ARM: dts: tegra: enable NAND flash on Colibri T20
[linux-2.6/btrfs-unstable.git] / mm / zsmalloc.c
blob8d87e973a4f509955e3c0974ed3a2e808cbd0688
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
59 #define ZSPAGE_MAGIC 0x58
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
67 #define ZS_ALIGN 8
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * as single (unsigned long) handle value.
82 * Note that object index <obj_idx> starts from 0.
84 * This is made more complicated by various memory models and PAE.
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
108 #define HANDLE_PIN_BIT 0
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122 #define FULLNESS_BITS 2
123 #define CLASS_BITS 8
124 #define ISOLATED_BITS 3
125 #define MAGIC_VAL_BITS 8
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135 * On systems with 4K page size, this gives 255 size classes! There is a
136 * trader-off here:
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145 * (reason above)
147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
151 enum fullness_group {
152 ZS_EMPTY,
153 ZS_ALMOST_EMPTY,
154 ZS_ALMOST_FULL,
155 ZS_FULL,
156 NR_ZS_FULLNESS,
159 enum zs_stat_type {
160 CLASS_EMPTY,
161 CLASS_ALMOST_EMPTY,
162 CLASS_ALMOST_FULL,
163 CLASS_FULL,
164 OBJ_ALLOCATED,
165 OBJ_USED,
166 NR_ZS_STAT_TYPE,
169 struct zs_size_stat {
170 unsigned long objs[NR_ZS_STAT_TYPE];
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
179 #endif
182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183 * n <= N / f, where
184 * n = number of allocated objects
185 * N = total number of objects zspage can store
186 * f = fullness_threshold_frac
188 * Similarly, we assign zspage to:
189 * ZS_ALMOST_FULL when n > N / f
190 * ZS_EMPTY when n == 0
191 * ZS_FULL when n == N
193 * (see: fix_fullness_group())
195 static const int fullness_threshold_frac = 4;
196 static size_t huge_class_size;
198 struct size_class {
199 spinlock_t lock;
200 struct list_head fullness_list[NR_ZS_FULLNESS];
202 * Size of objects stored in this class. Must be multiple
203 * of ZS_ALIGN.
205 int size;
206 int objs_per_zspage;
207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 int pages_per_zspage;
210 unsigned int index;
211 struct zs_size_stat stats;
214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215 static void SetPageHugeObject(struct page *page)
217 SetPageOwnerPriv1(page);
220 static void ClearPageHugeObject(struct page *page)
222 ClearPageOwnerPriv1(page);
225 static int PageHugeObject(struct page *page)
227 return PageOwnerPriv1(page);
231 * Placed within free objects to form a singly linked list.
232 * For every zspage, zspage->freeobj gives head of this list.
234 * This must be power of 2 and less than or equal to ZS_ALIGN
236 struct link_free {
237 union {
239 * Free object index;
240 * It's valid for non-allocated object
242 unsigned long next;
244 * Handle of allocated object.
246 unsigned long handle;
250 struct zs_pool {
251 const char *name;
253 struct size_class *size_class[ZS_SIZE_CLASSES];
254 struct kmem_cache *handle_cachep;
255 struct kmem_cache *zspage_cachep;
257 atomic_long_t pages_allocated;
259 struct zs_pool_stats stats;
261 /* Compact classes */
262 struct shrinker shrinker;
264 #ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268 struct inode *inode;
269 struct work_struct free_work;
270 #endif
273 struct zspage {
274 struct {
275 unsigned int fullness:FULLNESS_BITS;
276 unsigned int class:CLASS_BITS + 1;
277 unsigned int isolated:ISOLATED_BITS;
278 unsigned int magic:MAGIC_VAL_BITS;
280 unsigned int inuse;
281 unsigned int freeobj;
282 struct page *first_page;
283 struct list_head list; /* fullness list */
284 #ifdef CONFIG_COMPACTION
285 rwlock_t lock;
286 #endif
289 struct mapping_area {
290 #ifdef CONFIG_PGTABLE_MAPPING
291 struct vm_struct *vm; /* vm area for mapping object that span pages */
292 #else
293 char *vm_buf; /* copy buffer for objects that span pages */
294 #endif
295 char *vm_addr; /* address of kmap_atomic()'ed pages */
296 enum zs_mapmode vm_mm; /* mapping mode */
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool *pool);
301 static void zs_unregister_migration(struct zs_pool *pool);
302 static void migrate_lock_init(struct zspage *zspage);
303 static void migrate_read_lock(struct zspage *zspage);
304 static void migrate_read_unlock(struct zspage *zspage);
305 static void kick_deferred_free(struct zs_pool *pool);
306 static void init_deferred_free(struct zs_pool *pool);
307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308 #else
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool *pool) { return 0; }
312 static void zs_unregister_migration(struct zs_pool *pool) {}
313 static void migrate_lock_init(struct zspage *zspage) {}
314 static void migrate_read_lock(struct zspage *zspage) {}
315 static void migrate_read_unlock(struct zspage *zspage) {}
316 static void kick_deferred_free(struct zs_pool *pool) {}
317 static void init_deferred_free(struct zs_pool *pool) {}
318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319 #endif
321 static int create_cache(struct zs_pool *pool)
323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 0, 0, NULL);
325 if (!pool->handle_cachep)
326 return 1;
328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 0, 0, NULL);
330 if (!pool->zspage_cachep) {
331 kmem_cache_destroy(pool->handle_cachep);
332 pool->handle_cachep = NULL;
333 return 1;
336 return 0;
339 static void destroy_cache(struct zs_pool *pool)
341 kmem_cache_destroy(pool->handle_cachep);
342 kmem_cache_destroy(pool->zspage_cachep);
345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
353 kmem_cache_free(pool->handle_cachep, (void *)handle);
356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
358 return kmem_cache_alloc(pool->zspage_cachep,
359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
364 kmem_cache_free(pool->zspage_cachep, zspage);
367 static void record_obj(unsigned long handle, unsigned long obj)
370 * lsb of @obj represents handle lock while other bits
371 * represent object value the handle is pointing so
372 * updating shouldn't do store tearing.
374 WRITE_ONCE(*(unsigned long *)handle, obj);
377 /* zpool driver */
379 #ifdef CONFIG_ZPOOL
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382 const struct zpool_ops *zpool_ops,
383 struct zpool *zpool)
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
388 * gfp mask.
390 return zs_create_pool(name);
393 static void zs_zpool_destroy(void *pool)
395 zs_destroy_pool(pool);
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 unsigned long *handle)
401 *handle = zs_malloc(pool, size, gfp);
402 return *handle ? 0 : -1;
404 static void zs_zpool_free(void *pool, unsigned long handle)
406 zs_free(pool, handle);
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410 enum zpool_mapmode mm)
412 enum zs_mapmode zs_mm;
414 switch (mm) {
415 case ZPOOL_MM_RO:
416 zs_mm = ZS_MM_RO;
417 break;
418 case ZPOOL_MM_WO:
419 zs_mm = ZS_MM_WO;
420 break;
421 case ZPOOL_MM_RW: /* fallthru */
422 default:
423 zs_mm = ZS_MM_RW;
424 break;
427 return zs_map_object(pool, handle, zs_mm);
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
431 zs_unmap_object(pool, handle);
434 static u64 zs_zpool_total_size(void *pool)
436 return zs_get_total_pages(pool) << PAGE_SHIFT;
439 static struct zpool_driver zs_zpool_driver = {
440 .type = "zsmalloc",
441 .owner = THIS_MODULE,
442 .create = zs_zpool_create,
443 .destroy = zs_zpool_destroy,
444 .malloc = zs_zpool_malloc,
445 .free = zs_zpool_free,
446 .map = zs_zpool_map,
447 .unmap = zs_zpool_unmap,
448 .total_size = zs_zpool_total_size,
451 MODULE_ALIAS("zpool-zsmalloc");
452 #endif /* CONFIG_ZPOOL */
454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
457 static bool is_zspage_isolated(struct zspage *zspage)
459 return zspage->isolated;
462 static __maybe_unused int is_first_page(struct page *page)
464 return PagePrivate(page);
467 /* Protected by class->lock */
468 static inline int get_zspage_inuse(struct zspage *zspage)
470 return zspage->inuse;
473 static inline void set_zspage_inuse(struct zspage *zspage, int val)
475 zspage->inuse = val;
478 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
480 zspage->inuse += val;
483 static inline struct page *get_first_page(struct zspage *zspage)
485 struct page *first_page = zspage->first_page;
487 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
488 return first_page;
491 static inline int get_first_obj_offset(struct page *page)
493 return page->units;
496 static inline void set_first_obj_offset(struct page *page, int offset)
498 page->units = offset;
501 static inline unsigned int get_freeobj(struct zspage *zspage)
503 return zspage->freeobj;
506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
508 zspage->freeobj = obj;
511 static void get_zspage_mapping(struct zspage *zspage,
512 unsigned int *class_idx,
513 enum fullness_group *fullness)
515 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
517 *fullness = zspage->fullness;
518 *class_idx = zspage->class;
521 static void set_zspage_mapping(struct zspage *zspage,
522 unsigned int class_idx,
523 enum fullness_group fullness)
525 zspage->class = class_idx;
526 zspage->fullness = fullness;
530 * zsmalloc divides the pool into various size classes where each
531 * class maintains a list of zspages where each zspage is divided
532 * into equal sized chunks. Each allocation falls into one of these
533 * classes depending on its size. This function returns index of the
534 * size class which has chunk size big enough to hold the give size.
536 static int get_size_class_index(int size)
538 int idx = 0;
540 if (likely(size > ZS_MIN_ALLOC_SIZE))
541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 ZS_SIZE_CLASS_DELTA);
544 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
547 /* type can be of enum type zs_stat_type or fullness_group */
548 static inline void zs_stat_inc(struct size_class *class,
549 int type, unsigned long cnt)
551 class->stats.objs[type] += cnt;
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_dec(struct size_class *class,
556 int type, unsigned long cnt)
558 class->stats.objs[type] -= cnt;
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
563 int type)
565 return class->stats.objs[type];
568 #ifdef CONFIG_ZSMALLOC_STAT
570 static void __init zs_stat_init(void)
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
574 return;
577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 if (!zs_stat_root)
579 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
582 static void __exit zs_stat_exit(void)
584 debugfs_remove_recursive(zs_stat_root);
587 static unsigned long zs_can_compact(struct size_class *class);
589 static int zs_stats_size_show(struct seq_file *s, void *v)
591 int i;
592 struct zs_pool *pool = s->private;
593 struct size_class *class;
594 int objs_per_zspage;
595 unsigned long class_almost_full, class_almost_empty;
596 unsigned long obj_allocated, obj_used, pages_used, freeable;
597 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
598 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
599 unsigned long total_freeable = 0;
601 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
602 "class", "size", "almost_full", "almost_empty",
603 "obj_allocated", "obj_used", "pages_used",
604 "pages_per_zspage", "freeable");
606 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
607 class = pool->size_class[i];
609 if (class->index != i)
610 continue;
612 spin_lock(&class->lock);
613 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
614 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
615 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
616 obj_used = zs_stat_get(class, OBJ_USED);
617 freeable = zs_can_compact(class);
618 spin_unlock(&class->lock);
620 objs_per_zspage = class->objs_per_zspage;
621 pages_used = obj_allocated / objs_per_zspage *
622 class->pages_per_zspage;
624 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
625 " %10lu %10lu %16d %8lu\n",
626 i, class->size, class_almost_full, class_almost_empty,
627 obj_allocated, obj_used, pages_used,
628 class->pages_per_zspage, freeable);
630 total_class_almost_full += class_almost_full;
631 total_class_almost_empty += class_almost_empty;
632 total_objs += obj_allocated;
633 total_used_objs += obj_used;
634 total_pages += pages_used;
635 total_freeable += freeable;
638 seq_puts(s, "\n");
639 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
640 "Total", "", total_class_almost_full,
641 total_class_almost_empty, total_objs,
642 total_used_objs, total_pages, "", total_freeable);
644 return 0;
646 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
648 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
650 struct dentry *entry;
652 if (!zs_stat_root) {
653 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
654 return;
657 entry = debugfs_create_dir(name, zs_stat_root);
658 if (!entry) {
659 pr_warn("debugfs dir <%s> creation failed\n", name);
660 return;
662 pool->stat_dentry = entry;
664 entry = debugfs_create_file("classes", S_IFREG | 0444,
665 pool->stat_dentry, pool,
666 &zs_stats_size_fops);
667 if (!entry) {
668 pr_warn("%s: debugfs file entry <%s> creation failed\n",
669 name, "classes");
670 debugfs_remove_recursive(pool->stat_dentry);
671 pool->stat_dentry = NULL;
675 static void zs_pool_stat_destroy(struct zs_pool *pool)
677 debugfs_remove_recursive(pool->stat_dentry);
680 #else /* CONFIG_ZSMALLOC_STAT */
681 static void __init zs_stat_init(void)
685 static void __exit zs_stat_exit(void)
689 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
693 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
696 #endif
700 * For each size class, zspages are divided into different groups
701 * depending on how "full" they are. This was done so that we could
702 * easily find empty or nearly empty zspages when we try to shrink
703 * the pool (not yet implemented). This function returns fullness
704 * status of the given page.
706 static enum fullness_group get_fullness_group(struct size_class *class,
707 struct zspage *zspage)
709 int inuse, objs_per_zspage;
710 enum fullness_group fg;
712 inuse = get_zspage_inuse(zspage);
713 objs_per_zspage = class->objs_per_zspage;
715 if (inuse == 0)
716 fg = ZS_EMPTY;
717 else if (inuse == objs_per_zspage)
718 fg = ZS_FULL;
719 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
720 fg = ZS_ALMOST_EMPTY;
721 else
722 fg = ZS_ALMOST_FULL;
724 return fg;
728 * Each size class maintains various freelists and zspages are assigned
729 * to one of these freelists based on the number of live objects they
730 * have. This functions inserts the given zspage into the freelist
731 * identified by <class, fullness_group>.
733 static void insert_zspage(struct size_class *class,
734 struct zspage *zspage,
735 enum fullness_group fullness)
737 struct zspage *head;
739 zs_stat_inc(class, fullness, 1);
740 head = list_first_entry_or_null(&class->fullness_list[fullness],
741 struct zspage, list);
743 * We want to see more ZS_FULL pages and less almost empty/full.
744 * Put pages with higher ->inuse first.
746 if (head) {
747 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
748 list_add(&zspage->list, &head->list);
749 return;
752 list_add(&zspage->list, &class->fullness_list[fullness]);
756 * This function removes the given zspage from the freelist identified
757 * by <class, fullness_group>.
759 static void remove_zspage(struct size_class *class,
760 struct zspage *zspage,
761 enum fullness_group fullness)
763 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
764 VM_BUG_ON(is_zspage_isolated(zspage));
766 list_del_init(&zspage->list);
767 zs_stat_dec(class, fullness, 1);
771 * Each size class maintains zspages in different fullness groups depending
772 * on the number of live objects they contain. When allocating or freeing
773 * objects, the fullness status of the page can change, say, from ALMOST_FULL
774 * to ALMOST_EMPTY when freeing an object. This function checks if such
775 * a status change has occurred for the given page and accordingly moves the
776 * page from the freelist of the old fullness group to that of the new
777 * fullness group.
779 static enum fullness_group fix_fullness_group(struct size_class *class,
780 struct zspage *zspage)
782 int class_idx;
783 enum fullness_group currfg, newfg;
785 get_zspage_mapping(zspage, &class_idx, &currfg);
786 newfg = get_fullness_group(class, zspage);
787 if (newfg == currfg)
788 goto out;
790 if (!is_zspage_isolated(zspage)) {
791 remove_zspage(class, zspage, currfg);
792 insert_zspage(class, zspage, newfg);
795 set_zspage_mapping(zspage, class_idx, newfg);
797 out:
798 return newfg;
802 * We have to decide on how many pages to link together
803 * to form a zspage for each size class. This is important
804 * to reduce wastage due to unusable space left at end of
805 * each zspage which is given as:
806 * wastage = Zp % class_size
807 * usage = Zp - wastage
808 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
810 * For example, for size class of 3/8 * PAGE_SIZE, we should
811 * link together 3 PAGE_SIZE sized pages to form a zspage
812 * since then we can perfectly fit in 8 such objects.
814 static int get_pages_per_zspage(int class_size)
816 int i, max_usedpc = 0;
817 /* zspage order which gives maximum used size per KB */
818 int max_usedpc_order = 1;
820 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
821 int zspage_size;
822 int waste, usedpc;
824 zspage_size = i * PAGE_SIZE;
825 waste = zspage_size % class_size;
826 usedpc = (zspage_size - waste) * 100 / zspage_size;
828 if (usedpc > max_usedpc) {
829 max_usedpc = usedpc;
830 max_usedpc_order = i;
834 return max_usedpc_order;
837 static struct zspage *get_zspage(struct page *page)
839 struct zspage *zspage = (struct zspage *)page->private;
841 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
842 return zspage;
845 static struct page *get_next_page(struct page *page)
847 if (unlikely(PageHugeObject(page)))
848 return NULL;
850 return page->freelist;
854 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
855 * @obj: the encoded object value
856 * @page: page object resides in zspage
857 * @obj_idx: object index
859 static void obj_to_location(unsigned long obj, struct page **page,
860 unsigned int *obj_idx)
862 obj >>= OBJ_TAG_BITS;
863 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
864 *obj_idx = (obj & OBJ_INDEX_MASK);
868 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
869 * @page: page object resides in zspage
870 * @obj_idx: object index
872 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
874 unsigned long obj;
876 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
877 obj |= obj_idx & OBJ_INDEX_MASK;
878 obj <<= OBJ_TAG_BITS;
880 return obj;
883 static unsigned long handle_to_obj(unsigned long handle)
885 return *(unsigned long *)handle;
888 static unsigned long obj_to_head(struct page *page, void *obj)
890 if (unlikely(PageHugeObject(page))) {
891 VM_BUG_ON_PAGE(!is_first_page(page), page);
892 return page->index;
893 } else
894 return *(unsigned long *)obj;
897 static inline int testpin_tag(unsigned long handle)
899 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
902 static inline int trypin_tag(unsigned long handle)
904 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
907 static void pin_tag(unsigned long handle)
909 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
912 static void unpin_tag(unsigned long handle)
914 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
917 static void reset_page(struct page *page)
919 __ClearPageMovable(page);
920 ClearPagePrivate(page);
921 set_page_private(page, 0);
922 page_mapcount_reset(page);
923 ClearPageHugeObject(page);
924 page->freelist = NULL;
928 * To prevent zspage destroy during migration, zspage freeing should
929 * hold locks of all pages in the zspage.
931 void lock_zspage(struct zspage *zspage)
933 struct page *page = get_first_page(zspage);
935 do {
936 lock_page(page);
937 } while ((page = get_next_page(page)) != NULL);
940 int trylock_zspage(struct zspage *zspage)
942 struct page *cursor, *fail;
944 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
945 get_next_page(cursor)) {
946 if (!trylock_page(cursor)) {
947 fail = cursor;
948 goto unlock;
952 return 1;
953 unlock:
954 for (cursor = get_first_page(zspage); cursor != fail; cursor =
955 get_next_page(cursor))
956 unlock_page(cursor);
958 return 0;
961 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
962 struct zspage *zspage)
964 struct page *page, *next;
965 enum fullness_group fg;
966 unsigned int class_idx;
968 get_zspage_mapping(zspage, &class_idx, &fg);
970 assert_spin_locked(&class->lock);
972 VM_BUG_ON(get_zspage_inuse(zspage));
973 VM_BUG_ON(fg != ZS_EMPTY);
975 next = page = get_first_page(zspage);
976 do {
977 VM_BUG_ON_PAGE(!PageLocked(page), page);
978 next = get_next_page(page);
979 reset_page(page);
980 unlock_page(page);
981 dec_zone_page_state(page, NR_ZSPAGES);
982 put_page(page);
983 page = next;
984 } while (page != NULL);
986 cache_free_zspage(pool, zspage);
988 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
989 atomic_long_sub(class->pages_per_zspage,
990 &pool->pages_allocated);
993 static void free_zspage(struct zs_pool *pool, struct size_class *class,
994 struct zspage *zspage)
996 VM_BUG_ON(get_zspage_inuse(zspage));
997 VM_BUG_ON(list_empty(&zspage->list));
999 if (!trylock_zspage(zspage)) {
1000 kick_deferred_free(pool);
1001 return;
1004 remove_zspage(class, zspage, ZS_EMPTY);
1005 __free_zspage(pool, class, zspage);
1008 /* Initialize a newly allocated zspage */
1009 static void init_zspage(struct size_class *class, struct zspage *zspage)
1011 unsigned int freeobj = 1;
1012 unsigned long off = 0;
1013 struct page *page = get_first_page(zspage);
1015 while (page) {
1016 struct page *next_page;
1017 struct link_free *link;
1018 void *vaddr;
1020 set_first_obj_offset(page, off);
1022 vaddr = kmap_atomic(page);
1023 link = (struct link_free *)vaddr + off / sizeof(*link);
1025 while ((off += class->size) < PAGE_SIZE) {
1026 link->next = freeobj++ << OBJ_TAG_BITS;
1027 link += class->size / sizeof(*link);
1031 * We now come to the last (full or partial) object on this
1032 * page, which must point to the first object on the next
1033 * page (if present)
1035 next_page = get_next_page(page);
1036 if (next_page) {
1037 link->next = freeobj++ << OBJ_TAG_BITS;
1038 } else {
1040 * Reset OBJ_TAG_BITS bit to last link to tell
1041 * whether it's allocated object or not.
1043 link->next = -1UL << OBJ_TAG_BITS;
1045 kunmap_atomic(vaddr);
1046 page = next_page;
1047 off %= PAGE_SIZE;
1050 set_freeobj(zspage, 0);
1053 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1054 struct page *pages[])
1056 int i;
1057 struct page *page;
1058 struct page *prev_page = NULL;
1059 int nr_pages = class->pages_per_zspage;
1062 * Allocate individual pages and link them together as:
1063 * 1. all pages are linked together using page->freelist
1064 * 2. each sub-page point to zspage using page->private
1066 * we set PG_private to identify the first page (i.e. no other sub-page
1067 * has this flag set).
1069 for (i = 0; i < nr_pages; i++) {
1070 page = pages[i];
1071 set_page_private(page, (unsigned long)zspage);
1072 page->freelist = NULL;
1073 if (i == 0) {
1074 zspage->first_page = page;
1075 SetPagePrivate(page);
1076 if (unlikely(class->objs_per_zspage == 1 &&
1077 class->pages_per_zspage == 1))
1078 SetPageHugeObject(page);
1079 } else {
1080 prev_page->freelist = page;
1082 prev_page = page;
1087 * Allocate a zspage for the given size class
1089 static struct zspage *alloc_zspage(struct zs_pool *pool,
1090 struct size_class *class,
1091 gfp_t gfp)
1093 int i;
1094 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1095 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1097 if (!zspage)
1098 return NULL;
1100 memset(zspage, 0, sizeof(struct zspage));
1101 zspage->magic = ZSPAGE_MAGIC;
1102 migrate_lock_init(zspage);
1104 for (i = 0; i < class->pages_per_zspage; i++) {
1105 struct page *page;
1107 page = alloc_page(gfp);
1108 if (!page) {
1109 while (--i >= 0) {
1110 dec_zone_page_state(pages[i], NR_ZSPAGES);
1111 __free_page(pages[i]);
1113 cache_free_zspage(pool, zspage);
1114 return NULL;
1117 inc_zone_page_state(page, NR_ZSPAGES);
1118 pages[i] = page;
1121 create_page_chain(class, zspage, pages);
1122 init_zspage(class, zspage);
1124 return zspage;
1127 static struct zspage *find_get_zspage(struct size_class *class)
1129 int i;
1130 struct zspage *zspage;
1132 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1133 zspage = list_first_entry_or_null(&class->fullness_list[i],
1134 struct zspage, list);
1135 if (zspage)
1136 break;
1139 return zspage;
1142 #ifdef CONFIG_PGTABLE_MAPPING
1143 static inline int __zs_cpu_up(struct mapping_area *area)
1146 * Make sure we don't leak memory if a cpu UP notification
1147 * and zs_init() race and both call zs_cpu_up() on the same cpu
1149 if (area->vm)
1150 return 0;
1151 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1152 if (!area->vm)
1153 return -ENOMEM;
1154 return 0;
1157 static inline void __zs_cpu_down(struct mapping_area *area)
1159 if (area->vm)
1160 free_vm_area(area->vm);
1161 area->vm = NULL;
1164 static inline void *__zs_map_object(struct mapping_area *area,
1165 struct page *pages[2], int off, int size)
1167 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1168 area->vm_addr = area->vm->addr;
1169 return area->vm_addr + off;
1172 static inline void __zs_unmap_object(struct mapping_area *area,
1173 struct page *pages[2], int off, int size)
1175 unsigned long addr = (unsigned long)area->vm_addr;
1177 unmap_kernel_range(addr, PAGE_SIZE * 2);
1180 #else /* CONFIG_PGTABLE_MAPPING */
1182 static inline int __zs_cpu_up(struct mapping_area *area)
1185 * Make sure we don't leak memory if a cpu UP notification
1186 * and zs_init() race and both call zs_cpu_up() on the same cpu
1188 if (area->vm_buf)
1189 return 0;
1190 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1191 if (!area->vm_buf)
1192 return -ENOMEM;
1193 return 0;
1196 static inline void __zs_cpu_down(struct mapping_area *area)
1198 kfree(area->vm_buf);
1199 area->vm_buf = NULL;
1202 static void *__zs_map_object(struct mapping_area *area,
1203 struct page *pages[2], int off, int size)
1205 int sizes[2];
1206 void *addr;
1207 char *buf = area->vm_buf;
1209 /* disable page faults to match kmap_atomic() return conditions */
1210 pagefault_disable();
1212 /* no read fastpath */
1213 if (area->vm_mm == ZS_MM_WO)
1214 goto out;
1216 sizes[0] = PAGE_SIZE - off;
1217 sizes[1] = size - sizes[0];
1219 /* copy object to per-cpu buffer */
1220 addr = kmap_atomic(pages[0]);
1221 memcpy(buf, addr + off, sizes[0]);
1222 kunmap_atomic(addr);
1223 addr = kmap_atomic(pages[1]);
1224 memcpy(buf + sizes[0], addr, sizes[1]);
1225 kunmap_atomic(addr);
1226 out:
1227 return area->vm_buf;
1230 static void __zs_unmap_object(struct mapping_area *area,
1231 struct page *pages[2], int off, int size)
1233 int sizes[2];
1234 void *addr;
1235 char *buf;
1237 /* no write fastpath */
1238 if (area->vm_mm == ZS_MM_RO)
1239 goto out;
1241 buf = area->vm_buf;
1242 buf = buf + ZS_HANDLE_SIZE;
1243 size -= ZS_HANDLE_SIZE;
1244 off += ZS_HANDLE_SIZE;
1246 sizes[0] = PAGE_SIZE - off;
1247 sizes[1] = size - sizes[0];
1249 /* copy per-cpu buffer to object */
1250 addr = kmap_atomic(pages[0]);
1251 memcpy(addr + off, buf, sizes[0]);
1252 kunmap_atomic(addr);
1253 addr = kmap_atomic(pages[1]);
1254 memcpy(addr, buf + sizes[0], sizes[1]);
1255 kunmap_atomic(addr);
1257 out:
1258 /* enable page faults to match kunmap_atomic() return conditions */
1259 pagefault_enable();
1262 #endif /* CONFIG_PGTABLE_MAPPING */
1264 static int zs_cpu_prepare(unsigned int cpu)
1266 struct mapping_area *area;
1268 area = &per_cpu(zs_map_area, cpu);
1269 return __zs_cpu_up(area);
1272 static int zs_cpu_dead(unsigned int cpu)
1274 struct mapping_area *area;
1276 area = &per_cpu(zs_map_area, cpu);
1277 __zs_cpu_down(area);
1278 return 0;
1281 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1282 int objs_per_zspage)
1284 if (prev->pages_per_zspage == pages_per_zspage &&
1285 prev->objs_per_zspage == objs_per_zspage)
1286 return true;
1288 return false;
1291 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1293 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1296 unsigned long zs_get_total_pages(struct zs_pool *pool)
1298 return atomic_long_read(&pool->pages_allocated);
1300 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1303 * zs_map_object - get address of allocated object from handle.
1304 * @pool: pool from which the object was allocated
1305 * @handle: handle returned from zs_malloc
1306 * @mm: maping mode to use
1308 * Before using an object allocated from zs_malloc, it must be mapped using
1309 * this function. When done with the object, it must be unmapped using
1310 * zs_unmap_object.
1312 * Only one object can be mapped per cpu at a time. There is no protection
1313 * against nested mappings.
1315 * This function returns with preemption and page faults disabled.
1317 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1318 enum zs_mapmode mm)
1320 struct zspage *zspage;
1321 struct page *page;
1322 unsigned long obj, off;
1323 unsigned int obj_idx;
1325 unsigned int class_idx;
1326 enum fullness_group fg;
1327 struct size_class *class;
1328 struct mapping_area *area;
1329 struct page *pages[2];
1330 void *ret;
1333 * Because we use per-cpu mapping areas shared among the
1334 * pools/users, we can't allow mapping in interrupt context
1335 * because it can corrupt another users mappings.
1337 BUG_ON(in_interrupt());
1339 /* From now on, migration cannot move the object */
1340 pin_tag(handle);
1342 obj = handle_to_obj(handle);
1343 obj_to_location(obj, &page, &obj_idx);
1344 zspage = get_zspage(page);
1346 /* migration cannot move any subpage in this zspage */
1347 migrate_read_lock(zspage);
1349 get_zspage_mapping(zspage, &class_idx, &fg);
1350 class = pool->size_class[class_idx];
1351 off = (class->size * obj_idx) & ~PAGE_MASK;
1353 area = &get_cpu_var(zs_map_area);
1354 area->vm_mm = mm;
1355 if (off + class->size <= PAGE_SIZE) {
1356 /* this object is contained entirely within a page */
1357 area->vm_addr = kmap_atomic(page);
1358 ret = area->vm_addr + off;
1359 goto out;
1362 /* this object spans two pages */
1363 pages[0] = page;
1364 pages[1] = get_next_page(page);
1365 BUG_ON(!pages[1]);
1367 ret = __zs_map_object(area, pages, off, class->size);
1368 out:
1369 if (likely(!PageHugeObject(page)))
1370 ret += ZS_HANDLE_SIZE;
1372 return ret;
1374 EXPORT_SYMBOL_GPL(zs_map_object);
1376 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1378 struct zspage *zspage;
1379 struct page *page;
1380 unsigned long obj, off;
1381 unsigned int obj_idx;
1383 unsigned int class_idx;
1384 enum fullness_group fg;
1385 struct size_class *class;
1386 struct mapping_area *area;
1388 obj = handle_to_obj(handle);
1389 obj_to_location(obj, &page, &obj_idx);
1390 zspage = get_zspage(page);
1391 get_zspage_mapping(zspage, &class_idx, &fg);
1392 class = pool->size_class[class_idx];
1393 off = (class->size * obj_idx) & ~PAGE_MASK;
1395 area = this_cpu_ptr(&zs_map_area);
1396 if (off + class->size <= PAGE_SIZE)
1397 kunmap_atomic(area->vm_addr);
1398 else {
1399 struct page *pages[2];
1401 pages[0] = page;
1402 pages[1] = get_next_page(page);
1403 BUG_ON(!pages[1]);
1405 __zs_unmap_object(area, pages, off, class->size);
1407 put_cpu_var(zs_map_area);
1409 migrate_read_unlock(zspage);
1410 unpin_tag(handle);
1412 EXPORT_SYMBOL_GPL(zs_unmap_object);
1415 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1416 * zsmalloc &size_class.
1417 * @pool: zsmalloc pool to use
1419 * The function returns the size of the first huge class - any object of equal
1420 * or bigger size will be stored in zspage consisting of a single physical
1421 * page.
1423 * Context: Any context.
1425 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1427 size_t zs_huge_class_size(struct zs_pool *pool)
1429 return huge_class_size;
1431 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1433 static unsigned long obj_malloc(struct size_class *class,
1434 struct zspage *zspage, unsigned long handle)
1436 int i, nr_page, offset;
1437 unsigned long obj;
1438 struct link_free *link;
1440 struct page *m_page;
1441 unsigned long m_offset;
1442 void *vaddr;
1444 handle |= OBJ_ALLOCATED_TAG;
1445 obj = get_freeobj(zspage);
1447 offset = obj * class->size;
1448 nr_page = offset >> PAGE_SHIFT;
1449 m_offset = offset & ~PAGE_MASK;
1450 m_page = get_first_page(zspage);
1452 for (i = 0; i < nr_page; i++)
1453 m_page = get_next_page(m_page);
1455 vaddr = kmap_atomic(m_page);
1456 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1457 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1458 if (likely(!PageHugeObject(m_page)))
1459 /* record handle in the header of allocated chunk */
1460 link->handle = handle;
1461 else
1462 /* record handle to page->index */
1463 zspage->first_page->index = handle;
1465 kunmap_atomic(vaddr);
1466 mod_zspage_inuse(zspage, 1);
1467 zs_stat_inc(class, OBJ_USED, 1);
1469 obj = location_to_obj(m_page, obj);
1471 return obj;
1476 * zs_malloc - Allocate block of given size from pool.
1477 * @pool: pool to allocate from
1478 * @size: size of block to allocate
1479 * @gfp: gfp flags when allocating object
1481 * On success, handle to the allocated object is returned,
1482 * otherwise 0.
1483 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1485 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1487 unsigned long handle, obj;
1488 struct size_class *class;
1489 enum fullness_group newfg;
1490 struct zspage *zspage;
1492 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1493 return 0;
1495 handle = cache_alloc_handle(pool, gfp);
1496 if (!handle)
1497 return 0;
1499 /* extra space in chunk to keep the handle */
1500 size += ZS_HANDLE_SIZE;
1501 class = pool->size_class[get_size_class_index(size)];
1503 spin_lock(&class->lock);
1504 zspage = find_get_zspage(class);
1505 if (likely(zspage)) {
1506 obj = obj_malloc(class, zspage, handle);
1507 /* Now move the zspage to another fullness group, if required */
1508 fix_fullness_group(class, zspage);
1509 record_obj(handle, obj);
1510 spin_unlock(&class->lock);
1512 return handle;
1515 spin_unlock(&class->lock);
1517 zspage = alloc_zspage(pool, class, gfp);
1518 if (!zspage) {
1519 cache_free_handle(pool, handle);
1520 return 0;
1523 spin_lock(&class->lock);
1524 obj = obj_malloc(class, zspage, handle);
1525 newfg = get_fullness_group(class, zspage);
1526 insert_zspage(class, zspage, newfg);
1527 set_zspage_mapping(zspage, class->index, newfg);
1528 record_obj(handle, obj);
1529 atomic_long_add(class->pages_per_zspage,
1530 &pool->pages_allocated);
1531 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1533 /* We completely set up zspage so mark them as movable */
1534 SetZsPageMovable(pool, zspage);
1535 spin_unlock(&class->lock);
1537 return handle;
1539 EXPORT_SYMBOL_GPL(zs_malloc);
1541 static void obj_free(struct size_class *class, unsigned long obj)
1543 struct link_free *link;
1544 struct zspage *zspage;
1545 struct page *f_page;
1546 unsigned long f_offset;
1547 unsigned int f_objidx;
1548 void *vaddr;
1550 obj &= ~OBJ_ALLOCATED_TAG;
1551 obj_to_location(obj, &f_page, &f_objidx);
1552 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1553 zspage = get_zspage(f_page);
1555 vaddr = kmap_atomic(f_page);
1557 /* Insert this object in containing zspage's freelist */
1558 link = (struct link_free *)(vaddr + f_offset);
1559 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1560 kunmap_atomic(vaddr);
1561 set_freeobj(zspage, f_objidx);
1562 mod_zspage_inuse(zspage, -1);
1563 zs_stat_dec(class, OBJ_USED, 1);
1566 void zs_free(struct zs_pool *pool, unsigned long handle)
1568 struct zspage *zspage;
1569 struct page *f_page;
1570 unsigned long obj;
1571 unsigned int f_objidx;
1572 int class_idx;
1573 struct size_class *class;
1574 enum fullness_group fullness;
1575 bool isolated;
1577 if (unlikely(!handle))
1578 return;
1580 pin_tag(handle);
1581 obj = handle_to_obj(handle);
1582 obj_to_location(obj, &f_page, &f_objidx);
1583 zspage = get_zspage(f_page);
1585 migrate_read_lock(zspage);
1587 get_zspage_mapping(zspage, &class_idx, &fullness);
1588 class = pool->size_class[class_idx];
1590 spin_lock(&class->lock);
1591 obj_free(class, obj);
1592 fullness = fix_fullness_group(class, zspage);
1593 if (fullness != ZS_EMPTY) {
1594 migrate_read_unlock(zspage);
1595 goto out;
1598 isolated = is_zspage_isolated(zspage);
1599 migrate_read_unlock(zspage);
1600 /* If zspage is isolated, zs_page_putback will free the zspage */
1601 if (likely(!isolated))
1602 free_zspage(pool, class, zspage);
1603 out:
1605 spin_unlock(&class->lock);
1606 unpin_tag(handle);
1607 cache_free_handle(pool, handle);
1609 EXPORT_SYMBOL_GPL(zs_free);
1611 static void zs_object_copy(struct size_class *class, unsigned long dst,
1612 unsigned long src)
1614 struct page *s_page, *d_page;
1615 unsigned int s_objidx, d_objidx;
1616 unsigned long s_off, d_off;
1617 void *s_addr, *d_addr;
1618 int s_size, d_size, size;
1619 int written = 0;
1621 s_size = d_size = class->size;
1623 obj_to_location(src, &s_page, &s_objidx);
1624 obj_to_location(dst, &d_page, &d_objidx);
1626 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1627 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1629 if (s_off + class->size > PAGE_SIZE)
1630 s_size = PAGE_SIZE - s_off;
1632 if (d_off + class->size > PAGE_SIZE)
1633 d_size = PAGE_SIZE - d_off;
1635 s_addr = kmap_atomic(s_page);
1636 d_addr = kmap_atomic(d_page);
1638 while (1) {
1639 size = min(s_size, d_size);
1640 memcpy(d_addr + d_off, s_addr + s_off, size);
1641 written += size;
1643 if (written == class->size)
1644 break;
1646 s_off += size;
1647 s_size -= size;
1648 d_off += size;
1649 d_size -= size;
1651 if (s_off >= PAGE_SIZE) {
1652 kunmap_atomic(d_addr);
1653 kunmap_atomic(s_addr);
1654 s_page = get_next_page(s_page);
1655 s_addr = kmap_atomic(s_page);
1656 d_addr = kmap_atomic(d_page);
1657 s_size = class->size - written;
1658 s_off = 0;
1661 if (d_off >= PAGE_SIZE) {
1662 kunmap_atomic(d_addr);
1663 d_page = get_next_page(d_page);
1664 d_addr = kmap_atomic(d_page);
1665 d_size = class->size - written;
1666 d_off = 0;
1670 kunmap_atomic(d_addr);
1671 kunmap_atomic(s_addr);
1675 * Find alloced object in zspage from index object and
1676 * return handle.
1678 static unsigned long find_alloced_obj(struct size_class *class,
1679 struct page *page, int *obj_idx)
1681 unsigned long head;
1682 int offset = 0;
1683 int index = *obj_idx;
1684 unsigned long handle = 0;
1685 void *addr = kmap_atomic(page);
1687 offset = get_first_obj_offset(page);
1688 offset += class->size * index;
1690 while (offset < PAGE_SIZE) {
1691 head = obj_to_head(page, addr + offset);
1692 if (head & OBJ_ALLOCATED_TAG) {
1693 handle = head & ~OBJ_ALLOCATED_TAG;
1694 if (trypin_tag(handle))
1695 break;
1696 handle = 0;
1699 offset += class->size;
1700 index++;
1703 kunmap_atomic(addr);
1705 *obj_idx = index;
1707 return handle;
1710 struct zs_compact_control {
1711 /* Source spage for migration which could be a subpage of zspage */
1712 struct page *s_page;
1713 /* Destination page for migration which should be a first page
1714 * of zspage. */
1715 struct page *d_page;
1716 /* Starting object index within @s_page which used for live object
1717 * in the subpage. */
1718 int obj_idx;
1721 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1722 struct zs_compact_control *cc)
1724 unsigned long used_obj, free_obj;
1725 unsigned long handle;
1726 struct page *s_page = cc->s_page;
1727 struct page *d_page = cc->d_page;
1728 int obj_idx = cc->obj_idx;
1729 int ret = 0;
1731 while (1) {
1732 handle = find_alloced_obj(class, s_page, &obj_idx);
1733 if (!handle) {
1734 s_page = get_next_page(s_page);
1735 if (!s_page)
1736 break;
1737 obj_idx = 0;
1738 continue;
1741 /* Stop if there is no more space */
1742 if (zspage_full(class, get_zspage(d_page))) {
1743 unpin_tag(handle);
1744 ret = -ENOMEM;
1745 break;
1748 used_obj = handle_to_obj(handle);
1749 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1750 zs_object_copy(class, free_obj, used_obj);
1751 obj_idx++;
1753 * record_obj updates handle's value to free_obj and it will
1754 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1755 * breaks synchronization using pin_tag(e,g, zs_free) so
1756 * let's keep the lock bit.
1758 free_obj |= BIT(HANDLE_PIN_BIT);
1759 record_obj(handle, free_obj);
1760 unpin_tag(handle);
1761 obj_free(class, used_obj);
1764 /* Remember last position in this iteration */
1765 cc->s_page = s_page;
1766 cc->obj_idx = obj_idx;
1768 return ret;
1771 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1773 int i;
1774 struct zspage *zspage;
1775 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1777 if (!source) {
1778 fg[0] = ZS_ALMOST_FULL;
1779 fg[1] = ZS_ALMOST_EMPTY;
1782 for (i = 0; i < 2; i++) {
1783 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1784 struct zspage, list);
1785 if (zspage) {
1786 VM_BUG_ON(is_zspage_isolated(zspage));
1787 remove_zspage(class, zspage, fg[i]);
1788 return zspage;
1792 return zspage;
1796 * putback_zspage - add @zspage into right class's fullness list
1797 * @class: destination class
1798 * @zspage: target page
1800 * Return @zspage's fullness_group
1802 static enum fullness_group putback_zspage(struct size_class *class,
1803 struct zspage *zspage)
1805 enum fullness_group fullness;
1807 VM_BUG_ON(is_zspage_isolated(zspage));
1809 fullness = get_fullness_group(class, zspage);
1810 insert_zspage(class, zspage, fullness);
1811 set_zspage_mapping(zspage, class->index, fullness);
1813 return fullness;
1816 #ifdef CONFIG_COMPACTION
1817 static struct dentry *zs_mount(struct file_system_type *fs_type,
1818 int flags, const char *dev_name, void *data)
1820 static const struct dentry_operations ops = {
1821 .d_dname = simple_dname,
1824 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1827 static struct file_system_type zsmalloc_fs = {
1828 .name = "zsmalloc",
1829 .mount = zs_mount,
1830 .kill_sb = kill_anon_super,
1833 static int zsmalloc_mount(void)
1835 int ret = 0;
1837 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1838 if (IS_ERR(zsmalloc_mnt))
1839 ret = PTR_ERR(zsmalloc_mnt);
1841 return ret;
1844 static void zsmalloc_unmount(void)
1846 kern_unmount(zsmalloc_mnt);
1849 static void migrate_lock_init(struct zspage *zspage)
1851 rwlock_init(&zspage->lock);
1854 static void migrate_read_lock(struct zspage *zspage)
1856 read_lock(&zspage->lock);
1859 static void migrate_read_unlock(struct zspage *zspage)
1861 read_unlock(&zspage->lock);
1864 static void migrate_write_lock(struct zspage *zspage)
1866 write_lock(&zspage->lock);
1869 static void migrate_write_unlock(struct zspage *zspage)
1871 write_unlock(&zspage->lock);
1874 /* Number of isolated subpage for *page migration* in this zspage */
1875 static void inc_zspage_isolation(struct zspage *zspage)
1877 zspage->isolated++;
1880 static void dec_zspage_isolation(struct zspage *zspage)
1882 zspage->isolated--;
1885 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1886 struct page *newpage, struct page *oldpage)
1888 struct page *page;
1889 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1890 int idx = 0;
1892 page = get_first_page(zspage);
1893 do {
1894 if (page == oldpage)
1895 pages[idx] = newpage;
1896 else
1897 pages[idx] = page;
1898 idx++;
1899 } while ((page = get_next_page(page)) != NULL);
1901 create_page_chain(class, zspage, pages);
1902 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1903 if (unlikely(PageHugeObject(oldpage)))
1904 newpage->index = oldpage->index;
1905 __SetPageMovable(newpage, page_mapping(oldpage));
1908 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1910 struct zs_pool *pool;
1911 struct size_class *class;
1912 int class_idx;
1913 enum fullness_group fullness;
1914 struct zspage *zspage;
1915 struct address_space *mapping;
1918 * Page is locked so zspage couldn't be destroyed. For detail, look at
1919 * lock_zspage in free_zspage.
1921 VM_BUG_ON_PAGE(!PageMovable(page), page);
1922 VM_BUG_ON_PAGE(PageIsolated(page), page);
1924 zspage = get_zspage(page);
1927 * Without class lock, fullness could be stale while class_idx is okay
1928 * because class_idx is constant unless page is freed so we should get
1929 * fullness again under class lock.
1931 get_zspage_mapping(zspage, &class_idx, &fullness);
1932 mapping = page_mapping(page);
1933 pool = mapping->private_data;
1934 class = pool->size_class[class_idx];
1936 spin_lock(&class->lock);
1937 if (get_zspage_inuse(zspage) == 0) {
1938 spin_unlock(&class->lock);
1939 return false;
1942 /* zspage is isolated for object migration */
1943 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1944 spin_unlock(&class->lock);
1945 return false;
1949 * If this is first time isolation for the zspage, isolate zspage from
1950 * size_class to prevent further object allocation from the zspage.
1952 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1953 get_zspage_mapping(zspage, &class_idx, &fullness);
1954 remove_zspage(class, zspage, fullness);
1957 inc_zspage_isolation(zspage);
1958 spin_unlock(&class->lock);
1960 return true;
1963 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1964 struct page *page, enum migrate_mode mode)
1966 struct zs_pool *pool;
1967 struct size_class *class;
1968 int class_idx;
1969 enum fullness_group fullness;
1970 struct zspage *zspage;
1971 struct page *dummy;
1972 void *s_addr, *d_addr, *addr;
1973 int offset, pos;
1974 unsigned long handle, head;
1975 unsigned long old_obj, new_obj;
1976 unsigned int obj_idx;
1977 int ret = -EAGAIN;
1980 * We cannot support the _NO_COPY case here, because copy needs to
1981 * happen under the zs lock, which does not work with
1982 * MIGRATE_SYNC_NO_COPY workflow.
1984 if (mode == MIGRATE_SYNC_NO_COPY)
1985 return -EINVAL;
1987 VM_BUG_ON_PAGE(!PageMovable(page), page);
1988 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1990 zspage = get_zspage(page);
1992 /* Concurrent compactor cannot migrate any subpage in zspage */
1993 migrate_write_lock(zspage);
1994 get_zspage_mapping(zspage, &class_idx, &fullness);
1995 pool = mapping->private_data;
1996 class = pool->size_class[class_idx];
1997 offset = get_first_obj_offset(page);
1999 spin_lock(&class->lock);
2000 if (!get_zspage_inuse(zspage)) {
2002 * Set "offset" to end of the page so that every loops
2003 * skips unnecessary object scanning.
2005 offset = PAGE_SIZE;
2008 pos = offset;
2009 s_addr = kmap_atomic(page);
2010 while (pos < PAGE_SIZE) {
2011 head = obj_to_head(page, s_addr + pos);
2012 if (head & OBJ_ALLOCATED_TAG) {
2013 handle = head & ~OBJ_ALLOCATED_TAG;
2014 if (!trypin_tag(handle))
2015 goto unpin_objects;
2017 pos += class->size;
2021 * Here, any user cannot access all objects in the zspage so let's move.
2023 d_addr = kmap_atomic(newpage);
2024 memcpy(d_addr, s_addr, PAGE_SIZE);
2025 kunmap_atomic(d_addr);
2027 for (addr = s_addr + offset; addr < s_addr + pos;
2028 addr += class->size) {
2029 head = obj_to_head(page, addr);
2030 if (head & OBJ_ALLOCATED_TAG) {
2031 handle = head & ~OBJ_ALLOCATED_TAG;
2032 if (!testpin_tag(handle))
2033 BUG();
2035 old_obj = handle_to_obj(handle);
2036 obj_to_location(old_obj, &dummy, &obj_idx);
2037 new_obj = (unsigned long)location_to_obj(newpage,
2038 obj_idx);
2039 new_obj |= BIT(HANDLE_PIN_BIT);
2040 record_obj(handle, new_obj);
2044 replace_sub_page(class, zspage, newpage, page);
2045 get_page(newpage);
2047 dec_zspage_isolation(zspage);
2050 * Page migration is done so let's putback isolated zspage to
2051 * the list if @page is final isolated subpage in the zspage.
2053 if (!is_zspage_isolated(zspage))
2054 putback_zspage(class, zspage);
2056 reset_page(page);
2057 put_page(page);
2058 page = newpage;
2060 ret = MIGRATEPAGE_SUCCESS;
2061 unpin_objects:
2062 for (addr = s_addr + offset; addr < s_addr + pos;
2063 addr += class->size) {
2064 head = obj_to_head(page, addr);
2065 if (head & OBJ_ALLOCATED_TAG) {
2066 handle = head & ~OBJ_ALLOCATED_TAG;
2067 if (!testpin_tag(handle))
2068 BUG();
2069 unpin_tag(handle);
2072 kunmap_atomic(s_addr);
2073 spin_unlock(&class->lock);
2074 migrate_write_unlock(zspage);
2076 return ret;
2079 void zs_page_putback(struct page *page)
2081 struct zs_pool *pool;
2082 struct size_class *class;
2083 int class_idx;
2084 enum fullness_group fg;
2085 struct address_space *mapping;
2086 struct zspage *zspage;
2088 VM_BUG_ON_PAGE(!PageMovable(page), page);
2089 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2091 zspage = get_zspage(page);
2092 get_zspage_mapping(zspage, &class_idx, &fg);
2093 mapping = page_mapping(page);
2094 pool = mapping->private_data;
2095 class = pool->size_class[class_idx];
2097 spin_lock(&class->lock);
2098 dec_zspage_isolation(zspage);
2099 if (!is_zspage_isolated(zspage)) {
2100 fg = putback_zspage(class, zspage);
2102 * Due to page_lock, we cannot free zspage immediately
2103 * so let's defer.
2105 if (fg == ZS_EMPTY)
2106 schedule_work(&pool->free_work);
2108 spin_unlock(&class->lock);
2111 const struct address_space_operations zsmalloc_aops = {
2112 .isolate_page = zs_page_isolate,
2113 .migratepage = zs_page_migrate,
2114 .putback_page = zs_page_putback,
2117 static int zs_register_migration(struct zs_pool *pool)
2119 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2120 if (IS_ERR(pool->inode)) {
2121 pool->inode = NULL;
2122 return 1;
2125 pool->inode->i_mapping->private_data = pool;
2126 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2127 return 0;
2130 static void zs_unregister_migration(struct zs_pool *pool)
2132 flush_work(&pool->free_work);
2133 iput(pool->inode);
2137 * Caller should hold page_lock of all pages in the zspage
2138 * In here, we cannot use zspage meta data.
2140 static void async_free_zspage(struct work_struct *work)
2142 int i;
2143 struct size_class *class;
2144 unsigned int class_idx;
2145 enum fullness_group fullness;
2146 struct zspage *zspage, *tmp;
2147 LIST_HEAD(free_pages);
2148 struct zs_pool *pool = container_of(work, struct zs_pool,
2149 free_work);
2151 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2152 class = pool->size_class[i];
2153 if (class->index != i)
2154 continue;
2156 spin_lock(&class->lock);
2157 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2158 spin_unlock(&class->lock);
2162 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2163 list_del(&zspage->list);
2164 lock_zspage(zspage);
2166 get_zspage_mapping(zspage, &class_idx, &fullness);
2167 VM_BUG_ON(fullness != ZS_EMPTY);
2168 class = pool->size_class[class_idx];
2169 spin_lock(&class->lock);
2170 __free_zspage(pool, pool->size_class[class_idx], zspage);
2171 spin_unlock(&class->lock);
2175 static void kick_deferred_free(struct zs_pool *pool)
2177 schedule_work(&pool->free_work);
2180 static void init_deferred_free(struct zs_pool *pool)
2182 INIT_WORK(&pool->free_work, async_free_zspage);
2185 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2187 struct page *page = get_first_page(zspage);
2189 do {
2190 WARN_ON(!trylock_page(page));
2191 __SetPageMovable(page, pool->inode->i_mapping);
2192 unlock_page(page);
2193 } while ((page = get_next_page(page)) != NULL);
2195 #endif
2199 * Based on the number of unused allocated objects calculate
2200 * and return the number of pages that we can free.
2202 static unsigned long zs_can_compact(struct size_class *class)
2204 unsigned long obj_wasted;
2205 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2206 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2208 if (obj_allocated <= obj_used)
2209 return 0;
2211 obj_wasted = obj_allocated - obj_used;
2212 obj_wasted /= class->objs_per_zspage;
2214 return obj_wasted * class->pages_per_zspage;
2217 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2219 struct zs_compact_control cc;
2220 struct zspage *src_zspage;
2221 struct zspage *dst_zspage = NULL;
2223 spin_lock(&class->lock);
2224 while ((src_zspage = isolate_zspage(class, true))) {
2226 if (!zs_can_compact(class))
2227 break;
2229 cc.obj_idx = 0;
2230 cc.s_page = get_first_page(src_zspage);
2232 while ((dst_zspage = isolate_zspage(class, false))) {
2233 cc.d_page = get_first_page(dst_zspage);
2235 * If there is no more space in dst_page, resched
2236 * and see if anyone had allocated another zspage.
2238 if (!migrate_zspage(pool, class, &cc))
2239 break;
2241 putback_zspage(class, dst_zspage);
2244 /* Stop if we couldn't find slot */
2245 if (dst_zspage == NULL)
2246 break;
2248 putback_zspage(class, dst_zspage);
2249 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2250 free_zspage(pool, class, src_zspage);
2251 pool->stats.pages_compacted += class->pages_per_zspage;
2253 spin_unlock(&class->lock);
2254 cond_resched();
2255 spin_lock(&class->lock);
2258 if (src_zspage)
2259 putback_zspage(class, src_zspage);
2261 spin_unlock(&class->lock);
2264 unsigned long zs_compact(struct zs_pool *pool)
2266 int i;
2267 struct size_class *class;
2269 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2270 class = pool->size_class[i];
2271 if (!class)
2272 continue;
2273 if (class->index != i)
2274 continue;
2275 __zs_compact(pool, class);
2278 return pool->stats.pages_compacted;
2280 EXPORT_SYMBOL_GPL(zs_compact);
2282 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2284 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2286 EXPORT_SYMBOL_GPL(zs_pool_stats);
2288 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2289 struct shrink_control *sc)
2291 unsigned long pages_freed;
2292 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2293 shrinker);
2295 pages_freed = pool->stats.pages_compacted;
2297 * Compact classes and calculate compaction delta.
2298 * Can run concurrently with a manually triggered
2299 * (by user) compaction.
2301 pages_freed = zs_compact(pool) - pages_freed;
2303 return pages_freed ? pages_freed : SHRINK_STOP;
2306 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2307 struct shrink_control *sc)
2309 int i;
2310 struct size_class *class;
2311 unsigned long pages_to_free = 0;
2312 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2313 shrinker);
2315 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2316 class = pool->size_class[i];
2317 if (!class)
2318 continue;
2319 if (class->index != i)
2320 continue;
2322 pages_to_free += zs_can_compact(class);
2325 return pages_to_free;
2328 static void zs_unregister_shrinker(struct zs_pool *pool)
2330 unregister_shrinker(&pool->shrinker);
2333 static int zs_register_shrinker(struct zs_pool *pool)
2335 pool->shrinker.scan_objects = zs_shrinker_scan;
2336 pool->shrinker.count_objects = zs_shrinker_count;
2337 pool->shrinker.batch = 0;
2338 pool->shrinker.seeks = DEFAULT_SEEKS;
2340 return register_shrinker(&pool->shrinker);
2344 * zs_create_pool - Creates an allocation pool to work from.
2345 * @name: pool name to be created
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
2350 * On success, a pointer to the newly created pool is returned,
2351 * otherwise NULL.
2353 struct zs_pool *zs_create_pool(const char *name)
2355 int i;
2356 struct zs_pool *pool;
2357 struct size_class *prev_class = NULL;
2359 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360 if (!pool)
2361 return NULL;
2363 init_deferred_free(pool);
2365 pool->name = kstrdup(name, GFP_KERNEL);
2366 if (!pool->name)
2367 goto err;
2369 if (create_cache(pool))
2370 goto err;
2373 * Iterate reversely, because, size of size_class that we want to use
2374 * for merging should be larger or equal to current size.
2376 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2377 int size;
2378 int pages_per_zspage;
2379 int objs_per_zspage;
2380 struct size_class *class;
2381 int fullness = 0;
2383 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2384 if (size > ZS_MAX_ALLOC_SIZE)
2385 size = ZS_MAX_ALLOC_SIZE;
2386 pages_per_zspage = get_pages_per_zspage(size);
2387 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2390 * We iterate from biggest down to smallest classes,
2391 * so huge_class_size holds the size of the first huge
2392 * class. Any object bigger than or equal to that will
2393 * endup in the huge class.
2395 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2396 !huge_class_size) {
2397 huge_class_size = size;
2399 * The object uses ZS_HANDLE_SIZE bytes to store the
2400 * handle. We need to subtract it, because zs_malloc()
2401 * unconditionally adds handle size before it performs
2402 * size class search - so object may be smaller than
2403 * huge class size, yet it still can end up in the huge
2404 * class because it grows by ZS_HANDLE_SIZE extra bytes
2405 * right before class lookup.
2407 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2411 * size_class is used for normal zsmalloc operation such
2412 * as alloc/free for that size. Although it is natural that we
2413 * have one size_class for each size, there is a chance that we
2414 * can get more memory utilization if we use one size_class for
2415 * many different sizes whose size_class have same
2416 * characteristics. So, we makes size_class point to
2417 * previous size_class if possible.
2419 if (prev_class) {
2420 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2421 pool->size_class[i] = prev_class;
2422 continue;
2426 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2427 if (!class)
2428 goto err;
2430 class->size = size;
2431 class->index = i;
2432 class->pages_per_zspage = pages_per_zspage;
2433 class->objs_per_zspage = objs_per_zspage;
2434 spin_lock_init(&class->lock);
2435 pool->size_class[i] = class;
2436 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2437 fullness++)
2438 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2440 prev_class = class;
2443 /* debug only, don't abort if it fails */
2444 zs_pool_stat_create(pool, name);
2446 if (zs_register_migration(pool))
2447 goto err;
2450 * Not critical since shrinker is only used to trigger internal
2451 * defragmentation of the pool which is pretty optional thing. If
2452 * registration fails we still can use the pool normally and user can
2453 * trigger compaction manually. Thus, ignore return code.
2455 zs_register_shrinker(pool);
2457 return pool;
2459 err:
2460 zs_destroy_pool(pool);
2461 return NULL;
2463 EXPORT_SYMBOL_GPL(zs_create_pool);
2465 void zs_destroy_pool(struct zs_pool *pool)
2467 int i;
2469 zs_unregister_shrinker(pool);
2470 zs_unregister_migration(pool);
2471 zs_pool_stat_destroy(pool);
2473 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2474 int fg;
2475 struct size_class *class = pool->size_class[i];
2477 if (!class)
2478 continue;
2480 if (class->index != i)
2481 continue;
2483 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2484 if (!list_empty(&class->fullness_list[fg])) {
2485 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2486 class->size, fg);
2489 kfree(class);
2492 destroy_cache(pool);
2493 kfree(pool->name);
2494 kfree(pool);
2496 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2498 static int __init zs_init(void)
2500 int ret;
2502 ret = zsmalloc_mount();
2503 if (ret)
2504 goto out;
2506 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2507 zs_cpu_prepare, zs_cpu_dead);
2508 if (ret)
2509 goto hp_setup_fail;
2511 #ifdef CONFIG_ZPOOL
2512 zpool_register_driver(&zs_zpool_driver);
2513 #endif
2515 zs_stat_init();
2517 return 0;
2519 hp_setup_fail:
2520 zsmalloc_unmount();
2521 out:
2522 return ret;
2525 static void __exit zs_exit(void)
2527 #ifdef CONFIG_ZPOOL
2528 zpool_unregister_driver(&zs_zpool_driver);
2529 #endif
2530 zsmalloc_unmount();
2531 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2533 zs_stat_exit();
2536 module_init(zs_init);
2537 module_exit(zs_exit);
2539 MODULE_LICENSE("Dual BSD/GPL");
2540 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");