flow_dissector: change port array into src, dst tuple
[linux-2.6/btrfs-unstable.git] / fs / f2fs / node.c
blob8ab0cf1930bd2f4a1aa9ae11827c961b204d8519
1 /*
2 * fs/f2fs/node.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
39 si_meminfo(&val);
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 PAGE_CACHE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_CACHE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 } else if (type == DIRTY_DENTS) {
56 if (sbi->sb->s_bdi->dirty_exceeded)
57 return false;
58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60 } else if (type == INO_ENTRIES) {
61 int i;
63 for (i = 0; i <= UPDATE_INO; i++)
64 mem_size += (sbi->im[i].ino_num *
65 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67 } else if (type == EXTENT_CACHE) {
68 mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
69 atomic_read(&sbi->total_ext_node) *
70 sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
72 } else {
73 if (sbi->sb->s_bdi->dirty_exceeded)
74 return false;
76 return res;
79 static void clear_node_page_dirty(struct page *page)
81 struct address_space *mapping = page->mapping;
82 unsigned int long flags;
84 if (PageDirty(page)) {
85 spin_lock_irqsave(&mapping->tree_lock, flags);
86 radix_tree_tag_clear(&mapping->page_tree,
87 page_index(page),
88 PAGECACHE_TAG_DIRTY);
89 spin_unlock_irqrestore(&mapping->tree_lock, flags);
91 clear_page_dirty_for_io(page);
92 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
94 ClearPageUptodate(page);
97 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
99 pgoff_t index = current_nat_addr(sbi, nid);
100 return get_meta_page(sbi, index);
103 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
105 struct page *src_page;
106 struct page *dst_page;
107 pgoff_t src_off;
108 pgoff_t dst_off;
109 void *src_addr;
110 void *dst_addr;
111 struct f2fs_nm_info *nm_i = NM_I(sbi);
113 src_off = current_nat_addr(sbi, nid);
114 dst_off = next_nat_addr(sbi, src_off);
116 /* get current nat block page with lock */
117 src_page = get_meta_page(sbi, src_off);
118 dst_page = grab_meta_page(sbi, dst_off);
119 f2fs_bug_on(sbi, PageDirty(src_page));
121 src_addr = page_address(src_page);
122 dst_addr = page_address(dst_page);
123 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
124 set_page_dirty(dst_page);
125 f2fs_put_page(src_page, 1);
127 set_to_next_nat(nm_i, nid);
129 return dst_page;
132 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
134 return radix_tree_lookup(&nm_i->nat_root, n);
137 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
138 nid_t start, unsigned int nr, struct nat_entry **ep)
140 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
143 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
145 list_del(&e->list);
146 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
147 nm_i->nat_cnt--;
148 kmem_cache_free(nat_entry_slab, e);
151 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
152 struct nat_entry *ne)
154 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
155 struct nat_entry_set *head;
157 if (get_nat_flag(ne, IS_DIRTY))
158 return;
160 head = radix_tree_lookup(&nm_i->nat_set_root, set);
161 if (!head) {
162 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
164 INIT_LIST_HEAD(&head->entry_list);
165 INIT_LIST_HEAD(&head->set_list);
166 head->set = set;
167 head->entry_cnt = 0;
168 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170 list_move_tail(&ne->list, &head->entry_list);
171 nm_i->dirty_nat_cnt++;
172 head->entry_cnt++;
173 set_nat_flag(ne, IS_DIRTY, true);
176 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
177 struct nat_entry *ne)
179 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
180 struct nat_entry_set *head;
182 head = radix_tree_lookup(&nm_i->nat_set_root, set);
183 if (head) {
184 list_move_tail(&ne->list, &nm_i->nat_entries);
185 set_nat_flag(ne, IS_DIRTY, false);
186 head->entry_cnt--;
187 nm_i->dirty_nat_cnt--;
191 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
192 nid_t start, unsigned int nr, struct nat_entry_set **ep)
194 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
195 start, nr);
198 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
200 struct f2fs_nm_info *nm_i = NM_I(sbi);
201 struct nat_entry *e;
202 bool is_cp = true;
204 down_read(&nm_i->nat_tree_lock);
205 e = __lookup_nat_cache(nm_i, nid);
206 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
207 is_cp = false;
208 up_read(&nm_i->nat_tree_lock);
209 return is_cp;
212 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
214 struct f2fs_nm_info *nm_i = NM_I(sbi);
215 struct nat_entry *e;
216 bool fsynced = false;
218 down_read(&nm_i->nat_tree_lock);
219 e = __lookup_nat_cache(nm_i, ino);
220 if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
221 fsynced = true;
222 up_read(&nm_i->nat_tree_lock);
223 return fsynced;
226 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
228 struct f2fs_nm_info *nm_i = NM_I(sbi);
229 struct nat_entry *e;
230 bool need_update = true;
232 down_read(&nm_i->nat_tree_lock);
233 e = __lookup_nat_cache(nm_i, ino);
234 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
235 (get_nat_flag(e, IS_CHECKPOINTED) ||
236 get_nat_flag(e, HAS_FSYNCED_INODE)))
237 need_update = false;
238 up_read(&nm_i->nat_tree_lock);
239 return need_update;
242 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
244 struct nat_entry *new;
246 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
247 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
248 memset(new, 0, sizeof(struct nat_entry));
249 nat_set_nid(new, nid);
250 nat_reset_flag(new);
251 list_add_tail(&new->list, &nm_i->nat_entries);
252 nm_i->nat_cnt++;
253 return new;
256 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
257 struct f2fs_nat_entry *ne)
259 struct nat_entry *e;
261 down_write(&nm_i->nat_tree_lock);
262 e = __lookup_nat_cache(nm_i, nid);
263 if (!e) {
264 e = grab_nat_entry(nm_i, nid);
265 node_info_from_raw_nat(&e->ni, ne);
267 up_write(&nm_i->nat_tree_lock);
270 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
271 block_t new_blkaddr, bool fsync_done)
273 struct f2fs_nm_info *nm_i = NM_I(sbi);
274 struct nat_entry *e;
276 down_write(&nm_i->nat_tree_lock);
277 e = __lookup_nat_cache(nm_i, ni->nid);
278 if (!e) {
279 e = grab_nat_entry(nm_i, ni->nid);
280 copy_node_info(&e->ni, ni);
281 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
282 } else if (new_blkaddr == NEW_ADDR) {
284 * when nid is reallocated,
285 * previous nat entry can be remained in nat cache.
286 * So, reinitialize it with new information.
288 copy_node_info(&e->ni, ni);
289 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
292 /* sanity check */
293 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
294 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
295 new_blkaddr == NULL_ADDR);
296 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
297 new_blkaddr == NEW_ADDR);
298 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
299 nat_get_blkaddr(e) != NULL_ADDR &&
300 new_blkaddr == NEW_ADDR);
302 /* increment version no as node is removed */
303 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
304 unsigned char version = nat_get_version(e);
305 nat_set_version(e, inc_node_version(version));
308 /* change address */
309 nat_set_blkaddr(e, new_blkaddr);
310 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
311 set_nat_flag(e, IS_CHECKPOINTED, false);
312 __set_nat_cache_dirty(nm_i, e);
314 /* update fsync_mark if its inode nat entry is still alive */
315 e = __lookup_nat_cache(nm_i, ni->ino);
316 if (e) {
317 if (fsync_done && ni->nid == ni->ino)
318 set_nat_flag(e, HAS_FSYNCED_INODE, true);
319 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
321 up_write(&nm_i->nat_tree_lock);
324 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
326 struct f2fs_nm_info *nm_i = NM_I(sbi);
328 if (available_free_memory(sbi, NAT_ENTRIES))
329 return 0;
331 down_write(&nm_i->nat_tree_lock);
332 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
333 struct nat_entry *ne;
334 ne = list_first_entry(&nm_i->nat_entries,
335 struct nat_entry, list);
336 __del_from_nat_cache(nm_i, ne);
337 nr_shrink--;
339 up_write(&nm_i->nat_tree_lock);
340 return nr_shrink;
344 * This function always returns success
346 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
348 struct f2fs_nm_info *nm_i = NM_I(sbi);
349 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
350 struct f2fs_summary_block *sum = curseg->sum_blk;
351 nid_t start_nid = START_NID(nid);
352 struct f2fs_nat_block *nat_blk;
353 struct page *page = NULL;
354 struct f2fs_nat_entry ne;
355 struct nat_entry *e;
356 int i;
358 ni->nid = nid;
360 /* Check nat cache */
361 down_read(&nm_i->nat_tree_lock);
362 e = __lookup_nat_cache(nm_i, nid);
363 if (e) {
364 ni->ino = nat_get_ino(e);
365 ni->blk_addr = nat_get_blkaddr(e);
366 ni->version = nat_get_version(e);
368 up_read(&nm_i->nat_tree_lock);
369 if (e)
370 return;
372 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
374 /* Check current segment summary */
375 mutex_lock(&curseg->curseg_mutex);
376 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
377 if (i >= 0) {
378 ne = nat_in_journal(sum, i);
379 node_info_from_raw_nat(ni, &ne);
381 mutex_unlock(&curseg->curseg_mutex);
382 if (i >= 0)
383 goto cache;
385 /* Fill node_info from nat page */
386 page = get_current_nat_page(sbi, start_nid);
387 nat_blk = (struct f2fs_nat_block *)page_address(page);
388 ne = nat_blk->entries[nid - start_nid];
389 node_info_from_raw_nat(ni, &ne);
390 f2fs_put_page(page, 1);
391 cache:
392 /* cache nat entry */
393 cache_nat_entry(NM_I(sbi), nid, &ne);
397 * The maximum depth is four.
398 * Offset[0] will have raw inode offset.
400 static int get_node_path(struct f2fs_inode_info *fi, long block,
401 int offset[4], unsigned int noffset[4])
403 const long direct_index = ADDRS_PER_INODE(fi);
404 const long direct_blks = ADDRS_PER_BLOCK;
405 const long dptrs_per_blk = NIDS_PER_BLOCK;
406 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
407 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
408 int n = 0;
409 int level = 0;
411 noffset[0] = 0;
413 if (block < direct_index) {
414 offset[n] = block;
415 goto got;
417 block -= direct_index;
418 if (block < direct_blks) {
419 offset[n++] = NODE_DIR1_BLOCK;
420 noffset[n] = 1;
421 offset[n] = block;
422 level = 1;
423 goto got;
425 block -= direct_blks;
426 if (block < direct_blks) {
427 offset[n++] = NODE_DIR2_BLOCK;
428 noffset[n] = 2;
429 offset[n] = block;
430 level = 1;
431 goto got;
433 block -= direct_blks;
434 if (block < indirect_blks) {
435 offset[n++] = NODE_IND1_BLOCK;
436 noffset[n] = 3;
437 offset[n++] = block / direct_blks;
438 noffset[n] = 4 + offset[n - 1];
439 offset[n] = block % direct_blks;
440 level = 2;
441 goto got;
443 block -= indirect_blks;
444 if (block < indirect_blks) {
445 offset[n++] = NODE_IND2_BLOCK;
446 noffset[n] = 4 + dptrs_per_blk;
447 offset[n++] = block / direct_blks;
448 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
449 offset[n] = block % direct_blks;
450 level = 2;
451 goto got;
453 block -= indirect_blks;
454 if (block < dindirect_blks) {
455 offset[n++] = NODE_DIND_BLOCK;
456 noffset[n] = 5 + (dptrs_per_blk * 2);
457 offset[n++] = block / indirect_blks;
458 noffset[n] = 6 + (dptrs_per_blk * 2) +
459 offset[n - 1] * (dptrs_per_blk + 1);
460 offset[n++] = (block / direct_blks) % dptrs_per_blk;
461 noffset[n] = 7 + (dptrs_per_blk * 2) +
462 offset[n - 2] * (dptrs_per_blk + 1) +
463 offset[n - 1];
464 offset[n] = block % direct_blks;
465 level = 3;
466 goto got;
467 } else {
468 BUG();
470 got:
471 return level;
475 * Caller should call f2fs_put_dnode(dn).
476 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
477 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
478 * In the case of RDONLY_NODE, we don't need to care about mutex.
480 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
482 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
483 struct page *npage[4];
484 struct page *parent = NULL;
485 int offset[4];
486 unsigned int noffset[4];
487 nid_t nids[4];
488 int level, i;
489 int err = 0;
491 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
493 nids[0] = dn->inode->i_ino;
494 npage[0] = dn->inode_page;
496 if (!npage[0]) {
497 npage[0] = get_node_page(sbi, nids[0]);
498 if (IS_ERR(npage[0]))
499 return PTR_ERR(npage[0]);
502 /* if inline_data is set, should not report any block indices */
503 if (f2fs_has_inline_data(dn->inode) && index) {
504 err = -ENOENT;
505 f2fs_put_page(npage[0], 1);
506 goto release_out;
509 parent = npage[0];
510 if (level != 0)
511 nids[1] = get_nid(parent, offset[0], true);
512 dn->inode_page = npage[0];
513 dn->inode_page_locked = true;
515 /* get indirect or direct nodes */
516 for (i = 1; i <= level; i++) {
517 bool done = false;
519 if (!nids[i] && mode == ALLOC_NODE) {
520 /* alloc new node */
521 if (!alloc_nid(sbi, &(nids[i]))) {
522 err = -ENOSPC;
523 goto release_pages;
526 dn->nid = nids[i];
527 npage[i] = new_node_page(dn, noffset[i], NULL);
528 if (IS_ERR(npage[i])) {
529 alloc_nid_failed(sbi, nids[i]);
530 err = PTR_ERR(npage[i]);
531 goto release_pages;
534 set_nid(parent, offset[i - 1], nids[i], i == 1);
535 alloc_nid_done(sbi, nids[i]);
536 done = true;
537 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
538 npage[i] = get_node_page_ra(parent, offset[i - 1]);
539 if (IS_ERR(npage[i])) {
540 err = PTR_ERR(npage[i]);
541 goto release_pages;
543 done = true;
545 if (i == 1) {
546 dn->inode_page_locked = false;
547 unlock_page(parent);
548 } else {
549 f2fs_put_page(parent, 1);
552 if (!done) {
553 npage[i] = get_node_page(sbi, nids[i]);
554 if (IS_ERR(npage[i])) {
555 err = PTR_ERR(npage[i]);
556 f2fs_put_page(npage[0], 0);
557 goto release_out;
560 if (i < level) {
561 parent = npage[i];
562 nids[i + 1] = get_nid(parent, offset[i], false);
565 dn->nid = nids[level];
566 dn->ofs_in_node = offset[level];
567 dn->node_page = npage[level];
568 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
569 return 0;
571 release_pages:
572 f2fs_put_page(parent, 1);
573 if (i > 1)
574 f2fs_put_page(npage[0], 0);
575 release_out:
576 dn->inode_page = NULL;
577 dn->node_page = NULL;
578 return err;
581 static void truncate_node(struct dnode_of_data *dn)
583 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
584 struct node_info ni;
586 get_node_info(sbi, dn->nid, &ni);
587 if (dn->inode->i_blocks == 0) {
588 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
589 goto invalidate;
591 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
593 /* Deallocate node address */
594 invalidate_blocks(sbi, ni.blk_addr);
595 dec_valid_node_count(sbi, dn->inode);
596 set_node_addr(sbi, &ni, NULL_ADDR, false);
598 if (dn->nid == dn->inode->i_ino) {
599 remove_orphan_inode(sbi, dn->nid);
600 dec_valid_inode_count(sbi);
601 } else {
602 sync_inode_page(dn);
604 invalidate:
605 clear_node_page_dirty(dn->node_page);
606 set_sbi_flag(sbi, SBI_IS_DIRTY);
608 f2fs_put_page(dn->node_page, 1);
610 invalidate_mapping_pages(NODE_MAPPING(sbi),
611 dn->node_page->index, dn->node_page->index);
613 dn->node_page = NULL;
614 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
617 static int truncate_dnode(struct dnode_of_data *dn)
619 struct page *page;
621 if (dn->nid == 0)
622 return 1;
624 /* get direct node */
625 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
626 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
627 return 1;
628 else if (IS_ERR(page))
629 return PTR_ERR(page);
631 /* Make dnode_of_data for parameter */
632 dn->node_page = page;
633 dn->ofs_in_node = 0;
634 truncate_data_blocks(dn);
635 truncate_node(dn);
636 return 1;
639 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
640 int ofs, int depth)
642 struct dnode_of_data rdn = *dn;
643 struct page *page;
644 struct f2fs_node *rn;
645 nid_t child_nid;
646 unsigned int child_nofs;
647 int freed = 0;
648 int i, ret;
650 if (dn->nid == 0)
651 return NIDS_PER_BLOCK + 1;
653 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
655 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
656 if (IS_ERR(page)) {
657 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
658 return PTR_ERR(page);
661 rn = F2FS_NODE(page);
662 if (depth < 3) {
663 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
664 child_nid = le32_to_cpu(rn->in.nid[i]);
665 if (child_nid == 0)
666 continue;
667 rdn.nid = child_nid;
668 ret = truncate_dnode(&rdn);
669 if (ret < 0)
670 goto out_err;
671 set_nid(page, i, 0, false);
673 } else {
674 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
675 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
676 child_nid = le32_to_cpu(rn->in.nid[i]);
677 if (child_nid == 0) {
678 child_nofs += NIDS_PER_BLOCK + 1;
679 continue;
681 rdn.nid = child_nid;
682 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
683 if (ret == (NIDS_PER_BLOCK + 1)) {
684 set_nid(page, i, 0, false);
685 child_nofs += ret;
686 } else if (ret < 0 && ret != -ENOENT) {
687 goto out_err;
690 freed = child_nofs;
693 if (!ofs) {
694 /* remove current indirect node */
695 dn->node_page = page;
696 truncate_node(dn);
697 freed++;
698 } else {
699 f2fs_put_page(page, 1);
701 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
702 return freed;
704 out_err:
705 f2fs_put_page(page, 1);
706 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
707 return ret;
710 static int truncate_partial_nodes(struct dnode_of_data *dn,
711 struct f2fs_inode *ri, int *offset, int depth)
713 struct page *pages[2];
714 nid_t nid[3];
715 nid_t child_nid;
716 int err = 0;
717 int i;
718 int idx = depth - 2;
720 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
721 if (!nid[0])
722 return 0;
724 /* get indirect nodes in the path */
725 for (i = 0; i < idx + 1; i++) {
726 /* reference count'll be increased */
727 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
728 if (IS_ERR(pages[i])) {
729 err = PTR_ERR(pages[i]);
730 idx = i - 1;
731 goto fail;
733 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
736 /* free direct nodes linked to a partial indirect node */
737 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
738 child_nid = get_nid(pages[idx], i, false);
739 if (!child_nid)
740 continue;
741 dn->nid = child_nid;
742 err = truncate_dnode(dn);
743 if (err < 0)
744 goto fail;
745 set_nid(pages[idx], i, 0, false);
748 if (offset[idx + 1] == 0) {
749 dn->node_page = pages[idx];
750 dn->nid = nid[idx];
751 truncate_node(dn);
752 } else {
753 f2fs_put_page(pages[idx], 1);
755 offset[idx]++;
756 offset[idx + 1] = 0;
757 idx--;
758 fail:
759 for (i = idx; i >= 0; i--)
760 f2fs_put_page(pages[i], 1);
762 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
764 return err;
768 * All the block addresses of data and nodes should be nullified.
770 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
772 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
773 int err = 0, cont = 1;
774 int level, offset[4], noffset[4];
775 unsigned int nofs = 0;
776 struct f2fs_inode *ri;
777 struct dnode_of_data dn;
778 struct page *page;
780 trace_f2fs_truncate_inode_blocks_enter(inode, from);
782 level = get_node_path(F2FS_I(inode), from, offset, noffset);
783 restart:
784 page = get_node_page(sbi, inode->i_ino);
785 if (IS_ERR(page)) {
786 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
787 return PTR_ERR(page);
790 set_new_dnode(&dn, inode, page, NULL, 0);
791 unlock_page(page);
793 ri = F2FS_INODE(page);
794 switch (level) {
795 case 0:
796 case 1:
797 nofs = noffset[1];
798 break;
799 case 2:
800 nofs = noffset[1];
801 if (!offset[level - 1])
802 goto skip_partial;
803 err = truncate_partial_nodes(&dn, ri, offset, level);
804 if (err < 0 && err != -ENOENT)
805 goto fail;
806 nofs += 1 + NIDS_PER_BLOCK;
807 break;
808 case 3:
809 nofs = 5 + 2 * NIDS_PER_BLOCK;
810 if (!offset[level - 1])
811 goto skip_partial;
812 err = truncate_partial_nodes(&dn, ri, offset, level);
813 if (err < 0 && err != -ENOENT)
814 goto fail;
815 break;
816 default:
817 BUG();
820 skip_partial:
821 while (cont) {
822 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
823 switch (offset[0]) {
824 case NODE_DIR1_BLOCK:
825 case NODE_DIR2_BLOCK:
826 err = truncate_dnode(&dn);
827 break;
829 case NODE_IND1_BLOCK:
830 case NODE_IND2_BLOCK:
831 err = truncate_nodes(&dn, nofs, offset[1], 2);
832 break;
834 case NODE_DIND_BLOCK:
835 err = truncate_nodes(&dn, nofs, offset[1], 3);
836 cont = 0;
837 break;
839 default:
840 BUG();
842 if (err < 0 && err != -ENOENT)
843 goto fail;
844 if (offset[1] == 0 &&
845 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
846 lock_page(page);
847 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
848 f2fs_put_page(page, 1);
849 goto restart;
851 f2fs_wait_on_page_writeback(page, NODE);
852 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
853 set_page_dirty(page);
854 unlock_page(page);
856 offset[1] = 0;
857 offset[0]++;
858 nofs += err;
860 fail:
861 f2fs_put_page(page, 0);
862 trace_f2fs_truncate_inode_blocks_exit(inode, err);
863 return err > 0 ? 0 : err;
866 int truncate_xattr_node(struct inode *inode, struct page *page)
868 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
869 nid_t nid = F2FS_I(inode)->i_xattr_nid;
870 struct dnode_of_data dn;
871 struct page *npage;
873 if (!nid)
874 return 0;
876 npage = get_node_page(sbi, nid);
877 if (IS_ERR(npage))
878 return PTR_ERR(npage);
880 F2FS_I(inode)->i_xattr_nid = 0;
882 /* need to do checkpoint during fsync */
883 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
885 set_new_dnode(&dn, inode, page, npage, nid);
887 if (page)
888 dn.inode_page_locked = true;
889 truncate_node(&dn);
890 return 0;
894 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
895 * f2fs_unlock_op().
897 void remove_inode_page(struct inode *inode)
899 struct dnode_of_data dn;
901 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
902 if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
903 return;
905 if (truncate_xattr_node(inode, dn.inode_page)) {
906 f2fs_put_dnode(&dn);
907 return;
910 /* remove potential inline_data blocks */
911 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
912 S_ISLNK(inode->i_mode))
913 truncate_data_blocks_range(&dn, 1);
915 /* 0 is possible, after f2fs_new_inode() has failed */
916 f2fs_bug_on(F2FS_I_SB(inode),
917 inode->i_blocks != 0 && inode->i_blocks != 1);
919 /* will put inode & node pages */
920 truncate_node(&dn);
923 struct page *new_inode_page(struct inode *inode)
925 struct dnode_of_data dn;
927 /* allocate inode page for new inode */
928 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
930 /* caller should f2fs_put_page(page, 1); */
931 return new_node_page(&dn, 0, NULL);
934 struct page *new_node_page(struct dnode_of_data *dn,
935 unsigned int ofs, struct page *ipage)
937 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
938 struct node_info old_ni, new_ni;
939 struct page *page;
940 int err;
942 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
943 return ERR_PTR(-EPERM);
945 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
946 if (!page)
947 return ERR_PTR(-ENOMEM);
949 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
950 err = -ENOSPC;
951 goto fail;
954 get_node_info(sbi, dn->nid, &old_ni);
956 /* Reinitialize old_ni with new node page */
957 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
958 new_ni = old_ni;
959 new_ni.ino = dn->inode->i_ino;
960 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
962 f2fs_wait_on_page_writeback(page, NODE);
963 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
964 set_cold_node(dn->inode, page);
965 SetPageUptodate(page);
966 set_page_dirty(page);
968 if (f2fs_has_xattr_block(ofs))
969 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
971 dn->node_page = page;
972 if (ipage)
973 update_inode(dn->inode, ipage);
974 else
975 sync_inode_page(dn);
976 if (ofs == 0)
977 inc_valid_inode_count(sbi);
979 return page;
981 fail:
982 clear_node_page_dirty(page);
983 f2fs_put_page(page, 1);
984 return ERR_PTR(err);
988 * Caller should do after getting the following values.
989 * 0: f2fs_put_page(page, 0)
990 * LOCKED_PAGE: f2fs_put_page(page, 1)
991 * error: nothing
993 static int read_node_page(struct page *page, int rw)
995 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
996 struct node_info ni;
997 struct f2fs_io_info fio = {
998 .type = NODE,
999 .rw = rw,
1002 get_node_info(sbi, page->index, &ni);
1004 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1005 ClearPageUptodate(page);
1006 f2fs_put_page(page, 1);
1007 return -ENOENT;
1010 if (PageUptodate(page))
1011 return LOCKED_PAGE;
1013 fio.blk_addr = ni.blk_addr;
1014 return f2fs_submit_page_bio(sbi, page, &fio);
1018 * Readahead a node page
1020 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1022 struct page *apage;
1023 int err;
1025 apage = find_get_page(NODE_MAPPING(sbi), nid);
1026 if (apage && PageUptodate(apage)) {
1027 f2fs_put_page(apage, 0);
1028 return;
1030 f2fs_put_page(apage, 0);
1032 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1033 if (!apage)
1034 return;
1036 err = read_node_page(apage, READA);
1037 if (err == 0)
1038 f2fs_put_page(apage, 0);
1039 else if (err == LOCKED_PAGE)
1040 f2fs_put_page(apage, 1);
1043 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1045 struct page *page;
1046 int err;
1047 repeat:
1048 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1049 if (!page)
1050 return ERR_PTR(-ENOMEM);
1052 err = read_node_page(page, READ_SYNC);
1053 if (err < 0)
1054 return ERR_PTR(err);
1055 else if (err != LOCKED_PAGE)
1056 lock_page(page);
1058 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1059 ClearPageUptodate(page);
1060 f2fs_put_page(page, 1);
1061 return ERR_PTR(-EIO);
1063 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1064 f2fs_put_page(page, 1);
1065 goto repeat;
1067 return page;
1071 * Return a locked page for the desired node page.
1072 * And, readahead MAX_RA_NODE number of node pages.
1074 struct page *get_node_page_ra(struct page *parent, int start)
1076 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1077 struct blk_plug plug;
1078 struct page *page;
1079 int err, i, end;
1080 nid_t nid;
1082 /* First, try getting the desired direct node. */
1083 nid = get_nid(parent, start, false);
1084 if (!nid)
1085 return ERR_PTR(-ENOENT);
1086 repeat:
1087 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1088 if (!page)
1089 return ERR_PTR(-ENOMEM);
1091 err = read_node_page(page, READ_SYNC);
1092 if (err < 0)
1093 return ERR_PTR(err);
1094 else if (err == LOCKED_PAGE)
1095 goto page_hit;
1097 blk_start_plug(&plug);
1099 /* Then, try readahead for siblings of the desired node */
1100 end = start + MAX_RA_NODE;
1101 end = min(end, NIDS_PER_BLOCK);
1102 for (i = start + 1; i < end; i++) {
1103 nid = get_nid(parent, i, false);
1104 if (!nid)
1105 continue;
1106 ra_node_page(sbi, nid);
1109 blk_finish_plug(&plug);
1111 lock_page(page);
1112 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1113 f2fs_put_page(page, 1);
1114 goto repeat;
1116 page_hit:
1117 if (unlikely(!PageUptodate(page))) {
1118 f2fs_put_page(page, 1);
1119 return ERR_PTR(-EIO);
1121 return page;
1124 void sync_inode_page(struct dnode_of_data *dn)
1126 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1127 update_inode(dn->inode, dn->node_page);
1128 } else if (dn->inode_page) {
1129 if (!dn->inode_page_locked)
1130 lock_page(dn->inode_page);
1131 update_inode(dn->inode, dn->inode_page);
1132 if (!dn->inode_page_locked)
1133 unlock_page(dn->inode_page);
1134 } else {
1135 update_inode_page(dn->inode);
1139 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1140 struct writeback_control *wbc)
1142 pgoff_t index, end;
1143 struct pagevec pvec;
1144 int step = ino ? 2 : 0;
1145 int nwritten = 0, wrote = 0;
1147 pagevec_init(&pvec, 0);
1149 next_step:
1150 index = 0;
1151 end = LONG_MAX;
1153 while (index <= end) {
1154 int i, nr_pages;
1155 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1156 PAGECACHE_TAG_DIRTY,
1157 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1158 if (nr_pages == 0)
1159 break;
1161 for (i = 0; i < nr_pages; i++) {
1162 struct page *page = pvec.pages[i];
1165 * flushing sequence with step:
1166 * 0. indirect nodes
1167 * 1. dentry dnodes
1168 * 2. file dnodes
1170 if (step == 0 && IS_DNODE(page))
1171 continue;
1172 if (step == 1 && (!IS_DNODE(page) ||
1173 is_cold_node(page)))
1174 continue;
1175 if (step == 2 && (!IS_DNODE(page) ||
1176 !is_cold_node(page)))
1177 continue;
1180 * If an fsync mode,
1181 * we should not skip writing node pages.
1183 if (ino && ino_of_node(page) == ino)
1184 lock_page(page);
1185 else if (!trylock_page(page))
1186 continue;
1188 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1189 continue_unlock:
1190 unlock_page(page);
1191 continue;
1193 if (ino && ino_of_node(page) != ino)
1194 goto continue_unlock;
1196 if (!PageDirty(page)) {
1197 /* someone wrote it for us */
1198 goto continue_unlock;
1201 if (!clear_page_dirty_for_io(page))
1202 goto continue_unlock;
1204 /* called by fsync() */
1205 if (ino && IS_DNODE(page)) {
1206 set_fsync_mark(page, 1);
1207 if (IS_INODE(page)) {
1208 if (!is_checkpointed_node(sbi, ino) &&
1209 !has_fsynced_inode(sbi, ino))
1210 set_dentry_mark(page, 1);
1211 else
1212 set_dentry_mark(page, 0);
1214 nwritten++;
1215 } else {
1216 set_fsync_mark(page, 0);
1217 set_dentry_mark(page, 0);
1220 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1221 unlock_page(page);
1222 else
1223 wrote++;
1225 if (--wbc->nr_to_write == 0)
1226 break;
1228 pagevec_release(&pvec);
1229 cond_resched();
1231 if (wbc->nr_to_write == 0) {
1232 step = 2;
1233 break;
1237 if (step < 2) {
1238 step++;
1239 goto next_step;
1242 if (wrote)
1243 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1244 return nwritten;
1247 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1249 pgoff_t index = 0, end = LONG_MAX;
1250 struct pagevec pvec;
1251 int ret2 = 0, ret = 0;
1253 pagevec_init(&pvec, 0);
1255 while (index <= end) {
1256 int i, nr_pages;
1257 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1258 PAGECACHE_TAG_WRITEBACK,
1259 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1260 if (nr_pages == 0)
1261 break;
1263 for (i = 0; i < nr_pages; i++) {
1264 struct page *page = pvec.pages[i];
1266 /* until radix tree lookup accepts end_index */
1267 if (unlikely(page->index > end))
1268 continue;
1270 if (ino && ino_of_node(page) == ino) {
1271 f2fs_wait_on_page_writeback(page, NODE);
1272 if (TestClearPageError(page))
1273 ret = -EIO;
1276 pagevec_release(&pvec);
1277 cond_resched();
1280 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1281 ret2 = -ENOSPC;
1282 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1283 ret2 = -EIO;
1284 if (!ret)
1285 ret = ret2;
1286 return ret;
1289 static int f2fs_write_node_page(struct page *page,
1290 struct writeback_control *wbc)
1292 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1293 nid_t nid;
1294 struct node_info ni;
1295 struct f2fs_io_info fio = {
1296 .type = NODE,
1297 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1300 trace_f2fs_writepage(page, NODE);
1302 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1303 goto redirty_out;
1304 if (unlikely(f2fs_cp_error(sbi)))
1305 goto redirty_out;
1307 f2fs_wait_on_page_writeback(page, NODE);
1309 /* get old block addr of this node page */
1310 nid = nid_of_node(page);
1311 f2fs_bug_on(sbi, page->index != nid);
1313 get_node_info(sbi, nid, &ni);
1315 /* This page is already truncated */
1316 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1317 ClearPageUptodate(page);
1318 dec_page_count(sbi, F2FS_DIRTY_NODES);
1319 unlock_page(page);
1320 return 0;
1323 if (wbc->for_reclaim) {
1324 if (!down_read_trylock(&sbi->node_write))
1325 goto redirty_out;
1326 } else {
1327 down_read(&sbi->node_write);
1330 set_page_writeback(page);
1331 fio.blk_addr = ni.blk_addr;
1332 write_node_page(sbi, page, nid, &fio);
1333 set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1334 dec_page_count(sbi, F2FS_DIRTY_NODES);
1335 up_read(&sbi->node_write);
1336 unlock_page(page);
1338 if (wbc->for_reclaim)
1339 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1341 return 0;
1343 redirty_out:
1344 redirty_page_for_writepage(wbc, page);
1345 return AOP_WRITEPAGE_ACTIVATE;
1348 static int f2fs_write_node_pages(struct address_space *mapping,
1349 struct writeback_control *wbc)
1351 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1352 long diff;
1354 trace_f2fs_writepages(mapping->host, wbc, NODE);
1356 /* balancing f2fs's metadata in background */
1357 f2fs_balance_fs_bg(sbi);
1359 /* collect a number of dirty node pages and write together */
1360 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1361 goto skip_write;
1363 diff = nr_pages_to_write(sbi, NODE, wbc);
1364 wbc->sync_mode = WB_SYNC_NONE;
1365 sync_node_pages(sbi, 0, wbc);
1366 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1367 return 0;
1369 skip_write:
1370 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1371 return 0;
1374 static int f2fs_set_node_page_dirty(struct page *page)
1376 trace_f2fs_set_page_dirty(page, NODE);
1378 SetPageUptodate(page);
1379 if (!PageDirty(page)) {
1380 __set_page_dirty_nobuffers(page);
1381 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1382 SetPagePrivate(page);
1383 f2fs_trace_pid(page);
1384 return 1;
1386 return 0;
1390 * Structure of the f2fs node operations
1392 const struct address_space_operations f2fs_node_aops = {
1393 .writepage = f2fs_write_node_page,
1394 .writepages = f2fs_write_node_pages,
1395 .set_page_dirty = f2fs_set_node_page_dirty,
1396 .invalidatepage = f2fs_invalidate_page,
1397 .releasepage = f2fs_release_page,
1400 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1401 nid_t n)
1403 return radix_tree_lookup(&nm_i->free_nid_root, n);
1406 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1407 struct free_nid *i)
1409 list_del(&i->list);
1410 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1413 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1415 struct f2fs_nm_info *nm_i = NM_I(sbi);
1416 struct free_nid *i;
1417 struct nat_entry *ne;
1418 bool allocated = false;
1420 if (!available_free_memory(sbi, FREE_NIDS))
1421 return -1;
1423 /* 0 nid should not be used */
1424 if (unlikely(nid == 0))
1425 return 0;
1427 if (build) {
1428 /* do not add allocated nids */
1429 down_read(&nm_i->nat_tree_lock);
1430 ne = __lookup_nat_cache(nm_i, nid);
1431 if (ne &&
1432 (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1433 nat_get_blkaddr(ne) != NULL_ADDR))
1434 allocated = true;
1435 up_read(&nm_i->nat_tree_lock);
1436 if (allocated)
1437 return 0;
1440 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1441 i->nid = nid;
1442 i->state = NID_NEW;
1444 if (radix_tree_preload(GFP_NOFS)) {
1445 kmem_cache_free(free_nid_slab, i);
1446 return 0;
1449 spin_lock(&nm_i->free_nid_list_lock);
1450 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1451 spin_unlock(&nm_i->free_nid_list_lock);
1452 radix_tree_preload_end();
1453 kmem_cache_free(free_nid_slab, i);
1454 return 0;
1456 list_add_tail(&i->list, &nm_i->free_nid_list);
1457 nm_i->fcnt++;
1458 spin_unlock(&nm_i->free_nid_list_lock);
1459 radix_tree_preload_end();
1460 return 1;
1463 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1465 struct free_nid *i;
1466 bool need_free = false;
1468 spin_lock(&nm_i->free_nid_list_lock);
1469 i = __lookup_free_nid_list(nm_i, nid);
1470 if (i && i->state == NID_NEW) {
1471 __del_from_free_nid_list(nm_i, i);
1472 nm_i->fcnt--;
1473 need_free = true;
1475 spin_unlock(&nm_i->free_nid_list_lock);
1477 if (need_free)
1478 kmem_cache_free(free_nid_slab, i);
1481 static void scan_nat_page(struct f2fs_sb_info *sbi,
1482 struct page *nat_page, nid_t start_nid)
1484 struct f2fs_nm_info *nm_i = NM_I(sbi);
1485 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1486 block_t blk_addr;
1487 int i;
1489 i = start_nid % NAT_ENTRY_PER_BLOCK;
1491 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1493 if (unlikely(start_nid >= nm_i->max_nid))
1494 break;
1496 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1497 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1498 if (blk_addr == NULL_ADDR) {
1499 if (add_free_nid(sbi, start_nid, true) < 0)
1500 break;
1505 static void build_free_nids(struct f2fs_sb_info *sbi)
1507 struct f2fs_nm_info *nm_i = NM_I(sbi);
1508 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1509 struct f2fs_summary_block *sum = curseg->sum_blk;
1510 int i = 0;
1511 nid_t nid = nm_i->next_scan_nid;
1513 /* Enough entries */
1514 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1515 return;
1517 /* readahead nat pages to be scanned */
1518 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1520 while (1) {
1521 struct page *page = get_current_nat_page(sbi, nid);
1523 scan_nat_page(sbi, page, nid);
1524 f2fs_put_page(page, 1);
1526 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1527 if (unlikely(nid >= nm_i->max_nid))
1528 nid = 0;
1530 if (i++ == FREE_NID_PAGES)
1531 break;
1534 /* go to the next free nat pages to find free nids abundantly */
1535 nm_i->next_scan_nid = nid;
1537 /* find free nids from current sum_pages */
1538 mutex_lock(&curseg->curseg_mutex);
1539 for (i = 0; i < nats_in_cursum(sum); i++) {
1540 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1541 nid = le32_to_cpu(nid_in_journal(sum, i));
1542 if (addr == NULL_ADDR)
1543 add_free_nid(sbi, nid, true);
1544 else
1545 remove_free_nid(nm_i, nid);
1547 mutex_unlock(&curseg->curseg_mutex);
1551 * If this function returns success, caller can obtain a new nid
1552 * from second parameter of this function.
1553 * The returned nid could be used ino as well as nid when inode is created.
1555 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1557 struct f2fs_nm_info *nm_i = NM_I(sbi);
1558 struct free_nid *i = NULL;
1559 retry:
1560 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1561 return false;
1563 spin_lock(&nm_i->free_nid_list_lock);
1565 /* We should not use stale free nids created by build_free_nids */
1566 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1567 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1568 list_for_each_entry(i, &nm_i->free_nid_list, list)
1569 if (i->state == NID_NEW)
1570 break;
1572 f2fs_bug_on(sbi, i->state != NID_NEW);
1573 *nid = i->nid;
1574 i->state = NID_ALLOC;
1575 nm_i->fcnt--;
1576 spin_unlock(&nm_i->free_nid_list_lock);
1577 return true;
1579 spin_unlock(&nm_i->free_nid_list_lock);
1581 /* Let's scan nat pages and its caches to get free nids */
1582 mutex_lock(&nm_i->build_lock);
1583 build_free_nids(sbi);
1584 mutex_unlock(&nm_i->build_lock);
1585 goto retry;
1589 * alloc_nid() should be called prior to this function.
1591 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1593 struct f2fs_nm_info *nm_i = NM_I(sbi);
1594 struct free_nid *i;
1596 spin_lock(&nm_i->free_nid_list_lock);
1597 i = __lookup_free_nid_list(nm_i, nid);
1598 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1599 __del_from_free_nid_list(nm_i, i);
1600 spin_unlock(&nm_i->free_nid_list_lock);
1602 kmem_cache_free(free_nid_slab, i);
1606 * alloc_nid() should be called prior to this function.
1608 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1610 struct f2fs_nm_info *nm_i = NM_I(sbi);
1611 struct free_nid *i;
1612 bool need_free = false;
1614 if (!nid)
1615 return;
1617 spin_lock(&nm_i->free_nid_list_lock);
1618 i = __lookup_free_nid_list(nm_i, nid);
1619 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1620 if (!available_free_memory(sbi, FREE_NIDS)) {
1621 __del_from_free_nid_list(nm_i, i);
1622 need_free = true;
1623 } else {
1624 i->state = NID_NEW;
1625 nm_i->fcnt++;
1627 spin_unlock(&nm_i->free_nid_list_lock);
1629 if (need_free)
1630 kmem_cache_free(free_nid_slab, i);
1633 void recover_inline_xattr(struct inode *inode, struct page *page)
1635 void *src_addr, *dst_addr;
1636 size_t inline_size;
1637 struct page *ipage;
1638 struct f2fs_inode *ri;
1640 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1641 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1643 ri = F2FS_INODE(page);
1644 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1645 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1646 goto update_inode;
1649 dst_addr = inline_xattr_addr(ipage);
1650 src_addr = inline_xattr_addr(page);
1651 inline_size = inline_xattr_size(inode);
1653 f2fs_wait_on_page_writeback(ipage, NODE);
1654 memcpy(dst_addr, src_addr, inline_size);
1655 update_inode:
1656 update_inode(inode, ipage);
1657 f2fs_put_page(ipage, 1);
1660 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1662 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1663 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1664 nid_t new_xnid = nid_of_node(page);
1665 struct node_info ni;
1667 /* 1: invalidate the previous xattr nid */
1668 if (!prev_xnid)
1669 goto recover_xnid;
1671 /* Deallocate node address */
1672 get_node_info(sbi, prev_xnid, &ni);
1673 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1674 invalidate_blocks(sbi, ni.blk_addr);
1675 dec_valid_node_count(sbi, inode);
1676 set_node_addr(sbi, &ni, NULL_ADDR, false);
1678 recover_xnid:
1679 /* 2: allocate new xattr nid */
1680 if (unlikely(!inc_valid_node_count(sbi, inode)))
1681 f2fs_bug_on(sbi, 1);
1683 remove_free_nid(NM_I(sbi), new_xnid);
1684 get_node_info(sbi, new_xnid, &ni);
1685 ni.ino = inode->i_ino;
1686 set_node_addr(sbi, &ni, NEW_ADDR, false);
1687 F2FS_I(inode)->i_xattr_nid = new_xnid;
1689 /* 3: update xattr blkaddr */
1690 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1691 set_node_addr(sbi, &ni, blkaddr, false);
1693 update_inode_page(inode);
1696 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1698 struct f2fs_inode *src, *dst;
1699 nid_t ino = ino_of_node(page);
1700 struct node_info old_ni, new_ni;
1701 struct page *ipage;
1703 get_node_info(sbi, ino, &old_ni);
1705 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1706 return -EINVAL;
1708 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1709 if (!ipage)
1710 return -ENOMEM;
1712 /* Should not use this inode from free nid list */
1713 remove_free_nid(NM_I(sbi), ino);
1715 SetPageUptodate(ipage);
1716 fill_node_footer(ipage, ino, ino, 0, true);
1718 src = F2FS_INODE(page);
1719 dst = F2FS_INODE(ipage);
1721 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1722 dst->i_size = 0;
1723 dst->i_blocks = cpu_to_le64(1);
1724 dst->i_links = cpu_to_le32(1);
1725 dst->i_xattr_nid = 0;
1726 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1728 new_ni = old_ni;
1729 new_ni.ino = ino;
1731 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1732 WARN_ON(1);
1733 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1734 inc_valid_inode_count(sbi);
1735 set_page_dirty(ipage);
1736 f2fs_put_page(ipage, 1);
1737 return 0;
1740 int restore_node_summary(struct f2fs_sb_info *sbi,
1741 unsigned int segno, struct f2fs_summary_block *sum)
1743 struct f2fs_node *rn;
1744 struct f2fs_summary *sum_entry;
1745 block_t addr;
1746 int bio_blocks = MAX_BIO_BLOCKS(sbi);
1747 int i, idx, last_offset, nrpages;
1749 /* scan the node segment */
1750 last_offset = sbi->blocks_per_seg;
1751 addr = START_BLOCK(sbi, segno);
1752 sum_entry = &sum->entries[0];
1754 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1755 nrpages = min(last_offset - i, bio_blocks);
1757 /* readahead node pages */
1758 ra_meta_pages(sbi, addr, nrpages, META_POR);
1760 for (idx = addr; idx < addr + nrpages; idx++) {
1761 struct page *page = get_meta_page(sbi, idx);
1763 rn = F2FS_NODE(page);
1764 sum_entry->nid = rn->footer.nid;
1765 sum_entry->version = 0;
1766 sum_entry->ofs_in_node = 0;
1767 sum_entry++;
1768 f2fs_put_page(page, 1);
1771 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1772 addr + nrpages);
1774 return 0;
1777 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1779 struct f2fs_nm_info *nm_i = NM_I(sbi);
1780 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1781 struct f2fs_summary_block *sum = curseg->sum_blk;
1782 int i;
1784 mutex_lock(&curseg->curseg_mutex);
1785 for (i = 0; i < nats_in_cursum(sum); i++) {
1786 struct nat_entry *ne;
1787 struct f2fs_nat_entry raw_ne;
1788 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1790 raw_ne = nat_in_journal(sum, i);
1792 down_write(&nm_i->nat_tree_lock);
1793 ne = __lookup_nat_cache(nm_i, nid);
1794 if (!ne) {
1795 ne = grab_nat_entry(nm_i, nid);
1796 node_info_from_raw_nat(&ne->ni, &raw_ne);
1798 __set_nat_cache_dirty(nm_i, ne);
1799 up_write(&nm_i->nat_tree_lock);
1801 update_nats_in_cursum(sum, -i);
1802 mutex_unlock(&curseg->curseg_mutex);
1805 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1806 struct list_head *head, int max)
1808 struct nat_entry_set *cur;
1810 if (nes->entry_cnt >= max)
1811 goto add_out;
1813 list_for_each_entry(cur, head, set_list) {
1814 if (cur->entry_cnt >= nes->entry_cnt) {
1815 list_add(&nes->set_list, cur->set_list.prev);
1816 return;
1819 add_out:
1820 list_add_tail(&nes->set_list, head);
1823 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1824 struct nat_entry_set *set)
1826 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1827 struct f2fs_summary_block *sum = curseg->sum_blk;
1828 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1829 bool to_journal = true;
1830 struct f2fs_nat_block *nat_blk;
1831 struct nat_entry *ne, *cur;
1832 struct page *page = NULL;
1833 struct f2fs_nm_info *nm_i = NM_I(sbi);
1836 * there are two steps to flush nat entries:
1837 * #1, flush nat entries to journal in current hot data summary block.
1838 * #2, flush nat entries to nat page.
1840 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1841 to_journal = false;
1843 if (to_journal) {
1844 mutex_lock(&curseg->curseg_mutex);
1845 } else {
1846 page = get_next_nat_page(sbi, start_nid);
1847 nat_blk = page_address(page);
1848 f2fs_bug_on(sbi, !nat_blk);
1851 /* flush dirty nats in nat entry set */
1852 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1853 struct f2fs_nat_entry *raw_ne;
1854 nid_t nid = nat_get_nid(ne);
1855 int offset;
1857 if (nat_get_blkaddr(ne) == NEW_ADDR)
1858 continue;
1860 if (to_journal) {
1861 offset = lookup_journal_in_cursum(sum,
1862 NAT_JOURNAL, nid, 1);
1863 f2fs_bug_on(sbi, offset < 0);
1864 raw_ne = &nat_in_journal(sum, offset);
1865 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1866 } else {
1867 raw_ne = &nat_blk->entries[nid - start_nid];
1869 raw_nat_from_node_info(raw_ne, &ne->ni);
1871 down_write(&NM_I(sbi)->nat_tree_lock);
1872 nat_reset_flag(ne);
1873 __clear_nat_cache_dirty(NM_I(sbi), ne);
1874 up_write(&NM_I(sbi)->nat_tree_lock);
1876 if (nat_get_blkaddr(ne) == NULL_ADDR)
1877 add_free_nid(sbi, nid, false);
1880 if (to_journal)
1881 mutex_unlock(&curseg->curseg_mutex);
1882 else
1883 f2fs_put_page(page, 1);
1885 f2fs_bug_on(sbi, set->entry_cnt);
1887 down_write(&nm_i->nat_tree_lock);
1888 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1889 up_write(&nm_i->nat_tree_lock);
1890 kmem_cache_free(nat_entry_set_slab, set);
1894 * This function is called during the checkpointing process.
1896 void flush_nat_entries(struct f2fs_sb_info *sbi)
1898 struct f2fs_nm_info *nm_i = NM_I(sbi);
1899 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1900 struct f2fs_summary_block *sum = curseg->sum_blk;
1901 struct nat_entry_set *setvec[SETVEC_SIZE];
1902 struct nat_entry_set *set, *tmp;
1903 unsigned int found;
1904 nid_t set_idx = 0;
1905 LIST_HEAD(sets);
1907 if (!nm_i->dirty_nat_cnt)
1908 return;
1910 * if there are no enough space in journal to store dirty nat
1911 * entries, remove all entries from journal and merge them
1912 * into nat entry set.
1914 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1915 remove_nats_in_journal(sbi);
1917 down_write(&nm_i->nat_tree_lock);
1918 while ((found = __gang_lookup_nat_set(nm_i,
1919 set_idx, SETVEC_SIZE, setvec))) {
1920 unsigned idx;
1921 set_idx = setvec[found - 1]->set + 1;
1922 for (idx = 0; idx < found; idx++)
1923 __adjust_nat_entry_set(setvec[idx], &sets,
1924 MAX_NAT_JENTRIES(sum));
1926 up_write(&nm_i->nat_tree_lock);
1928 /* flush dirty nats in nat entry set */
1929 list_for_each_entry_safe(set, tmp, &sets, set_list)
1930 __flush_nat_entry_set(sbi, set);
1932 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1935 static int init_node_manager(struct f2fs_sb_info *sbi)
1937 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1938 struct f2fs_nm_info *nm_i = NM_I(sbi);
1939 unsigned char *version_bitmap;
1940 unsigned int nat_segs, nat_blocks;
1942 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1944 /* segment_count_nat includes pair segment so divide to 2. */
1945 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1946 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1948 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1950 /* not used nids: 0, node, meta, (and root counted as valid node) */
1951 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1952 nm_i->fcnt = 0;
1953 nm_i->nat_cnt = 0;
1954 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1956 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1957 INIT_LIST_HEAD(&nm_i->free_nid_list);
1958 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
1959 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
1960 INIT_LIST_HEAD(&nm_i->nat_entries);
1962 mutex_init(&nm_i->build_lock);
1963 spin_lock_init(&nm_i->free_nid_list_lock);
1964 init_rwsem(&nm_i->nat_tree_lock);
1966 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1967 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1968 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1969 if (!version_bitmap)
1970 return -EFAULT;
1972 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1973 GFP_KERNEL);
1974 if (!nm_i->nat_bitmap)
1975 return -ENOMEM;
1976 return 0;
1979 int build_node_manager(struct f2fs_sb_info *sbi)
1981 int err;
1983 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1984 if (!sbi->nm_info)
1985 return -ENOMEM;
1987 err = init_node_manager(sbi);
1988 if (err)
1989 return err;
1991 build_free_nids(sbi);
1992 return 0;
1995 void destroy_node_manager(struct f2fs_sb_info *sbi)
1997 struct f2fs_nm_info *nm_i = NM_I(sbi);
1998 struct free_nid *i, *next_i;
1999 struct nat_entry *natvec[NATVEC_SIZE];
2000 struct nat_entry_set *setvec[SETVEC_SIZE];
2001 nid_t nid = 0;
2002 unsigned int found;
2004 if (!nm_i)
2005 return;
2007 /* destroy free nid list */
2008 spin_lock(&nm_i->free_nid_list_lock);
2009 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2010 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2011 __del_from_free_nid_list(nm_i, i);
2012 nm_i->fcnt--;
2013 spin_unlock(&nm_i->free_nid_list_lock);
2014 kmem_cache_free(free_nid_slab, i);
2015 spin_lock(&nm_i->free_nid_list_lock);
2017 f2fs_bug_on(sbi, nm_i->fcnt);
2018 spin_unlock(&nm_i->free_nid_list_lock);
2020 /* destroy nat cache */
2021 down_write(&nm_i->nat_tree_lock);
2022 while ((found = __gang_lookup_nat_cache(nm_i,
2023 nid, NATVEC_SIZE, natvec))) {
2024 unsigned idx;
2026 nid = nat_get_nid(natvec[found - 1]) + 1;
2027 for (idx = 0; idx < found; idx++)
2028 __del_from_nat_cache(nm_i, natvec[idx]);
2030 f2fs_bug_on(sbi, nm_i->nat_cnt);
2032 /* destroy nat set cache */
2033 nid = 0;
2034 while ((found = __gang_lookup_nat_set(nm_i,
2035 nid, SETVEC_SIZE, setvec))) {
2036 unsigned idx;
2038 nid = setvec[found - 1]->set + 1;
2039 for (idx = 0; idx < found; idx++) {
2040 /* entry_cnt is not zero, when cp_error was occurred */
2041 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2042 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2043 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2046 up_write(&nm_i->nat_tree_lock);
2048 kfree(nm_i->nat_bitmap);
2049 sbi->nm_info = NULL;
2050 kfree(nm_i);
2053 int __init create_node_manager_caches(void)
2055 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2056 sizeof(struct nat_entry));
2057 if (!nat_entry_slab)
2058 goto fail;
2060 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2061 sizeof(struct free_nid));
2062 if (!free_nid_slab)
2063 goto destroy_nat_entry;
2065 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2066 sizeof(struct nat_entry_set));
2067 if (!nat_entry_set_slab)
2068 goto destroy_free_nid;
2069 return 0;
2071 destroy_free_nid:
2072 kmem_cache_destroy(free_nid_slab);
2073 destroy_nat_entry:
2074 kmem_cache_destroy(nat_entry_slab);
2075 fail:
2076 return -ENOMEM;
2079 void destroy_node_manager_caches(void)
2081 kmem_cache_destroy(nat_entry_set_slab);
2082 kmem_cache_destroy(free_nid_slab);
2083 kmem_cache_destroy(nat_entry_slab);