i40e/i40evf: Add support for mapping pages with DMA attributes
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.h
blob49c7b2089d8e5f99ced01616113fa62154731eb5
1 /*******************************************************************************
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************/
27 #ifndef _I40E_TXRX_H_
28 #define _I40E_TXRX_H_
30 /* Interrupt Throttling and Rate Limiting Goodies */
32 #define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */
33 #define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */
34 #define I40E_ITR_100K 0x0005
35 #define I40E_ITR_50K 0x000A
36 #define I40E_ITR_20K 0x0019
37 #define I40E_ITR_18K 0x001B
38 #define I40E_ITR_8K 0x003E
39 #define I40E_ITR_4K 0x007A
40 #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
41 #define I40E_ITR_RX_DEF I40E_ITR_20K
42 #define I40E_ITR_TX_DEF I40E_ITR_20K
43 #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
44 #define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */
45 #define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */
46 #define I40E_DEFAULT_IRQ_WORK 256
47 #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
48 #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
49 #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
50 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
51 * the value of the rate limit is non-zero
53 #define INTRL_ENA BIT(6)
54 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
55 /**
56 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
57 * @intrl: interrupt rate limit to convert
59 * This function converts a decimal interrupt rate limit to the appropriate
60 * register format expected by the firmware when setting interrupt rate limit.
62 static inline u16 i40e_intrl_usec_to_reg(int intrl)
64 if (intrl >> 2)
65 return ((intrl >> 2) | INTRL_ENA);
66 else
67 return 0;
69 #define I40E_INTRL_8K 125 /* 8000 ints/sec */
70 #define I40E_INTRL_62K 16 /* 62500 ints/sec */
71 #define I40E_INTRL_83K 12 /* 83333 ints/sec */
73 #define I40E_QUEUE_END_OF_LIST 0x7FF
75 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
76 * registers and QINT registers or more generally anywhere in the manual
77 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
78 * register but instead is a special value meaning "don't update" ITR0/1/2.
80 enum i40e_dyn_idx_t {
81 I40E_IDX_ITR0 = 0,
82 I40E_IDX_ITR1 = 1,
83 I40E_IDX_ITR2 = 2,
84 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
87 /* these are indexes into ITRN registers */
88 #define I40E_RX_ITR I40E_IDX_ITR0
89 #define I40E_TX_ITR I40E_IDX_ITR1
90 #define I40E_PE_ITR I40E_IDX_ITR2
92 /* Supported RSS offloads */
93 #define I40E_DEFAULT_RSS_HENA ( \
94 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
95 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
96 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
97 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
98 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
99 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
100 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
101 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
102 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
103 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
104 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
106 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
107 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
108 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
109 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
110 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
111 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
112 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
114 #define i40e_pf_get_default_rss_hena(pf) \
115 (((pf)->flags & I40E_FLAG_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
116 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
118 /* Supported Rx Buffer Sizes (a multiple of 128) */
119 #define I40E_RXBUFFER_256 256
120 #define I40E_RXBUFFER_2048 2048
121 #define I40E_RXBUFFER_3072 3072 /* For FCoE MTU of 2158 */
122 #define I40E_RXBUFFER_4096 4096
123 #define I40E_RXBUFFER_8192 8192
124 #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
126 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
127 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
128 * this adds up to 512 bytes of extra data meaning the smallest allocation
129 * we could have is 1K.
130 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
131 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
133 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
134 #define i40e_rx_desc i40e_32byte_rx_desc
136 #define I40E_RX_DMA_ATTR \
137 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
140 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
141 * @rx_desc: pointer to receive descriptor (in le64 format)
142 * @stat_err_bits: value to mask
144 * This function does some fast chicanery in order to return the
145 * value of the mask which is really only used for boolean tests.
146 * The status_error_len doesn't need to be shifted because it begins
147 * at offset zero.
149 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
150 const u64 stat_err_bits)
152 return !!(rx_desc->wb.qword1.status_error_len &
153 cpu_to_le64(stat_err_bits));
156 /* How many Rx Buffers do we bundle into one write to the hardware ? */
157 #define I40E_RX_BUFFER_WRITE 16 /* Must be power of 2 */
158 #define I40E_RX_INCREMENT(r, i) \
159 do { \
160 (i)++; \
161 if ((i) == (r)->count) \
162 i = 0; \
163 r->next_to_clean = i; \
164 } while (0)
166 #define I40E_RX_NEXT_DESC(r, i, n) \
167 do { \
168 (i)++; \
169 if ((i) == (r)->count) \
170 i = 0; \
171 (n) = I40E_RX_DESC((r), (i)); \
172 } while (0)
174 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
175 do { \
176 I40E_RX_NEXT_DESC((r), (i), (n)); \
177 prefetch((n)); \
178 } while (0)
180 #define I40E_MAX_BUFFER_TXD 8
181 #define I40E_MIN_TX_LEN 17
183 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
184 * In order to align with the read requests we will align the value to
185 * the nearest 4K which represents our maximum read request size.
187 #define I40E_MAX_READ_REQ_SIZE 4096
188 #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
189 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
190 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
193 * i40e_txd_use_count - estimate the number of descriptors needed for Tx
194 * @size: transmit request size in bytes
196 * Due to hardware alignment restrictions (4K alignment), we need to
197 * assume that we can have no more than 12K of data per descriptor, even
198 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
199 * Thus, we need to divide by 12K. But division is slow! Instead,
200 * we decompose the operation into shifts and one relatively cheap
201 * multiply operation.
203 * To divide by 12K, we first divide by 4K, then divide by 3:
204 * To divide by 4K, shift right by 12 bits
205 * To divide by 3, multiply by 85, then divide by 256
206 * (Divide by 256 is done by shifting right by 8 bits)
207 * Finally, we add one to round up. Because 256 isn't an exact multiple of
208 * 3, we'll underestimate near each multiple of 12K. This is actually more
209 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
210 * segment. For our purposes this is accurate out to 1M which is orders of
211 * magnitude greater than our largest possible GSO size.
213 * This would then be implemented as:
214 * return (((size >> 12) * 85) >> 8) + 1;
216 * Since multiplication and division are commutative, we can reorder
217 * operations into:
218 * return ((size * 85) >> 20) + 1;
220 static inline unsigned int i40e_txd_use_count(unsigned int size)
222 return ((size * 85) >> 20) + 1;
225 /* Tx Descriptors needed, worst case */
226 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
227 #define I40E_MIN_DESC_PENDING 4
229 #define I40E_TX_FLAGS_HW_VLAN BIT(1)
230 #define I40E_TX_FLAGS_SW_VLAN BIT(2)
231 #define I40E_TX_FLAGS_TSO BIT(3)
232 #define I40E_TX_FLAGS_IPV4 BIT(4)
233 #define I40E_TX_FLAGS_IPV6 BIT(5)
234 #define I40E_TX_FLAGS_FCCRC BIT(6)
235 #define I40E_TX_FLAGS_FSO BIT(7)
236 #define I40E_TX_FLAGS_TSYN BIT(8)
237 #define I40E_TX_FLAGS_FD_SB BIT(9)
238 #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10)
239 #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
240 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
241 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
242 #define I40E_TX_FLAGS_VLAN_SHIFT 16
244 struct i40e_tx_buffer {
245 struct i40e_tx_desc *next_to_watch;
246 union {
247 struct sk_buff *skb;
248 void *raw_buf;
250 unsigned int bytecount;
251 unsigned short gso_segs;
253 DEFINE_DMA_UNMAP_ADDR(dma);
254 DEFINE_DMA_UNMAP_LEN(len);
255 u32 tx_flags;
258 struct i40e_rx_buffer {
259 dma_addr_t dma;
260 struct page *page;
261 unsigned int page_offset;
264 struct i40e_queue_stats {
265 u64 packets;
266 u64 bytes;
269 struct i40e_tx_queue_stats {
270 u64 restart_queue;
271 u64 tx_busy;
272 u64 tx_done_old;
273 u64 tx_linearize;
274 u64 tx_force_wb;
275 u64 tx_lost_interrupt;
278 struct i40e_rx_queue_stats {
279 u64 non_eop_descs;
280 u64 alloc_page_failed;
281 u64 alloc_buff_failed;
282 u64 page_reuse_count;
283 u64 realloc_count;
286 enum i40e_ring_state_t {
287 __I40E_TX_FDIR_INIT_DONE,
288 __I40E_TX_XPS_INIT_DONE,
291 /* some useful defines for virtchannel interface, which
292 * is the only remaining user of header split
294 #define I40E_RX_DTYPE_NO_SPLIT 0
295 #define I40E_RX_DTYPE_HEADER_SPLIT 1
296 #define I40E_RX_DTYPE_SPLIT_ALWAYS 2
297 #define I40E_RX_SPLIT_L2 0x1
298 #define I40E_RX_SPLIT_IP 0x2
299 #define I40E_RX_SPLIT_TCP_UDP 0x4
300 #define I40E_RX_SPLIT_SCTP 0x8
302 /* struct that defines a descriptor ring, associated with a VSI */
303 struct i40e_ring {
304 struct i40e_ring *next; /* pointer to next ring in q_vector */
305 void *desc; /* Descriptor ring memory */
306 struct device *dev; /* Used for DMA mapping */
307 struct net_device *netdev; /* netdev ring maps to */
308 union {
309 struct i40e_tx_buffer *tx_bi;
310 struct i40e_rx_buffer *rx_bi;
312 unsigned long state;
313 u16 queue_index; /* Queue number of ring */
314 u8 dcb_tc; /* Traffic class of ring */
315 u8 __iomem *tail;
317 /* high bit set means dynamic, use accessor routines to read/write.
318 * hardware only supports 2us resolution for the ITR registers.
319 * these values always store the USER setting, and must be converted
320 * before programming to a register.
322 u16 rx_itr_setting;
323 u16 tx_itr_setting;
325 u16 count; /* Number of descriptors */
326 u16 reg_idx; /* HW register index of the ring */
327 u16 rx_buf_len;
329 /* used in interrupt processing */
330 u16 next_to_use;
331 u16 next_to_clean;
333 u8 atr_sample_rate;
334 u8 atr_count;
336 bool ring_active; /* is ring online or not */
337 bool arm_wb; /* do something to arm write back */
338 u8 packet_stride;
340 u16 flags;
341 #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
343 /* stats structs */
344 struct i40e_queue_stats stats;
345 struct u64_stats_sync syncp;
346 union {
347 struct i40e_tx_queue_stats tx_stats;
348 struct i40e_rx_queue_stats rx_stats;
351 unsigned int size; /* length of descriptor ring in bytes */
352 dma_addr_t dma; /* physical address of ring */
354 struct i40e_vsi *vsi; /* Backreference to associated VSI */
355 struct i40e_q_vector *q_vector; /* Backreference to associated vector */
357 struct rcu_head rcu; /* to avoid race on free */
358 u16 next_to_alloc;
359 struct sk_buff *skb; /* When i40e_clean_rx_ring_irq() must
360 * return before it sees the EOP for
361 * the current packet, we save that skb
362 * here and resume receiving this
363 * packet the next time
364 * i40e_clean_rx_ring_irq() is called
365 * for this ring.
367 } ____cacheline_internodealigned_in_smp;
369 enum i40e_latency_range {
370 I40E_LOWEST_LATENCY = 0,
371 I40E_LOW_LATENCY = 1,
372 I40E_BULK_LATENCY = 2,
373 I40E_ULTRA_LATENCY = 3,
376 struct i40e_ring_container {
377 /* array of pointers to rings */
378 struct i40e_ring *ring;
379 unsigned int total_bytes; /* total bytes processed this int */
380 unsigned int total_packets; /* total packets processed this int */
381 u16 count;
382 enum i40e_latency_range latency_range;
383 u16 itr;
386 /* iterator for handling rings in ring container */
387 #define i40e_for_each_ring(pos, head) \
388 for (pos = (head).ring; pos != NULL; pos = pos->next)
390 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
391 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
392 void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
393 void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
394 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
395 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
396 void i40e_free_tx_resources(struct i40e_ring *tx_ring);
397 void i40e_free_rx_resources(struct i40e_ring *rx_ring);
398 int i40e_napi_poll(struct napi_struct *napi, int budget);
399 #ifdef I40E_FCOE
400 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
401 struct i40e_tx_buffer *first, u32 tx_flags,
402 const u8 hdr_len, u32 td_cmd, u32 td_offset);
403 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
404 struct i40e_ring *tx_ring, u32 *flags);
405 #endif
406 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
407 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
408 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
409 bool __i40e_chk_linearize(struct sk_buff *skb);
412 * i40e_get_head - Retrieve head from head writeback
413 * @tx_ring: tx ring to fetch head of
415 * Returns value of Tx ring head based on value stored
416 * in head write-back location
418 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
420 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
422 return le32_to_cpu(*(volatile __le32 *)head);
426 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
427 * @skb: send buffer
428 * @tx_ring: ring to send buffer on
430 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
431 * there is not enough descriptors available in this ring since we need at least
432 * one descriptor.
434 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
436 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
437 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
438 int count = 0, size = skb_headlen(skb);
440 for (;;) {
441 count += i40e_txd_use_count(size);
443 if (!nr_frags--)
444 break;
446 size = skb_frag_size(frag++);
449 return count;
453 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
454 * @tx_ring: the ring to be checked
455 * @size: the size buffer we want to assure is available
457 * Returns 0 if stop is not needed
459 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
461 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
462 return 0;
463 return __i40e_maybe_stop_tx(tx_ring, size);
467 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
468 * @skb: send buffer
469 * @count: number of buffers used
471 * Note: Our HW can't scatter-gather more than 8 fragments to build
472 * a packet on the wire and so we need to figure out the cases where we
473 * need to linearize the skb.
475 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
477 /* Both TSO and single send will work if count is less than 8 */
478 if (likely(count < I40E_MAX_BUFFER_TXD))
479 return false;
481 if (skb_is_gso(skb))
482 return __i40e_chk_linearize(skb);
484 /* we can support up to 8 data buffers for a single send */
485 return count != I40E_MAX_BUFFER_TXD;
489 * i40e_rx_is_fcoe - returns true if the Rx packet type is FCoE
490 * @ptype: the packet type field from Rx descriptor write-back
492 static inline bool i40e_rx_is_fcoe(u16 ptype)
494 return (ptype >= I40E_RX_PTYPE_L2_FCOE_PAY3) &&
495 (ptype <= I40E_RX_PTYPE_L2_FCOE_VFT_FCOTHER);
499 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
500 * @ring: Tx ring to find the netdev equivalent of
502 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
504 return netdev_get_tx_queue(ring->netdev, ring->queue_index);
506 #endif /* _I40E_TXRX_H_ */