Merge tag 'pm-4.19-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6/btrfs-unstable.git] / drivers / perf / arm_pmu.c
blob7f01f6f60b870374506131eaa13adb2b54a5facb
1 #undef DEBUG
3 /*
4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code.
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/slab.h>
21 #include <linux/sched/clock.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
26 #include <asm/irq_regs.h>
28 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
29 static DEFINE_PER_CPU(int, cpu_irq);
31 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
33 if (event->hw.flags & ARMPMU_EVT_64BIT)
34 return GENMASK_ULL(63, 0);
35 else
36 return GENMASK_ULL(31, 0);
39 static int
40 armpmu_map_cache_event(const unsigned (*cache_map)
41 [PERF_COUNT_HW_CACHE_MAX]
42 [PERF_COUNT_HW_CACHE_OP_MAX]
43 [PERF_COUNT_HW_CACHE_RESULT_MAX],
44 u64 config)
46 unsigned int cache_type, cache_op, cache_result, ret;
48 cache_type = (config >> 0) & 0xff;
49 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
50 return -EINVAL;
52 cache_op = (config >> 8) & 0xff;
53 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
54 return -EINVAL;
56 cache_result = (config >> 16) & 0xff;
57 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
58 return -EINVAL;
60 if (!cache_map)
61 return -ENOENT;
63 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
65 if (ret == CACHE_OP_UNSUPPORTED)
66 return -ENOENT;
68 return ret;
71 static int
72 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
74 int mapping;
76 if (config >= PERF_COUNT_HW_MAX)
77 return -EINVAL;
79 if (!event_map)
80 return -ENOENT;
82 mapping = (*event_map)[config];
83 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
86 static int
87 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
89 return (int)(config & raw_event_mask);
92 int
93 armpmu_map_event(struct perf_event *event,
94 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
95 const unsigned (*cache_map)
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX],
99 u32 raw_event_mask)
101 u64 config = event->attr.config;
102 int type = event->attr.type;
104 if (type == event->pmu->type)
105 return armpmu_map_raw_event(raw_event_mask, config);
107 switch (type) {
108 case PERF_TYPE_HARDWARE:
109 return armpmu_map_hw_event(event_map, config);
110 case PERF_TYPE_HW_CACHE:
111 return armpmu_map_cache_event(cache_map, config);
112 case PERF_TYPE_RAW:
113 return armpmu_map_raw_event(raw_event_mask, config);
116 return -ENOENT;
119 int armpmu_event_set_period(struct perf_event *event)
121 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
122 struct hw_perf_event *hwc = &event->hw;
123 s64 left = local64_read(&hwc->period_left);
124 s64 period = hwc->sample_period;
125 u64 max_period;
126 int ret = 0;
128 max_period = arm_pmu_event_max_period(event);
129 if (unlikely(left <= -period)) {
130 left = period;
131 local64_set(&hwc->period_left, left);
132 hwc->last_period = period;
133 ret = 1;
136 if (unlikely(left <= 0)) {
137 left += period;
138 local64_set(&hwc->period_left, left);
139 hwc->last_period = period;
140 ret = 1;
144 * Limit the maximum period to prevent the counter value
145 * from overtaking the one we are about to program. In
146 * effect we are reducing max_period to account for
147 * interrupt latency (and we are being very conservative).
149 if (left > (max_period >> 1))
150 left = (max_period >> 1);
152 local64_set(&hwc->prev_count, (u64)-left);
154 armpmu->write_counter(event, (u64)(-left) & max_period);
156 perf_event_update_userpage(event);
158 return ret;
161 u64 armpmu_event_update(struct perf_event *event)
163 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
164 struct hw_perf_event *hwc = &event->hw;
165 u64 delta, prev_raw_count, new_raw_count;
166 u64 max_period = arm_pmu_event_max_period(event);
168 again:
169 prev_raw_count = local64_read(&hwc->prev_count);
170 new_raw_count = armpmu->read_counter(event);
172 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
173 new_raw_count) != prev_raw_count)
174 goto again;
176 delta = (new_raw_count - prev_raw_count) & max_period;
178 local64_add(delta, &event->count);
179 local64_sub(delta, &hwc->period_left);
181 return new_raw_count;
184 static void
185 armpmu_read(struct perf_event *event)
187 armpmu_event_update(event);
190 static void
191 armpmu_stop(struct perf_event *event, int flags)
193 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
194 struct hw_perf_event *hwc = &event->hw;
197 * ARM pmu always has to update the counter, so ignore
198 * PERF_EF_UPDATE, see comments in armpmu_start().
200 if (!(hwc->state & PERF_HES_STOPPED)) {
201 armpmu->disable(event);
202 armpmu_event_update(event);
203 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
207 static void armpmu_start(struct perf_event *event, int flags)
209 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
210 struct hw_perf_event *hwc = &event->hw;
213 * ARM pmu always has to reprogram the period, so ignore
214 * PERF_EF_RELOAD, see the comment below.
216 if (flags & PERF_EF_RELOAD)
217 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
219 hwc->state = 0;
221 * Set the period again. Some counters can't be stopped, so when we
222 * were stopped we simply disabled the IRQ source and the counter
223 * may have been left counting. If we don't do this step then we may
224 * get an interrupt too soon or *way* too late if the overflow has
225 * happened since disabling.
227 armpmu_event_set_period(event);
228 armpmu->enable(event);
231 static void
232 armpmu_del(struct perf_event *event, int flags)
234 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236 struct hw_perf_event *hwc = &event->hw;
237 int idx = hwc->idx;
239 armpmu_stop(event, PERF_EF_UPDATE);
240 hw_events->events[idx] = NULL;
241 armpmu->clear_event_idx(hw_events, event);
242 perf_event_update_userpage(event);
243 /* Clear the allocated counter */
244 hwc->idx = -1;
247 static int
248 armpmu_add(struct perf_event *event, int flags)
250 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
251 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
252 struct hw_perf_event *hwc = &event->hw;
253 int idx;
255 /* An event following a process won't be stopped earlier */
256 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
257 return -ENOENT;
259 /* If we don't have a space for the counter then finish early. */
260 idx = armpmu->get_event_idx(hw_events, event);
261 if (idx < 0)
262 return idx;
265 * If there is an event in the counter we are going to use then make
266 * sure it is disabled.
268 event->hw.idx = idx;
269 armpmu->disable(event);
270 hw_events->events[idx] = event;
272 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
273 if (flags & PERF_EF_START)
274 armpmu_start(event, PERF_EF_RELOAD);
276 /* Propagate our changes to the userspace mapping. */
277 perf_event_update_userpage(event);
279 return 0;
282 static int
283 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
284 struct perf_event *event)
286 struct arm_pmu *armpmu;
288 if (is_software_event(event))
289 return 1;
292 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
293 * core perf code won't check that the pmu->ctx == leader->ctx
294 * until after pmu->event_init(event).
296 if (event->pmu != pmu)
297 return 0;
299 if (event->state < PERF_EVENT_STATE_OFF)
300 return 1;
302 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
303 return 1;
305 armpmu = to_arm_pmu(event->pmu);
306 return armpmu->get_event_idx(hw_events, event) >= 0;
309 static int
310 validate_group(struct perf_event *event)
312 struct perf_event *sibling, *leader = event->group_leader;
313 struct pmu_hw_events fake_pmu;
316 * Initialise the fake PMU. We only need to populate the
317 * used_mask for the purposes of validation.
319 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
321 if (!validate_event(event->pmu, &fake_pmu, leader))
322 return -EINVAL;
324 for_each_sibling_event(sibling, leader) {
325 if (!validate_event(event->pmu, &fake_pmu, sibling))
326 return -EINVAL;
329 if (!validate_event(event->pmu, &fake_pmu, event))
330 return -EINVAL;
332 return 0;
335 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
337 struct arm_pmu *armpmu;
338 int ret;
339 u64 start_clock, finish_clock;
342 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
343 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
344 * do any necessary shifting, we just need to perform the first
345 * dereference.
347 armpmu = *(void **)dev;
348 if (WARN_ON_ONCE(!armpmu))
349 return IRQ_NONE;
351 start_clock = sched_clock();
352 ret = armpmu->handle_irq(armpmu);
353 finish_clock = sched_clock();
355 perf_sample_event_took(finish_clock - start_clock);
356 return ret;
359 static int
360 event_requires_mode_exclusion(struct perf_event_attr *attr)
362 return attr->exclude_idle || attr->exclude_user ||
363 attr->exclude_kernel || attr->exclude_hv;
366 static int
367 __hw_perf_event_init(struct perf_event *event)
369 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
370 struct hw_perf_event *hwc = &event->hw;
371 int mapping;
373 hwc->flags = 0;
374 mapping = armpmu->map_event(event);
376 if (mapping < 0) {
377 pr_debug("event %x:%llx not supported\n", event->attr.type,
378 event->attr.config);
379 return mapping;
383 * We don't assign an index until we actually place the event onto
384 * hardware. Use -1 to signify that we haven't decided where to put it
385 * yet. For SMP systems, each core has it's own PMU so we can't do any
386 * clever allocation or constraints checking at this point.
388 hwc->idx = -1;
389 hwc->config_base = 0;
390 hwc->config = 0;
391 hwc->event_base = 0;
394 * Check whether we need to exclude the counter from certain modes.
396 if ((!armpmu->set_event_filter ||
397 armpmu->set_event_filter(hwc, &event->attr)) &&
398 event_requires_mode_exclusion(&event->attr)) {
399 pr_debug("ARM performance counters do not support "
400 "mode exclusion\n");
401 return -EOPNOTSUPP;
405 * Store the event encoding into the config_base field.
407 hwc->config_base |= (unsigned long)mapping;
409 if (!is_sampling_event(event)) {
411 * For non-sampling runs, limit the sample_period to half
412 * of the counter width. That way, the new counter value
413 * is far less likely to overtake the previous one unless
414 * you have some serious IRQ latency issues.
416 hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
417 hwc->last_period = hwc->sample_period;
418 local64_set(&hwc->period_left, hwc->sample_period);
421 if (event->group_leader != event) {
422 if (validate_group(event) != 0)
423 return -EINVAL;
426 return 0;
429 static int armpmu_event_init(struct perf_event *event)
431 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
434 * Reject CPU-affine events for CPUs that are of a different class to
435 * that which this PMU handles. Process-following events (where
436 * event->cpu == -1) can be migrated between CPUs, and thus we have to
437 * reject them later (in armpmu_add) if they're scheduled on a
438 * different class of CPU.
440 if (event->cpu != -1 &&
441 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
442 return -ENOENT;
444 /* does not support taken branch sampling */
445 if (has_branch_stack(event))
446 return -EOPNOTSUPP;
448 if (armpmu->map_event(event) == -ENOENT)
449 return -ENOENT;
451 return __hw_perf_event_init(event);
454 static void armpmu_enable(struct pmu *pmu)
456 struct arm_pmu *armpmu = to_arm_pmu(pmu);
457 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
458 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
460 /* For task-bound events we may be called on other CPUs */
461 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
462 return;
464 if (enabled)
465 armpmu->start(armpmu);
468 static void armpmu_disable(struct pmu *pmu)
470 struct arm_pmu *armpmu = to_arm_pmu(pmu);
472 /* For task-bound events we may be called on other CPUs */
473 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
474 return;
476 armpmu->stop(armpmu);
480 * In heterogeneous systems, events are specific to a particular
481 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
482 * the same microarchitecture.
484 static int armpmu_filter_match(struct perf_event *event)
486 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
487 unsigned int cpu = smp_processor_id();
488 return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
491 static ssize_t armpmu_cpumask_show(struct device *dev,
492 struct device_attribute *attr, char *buf)
494 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
495 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
498 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
500 static struct attribute *armpmu_common_attrs[] = {
501 &dev_attr_cpus.attr,
502 NULL,
505 static struct attribute_group armpmu_common_attr_group = {
506 .attrs = armpmu_common_attrs,
509 /* Set at runtime when we know what CPU type we are. */
510 static struct arm_pmu *__oprofile_cpu_pmu;
513 * Despite the names, these two functions are CPU-specific and are used
514 * by the OProfile/perf code.
516 const char *perf_pmu_name(void)
518 if (!__oprofile_cpu_pmu)
519 return NULL;
521 return __oprofile_cpu_pmu->name;
523 EXPORT_SYMBOL_GPL(perf_pmu_name);
525 int perf_num_counters(void)
527 int max_events = 0;
529 if (__oprofile_cpu_pmu != NULL)
530 max_events = __oprofile_cpu_pmu->num_events;
532 return max_events;
534 EXPORT_SYMBOL_GPL(perf_num_counters);
536 static int armpmu_count_irq_users(const int irq)
538 int cpu, count = 0;
540 for_each_possible_cpu(cpu) {
541 if (per_cpu(cpu_irq, cpu) == irq)
542 count++;
545 return count;
548 void armpmu_free_irq(int irq, int cpu)
550 if (per_cpu(cpu_irq, cpu) == 0)
551 return;
552 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
553 return;
555 if (!irq_is_percpu_devid(irq))
556 free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
557 else if (armpmu_count_irq_users(irq) == 1)
558 free_percpu_irq(irq, &cpu_armpmu);
560 per_cpu(cpu_irq, cpu) = 0;
563 int armpmu_request_irq(int irq, int cpu)
565 int err = 0;
566 const irq_handler_t handler = armpmu_dispatch_irq;
567 if (!irq)
568 return 0;
570 if (!irq_is_percpu_devid(irq)) {
571 unsigned long irq_flags;
573 err = irq_force_affinity(irq, cpumask_of(cpu));
575 if (err && num_possible_cpus() > 1) {
576 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
577 irq, cpu);
578 goto err_out;
581 irq_flags = IRQF_PERCPU |
582 IRQF_NOBALANCING |
583 IRQF_NO_THREAD;
585 irq_set_status_flags(irq, IRQ_NOAUTOEN);
586 err = request_irq(irq, handler, irq_flags, "arm-pmu",
587 per_cpu_ptr(&cpu_armpmu, cpu));
588 } else if (armpmu_count_irq_users(irq) == 0) {
589 err = request_percpu_irq(irq, handler, "arm-pmu",
590 &cpu_armpmu);
593 if (err)
594 goto err_out;
596 per_cpu(cpu_irq, cpu) = irq;
597 return 0;
599 err_out:
600 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
601 return err;
604 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
606 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
607 return per_cpu(hw_events->irq, cpu);
611 * PMU hardware loses all context when a CPU goes offline.
612 * When a CPU is hotplugged back in, since some hardware registers are
613 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
614 * junk values out of them.
616 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
618 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
619 int irq;
621 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
622 return 0;
623 if (pmu->reset)
624 pmu->reset(pmu);
626 per_cpu(cpu_armpmu, cpu) = pmu;
628 irq = armpmu_get_cpu_irq(pmu, cpu);
629 if (irq) {
630 if (irq_is_percpu_devid(irq))
631 enable_percpu_irq(irq, IRQ_TYPE_NONE);
632 else
633 enable_irq(irq);
636 return 0;
639 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
641 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
642 int irq;
644 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
645 return 0;
647 irq = armpmu_get_cpu_irq(pmu, cpu);
648 if (irq) {
649 if (irq_is_percpu_devid(irq))
650 disable_percpu_irq(irq);
651 else
652 disable_irq_nosync(irq);
655 per_cpu(cpu_armpmu, cpu) = NULL;
657 return 0;
660 #ifdef CONFIG_CPU_PM
661 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
663 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
664 struct perf_event *event;
665 int idx;
667 for (idx = 0; idx < armpmu->num_events; idx++) {
668 event = hw_events->events[idx];
669 if (!event)
670 continue;
672 switch (cmd) {
673 case CPU_PM_ENTER:
675 * Stop and update the counter
677 armpmu_stop(event, PERF_EF_UPDATE);
678 break;
679 case CPU_PM_EXIT:
680 case CPU_PM_ENTER_FAILED:
682 * Restore and enable the counter.
683 * armpmu_start() indirectly calls
685 * perf_event_update_userpage()
687 * that requires RCU read locking to be functional,
688 * wrap the call within RCU_NONIDLE to make the
689 * RCU subsystem aware this cpu is not idle from
690 * an RCU perspective for the armpmu_start() call
691 * duration.
693 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
694 break;
695 default:
696 break;
701 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
702 void *v)
704 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
705 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
706 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
708 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
709 return NOTIFY_DONE;
712 * Always reset the PMU registers on power-up even if
713 * there are no events running.
715 if (cmd == CPU_PM_EXIT && armpmu->reset)
716 armpmu->reset(armpmu);
718 if (!enabled)
719 return NOTIFY_OK;
721 switch (cmd) {
722 case CPU_PM_ENTER:
723 armpmu->stop(armpmu);
724 cpu_pm_pmu_setup(armpmu, cmd);
725 break;
726 case CPU_PM_EXIT:
727 cpu_pm_pmu_setup(armpmu, cmd);
728 case CPU_PM_ENTER_FAILED:
729 armpmu->start(armpmu);
730 break;
731 default:
732 return NOTIFY_DONE;
735 return NOTIFY_OK;
738 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
740 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
741 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
744 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
746 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
748 #else
749 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
750 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
751 #endif
753 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
755 int err;
757 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
758 &cpu_pmu->node);
759 if (err)
760 goto out;
762 err = cpu_pm_pmu_register(cpu_pmu);
763 if (err)
764 goto out_unregister;
766 return 0;
768 out_unregister:
769 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
770 &cpu_pmu->node);
771 out:
772 return err;
775 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
777 cpu_pm_pmu_unregister(cpu_pmu);
778 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
779 &cpu_pmu->node);
782 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
784 struct arm_pmu *pmu;
785 int cpu;
787 pmu = kzalloc(sizeof(*pmu), flags);
788 if (!pmu) {
789 pr_info("failed to allocate PMU device!\n");
790 goto out;
793 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
794 if (!pmu->hw_events) {
795 pr_info("failed to allocate per-cpu PMU data.\n");
796 goto out_free_pmu;
799 pmu->pmu = (struct pmu) {
800 .pmu_enable = armpmu_enable,
801 .pmu_disable = armpmu_disable,
802 .event_init = armpmu_event_init,
803 .add = armpmu_add,
804 .del = armpmu_del,
805 .start = armpmu_start,
806 .stop = armpmu_stop,
807 .read = armpmu_read,
808 .filter_match = armpmu_filter_match,
809 .attr_groups = pmu->attr_groups,
811 * This is a CPU PMU potentially in a heterogeneous
812 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
813 * and we have taken ctx sharing into account (e.g. with our
814 * pmu::filter_match callback and pmu::event_init group
815 * validation).
817 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
820 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
821 &armpmu_common_attr_group;
823 for_each_possible_cpu(cpu) {
824 struct pmu_hw_events *events;
826 events = per_cpu_ptr(pmu->hw_events, cpu);
827 raw_spin_lock_init(&events->pmu_lock);
828 events->percpu_pmu = pmu;
831 return pmu;
833 out_free_pmu:
834 kfree(pmu);
835 out:
836 return NULL;
839 struct arm_pmu *armpmu_alloc(void)
841 return __armpmu_alloc(GFP_KERNEL);
844 struct arm_pmu *armpmu_alloc_atomic(void)
846 return __armpmu_alloc(GFP_ATOMIC);
850 void armpmu_free(struct arm_pmu *pmu)
852 free_percpu(pmu->hw_events);
853 kfree(pmu);
856 int armpmu_register(struct arm_pmu *pmu)
858 int ret;
860 ret = cpu_pmu_init(pmu);
861 if (ret)
862 return ret;
864 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
865 if (ret)
866 goto out_destroy;
868 if (!__oprofile_cpu_pmu)
869 __oprofile_cpu_pmu = pmu;
871 pr_info("enabled with %s PMU driver, %d counters available\n",
872 pmu->name, pmu->num_events);
874 return 0;
876 out_destroy:
877 cpu_pmu_destroy(pmu);
878 return ret;
881 static int arm_pmu_hp_init(void)
883 int ret;
885 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
886 "perf/arm/pmu:starting",
887 arm_perf_starting_cpu,
888 arm_perf_teardown_cpu);
889 if (ret)
890 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
891 ret);
892 return ret;
894 subsys_initcall(arm_pmu_hp_init);