigned long start_time
= loop_end
? busy_loop_current_time() : 0;
6010 int (*napi_poll
)(struct napi_struct
*napi
, int budget
);
6011 void *have_poll_lock
= NULL
;
6012 struct napi_struct
*napi
;
6019 napi
= napi_by_id(napi_id
);
6029 unsigned long val
= READ_ONCE(napi
->state
);
6031 /* If multiple threads are competing for this napi,
6032 * we avoid dirtying napi->state as much as we can.
6034 if (val
& (NAPIF_STATE_DISABLE
| NAPIF_STATE_SCHED
|
6035 NAPIF_STATE_IN_BUSY_POLL
))
6037 if (cmpxchg(&napi
->state
, val
,
6038 val
| NAPIF_STATE_IN_BUSY_POLL
|
6039 NAPIF_STATE_SCHED
) != val
)
6041 have_poll_lock
= netpoll_poll_lock(napi
);
6042 napi_poll
= napi
->poll
;
6044 work
= napi_poll(napi
, BUSY_POLL_BUDGET
);
6045 trace_napi_poll(napi
, work
, BUSY_POLL_BUDGET
);
6048 __NET_ADD_STATS(dev_net(napi
->dev
),
6049 LINUX_MIB_BUSYPOLLRXPACKETS
, work
);
6052 if (!loop_end
|| loop_end(loop_end_arg
, start_time
))
6055 if (unlikely(need_resched())) {
6057 busy_poll_stop(napi
, have_poll_lock
);
6061 if (loop_end(loop_end_arg
, start_time
))
6068 busy_poll_stop(napi
, have_poll_lock
);
6073 EXPORT_SYMBOL(napi_busy_loop
);
6075 #endif /* CONFIG_NET_RX_BUSY_POLL */
6077 static void napi_hash_add(struct napi_struct
*napi
)
6079 if (test_bit(NAPI_STATE_NO_BUSY_POLL
, &napi
->state
) ||
6080 test_and_set_bit(NAPI_STATE_HASHED
, &napi
->state
))
6083 spin_lock(&napi_hash_lock
);
6085 /* 0..NR_CPUS range is reserved for sender_cpu use */
6087 if (unlikely(++napi_gen_id
< MIN_NAPI_ID
))
6088 napi_gen_id
= MIN_NAPI_ID
;
6089 } while (napi_by_id(napi_gen_id
));
6090 napi
->napi_id
= napi_gen_id
;
6092 hlist_add_head_rcu(&napi
->napi_hash_node
,
6093 &napi_hash
[napi
->napi_id
% HASH_SIZE(napi_hash
)]);
6095 spin_unlock(&napi_hash_lock
);
6098 /* Warning : caller is responsible to make sure rcu grace period
6099 * is respected before freeing memory containing @napi
6101 bool napi_hash_del(struct napi_struct
*napi
)
6103 bool rcu_sync_needed
= false;
6105 spin_lock(&napi_hash_lock
);
6107 if (test_and_clear_bit(NAPI_STATE_HASHED
, &napi
->state
)) {
6108 rcu_sync_needed
= true;
6109 hlist_del_rcu(&napi
->napi_hash_node
);
6111 spin_unlock(&napi_hash_lock
);
6112 return rcu_sync_needed
;
6114 EXPORT_SYMBOL_GPL(napi_hash_del
);
6116 static enum hrtimer_restart
napi_watchdog(struct hrtimer
*timer
)
6118 struct napi_struct
*napi
;
6120 napi
= container_of(timer
, struct napi_struct
, timer
);
6122 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6123 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6125 if (napi
->gro_bitmask
&& !napi_disable_pending(napi
) &&
6126 !test_and_set_bit(NAPI_STATE_SCHED
, &napi
->state
))
6127 __napi_schedule_irqoff(napi
);
6129 return HRTIMER_NORESTART
;
6132 static void init_gro_hash(struct napi_struct
*napi
)
6136 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6137 INIT_LIST_HEAD(&napi
->gro_hash
[i
].list
);
6138 napi
->gro_hash
[i
].count
= 0;
6140 napi
->gro_bitmask
= 0;
6143 void netif_napi_add(struct net_device
*dev
, struct napi_struct
*napi
,
6144 int (*poll
)(struct napi_struct
*, int), int weight
)
6146 INIT_LIST_HEAD(&napi
->poll_list
);
6147 hrtimer_init(&napi
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
6148 napi
->timer
.function
= napi_watchdog
;
6149 init_gro_hash(napi
);
6152 if (weight
> NAPI_POLL_WEIGHT
)
6153 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6155 napi
->weight
= weight
;
6156 list_add(&napi
->dev_list
, &dev
->napi_list
);
6158 #ifdef CONFIG_NETPOLL
6159 napi
->poll_owner
= -1;
6161 set_bit(NAPI_STATE_SCHED
, &napi
->state
);
6162 napi_hash_add(napi
);
6164 EXPORT_SYMBOL(netif_napi_add
);
6166 void napi_disable(struct napi_struct
*n
)
6169 set_bit(NAPI_STATE_DISABLE
, &n
->state
);
6171 while (test_and_set_bit(NAPI_STATE_SCHED
, &n
->state
))
6173 while (test_and_set_bit(NAPI_STATE_NPSVC
, &n
->state
))
6176 hrtimer_cancel(&n
->timer
);
6178 clear_bit(NAPI_STATE_DISABLE
, &n
->state
);
6180 EXPORT_SYMBOL(napi_disable
);
6182 static void flush_gro_hash(struct napi_struct
*napi
)
6186 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6187 struct sk_buff
*skb
, *n
;
6189 list_for_each_entry_safe(skb
, n
, &napi
->gro_hash
[i
].list
, list
)
6191 napi
->gro_hash
[i
].count
= 0;
6195 /* Must be called in process context */
6196 void netif_napi_del(struct napi_struct
*napi
)
6199 if (napi_hash_del(napi
))
6201 list_del_init(&napi
->dev_list
);
6202 napi_free_frags(napi
);
6204 flush_gro_hash(napi
);
6205 napi
->gro_bitmask
= 0;
6207 EXPORT_SYMBOL(netif_napi_del
);
6209 static int napi_poll(struct napi_struct
*n
, struct list_head
*repoll
)
6214 list_del_init(&n
->poll_list
);
6216 have
= netpoll_poll_lock(n
);
6220 /* This NAPI_STATE_SCHED test is for avoiding a race
6221 * with netpoll's poll_napi(). Only the entity which
6222 * obtains the lock and sees NAPI_STATE_SCHED set will
6223 * actually make the ->poll() call. Therefore we avoid
6224 * accidentally calling ->poll() when NAPI is not scheduled.
6227 if (test_bit(NAPI_STATE_SCHED
, &n
->state
)) {
6228 work
= n
->poll(n
, weight
);
6229 trace_napi_poll(n
, work
, weight
);
6232 WARN_ON_ONCE(work
> weight
);
6234 if (likely(work
< weight
))
6237 /* Drivers must not modify the NAPI state if they
6238 * consume the entire weight. In such cases this code
6239 * still "owns" the NAPI instance and therefore can
6240 * move the instance around on the list at-will.
6242 if (unlikely(napi_disable_pending(n
))) {
6247 if (n
->gro_bitmask
) {
6248 /* flush too old packets
6249 * If HZ < 1000, flush all packets.
6251 napi_gro_flush(n
, HZ
>= 1000);
6254 /* Some drivers may have called napi_schedule
6255 * prior to exhausting their budget.
6257 if (unlikely(!list_empty(&n
->poll_list
))) {
6258 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6259 n
->dev
? n
->dev
->name
: "backlog");
6263 list_add_tail(&n
->poll_list
, repoll
);
6266 netpoll_poll_unlock(have
);
6271 static __latent_entropy
void net_rx_action(struct softirq_action
*h
)
6273 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
6274 unsigned long time_limit
= jiffies
+
6275 usecs_to_jiffies(netdev_budget_usecs
);
6276 int budget
= netdev_budget
;
6280 local_irq_disable();
6281 list_splice_init(&sd
->poll_list
, &list
);
6285 struct napi_struct
*n
;
6287 if (list_empty(&list
)) {
6288 if (!sd_has_rps_ipi_waiting(sd
) && list_empty(&repoll
))
6293 n
= list_first_entry(&list
, struct napi_struct
, poll_list
);
6294 budget
-= napi_poll(n
, &repoll
);
6296 /* If softirq window is exhausted then punt.
6297 * Allow this to run for 2 jiffies since which will allow
6298 * an average latency of 1.5/HZ.
6300 if (unlikely(budget
<= 0 ||
6301 time_after_eq(jiffies
, time_limit
))) {
6307 local_irq_disable();
6309 list_splice_tail_init(&sd
->poll_list
, &list
);
6310 list_splice_tail(&repoll
, &list
);
6311 list_splice(&list
, &sd
->poll_list
);
6312 if (!list_empty(&sd
->poll_list
))
6313 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
6315 net_rps_action_and_irq_enable(sd
);
6317 __kfree_skb_flush();
6320 struct netdev_adjacent
{
6321 struct net_device
*dev
;
6323 /* upper master flag, there can only be one master device per list */
6326 /* counter for the number of times this device was added to us */
6329 /* private field for the users */
6332 struct list_head list
;
6333 struct rcu_head rcu
;
6336 static struct netdev_adjacent
*__netdev_find_adj(struct net_device
*adj_dev
,
6337 struct list_head
*adj_list
)
6339 struct netdev_adjacent
*adj
;
6341 list_for_each_entry(adj
, adj_list
, list
) {
6342 if (adj
->dev
== adj_dev
)
6348 static int __netdev_has_upper_dev(struct net_device
*upper_dev
, void *data
)
6350 struct net_device
*dev
= data
;
6352 return upper_dev
== dev
;
6356 * netdev_has_upper_dev - Check if device is linked to an upper device
6358 * @upper_dev: upper device to check
6360 * Find out if a device is linked to specified upper device and return true
6361 * in case it is. Note that this checks only immediate upper device,
6362 * not through a complete stack of devices. The caller must hold the RTNL lock.
6364 bool netdev_has_upper_dev(struct net_device
*dev
,
6365 struct net_device
*upper_dev
)
6369 return netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
6372 EXPORT_SYMBOL(netdev_has_upper_dev
);
6375 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6377 * @upper_dev: upper device to check
6379 * Find out if a device is linked to specified upper device and return true
6380 * in case it is. Note that this checks the entire upper device chain.
6381 * The caller must hold rcu lock.
6384 bool netdev_has_upper_dev_all_rcu(struct net_device
*dev
,
6385 struct net_device
*upper_dev
)
6387 return !!netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
6390 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu
);
6393 * netdev_has_any_upper_dev - Check if device is linked to some device
6396 * Find out if a device is linked to an upper device and return true in case
6397 * it is. The caller must hold the RTNL lock.
6399 bool netdev_has_any_upper_dev(struct net_device
*dev
)
6403 return !list_empty(&dev
->adj_list
.upper
);
6405 EXPORT_SYMBOL(netdev_has_any_upper_dev
);
6408 * netdev_master_upper_dev_get - Get master upper device
6411 * Find a master upper device and return pointer to it or NULL in case
6412 * it's not there. The caller must hold the RTNL lock.
6414 struct net_device
*netdev_master_upper_dev_get(struct net_device
*dev
)
6416 struct netdev_adjacent
*upper
;
6420 if (list_empty(&dev
->adj_list
.upper
))
6423 upper
= list_first_entry(&dev
->adj_list
.upper
,
6424 struct netdev_adjacent
, list
);
6425 if (likely(upper
->master
))
6429 EXPORT_SYMBOL(netdev_master_upper_dev_get
);
6432 * netdev_has_any_lower_dev - Check if device is linked to some device
6435 * Find out if a device is linked to a lower device and return true in case
6436 * it is. The caller must hold the RTNL lock.
6438 static bool netdev_has_any_lower_dev(struct net_device
*dev
)
6442 return !list_empty(&dev
->adj_list
.lower
);
6445 void *netdev_adjacent_get_private(struct list_head
*adj_list
)
6447 struct netdev_adjacent
*adj
;
6449 adj
= list_entry(adj_list
, struct netdev_adjacent
, list
);
6451 return adj
->private;
6453 EXPORT_SYMBOL(netdev_adjacent_get_private
);
6456 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6458 * @iter: list_head ** of the current position
6460 * Gets the next device from the dev's upper list, starting from iter
6461 * position. The caller must hold RCU read lock.
6463 struct net_device
*netdev_upper_get_next_dev_rcu(struct net_device
*dev
,
6464 struct list_head
**iter
)
6466 struct netdev_adjacent
*upper
;
6468 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6470 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6472 if (&upper
->list
== &dev
->adj_list
.upper
)
6475 *iter
= &upper
->list
;
6479 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu
);
6481 static struct net_device
*netdev_next_upper_dev_rcu(struct net_device
*dev
,
6482 struct list_head
**iter
)
6484 struct netdev_adjacent
*upper
;
6486 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6488 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6490 if (&upper
->list
== &dev
->adj_list
.upper
)
6493 *iter
= &upper
->list
;
6498 int netdev_walk_all_upper_dev_rcu(struct net_device
*dev
,
6499 int (*fn
)(struct net_device
*dev
,
6503 struct net_device
*udev
;
6504 struct list_head
*iter
;
6507 for (iter
= &dev
->adj_list
.upper
,
6508 udev
= netdev_next_upper_dev_rcu(dev
, &iter
);
6510 udev
= netdev_next_upper_dev_rcu(dev
, &iter
)) {
6511 /* first is the upper device itself */
6512 ret
= fn(udev
, data
);
6516 /* then look at all of its upper devices */
6517 ret
= netdev_walk_all_upper_dev_rcu(udev
, fn
, data
);
6524 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu
);
6527 * netdev_lower_get_next_private - Get the next ->private from the
6528 * lower neighbour list
6530 * @iter: list_head ** of the current position
6532 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6533 * list, starting from iter position. The caller must hold either hold the
6534 * RTNL lock or its own locking that guarantees that the neighbour lower
6535 * list will remain unchanged.
6537 void *netdev_lower_get_next_private(struct net_device
*dev
,
6538 struct list_head
**iter
)
6540 struct netdev_adjacent
*lower
;
6542 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6544 if (&lower
->list
== &dev
->adj_list
.lower
)
6547 *iter
= lower
->list
.next
;
6549 return lower
->private;
6551 EXPORT_SYMBOL(netdev_lower_get_next_private
);
6554 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6555 * lower neighbour list, RCU
6558 * @iter: list_head ** of the current position
6560 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6561 * list, starting from iter position. The caller must hold RCU read lock.
6563 void *netdev_lower_get_next_private_rcu(struct net_device
*dev
,
6564 struct list_head
**iter
)
6566 struct netdev_adjacent
*lower
;
6568 WARN_ON_ONCE(!rcu_read_lock_held());
6570 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6572 if (&lower
->list
== &dev
->adj_list
.lower
)
6575 *iter
= &lower
->list
;
6577 return lower
->private;
6579 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu
);
6582 * netdev_lower_get_next - Get the next device from the lower neighbour
6585 * @iter: list_head ** of the current position
6587 * Gets the next netdev_adjacent from the dev's lower neighbour
6588 * list, starting from iter position. The caller must hold RTNL lock or
6589 * its own locking that guarantees that the neighbour lower
6590 * list will remain unchanged.
6592 void *netdev_lower_get_next(struct net_device
*dev
, struct list_head
**iter
)
6594 struct netdev_adjacent
*lower
;
6596 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6598 if (&lower
->list
== &dev
->adj_list
.lower
)
6601 *iter
= lower
->list
.next
;
6605 EXPORT_SYMBOL(netdev_lower_get_next
);
6607 static struct net_device
*netdev_next_lower_dev(struct net_device
*dev
,
6608 struct list_head
**iter
)
6610 struct netdev_adjacent
*lower
;
6612 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
6614 if (&lower
->list
== &dev
->adj_list
.lower
)
6617 *iter
= &lower
->list
;
6622 int netdev_walk_all_lower_dev(struct net_device
*dev
,
6623 int (*fn
)(struct net_device
*dev
,
6627 struct net_device
*ldev
;
6628 struct list_head
*iter
;
6631 for (iter
= &dev
->adj_list
.lower
,
6632 ldev
= netdev_next_lower_dev(dev
, &iter
);
6634 ldev
= netdev_next_lower_dev(dev
, &iter
)) {
6635 /* first is the lower device itself */
6636 ret
= fn(ldev
, data
);
6640 /* then look at all of its lower devices */
6641 ret
= netdev_walk_all_lower_dev(ldev
, fn
, data
);
6648 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev
);
6650 static struct net_device
*netdev_next_lower_dev_rcu(struct net_device
*dev
,
6651 struct list_head
**iter
)
6653 struct netdev_adjacent
*lower
;
6655 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6656 if (&lower
->list
== &dev
->adj_list
.lower
)
6659 *iter
= &lower
->list
;
6664 int netdev_walk_all_lower_dev_rcu(struct net_device
*dev
,
6665 int (*fn
)(struct net_device
*dev
,
6669 struct net_device
*ldev
;
6670 struct list_head
*iter
;
6673 for (iter
= &dev
->adj_list
.lower
,
6674 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
);
6676 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
)) {
6677 /* first is the lower device itself */
6678 ret
= fn(ldev
, data
);
6682 /* then look at all of its lower devices */
6683 ret
= netdev_walk_all_lower_dev_rcu(ldev
, fn
, data
);
6690 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu
);
6693 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6694 * lower neighbour list, RCU
6698 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6699 * list. The caller must hold RCU read lock.
6701 void *netdev_lower_get_first_private_rcu(struct net_device
*dev
)
6703 struct netdev_adjacent
*lower
;
6705 lower
= list_first_or_null_rcu(&dev
->adj_list
.lower
,
6706 struct netdev_adjacent
, list
);
6708 return lower
->private;
6711 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu
);
6714 * netdev_master_upper_dev_get_rcu - Get master upper device
6717 * Find a master upper device and return pointer to it or NULL in case
6718 * it's not there. The caller must hold the RCU read lock.
6720 struct net_device
*netdev_master_upper_dev_get_rcu(struct net_device
*dev
)
6722 struct netdev_adjacent
*upper
;
6724 upper
= list_first_or_null_rcu(&dev
->adj_list
.upper
,
6725 struct netdev_adjacent
, list
);
6726 if (upper
&& likely(upper
->master
))
6730 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu
);
6732 static int netdev_adjacent_sysfs_add(struct net_device
*dev
,
6733 struct net_device
*adj_dev
,
6734 struct list_head
*dev_list
)
6736 char linkname
[IFNAMSIZ
+7];
6738 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6739 "upper_%s" : "lower_%s", adj_dev
->name
);
6740 return sysfs_create_link(&(dev
->dev
.kobj
), &(adj_dev
->dev
.kobj
),
6743 static void netdev_adjacent_sysfs_del(struct net_device
*dev
,
6745 struct list_head
*dev_list
)
6747 char linkname
[IFNAMSIZ
+7];
6749 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6750 "upper_%s" : "lower_%s", name
);
6751 sysfs_remove_link(&(dev
->dev
.kobj
), linkname
);
6754 static inline bool netdev_adjacent_is_neigh_list(struct net_device
*dev
,
6755 struct net_device
*adj_dev
,
6756 struct list_head
*dev_list
)
6758 return (dev_list
== &dev
->adj_list
.upper
||
6759 dev_list
== &dev
->adj_list
.lower
) &&
6760 net_eq(dev_net(dev
), dev_net(adj_dev
));
6763 static int __netdev_adjacent_dev_insert(struct net_device
*dev
,
6764 struct net_device
*adj_dev
,
6765 struct list_head
*dev_list
,
6766 void *private, bool master
)
6768 struct netdev_adjacent
*adj
;
6771 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6775 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6776 dev
->name
, adj_dev
->name
, adj
->ref_nr
);
6781 adj
= kmalloc(sizeof(*adj
), GFP_KERNEL
);
6786 adj
->master
= master
;
6788 adj
->private = private;
6791 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6792 dev
->name
, adj_dev
->name
, adj
->ref_nr
, adj_dev
->name
);
6794 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
)) {
6795 ret
= netdev_adjacent_sysfs_add(dev
, adj_dev
, dev_list
);
6800 /* Ensure that master link is always the first item in list. */
6802 ret
= sysfs_create_link(&(dev
->dev
.kobj
),
6803 &(adj_dev
->dev
.kobj
), "master");
6805 goto remove_symlinks
;
6807 list_add_rcu(&adj
->list
, dev_list
);
6809 list_add_tail_rcu(&adj
->list
, dev_list
);
6815 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
6816 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
6824 static void __netdev_adjacent_dev_remove(struct net_device
*dev
,
6825 struct net_device
*adj_dev
,
6827 struct list_head
*dev_list
)
6829 struct netdev_adjacent
*adj
;
6831 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6832 dev
->name
, adj_dev
->name
, ref_nr
);
6834 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6837 pr_err("Adjacency does not exist for device %s from %s\n",
6838 dev
->name
, adj_dev
->name
);
6843 if (adj
->ref_nr
> ref_nr
) {
6844 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6845 dev
->name
, adj_dev
->name
, ref_nr
,
6846 adj
->ref_nr
- ref_nr
);
6847 adj
->ref_nr
-= ref_nr
;
6852 sysfs_remove_link(&(dev
->dev
.kobj
), "master");
6854 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
6855 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
6857 list_del_rcu(&adj
->list
);
6858 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6859 adj_dev
->name
, dev
->name
, adj_dev
->name
);
6861 kfree_rcu(adj
, rcu
);
6864 static int __netdev_adjacent_dev_link_lists(struct net_device
*dev
,
6865 struct net_device
*upper_dev
,
6866 struct list_head
*up_list
,
6867 struct list_head
*down_list
,
6868 void *private, bool master
)
6872 ret
= __netdev_adjacent_dev_insert(dev
, upper_dev
, up_list
,
6877 ret
= __netdev_adjacent_dev_insert(upper_dev
, dev
, down_list
,
6880 __netdev_adjacent_dev_remove(dev
, upper_dev
, 1, up_list
);
6887 static void __netdev_adjacent_dev_unlink_lists(struct net_device
*dev
,
6888 struct net_device
*upper_dev
,
6890 struct list_head
*up_list
,
6891 struct list_head
*down_list
)
6893 __netdev_adjacent_dev_remove(dev
, upper_dev
, ref_nr
, up_list
);
6894 __netdev_adjacent_dev_remove(upper_dev
, dev
, ref_nr
, down_list
);
6897 static int __netdev_adjacent_dev_link_neighbour(struct net_device
*dev
,
6898 struct net_device
*upper_dev
,
6899 void *private, bool master
)
6901 return __netdev_adjacent_dev_link_lists(dev
, upper_dev
,
6902 &dev
->adj_list
.upper
,
6903 &upper_dev
->adj_list
.lower
,
6907 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device
*dev
,
6908 struct net_device
*upper_dev
)
6910 __netdev_adjacent_dev_unlink_lists(dev
, upper_dev
, 1,
6911 &dev
->adj_list
.upper
,
6912 &upper_dev
->adj_list
.lower
);
6915 static int __netdev_upper_dev_link(struct net_device
*dev
,
6916 struct net_device
*upper_dev
, bool master
,
6917 void *upper_priv
, void *upper_info
,
6918 struct netlink_ext_ack
*extack
)
6920 struct netdev_notifier_changeupper_info changeupper_info
= {
6925 .upper_dev
= upper_dev
,
6928 .upper_info
= upper_info
,
6930 struct net_device
*master_dev
;
6935 if (dev
== upper_dev
)
6938 /* To prevent loops, check if dev is not upper device to upper_dev. */
6939 if (netdev_has_upper_dev(upper_dev
, dev
))
6943 if (netdev_has_upper_dev(dev
, upper_dev
))
6946 master_dev
= netdev_master_upper_dev_get(dev
);
6948 return master_dev
== upper_dev
? -EEXIST
: -EBUSY
;
6951 ret
= call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
6952 &changeupper_info
.info
);
6953 ret
= notifier_to_errno(ret
);
6957 ret
= __netdev_adjacent_dev_link_neighbour(dev
, upper_dev
, upper_priv
,
6962 ret
= call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
6963 &changeupper_info
.info
);
6964 ret
= notifier_to_errno(ret
);
6971 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
6977 * netdev_upper_dev_link - Add a link to the upper device
6979 * @upper_dev: new upper device
6980 * @extack: netlink extended ack
6982 * Adds a link to device which is upper to this one. The caller must hold
6983 * the RTNL lock. On a failure a negative errno code is returned.
6984 * On success the reference counts are adjusted and the function
6987 int netdev_upper_dev_link(struct net_device
*dev
,
6988 struct net_device
*upper_dev
,
6989 struct netlink_ext_ack
*extack
)
6991 return __netdev_upper_dev_link(dev
, upper_dev
, false,
6992 NULL
, NULL
, extack
);
6994 EXPORT_SYMBOL(netdev_upper_dev_link
);
6997 * netdev_master_upper_dev_link - Add a master link to the upper device
6999 * @upper_dev: new upper device
7000 * @upper_priv: upper device private
7001 * @upper_info: upper info to be passed down via notifier
7002 * @extack: netlink extended ack
7004 * Adds a link to device which is upper to this one. In this case, only
7005 * one master upper device can be linked, although other non-master devices
7006 * might be linked as well. The caller must hold the RTNL lock.
7007 * On a failure a negative errno code is returned. On success the reference
7008 * counts are adjusted and the function returns zero.
7010 int netdev_master_upper_dev_link(struct net_device
*dev
,
7011 struct net_device
*upper_dev
,
7012 void *upper_priv
, void *upper_info
,
7013 struct netlink_ext_ack
*extack
)
7015 return __netdev_upper_dev_link(dev
, upper_dev
, true,
7016 upper_priv
, upper_info
, extack
);
7018 EXPORT_SYMBOL(netdev_master_upper_dev_link
);
7021 * netdev_upper_dev_unlink - Removes a link to upper device
7023 * @upper_dev: new upper device
7025 * Removes a link to device which is upper to this one. The caller must hold
7028 void netdev_upper_dev_unlink(struct net_device
*dev
,
7029 struct net_device
*upper_dev
)
7031 struct netdev_notifier_changeupper_info changeupper_info
= {
7035 .upper_dev
= upper_dev
,
7041 changeupper_info
.master
= netdev_master_upper_dev_get(dev
) == upper_dev
;
7043 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7044 &changeupper_info
.info
);
7046 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7048 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7049 &changeupper_info
.info
);
7051 EXPORT_SYMBOL(netdev_upper_dev_unlink
);
7054 * netdev_bonding_info_change - Dispatch event about slave change
7056 * @bonding_info: info to dispatch
7058 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7059 * The caller must hold the RTNL lock.
7061 void netdev_bonding_info_change(struct net_device
*dev
,
7062 struct netdev_bonding_info
*bonding_info
)
7064 struct netdev_notifier_bonding_info info
= {
7068 memcpy(&info
.bonding_info
, bonding_info
,
7069 sizeof(struct netdev_bonding_info
));
7070 call_netdevice_notifiers_info(NETDEV_BONDING_INFO
,
7073 EXPORT_SYMBOL(netdev_bonding_info_change
);
7075 static void netdev_adjacent_add_links(struct net_device
*dev
)
7077 struct netdev_adjacent
*iter
;
7079 struct net
*net
= dev_net(dev
);
7081 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7082 if (!net_eq(net
, dev_net(iter
->dev
)))
7084 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7085 &iter
->dev
->adj_list
.lower
);
7086 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7087 &dev
->adj_list
.upper
);
7090 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7091 if (!net_eq(net
, dev_net(iter
->dev
)))
7093 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7094 &iter
->dev
->adj_list
.upper
);
7095 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7096 &dev
->adj_list
.lower
);
7100 static void netdev_adjacent_del_links(struct net_device
*dev
)
7102 struct netdev_adjacent
*iter
;
7104 struct net
*net
= dev_net(dev
);
7106 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7107 if (!net_eq(net
, dev_net(iter
->dev
)))
7109 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7110 &iter
->dev
->adj_list
.lower
);
7111 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7112 &dev
->adj_list
.upper
);
7115 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7116 if (!net_eq(net
, dev_net(iter
->dev
)))
7118 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7119 &iter
->dev
->adj_list
.upper
);
7120 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7121 &dev
->adj_list
.lower
);
7125 void netdev_adjacent_rename_links(struct net_device
*dev
, char *oldname
)
7127 struct netdev_adjacent
*iter
;
7129 struct net
*net
= dev_net(dev
);
7131 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7132 if (!net_eq(net
, dev_net(iter
->dev
)))
7134 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7135 &iter
->dev
->adj_list
.lower
);
7136 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7137 &iter
->dev
->adj_list
.lower
);
7140 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7141 if (!net_eq(net
, dev_net(iter
->dev
)))
7143 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7144 &iter
->dev
->adj_list
.upper
);
7145 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7146 &iter
->dev
->adj_list
.upper
);
7150 void *netdev_lower_dev_get_private(struct net_device
*dev
,
7151 struct net_device
*lower_dev
)
7153 struct netdev_adjacent
*lower
;
7157 lower
= __netdev_find_adj(lower_dev
, &dev
->adj_list
.lower
);
7161 return lower
->private;
7163 EXPORT_SYMBOL(netdev_lower_dev_get_private
);
7166 int dev_get_nest_level(struct net_device
*dev
)
7168 struct net_device
*lower
= NULL
;
7169 struct list_head
*iter
;
7175 netdev_for_each_lower_dev(dev
, lower
, iter
) {
7176 nest
= dev_get_nest_level(lower
);
7177 if (max_nest
< nest
)
7181 return max_nest
+ 1;
7183 EXPORT_SYMBOL(dev_get_nest_level
);
7186 * netdev_lower_change - Dispatch event about lower device state change
7187 * @lower_dev: device
7188 * @lower_state_info: state to dispatch
7190 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7191 * The caller must hold the RTNL lock.
7193 void netdev_lower_state_changed(struct net_device
*lower_dev
,
7194 void *lower_state_info
)
7196 struct netdev_notifier_changelowerstate_info changelowerstate_info
= {
7197 .info
.dev
= lower_dev
,
7201 changelowerstate_info
.lower_state_info
= lower_state_info
;
7202 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE
,
7203 &changelowerstate_info
.info
);
7205 EXPORT_SYMBOL(netdev_lower_state_changed
);
7207 static void dev_change_rx_flags(struct net_device
*dev
, int flags
)
7209 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7211 if (ops
->ndo_change_rx_flags
)
7212 ops
->ndo_change_rx_flags(dev
, flags
);
7215 static int __dev_set_promiscuity(struct net_device
*dev
, int inc
, bool notify
)
7217 unsigned int old_flags
= dev
->flags
;
7223 dev
->flags
|= IFF_PROMISC
;
7224 dev
->promiscuity
+= inc
;
7225 if (dev
->promiscuity
== 0) {
7228 * If inc causes overflow, untouch promisc and return error.
7231 dev
->flags
&= ~IFF_PROMISC
;
7233 dev
->promiscuity
-= inc
;
7234 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7239 if (dev
->flags
!= old_flags
) {
7240 pr_info("device %s %s promiscuous mode\n",
7242 dev
->flags
& IFF_PROMISC
? "entered" : "left");
7243 if (audit_enabled
) {
7244 current_uid_gid(&uid
, &gid
);
7245 audit_log(audit_context(), GFP_ATOMIC
,
7246 AUDIT_ANOM_PROMISCUOUS
,
7247 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7248 dev
->name
, (dev
->flags
& IFF_PROMISC
),
7249 (old_flags
& IFF_PROMISC
),
7250 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
7251 from_kuid(&init_user_ns
, uid
),
7252 from_kgid(&init_user_ns
, gid
),
7253 audit_get_sessionid(current
));
7256 dev_change_rx_flags(dev
, IFF_PROMISC
);
7259 __dev_notify_flags(dev
, old_flags
, IFF_PROMISC
);
7264 * dev_set_promiscuity - update promiscuity count on a device
7268 * Add or remove promiscuity from a device. While the count in the device
7269 * remains above zero the interface remains promiscuous. Once it hits zero
7270 * the device reverts back to normal filtering operation. A negative inc
7271 * value is used to drop promiscuity on the device.
7272 * Return 0 if successful or a negative errno code on error.
7274 int dev_set_promiscuity(struct net_device
*dev
, int inc
)
7276 unsigned int old_flags
= dev
->flags
;
7279 err
= __dev_set_promiscuity(dev
, inc
, true);
7282 if (dev
->flags
!= old_flags
)
7283 dev_set_rx_mode(dev
);
7286 EXPORT_SYMBOL(dev_set_promiscuity
);
7288 static int __dev_set_allmulti(struct net_device
*dev
, int inc
, bool notify
)
7290 unsigned int old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7294 dev
->flags
|= IFF_ALLMULTI
;
7295 dev
->allmulti
+= inc
;
7296 if (dev
->allmulti
== 0) {
7299 * If inc causes overflow, untouch allmulti and return error.
7302 dev
->flags
&= ~IFF_ALLMULTI
;
7304 dev
->allmulti
-= inc
;
7305 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7310 if (dev
->flags
^ old_flags
) {
7311 dev_change_rx_flags(dev
, IFF_ALLMULTI
);
7312 dev_set_rx_mode(dev
);
7314 __dev_notify_flags(dev
, old_flags
,
7315 dev
->gflags
^ old_gflags
);
7321 * dev_set_allmulti - update allmulti count on a device
7325 * Add or remove reception of all multicast frames to a device. While the
7326 * count in the device remains above zero the interface remains listening
7327 * to all interfaces. Once it hits zero the device reverts back to normal
7328 * filtering operation. A negative @inc value is used to drop the counter
7329 * when releasing a resource needing all multicasts.
7330 * Return 0 if successful or a negative errno code on error.
7333 int dev_set_allmulti(struct net_device
*dev
, int inc
)
7335 return __dev_set_allmulti(dev
, inc
, true);
7337 EXPORT_SYMBOL(dev_set_allmulti
);
7340 * Upload unicast and multicast address lists to device and
7341 * configure RX filtering. When the device doesn't support unicast
7342 * filtering it is put in promiscuous mode while unicast addresses
7345 void __dev_set_rx_mode(struct net_device
*dev
)
7347 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7349 /* dev_open will call this function so the list will stay sane. */
7350 if (!(dev
->flags
&IFF_UP
))
7353 if (!netif_device_present(dev
))
7356 if (!(dev
->priv_flags
& IFF_UNICAST_FLT
)) {
7357 /* Unicast addresses changes may only happen under the rtnl,
7358 * therefore calling __dev_set_promiscuity here is safe.
7360 if (!netdev_uc_empty(dev
) && !dev
->uc_promisc
) {
7361 __dev_set_promiscuity(dev
, 1, false);
7362 dev
->uc_promisc
= true;
7363 } else if (netdev_uc_empty(dev
) && dev
->uc_promisc
) {
7364 __dev_set_promiscuity(dev
, -1, false);
7365 dev
->uc_promisc
= false;
7369 if (ops
->ndo_set_rx_mode
)
7370 ops
->ndo_set_rx_mode(dev
);
7373 void dev_set_rx_mode(struct net_device
*dev
)
7375 netif_addr_lock_bh(dev
);
7376 __dev_set_rx_mode(dev
);
7377 netif_addr_unlock_bh(dev
);
7381 * dev_get_flags - get flags reported to userspace
7384 * Get the combination of flag bits exported through APIs to userspace.
7386 unsigned int dev_get_flags(const struct net_device
*dev
)
7390 flags
= (dev
->flags
& ~(IFF_PROMISC
|
7395 (dev
->gflags
& (IFF_PROMISC
|
7398 if (netif_running(dev
)) {
7399 if (netif_oper_up(dev
))
7400 flags
|= IFF_RUNNING
;
7401 if (netif_carrier_ok(dev
))
7402 flags
|= IFF_LOWER_UP
;
7403 if (netif_dormant(dev
))
7404 flags
|= IFF_DORMANT
;
7409 EXPORT_SYMBOL(dev_get_flags
);
7411 int __dev_change_flags(struct net_device
*dev
, unsigned int flags
)
7413 unsigned int old_flags
= dev
->flags
;
7419 * Set the flags on our device.
7422 dev
->flags
= (flags
& (IFF_DEBUG
| IFF_NOTRAILERS
| IFF_NOARP
|
7423 IFF_DYNAMIC
| IFF_MULTICAST
| IFF_PORTSEL
|
7425 (dev
->flags
& (IFF_UP
| IFF_VOLATILE
| IFF_PROMISC
|
7429 * Load in the correct multicast list now the flags have changed.
7432 if ((old_flags
^ flags
) & IFF_MULTICAST
)
7433 dev_change_rx_flags(dev
, IFF_MULTICAST
);
7435 dev_set_rx_mode(dev
);
7438 * Have we downed the interface. We handle IFF_UP ourselves
7439 * according to user attempts to set it, rather than blindly
7444 if ((old_flags
^ flags
) & IFF_UP
) {
7445 if (old_flags
& IFF_UP
)
7448 ret
= __dev_open(dev
);
7451 if ((flags
^ dev
->gflags
) & IFF_PROMISC
) {
7452 int inc
= (flags
& IFF_PROMISC
) ? 1 : -1;
7453 unsigned int old_flags
= dev
->flags
;
7455 dev
->gflags
^= IFF_PROMISC
;
7457 if (__dev_set_promiscuity(dev
, inc
, false) >= 0)
7458 if (dev
->flags
!= old_flags
)
7459 dev_set_rx_mode(dev
);
7462 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7463 * is important. Some (broken) drivers set IFF_PROMISC, when
7464 * IFF_ALLMULTI is requested not asking us and not reporting.
7466 if ((flags
^ dev
->gflags
) & IFF_ALLMULTI
) {
7467 int inc
= (flags
& IFF_ALLMULTI
) ? 1 : -1;
7469 dev
->gflags
^= IFF_ALLMULTI
;
7470 __dev_set_allmulti(dev
, inc
, false);
7476 void __dev_notify_flags(struct net_device
*dev
, unsigned int old_flags
,
7477 unsigned int gchanges
)
7479 unsigned int changes
= dev
->flags
^ old_flags
;
7482 rtmsg_ifinfo(RTM_NEWLINK
, dev
, gchanges
, GFP_ATOMIC
);
7484 if (changes
& IFF_UP
) {
7485 if (dev
->flags
& IFF_UP
)
7486 call_netdevice_notifiers(NETDEV_UP
, dev
);
7488 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
7491 if (dev
->flags
& IFF_UP
&&
7492 (changes
& ~(IFF_UP
| IFF_PROMISC
| IFF_ALLMULTI
| IFF_VOLATILE
))) {
7493 struct netdev_notifier_change_info change_info
= {
7497 .flags_changed
= changes
,
7500 call_netdevice_notifiers_info(NETDEV_CHANGE
, &change_info
.info
);
7505 * dev_change_flags - change device settings
7507 * @flags: device state flags
7509 * Change settings on device based state flags. The flags are
7510 * in the userspace exported format.
7512 int dev_change_flags(struct net_device
*dev
, unsigned int flags
)
7515 unsigned int changes
, old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7517 ret
= __dev_change_flags(dev
, flags
);
7521 changes
= (old_flags
^ dev
->flags
) | (old_gflags
^ dev
->gflags
);
7522 __dev_notify_flags(dev
, old_flags
, changes
);
7525 EXPORT_SYMBOL(dev_change_flags
);
7527 int __dev_set_mtu(struct net_device
*dev
, int new_mtu
)
7529 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7531 if (ops
->ndo_change_mtu
)
7532 return ops
->ndo_change_mtu(dev
, new_mtu
);
7537 EXPORT_SYMBOL(__dev_set_mtu
);
7540 * dev_set_mtu_ext - Change maximum transfer unit
7542 * @new_mtu: new transfer unit
7543 * @extack: netlink extended ack
7545 * Change the maximum transfer size of the network device.
7547 int dev_set_mtu_ext(struct net_device
*dev
, int new_mtu
,
7548 struct netlink_ext_ack
*extack
)
7552 if (new_mtu
== dev
->mtu
)
7555 /* MTU must be positive, and in range */
7556 if (new_mtu
< 0 || new_mtu
< dev
->min_mtu
) {
7557 NL_SET_ERR_MSG(extack
, "mtu less than device minimum");
7561 if (dev
->max_mtu
> 0 && new_mtu
> dev
->max_mtu
) {
7562 NL_SET_ERR_MSG(extack
, "mtu greater than device maximum");
7566 if (!netif_device_present(dev
))
7569 err
= call_netdevice_notifiers(NETDEV_PRECHANGEMTU
, dev
);
7570 err
= notifier_to_errno(err
);
7574 orig_mtu
= dev
->mtu
;
7575 err
= __dev_set_mtu(dev
, new_mtu
);
7578 err
= call_netdevice_notifiers(NETDEV_CHANGEMTU
, dev
);
7579 err
= notifier_to_errno(err
);
7581 /* setting mtu back and notifying everyone again,
7582 * so that they have a chance to revert changes.
7584 __dev_set_mtu(dev
, orig_mtu
);
7585 call_netdevice_notifiers(NETDEV_CHANGEMTU
, dev
);
7591 int dev_set_mtu(struct net_device
*dev
, int new_mtu
)
7593 struct netlink_ext_ack extack
;
7596 memset(&extack
, 0, sizeof(extack
));
7597 err
= dev_set_mtu_ext(dev
, new_mtu
, &extack
);
7598 if (err
&& extack
._msg
)
7599 net_err_ratelimited("%s: %s\n", dev
->name
, extack
._msg
);
7602 EXPORT_SYMBOL(dev_set_mtu
);
7605 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7607 * @new_len: new tx queue length
7609 int dev_change_tx_queue_len(struct net_device
*dev
, unsigned long new_len
)
7611 unsigned int orig_len
= dev
->tx_queue_len
;
7614 if (new_len
!= (unsigned int)new_len
)
7617 if (new_len
!= orig_len
) {
7618 dev
->tx_queue_len
= new_len
;
7619 res
= call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN
, dev
);
7620 res
= notifier_to_errno(res
);
7623 res
= dev_qdisc_change_tx_queue_len(dev
);
7631 netdev_err(dev
, "refused to change device tx_queue_len\n");
7632 dev
->tx_queue_len
= orig_len
;
7637 * dev_set_group - Change group this device belongs to
7639 * @new_group: group this device should belong to
7641 void dev_set_group(struct net_device
*dev
, int new_group
)
7643 dev
->group
= new_group
;
7645 EXPORT_SYMBOL(dev_set_group
);
7648 * dev_set_mac_address - Change Media Access Control Address
7652 * Change the hardware (MAC) address of the device
7654 int dev_set_mac_address(struct net_device
*dev
, struct sockaddr
*sa
)
7656 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7659 if (!ops
->ndo_set_mac_address
)
7661 if (sa
->sa_family
!= dev
->type
)
7663 if (!netif_device_present(dev
))
7665 err
= ops
->ndo_set_mac_address(dev
, sa
);
7668 dev
->addr_assign_type
= NET_ADDR_SET
;
7669 call_netdevice_notifiers(NETDEV_CHANGEADDR
, dev
);
7670 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
7673 EXPORT_SYMBOL(dev_set_mac_address
);
7676 * dev_change_carrier - Change device carrier
7678 * @new_carrier: new value
7680 * Change device carrier
7682 int dev_change_carrier(struct net_device
*dev
, bool new_carrier
)
7684 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7686 if (!ops
->ndo_change_carrier
)
7688 if (!netif_device_present(dev
))
7690 return ops
->ndo_change_carrier(dev
, new_carrier
);
7692 EXPORT_SYMBOL(dev_change_carrier
);
7695 * dev_get_phys_port_id - Get device physical port ID
7699 * Get device physical port ID
7701 int dev_get_phys_port_id(struct net_device
*dev
,
7702 struct netdev_phys_item_id
*ppid
)
7704 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7706 if (!ops
->ndo_get_phys_port_id
)
7708 return ops
->ndo_get_phys_port_id(dev
, ppid
);
7710 EXPORT_SYMBOL(dev_get_phys_port_id
);
7713 * dev_get_phys_port_name - Get device physical port name
7716 * @len: limit of bytes to copy to name
7718 * Get device physical port name
7720 int dev_get_phys_port_name(struct net_device
*dev
,
7721 char *name
, size_t len
)
7723 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7725 if (!ops
->ndo_get_phys_port_name
)
7727 return ops
->ndo_get_phys_port_name(dev
, name
, len
);
7729 EXPORT_SYMBOL(dev_get_phys_port_name
);
7732 * dev_change_proto_down - update protocol port state information
7734 * @proto_down: new value
7736 * This info can be used by switch drivers to set the phys state of the
7739 int dev_change_proto_down(struct net_device
*dev
, bool proto_down
)
7741 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7743 if (!ops
->ndo_change_proto_down
)
7745 if (!netif_device_present(dev
))
7747 return ops
->ndo_change_proto_down(dev
, proto_down
);
7749 EXPORT_SYMBOL(dev_change_proto_down
);
7751 u32
__dev_xdp_query(struct net_device
*dev
, bpf_op_t bpf_op
,
7752 enum bpf_netdev_command cmd
)
7754 struct netdev_bpf xdp
;
7759 memset(&xdp
, 0, sizeof(xdp
));
7762 /* Query must always succeed. */
7763 WARN_ON(bpf_op(dev
, &xdp
) < 0 && cmd
== XDP_QUERY_PROG
);
7768 static int dev_xdp_install(struct net_device
*dev
, bpf_op_t bpf_op
,
7769 struct netlink_ext_ack
*extack
, u32 flags
,
7770 struct bpf_prog
*prog
)
7772 struct netdev_bpf xdp
;
7774 memset(&xdp
, 0, sizeof(xdp
));
7775 if (flags
& XDP_FLAGS_HW_MODE
)
7776 xdp
.command
= XDP_SETUP_PROG_HW
;
7778 xdp
.command
= XDP_SETUP_PROG
;
7779 xdp
.extack
= extack
;
7783 return bpf_op(dev
, &xdp
);
7786 static void dev_xdp_uninstall(struct net_device
*dev
)
7788 struct netdev_bpf xdp
;
7791 /* Remove generic XDP */
7792 WARN_ON(dev_xdp_install(dev
, generic_xdp_install
, NULL
, 0, NULL
));
7794 /* Remove from the driver */
7795 ndo_bpf
= dev
->netdev_ops
->ndo_bpf
;
7799 memset(&xdp
, 0, sizeof(xdp
));
7800 xdp
.command
= XDP_QUERY_PROG
;
7801 WARN_ON(ndo_bpf(dev
, &xdp
));
7803 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
7806 /* Remove HW offload */
7807 memset(&xdp
, 0, sizeof(xdp
));
7808 xdp
.command
= XDP_QUERY_PROG_HW
;
7809 if (!ndo_bpf(dev
, &xdp
) && xdp
.prog_id
)
7810 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
7815 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7817 * @extack: netlink extended ack
7818 * @fd: new program fd or negative value to clear
7819 * @flags: xdp-related flags
7821 * Set or clear a bpf program for a device
7823 int dev_change_xdp_fd(struct net_device
*dev
, struct netlink_ext_ack
*extack
,
7826 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7827 enum bpf_netdev_command query
;
7828 struct bpf_prog
*prog
= NULL
;
7829 bpf_op_t bpf_op
, bpf_chk
;
7834 query
= flags
& XDP_FLAGS_HW_MODE
? XDP_QUERY_PROG_HW
: XDP_QUERY_PROG
;
7836 bpf_op
= bpf_chk
= ops
->ndo_bpf
;
7837 if (!bpf_op
&& (flags
& (XDP_FLAGS_DRV_MODE
| XDP_FLAGS_HW_MODE
)))
7839 if (!bpf_op
|| (flags
& XDP_FLAGS_SKB_MODE
))
7840 bpf_op
= generic_xdp_install
;
7841 if (bpf_op
== bpf_chk
)
7842 bpf_chk
= generic_xdp_install
;
7845 if (__dev_xdp_query(dev
, bpf_chk
, XDP_QUERY_PROG
) ||
7846 __dev_xdp_query(dev
, bpf_chk
, XDP_QUERY_PROG_HW
))
7848 if ((flags
& XDP_FLAGS_UPDATE_IF_NOEXIST
) &&
7849 __dev_xdp_query(dev
, bpf_op
, query
))
7852 prog
= bpf_prog_get_type_dev(fd
, BPF_PROG_TYPE_XDP
,
7853 bpf_op
== ops
->ndo_bpf
);
7855 return PTR_ERR(prog
);
7857 if (!(flags
& XDP_FLAGS_HW_MODE
) &&
7858 bpf_prog_is_dev_bound(prog
->aux
)) {
7859 NL_SET_ERR_MSG(extack
, "using device-bound program without HW_MODE flag is not supported");
7865 err
= dev_xdp_install(dev
, bpf_op
, extack
, flags
, prog
);
7866 if (err
< 0 && prog
)
7873 * dev_new_index - allocate an ifindex
7874 * @net: the applicable net namespace
7876 * Returns a suitable unique value for a new device interface
7877 * number. The caller must hold the rtnl semaphore or the
7878 * dev_base_lock to be sure it remains unique.
7880 static int dev_new_index(struct net
*net
)
7882 int ifindex
= net
->ifindex
;
7887 if (!__dev_get_by_index(net
, ifindex
))
7888 return net
->ifindex
= ifindex
;
7892 /* Delayed registration/unregisteration */
7893 static LIST_HEAD(net_todo_list
);
7894 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq
);
7896 static void net_set_todo(struct net_device
*dev
)
7898 list_add_tail(&dev
->todo_list
, &net_todo_list
);
7899 dev_net(dev
)->dev_unreg_count
++;
7902 static void rollback_registered_many(struct list_head
*head
)
7904 struct net_device
*dev
, *tmp
;
7905 LIST_HEAD(close_head
);
7907 BUG_ON(dev_boot_phase
);
7910 list_for_each_entry_safe(dev
, tmp
, head
, unreg_list
) {
7911 /* Some devices call without registering
7912 * for initialization unwind. Remove those
7913 * devices and proceed with the remaining.
7915 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
7916 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7920 list_del(&dev
->unreg_list
);
7923 dev
->dismantle
= true;
7924 BUG_ON(dev
->reg_state
!= NETREG_REGISTERED
);
7927 /* If device is running, close it first. */
7928 list_for_each_entry(dev
, head
, unreg_list
)
7929 list_add_tail(&dev
->close_list
, &close_head
);
7930 dev_close_many(&close_head
, true);
7932 list_for_each_entry(dev
, head
, unreg_list
) {
7933 /* And unlink it from device chain. */
7934 unlist_netdevice(dev
);
7936 dev
->reg_state
= NETREG_UNREGISTERING
;
7938 flush_all_backlogs();
7942 list_for_each_entry(dev
, head
, unreg_list
) {
7943 struct sk_buff
*skb
= NULL
;
7945 /* Shutdown queueing discipline. */
7948 dev_xdp_uninstall(dev
);
7950 /* Notify protocols, that we are about to destroy
7951 * this device. They should clean all the things.
7953 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
7955 if (!dev
->rtnl_link_ops
||
7956 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
7957 skb
= rtmsg_ifinfo_build_skb(RTM_DELLINK
, dev
, ~0U, 0,
7958 GFP_KERNEL
, NULL
, 0);
7961 * Flush the unicast and multicast chains
7966 if (dev
->netdev_ops
->ndo_uninit
)
7967 dev
->netdev_ops
->ndo_uninit(dev
);
7970 rtmsg_ifinfo_send(skb
, dev
, GFP_KERNEL
);
7972 /* Notifier chain MUST detach us all upper devices. */
7973 WARN_ON(netdev_has_any_upper_dev(dev
));
7974 WARN_ON(netdev_has_any_lower_dev(dev
));
7976 /* Remove entries from kobject tree */
7977 netdev_unregister_kobject(dev
);
7979 /* Remove XPS queueing entries */
7980 netif_reset_xps_queues_gt(dev
, 0);
7986 list_for_each_entry(dev
, head
, unreg_list
)
7990 static void rollback_registered(struct net_device
*dev
)
7994 list_add(&dev
->unreg_list
, &single
);
7995 rollback_registered_many(&single
);
7999 static netdev_features_t
netdev_sync_upper_features(struct net_device
*lower
,
8000 struct net_device
*upper
, netdev_features_t features
)
8002 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8003 netdev_features_t feature
;
8006 for_each_netdev_feature(&upper_disables
, feature_bit
) {
8007 feature
= __NETIF_F_BIT(feature_bit
);
8008 if (!(upper
->wanted_features
& feature
)
8009 && (features
& feature
)) {
8010 netdev_dbg(lower
, "Dropping feature %pNF, upper dev %s has it off.\n",
8011 &feature
, upper
->name
);
8012 features
&= ~feature
;
8019 static void netdev_sync_lower_features(struct net_device
*upper
,
8020 struct net_device
*lower
, netdev_features_t features
)
8022 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8023 netdev_features_t feature
;
8026 for_each_netdev_feature(&upper_disables
, feature_bit
) {
8027 feature
= __NETIF_F_BIT(feature_bit
);
8028 if (!(features
& feature
) && (lower
->features
& feature
)) {
8029 netdev_dbg(upper
, "Disabling feature %pNF on lower dev %s.\n",
8030 &feature
, lower
->name
);
8031 lower
->wanted_features
&= ~feature
;
8032 netdev_update_features(lower
);
8034 if (unlikely(lower
->features
& feature
))
8035 netdev_WARN(upper
, "failed to disable %pNF on %s!\n",
8036 &feature
, lower
->name
);
8041 static netdev_features_t
netdev_fix_features(struct net_device
*dev
,
8042 netdev_features_t features
)
8044 /* Fix illegal checksum combinations */
8045 if ((features
& NETIF_F_HW_CSUM
) &&
8046 (features
& (NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
))) {
8047 netdev_warn(dev
, "mixed HW and IP checksum settings.\n");
8048 features
&= ~(NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
);
8051 /* TSO requires that SG is present as well. */
8052 if ((features
& NETIF_F_ALL_TSO
) && !(features
& NETIF_F_SG
)) {
8053 netdev_dbg(dev
, "Dropping TSO features since no SG feature.\n");
8054 features
&= ~NETIF_F_ALL_TSO
;
8057 if ((features
& NETIF_F_TSO
) && !(features
& NETIF_F_HW_CSUM
) &&
8058 !(features
& NETIF_F_IP_CSUM
)) {
8059 netdev_dbg(dev
, "Dropping TSO features since no CSUM feature.\n");
8060 features
&= ~NETIF_F_TSO
;
8061 features
&= ~NETIF_F_TSO_ECN
;
8064 if ((features
& NETIF_F_TSO6
) && !(features
& NETIF_F_HW_CSUM
) &&
8065 !(features
& NETIF_F_IPV6_CSUM
)) {
8066 netdev_dbg(dev
, "Dropping TSO6 features since no CSUM feature.\n");
8067 features
&= ~NETIF_F_TSO6
;
8070 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8071 if ((features
& NETIF_F_TSO_MANGLEID
) && !(features
& NETIF_F_TSO
))
8072 features
&= ~NETIF_F_TSO_MANGLEID
;
8074 /* TSO ECN requires that TSO is present as well. */
8075 if ((features
& NETIF_F_ALL_TSO
) == NETIF_F_TSO_ECN
)
8076 features
&= ~NETIF_F_TSO_ECN
;
8078 /* Software GSO depends on SG. */
8079 if ((features
& NETIF_F_GSO
) && !(features
& NETIF_F_SG
)) {
8080 netdev_dbg(dev
, "Dropping NETIF_F_GSO since no SG feature.\n");
8081 features
&= ~NETIF_F_GSO
;
8084 /* GSO partial features require GSO partial be set */
8085 if ((features
& dev
->gso_partial_features
) &&
8086 !(features
& NETIF_F_GSO_PARTIAL
)) {
8088 "Dropping partially supported GSO features since no GSO partial.\n");
8089 features
&= ~dev
->gso_partial_features
;
8092 if (!(features
& NETIF_F_RXCSUM
)) {
8093 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8094 * successfully merged by hardware must also have the
8095 * checksum verified by hardware. If the user does not
8096 * want to enable RXCSUM, logically, we should disable GRO_HW.
8098 if (features
& NETIF_F_GRO_HW
) {
8099 netdev_dbg(dev
, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8100 features
&= ~NETIF_F_GRO_HW
;
8104 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8105 if (features
& NETIF_F_RXFCS
) {
8106 if (features
& NETIF_F_LRO
) {
8107 netdev_dbg(dev
, "Dropping LRO feature since RX-FCS is requested.\n");
8108 features
&= ~NETIF_F_LRO
;
8111 if (features
& NETIF_F_GRO_HW
) {
8112 netdev_dbg(dev
, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8113 features
&= ~NETIF_F_GRO_HW
;
8120 int __netdev_update_features(struct net_device
*dev
)
8122 struct net_device
*upper
, *lower
;
8123 netdev_features_t features
;
8124 struct list_head
*iter
;
8129 features
= netdev_get_wanted_features(dev
);
8131 if (dev
->netdev_ops
->ndo_fix_features
)
8132 features
= dev
->netdev_ops
->ndo_fix_features(dev
, features
);
8134 /* driver might be less strict about feature dependencies */
8135 features
= netdev_fix_features(dev
, features
);
8137 /* some features can't be enabled if they're off an an upper device */
8138 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
)
8139 features
= netdev_sync_upper_features(dev
, upper
, features
);
8141 if (dev
->features
== features
)
8144 netdev_dbg(dev
, "Features changed: %pNF -> %pNF\n",
8145 &dev
->features
, &features
);
8147 if (dev
->netdev_ops
->ndo_set_features
)
8148 err
= dev
->netdev_ops
->ndo_set_features(dev
, features
);
8152 if (unlikely(err
< 0)) {
8154 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8155 err
, &features
, &dev
->features
);
8156 /* return non-0 since some features might have changed and
8157 * it's better to fire a spurious notification than miss it
8163 /* some features must be disabled on lower devices when disabled
8164 * on an upper device (think: bonding master or bridge)
8166 netdev_for_each_lower_dev(dev
, lower
, iter
)
8167 netdev_sync_lower_features(dev
, lower
, features
);
8170 netdev_features_t diff
= features
^ dev
->features
;
8172 if (diff
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
8173 /* udp_tunnel_{get,drop}_rx_info both need
8174 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8175 * device, or they won't do anything.
8176 * Thus we need to update dev->features
8177 * *before* calling udp_tunnel_get_rx_info,
8178 * but *after* calling udp_tunnel_drop_rx_info.
8180 if (features
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
8181 dev
->features
= features
;
8182 udp_tunnel_get_rx_info(dev
);
8184 udp_tunnel_drop_rx_info(dev
);
8188 if (diff
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
8189 if (features
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
8190 dev
->features
= features
;
8191 err
|= vlan_get_rx_ctag_filter_info(dev
);
8193 vlan_drop_rx_ctag_filter_info(dev
);
8197 if (diff
& NETIF_F_HW_VLAN_STAG_FILTER
) {
8198 if (features
& NETIF_F_HW_VLAN_STAG_FILTER
) {
8199 dev
->features
= features
;
8200 err
|= vlan_get_rx_stag_filter_info(dev
);
8202 vlan_drop_rx_stag_filter_info(dev
);
8206 dev
->features
= features
;
8209 return err
< 0 ? 0 : 1;
8213 * netdev_update_features - recalculate device features
8214 * @dev: the device to check
8216 * Recalculate dev->features set and send notifications if it
8217 * has changed. Should be called after driver or hardware dependent
8218 * conditions might have changed that influence the features.
8220 void netdev_update_features(struct net_device
*dev
)
8222 if (__netdev_update_features(dev
))
8223 netdev_features_change(dev
);
8225 EXPORT_SYMBOL(netdev_update_features
);
8228 * netdev_change_features - recalculate device features
8229 * @dev: the device to check
8231 * Recalculate dev->features set and send notifications even
8232 * if they have not changed. Should be called instead of
8233 * netdev_update_features() if also dev->vlan_features might
8234 * have changed to allow the changes to be propagated to stacked
8237 void netdev_change_features(struct net_device
*dev
)
8239 __netdev_update_features(dev
);
8240 netdev_features_change(dev
);
8242 EXPORT_SYMBOL(netdev_change_features
);
8245 * netif_stacked_transfer_operstate - transfer operstate
8246 * @rootdev: the root or lower level device to transfer state from
8247 * @dev: the device to transfer operstate to
8249 * Transfer operational state from root to device. This is normally
8250 * called when a stacking relationship exists between the root
8251 * device and the device(a leaf device).
8253 void netif_stacked_transfer_operstate(const struct net_device
*rootdev
,
8254 struct net_device
*dev
)
8256 if (rootdev
->operstate
== IF_OPER_DORMANT
)
8257 netif_dormant_on(dev
);
8259 netif_dormant_off(dev
);
8261 if (netif_carrier_ok(rootdev
))
8262 netif_carrier_on(dev
);
8264 netif_carrier_off(dev
);
8266 EXPORT_SYMBOL(netif_stacked_transfer_operstate
);
8268 static int netif_alloc_rx_queues(struct net_device
*dev
)
8270 unsigned int i
, count
= dev
->num_rx_queues
;
8271 struct netdev_rx_queue
*rx
;
8272 size_t sz
= count
* sizeof(*rx
);
8277 rx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8283 for (i
= 0; i
< count
; i
++) {
8286 /* XDP RX-queue setup */
8287 err
= xdp_rxq_info_reg(&rx
[i
].xdp_rxq
, dev
, i
);
8294 /* Rollback successful reg's and free other resources */
8296 xdp_rxq_info_unreg(&rx
[i
].xdp_rxq
);
8302 static void netif_free_rx_queues(struct net_device
*dev
)
8304 unsigned int i
, count
= dev
->num_rx_queues
;
8306 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8310 for (i
= 0; i
< count
; i
++)
8311 xdp_rxq_info_unreg(&dev
->_rx
[i
].xdp_rxq
);
8316 static void netdev_init_one_queue(struct net_device
*dev
,
8317 struct netdev_queue
*queue
, void *_unused
)
8319 /* Initialize queue lock */
8320 spin_lock_init(&queue
->_xmit_lock
);
8321 netdev_set_xmit_lockdep_class(&queue
->_xmit_lock
, dev
->type
);
8322 queue
->xmit_lock_owner
= -1;
8323 netdev_queue_numa_node_write(queue
, NUMA_NO_NODE
);
8326 dql_init(&queue
->dql
, HZ
);
8330 static void netif_free_tx_queues(struct net_device
*dev
)
8335 static int netif_alloc_netdev_queues(struct net_device
*dev
)
8337 unsigned int count
= dev
->num_tx_queues
;
8338 struct netdev_queue
*tx
;
8339 size_t sz
= count
* sizeof(*tx
);
8341 if (count
< 1 || count
> 0xffff)
8344 tx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8350 netdev_for_each_tx_queue(dev
, netdev_init_one_queue
, NULL
);
8351 spin_lock_init(&dev
->tx_global_lock
);
8356 void netif_tx_stop_all_queues(struct net_device
*dev
)
8360 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
8361 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, i
);
8363 netif_tx_stop_queue(txq
);
8366 EXPORT_SYMBOL(netif_tx_stop_all_queues
);
8369 * register_netdevice - register a network device
8370 * @dev: device to register
8372 * Take a completed network device structure and add it to the kernel
8373 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8374 * chain. 0 is returned on success. A negative errno code is returned
8375 * on a failure to set up the device, or if the name is a duplicate.
8377 * Callers must hold the rtnl semaphore. You may want
8378 * register_netdev() instead of this.
8381 * The locking appears insufficient to guarantee two parallel registers
8382 * will not get the same name.
8385 int register_netdevice(struct net_device
*dev
)
8388 struct net
*net
= dev_net(dev
);
8390 BUILD_BUG_ON(sizeof(netdev_features_t
) * BITS_PER_BYTE
<
8391 NETDEV_FEATURE_COUNT
);
8392 BUG_ON(dev_boot_phase
);
8397 /* When net_device's are persistent, this will be fatal. */
8398 BUG_ON(dev
->reg_state
!= NETREG_UNINITIALIZED
);
8401 spin_lock_init(&dev
->addr_list_lock
);
8402 netdev_set_addr_lockdep_class(dev
);
8404 ret
= dev_get_valid_name(net
, dev
, dev
->name
);
8408 /* Init, if this function is available */
8409 if (dev
->netdev_ops
->ndo_init
) {
8410 ret
= dev
->netdev_ops
->ndo_init(dev
);
8418 if (((dev
->hw_features
| dev
->features
) &
8419 NETIF_F_HW_VLAN_CTAG_FILTER
) &&
8420 (!dev
->netdev_ops
->ndo_vlan_rx_add_vid
||
8421 !dev
->netdev_ops
->ndo_vlan_rx_kill_vid
)) {
8422 netdev_WARN(dev
, "Buggy VLAN acceleration in driver!\n");
8429 dev
->ifindex
= dev_new_index(net
);
8430 else if (__dev_get_by_index(net
, dev
->ifindex
))
8433 /* Transfer changeable features to wanted_features and enable
8434 * software offloads (GSO and GRO).
8436 dev
->hw_features
|= NETIF_F_SOFT_FEATURES
;
8437 dev
->features
|= NETIF_F_SOFT_FEATURES
;
8439 if (dev
->netdev_ops
->ndo_udp_tunnel_add
) {
8440 dev
->features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
8441 dev
->hw_features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
8444 dev
->wanted_features
= dev
->features
& dev
->hw_features
;
8446 if (!(dev
->flags
& IFF_LOOPBACK
))
8447 dev
->hw_features
|= NETIF_F_NOCACHE_COPY
;
8449 /* If IPv4 TCP segmentation offload is supported we should also
8450 * allow the device to enable segmenting the frame with the option
8451 * of ignoring a static IP ID value. This doesn't enable the
8452 * feature itself but allows the user to enable it later.
8454 if (dev
->hw_features
& NETIF_F_TSO
)
8455 dev
->hw_features
|= NETIF_F_TSO_MANGLEID
;
8456 if (dev
->vlan_features
& NETIF_F_TSO
)
8457 dev
->vlan_features
|= NETIF_F_TSO_MANGLEID
;
8458 if (dev
->mpls_features
& NETIF_F_TSO
)
8459 dev
->mpls_features
|= NETIF_F_TSO_MANGLEID
;
8460 if (dev
->hw_enc_features
& NETIF_F_TSO
)
8461 dev
->hw_enc_features
|= NETIF_F_TSO_MANGLEID
;
8463 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8465 dev
->vlan_features
|= NETIF_F_HIGHDMA
;
8467 /* Make NETIF_F_SG inheritable to tunnel devices.
8469 dev
->hw_enc_features
|= NETIF_F_SG
| NETIF_F_GSO_PARTIAL
;
8471 /* Make NETIF_F_SG inheritable to MPLS.
8473 dev
->mpls_features
|= NETIF_F_SG
;
8475 ret
= call_netdevice_notifiers(NETDEV_POST_INIT
, dev
);
8476 ret
= notifier_to_errno(ret
);
8480 ret
= netdev_register_kobject(dev
);
8483 dev
->reg_state
= NETREG_REGISTERED
;
8485 __netdev_update_features(dev
);
8488 * Default initial state at registry is that the
8489 * device is present.
8492 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
8494 linkwatch_init_dev(dev
);
8496 dev_init_scheduler(dev
);
8498 list_netdevice(dev
);
8499 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
8501 /* If the device has permanent device address, driver should
8502 * set dev_addr and also addr_assign_type should be set to
8503 * NET_ADDR_PERM (default value).
8505 if (dev
->addr_assign_type
== NET_ADDR_PERM
)
8506 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
8508 /* Notify protocols, that a new device appeared. */
8509 ret
= call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
8510 ret
= notifier_to_errno(ret
);
8512 rollback_registered(dev
);
8513 dev
->reg_state
= NETREG_UNREGISTERED
;
8516 * Prevent userspace races by waiting until the network
8517 * device is fully setup before sending notifications.
8519 if (!dev
->rtnl_link_ops
||
8520 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
8521 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
8527 if (dev
->netdev_ops
->ndo_uninit
)
8528 dev
->netdev_ops
->ndo_uninit(dev
);
8529 if (dev
->priv_destructor
)
8530 dev
->priv_destructor(dev
);
8533 EXPORT_SYMBOL(register_netdevice
);
8536 * init_dummy_netdev - init a dummy network device for NAPI
8537 * @dev: device to init
8539 * This takes a network device structure and initialize the minimum
8540 * amount of fields so it can be used to schedule NAPI polls without
8541 * registering a full blown interface. This is to be used by drivers
8542 * that need to tie several hardware interfaces to a single NAPI
8543 * poll scheduler due to HW limitations.
8545 int init_dummy_netdev(struct net_device
*dev
)
8547 /* Clear everything. Note we don't initialize spinlocks
8548 * are they aren't supposed to be taken by any of the
8549 * NAPI code and this dummy netdev is supposed to be
8550 * only ever used for NAPI polls
8552 memset(dev
, 0, sizeof(struct net_device
));
8554 /* make sure we BUG if trying to hit standard
8555 * register/unregister code path
8557 dev
->reg_state
= NETREG_DUMMY
;
8559 /* NAPI wants this */
8560 INIT_LIST_HEAD(&dev
->napi_list
);
8562 /* a dummy interface is started by default */
8563 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
8564 set_bit(__LINK_STATE_START
, &dev
->state
);
8566 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8567 * because users of this 'device' dont need to change
8573 EXPORT_SYMBOL_GPL(init_dummy_netdev
);
8577 * register_netdev - register a network device
8578 * @dev: device to register
8580 * Take a completed network device structure and add it to the kernel
8581 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8582 * chain. 0 is returned on success. A negative errno code is returned
8583 * on a failure to set up the device, or if the name is a duplicate.
8585 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8586 * and expands the device name if you passed a format string to
8589 int register_netdev(struct net_device
*dev
)
8593 if (rtnl_lock_killable())
8595 err
= register_netdevice(dev
);
8599 EXPORT_SYMBOL(register_netdev
);
8601 int netdev_refcnt_read(const struct net_device
*dev
)
8605 for_each_possible_cpu(i
)
8606 refcnt
+= *per_cpu_ptr(dev
->pcpu_refcnt
, i
);
8609 EXPORT_SYMBOL(netdev_refcnt_read
);
8612 * netdev_wait_allrefs - wait until all references are gone.
8613 * @dev: target net_device
8615 * This is called when unregistering network devices.
8617 * Any protocol or device that holds a reference should register
8618 * for netdevice notification, and cleanup and put back the
8619 * reference if they receive an UNREGISTER event.
8620 * We can get stuck here if buggy protocols don't correctly
8623 static void netdev_wait_allrefs(struct net_device
*dev
)
8625 unsigned long rebroadcast_time
, warning_time
;
8628 linkwatch_forget_dev(dev
);
8630 rebroadcast_time
= warning_time
= jiffies
;
8631 refcnt
= netdev_refcnt_read(dev
);
8633 while (refcnt
!= 0) {
8634 if (time_after(jiffies
, rebroadcast_time
+ 1 * HZ
)) {
8637 /* Rebroadcast unregister notification */
8638 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8644 if (test_bit(__LINK_STATE_LINKWATCH_PENDING
,
8646 /* We must not have linkwatch events
8647 * pending on unregister. If this
8648 * happens, we simply run the queue
8649 * unscheduled, resulting in a noop
8652 linkwatch_run_queue();
8657 rebroadcast_time
= jiffies
;
8662 refcnt
= netdev_refcnt_read(dev
);
8664 if (time_after(jiffies
, warning_time
+ 10 * HZ
)) {
8665 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8667 warning_time
= jiffies
;
8676 * register_netdevice(x1);
8677 * register_netdevice(x2);
8679 * unregister_netdevice(y1);
8680 * unregister_netdevice(y2);
8686 * We are invoked by rtnl_unlock().
8687 * This allows us to deal with problems:
8688 * 1) We can delete sysfs objects which invoke hotplug
8689 * without deadlocking with linkwatch via keventd.
8690 * 2) Since we run with the RTNL semaphore not held, we can sleep
8691 * safely in order to wait for the netdev refcnt to drop to zero.
8693 * We must not return until all unregister events added during
8694 * the interval the lock was held have been completed.
8696 void netdev_run_todo(void)
8698 struct list_head list
;
8700 /* Snapshot list, allow later requests */
8701 list_replace_init(&net_todo_list
, &list
);
8706 /* Wait for rcu callbacks to finish before next phase */
8707 if (!list_empty(&list
))
8710 while (!list_empty(&list
)) {
8711 struct net_device
*dev
8712 = list_first_entry(&list
, struct net_device
, todo_list
);
8713 list_del(&dev
->todo_list
);
8715 if (unlikely(dev
->reg_state
!= NETREG_UNREGISTERING
)) {
8716 pr_err("network todo '%s' but state %d\n",
8717 dev
->name
, dev
->reg_state
);
8722 dev
->reg_state
= NETREG_UNREGISTERED
;
8724 netdev_wait_allrefs(dev
);
8727 BUG_ON(netdev_refcnt_read(dev
));
8728 BUG_ON(!list_empty(&dev
->ptype_all
));
8729 BUG_ON(!list_empty(&dev
->ptype_specific
));
8730 WARN_ON(rcu_access_pointer(dev
->ip_ptr
));
8731 WARN_ON(rcu_access_pointer(dev
->ip6_ptr
));
8732 #if IS_ENABLED(CONFIG_DECNET)
8733 WARN_ON(dev
->dn_ptr
);
8735 if (dev
->priv_destructor
)
8736 dev
->priv_destructor(dev
);
8737 if (dev
->needs_free_netdev
)
8740 /* Report a network device has been unregistered */
8742 dev_net(dev
)->dev_unreg_count
--;
8744 wake_up(&netdev_unregistering_wq
);
8746 /* Free network device */
8747 kobject_put(&dev
->dev
.kobj
);
8751 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8752 * all the same fields in the same order as net_device_stats, with only
8753 * the type differing, but rtnl_link_stats64 may have additional fields
8754 * at the end for newer counters.
8756 void netdev_stats_to_stats64(struct rtnl_link_stats64
*stats64
,
8757 const struct net_device_stats
*netdev_stats
)
8759 #if BITS_PER_LONG == 64
8760 BUILD_BUG_ON(sizeof(*stats64
) < sizeof(*netdev_stats
));
8761 memcpy(stats64
, netdev_stats
, sizeof(*netdev_stats
));
8762 /* zero out counters that only exist in rtnl_link_stats64 */
8763 memset((char *)stats64
+ sizeof(*netdev_stats
), 0,
8764 sizeof(*stats64
) - sizeof(*netdev_stats
));
8766 size_t i
, n
= sizeof(*netdev_stats
) / sizeof(unsigned long);
8767 const unsigned long *src
= (const unsigned long *)netdev_stats
;
8768 u64
*dst
= (u64
*)stats64
;
8770 BUILD_BUG_ON(n
> sizeof(*stats64
) / sizeof(u64
));
8771 for (i
= 0; i
< n
; i
++)
8773 /* zero out counters that only exist in rtnl_link_stats64 */
8774 memset((char *)stats64
+ n
* sizeof(u64
), 0,
8775 sizeof(*stats64
) - n
* sizeof(u64
));
8778 EXPORT_SYMBOL(netdev_stats_to_stats64
);
8781 * dev_get_stats - get network device statistics
8782 * @dev: device to get statistics from
8783 * @storage: place to store stats
8785 * Get network statistics from device. Return @storage.
8786 * The device driver may provide its own method by setting
8787 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8788 * otherwise the internal statistics structure is used.
8790 struct rtnl_link_stats64
*dev_get_stats(struct net_device
*dev
,
8791 struct rtnl_link_stats64
*storage
)
8793 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8795 if (ops
->ndo_get_stats64
) {
8796 memset(storage
, 0, sizeof(*storage
));
8797 ops
->ndo_get_stats64(dev
, storage
);
8798 } else if (ops
->ndo_get_stats
) {
8799 netdev_stats_to_stats64(storage
, ops
->ndo_get_stats(dev
));
8801 netdev_stats_to_stats64(storage
, &dev
->stats
);
8803 storage
->rx_dropped
+= (unsigned long)atomic_long_read(&dev
->rx_dropped
);
8804 storage
->tx_dropped
+= (unsigned long)atomic_long_read(&dev
->tx_dropped
);
8805 storage
->rx_nohandler
+= (unsigned long)atomic_long_read(&dev
->rx_nohandler
);
8808 EXPORT_SYMBOL(dev_get_stats
);
8810 struct netdev_queue
*dev_ingress_queue_create(struct net_device
*dev
)
8812 struct netdev_queue
*queue
= dev_ingress_queue(dev
);
8814 #ifdef CONFIG_NET_CLS_ACT
8817 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
8820 netdev_init_one_queue(dev
, queue
, NULL
);
8821 RCU_INIT_POINTER(queue
->qdisc
, &noop_qdisc
);
8822 queue
->qdisc_sleeping
= &noop_qdisc
;
8823 rcu_assign_pointer(dev
->ingress_queue
, queue
);
8828 static const struct ethtool_ops default_ethtool_ops
;
8830 void netdev_set_default_ethtool_ops(struct net_device
*dev
,
8831 const struct ethtool_ops
*ops
)
8833 if (dev
->ethtool_ops
== &default_ethtool_ops
)
8834 dev
->ethtool_ops
= ops
;
8836 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops
);
8838 void netdev_freemem(struct net_device
*dev
)
8840 char *addr
= (char *)dev
- dev
->padded
;
8846 * alloc_netdev_mqs - allocate network device
8847 * @sizeof_priv: size of private data to allocate space for
8848 * @name: device name format string
8849 * @name_assign_type: origin of device name
8850 * @setup: callback to initialize device
8851 * @txqs: the number of TX subqueues to allocate
8852 * @rxqs: the number of RX subqueues to allocate
8854 * Allocates a struct net_device with private data area for driver use
8855 * and performs basic initialization. Also allocates subqueue structs
8856 * for each queue on the device.
8858 struct net_device
*alloc_netdev_mqs(int sizeof_priv
, const char *name
,
8859 unsigned char name_assign_type
,
8860 void (*setup
)(struct net_device
*),
8861 unsigned int txqs
, unsigned int rxqs
)
8863 struct net_device
*dev
;
8864 unsigned int alloc_size
;
8865 struct net_device
*p
;
8867 BUG_ON(strlen(name
) >= sizeof(dev
->name
));
8870 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8875 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8879 alloc_size
= sizeof(struct net_device
);
8881 /* ensure 32-byte alignment of private area */
8882 alloc_size
= ALIGN(alloc_size
, NETDEV_ALIGN
);
8883 alloc_size
+= sizeof_priv
;
8885 /* ensure 32-byte alignment of whole construct */
8886 alloc_size
+= NETDEV_ALIGN
- 1;
8888 p
= kvzalloc(alloc_size
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8892 dev
= PTR_ALIGN(p
, NETDEV_ALIGN
);
8893 dev
->padded
= (char *)dev
- (char *)p
;
8895 dev
->pcpu_refcnt
= alloc_percpu(int);
8896 if (!dev
->pcpu_refcnt
)
8899 if (dev_addr_init(dev
))
8905 dev_net_set(dev
, &init_net
);
8907 dev
->gso_max_size
= GSO_MAX_SIZE
;
8908 dev
->gso_max_segs
= GSO_MAX_SEGS
;
8910 INIT_LIST_HEAD(&dev
->napi_list
);
8911 INIT_LIST_HEAD(&dev
->unreg_list
);
8912 INIT_LIST_HEAD(&dev
->close_list
);
8913 INIT_LIST_HEAD(&dev
->link_watch_list
);
8914 INIT_LIST_HEAD(&dev
->adj_list
.upper
);
8915 INIT_LIST_HEAD(&dev
->adj_list
.lower
);
8916 INIT_LIST_HEAD(&dev
->ptype_all
);
8917 INIT_LIST_HEAD(&dev
->ptype_specific
);
8918 #ifdef CONFIG_NET_SCHED
8919 hash_init(dev
->qdisc_hash
);
8921 dev
->priv_flags
= IFF_XMIT_DST_RELEASE
| IFF_XMIT_DST_RELEASE_PERM
;
8924 if (!dev
->tx_queue_len
) {
8925 dev
->priv_flags
|= IFF_NO_QUEUE
;
8926 dev
->tx_queue_len
= DEFAULT_TX_QUEUE_LEN
;
8929 dev
->num_tx_queues
= txqs
;
8930 dev
->real_num_tx_queues
= txqs
;
8931 if (netif_alloc_netdev_queues(dev
))
8934 dev
->num_rx_queues
= rxqs
;
8935 dev
->real_num_rx_queues
= rxqs
;
8936 if (netif_alloc_rx_queues(dev
))
8939 strcpy(dev
->name
, name
);
8940 dev
->name_assign_type
= name_assign_type
;
8941 dev
->group
= INIT_NETDEV_GROUP
;
8942 if (!dev
->ethtool_ops
)
8943 dev
->ethtool_ops
= &default_ethtool_ops
;
8945 nf_hook_ingress_init(dev
);
8954 free_percpu(dev
->pcpu_refcnt
);
8956 netdev_freemem(dev
);
8959 EXPORT_SYMBOL(alloc_netdev_mqs
);
8962 * free_netdev - free network device
8965 * This function does the last stage of destroying an allocated device
8966 * interface. The reference to the device object is released. If this
8967 * is the last reference then it will be freed.Must be called in process
8970 void free_netdev(struct net_device
*dev
)
8972 struct napi_struct
*p
, *n
;
8975 netif_free_tx_queues(dev
);
8976 netif_free_rx_queues(dev
);
8978 kfree(rcu_dereference_protected(dev
->ingress_queue
, 1));
8980 /* Flush device addresses */
8981 dev_addr_flush(dev
);
8983 list_for_each_entry_safe(p
, n
, &dev
->napi_list
, dev_list
)
8986 free_percpu(dev
->pcpu_refcnt
);
8987 dev
->pcpu_refcnt
= NULL
;
8989 /* Compatibility with error handling in drivers */
8990 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
8991 netdev_freemem(dev
);
8995 BUG_ON(dev
->reg_state
!= NETREG_UNREGISTERED
);
8996 dev
->reg_state
= NETREG_RELEASED
;
8998 /* will free via device release */
8999 put_device(&dev
->dev
);
9001 EXPORT_SYMBOL(free_netdev
);
9004 * synchronize_net - Synchronize with packet receive processing
9006 * Wait for packets currently being received to be done.
9007 * Does not block later packets from starting.
9009 void synchronize_net(void)
9012 if (rtnl_is_locked())
9013 synchronize_rcu_expedited();
9017 EXPORT_SYMBOL(synchronize_net
);
9020 * unregister_netdevice_queue - remove device from the kernel
9024 * This function shuts down a device interface and removes it
9025 * from the kernel tables.
9026 * If head not NULL, device is queued to be unregistered later.
9028 * Callers must hold the rtnl semaphore. You may want
9029 * unregister_netdev() instead of this.
9032 void unregister_netdevice_queue(struct net_device
*dev
, struct list_head
*head
)
9037 list_move_tail(&dev
->unreg_list
, head
);
9039 rollback_registered(dev
);
9040 /* Finish processing unregister after unlock */
9044 EXPORT_SYMBOL(unregister_netdevice_queue
);
9047 * unregister_netdevice_many - unregister many devices
9048 * @head: list of devices
9050 * Note: As most callers use a stack allocated list_head,
9051 * we force a list_del() to make sure stack wont be corrupted later.
9053 void unregister_netdevice_many(struct list_head
*head
)
9055 struct net_device
*dev
;
9057 if (!list_empty(head
)) {
9058 rollback_registered_many(head
);
9059 list_for_each_entry(dev
, head
, unreg_list
)
9064 EXPORT_SYMBOL(unregister_netdevice_many
);
9067 * unregister_netdev - remove device from the kernel
9070 * This function shuts down a device interface and removes it
9071 * from the kernel tables.
9073 * This is just a wrapper for unregister_netdevice that takes
9074 * the rtnl semaphore. In general you want to use this and not
9075 * unregister_netdevice.
9077 void unregister_netdev(struct net_device
*dev
)
9080 unregister_netdevice(dev
);
9083 EXPORT_SYMBOL(unregister_netdev
);
9086 * dev_change_net_namespace - move device to different nethost namespace
9088 * @net: network namespace
9089 * @pat: If not NULL name pattern to try if the current device name
9090 * is already taken in the destination network namespace.
9092 * This function shuts down a device interface and moves it
9093 * to a new network namespace. On success 0 is returned, on
9094 * a failure a netagive errno code is returned.
9096 * Callers must hold the rtnl semaphore.
9099 int dev_change_net_namespace(struct net_device
*dev
, struct net
*net
, const char *pat
)
9101 int err
, new_nsid
, new_ifindex
;
9105 /* Don't allow namespace local devices to be moved. */
9107 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
9110 /* Ensure the device has been registrered */
9111 if (dev
->reg_state
!= NETREG_REGISTERED
)
9114 /* Get out if there is nothing todo */
9116 if (net_eq(dev_net(dev
), net
))
9119 /* Pick the destination device name, and ensure
9120 * we can use it in the destination network namespace.
9123 if (__dev_get_by_name(net
, dev
->name
)) {
9124 /* We get here if we can't use the current device name */
9127 err
= dev_get_valid_name(net
, dev
, pat
);
9133 * And now a mini version of register_netdevice unregister_netdevice.
9136 /* If device is running close it first. */
9139 /* And unlink it from device chain */
9140 unlist_netdevice(dev
);
9144 /* Shutdown queueing discipline. */
9147 /* Notify protocols, that we are about to destroy
9148 * this device. They should clean all the things.
9150 * Note that dev->reg_state stays at NETREG_REGISTERED.
9151 * This is wanted because this way 8021q and macvlan know
9152 * the device is just moving and can keep their slaves up.
9154 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
9157 new_nsid
= peernet2id_alloc(dev_net(dev
), net
);
9158 /* If there is an ifindex conflict assign a new one */
9159 if (__dev_get_by_index(net
, dev
->ifindex
))
9160 new_ifindex
= dev_new_index(net
);
9162 new_ifindex
= dev
->ifindex
;
9164 rtmsg_ifinfo_newnet(RTM_DELLINK
, dev
, ~0U, GFP_KERNEL
, &new_nsid
,
9168 * Flush the unicast and multicast chains
9173 /* Send a netdev-removed uevent to the old namespace */
9174 kobject_uevent(&dev
->dev
.kobj
, KOBJ_REMOVE
);
9175 netdev_adjacent_del_links(dev
);
9177 /* Actually switch the network namespace */
9178 dev_net_set(dev
, net
);
9179 dev
->ifindex
= new_ifindex
;
9181 /* Send a netdev-add uevent to the new namespace */
9182 kobject_uevent(&dev
->dev
.kobj
, KOBJ_ADD
);
9183 netdev_adjacent_add_links(dev
);
9185 /* Fixup kobjects */
9186 err
= device_rename(&dev
->dev
, dev
->name
);
9189 /* Add the device back in the hashes */
9190 list_netdevice(dev
);
9192 /* Notify protocols, that a new device appeared. */
9193 call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
9196 * Prevent userspace races by waiting until the network
9197 * device is fully setup before sending notifications.
9199 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
9206 EXPORT_SYMBOL_GPL(dev_change_net_namespace
);
9208 static int dev_cpu_dead(unsigned int oldcpu
)
9210 struct sk_buff
**list_skb
;
9211 struct sk_buff
*skb
;
9213 struct softnet_data
*sd
, *oldsd
, *remsd
= NULL
;
9215 local_irq_disable();
9216 cpu
= smp_processor_id();
9217 sd
= &per_cpu(softnet_data
, cpu
);
9218 oldsd
= &per_cpu(softnet_data
, oldcpu
);
9220 /* Find end of our completion_queue. */
9221 list_skb
= &sd
->completion_queue
;
9223 list_skb
= &(*list_skb
)->next
;
9224 /* Append completion queue from offline CPU. */
9225 *list_skb
= oldsd
->completion_queue
;
9226 oldsd
->completion_queue
= NULL
;
9228 /* Append output queue from offline CPU. */
9229 if (oldsd
->output_queue
) {
9230 *sd
->output_queue_tailp
= oldsd
->output_queue
;
9231 sd
->output_queue_tailp
= oldsd
->output_queue_tailp
;
9232 oldsd
->output_queue
= NULL
;
9233 oldsd
->output_queue_tailp
= &oldsd
->output_queue
;
9235 /* Append NAPI poll list from offline CPU, with one exception :
9236 * process_backlog() must be called by cpu owning percpu backlog.
9237 * We properly handle process_queue & input_pkt_queue later.
9239 while (!list_empty(&oldsd
->poll_list
)) {
9240 struct napi_struct
*napi
= list_first_entry(&oldsd
->poll_list
,
9244 list_del_init(&napi
->poll_list
);
9245 if (napi
->poll
== process_backlog
)
9248 ____napi_schedule(sd
, napi
);
9251 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
9255 remsd
= oldsd
->rps_ipi_list
;
9256 oldsd
->rps_ipi_list
= NULL
;
9258 /* send out pending IPI's on offline CPU */
9259 net_rps_send_ipi(remsd
);
9261 /* Process offline CPU's input_pkt_queue */
9262 while ((skb
= __skb_dequeue(&oldsd
->process_queue
))) {
9264 input_queue_head_incr(oldsd
);
9266 while ((skb
= skb_dequeue(&oldsd
->input_pkt_queue
))) {
9268 input_queue_head_incr(oldsd
);
9275 * netdev_increment_features - increment feature set by one
9276 * @all: current feature set
9277 * @one: new feature set
9278 * @mask: mask feature set
9280 * Computes a new feature set after adding a device with feature set
9281 * @one to the master device with current feature set @all. Will not
9282 * enable anything that is off in @mask. Returns the new feature set.
9284 netdev_features_t
netdev_increment_features(netdev_features_t all
,
9285 netdev_features_t one
, netdev_features_t mask
)
9287 if (mask
& NETIF_F_HW_CSUM
)
9288 mask
|= NETIF_F_CSUM_MASK
;
9289 mask
|= NETIF_F_VLAN_CHALLENGED
;
9291 all
|= one
& (NETIF_F_ONE_FOR_ALL
| NETIF_F_CSUM_MASK
) & mask
;
9292 all
&= one
| ~NETIF_F_ALL_FOR_ALL
;
9294 /* If one device supports hw checksumming, set for all. */
9295 if (all
& NETIF_F_HW_CSUM
)
9296 all
&= ~(NETIF_F_CSUM_MASK
& ~NETIF_F_HW_CSUM
);
9300 EXPORT_SYMBOL(netdev_increment_features
);
9302 static struct hlist_head
* __net_init
netdev_create_hash(void)
9305 struct hlist_head
*hash
;
9307 hash
= kmalloc_array(NETDEV_HASHENTRIES
, sizeof(*hash
), GFP_KERNEL
);
9309 for (i
= 0; i
< NETDEV_HASHENTRIES
; i
++)
9310 INIT_HLIST_HEAD(&hash
[i
]);
9315 /* Initialize per network namespace state */
9316 static int __net_init
netdev_init(struct net
*net
)
9318 BUILD_BUG_ON(GRO_HASH_BUCKETS
>
9319 8 * FIELD_SIZEOF(struct napi_struct
, gro_bitmask
));
9321 if (net
!= &init_net
)
9322 INIT_LIST_HEAD(&net
->dev_base_head
);
9324 net
->dev_name_head
= netdev_create_hash();
9325 if (net
->dev_name_head
== NULL
)
9328 net
->dev_index_head
= netdev_create_hash();
9329 if (net
->dev_index_head
== NULL
)
9335 kfree(net
->dev_name_head
);
9341 * netdev_drivername - network driver for the device
9342 * @dev: network device
9344 * Determine network driver for device.
9346 const char *netdev_drivername(const struct net_device
*dev
)
9348 const struct device_driver
*driver
;
9349 const struct device
*parent
;
9350 const char *empty
= "";
9352 parent
= dev
->dev
.parent
;
9356 driver
= parent
->driver
;
9357 if (driver
&& driver
->name
)
9358 return driver
->name
;
9362 static void __netdev_printk(const char *level
, const struct net_device
*dev
,
9363 struct va_format
*vaf
)
9365 if (dev
&& dev
->dev
.parent
) {
9366 dev_printk_emit(level
[1] - '0',
9369 dev_driver_string(dev
->dev
.parent
),
9370 dev_name(dev
->dev
.parent
),
9371 netdev_name(dev
), netdev_reg_state(dev
),
9374 printk("%s%s%s: %pV",
9375 level
, netdev_name(dev
), netdev_reg_state(dev
), vaf
);
9377 printk("%s(NULL net_device): %pV", level
, vaf
);
9381 void netdev_printk(const char *level
, const struct net_device
*dev
,
9382 const char *format
, ...)
9384 struct va_format vaf
;
9387 va_start(args
, format
);
9392 __netdev_printk(level
, dev
, &vaf
);
9396 EXPORT_SYMBOL(netdev_printk
);
9398 #define define_netdev_printk_level(func, level) \
9399 void func(const struct net_device *dev, const char *fmt, ...) \
9401 struct va_format vaf; \
9404 va_start(args, fmt); \
9409 __netdev_printk(level, dev, &vaf); \
9413 EXPORT_SYMBOL(func);
9415 define_netdev_printk_level(netdev_emerg
, KERN_EMERG
);
9416 define_netdev_printk_level(netdev_alert
, KERN_ALERT
);
9417 define_netdev_printk_level(netdev_crit
, KERN_CRIT
);
9418 define_netdev_printk_level(netdev_err
, KERN_ERR
);
9419 define_netdev_printk_level(netdev_warn
, KERN_WARNING
);
9420 define_netdev_printk_level(netdev_notice
, KERN_NOTICE
);
9421 define_netdev_printk_level(netdev_info
, KERN_INFO
);
9423 static void __net_exit
netdev_exit(struct net
*net
)
9425 kfree(net
->dev_name_head
);
9426 kfree(net
->dev_index_head
);
9427 if (net
!= &init_net
)
9428 WARN_ON_ONCE(!list_empty(&net
->dev_base_head
));
9431 static struct pernet_operations __net_initdata netdev_net_ops
= {
9432 .init
= netdev_init
,
9433 .exit
= netdev_exit
,
9436 static void __net_exit
default_device_exit(struct net
*net
)
9438 struct net_device
*dev
, *aux
;
9440 * Push all migratable network devices back to the
9441 * initial network namespace
9444 for_each_netdev_safe(net
, dev
, aux
) {
9446 char fb_name
[IFNAMSIZ
];
9448 /* Ignore unmoveable devices (i.e. loopback) */
9449 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
9452 /* Leave virtual devices for the generic cleanup */
9453 if (dev
->rtnl_link_ops
)
9456 /* Push remaining network devices to init_net */
9457 snprintf(fb_name
, IFNAMSIZ
, "dev%d", dev
->ifindex
);
9458 err
= dev_change_net_namespace(dev
, &init_net
, fb_name
);
9460 pr_emerg("%s: failed to move %s to init_net: %d\n",
9461 __func__
, dev
->name
, err
);
9468 static void __net_exit
rtnl_lock_unregistering(struct list_head
*net_list
)
9470 /* Return with the rtnl_lock held when there are no network
9471 * devices unregistering in any network namespace in net_list.
9475 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
9477 add_wait_queue(&netdev_unregistering_wq
, &wait
);
9479 unregistering
= false;
9481 list_for_each_entry(net
, net_list
, exit_list
) {
9482 if (net
->dev_unreg_count
> 0) {
9483 unregistering
= true;
9491 wait_woken(&wait
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
9493 remove_wait_queue(&netdev_unregistering_wq
, &wait
);
9496 static void __net_exit
default_device_exit_batch(struct list_head
*net_list
)
9498 /* At exit all network devices most be removed from a network
9499 * namespace. Do this in the reverse order of registration.
9500 * Do this across as many network namespaces as possible to
9501 * improve batching efficiency.
9503 struct net_device
*dev
;
9505 LIST_HEAD(dev_kill_list
);
9507 /* To prevent network device cleanup code from dereferencing
9508 * loopback devices or network devices that have been freed
9509 * wait here for all pending unregistrations to complete,
9510 * before unregistring the loopback device and allowing the
9511 * network namespace be freed.
9513 * The netdev todo list containing all network devices
9514 * unregistrations that happen in default_device_exit_batch
9515 * will run in the rtnl_unlock() at the end of
9516 * default_device_exit_batch.
9518 rtnl_lock_unregistering(net_list
);
9519 list_for_each_entry(net
, net_list
, exit_list
) {
9520 for_each_netdev_reverse(net
, dev
) {
9521 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->dellink
)
9522 dev
->rtnl_link_ops
->dellink(dev
, &dev_kill_list
);
9524 unregister_netdevice_queue(dev
, &dev_kill_list
);
9527 unregister_netdevice_many(&dev_kill_list
);
9531 static struct pernet_operations __net_initdata default_device_ops
= {
9532 .exit
= default_device_exit
,
9533 .exit_batch
= default_device_exit_batch
,
9537 * Initialize the DEV module. At boot time this walks the device list and
9538 * unhooks any devices that fail to initialise (normally hardware not
9539 * present) and leaves us with a valid list of present and active devices.
9544 * This is called single threaded during boot, so no need
9545 * to take the rtnl semaphore.
9547 static int __init
net_dev_init(void)
9549 int i
, rc
= -ENOMEM
;
9551 BUG_ON(!dev_boot_phase
);
9553 if (dev_proc_init())
9556 if (netdev_kobject_init())
9559 INIT_LIST_HEAD(&ptype_all
);
9560 for (i
= 0; i
< PTYPE_HASH_SIZE
; i
++)
9561 INIT_LIST_HEAD(&ptype_base
[i
]);
9563 INIT_LIST_HEAD(&offload_base
);
9565 if (register_pernet_subsys(&netdev_net_ops
))
9569 * Initialise the packet receive queues.
9572 for_each_possible_cpu(i
) {
9573 struct work_struct
*flush
= per_cpu_ptr(&flush_works
, i
);
9574 struct softnet_data
*sd
= &per_cpu(softnet_data
, i
);
9576 INIT_WORK(flush
, flush_backlog
);
9578 skb_queue_head_init(&sd
->input_pkt_queue
);
9579 skb_queue_head_init(&sd
->process_queue
);
9580 #ifdef CONFIG_XFRM_OFFLOAD
9581 skb_queue_head_init(&sd
->xfrm_backlog
);
9583 INIT_LIST_HEAD(&sd
->poll_list
);
9584 sd
->output_queue_tailp
= &sd
->output_queue
;
9586 sd
->csd
.func
= rps_trigger_softirq
;
9591 init_gro_hash(&sd
->backlog
);
9592 sd
->backlog
.poll
= process_backlog
;
9593 sd
->backlog
.weight
= weight_p
;
9598 /* The loopback device is special if any other network devices
9599 * is present in a network namespace the loopback device must
9600 * be present. Since we now dynamically allocate and free the
9601 * loopback device ensure this invariant is maintained by
9602 * keeping the loopback device as the first device on the
9603 * list of network devices. Ensuring the loopback devices
9604 * is the first device that appears and the last network device
9607 if (register_pernet_device(&loopback_net_ops
))
9610 if (register_pernet_device(&default_device_ops
))
9613 open_softirq(NET_TX_SOFTIRQ
, net_tx_action
);
9614 open_softirq(NET_RX_SOFTIRQ
, net_rx_action
);
9616 rc
= cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD
, "net/dev:dead",
9617 NULL
, dev_cpu_dead
);
9624 subsys_initcall(net_dev_init
);