[media] az6007: fix incorrect memcpy
[linux-2.6/btrfs-unstable.git] / kernel / fork.c
blob687a15d562433ee60c5b19bf02f2e8652c6e4338
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/proc_fs.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
70 #include <linux/signalfd.h>
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
79 #include <trace/events/sched.h>
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/task.h>
85 * Protected counters by write_lock_irq(&tasklist_lock)
87 unsigned long total_forks; /* Handle normal Linux uptimes. */
88 int nr_threads; /* The idle threads do not count.. */
90 int max_threads; /* tunable limit on nr_threads */
92 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
94 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
96 #ifdef CONFIG_PROVE_RCU
97 int lockdep_tasklist_lock_is_held(void)
99 return lockdep_is_held(&tasklist_lock);
101 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
102 #endif /* #ifdef CONFIG_PROVE_RCU */
104 int nr_processes(void)
106 int cpu;
107 int total = 0;
109 for_each_possible_cpu(cpu)
110 total += per_cpu(process_counts, cpu);
112 return total;
115 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
116 # define alloc_task_struct_node(node) \
117 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
118 # define free_task_struct(tsk) \
119 kmem_cache_free(task_struct_cachep, (tsk))
120 static struct kmem_cache *task_struct_cachep;
121 #endif
123 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
124 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
125 int node)
127 #ifdef CONFIG_DEBUG_STACK_USAGE
128 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
129 #else
130 gfp_t mask = GFP_KERNEL;
131 #endif
132 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
134 return page ? page_address(page) : NULL;
137 static inline void free_thread_info(struct thread_info *ti)
139 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
141 #endif
143 /* SLAB cache for signal_struct structures (tsk->signal) */
144 static struct kmem_cache *signal_cachep;
146 /* SLAB cache for sighand_struct structures (tsk->sighand) */
147 struct kmem_cache *sighand_cachep;
149 /* SLAB cache for files_struct structures (tsk->files) */
150 struct kmem_cache *files_cachep;
152 /* SLAB cache for fs_struct structures (tsk->fs) */
153 struct kmem_cache *fs_cachep;
155 /* SLAB cache for vm_area_struct structures */
156 struct kmem_cache *vm_area_cachep;
158 /* SLAB cache for mm_struct structures (tsk->mm) */
159 static struct kmem_cache *mm_cachep;
161 static void account_kernel_stack(struct thread_info *ti, int account)
163 struct zone *zone = page_zone(virt_to_page(ti));
165 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
168 void free_task(struct task_struct *tsk)
170 account_kernel_stack(tsk->stack, -1);
171 free_thread_info(tsk->stack);
172 rt_mutex_debug_task_free(tsk);
173 ftrace_graph_exit_task(tsk);
174 free_task_struct(tsk);
176 EXPORT_SYMBOL(free_task);
178 static inline void free_signal_struct(struct signal_struct *sig)
180 taskstats_tgid_free(sig);
181 sched_autogroup_exit(sig);
182 kmem_cache_free(signal_cachep, sig);
185 static inline void put_signal_struct(struct signal_struct *sig)
187 if (atomic_dec_and_test(&sig->sigcnt))
188 free_signal_struct(sig);
191 void __put_task_struct(struct task_struct *tsk)
193 WARN_ON(!tsk->exit_state);
194 WARN_ON(atomic_read(&tsk->usage));
195 WARN_ON(tsk == current);
197 security_task_free(tsk);
198 exit_creds(tsk);
199 delayacct_tsk_free(tsk);
200 put_signal_struct(tsk->signal);
202 if (!profile_handoff_task(tsk))
203 free_task(tsk);
205 EXPORT_SYMBOL_GPL(__put_task_struct);
208 * macro override instead of weak attribute alias, to workaround
209 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
211 #ifndef arch_task_cache_init
212 #define arch_task_cache_init()
213 #endif
215 void __init fork_init(unsigned long mempages)
217 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
218 #ifndef ARCH_MIN_TASKALIGN
219 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
220 #endif
221 /* create a slab on which task_structs can be allocated */
222 task_struct_cachep =
223 kmem_cache_create("task_struct", sizeof(struct task_struct),
224 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
225 #endif
227 /* do the arch specific task caches init */
228 arch_task_cache_init();
231 * The default maximum number of threads is set to a safe
232 * value: the thread structures can take up at most half
233 * of memory.
235 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
238 * we need to allow at least 20 threads to boot a system
240 if (max_threads < 20)
241 max_threads = 20;
243 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
244 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
245 init_task.signal->rlim[RLIMIT_SIGPENDING] =
246 init_task.signal->rlim[RLIMIT_NPROC];
249 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
250 struct task_struct *src)
252 *dst = *src;
253 return 0;
256 static struct task_struct *dup_task_struct(struct task_struct *orig)
258 struct task_struct *tsk;
259 struct thread_info *ti;
260 unsigned long *stackend;
261 int node = tsk_fork_get_node(orig);
262 int err;
264 prepare_to_copy(orig);
266 tsk = alloc_task_struct_node(node);
267 if (!tsk)
268 return NULL;
270 ti = alloc_thread_info_node(tsk, node);
271 if (!ti) {
272 free_task_struct(tsk);
273 return NULL;
276 err = arch_dup_task_struct(tsk, orig);
277 if (err)
278 goto out;
280 tsk->stack = ti;
282 setup_thread_stack(tsk, orig);
283 clear_user_return_notifier(tsk);
284 clear_tsk_need_resched(tsk);
285 stackend = end_of_stack(tsk);
286 *stackend = STACK_END_MAGIC; /* for overflow detection */
288 #ifdef CONFIG_CC_STACKPROTECTOR
289 tsk->stack_canary = get_random_int();
290 #endif
293 * One for us, one for whoever does the "release_task()" (usually
294 * parent)
296 atomic_set(&tsk->usage, 2);
297 #ifdef CONFIG_BLK_DEV_IO_TRACE
298 tsk->btrace_seq = 0;
299 #endif
300 tsk->splice_pipe = NULL;
302 account_kernel_stack(ti, 1);
304 return tsk;
306 out:
307 free_thread_info(ti);
308 free_task_struct(tsk);
309 return NULL;
312 #ifdef CONFIG_MMU
313 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
315 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
316 struct rb_node **rb_link, *rb_parent;
317 int retval;
318 unsigned long charge;
319 struct mempolicy *pol;
321 down_write(&oldmm->mmap_sem);
322 flush_cache_dup_mm(oldmm);
324 * Not linked in yet - no deadlock potential:
326 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
328 mm->locked_vm = 0;
329 mm->mmap = NULL;
330 mm->mmap_cache = NULL;
331 mm->free_area_cache = oldmm->mmap_base;
332 mm->cached_hole_size = ~0UL;
333 mm->map_count = 0;
334 cpumask_clear(mm_cpumask(mm));
335 mm->mm_rb = RB_ROOT;
336 rb_link = &mm->mm_rb.rb_node;
337 rb_parent = NULL;
338 pprev = &mm->mmap;
339 retval = ksm_fork(mm, oldmm);
340 if (retval)
341 goto out;
342 retval = khugepaged_fork(mm, oldmm);
343 if (retval)
344 goto out;
346 prev = NULL;
347 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
348 struct file *file;
350 if (mpnt->vm_flags & VM_DONTCOPY) {
351 long pages = vma_pages(mpnt);
352 mm->total_vm -= pages;
353 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
354 -pages);
355 continue;
357 charge = 0;
358 if (mpnt->vm_flags & VM_ACCOUNT) {
359 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
360 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
361 goto fail_nomem;
362 charge = len;
364 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
365 if (!tmp)
366 goto fail_nomem;
367 *tmp = *mpnt;
368 INIT_LIST_HEAD(&tmp->anon_vma_chain);
369 pol = mpol_dup(vma_policy(mpnt));
370 retval = PTR_ERR(pol);
371 if (IS_ERR(pol))
372 goto fail_nomem_policy;
373 vma_set_policy(tmp, pol);
374 tmp->vm_mm = mm;
375 if (anon_vma_fork(tmp, mpnt))
376 goto fail_nomem_anon_vma_fork;
377 tmp->vm_flags &= ~VM_LOCKED;
378 tmp->vm_next = tmp->vm_prev = NULL;
379 file = tmp->vm_file;
380 if (file) {
381 struct inode *inode = file->f_path.dentry->d_inode;
382 struct address_space *mapping = file->f_mapping;
384 get_file(file);
385 if (tmp->vm_flags & VM_DENYWRITE)
386 atomic_dec(&inode->i_writecount);
387 mutex_lock(&mapping->i_mmap_mutex);
388 if (tmp->vm_flags & VM_SHARED)
389 mapping->i_mmap_writable++;
390 flush_dcache_mmap_lock(mapping);
391 /* insert tmp into the share list, just after mpnt */
392 vma_prio_tree_add(tmp, mpnt);
393 flush_dcache_mmap_unlock(mapping);
394 mutex_unlock(&mapping->i_mmap_mutex);
398 * Clear hugetlb-related page reserves for children. This only
399 * affects MAP_PRIVATE mappings. Faults generated by the child
400 * are not guaranteed to succeed, even if read-only
402 if (is_vm_hugetlb_page(tmp))
403 reset_vma_resv_huge_pages(tmp);
406 * Link in the new vma and copy the page table entries.
408 *pprev = tmp;
409 pprev = &tmp->vm_next;
410 tmp->vm_prev = prev;
411 prev = tmp;
413 __vma_link_rb(mm, tmp, rb_link, rb_parent);
414 rb_link = &tmp->vm_rb.rb_right;
415 rb_parent = &tmp->vm_rb;
417 mm->map_count++;
418 retval = copy_page_range(mm, oldmm, mpnt);
420 if (tmp->vm_ops && tmp->vm_ops->open)
421 tmp->vm_ops->open(tmp);
423 if (retval)
424 goto out;
426 /* a new mm has just been created */
427 arch_dup_mmap(oldmm, mm);
428 retval = 0;
429 out:
430 up_write(&mm->mmap_sem);
431 flush_tlb_mm(oldmm);
432 up_write(&oldmm->mmap_sem);
433 return retval;
434 fail_nomem_anon_vma_fork:
435 mpol_put(pol);
436 fail_nomem_policy:
437 kmem_cache_free(vm_area_cachep, tmp);
438 fail_nomem:
439 retval = -ENOMEM;
440 vm_unacct_memory(charge);
441 goto out;
444 static inline int mm_alloc_pgd(struct mm_struct *mm)
446 mm->pgd = pgd_alloc(mm);
447 if (unlikely(!mm->pgd))
448 return -ENOMEM;
449 return 0;
452 static inline void mm_free_pgd(struct mm_struct *mm)
454 pgd_free(mm, mm->pgd);
456 #else
457 #define dup_mmap(mm, oldmm) (0)
458 #define mm_alloc_pgd(mm) (0)
459 #define mm_free_pgd(mm)
460 #endif /* CONFIG_MMU */
462 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
464 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
465 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
467 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
469 static int __init coredump_filter_setup(char *s)
471 default_dump_filter =
472 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
473 MMF_DUMP_FILTER_MASK;
474 return 1;
477 __setup("coredump_filter=", coredump_filter_setup);
479 #include <linux/init_task.h>
481 static void mm_init_aio(struct mm_struct *mm)
483 #ifdef CONFIG_AIO
484 spin_lock_init(&mm->ioctx_lock);
485 INIT_HLIST_HEAD(&mm->ioctx_list);
486 #endif
489 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
491 atomic_set(&mm->mm_users, 1);
492 atomic_set(&mm->mm_count, 1);
493 init_rwsem(&mm->mmap_sem);
494 INIT_LIST_HEAD(&mm->mmlist);
495 mm->flags = (current->mm) ?
496 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
497 mm->core_state = NULL;
498 mm->nr_ptes = 0;
499 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
500 spin_lock_init(&mm->page_table_lock);
501 mm->free_area_cache = TASK_UNMAPPED_BASE;
502 mm->cached_hole_size = ~0UL;
503 mm_init_aio(mm);
504 mm_init_owner(mm, p);
506 if (likely(!mm_alloc_pgd(mm))) {
507 mm->def_flags = 0;
508 mmu_notifier_mm_init(mm);
509 return mm;
512 free_mm(mm);
513 return NULL;
516 static void check_mm(struct mm_struct *mm)
518 int i;
520 for (i = 0; i < NR_MM_COUNTERS; i++) {
521 long x = atomic_long_read(&mm->rss_stat.count[i]);
523 if (unlikely(x))
524 printk(KERN_ALERT "BUG: Bad rss-counter state "
525 "mm:%p idx:%d val:%ld\n", mm, i, x);
528 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
529 VM_BUG_ON(mm->pmd_huge_pte);
530 #endif
534 * Allocate and initialize an mm_struct.
536 struct mm_struct *mm_alloc(void)
538 struct mm_struct *mm;
540 mm = allocate_mm();
541 if (!mm)
542 return NULL;
544 memset(mm, 0, sizeof(*mm));
545 mm_init_cpumask(mm);
546 return mm_init(mm, current);
550 * Called when the last reference to the mm
551 * is dropped: either by a lazy thread or by
552 * mmput. Free the page directory and the mm.
554 void __mmdrop(struct mm_struct *mm)
556 BUG_ON(mm == &init_mm);
557 mm_free_pgd(mm);
558 destroy_context(mm);
559 mmu_notifier_mm_destroy(mm);
560 check_mm(mm);
561 free_mm(mm);
563 EXPORT_SYMBOL_GPL(__mmdrop);
566 * Decrement the use count and release all resources for an mm.
568 void mmput(struct mm_struct *mm)
570 might_sleep();
572 if (atomic_dec_and_test(&mm->mm_users)) {
573 exit_aio(mm);
574 ksm_exit(mm);
575 khugepaged_exit(mm); /* must run before exit_mmap */
576 exit_mmap(mm);
577 set_mm_exe_file(mm, NULL);
578 if (!list_empty(&mm->mmlist)) {
579 spin_lock(&mmlist_lock);
580 list_del(&mm->mmlist);
581 spin_unlock(&mmlist_lock);
583 put_swap_token(mm);
584 if (mm->binfmt)
585 module_put(mm->binfmt->module);
586 mmdrop(mm);
589 EXPORT_SYMBOL_GPL(mmput);
592 * We added or removed a vma mapping the executable. The vmas are only mapped
593 * during exec and are not mapped with the mmap system call.
594 * Callers must hold down_write() on the mm's mmap_sem for these
596 void added_exe_file_vma(struct mm_struct *mm)
598 mm->num_exe_file_vmas++;
601 void removed_exe_file_vma(struct mm_struct *mm)
603 mm->num_exe_file_vmas--;
604 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
605 fput(mm->exe_file);
606 mm->exe_file = NULL;
611 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
613 if (new_exe_file)
614 get_file(new_exe_file);
615 if (mm->exe_file)
616 fput(mm->exe_file);
617 mm->exe_file = new_exe_file;
618 mm->num_exe_file_vmas = 0;
621 struct file *get_mm_exe_file(struct mm_struct *mm)
623 struct file *exe_file;
625 /* We need mmap_sem to protect against races with removal of
626 * VM_EXECUTABLE vmas */
627 down_read(&mm->mmap_sem);
628 exe_file = mm->exe_file;
629 if (exe_file)
630 get_file(exe_file);
631 up_read(&mm->mmap_sem);
632 return exe_file;
635 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
637 /* It's safe to write the exe_file pointer without exe_file_lock because
638 * this is called during fork when the task is not yet in /proc */
639 newmm->exe_file = get_mm_exe_file(oldmm);
643 * get_task_mm - acquire a reference to the task's mm
645 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
646 * this kernel workthread has transiently adopted a user mm with use_mm,
647 * to do its AIO) is not set and if so returns a reference to it, after
648 * bumping up the use count. User must release the mm via mmput()
649 * after use. Typically used by /proc and ptrace.
651 struct mm_struct *get_task_mm(struct task_struct *task)
653 struct mm_struct *mm;
655 task_lock(task);
656 mm = task->mm;
657 if (mm) {
658 if (task->flags & PF_KTHREAD)
659 mm = NULL;
660 else
661 atomic_inc(&mm->mm_users);
663 task_unlock(task);
664 return mm;
666 EXPORT_SYMBOL_GPL(get_task_mm);
668 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
670 struct mm_struct *mm;
671 int err;
673 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
674 if (err)
675 return ERR_PTR(err);
677 mm = get_task_mm(task);
678 if (mm && mm != current->mm &&
679 !ptrace_may_access(task, mode)) {
680 mmput(mm);
681 mm = ERR_PTR(-EACCES);
683 mutex_unlock(&task->signal->cred_guard_mutex);
685 return mm;
688 static void complete_vfork_done(struct task_struct *tsk)
690 struct completion *vfork;
692 task_lock(tsk);
693 vfork = tsk->vfork_done;
694 if (likely(vfork)) {
695 tsk->vfork_done = NULL;
696 complete(vfork);
698 task_unlock(tsk);
701 static int wait_for_vfork_done(struct task_struct *child,
702 struct completion *vfork)
704 int killed;
706 freezer_do_not_count();
707 killed = wait_for_completion_killable(vfork);
708 freezer_count();
710 if (killed) {
711 task_lock(child);
712 child->vfork_done = NULL;
713 task_unlock(child);
716 put_task_struct(child);
717 return killed;
720 /* Please note the differences between mmput and mm_release.
721 * mmput is called whenever we stop holding onto a mm_struct,
722 * error success whatever.
724 * mm_release is called after a mm_struct has been removed
725 * from the current process.
727 * This difference is important for error handling, when we
728 * only half set up a mm_struct for a new process and need to restore
729 * the old one. Because we mmput the new mm_struct before
730 * restoring the old one. . .
731 * Eric Biederman 10 January 1998
733 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
735 /* Get rid of any futexes when releasing the mm */
736 #ifdef CONFIG_FUTEX
737 if (unlikely(tsk->robust_list)) {
738 exit_robust_list(tsk);
739 tsk->robust_list = NULL;
741 #ifdef CONFIG_COMPAT
742 if (unlikely(tsk->compat_robust_list)) {
743 compat_exit_robust_list(tsk);
744 tsk->compat_robust_list = NULL;
746 #endif
747 if (unlikely(!list_empty(&tsk->pi_state_list)))
748 exit_pi_state_list(tsk);
749 #endif
751 /* Get rid of any cached register state */
752 deactivate_mm(tsk, mm);
754 if (tsk->vfork_done)
755 complete_vfork_done(tsk);
758 * If we're exiting normally, clear a user-space tid field if
759 * requested. We leave this alone when dying by signal, to leave
760 * the value intact in a core dump, and to save the unnecessary
761 * trouble, say, a killed vfork parent shouldn't touch this mm.
762 * Userland only wants this done for a sys_exit.
764 if (tsk->clear_child_tid) {
765 if (!(tsk->flags & PF_SIGNALED) &&
766 atomic_read(&mm->mm_users) > 1) {
768 * We don't check the error code - if userspace has
769 * not set up a proper pointer then tough luck.
771 put_user(0, tsk->clear_child_tid);
772 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
773 1, NULL, NULL, 0);
775 tsk->clear_child_tid = NULL;
780 * Allocate a new mm structure and copy contents from the
781 * mm structure of the passed in task structure.
783 struct mm_struct *dup_mm(struct task_struct *tsk)
785 struct mm_struct *mm, *oldmm = current->mm;
786 int err;
788 if (!oldmm)
789 return NULL;
791 mm = allocate_mm();
792 if (!mm)
793 goto fail_nomem;
795 memcpy(mm, oldmm, sizeof(*mm));
796 mm_init_cpumask(mm);
798 /* Initializing for Swap token stuff */
799 mm->token_priority = 0;
800 mm->last_interval = 0;
802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
803 mm->pmd_huge_pte = NULL;
804 #endif
806 if (!mm_init(mm, tsk))
807 goto fail_nomem;
809 if (init_new_context(tsk, mm))
810 goto fail_nocontext;
812 dup_mm_exe_file(oldmm, mm);
814 err = dup_mmap(mm, oldmm);
815 if (err)
816 goto free_pt;
818 mm->hiwater_rss = get_mm_rss(mm);
819 mm->hiwater_vm = mm->total_vm;
821 if (mm->binfmt && !try_module_get(mm->binfmt->module))
822 goto free_pt;
824 return mm;
826 free_pt:
827 /* don't put binfmt in mmput, we haven't got module yet */
828 mm->binfmt = NULL;
829 mmput(mm);
831 fail_nomem:
832 return NULL;
834 fail_nocontext:
836 * If init_new_context() failed, we cannot use mmput() to free the mm
837 * because it calls destroy_context()
839 mm_free_pgd(mm);
840 free_mm(mm);
841 return NULL;
844 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
846 struct mm_struct *mm, *oldmm;
847 int retval;
849 tsk->min_flt = tsk->maj_flt = 0;
850 tsk->nvcsw = tsk->nivcsw = 0;
851 #ifdef CONFIG_DETECT_HUNG_TASK
852 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
853 #endif
855 tsk->mm = NULL;
856 tsk->active_mm = NULL;
859 * Are we cloning a kernel thread?
861 * We need to steal a active VM for that..
863 oldmm = current->mm;
864 if (!oldmm)
865 return 0;
867 if (clone_flags & CLONE_VM) {
868 atomic_inc(&oldmm->mm_users);
869 mm = oldmm;
870 goto good_mm;
873 retval = -ENOMEM;
874 mm = dup_mm(tsk);
875 if (!mm)
876 goto fail_nomem;
878 good_mm:
879 /* Initializing for Swap token stuff */
880 mm->token_priority = 0;
881 mm->last_interval = 0;
883 tsk->mm = mm;
884 tsk->active_mm = mm;
885 return 0;
887 fail_nomem:
888 return retval;
891 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
893 struct fs_struct *fs = current->fs;
894 if (clone_flags & CLONE_FS) {
895 /* tsk->fs is already what we want */
896 spin_lock(&fs->lock);
897 if (fs->in_exec) {
898 spin_unlock(&fs->lock);
899 return -EAGAIN;
901 fs->users++;
902 spin_unlock(&fs->lock);
903 return 0;
905 tsk->fs = copy_fs_struct(fs);
906 if (!tsk->fs)
907 return -ENOMEM;
908 return 0;
911 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
913 struct files_struct *oldf, *newf;
914 int error = 0;
917 * A background process may not have any files ...
919 oldf = current->files;
920 if (!oldf)
921 goto out;
923 if (clone_flags & CLONE_FILES) {
924 atomic_inc(&oldf->count);
925 goto out;
928 newf = dup_fd(oldf, &error);
929 if (!newf)
930 goto out;
932 tsk->files = newf;
933 error = 0;
934 out:
935 return error;
938 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
940 #ifdef CONFIG_BLOCK
941 struct io_context *ioc = current->io_context;
942 struct io_context *new_ioc;
944 if (!ioc)
945 return 0;
947 * Share io context with parent, if CLONE_IO is set
949 if (clone_flags & CLONE_IO) {
950 tsk->io_context = ioc_task_link(ioc);
951 if (unlikely(!tsk->io_context))
952 return -ENOMEM;
953 } else if (ioprio_valid(ioc->ioprio)) {
954 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
955 if (unlikely(!new_ioc))
956 return -ENOMEM;
958 new_ioc->ioprio = ioc->ioprio;
959 put_io_context(new_ioc);
961 #endif
962 return 0;
965 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
967 struct sighand_struct *sig;
969 if (clone_flags & CLONE_SIGHAND) {
970 atomic_inc(&current->sighand->count);
971 return 0;
973 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
974 rcu_assign_pointer(tsk->sighand, sig);
975 if (!sig)
976 return -ENOMEM;
977 atomic_set(&sig->count, 1);
978 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
979 return 0;
982 void __cleanup_sighand(struct sighand_struct *sighand)
984 if (atomic_dec_and_test(&sighand->count)) {
985 signalfd_cleanup(sighand);
986 kmem_cache_free(sighand_cachep, sighand);
992 * Initialize POSIX timer handling for a thread group.
994 static void posix_cpu_timers_init_group(struct signal_struct *sig)
996 unsigned long cpu_limit;
998 /* Thread group counters. */
999 thread_group_cputime_init(sig);
1001 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1002 if (cpu_limit != RLIM_INFINITY) {
1003 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1004 sig->cputimer.running = 1;
1007 /* The timer lists. */
1008 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1009 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1010 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1013 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1015 struct signal_struct *sig;
1017 if (clone_flags & CLONE_THREAD)
1018 return 0;
1020 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1021 tsk->signal = sig;
1022 if (!sig)
1023 return -ENOMEM;
1025 sig->nr_threads = 1;
1026 atomic_set(&sig->live, 1);
1027 atomic_set(&sig->sigcnt, 1);
1028 init_waitqueue_head(&sig->wait_chldexit);
1029 if (clone_flags & CLONE_NEWPID)
1030 sig->flags |= SIGNAL_UNKILLABLE;
1031 sig->curr_target = tsk;
1032 init_sigpending(&sig->shared_pending);
1033 INIT_LIST_HEAD(&sig->posix_timers);
1035 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1036 sig->real_timer.function = it_real_fn;
1038 task_lock(current->group_leader);
1039 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1040 task_unlock(current->group_leader);
1042 posix_cpu_timers_init_group(sig);
1044 tty_audit_fork(sig);
1045 sched_autogroup_fork(sig);
1047 #ifdef CONFIG_CGROUPS
1048 init_rwsem(&sig->group_rwsem);
1049 #endif
1051 sig->oom_adj = current->signal->oom_adj;
1052 sig->oom_score_adj = current->signal->oom_score_adj;
1053 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1055 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1056 current->signal->is_child_subreaper;
1058 mutex_init(&sig->cred_guard_mutex);
1060 return 0;
1063 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1065 unsigned long new_flags = p->flags;
1067 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1068 new_flags |= PF_FORKNOEXEC;
1069 p->flags = new_flags;
1072 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1074 current->clear_child_tid = tidptr;
1076 return task_pid_vnr(current);
1079 static void rt_mutex_init_task(struct task_struct *p)
1081 raw_spin_lock_init(&p->pi_lock);
1082 #ifdef CONFIG_RT_MUTEXES
1083 plist_head_init(&p->pi_waiters);
1084 p->pi_blocked_on = NULL;
1085 #endif
1088 #ifdef CONFIG_MM_OWNER
1089 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1091 mm->owner = p;
1093 #endif /* CONFIG_MM_OWNER */
1096 * Initialize POSIX timer handling for a single task.
1098 static void posix_cpu_timers_init(struct task_struct *tsk)
1100 tsk->cputime_expires.prof_exp = 0;
1101 tsk->cputime_expires.virt_exp = 0;
1102 tsk->cputime_expires.sched_exp = 0;
1103 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1104 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1105 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1109 * This creates a new process as a copy of the old one,
1110 * but does not actually start it yet.
1112 * It copies the registers, and all the appropriate
1113 * parts of the process environment (as per the clone
1114 * flags). The actual kick-off is left to the caller.
1116 static struct task_struct *copy_process(unsigned long clone_flags,
1117 unsigned long stack_start,
1118 struct pt_regs *regs,
1119 unsigned long stack_size,
1120 int __user *child_tidptr,
1121 struct pid *pid,
1122 int trace)
1124 int retval;
1125 struct task_struct *p;
1126 int cgroup_callbacks_done = 0;
1128 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1129 return ERR_PTR(-EINVAL);
1132 * Thread groups must share signals as well, and detached threads
1133 * can only be started up within the thread group.
1135 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1136 return ERR_PTR(-EINVAL);
1139 * Shared signal handlers imply shared VM. By way of the above,
1140 * thread groups also imply shared VM. Blocking this case allows
1141 * for various simplifications in other code.
1143 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1144 return ERR_PTR(-EINVAL);
1147 * Siblings of global init remain as zombies on exit since they are
1148 * not reaped by their parent (swapper). To solve this and to avoid
1149 * multi-rooted process trees, prevent global and container-inits
1150 * from creating siblings.
1152 if ((clone_flags & CLONE_PARENT) &&
1153 current->signal->flags & SIGNAL_UNKILLABLE)
1154 return ERR_PTR(-EINVAL);
1156 retval = security_task_create(clone_flags);
1157 if (retval)
1158 goto fork_out;
1160 retval = -ENOMEM;
1161 p = dup_task_struct(current);
1162 if (!p)
1163 goto fork_out;
1165 ftrace_graph_init_task(p);
1167 rt_mutex_init_task(p);
1169 #ifdef CONFIG_PROVE_LOCKING
1170 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1171 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1172 #endif
1173 retval = -EAGAIN;
1174 if (atomic_read(&p->real_cred->user->processes) >=
1175 task_rlimit(p, RLIMIT_NPROC)) {
1176 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1177 p->real_cred->user != INIT_USER)
1178 goto bad_fork_free;
1180 current->flags &= ~PF_NPROC_EXCEEDED;
1182 retval = copy_creds(p, clone_flags);
1183 if (retval < 0)
1184 goto bad_fork_free;
1187 * If multiple threads are within copy_process(), then this check
1188 * triggers too late. This doesn't hurt, the check is only there
1189 * to stop root fork bombs.
1191 retval = -EAGAIN;
1192 if (nr_threads >= max_threads)
1193 goto bad_fork_cleanup_count;
1195 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1196 goto bad_fork_cleanup_count;
1198 p->did_exec = 0;
1199 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1200 copy_flags(clone_flags, p);
1201 INIT_LIST_HEAD(&p->children);
1202 INIT_LIST_HEAD(&p->sibling);
1203 rcu_copy_process(p);
1204 p->vfork_done = NULL;
1205 spin_lock_init(&p->alloc_lock);
1207 init_sigpending(&p->pending);
1209 p->utime = p->stime = p->gtime = 0;
1210 p->utimescaled = p->stimescaled = 0;
1211 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1212 p->prev_utime = p->prev_stime = 0;
1213 #endif
1214 #if defined(SPLIT_RSS_COUNTING)
1215 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1216 #endif
1218 p->default_timer_slack_ns = current->timer_slack_ns;
1220 task_io_accounting_init(&p->ioac);
1221 acct_clear_integrals(p);
1223 posix_cpu_timers_init(p);
1225 do_posix_clock_monotonic_gettime(&p->start_time);
1226 p->real_start_time = p->start_time;
1227 monotonic_to_bootbased(&p->real_start_time);
1228 p->io_context = NULL;
1229 p->audit_context = NULL;
1230 if (clone_flags & CLONE_THREAD)
1231 threadgroup_change_begin(current);
1232 cgroup_fork(p);
1233 #ifdef CONFIG_NUMA
1234 p->mempolicy = mpol_dup(p->mempolicy);
1235 if (IS_ERR(p->mempolicy)) {
1236 retval = PTR_ERR(p->mempolicy);
1237 p->mempolicy = NULL;
1238 goto bad_fork_cleanup_cgroup;
1240 mpol_fix_fork_child_flag(p);
1241 #endif
1242 #ifdef CONFIG_CPUSETS
1243 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1244 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1245 seqcount_init(&p->mems_allowed_seq);
1246 #endif
1247 #ifdef CONFIG_TRACE_IRQFLAGS
1248 p->irq_events = 0;
1249 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1250 p->hardirqs_enabled = 1;
1251 #else
1252 p->hardirqs_enabled = 0;
1253 #endif
1254 p->hardirq_enable_ip = 0;
1255 p->hardirq_enable_event = 0;
1256 p->hardirq_disable_ip = _THIS_IP_;
1257 p->hardirq_disable_event = 0;
1258 p->softirqs_enabled = 1;
1259 p->softirq_enable_ip = _THIS_IP_;
1260 p->softirq_enable_event = 0;
1261 p->softirq_disable_ip = 0;
1262 p->softirq_disable_event = 0;
1263 p->hardirq_context = 0;
1264 p->softirq_context = 0;
1265 #endif
1266 #ifdef CONFIG_LOCKDEP
1267 p->lockdep_depth = 0; /* no locks held yet */
1268 p->curr_chain_key = 0;
1269 p->lockdep_recursion = 0;
1270 #endif
1272 #ifdef CONFIG_DEBUG_MUTEXES
1273 p->blocked_on = NULL; /* not blocked yet */
1274 #endif
1275 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1276 p->memcg_batch.do_batch = 0;
1277 p->memcg_batch.memcg = NULL;
1278 #endif
1280 /* Perform scheduler related setup. Assign this task to a CPU. */
1281 sched_fork(p);
1283 retval = perf_event_init_task(p);
1284 if (retval)
1285 goto bad_fork_cleanup_policy;
1286 retval = audit_alloc(p);
1287 if (retval)
1288 goto bad_fork_cleanup_policy;
1289 /* copy all the process information */
1290 retval = copy_semundo(clone_flags, p);
1291 if (retval)
1292 goto bad_fork_cleanup_audit;
1293 retval = copy_files(clone_flags, p);
1294 if (retval)
1295 goto bad_fork_cleanup_semundo;
1296 retval = copy_fs(clone_flags, p);
1297 if (retval)
1298 goto bad_fork_cleanup_files;
1299 retval = copy_sighand(clone_flags, p);
1300 if (retval)
1301 goto bad_fork_cleanup_fs;
1302 retval = copy_signal(clone_flags, p);
1303 if (retval)
1304 goto bad_fork_cleanup_sighand;
1305 retval = copy_mm(clone_flags, p);
1306 if (retval)
1307 goto bad_fork_cleanup_signal;
1308 retval = copy_namespaces(clone_flags, p);
1309 if (retval)
1310 goto bad_fork_cleanup_mm;
1311 retval = copy_io(clone_flags, p);
1312 if (retval)
1313 goto bad_fork_cleanup_namespaces;
1314 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1315 if (retval)
1316 goto bad_fork_cleanup_io;
1318 if (pid != &init_struct_pid) {
1319 retval = -ENOMEM;
1320 pid = alloc_pid(p->nsproxy->pid_ns);
1321 if (!pid)
1322 goto bad_fork_cleanup_io;
1325 p->pid = pid_nr(pid);
1326 p->tgid = p->pid;
1327 if (clone_flags & CLONE_THREAD)
1328 p->tgid = current->tgid;
1330 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1332 * Clear TID on mm_release()?
1334 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1335 #ifdef CONFIG_BLOCK
1336 p->plug = NULL;
1337 #endif
1338 #ifdef CONFIG_FUTEX
1339 p->robust_list = NULL;
1340 #ifdef CONFIG_COMPAT
1341 p->compat_robust_list = NULL;
1342 #endif
1343 INIT_LIST_HEAD(&p->pi_state_list);
1344 p->pi_state_cache = NULL;
1345 #endif
1347 * sigaltstack should be cleared when sharing the same VM
1349 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1350 p->sas_ss_sp = p->sas_ss_size = 0;
1353 * Syscall tracing and stepping should be turned off in the
1354 * child regardless of CLONE_PTRACE.
1356 user_disable_single_step(p);
1357 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1358 #ifdef TIF_SYSCALL_EMU
1359 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1360 #endif
1361 clear_all_latency_tracing(p);
1363 /* ok, now we should be set up.. */
1364 if (clone_flags & CLONE_THREAD)
1365 p->exit_signal = -1;
1366 else if (clone_flags & CLONE_PARENT)
1367 p->exit_signal = current->group_leader->exit_signal;
1368 else
1369 p->exit_signal = (clone_flags & CSIGNAL);
1371 p->pdeath_signal = 0;
1372 p->exit_state = 0;
1374 p->nr_dirtied = 0;
1375 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1376 p->dirty_paused_when = 0;
1379 * Ok, make it visible to the rest of the system.
1380 * We dont wake it up yet.
1382 p->group_leader = p;
1383 INIT_LIST_HEAD(&p->thread_group);
1385 /* Now that the task is set up, run cgroup callbacks if
1386 * necessary. We need to run them before the task is visible
1387 * on the tasklist. */
1388 cgroup_fork_callbacks(p);
1389 cgroup_callbacks_done = 1;
1391 /* Need tasklist lock for parent etc handling! */
1392 write_lock_irq(&tasklist_lock);
1394 /* CLONE_PARENT re-uses the old parent */
1395 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1396 p->real_parent = current->real_parent;
1397 p->parent_exec_id = current->parent_exec_id;
1398 } else {
1399 p->real_parent = current;
1400 p->parent_exec_id = current->self_exec_id;
1403 spin_lock(&current->sighand->siglock);
1406 * Process group and session signals need to be delivered to just the
1407 * parent before the fork or both the parent and the child after the
1408 * fork. Restart if a signal comes in before we add the new process to
1409 * it's process group.
1410 * A fatal signal pending means that current will exit, so the new
1411 * thread can't slip out of an OOM kill (or normal SIGKILL).
1413 recalc_sigpending();
1414 if (signal_pending(current)) {
1415 spin_unlock(&current->sighand->siglock);
1416 write_unlock_irq(&tasklist_lock);
1417 retval = -ERESTARTNOINTR;
1418 goto bad_fork_free_pid;
1421 if (clone_flags & CLONE_THREAD) {
1422 current->signal->nr_threads++;
1423 atomic_inc(&current->signal->live);
1424 atomic_inc(&current->signal->sigcnt);
1425 p->group_leader = current->group_leader;
1426 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1429 if (likely(p->pid)) {
1430 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1432 if (thread_group_leader(p)) {
1433 if (is_child_reaper(pid))
1434 p->nsproxy->pid_ns->child_reaper = p;
1436 p->signal->leader_pid = pid;
1437 p->signal->tty = tty_kref_get(current->signal->tty);
1438 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1439 attach_pid(p, PIDTYPE_SID, task_session(current));
1440 list_add_tail(&p->sibling, &p->real_parent->children);
1441 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1442 __this_cpu_inc(process_counts);
1444 attach_pid(p, PIDTYPE_PID, pid);
1445 nr_threads++;
1448 total_forks++;
1449 spin_unlock(&current->sighand->siglock);
1450 write_unlock_irq(&tasklist_lock);
1451 proc_fork_connector(p);
1452 cgroup_post_fork(p);
1453 if (clone_flags & CLONE_THREAD)
1454 threadgroup_change_end(current);
1455 perf_event_fork(p);
1457 trace_task_newtask(p, clone_flags);
1459 return p;
1461 bad_fork_free_pid:
1462 if (pid != &init_struct_pid)
1463 free_pid(pid);
1464 bad_fork_cleanup_io:
1465 if (p->io_context)
1466 exit_io_context(p);
1467 bad_fork_cleanup_namespaces:
1468 if (unlikely(clone_flags & CLONE_NEWPID))
1469 pid_ns_release_proc(p->nsproxy->pid_ns);
1470 exit_task_namespaces(p);
1471 bad_fork_cleanup_mm:
1472 if (p->mm)
1473 mmput(p->mm);
1474 bad_fork_cleanup_signal:
1475 if (!(clone_flags & CLONE_THREAD))
1476 free_signal_struct(p->signal);
1477 bad_fork_cleanup_sighand:
1478 __cleanup_sighand(p->sighand);
1479 bad_fork_cleanup_fs:
1480 exit_fs(p); /* blocking */
1481 bad_fork_cleanup_files:
1482 exit_files(p); /* blocking */
1483 bad_fork_cleanup_semundo:
1484 exit_sem(p);
1485 bad_fork_cleanup_audit:
1486 audit_free(p);
1487 bad_fork_cleanup_policy:
1488 perf_event_free_task(p);
1489 #ifdef CONFIG_NUMA
1490 mpol_put(p->mempolicy);
1491 bad_fork_cleanup_cgroup:
1492 #endif
1493 if (clone_flags & CLONE_THREAD)
1494 threadgroup_change_end(current);
1495 cgroup_exit(p, cgroup_callbacks_done);
1496 delayacct_tsk_free(p);
1497 module_put(task_thread_info(p)->exec_domain->module);
1498 bad_fork_cleanup_count:
1499 atomic_dec(&p->cred->user->processes);
1500 exit_creds(p);
1501 bad_fork_free:
1502 free_task(p);
1503 fork_out:
1504 return ERR_PTR(retval);
1507 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1509 memset(regs, 0, sizeof(struct pt_regs));
1510 return regs;
1513 static inline void init_idle_pids(struct pid_link *links)
1515 enum pid_type type;
1517 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1518 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1519 links[type].pid = &init_struct_pid;
1523 struct task_struct * __cpuinit fork_idle(int cpu)
1525 struct task_struct *task;
1526 struct pt_regs regs;
1528 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1529 &init_struct_pid, 0);
1530 if (!IS_ERR(task)) {
1531 init_idle_pids(task->pids);
1532 init_idle(task, cpu);
1535 return task;
1539 * Ok, this is the main fork-routine.
1541 * It copies the process, and if successful kick-starts
1542 * it and waits for it to finish using the VM if required.
1544 long do_fork(unsigned long clone_flags,
1545 unsigned long stack_start,
1546 struct pt_regs *regs,
1547 unsigned long stack_size,
1548 int __user *parent_tidptr,
1549 int __user *child_tidptr)
1551 struct task_struct *p;
1552 int trace = 0;
1553 long nr;
1556 * Do some preliminary argument and permissions checking before we
1557 * actually start allocating stuff
1559 if (clone_flags & CLONE_NEWUSER) {
1560 if (clone_flags & CLONE_THREAD)
1561 return -EINVAL;
1562 /* hopefully this check will go away when userns support is
1563 * complete
1565 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1566 !capable(CAP_SETGID))
1567 return -EPERM;
1571 * Determine whether and which event to report to ptracer. When
1572 * called from kernel_thread or CLONE_UNTRACED is explicitly
1573 * requested, no event is reported; otherwise, report if the event
1574 * for the type of forking is enabled.
1576 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1577 if (clone_flags & CLONE_VFORK)
1578 trace = PTRACE_EVENT_VFORK;
1579 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1580 trace = PTRACE_EVENT_CLONE;
1581 else
1582 trace = PTRACE_EVENT_FORK;
1584 if (likely(!ptrace_event_enabled(current, trace)))
1585 trace = 0;
1588 p = copy_process(clone_flags, stack_start, regs, stack_size,
1589 child_tidptr, NULL, trace);
1591 * Do this prior waking up the new thread - the thread pointer
1592 * might get invalid after that point, if the thread exits quickly.
1594 if (!IS_ERR(p)) {
1595 struct completion vfork;
1597 trace_sched_process_fork(current, p);
1599 nr = task_pid_vnr(p);
1601 if (clone_flags & CLONE_PARENT_SETTID)
1602 put_user(nr, parent_tidptr);
1604 if (clone_flags & CLONE_VFORK) {
1605 p->vfork_done = &vfork;
1606 init_completion(&vfork);
1607 get_task_struct(p);
1610 wake_up_new_task(p);
1612 /* forking complete and child started to run, tell ptracer */
1613 if (unlikely(trace))
1614 ptrace_event(trace, nr);
1616 if (clone_flags & CLONE_VFORK) {
1617 if (!wait_for_vfork_done(p, &vfork))
1618 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1620 } else {
1621 nr = PTR_ERR(p);
1623 return nr;
1626 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1627 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1628 #endif
1630 static void sighand_ctor(void *data)
1632 struct sighand_struct *sighand = data;
1634 spin_lock_init(&sighand->siglock);
1635 init_waitqueue_head(&sighand->signalfd_wqh);
1638 void __init proc_caches_init(void)
1640 sighand_cachep = kmem_cache_create("sighand_cache",
1641 sizeof(struct sighand_struct), 0,
1642 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1643 SLAB_NOTRACK, sighand_ctor);
1644 signal_cachep = kmem_cache_create("signal_cache",
1645 sizeof(struct signal_struct), 0,
1646 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1647 files_cachep = kmem_cache_create("files_cache",
1648 sizeof(struct files_struct), 0,
1649 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1650 fs_cachep = kmem_cache_create("fs_cache",
1651 sizeof(struct fs_struct), 0,
1652 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1654 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1655 * whole struct cpumask for the OFFSTACK case. We could change
1656 * this to *only* allocate as much of it as required by the
1657 * maximum number of CPU's we can ever have. The cpumask_allocation
1658 * is at the end of the structure, exactly for that reason.
1660 mm_cachep = kmem_cache_create("mm_struct",
1661 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1662 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1663 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1664 mmap_init();
1665 nsproxy_cache_init();
1669 * Check constraints on flags passed to the unshare system call.
1671 static int check_unshare_flags(unsigned long unshare_flags)
1673 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1674 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1675 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1676 return -EINVAL;
1678 * Not implemented, but pretend it works if there is nothing to
1679 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1680 * needs to unshare vm.
1682 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1683 /* FIXME: get_task_mm() increments ->mm_users */
1684 if (atomic_read(&current->mm->mm_users) > 1)
1685 return -EINVAL;
1688 return 0;
1692 * Unshare the filesystem structure if it is being shared
1694 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1696 struct fs_struct *fs = current->fs;
1698 if (!(unshare_flags & CLONE_FS) || !fs)
1699 return 0;
1701 /* don't need lock here; in the worst case we'll do useless copy */
1702 if (fs->users == 1)
1703 return 0;
1705 *new_fsp = copy_fs_struct(fs);
1706 if (!*new_fsp)
1707 return -ENOMEM;
1709 return 0;
1713 * Unshare file descriptor table if it is being shared
1715 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1717 struct files_struct *fd = current->files;
1718 int error = 0;
1720 if ((unshare_flags & CLONE_FILES) &&
1721 (fd && atomic_read(&fd->count) > 1)) {
1722 *new_fdp = dup_fd(fd, &error);
1723 if (!*new_fdp)
1724 return error;
1727 return 0;
1731 * unshare allows a process to 'unshare' part of the process
1732 * context which was originally shared using clone. copy_*
1733 * functions used by do_fork() cannot be used here directly
1734 * because they modify an inactive task_struct that is being
1735 * constructed. Here we are modifying the current, active,
1736 * task_struct.
1738 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1740 struct fs_struct *fs, *new_fs = NULL;
1741 struct files_struct *fd, *new_fd = NULL;
1742 struct nsproxy *new_nsproxy = NULL;
1743 int do_sysvsem = 0;
1744 int err;
1746 err = check_unshare_flags(unshare_flags);
1747 if (err)
1748 goto bad_unshare_out;
1751 * If unsharing namespace, must also unshare filesystem information.
1753 if (unshare_flags & CLONE_NEWNS)
1754 unshare_flags |= CLONE_FS;
1756 * CLONE_NEWIPC must also detach from the undolist: after switching
1757 * to a new ipc namespace, the semaphore arrays from the old
1758 * namespace are unreachable.
1760 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1761 do_sysvsem = 1;
1762 err = unshare_fs(unshare_flags, &new_fs);
1763 if (err)
1764 goto bad_unshare_out;
1765 err = unshare_fd(unshare_flags, &new_fd);
1766 if (err)
1767 goto bad_unshare_cleanup_fs;
1768 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1769 if (err)
1770 goto bad_unshare_cleanup_fd;
1772 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1773 if (do_sysvsem) {
1775 * CLONE_SYSVSEM is equivalent to sys_exit().
1777 exit_sem(current);
1780 if (new_nsproxy) {
1781 switch_task_namespaces(current, new_nsproxy);
1782 new_nsproxy = NULL;
1785 task_lock(current);
1787 if (new_fs) {
1788 fs = current->fs;
1789 spin_lock(&fs->lock);
1790 current->fs = new_fs;
1791 if (--fs->users)
1792 new_fs = NULL;
1793 else
1794 new_fs = fs;
1795 spin_unlock(&fs->lock);
1798 if (new_fd) {
1799 fd = current->files;
1800 current->files = new_fd;
1801 new_fd = fd;
1804 task_unlock(current);
1807 if (new_nsproxy)
1808 put_nsproxy(new_nsproxy);
1810 bad_unshare_cleanup_fd:
1811 if (new_fd)
1812 put_files_struct(new_fd);
1814 bad_unshare_cleanup_fs:
1815 if (new_fs)
1816 free_fs_struct(new_fs);
1818 bad_unshare_out:
1819 return err;
1823 * Helper to unshare the files of the current task.
1824 * We don't want to expose copy_files internals to
1825 * the exec layer of the kernel.
1828 int unshare_files(struct files_struct **displaced)
1830 struct task_struct *task = current;
1831 struct files_struct *copy = NULL;
1832 int error;
1834 error = unshare_fd(CLONE_FILES, &copy);
1835 if (error || !copy) {
1836 *displaced = NULL;
1837 return error;
1839 *displaced = task->files;
1840 task_lock(task);
1841 task->files = copy;
1842 task_unlock(task);
1843 return 0;