flow_dissector: change port array into src, dst tuple
[linux-2.6/btrfs-unstable.git] / fs / f2fs / segment.h
blob85d7fa7514b2cf1c90429095dc05076be5bdc3dd
1 /*
2 * fs/f2fs/segment.h
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
13 /* constant macro */
14 #define NULL_SEGNO ((unsigned int)(~0))
15 #define NULL_SECNO ((unsigned int)(~0))
17 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26 #define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34 #define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
46 sbi->segs_per_sec)) \
48 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
49 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
51 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
52 #define MAIN_SECS(sbi) (sbi->total_sections)
54 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
55 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
58 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
59 sbi->log_blocks_per_seg))
61 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
62 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64 #define NEXT_FREE_BLKADDR(sbi, curseg) \
65 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
68 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
69 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
70 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
71 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73 #define GET_SEGNO(sbi, blk_addr) \
74 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
75 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
76 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
77 #define GET_SECNO(sbi, segno) \
78 ((segno) / sbi->segs_per_sec)
79 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
80 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82 #define GET_SUM_BLOCK(sbi, segno) \
83 ((sbi->sm_info->ssa_blkaddr) + segno)
85 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
86 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88 #define SIT_ENTRY_OFFSET(sit_i, segno) \
89 (segno % sit_i->sents_per_block)
90 #define SIT_BLOCK_OFFSET(segno) \
91 (segno / SIT_ENTRY_PER_BLOCK)
92 #define START_SEGNO(segno) \
93 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
94 #define SIT_BLK_CNT(sbi) \
95 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
96 #define f2fs_bitmap_size(nr) \
97 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
99 #define SECTOR_FROM_BLOCK(blk_addr) \
100 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
101 #define SECTOR_TO_BLOCK(sectors) \
102 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
103 #define MAX_BIO_BLOCKS(sbi) \
104 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
107 * indicate a block allocation direction: RIGHT and LEFT.
108 * RIGHT means allocating new sections towards the end of volume.
109 * LEFT means the opposite direction.
111 enum {
112 ALLOC_RIGHT = 0,
113 ALLOC_LEFT
117 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
118 * LFS writes data sequentially with cleaning operations.
119 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121 enum {
122 LFS = 0,
127 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
128 * GC_CB is based on cost-benefit algorithm.
129 * GC_GREEDY is based on greedy algorithm.
131 enum {
132 GC_CB = 0,
133 GC_GREEDY
137 * BG_GC means the background cleaning job.
138 * FG_GC means the on-demand cleaning job.
140 enum {
141 BG_GC = 0,
142 FG_GC
145 /* for a function parameter to select a victim segment */
146 struct victim_sel_policy {
147 int alloc_mode; /* LFS or SSR */
148 int gc_mode; /* GC_CB or GC_GREEDY */
149 unsigned long *dirty_segmap; /* dirty segment bitmap */
150 unsigned int max_search; /* maximum # of segments to search */
151 unsigned int offset; /* last scanned bitmap offset */
152 unsigned int ofs_unit; /* bitmap search unit */
153 unsigned int min_cost; /* minimum cost */
154 unsigned int min_segno; /* segment # having min. cost */
157 struct seg_entry {
158 unsigned short valid_blocks; /* # of valid blocks */
159 unsigned char *cur_valid_map; /* validity bitmap of blocks */
161 * # of valid blocks and the validity bitmap stored in the the last
162 * checkpoint pack. This information is used by the SSR mode.
164 unsigned short ckpt_valid_blocks;
165 unsigned char *ckpt_valid_map;
166 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
167 unsigned long long mtime; /* modification time of the segment */
170 struct sec_entry {
171 unsigned int valid_blocks; /* # of valid blocks in a section */
174 struct segment_allocation {
175 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
178 struct inmem_pages {
179 struct list_head list;
180 struct page *page;
183 struct sit_info {
184 const struct segment_allocation *s_ops;
186 block_t sit_base_addr; /* start block address of SIT area */
187 block_t sit_blocks; /* # of blocks used by SIT area */
188 block_t written_valid_blocks; /* # of valid blocks in main area */
189 char *sit_bitmap; /* SIT bitmap pointer */
190 unsigned int bitmap_size; /* SIT bitmap size */
192 unsigned long *tmp_map; /* bitmap for temporal use */
193 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
194 unsigned int dirty_sentries; /* # of dirty sentries */
195 unsigned int sents_per_block; /* # of SIT entries per block */
196 struct mutex sentry_lock; /* to protect SIT cache */
197 struct seg_entry *sentries; /* SIT segment-level cache */
198 struct sec_entry *sec_entries; /* SIT section-level cache */
200 /* for cost-benefit algorithm in cleaning procedure */
201 unsigned long long elapsed_time; /* elapsed time after mount */
202 unsigned long long mounted_time; /* mount time */
203 unsigned long long min_mtime; /* min. modification time */
204 unsigned long long max_mtime; /* max. modification time */
207 struct free_segmap_info {
208 unsigned int start_segno; /* start segment number logically */
209 unsigned int free_segments; /* # of free segments */
210 unsigned int free_sections; /* # of free sections */
211 spinlock_t segmap_lock; /* free segmap lock */
212 unsigned long *free_segmap; /* free segment bitmap */
213 unsigned long *free_secmap; /* free section bitmap */
216 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
217 enum dirty_type {
218 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
219 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
220 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
221 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
222 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
223 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
224 DIRTY, /* to count # of dirty segments */
225 PRE, /* to count # of entirely obsolete segments */
226 NR_DIRTY_TYPE
229 struct dirty_seglist_info {
230 const struct victim_selection *v_ops; /* victim selction operation */
231 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
232 struct mutex seglist_lock; /* lock for segment bitmaps */
233 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
234 unsigned long *victim_secmap; /* background GC victims */
237 /* victim selection function for cleaning and SSR */
238 struct victim_selection {
239 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
240 int, int, char);
243 /* for active log information */
244 struct curseg_info {
245 struct mutex curseg_mutex; /* lock for consistency */
246 struct f2fs_summary_block *sum_blk; /* cached summary block */
247 unsigned char alloc_type; /* current allocation type */
248 unsigned int segno; /* current segment number */
249 unsigned short next_blkoff; /* next block offset to write */
250 unsigned int zone; /* current zone number */
251 unsigned int next_segno; /* preallocated segment */
254 struct sit_entry_set {
255 struct list_head set_list; /* link with all sit sets */
256 unsigned int start_segno; /* start segno of sits in set */
257 unsigned int entry_cnt; /* the # of sit entries in set */
261 * inline functions
263 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
265 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
268 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
269 unsigned int segno)
271 struct sit_info *sit_i = SIT_I(sbi);
272 return &sit_i->sentries[segno];
275 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
276 unsigned int segno)
278 struct sit_info *sit_i = SIT_I(sbi);
279 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
282 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
283 unsigned int segno, int section)
286 * In order to get # of valid blocks in a section instantly from many
287 * segments, f2fs manages two counting structures separately.
289 if (section > 1)
290 return get_sec_entry(sbi, segno)->valid_blocks;
291 else
292 return get_seg_entry(sbi, segno)->valid_blocks;
295 static inline void seg_info_from_raw_sit(struct seg_entry *se,
296 struct f2fs_sit_entry *rs)
298 se->valid_blocks = GET_SIT_VBLOCKS(rs);
299 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
300 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
302 se->type = GET_SIT_TYPE(rs);
303 se->mtime = le64_to_cpu(rs->mtime);
306 static inline void seg_info_to_raw_sit(struct seg_entry *se,
307 struct f2fs_sit_entry *rs)
309 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
310 se->valid_blocks;
311 rs->vblocks = cpu_to_le16(raw_vblocks);
312 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
313 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
314 se->ckpt_valid_blocks = se->valid_blocks;
315 rs->mtime = cpu_to_le64(se->mtime);
318 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
319 unsigned int max, unsigned int segno)
321 unsigned int ret;
322 spin_lock(&free_i->segmap_lock);
323 ret = find_next_bit(free_i->free_segmap, max, segno);
324 spin_unlock(&free_i->segmap_lock);
325 return ret;
328 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
330 struct free_segmap_info *free_i = FREE_I(sbi);
331 unsigned int secno = segno / sbi->segs_per_sec;
332 unsigned int start_segno = secno * sbi->segs_per_sec;
333 unsigned int next;
335 spin_lock(&free_i->segmap_lock);
336 clear_bit(segno, free_i->free_segmap);
337 free_i->free_segments++;
339 next = find_next_bit(free_i->free_segmap,
340 start_segno + sbi->segs_per_sec, start_segno);
341 if (next >= start_segno + sbi->segs_per_sec) {
342 clear_bit(secno, free_i->free_secmap);
343 free_i->free_sections++;
345 spin_unlock(&free_i->segmap_lock);
348 static inline void __set_inuse(struct f2fs_sb_info *sbi,
349 unsigned int segno)
351 struct free_segmap_info *free_i = FREE_I(sbi);
352 unsigned int secno = segno / sbi->segs_per_sec;
353 set_bit(segno, free_i->free_segmap);
354 free_i->free_segments--;
355 if (!test_and_set_bit(secno, free_i->free_secmap))
356 free_i->free_sections--;
359 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
360 unsigned int segno)
362 struct free_segmap_info *free_i = FREE_I(sbi);
363 unsigned int secno = segno / sbi->segs_per_sec;
364 unsigned int start_segno = secno * sbi->segs_per_sec;
365 unsigned int next;
367 spin_lock(&free_i->segmap_lock);
368 if (test_and_clear_bit(segno, free_i->free_segmap)) {
369 free_i->free_segments++;
371 next = find_next_bit(free_i->free_segmap,
372 start_segno + sbi->segs_per_sec, start_segno);
373 if (next >= start_segno + sbi->segs_per_sec) {
374 if (test_and_clear_bit(secno, free_i->free_secmap))
375 free_i->free_sections++;
378 spin_unlock(&free_i->segmap_lock);
381 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
382 unsigned int segno)
384 struct free_segmap_info *free_i = FREE_I(sbi);
385 unsigned int secno = segno / sbi->segs_per_sec;
386 spin_lock(&free_i->segmap_lock);
387 if (!test_and_set_bit(segno, free_i->free_segmap)) {
388 free_i->free_segments--;
389 if (!test_and_set_bit(secno, free_i->free_secmap))
390 free_i->free_sections--;
392 spin_unlock(&free_i->segmap_lock);
395 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
396 void *dst_addr)
398 struct sit_info *sit_i = SIT_I(sbi);
399 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
402 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
404 return SIT_I(sbi)->written_valid_blocks;
407 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
409 return FREE_I(sbi)->free_segments;
412 static inline int reserved_segments(struct f2fs_sb_info *sbi)
414 return SM_I(sbi)->reserved_segments;
417 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
419 return FREE_I(sbi)->free_sections;
422 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
424 return DIRTY_I(sbi)->nr_dirty[PRE];
427 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
429 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
430 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
431 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
432 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
433 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
434 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
437 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
439 return SM_I(sbi)->ovp_segments;
442 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
444 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
447 static inline int reserved_sections(struct f2fs_sb_info *sbi)
449 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
452 static inline bool need_SSR(struct f2fs_sb_info *sbi)
454 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
455 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
456 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
457 reserved_sections(sbi) + 1);
460 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
462 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
463 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
465 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
466 return false;
468 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
469 reserved_sections(sbi));
472 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
474 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
477 static inline int utilization(struct f2fs_sb_info *sbi)
479 return div_u64((u64)valid_user_blocks(sbi) * 100,
480 sbi->user_block_count);
484 * Sometimes f2fs may be better to drop out-of-place update policy.
485 * And, users can control the policy through sysfs entries.
486 * There are five policies with triggering conditions as follows.
487 * F2FS_IPU_FORCE - all the time,
488 * F2FS_IPU_SSR - if SSR mode is activated,
489 * F2FS_IPU_UTIL - if FS utilization is over threashold,
490 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
491 * threashold,
492 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
493 * storages. IPU will be triggered only if the # of dirty
494 * pages over min_fsync_blocks.
495 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
497 #define DEF_MIN_IPU_UTIL 70
498 #define DEF_MIN_FSYNC_BLOCKS 8
500 enum {
501 F2FS_IPU_FORCE,
502 F2FS_IPU_SSR,
503 F2FS_IPU_UTIL,
504 F2FS_IPU_SSR_UTIL,
505 F2FS_IPU_FSYNC,
508 static inline bool need_inplace_update(struct inode *inode)
510 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
511 unsigned int policy = SM_I(sbi)->ipu_policy;
513 /* IPU can be done only for the user data */
514 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
515 return false;
517 if (policy & (0x1 << F2FS_IPU_FORCE))
518 return true;
519 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
520 return true;
521 if (policy & (0x1 << F2FS_IPU_UTIL) &&
522 utilization(sbi) > SM_I(sbi)->min_ipu_util)
523 return true;
524 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
525 utilization(sbi) > SM_I(sbi)->min_ipu_util)
526 return true;
528 /* this is only set during fdatasync */
529 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
530 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
531 return true;
533 return false;
536 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
537 int type)
539 struct curseg_info *curseg = CURSEG_I(sbi, type);
540 return curseg->segno;
543 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
544 int type)
546 struct curseg_info *curseg = CURSEG_I(sbi, type);
547 return curseg->alloc_type;
550 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
552 struct curseg_info *curseg = CURSEG_I(sbi, type);
553 return curseg->next_blkoff;
556 #ifdef CONFIG_F2FS_CHECK_FS
557 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
559 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
562 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
564 BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
565 BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
569 * Summary block is always treated as an invalid block
571 static inline void check_block_count(struct f2fs_sb_info *sbi,
572 int segno, struct f2fs_sit_entry *raw_sit)
574 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
575 int valid_blocks = 0;
576 int cur_pos = 0, next_pos;
578 /* check segment usage */
579 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
581 /* check boundary of a given segment number */
582 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
584 /* check bitmap with valid block count */
585 do {
586 if (is_valid) {
587 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
588 sbi->blocks_per_seg,
589 cur_pos);
590 valid_blocks += next_pos - cur_pos;
591 } else
592 next_pos = find_next_bit_le(&raw_sit->valid_map,
593 sbi->blocks_per_seg,
594 cur_pos);
595 cur_pos = next_pos;
596 is_valid = !is_valid;
597 } while (cur_pos < sbi->blocks_per_seg);
598 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
600 #else
601 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
603 if (segno > TOTAL_SEGS(sbi) - 1)
604 set_sbi_flag(sbi, SBI_NEED_FSCK);
607 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
609 if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
610 set_sbi_flag(sbi, SBI_NEED_FSCK);
614 * Summary block is always treated as an invalid block
616 static inline void check_block_count(struct f2fs_sb_info *sbi,
617 int segno, struct f2fs_sit_entry *raw_sit)
619 /* check segment usage */
620 if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
621 set_sbi_flag(sbi, SBI_NEED_FSCK);
623 /* check boundary of a given segment number */
624 if (segno > TOTAL_SEGS(sbi) - 1)
625 set_sbi_flag(sbi, SBI_NEED_FSCK);
627 #endif
629 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
630 unsigned int start)
632 struct sit_info *sit_i = SIT_I(sbi);
633 unsigned int offset = SIT_BLOCK_OFFSET(start);
634 block_t blk_addr = sit_i->sit_base_addr + offset;
636 check_seg_range(sbi, start);
638 /* calculate sit block address */
639 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
640 blk_addr += sit_i->sit_blocks;
642 return blk_addr;
645 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
646 pgoff_t block_addr)
648 struct sit_info *sit_i = SIT_I(sbi);
649 block_addr -= sit_i->sit_base_addr;
650 if (block_addr < sit_i->sit_blocks)
651 block_addr += sit_i->sit_blocks;
652 else
653 block_addr -= sit_i->sit_blocks;
655 return block_addr + sit_i->sit_base_addr;
658 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
660 unsigned int block_off = SIT_BLOCK_OFFSET(start);
662 f2fs_change_bit(block_off, sit_i->sit_bitmap);
665 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
667 struct sit_info *sit_i = SIT_I(sbi);
668 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
669 sit_i->mounted_time;
672 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
673 unsigned int ofs_in_node, unsigned char version)
675 sum->nid = cpu_to_le32(nid);
676 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
677 sum->version = version;
680 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
682 return __start_cp_addr(sbi) +
683 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
686 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
688 return __start_cp_addr(sbi) +
689 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
690 - (base + 1) + type;
693 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
695 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
696 return true;
697 return false;
700 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
702 struct block_device *bdev = sbi->sb->s_bdev;
703 struct request_queue *q = bdev_get_queue(bdev);
704 return SECTOR_TO_BLOCK(queue_max_sectors(q));
708 * It is very important to gather dirty pages and write at once, so that we can
709 * submit a big bio without interfering other data writes.
710 * By default, 512 pages for directory data,
711 * 512 pages (2MB) * 3 for three types of nodes, and
712 * max_bio_blocks for meta are set.
714 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
716 if (sbi->sb->s_bdi->dirty_exceeded)
717 return 0;
719 if (type == DATA)
720 return sbi->blocks_per_seg;
721 else if (type == NODE)
722 return 3 * sbi->blocks_per_seg;
723 else if (type == META)
724 return MAX_BIO_BLOCKS(sbi);
725 else
726 return 0;
730 * When writing pages, it'd better align nr_to_write for segment size.
732 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
733 struct writeback_control *wbc)
735 long nr_to_write, desired;
737 if (wbc->sync_mode != WB_SYNC_NONE)
738 return 0;
740 nr_to_write = wbc->nr_to_write;
742 if (type == DATA)
743 desired = 4096;
744 else if (type == NODE)
745 desired = 3 * max_hw_blocks(sbi);
746 else
747 desired = MAX_BIO_BLOCKS(sbi);
749 wbc->nr_to_write = desired;
750 return desired - nr_to_write;