drm/tegra: dsi: Demidlayer
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / tegra / dc.c
blob286cc8ce0c666d5d9efc1270d4c61117ea2f6ba8
1 /*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
15 #include <soc/tegra/pmc.h>
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
21 #include <drm/drm_plane_helper.h>
23 struct tegra_dc_soc_info {
24 bool supports_border_color;
25 bool supports_interlacing;
26 bool supports_cursor;
27 bool supports_block_linear;
28 unsigned int pitch_align;
29 bool has_powergate;
32 struct tegra_plane {
33 struct drm_plane base;
34 unsigned int index;
37 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
39 return container_of(plane, struct tegra_plane, base);
42 static void tegra_dc_window_commit(struct tegra_dc *dc, unsigned int index)
44 u32 value = WIN_A_ACT_REQ << index;
46 tegra_dc_writel(dc, value << 8, DC_CMD_STATE_CONTROL);
47 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
50 static void tegra_dc_cursor_commit(struct tegra_dc *dc)
52 tegra_dc_writel(dc, CURSOR_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
53 tegra_dc_writel(dc, CURSOR_ACT_REQ, DC_CMD_STATE_CONTROL);
57 * Reads the active copy of a register. This takes the dc->lock spinlock to
58 * prevent races with the VBLANK processing which also needs access to the
59 * active copy of some registers.
61 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
63 unsigned long flags;
64 u32 value;
66 spin_lock_irqsave(&dc->lock, flags);
68 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
69 value = tegra_dc_readl(dc, offset);
70 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
72 spin_unlock_irqrestore(&dc->lock, flags);
73 return value;
77 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
78 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
79 * Latching happens mmediately if the display controller is in STOP mode or
80 * on the next frame boundary otherwise.
82 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
83 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
84 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
85 * into the ACTIVE copy, either immediately if the display controller is in
86 * STOP mode, or at the next frame boundary otherwise.
88 void tegra_dc_commit(struct tegra_dc *dc)
90 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
91 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
94 static unsigned int tegra_dc_format(uint32_t format, uint32_t *swap)
96 /* assume no swapping of fetched data */
97 if (swap)
98 *swap = BYTE_SWAP_NOSWAP;
100 switch (format) {
101 case DRM_FORMAT_XBGR8888:
102 return WIN_COLOR_DEPTH_R8G8B8A8;
104 case DRM_FORMAT_XRGB8888:
105 return WIN_COLOR_DEPTH_B8G8R8A8;
107 case DRM_FORMAT_RGB565:
108 return WIN_COLOR_DEPTH_B5G6R5;
110 case DRM_FORMAT_UYVY:
111 return WIN_COLOR_DEPTH_YCbCr422;
113 case DRM_FORMAT_YUYV:
114 if (swap)
115 *swap = BYTE_SWAP_SWAP2;
117 return WIN_COLOR_DEPTH_YCbCr422;
119 case DRM_FORMAT_YUV420:
120 return WIN_COLOR_DEPTH_YCbCr420P;
122 case DRM_FORMAT_YUV422:
123 return WIN_COLOR_DEPTH_YCbCr422P;
125 default:
126 break;
129 WARN(1, "unsupported pixel format %u, using default\n", format);
130 return WIN_COLOR_DEPTH_B8G8R8A8;
133 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
135 switch (format) {
136 case WIN_COLOR_DEPTH_YCbCr422:
137 case WIN_COLOR_DEPTH_YUV422:
138 if (planar)
139 *planar = false;
141 return true;
143 case WIN_COLOR_DEPTH_YCbCr420P:
144 case WIN_COLOR_DEPTH_YUV420P:
145 case WIN_COLOR_DEPTH_YCbCr422P:
146 case WIN_COLOR_DEPTH_YUV422P:
147 case WIN_COLOR_DEPTH_YCbCr422R:
148 case WIN_COLOR_DEPTH_YUV422R:
149 case WIN_COLOR_DEPTH_YCbCr422RA:
150 case WIN_COLOR_DEPTH_YUV422RA:
151 if (planar)
152 *planar = true;
154 return true;
157 if (planar)
158 *planar = false;
160 return false;
163 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
164 unsigned int bpp)
166 fixed20_12 outf = dfixed_init(out);
167 fixed20_12 inf = dfixed_init(in);
168 u32 dda_inc;
169 int max;
171 if (v)
172 max = 15;
173 else {
174 switch (bpp) {
175 case 2:
176 max = 8;
177 break;
179 default:
180 WARN_ON_ONCE(1);
181 /* fallthrough */
182 case 4:
183 max = 4;
184 break;
188 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
189 inf.full -= dfixed_const(1);
191 dda_inc = dfixed_div(inf, outf);
192 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
194 return dda_inc;
197 static inline u32 compute_initial_dda(unsigned int in)
199 fixed20_12 inf = dfixed_init(in);
200 return dfixed_frac(inf);
203 static int tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
204 const struct tegra_dc_window *window)
206 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
207 unsigned long value, flags;
208 bool yuv, planar;
211 * For YUV planar modes, the number of bytes per pixel takes into
212 * account only the luma component and therefore is 1.
214 yuv = tegra_dc_format_is_yuv(window->format, &planar);
215 if (!yuv)
216 bpp = window->bits_per_pixel / 8;
217 else
218 bpp = planar ? 1 : 2;
220 spin_lock_irqsave(&dc->lock, flags);
222 value = WINDOW_A_SELECT << index;
223 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
225 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
226 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
228 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
229 tegra_dc_writel(dc, value, DC_WIN_POSITION);
231 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
232 tegra_dc_writel(dc, value, DC_WIN_SIZE);
234 h_offset = window->src.x * bpp;
235 v_offset = window->src.y;
236 h_size = window->src.w * bpp;
237 v_size = window->src.h;
239 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
240 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
243 * For DDA computations the number of bytes per pixel for YUV planar
244 * modes needs to take into account all Y, U and V components.
246 if (yuv && planar)
247 bpp = 2;
249 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
250 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
252 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
253 tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
255 h_dda = compute_initial_dda(window->src.x);
256 v_dda = compute_initial_dda(window->src.y);
258 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
259 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
261 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
262 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
264 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
266 if (yuv && planar) {
267 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
268 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
269 value = window->stride[1] << 16 | window->stride[0];
270 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
271 } else {
272 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
275 if (window->bottom_up)
276 v_offset += window->src.h - 1;
278 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
279 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
281 if (dc->soc->supports_block_linear) {
282 unsigned long height = window->tiling.value;
284 switch (window->tiling.mode) {
285 case TEGRA_BO_TILING_MODE_PITCH:
286 value = DC_WINBUF_SURFACE_KIND_PITCH;
287 break;
289 case TEGRA_BO_TILING_MODE_TILED:
290 value = DC_WINBUF_SURFACE_KIND_TILED;
291 break;
293 case TEGRA_BO_TILING_MODE_BLOCK:
294 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
295 DC_WINBUF_SURFACE_KIND_BLOCK;
296 break;
299 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
300 } else {
301 switch (window->tiling.mode) {
302 case TEGRA_BO_TILING_MODE_PITCH:
303 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
304 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
305 break;
307 case TEGRA_BO_TILING_MODE_TILED:
308 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
309 DC_WIN_BUFFER_ADDR_MODE_TILE;
310 break;
312 case TEGRA_BO_TILING_MODE_BLOCK:
313 DRM_ERROR("hardware doesn't support block linear mode\n");
314 spin_unlock_irqrestore(&dc->lock, flags);
315 return -EINVAL;
318 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
321 value = WIN_ENABLE;
323 if (yuv) {
324 /* setup default colorspace conversion coefficients */
325 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
326 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
327 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
328 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
329 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
330 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
331 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
332 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
334 value |= CSC_ENABLE;
335 } else if (window->bits_per_pixel < 24) {
336 value |= COLOR_EXPAND;
339 if (window->bottom_up)
340 value |= V_DIRECTION;
342 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
345 * Disable blending and assume Window A is the bottom-most window,
346 * Window C is the top-most window and Window B is in the middle.
348 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
349 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
351 switch (index) {
352 case 0:
353 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
354 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
355 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
356 break;
358 case 1:
359 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
360 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
361 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
362 break;
364 case 2:
365 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
366 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
367 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
368 break;
371 tegra_dc_window_commit(dc, index);
373 spin_unlock_irqrestore(&dc->lock, flags);
375 return 0;
378 static int tegra_window_plane_disable(struct drm_plane *plane)
380 struct tegra_dc *dc = to_tegra_dc(plane->crtc);
381 struct tegra_plane *p = to_tegra_plane(plane);
382 unsigned long flags;
383 u32 value;
385 if (!plane->crtc)
386 return 0;
388 spin_lock_irqsave(&dc->lock, flags);
390 value = WINDOW_A_SELECT << p->index;
391 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
393 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
394 value &= ~WIN_ENABLE;
395 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
397 tegra_dc_window_commit(dc, p->index);
399 spin_unlock_irqrestore(&dc->lock, flags);
401 return 0;
404 static void tegra_plane_destroy(struct drm_plane *plane)
406 struct tegra_plane *p = to_tegra_plane(plane);
408 drm_plane_cleanup(plane);
409 kfree(p);
412 static const u32 tegra_primary_plane_formats[] = {
413 DRM_FORMAT_XBGR8888,
414 DRM_FORMAT_XRGB8888,
415 DRM_FORMAT_RGB565,
418 static int tegra_primary_plane_update(struct drm_plane *plane,
419 struct drm_crtc *crtc,
420 struct drm_framebuffer *fb, int crtc_x,
421 int crtc_y, unsigned int crtc_w,
422 unsigned int crtc_h, uint32_t src_x,
423 uint32_t src_y, uint32_t src_w,
424 uint32_t src_h)
426 struct tegra_bo *bo = tegra_fb_get_plane(fb, 0);
427 struct tegra_plane *p = to_tegra_plane(plane);
428 struct tegra_dc *dc = to_tegra_dc(crtc);
429 struct tegra_dc_window window;
430 int err;
432 memset(&window, 0, sizeof(window));
433 window.src.x = src_x >> 16;
434 window.src.y = src_y >> 16;
435 window.src.w = src_w >> 16;
436 window.src.h = src_h >> 16;
437 window.dst.x = crtc_x;
438 window.dst.y = crtc_y;
439 window.dst.w = crtc_w;
440 window.dst.h = crtc_h;
441 window.format = tegra_dc_format(fb->pixel_format, &window.swap);
442 window.bits_per_pixel = fb->bits_per_pixel;
443 window.bottom_up = tegra_fb_is_bottom_up(fb);
445 err = tegra_fb_get_tiling(fb, &window.tiling);
446 if (err < 0)
447 return err;
449 window.base[0] = bo->paddr + fb->offsets[0];
450 window.stride[0] = fb->pitches[0];
452 err = tegra_dc_setup_window(dc, p->index, &window);
453 if (err < 0)
454 return err;
456 return 0;
459 static void tegra_primary_plane_destroy(struct drm_plane *plane)
461 tegra_window_plane_disable(plane);
462 tegra_plane_destroy(plane);
465 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
466 .update_plane = tegra_primary_plane_update,
467 .disable_plane = tegra_window_plane_disable,
468 .destroy = tegra_primary_plane_destroy,
471 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
472 struct tegra_dc *dc)
475 * Ideally this would use drm_crtc_mask(), but that would require the
476 * CRTC to already be in the mode_config's list of CRTCs. However, it
477 * will only be added to that list in the drm_crtc_init_with_planes()
478 * (in tegra_dc_init()), which in turn requires registration of these
479 * planes. So we have ourselves a nice little chicken and egg problem
480 * here.
482 * We work around this by manually creating the mask from the number
483 * of CRTCs that have been registered, and should therefore always be
484 * the same as drm_crtc_index() after registration.
486 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
487 struct tegra_plane *plane;
488 unsigned int num_formats;
489 const u32 *formats;
490 int err;
492 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
493 if (!plane)
494 return ERR_PTR(-ENOMEM);
496 num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
497 formats = tegra_primary_plane_formats;
499 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
500 &tegra_primary_plane_funcs, formats,
501 num_formats, DRM_PLANE_TYPE_PRIMARY);
502 if (err < 0) {
503 kfree(plane);
504 return ERR_PTR(err);
507 return &plane->base;
510 static const u32 tegra_cursor_plane_formats[] = {
511 DRM_FORMAT_RGBA8888,
514 static int tegra_cursor_plane_update(struct drm_plane *plane,
515 struct drm_crtc *crtc,
516 struct drm_framebuffer *fb, int crtc_x,
517 int crtc_y, unsigned int crtc_w,
518 unsigned int crtc_h, uint32_t src_x,
519 uint32_t src_y, uint32_t src_w,
520 uint32_t src_h)
522 struct tegra_bo *bo = tegra_fb_get_plane(fb, 0);
523 struct tegra_dc *dc = to_tegra_dc(crtc);
524 u32 value = CURSOR_CLIP_DISPLAY;
526 /* scaling not supported for cursor */
527 if ((src_w >> 16 != crtc_w) || (src_h >> 16 != crtc_h))
528 return -EINVAL;
530 /* only square cursors supported */
531 if (src_w != src_h)
532 return -EINVAL;
534 switch (crtc_w) {
535 case 32:
536 value |= CURSOR_SIZE_32x32;
537 break;
539 case 64:
540 value |= CURSOR_SIZE_64x64;
541 break;
543 case 128:
544 value |= CURSOR_SIZE_128x128;
545 break;
547 case 256:
548 value |= CURSOR_SIZE_256x256;
549 break;
551 default:
552 return -EINVAL;
555 value |= (bo->paddr >> 10) & 0x3fffff;
556 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
558 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
559 value = (bo->paddr >> 32) & 0x3;
560 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
561 #endif
563 /* enable cursor and set blend mode */
564 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
565 value |= CURSOR_ENABLE;
566 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
568 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
569 value &= ~CURSOR_DST_BLEND_MASK;
570 value &= ~CURSOR_SRC_BLEND_MASK;
571 value |= CURSOR_MODE_NORMAL;
572 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
573 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
574 value |= CURSOR_ALPHA;
575 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
577 /* position the cursor */
578 value = (crtc_y & 0x3fff) << 16 | (crtc_x & 0x3fff);
579 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
581 /* apply changes */
582 tegra_dc_cursor_commit(dc);
583 tegra_dc_commit(dc);
585 return 0;
588 static int tegra_cursor_plane_disable(struct drm_plane *plane)
590 struct tegra_dc *dc = to_tegra_dc(plane->crtc);
591 u32 value;
593 if (!plane->crtc)
594 return 0;
596 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
597 value &= ~CURSOR_ENABLE;
598 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
600 tegra_dc_cursor_commit(dc);
601 tegra_dc_commit(dc);
603 return 0;
606 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
607 .update_plane = tegra_cursor_plane_update,
608 .disable_plane = tegra_cursor_plane_disable,
609 .destroy = tegra_plane_destroy,
612 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
613 struct tegra_dc *dc)
615 struct tegra_plane *plane;
616 unsigned int num_formats;
617 const u32 *formats;
618 int err;
620 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
621 if (!plane)
622 return ERR_PTR(-ENOMEM);
624 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
625 formats = tegra_cursor_plane_formats;
627 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
628 &tegra_cursor_plane_funcs, formats,
629 num_formats, DRM_PLANE_TYPE_CURSOR);
630 if (err < 0) {
631 kfree(plane);
632 return ERR_PTR(err);
635 return &plane->base;
638 static int tegra_overlay_plane_update(struct drm_plane *plane,
639 struct drm_crtc *crtc,
640 struct drm_framebuffer *fb, int crtc_x,
641 int crtc_y, unsigned int crtc_w,
642 unsigned int crtc_h, uint32_t src_x,
643 uint32_t src_y, uint32_t src_w,
644 uint32_t src_h)
646 struct tegra_plane *p = to_tegra_plane(plane);
647 struct tegra_dc *dc = to_tegra_dc(crtc);
648 struct tegra_dc_window window;
649 unsigned int i;
650 int err;
652 memset(&window, 0, sizeof(window));
653 window.src.x = src_x >> 16;
654 window.src.y = src_y >> 16;
655 window.src.w = src_w >> 16;
656 window.src.h = src_h >> 16;
657 window.dst.x = crtc_x;
658 window.dst.y = crtc_y;
659 window.dst.w = crtc_w;
660 window.dst.h = crtc_h;
661 window.format = tegra_dc_format(fb->pixel_format, &window.swap);
662 window.bits_per_pixel = fb->bits_per_pixel;
663 window.bottom_up = tegra_fb_is_bottom_up(fb);
665 err = tegra_fb_get_tiling(fb, &window.tiling);
666 if (err < 0)
667 return err;
669 for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
670 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
672 window.base[i] = bo->paddr + fb->offsets[i];
675 * Tegra doesn't support different strides for U and V planes
676 * so we display a warning if the user tries to display a
677 * framebuffer with such a configuration.
679 if (i >= 2) {
680 if (fb->pitches[i] != window.stride[1])
681 DRM_ERROR("unsupported UV-plane configuration\n");
682 } else {
683 window.stride[i] = fb->pitches[i];
687 return tegra_dc_setup_window(dc, p->index, &window);
690 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
692 tegra_window_plane_disable(plane);
693 tegra_plane_destroy(plane);
696 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
697 .update_plane = tegra_overlay_plane_update,
698 .disable_plane = tegra_window_plane_disable,
699 .destroy = tegra_overlay_plane_destroy,
702 static const uint32_t tegra_overlay_plane_formats[] = {
703 DRM_FORMAT_XBGR8888,
704 DRM_FORMAT_XRGB8888,
705 DRM_FORMAT_RGB565,
706 DRM_FORMAT_UYVY,
707 DRM_FORMAT_YUYV,
708 DRM_FORMAT_YUV420,
709 DRM_FORMAT_YUV422,
712 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
713 struct tegra_dc *dc,
714 unsigned int index)
716 struct tegra_plane *plane;
717 unsigned int num_formats;
718 const u32 *formats;
719 int err;
721 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
722 if (!plane)
723 return ERR_PTR(-ENOMEM);
725 plane->index = index;
727 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
728 formats = tegra_overlay_plane_formats;
730 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
731 &tegra_overlay_plane_funcs, formats,
732 num_formats, DRM_PLANE_TYPE_OVERLAY);
733 if (err < 0) {
734 kfree(plane);
735 return ERR_PTR(err);
738 return &plane->base;
741 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
743 struct drm_plane *plane;
744 unsigned int i;
746 for (i = 0; i < 2; i++) {
747 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
748 if (IS_ERR(plane))
749 return PTR_ERR(plane);
752 return 0;
755 static int tegra_dc_set_base(struct tegra_dc *dc, int x, int y,
756 struct drm_framebuffer *fb)
758 struct tegra_bo *bo = tegra_fb_get_plane(fb, 0);
759 unsigned int h_offset = 0, v_offset = 0;
760 struct tegra_bo_tiling tiling;
761 unsigned long value, flags;
762 unsigned int format, swap;
763 int err;
765 err = tegra_fb_get_tiling(fb, &tiling);
766 if (err < 0)
767 return err;
769 spin_lock_irqsave(&dc->lock, flags);
771 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
773 value = fb->offsets[0] + y * fb->pitches[0] +
774 x * fb->bits_per_pixel / 8;
776 tegra_dc_writel(dc, bo->paddr + value, DC_WINBUF_START_ADDR);
777 tegra_dc_writel(dc, fb->pitches[0], DC_WIN_LINE_STRIDE);
779 format = tegra_dc_format(fb->pixel_format, &swap);
780 tegra_dc_writel(dc, format, DC_WIN_COLOR_DEPTH);
781 tegra_dc_writel(dc, swap, DC_WIN_BYTE_SWAP);
783 if (dc->soc->supports_block_linear) {
784 unsigned long height = tiling.value;
786 switch (tiling.mode) {
787 case TEGRA_BO_TILING_MODE_PITCH:
788 value = DC_WINBUF_SURFACE_KIND_PITCH;
789 break;
791 case TEGRA_BO_TILING_MODE_TILED:
792 value = DC_WINBUF_SURFACE_KIND_TILED;
793 break;
795 case TEGRA_BO_TILING_MODE_BLOCK:
796 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
797 DC_WINBUF_SURFACE_KIND_BLOCK;
798 break;
801 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
802 } else {
803 switch (tiling.mode) {
804 case TEGRA_BO_TILING_MODE_PITCH:
805 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
806 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
807 break;
809 case TEGRA_BO_TILING_MODE_TILED:
810 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
811 DC_WIN_BUFFER_ADDR_MODE_TILE;
812 break;
814 case TEGRA_BO_TILING_MODE_BLOCK:
815 DRM_ERROR("hardware doesn't support block linear mode\n");
816 spin_unlock_irqrestore(&dc->lock, flags);
817 return -EINVAL;
820 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
823 /* make sure bottom-up buffers are properly displayed */
824 if (tegra_fb_is_bottom_up(fb)) {
825 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
826 value |= V_DIRECTION;
827 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
829 v_offset += fb->height - 1;
830 } else {
831 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
832 value &= ~V_DIRECTION;
833 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
836 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
837 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
839 value = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
840 tegra_dc_writel(dc, value << 8, DC_CMD_STATE_CONTROL);
841 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
843 spin_unlock_irqrestore(&dc->lock, flags);
845 return 0;
848 void tegra_dc_enable_vblank(struct tegra_dc *dc)
850 unsigned long value, flags;
852 spin_lock_irqsave(&dc->lock, flags);
854 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
855 value |= VBLANK_INT;
856 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
858 spin_unlock_irqrestore(&dc->lock, flags);
861 void tegra_dc_disable_vblank(struct tegra_dc *dc)
863 unsigned long value, flags;
865 spin_lock_irqsave(&dc->lock, flags);
867 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
868 value &= ~VBLANK_INT;
869 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
871 spin_unlock_irqrestore(&dc->lock, flags);
874 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
876 struct drm_device *drm = dc->base.dev;
877 struct drm_crtc *crtc = &dc->base;
878 unsigned long flags, base;
879 struct tegra_bo *bo;
881 spin_lock_irqsave(&drm->event_lock, flags);
883 if (!dc->event) {
884 spin_unlock_irqrestore(&drm->event_lock, flags);
885 return;
888 bo = tegra_fb_get_plane(crtc->primary->fb, 0);
890 spin_lock(&dc->lock);
892 /* check if new start address has been latched */
893 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
894 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
895 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
896 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
898 spin_unlock(&dc->lock);
900 if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
901 drm_crtc_send_vblank_event(crtc, dc->event);
902 drm_crtc_vblank_put(crtc);
903 dc->event = NULL;
906 spin_unlock_irqrestore(&drm->event_lock, flags);
909 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
911 struct tegra_dc *dc = to_tegra_dc(crtc);
912 struct drm_device *drm = crtc->dev;
913 unsigned long flags;
915 spin_lock_irqsave(&drm->event_lock, flags);
917 if (dc->event && dc->event->base.file_priv == file) {
918 dc->event->base.destroy(&dc->event->base);
919 drm_crtc_vblank_put(crtc);
920 dc->event = NULL;
923 spin_unlock_irqrestore(&drm->event_lock, flags);
926 static int tegra_dc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb,
927 struct drm_pending_vblank_event *event, uint32_t page_flip_flags)
929 unsigned int pipe = drm_crtc_index(crtc);
930 struct tegra_dc *dc = to_tegra_dc(crtc);
932 if (dc->event)
933 return -EBUSY;
935 if (event) {
936 event->pipe = pipe;
937 dc->event = event;
938 drm_crtc_vblank_get(crtc);
941 tegra_dc_set_base(dc, 0, 0, fb);
942 crtc->primary->fb = fb;
944 return 0;
947 static void tegra_dc_destroy(struct drm_crtc *crtc)
949 drm_crtc_cleanup(crtc);
952 static const struct drm_crtc_funcs tegra_crtc_funcs = {
953 .page_flip = tegra_dc_page_flip,
954 .set_config = drm_crtc_helper_set_config,
955 .destroy = tegra_dc_destroy,
958 static void tegra_dc_stop(struct tegra_dc *dc)
960 u32 value;
962 /* stop the display controller */
963 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
964 value &= ~DISP_CTRL_MODE_MASK;
965 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
967 tegra_dc_commit(dc);
970 static bool tegra_dc_idle(struct tegra_dc *dc)
972 u32 value;
974 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
976 return (value & DISP_CTRL_MODE_MASK) == 0;
979 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
981 timeout = jiffies + msecs_to_jiffies(timeout);
983 while (time_before(jiffies, timeout)) {
984 if (tegra_dc_idle(dc))
985 return 0;
987 usleep_range(1000, 2000);
990 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
991 return -ETIMEDOUT;
994 static void tegra_crtc_disable(struct drm_crtc *crtc)
996 struct tegra_dc *dc = to_tegra_dc(crtc);
997 u32 value;
999 if (!tegra_dc_idle(dc)) {
1000 tegra_dc_stop(dc);
1003 * Ignore the return value, there isn't anything useful to do
1004 * in case this fails.
1006 tegra_dc_wait_idle(dc, 100);
1010 * This should really be part of the RGB encoder driver, but clearing
1011 * these bits has the side-effect of stopping the display controller.
1012 * When that happens no VBLANK interrupts will be raised. At the same
1013 * time the encoder is disabled before the display controller, so the
1014 * above code is always going to timeout waiting for the controller
1015 * to go idle.
1017 * Given the close coupling between the RGB encoder and the display
1018 * controller doing it here is still kind of okay. None of the other
1019 * encoder drivers require these bits to be cleared.
1021 * XXX: Perhaps given that the display controller is switched off at
1022 * this point anyway maybe clearing these bits isn't even useful for
1023 * the RGB encoder?
1025 if (dc->rgb) {
1026 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1027 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1028 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1029 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1032 drm_crtc_vblank_off(crtc);
1033 tegra_dc_commit(dc);
1036 static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
1037 const struct drm_display_mode *mode,
1038 struct drm_display_mode *adjusted)
1040 return true;
1043 static int tegra_dc_set_timings(struct tegra_dc *dc,
1044 struct drm_display_mode *mode)
1046 unsigned int h_ref_to_sync = 1;
1047 unsigned int v_ref_to_sync = 1;
1048 unsigned long value;
1050 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1052 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1053 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1055 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1056 ((mode->hsync_end - mode->hsync_start) << 0);
1057 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1059 value = ((mode->vtotal - mode->vsync_end) << 16) |
1060 ((mode->htotal - mode->hsync_end) << 0);
1061 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1063 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1064 ((mode->hsync_start - mode->hdisplay) << 0);
1065 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1067 value = (mode->vdisplay << 16) | mode->hdisplay;
1068 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1070 return 0;
1073 static int tegra_crtc_setup_clk(struct drm_crtc *crtc,
1074 struct drm_display_mode *mode)
1076 unsigned long pclk = mode->clock * 1000;
1077 struct tegra_dc *dc = to_tegra_dc(crtc);
1078 struct tegra_output *output = NULL;
1079 struct drm_encoder *encoder;
1080 unsigned int div;
1081 u32 value;
1082 long err;
1084 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list, head)
1085 if (encoder->crtc == crtc) {
1086 output = encoder_to_output(encoder);
1087 break;
1090 if (!output)
1091 return -ENODEV;
1094 * The ->setup_clock() callback is optional, but if encoders don't
1095 * implement it they most likely need to do the equivalent within the
1096 * ->mode_fixup() callback.
1098 if (!output->ops || !output->ops->setup_clock)
1099 return 0;
1102 * This assumes that the parent clock is pll_d_out0 or pll_d2_out
1103 * respectively, each of which divides the base pll_d by 2.
1105 err = output->ops->setup_clock(output, dc->clk, pclk, &div);
1106 if (err < 0) {
1107 dev_err(dc->dev, "failed to setup clock: %ld\n", err);
1108 return err;
1111 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), div);
1113 value = SHIFT_CLK_DIVIDER(div) | PIXEL_CLK_DIVIDER_PCD1;
1114 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1116 return 0;
1119 int tegra_dc_setup_clock(struct tegra_dc *dc, struct clk *parent,
1120 unsigned long pclk, unsigned int div)
1122 u32 value;
1123 int err;
1125 err = clk_set_parent(dc->clk, parent);
1126 if (err < 0) {
1127 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1128 return err;
1131 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), div);
1133 value = SHIFT_CLK_DIVIDER(div) | PIXEL_CLK_DIVIDER_PCD1;
1134 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1136 return 0;
1139 static int tegra_crtc_mode_set(struct drm_crtc *crtc,
1140 struct drm_display_mode *mode,
1141 struct drm_display_mode *adjusted,
1142 int x, int y, struct drm_framebuffer *old_fb)
1144 struct tegra_bo *bo = tegra_fb_get_plane(crtc->primary->fb, 0);
1145 struct tegra_dc *dc = to_tegra_dc(crtc);
1146 struct tegra_dc_window window;
1147 u32 value;
1148 int err;
1150 err = tegra_crtc_setup_clk(crtc, mode);
1151 if (err) {
1152 dev_err(dc->dev, "failed to setup clock for CRTC: %d\n", err);
1153 return err;
1156 /* program display mode */
1157 tegra_dc_set_timings(dc, mode);
1159 if (dc->soc->supports_border_color)
1160 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1162 /* interlacing isn't supported yet, so disable it */
1163 if (dc->soc->supports_interlacing) {
1164 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1165 value &= ~INTERLACE_ENABLE;
1166 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1169 /* setup window parameters */
1170 memset(&window, 0, sizeof(window));
1171 window.src.x = 0;
1172 window.src.y = 0;
1173 window.src.w = mode->hdisplay;
1174 window.src.h = mode->vdisplay;
1175 window.dst.x = 0;
1176 window.dst.y = 0;
1177 window.dst.w = mode->hdisplay;
1178 window.dst.h = mode->vdisplay;
1179 window.format = tegra_dc_format(crtc->primary->fb->pixel_format,
1180 &window.swap);
1181 window.bits_per_pixel = crtc->primary->fb->bits_per_pixel;
1182 window.stride[0] = crtc->primary->fb->pitches[0];
1183 window.base[0] = bo->paddr;
1185 err = tegra_dc_setup_window(dc, 0, &window);
1186 if (err < 0)
1187 dev_err(dc->dev, "failed to enable root plane\n");
1189 return 0;
1192 static int tegra_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
1193 struct drm_framebuffer *old_fb)
1195 struct tegra_dc *dc = to_tegra_dc(crtc);
1197 return tegra_dc_set_base(dc, x, y, crtc->primary->fb);
1200 static void tegra_crtc_prepare(struct drm_crtc *crtc)
1202 struct tegra_dc *dc = to_tegra_dc(crtc);
1203 unsigned int syncpt;
1204 unsigned long value;
1206 drm_crtc_vblank_off(crtc);
1208 /* hardware initialization */
1209 reset_control_deassert(dc->rst);
1210 usleep_range(10000, 20000);
1212 if (dc->pipe)
1213 syncpt = SYNCPT_VBLANK1;
1214 else
1215 syncpt = SYNCPT_VBLANK0;
1217 /* initialize display controller */
1218 tegra_dc_writel(dc, 0x00000100, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1219 tegra_dc_writel(dc, 0x100 | syncpt, DC_CMD_CONT_SYNCPT_VSYNC);
1221 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
1222 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1224 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1225 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1226 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1228 /* initialize timer */
1229 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1230 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1231 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1233 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1234 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1235 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1237 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1238 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1240 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1241 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1244 static void tegra_crtc_commit(struct drm_crtc *crtc)
1246 struct tegra_dc *dc = to_tegra_dc(crtc);
1248 drm_crtc_vblank_on(crtc);
1249 tegra_dc_commit(dc);
1252 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1253 .disable = tegra_crtc_disable,
1254 .mode_fixup = tegra_crtc_mode_fixup,
1255 .mode_set = tegra_crtc_mode_set,
1256 .mode_set_base = tegra_crtc_mode_set_base,
1257 .prepare = tegra_crtc_prepare,
1258 .commit = tegra_crtc_commit,
1261 static irqreturn_t tegra_dc_irq(int irq, void *data)
1263 struct tegra_dc *dc = data;
1264 unsigned long status;
1266 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1267 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1269 if (status & FRAME_END_INT) {
1271 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1275 if (status & VBLANK_INT) {
1277 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1279 drm_crtc_handle_vblank(&dc->base);
1280 tegra_dc_finish_page_flip(dc);
1283 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1285 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1289 return IRQ_HANDLED;
1292 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1294 struct drm_info_node *node = s->private;
1295 struct tegra_dc *dc = node->info_ent->data;
1297 #define DUMP_REG(name) \
1298 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
1299 tegra_dc_readl(dc, name))
1301 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1302 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1303 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1304 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1305 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1306 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1307 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1308 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1309 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1310 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1311 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1312 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1313 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1314 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1315 DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1316 DUMP_REG(DC_CMD_SIGNAL_RAISE);
1317 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1318 DUMP_REG(DC_CMD_INT_STATUS);
1319 DUMP_REG(DC_CMD_INT_MASK);
1320 DUMP_REG(DC_CMD_INT_ENABLE);
1321 DUMP_REG(DC_CMD_INT_TYPE);
1322 DUMP_REG(DC_CMD_INT_POLARITY);
1323 DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1324 DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1325 DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1326 DUMP_REG(DC_CMD_STATE_ACCESS);
1327 DUMP_REG(DC_CMD_STATE_CONTROL);
1328 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1329 DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1330 DUMP_REG(DC_COM_CRC_CONTROL);
1331 DUMP_REG(DC_COM_CRC_CHECKSUM);
1332 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1333 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1334 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1335 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1336 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1337 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1338 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1339 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1340 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1341 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1342 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1343 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1344 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1345 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1346 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1347 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1348 DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1349 DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1350 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1351 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1352 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1353 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1354 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1355 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1356 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1357 DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1358 DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1359 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1360 DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1361 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1362 DUMP_REG(DC_COM_SPI_CONTROL);
1363 DUMP_REG(DC_COM_SPI_START_BYTE);
1364 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1365 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1366 DUMP_REG(DC_COM_HSPI_CS_DC);
1367 DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1368 DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1369 DUMP_REG(DC_COM_GPIO_CTRL);
1370 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1371 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1372 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1373 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1374 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1375 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1376 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1377 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1378 DUMP_REG(DC_DISP_REF_TO_SYNC);
1379 DUMP_REG(DC_DISP_SYNC_WIDTH);
1380 DUMP_REG(DC_DISP_BACK_PORCH);
1381 DUMP_REG(DC_DISP_ACTIVE);
1382 DUMP_REG(DC_DISP_FRONT_PORCH);
1383 DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1384 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1385 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1386 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1387 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1388 DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1389 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1390 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1391 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1392 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1393 DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1394 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1395 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1396 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1397 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1398 DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1399 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1400 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1401 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1402 DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1403 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1404 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1405 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1406 DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1407 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1408 DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1409 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1410 DUMP_REG(DC_DISP_M0_CONTROL);
1411 DUMP_REG(DC_DISP_M1_CONTROL);
1412 DUMP_REG(DC_DISP_DI_CONTROL);
1413 DUMP_REG(DC_DISP_PP_CONTROL);
1414 DUMP_REG(DC_DISP_PP_SELECT_A);
1415 DUMP_REG(DC_DISP_PP_SELECT_B);
1416 DUMP_REG(DC_DISP_PP_SELECT_C);
1417 DUMP_REG(DC_DISP_PP_SELECT_D);
1418 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1419 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1420 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1421 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1422 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1423 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1424 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1425 DUMP_REG(DC_DISP_BORDER_COLOR);
1426 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1427 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1428 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1429 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1430 DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1431 DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1432 DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1433 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1434 DUMP_REG(DC_DISP_CURSOR_POSITION);
1435 DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1436 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1437 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1438 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1439 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1440 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1441 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1442 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1443 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1444 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1445 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1446 DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1447 DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1448 DUMP_REG(DC_DISP_SD_CONTROL);
1449 DUMP_REG(DC_DISP_SD_CSC_COEFF);
1450 DUMP_REG(DC_DISP_SD_LUT(0));
1451 DUMP_REG(DC_DISP_SD_LUT(1));
1452 DUMP_REG(DC_DISP_SD_LUT(2));
1453 DUMP_REG(DC_DISP_SD_LUT(3));
1454 DUMP_REG(DC_DISP_SD_LUT(4));
1455 DUMP_REG(DC_DISP_SD_LUT(5));
1456 DUMP_REG(DC_DISP_SD_LUT(6));
1457 DUMP_REG(DC_DISP_SD_LUT(7));
1458 DUMP_REG(DC_DISP_SD_LUT(8));
1459 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1460 DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1461 DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1462 DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1463 DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1464 DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1465 DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1466 DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1467 DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1468 DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1469 DUMP_REG(DC_DISP_SD_BL_TF(0));
1470 DUMP_REG(DC_DISP_SD_BL_TF(1));
1471 DUMP_REG(DC_DISP_SD_BL_TF(2));
1472 DUMP_REG(DC_DISP_SD_BL_TF(3));
1473 DUMP_REG(DC_DISP_SD_BL_CONTROL);
1474 DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1475 DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1476 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1477 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1478 DUMP_REG(DC_WIN_WIN_OPTIONS);
1479 DUMP_REG(DC_WIN_BYTE_SWAP);
1480 DUMP_REG(DC_WIN_BUFFER_CONTROL);
1481 DUMP_REG(DC_WIN_COLOR_DEPTH);
1482 DUMP_REG(DC_WIN_POSITION);
1483 DUMP_REG(DC_WIN_SIZE);
1484 DUMP_REG(DC_WIN_PRESCALED_SIZE);
1485 DUMP_REG(DC_WIN_H_INITIAL_DDA);
1486 DUMP_REG(DC_WIN_V_INITIAL_DDA);
1487 DUMP_REG(DC_WIN_DDA_INC);
1488 DUMP_REG(DC_WIN_LINE_STRIDE);
1489 DUMP_REG(DC_WIN_BUF_STRIDE);
1490 DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1491 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1492 DUMP_REG(DC_WIN_DV_CONTROL);
1493 DUMP_REG(DC_WIN_BLEND_NOKEY);
1494 DUMP_REG(DC_WIN_BLEND_1WIN);
1495 DUMP_REG(DC_WIN_BLEND_2WIN_X);
1496 DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1497 DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1498 DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1499 DUMP_REG(DC_WINBUF_START_ADDR);
1500 DUMP_REG(DC_WINBUF_START_ADDR_NS);
1501 DUMP_REG(DC_WINBUF_START_ADDR_U);
1502 DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1503 DUMP_REG(DC_WINBUF_START_ADDR_V);
1504 DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1505 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1506 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1507 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1508 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1509 DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1510 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1511 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1512 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1514 #undef DUMP_REG
1516 return 0;
1519 static struct drm_info_list debugfs_files[] = {
1520 { "regs", tegra_dc_show_regs, 0, NULL },
1523 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1525 unsigned int i;
1526 char *name;
1527 int err;
1529 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1530 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1531 kfree(name);
1533 if (!dc->debugfs)
1534 return -ENOMEM;
1536 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1537 GFP_KERNEL);
1538 if (!dc->debugfs_files) {
1539 err = -ENOMEM;
1540 goto remove;
1543 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1544 dc->debugfs_files[i].data = dc;
1546 err = drm_debugfs_create_files(dc->debugfs_files,
1547 ARRAY_SIZE(debugfs_files),
1548 dc->debugfs, minor);
1549 if (err < 0)
1550 goto free;
1552 dc->minor = minor;
1554 return 0;
1556 free:
1557 kfree(dc->debugfs_files);
1558 dc->debugfs_files = NULL;
1559 remove:
1560 debugfs_remove(dc->debugfs);
1561 dc->debugfs = NULL;
1563 return err;
1566 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1568 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1569 dc->minor);
1570 dc->minor = NULL;
1572 kfree(dc->debugfs_files);
1573 dc->debugfs_files = NULL;
1575 debugfs_remove(dc->debugfs);
1576 dc->debugfs = NULL;
1578 return 0;
1581 static int tegra_dc_init(struct host1x_client *client)
1583 struct drm_device *drm = dev_get_drvdata(client->parent);
1584 struct tegra_dc *dc = host1x_client_to_dc(client);
1585 struct tegra_drm *tegra = drm->dev_private;
1586 struct drm_plane *primary = NULL;
1587 struct drm_plane *cursor = NULL;
1588 int err;
1590 if (tegra->domain) {
1591 err = iommu_attach_device(tegra->domain, dc->dev);
1592 if (err < 0) {
1593 dev_err(dc->dev, "failed to attach to domain: %d\n",
1594 err);
1595 return err;
1598 dc->domain = tegra->domain;
1601 primary = tegra_dc_primary_plane_create(drm, dc);
1602 if (IS_ERR(primary)) {
1603 err = PTR_ERR(primary);
1604 goto cleanup;
1607 if (dc->soc->supports_cursor) {
1608 cursor = tegra_dc_cursor_plane_create(drm, dc);
1609 if (IS_ERR(cursor)) {
1610 err = PTR_ERR(cursor);
1611 goto cleanup;
1615 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1616 &tegra_crtc_funcs);
1617 if (err < 0)
1618 goto cleanup;
1620 drm_mode_crtc_set_gamma_size(&dc->base, 256);
1621 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1624 * Keep track of the minimum pitch alignment across all display
1625 * controllers.
1627 if (dc->soc->pitch_align > tegra->pitch_align)
1628 tegra->pitch_align = dc->soc->pitch_align;
1630 err = tegra_dc_rgb_init(drm, dc);
1631 if (err < 0 && err != -ENODEV) {
1632 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1633 goto cleanup;
1636 err = tegra_dc_add_planes(drm, dc);
1637 if (err < 0)
1638 goto cleanup;
1640 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1641 err = tegra_dc_debugfs_init(dc, drm->primary);
1642 if (err < 0)
1643 dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1646 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1647 dev_name(dc->dev), dc);
1648 if (err < 0) {
1649 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1650 err);
1651 goto cleanup;
1654 return 0;
1656 cleanup:
1657 if (cursor)
1658 drm_plane_cleanup(cursor);
1660 if (primary)
1661 drm_plane_cleanup(primary);
1663 if (tegra->domain) {
1664 iommu_detach_device(tegra->domain, dc->dev);
1665 dc->domain = NULL;
1668 return err;
1671 static int tegra_dc_exit(struct host1x_client *client)
1673 struct tegra_dc *dc = host1x_client_to_dc(client);
1674 int err;
1676 devm_free_irq(dc->dev, dc->irq, dc);
1678 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1679 err = tegra_dc_debugfs_exit(dc);
1680 if (err < 0)
1681 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1684 err = tegra_dc_rgb_exit(dc);
1685 if (err) {
1686 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1687 return err;
1690 if (dc->domain) {
1691 iommu_detach_device(dc->domain, dc->dev);
1692 dc->domain = NULL;
1695 return 0;
1698 static const struct host1x_client_ops dc_client_ops = {
1699 .init = tegra_dc_init,
1700 .exit = tegra_dc_exit,
1703 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1704 .supports_border_color = true,
1705 .supports_interlacing = false,
1706 .supports_cursor = false,
1707 .supports_block_linear = false,
1708 .pitch_align = 8,
1709 .has_powergate = false,
1712 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1713 .supports_border_color = true,
1714 .supports_interlacing = false,
1715 .supports_cursor = false,
1716 .supports_block_linear = false,
1717 .pitch_align = 8,
1718 .has_powergate = false,
1721 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1722 .supports_border_color = true,
1723 .supports_interlacing = false,
1724 .supports_cursor = false,
1725 .supports_block_linear = false,
1726 .pitch_align = 64,
1727 .has_powergate = true,
1730 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1731 .supports_border_color = false,
1732 .supports_interlacing = true,
1733 .supports_cursor = true,
1734 .supports_block_linear = true,
1735 .pitch_align = 64,
1736 .has_powergate = true,
1739 static const struct of_device_id tegra_dc_of_match[] = {
1741 .compatible = "nvidia,tegra124-dc",
1742 .data = &tegra124_dc_soc_info,
1743 }, {
1744 .compatible = "nvidia,tegra114-dc",
1745 .data = &tegra114_dc_soc_info,
1746 }, {
1747 .compatible = "nvidia,tegra30-dc",
1748 .data = &tegra30_dc_soc_info,
1749 }, {
1750 .compatible = "nvidia,tegra20-dc",
1751 .data = &tegra20_dc_soc_info,
1752 }, {
1753 /* sentinel */
1756 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1758 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1760 struct device_node *np;
1761 u32 value = 0;
1762 int err;
1764 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1765 if (err < 0) {
1766 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1769 * If the nvidia,head property isn't present, try to find the
1770 * correct head number by looking up the position of this
1771 * display controller's node within the device tree. Assuming
1772 * that the nodes are ordered properly in the DTS file and
1773 * that the translation into a flattened device tree blob
1774 * preserves that ordering this will actually yield the right
1775 * head number.
1777 * If those assumptions don't hold, this will still work for
1778 * cases where only a single display controller is used.
1780 for_each_matching_node(np, tegra_dc_of_match) {
1781 if (np == dc->dev->of_node)
1782 break;
1784 value++;
1788 dc->pipe = value;
1790 return 0;
1793 static int tegra_dc_probe(struct platform_device *pdev)
1795 const struct of_device_id *id;
1796 struct resource *regs;
1797 struct tegra_dc *dc;
1798 int err;
1800 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1801 if (!dc)
1802 return -ENOMEM;
1804 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1805 if (!id)
1806 return -ENODEV;
1808 spin_lock_init(&dc->lock);
1809 INIT_LIST_HEAD(&dc->list);
1810 dc->dev = &pdev->dev;
1811 dc->soc = id->data;
1813 err = tegra_dc_parse_dt(dc);
1814 if (err < 0)
1815 return err;
1817 dc->clk = devm_clk_get(&pdev->dev, NULL);
1818 if (IS_ERR(dc->clk)) {
1819 dev_err(&pdev->dev, "failed to get clock\n");
1820 return PTR_ERR(dc->clk);
1823 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1824 if (IS_ERR(dc->rst)) {
1825 dev_err(&pdev->dev, "failed to get reset\n");
1826 return PTR_ERR(dc->rst);
1829 if (dc->soc->has_powergate) {
1830 if (dc->pipe == 0)
1831 dc->powergate = TEGRA_POWERGATE_DIS;
1832 else
1833 dc->powergate = TEGRA_POWERGATE_DISB;
1835 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1836 dc->rst);
1837 if (err < 0) {
1838 dev_err(&pdev->dev, "failed to power partition: %d\n",
1839 err);
1840 return err;
1842 } else {
1843 err = clk_prepare_enable(dc->clk);
1844 if (err < 0) {
1845 dev_err(&pdev->dev, "failed to enable clock: %d\n",
1846 err);
1847 return err;
1850 err = reset_control_deassert(dc->rst);
1851 if (err < 0) {
1852 dev_err(&pdev->dev, "failed to deassert reset: %d\n",
1853 err);
1854 return err;
1858 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1859 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1860 if (IS_ERR(dc->regs))
1861 return PTR_ERR(dc->regs);
1863 dc->irq = platform_get_irq(pdev, 0);
1864 if (dc->irq < 0) {
1865 dev_err(&pdev->dev, "failed to get IRQ\n");
1866 return -ENXIO;
1869 INIT_LIST_HEAD(&dc->client.list);
1870 dc->client.ops = &dc_client_ops;
1871 dc->client.dev = &pdev->dev;
1873 err = tegra_dc_rgb_probe(dc);
1874 if (err < 0 && err != -ENODEV) {
1875 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1876 return err;
1879 err = host1x_client_register(&dc->client);
1880 if (err < 0) {
1881 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1882 err);
1883 return err;
1886 platform_set_drvdata(pdev, dc);
1888 return 0;
1891 static int tegra_dc_remove(struct platform_device *pdev)
1893 struct tegra_dc *dc = platform_get_drvdata(pdev);
1894 int err;
1896 err = host1x_client_unregister(&dc->client);
1897 if (err < 0) {
1898 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1899 err);
1900 return err;
1903 err = tegra_dc_rgb_remove(dc);
1904 if (err < 0) {
1905 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
1906 return err;
1909 reset_control_assert(dc->rst);
1911 if (dc->soc->has_powergate)
1912 tegra_powergate_power_off(dc->powergate);
1914 clk_disable_unprepare(dc->clk);
1916 return 0;
1919 struct platform_driver tegra_dc_driver = {
1920 .driver = {
1921 .name = "tegra-dc",
1922 .owner = THIS_MODULE,
1923 .of_match_table = tegra_dc_of_match,
1925 .probe = tegra_dc_probe,
1926 .remove = tegra_dc_remove,