[PATCH] sched: disable preempt in idle tasks
[linux-2.6/btrfs-unstable.git] / arch / x86_64 / kernel / smpboot.c
blobc4e59bbdc1872b4ce599f452b125183603cf8f8e
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
41 #include <linux/config.h>
42 #include <linux/init.h>
44 #include <linux/mm.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/bootmem.h>
48 #include <linux/thread_info.h>
49 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/mc146818rtc.h>
53 #include <asm/mtrr.h>
54 #include <asm/pgalloc.h>
55 #include <asm/desc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/hw_irq.h>
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 /* Package ID of each logical CPU */
66 u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
67 u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
69 /* Bitmask of currently online CPUs */
70 cpumask_t cpu_online_map __read_mostly;
72 EXPORT_SYMBOL(cpu_online_map);
75 * Private maps to synchronize booting between AP and BP.
76 * Probably not needed anymore, but it makes for easier debugging. -AK
78 cpumask_t cpu_callin_map;
79 cpumask_t cpu_callout_map;
81 cpumask_t cpu_possible_map;
82 EXPORT_SYMBOL(cpu_possible_map);
84 /* Per CPU bogomips and other parameters */
85 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
87 /* Set when the idlers are all forked */
88 int smp_threads_ready;
90 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
91 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
92 EXPORT_SYMBOL(cpu_core_map);
95 * Trampoline 80x86 program as an array.
98 extern unsigned char trampoline_data[];
99 extern unsigned char trampoline_end[];
101 /* State of each CPU */
102 DEFINE_PER_CPU(int, cpu_state) = { 0 };
105 * Store all idle threads, this can be reused instead of creating
106 * a new thread. Also avoids complicated thread destroy functionality
107 * for idle threads.
109 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
111 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
112 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
115 * Currently trivial. Write the real->protected mode
116 * bootstrap into the page concerned. The caller
117 * has made sure it's suitably aligned.
120 static unsigned long __cpuinit setup_trampoline(void)
122 void *tramp = __va(SMP_TRAMPOLINE_BASE);
123 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
124 return virt_to_phys(tramp);
128 * The bootstrap kernel entry code has set these up. Save them for
129 * a given CPU
132 static void __cpuinit smp_store_cpu_info(int id)
134 struct cpuinfo_x86 *c = cpu_data + id;
136 *c = boot_cpu_data;
137 identify_cpu(c);
138 print_cpu_info(c);
142 * New Funky TSC sync algorithm borrowed from IA64.
143 * Main advantage is that it doesn't reset the TSCs fully and
144 * in general looks more robust and it works better than my earlier
145 * attempts. I believe it was written by David Mosberger. Some minor
146 * adjustments for x86-64 by me -AK
148 * Original comment reproduced below.
150 * Synchronize TSC of the current (slave) CPU with the TSC of the
151 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
152 * eliminate the possibility of unaccounted-for errors (such as
153 * getting a machine check in the middle of a calibration step). The
154 * basic idea is for the slave to ask the master what itc value it has
155 * and to read its own itc before and after the master responds. Each
156 * iteration gives us three timestamps:
158 * slave master
160 * t0 ---\
161 * ---\
162 * --->
163 * tm
164 * /---
165 * /---
166 * t1 <---
169 * The goal is to adjust the slave's TSC such that tm falls exactly
170 * half-way between t0 and t1. If we achieve this, the clocks are
171 * synchronized provided the interconnect between the slave and the
172 * master is symmetric. Even if the interconnect were asymmetric, we
173 * would still know that the synchronization error is smaller than the
174 * roundtrip latency (t0 - t1).
176 * When the interconnect is quiet and symmetric, this lets us
177 * synchronize the TSC to within one or two cycles. However, we can
178 * only *guarantee* that the synchronization is accurate to within a
179 * round-trip time, which is typically in the range of several hundred
180 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
181 * are usually almost perfectly synchronized, but we shouldn't assume
182 * that the accuracy is much better than half a micro second or so.
184 * [there are other errors like the latency of RDTSC and of the
185 * WRMSR. These can also account to hundreds of cycles. So it's
186 * probably worse. It claims 153 cycles error on a dual Opteron,
187 * but I suspect the numbers are actually somewhat worse -AK]
190 #define MASTER 0
191 #define SLAVE (SMP_CACHE_BYTES/8)
193 /* Intentionally don't use cpu_relax() while TSC synchronization
194 because we don't want to go into funky power save modi or cause
195 hypervisors to schedule us away. Going to sleep would likely affect
196 latency and low latency is the primary objective here. -AK */
197 #define no_cpu_relax() barrier()
199 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
200 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
201 static int notscsync __cpuinitdata;
203 #undef DEBUG_TSC_SYNC
205 #define NUM_ROUNDS 64 /* magic value */
206 #define NUM_ITERS 5 /* likewise */
208 /* Callback on boot CPU */
209 static __cpuinit void sync_master(void *arg)
211 unsigned long flags, i;
213 go[MASTER] = 0;
215 local_irq_save(flags);
217 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
218 while (!go[MASTER])
219 no_cpu_relax();
220 go[MASTER] = 0;
221 rdtscll(go[SLAVE]);
224 local_irq_restore(flags);
228 * Return the number of cycles by which our tsc differs from the tsc
229 * on the master (time-keeper) CPU. A positive number indicates our
230 * tsc is ahead of the master, negative that it is behind.
232 static inline long
233 get_delta(long *rt, long *master)
235 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
236 unsigned long tcenter, t0, t1, tm;
237 int i;
239 for (i = 0; i < NUM_ITERS; ++i) {
240 rdtscll(t0);
241 go[MASTER] = 1;
242 while (!(tm = go[SLAVE]))
243 no_cpu_relax();
244 go[SLAVE] = 0;
245 rdtscll(t1);
247 if (t1 - t0 < best_t1 - best_t0)
248 best_t0 = t0, best_t1 = t1, best_tm = tm;
251 *rt = best_t1 - best_t0;
252 *master = best_tm - best_t0;
254 /* average best_t0 and best_t1 without overflow: */
255 tcenter = (best_t0/2 + best_t1/2);
256 if (best_t0 % 2 + best_t1 % 2 == 2)
257 ++tcenter;
258 return tcenter - best_tm;
261 static __cpuinit void sync_tsc(unsigned int master)
263 int i, done = 0;
264 long delta, adj, adjust_latency = 0;
265 unsigned long flags, rt, master_time_stamp, bound;
266 #ifdef DEBUG_TSC_SYNC
267 static struct syncdebug {
268 long rt; /* roundtrip time */
269 long master; /* master's timestamp */
270 long diff; /* difference between midpoint and master's timestamp */
271 long lat; /* estimate of tsc adjustment latency */
272 } t[NUM_ROUNDS] __cpuinitdata;
273 #endif
275 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
276 smp_processor_id(), master);
278 go[MASTER] = 1;
280 /* It is dangerous to broadcast IPI as cpus are coming up,
281 * as they may not be ready to accept them. So since
282 * we only need to send the ipi to the boot cpu direct
283 * the message, and avoid the race.
285 smp_call_function_single(master, sync_master, NULL, 1, 0);
287 while (go[MASTER]) /* wait for master to be ready */
288 no_cpu_relax();
290 spin_lock_irqsave(&tsc_sync_lock, flags);
292 for (i = 0; i < NUM_ROUNDS; ++i) {
293 delta = get_delta(&rt, &master_time_stamp);
294 if (delta == 0) {
295 done = 1; /* let's lock on to this... */
296 bound = rt;
299 if (!done) {
300 unsigned long t;
301 if (i > 0) {
302 adjust_latency += -delta;
303 adj = -delta + adjust_latency/4;
304 } else
305 adj = -delta;
307 rdtscll(t);
308 wrmsrl(MSR_IA32_TSC, t + adj);
310 #ifdef DEBUG_TSC_SYNC
311 t[i].rt = rt;
312 t[i].master = master_time_stamp;
313 t[i].diff = delta;
314 t[i].lat = adjust_latency/4;
315 #endif
318 spin_unlock_irqrestore(&tsc_sync_lock, flags);
320 #ifdef DEBUG_TSC_SYNC
321 for (i = 0; i < NUM_ROUNDS; ++i)
322 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
323 t[i].rt, t[i].master, t[i].diff, t[i].lat);
324 #endif
326 printk(KERN_INFO
327 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
328 "maxerr %lu cycles)\n",
329 smp_processor_id(), master, delta, rt);
332 static void __cpuinit tsc_sync_wait(void)
334 if (notscsync || !cpu_has_tsc)
335 return;
336 sync_tsc(0);
339 static __init int notscsync_setup(char *s)
341 notscsync = 1;
342 return 0;
344 __setup("notscsync", notscsync_setup);
346 static atomic_t init_deasserted __cpuinitdata;
349 * Report back to the Boot Processor.
350 * Running on AP.
352 void __cpuinit smp_callin(void)
354 int cpuid, phys_id;
355 unsigned long timeout;
358 * If waken up by an INIT in an 82489DX configuration
359 * we may get here before an INIT-deassert IPI reaches
360 * our local APIC. We have to wait for the IPI or we'll
361 * lock up on an APIC access.
363 while (!atomic_read(&init_deasserted))
364 cpu_relax();
367 * (This works even if the APIC is not enabled.)
369 phys_id = GET_APIC_ID(apic_read(APIC_ID));
370 cpuid = smp_processor_id();
371 if (cpu_isset(cpuid, cpu_callin_map)) {
372 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
373 phys_id, cpuid);
375 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
378 * STARTUP IPIs are fragile beasts as they might sometimes
379 * trigger some glue motherboard logic. Complete APIC bus
380 * silence for 1 second, this overestimates the time the
381 * boot CPU is spending to send the up to 2 STARTUP IPIs
382 * by a factor of two. This should be enough.
386 * Waiting 2s total for startup (udelay is not yet working)
388 timeout = jiffies + 2*HZ;
389 while (time_before(jiffies, timeout)) {
391 * Has the boot CPU finished it's STARTUP sequence?
393 if (cpu_isset(cpuid, cpu_callout_map))
394 break;
395 cpu_relax();
398 if (!time_before(jiffies, timeout)) {
399 panic("smp_callin: CPU%d started up but did not get a callout!\n",
400 cpuid);
404 * the boot CPU has finished the init stage and is spinning
405 * on callin_map until we finish. We are free to set up this
406 * CPU, first the APIC. (this is probably redundant on most
407 * boards)
410 Dprintk("CALLIN, before setup_local_APIC().\n");
411 setup_local_APIC();
414 * Get our bogomips.
416 * Need to enable IRQs because it can take longer and then
417 * the NMI watchdog might kill us.
419 local_irq_enable();
420 calibrate_delay();
421 local_irq_disable();
422 Dprintk("Stack at about %p\n",&cpuid);
424 disable_APIC_timer();
427 * Save our processor parameters
429 smp_store_cpu_info(cpuid);
432 * Allow the master to continue.
434 cpu_set(cpuid, cpu_callin_map);
437 static inline void set_cpu_sibling_map(int cpu)
439 int i;
441 if (smp_num_siblings > 1) {
442 for_each_cpu(i) {
443 if (cpu_core_id[cpu] == cpu_core_id[i]) {
444 cpu_set(i, cpu_sibling_map[cpu]);
445 cpu_set(cpu, cpu_sibling_map[i]);
448 } else {
449 cpu_set(cpu, cpu_sibling_map[cpu]);
452 if (current_cpu_data.x86_num_cores > 1) {
453 for_each_cpu(i) {
454 if (phys_proc_id[cpu] == phys_proc_id[i]) {
455 cpu_set(i, cpu_core_map[cpu]);
456 cpu_set(cpu, cpu_core_map[i]);
459 } else {
460 cpu_core_map[cpu] = cpu_sibling_map[cpu];
465 * Setup code on secondary processor (after comming out of the trampoline)
467 void __cpuinit start_secondary(void)
470 * Dont put anything before smp_callin(), SMP
471 * booting is too fragile that we want to limit the
472 * things done here to the most necessary things.
474 cpu_init();
475 preempt_disable();
476 smp_callin();
478 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
479 barrier();
481 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
482 setup_secondary_APIC_clock();
484 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
486 if (nmi_watchdog == NMI_IO_APIC) {
487 disable_8259A_irq(0);
488 enable_NMI_through_LVT0(NULL);
489 enable_8259A_irq(0);
492 enable_APIC_timer();
495 * The sibling maps must be set before turing the online map on for
496 * this cpu
498 set_cpu_sibling_map(smp_processor_id());
501 * Wait for TSC sync to not schedule things before.
502 * We still process interrupts, which could see an inconsistent
503 * time in that window unfortunately.
504 * Do this here because TSC sync has global unprotected state.
506 tsc_sync_wait();
509 * We need to hold call_lock, so there is no inconsistency
510 * between the time smp_call_function() determines number of
511 * IPI receipients, and the time when the determination is made
512 * for which cpus receive the IPI in genapic_flat.c. Holding this
513 * lock helps us to not include this cpu in a currently in progress
514 * smp_call_function().
516 lock_ipi_call_lock();
519 * Allow the master to continue.
521 cpu_set(smp_processor_id(), cpu_online_map);
522 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
523 unlock_ipi_call_lock();
525 cpu_idle();
528 extern volatile unsigned long init_rsp;
529 extern void (*initial_code)(void);
531 #ifdef APIC_DEBUG
532 static void inquire_remote_apic(int apicid)
534 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
535 char *names[] = { "ID", "VERSION", "SPIV" };
536 int timeout, status;
538 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
540 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
541 printk("... APIC #%d %s: ", apicid, names[i]);
544 * Wait for idle.
546 apic_wait_icr_idle();
548 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
549 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
551 timeout = 0;
552 do {
553 udelay(100);
554 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
555 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
557 switch (status) {
558 case APIC_ICR_RR_VALID:
559 status = apic_read(APIC_RRR);
560 printk("%08x\n", status);
561 break;
562 default:
563 printk("failed\n");
567 #endif
570 * Kick the secondary to wake up.
572 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
574 unsigned long send_status = 0, accept_status = 0;
575 int maxlvt, timeout, num_starts, j;
577 Dprintk("Asserting INIT.\n");
580 * Turn INIT on target chip
582 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
585 * Send IPI
587 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
588 | APIC_DM_INIT);
590 Dprintk("Waiting for send to finish...\n");
591 timeout = 0;
592 do {
593 Dprintk("+");
594 udelay(100);
595 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
596 } while (send_status && (timeout++ < 1000));
598 mdelay(10);
600 Dprintk("Deasserting INIT.\n");
602 /* Target chip */
603 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
605 /* Send IPI */
606 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
608 Dprintk("Waiting for send to finish...\n");
609 timeout = 0;
610 do {
611 Dprintk("+");
612 udelay(100);
613 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
614 } while (send_status && (timeout++ < 1000));
616 atomic_set(&init_deasserted, 1);
618 num_starts = 2;
621 * Run STARTUP IPI loop.
623 Dprintk("#startup loops: %d.\n", num_starts);
625 maxlvt = get_maxlvt();
627 for (j = 1; j <= num_starts; j++) {
628 Dprintk("Sending STARTUP #%d.\n",j);
629 apic_read_around(APIC_SPIV);
630 apic_write(APIC_ESR, 0);
631 apic_read(APIC_ESR);
632 Dprintk("After apic_write.\n");
635 * STARTUP IPI
638 /* Target chip */
639 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
641 /* Boot on the stack */
642 /* Kick the second */
643 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
646 * Give the other CPU some time to accept the IPI.
648 udelay(300);
650 Dprintk("Startup point 1.\n");
652 Dprintk("Waiting for send to finish...\n");
653 timeout = 0;
654 do {
655 Dprintk("+");
656 udelay(100);
657 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
658 } while (send_status && (timeout++ < 1000));
661 * Give the other CPU some time to accept the IPI.
663 udelay(200);
665 * Due to the Pentium erratum 3AP.
667 if (maxlvt > 3) {
668 apic_read_around(APIC_SPIV);
669 apic_write(APIC_ESR, 0);
671 accept_status = (apic_read(APIC_ESR) & 0xEF);
672 if (send_status || accept_status)
673 break;
675 Dprintk("After Startup.\n");
677 if (send_status)
678 printk(KERN_ERR "APIC never delivered???\n");
679 if (accept_status)
680 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
682 return (send_status | accept_status);
685 struct create_idle {
686 struct task_struct *idle;
687 struct completion done;
688 int cpu;
691 void do_fork_idle(void *_c_idle)
693 struct create_idle *c_idle = _c_idle;
695 c_idle->idle = fork_idle(c_idle->cpu);
696 complete(&c_idle->done);
700 * Boot one CPU.
702 static int __cpuinit do_boot_cpu(int cpu, int apicid)
704 unsigned long boot_error;
705 int timeout;
706 unsigned long start_rip;
707 struct create_idle c_idle = {
708 .cpu = cpu,
709 .done = COMPLETION_INITIALIZER(c_idle.done),
711 DECLARE_WORK(work, do_fork_idle, &c_idle);
713 c_idle.idle = get_idle_for_cpu(cpu);
715 if (c_idle.idle) {
716 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
717 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
718 init_idle(c_idle.idle, cpu);
719 goto do_rest;
723 * During cold boot process, keventd thread is not spun up yet.
724 * When we do cpu hot-add, we create idle threads on the fly, we should
725 * not acquire any attributes from the calling context. Hence the clean
726 * way to create kernel_threads() is to do that from keventd().
727 * We do the current_is_keventd() due to the fact that ACPI notifier
728 * was also queuing to keventd() and when the caller is already running
729 * in context of keventd(), we would end up with locking up the keventd
730 * thread.
732 if (!keventd_up() || current_is_keventd())
733 work.func(work.data);
734 else {
735 schedule_work(&work);
736 wait_for_completion(&c_idle.done);
739 if (IS_ERR(c_idle.idle)) {
740 printk("failed fork for CPU %d\n", cpu);
741 return PTR_ERR(c_idle.idle);
744 set_idle_for_cpu(cpu, c_idle.idle);
746 do_rest:
748 cpu_pda[cpu].pcurrent = c_idle.idle;
750 start_rip = setup_trampoline();
752 init_rsp = c_idle.idle->thread.rsp;
753 per_cpu(init_tss,cpu).rsp0 = init_rsp;
754 initial_code = start_secondary;
755 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
757 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
758 cpus_weight(cpu_present_map),
759 apicid);
762 * This grunge runs the startup process for
763 * the targeted processor.
766 atomic_set(&init_deasserted, 0);
768 Dprintk("Setting warm reset code and vector.\n");
770 CMOS_WRITE(0xa, 0xf);
771 local_flush_tlb();
772 Dprintk("1.\n");
773 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
774 Dprintk("2.\n");
775 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
776 Dprintk("3.\n");
779 * Be paranoid about clearing APIC errors.
781 if (APIC_INTEGRATED(apic_version[apicid])) {
782 apic_read_around(APIC_SPIV);
783 apic_write(APIC_ESR, 0);
784 apic_read(APIC_ESR);
788 * Status is now clean
790 boot_error = 0;
793 * Starting actual IPI sequence...
795 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
797 if (!boot_error) {
799 * allow APs to start initializing.
801 Dprintk("Before Callout %d.\n", cpu);
802 cpu_set(cpu, cpu_callout_map);
803 Dprintk("After Callout %d.\n", cpu);
806 * Wait 5s total for a response
808 for (timeout = 0; timeout < 50000; timeout++) {
809 if (cpu_isset(cpu, cpu_callin_map))
810 break; /* It has booted */
811 udelay(100);
814 if (cpu_isset(cpu, cpu_callin_map)) {
815 /* number CPUs logically, starting from 1 (BSP is 0) */
816 Dprintk("CPU has booted.\n");
817 } else {
818 boot_error = 1;
819 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
820 == 0xA5)
821 /* trampoline started but...? */
822 printk("Stuck ??\n");
823 else
824 /* trampoline code not run */
825 printk("Not responding.\n");
826 #ifdef APIC_DEBUG
827 inquire_remote_apic(apicid);
828 #endif
831 if (boot_error) {
832 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
833 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
834 cpu_clear(cpu, cpu_present_map);
835 cpu_clear(cpu, cpu_possible_map);
836 x86_cpu_to_apicid[cpu] = BAD_APICID;
837 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
838 return -EIO;
841 return 0;
844 cycles_t cacheflush_time;
845 unsigned long cache_decay_ticks;
848 * Cleanup possible dangling ends...
850 static __cpuinit void smp_cleanup_boot(void)
853 * Paranoid: Set warm reset code and vector here back
854 * to default values.
856 CMOS_WRITE(0, 0xf);
859 * Reset trampoline flag
861 *((volatile int *) phys_to_virt(0x467)) = 0;
865 * Fall back to non SMP mode after errors.
867 * RED-PEN audit/test this more. I bet there is more state messed up here.
869 static __init void disable_smp(void)
871 cpu_present_map = cpumask_of_cpu(0);
872 cpu_possible_map = cpumask_of_cpu(0);
873 if (smp_found_config)
874 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
875 else
876 phys_cpu_present_map = physid_mask_of_physid(0);
877 cpu_set(0, cpu_sibling_map[0]);
878 cpu_set(0, cpu_core_map[0]);
881 #ifdef CONFIG_HOTPLUG_CPU
883 * cpu_possible_map should be static, it cannot change as cpu's
884 * are onlined, or offlined. The reason is per-cpu data-structures
885 * are allocated by some modules at init time, and dont expect to
886 * do this dynamically on cpu arrival/departure.
887 * cpu_present_map on the other hand can change dynamically.
888 * In case when cpu_hotplug is not compiled, then we resort to current
889 * behaviour, which is cpu_possible == cpu_present.
890 * If cpu-hotplug is supported, then we need to preallocate for all
891 * those NR_CPUS, hence cpu_possible_map represents entire NR_CPUS range.
892 * - Ashok Raj
894 __init void prefill_possible_map(void)
896 int i;
897 for (i = 0; i < NR_CPUS; i++)
898 cpu_set(i, cpu_possible_map);
900 #endif
903 * Various sanity checks.
905 static int __init smp_sanity_check(unsigned max_cpus)
907 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
908 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
909 hard_smp_processor_id());
910 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
914 * If we couldn't find an SMP configuration at boot time,
915 * get out of here now!
917 if (!smp_found_config) {
918 printk(KERN_NOTICE "SMP motherboard not detected.\n");
919 disable_smp();
920 if (APIC_init_uniprocessor())
921 printk(KERN_NOTICE "Local APIC not detected."
922 " Using dummy APIC emulation.\n");
923 return -1;
927 * Should not be necessary because the MP table should list the boot
928 * CPU too, but we do it for the sake of robustness anyway.
930 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
931 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
932 boot_cpu_id);
933 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
937 * If we couldn't find a local APIC, then get out of here now!
939 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
940 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
941 boot_cpu_id);
942 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
943 nr_ioapics = 0;
944 return -1;
948 * If SMP should be disabled, then really disable it!
950 if (!max_cpus) {
951 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
952 nr_ioapics = 0;
953 return -1;
956 return 0;
960 * Prepare for SMP bootup. The MP table or ACPI has been read
961 * earlier. Just do some sanity checking here and enable APIC mode.
963 void __init smp_prepare_cpus(unsigned int max_cpus)
965 nmi_watchdog_default();
966 current_cpu_data = boot_cpu_data;
967 current_thread_info()->cpu = 0; /* needed? */
969 if (smp_sanity_check(max_cpus) < 0) {
970 printk(KERN_INFO "SMP disabled\n");
971 disable_smp();
972 return;
977 * Switch from PIC to APIC mode.
979 connect_bsp_APIC();
980 setup_local_APIC();
982 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
983 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
984 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
985 /* Or can we switch back to PIC here? */
989 * Now start the IO-APICs
991 if (!skip_ioapic_setup && nr_ioapics)
992 setup_IO_APIC();
993 else
994 nr_ioapics = 0;
997 * Set up local APIC timer on boot CPU.
1000 setup_boot_APIC_clock();
1004 * Early setup to make printk work.
1006 void __init smp_prepare_boot_cpu(void)
1008 int me = smp_processor_id();
1009 cpu_set(me, cpu_online_map);
1010 cpu_set(me, cpu_callout_map);
1011 cpu_set(0, cpu_sibling_map[0]);
1012 cpu_set(0, cpu_core_map[0]);
1013 per_cpu(cpu_state, me) = CPU_ONLINE;
1017 * Entry point to boot a CPU.
1019 int __cpuinit __cpu_up(unsigned int cpu)
1021 int err;
1022 int apicid = cpu_present_to_apicid(cpu);
1024 WARN_ON(irqs_disabled());
1026 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1028 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1029 !physid_isset(apicid, phys_cpu_present_map)) {
1030 printk("__cpu_up: bad cpu %d\n", cpu);
1031 return -EINVAL;
1035 * Already booted CPU?
1037 if (cpu_isset(cpu, cpu_callin_map)) {
1038 Dprintk("do_boot_cpu %d Already started\n", cpu);
1039 return -ENOSYS;
1042 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1043 /* Boot it! */
1044 err = do_boot_cpu(cpu, apicid);
1045 if (err < 0) {
1046 Dprintk("do_boot_cpu failed %d\n", err);
1047 return err;
1050 /* Unleash the CPU! */
1051 Dprintk("waiting for cpu %d\n", cpu);
1053 while (!cpu_isset(cpu, cpu_online_map))
1054 cpu_relax();
1055 err = 0;
1057 return err;
1061 * Finish the SMP boot.
1063 void __init smp_cpus_done(unsigned int max_cpus)
1065 #ifndef CONFIG_HOTPLUG_CPU
1066 zap_low_mappings();
1067 #endif
1068 smp_cleanup_boot();
1070 #ifdef CONFIG_X86_IO_APIC
1071 setup_ioapic_dest();
1072 #endif
1074 time_init_gtod();
1076 check_nmi_watchdog();
1079 #ifdef CONFIG_HOTPLUG_CPU
1081 static void remove_siblinginfo(int cpu)
1083 int sibling;
1085 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1086 cpu_clear(cpu, cpu_sibling_map[sibling]);
1087 for_each_cpu_mask(sibling, cpu_core_map[cpu])
1088 cpu_clear(cpu, cpu_core_map[sibling]);
1089 cpus_clear(cpu_sibling_map[cpu]);
1090 cpus_clear(cpu_core_map[cpu]);
1091 phys_proc_id[cpu] = BAD_APICID;
1092 cpu_core_id[cpu] = BAD_APICID;
1095 void remove_cpu_from_maps(void)
1097 int cpu = smp_processor_id();
1099 cpu_clear(cpu, cpu_callout_map);
1100 cpu_clear(cpu, cpu_callin_map);
1101 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1104 int __cpu_disable(void)
1106 int cpu = smp_processor_id();
1109 * Perhaps use cpufreq to drop frequency, but that could go
1110 * into generic code.
1112 * We won't take down the boot processor on i386 due to some
1113 * interrupts only being able to be serviced by the BSP.
1114 * Especially so if we're not using an IOAPIC -zwane
1116 if (cpu == 0)
1117 return -EBUSY;
1119 disable_APIC_timer();
1122 * HACK:
1123 * Allow any queued timer interrupts to get serviced
1124 * This is only a temporary solution until we cleanup
1125 * fixup_irqs as we do for IA64.
1127 local_irq_enable();
1128 mdelay(1);
1130 local_irq_disable();
1131 remove_siblinginfo(cpu);
1133 /* It's now safe to remove this processor from the online map */
1134 cpu_clear(cpu, cpu_online_map);
1135 remove_cpu_from_maps();
1136 fixup_irqs(cpu_online_map);
1137 return 0;
1140 void __cpu_die(unsigned int cpu)
1142 /* We don't do anything here: idle task is faking death itself. */
1143 unsigned int i;
1145 for (i = 0; i < 10; i++) {
1146 /* They ack this in play_dead by setting CPU_DEAD */
1147 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1148 printk ("CPU %d is now offline\n", cpu);
1149 return;
1151 msleep(100);
1153 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1156 #else /* ... !CONFIG_HOTPLUG_CPU */
1158 int __cpu_disable(void)
1160 return -ENOSYS;
1163 void __cpu_die(unsigned int cpu)
1165 /* We said "no" in __cpu_disable */
1166 BUG();
1168 #endif /* CONFIG_HOTPLUG_CPU */