Merge tag 'riscv-for-linus-4.19-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/btrfs-unstable.git] / kernel / cpu.c
blobed44d7d34c2d9bfc08093af4854dc78bf7232b21
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
37 #include "smpboot.h"
39 /**
40 * cpuhp_cpu_state - Per cpu hotplug state storage
41 * @state: The current cpu state
42 * @target: The target state
43 * @thread: Pointer to the hotplug thread
44 * @should_run: Thread should execute
45 * @rollback: Perform a rollback
46 * @single: Single callback invocation
47 * @bringup: Single callback bringup or teardown selector
48 * @cb_state: The state for a single callback (install/uninstall)
49 * @result: Result of the operation
50 * @done_up: Signal completion to the issuer of the task for cpu-up
51 * @done_down: Signal completion to the issuer of the task for cpu-down
53 struct cpuhp_cpu_state {
54 enum cpuhp_state state;
55 enum cpuhp_state target;
56 enum cpuhp_state fail;
57 #ifdef CONFIG_SMP
58 struct task_struct *thread;
59 bool should_run;
60 bool rollback;
61 bool single;
62 bool bringup;
63 bool booted_once;
64 struct hlist_node *node;
65 struct hlist_node *last;
66 enum cpuhp_state cb_state;
67 int result;
68 struct completion done_up;
69 struct completion done_down;
70 #endif
73 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
74 .fail = CPUHP_INVALID,
77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
78 static struct lockdep_map cpuhp_state_up_map =
79 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
80 static struct lockdep_map cpuhp_state_down_map =
81 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
84 static inline void cpuhp_lock_acquire(bool bringup)
86 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
89 static inline void cpuhp_lock_release(bool bringup)
91 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 #else
95 static inline void cpuhp_lock_acquire(bool bringup) { }
96 static inline void cpuhp_lock_release(bool bringup) { }
98 #endif
101 * cpuhp_step - Hotplug state machine step
102 * @name: Name of the step
103 * @startup: Startup function of the step
104 * @teardown: Teardown function of the step
105 * @skip_onerr: Do not invoke the functions on error rollback
106 * Will go away once the notifiers are gone
107 * @cant_stop: Bringup/teardown can't be stopped at this step
109 struct cpuhp_step {
110 const char *name;
111 union {
112 int (*single)(unsigned int cpu);
113 int (*multi)(unsigned int cpu,
114 struct hlist_node *node);
115 } startup;
116 union {
117 int (*single)(unsigned int cpu);
118 int (*multi)(unsigned int cpu,
119 struct hlist_node *node);
120 } teardown;
121 struct hlist_head list;
122 bool skip_onerr;
123 bool cant_stop;
124 bool multi_instance;
127 static DEFINE_MUTEX(cpuhp_state_mutex);
128 static struct cpuhp_step cpuhp_hp_states[];
130 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
132 return cpuhp_hp_states + state;
136 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
137 * @cpu: The cpu for which the callback should be invoked
138 * @state: The state to do callbacks for
139 * @bringup: True if the bringup callback should be invoked
140 * @node: For multi-instance, do a single entry callback for install/remove
141 * @lastp: For multi-instance rollback, remember how far we got
143 * Called from cpu hotplug and from the state register machinery.
145 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
146 bool bringup, struct hlist_node *node,
147 struct hlist_node **lastp)
149 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
150 struct cpuhp_step *step = cpuhp_get_step(state);
151 int (*cbm)(unsigned int cpu, struct hlist_node *node);
152 int (*cb)(unsigned int cpu);
153 int ret, cnt;
155 if (st->fail == state) {
156 st->fail = CPUHP_INVALID;
158 if (!(bringup ? step->startup.single : step->teardown.single))
159 return 0;
161 return -EAGAIN;
164 if (!step->multi_instance) {
165 WARN_ON_ONCE(lastp && *lastp);
166 cb = bringup ? step->startup.single : step->teardown.single;
167 if (!cb)
168 return 0;
169 trace_cpuhp_enter(cpu, st->target, state, cb);
170 ret = cb(cpu);
171 trace_cpuhp_exit(cpu, st->state, state, ret);
172 return ret;
174 cbm = bringup ? step->startup.multi : step->teardown.multi;
175 if (!cbm)
176 return 0;
178 /* Single invocation for instance add/remove */
179 if (node) {
180 WARN_ON_ONCE(lastp && *lastp);
181 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
182 ret = cbm(cpu, node);
183 trace_cpuhp_exit(cpu, st->state, state, ret);
184 return ret;
187 /* State transition. Invoke on all instances */
188 cnt = 0;
189 hlist_for_each(node, &step->list) {
190 if (lastp && node == *lastp)
191 break;
193 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
194 ret = cbm(cpu, node);
195 trace_cpuhp_exit(cpu, st->state, state, ret);
196 if (ret) {
197 if (!lastp)
198 goto err;
200 *lastp = node;
201 return ret;
203 cnt++;
205 if (lastp)
206 *lastp = NULL;
207 return 0;
208 err:
209 /* Rollback the instances if one failed */
210 cbm = !bringup ? step->startup.multi : step->teardown.multi;
211 if (!cbm)
212 return ret;
214 hlist_for_each(node, &step->list) {
215 if (!cnt--)
216 break;
218 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
219 ret = cbm(cpu, node);
220 trace_cpuhp_exit(cpu, st->state, state, ret);
222 * Rollback must not fail,
224 WARN_ON_ONCE(ret);
226 return ret;
229 #ifdef CONFIG_SMP
230 static bool cpuhp_is_ap_state(enum cpuhp_state state)
233 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
234 * purposes as that state is handled explicitly in cpu_down.
236 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
239 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
241 struct completion *done = bringup ? &st->done_up : &st->done_down;
242 wait_for_completion(done);
245 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
247 struct completion *done = bringup ? &st->done_up : &st->done_down;
248 complete(done);
252 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
254 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
256 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
260 static DEFINE_MUTEX(cpu_add_remove_lock);
261 bool cpuhp_tasks_frozen;
262 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265 * The following two APIs (cpu_maps_update_begin/done) must be used when
266 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
268 void cpu_maps_update_begin(void)
270 mutex_lock(&cpu_add_remove_lock);
273 void cpu_maps_update_done(void)
275 mutex_unlock(&cpu_add_remove_lock);
279 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
280 * Should always be manipulated under cpu_add_remove_lock
282 static int cpu_hotplug_disabled;
284 #ifdef CONFIG_HOTPLUG_CPU
286 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
288 void cpus_read_lock(void)
290 percpu_down_read(&cpu_hotplug_lock);
292 EXPORT_SYMBOL_GPL(cpus_read_lock);
294 int cpus_read_trylock(void)
296 return percpu_down_read_trylock(&cpu_hotplug_lock);
298 EXPORT_SYMBOL_GPL(cpus_read_trylock);
300 void cpus_read_unlock(void)
302 percpu_up_read(&cpu_hotplug_lock);
304 EXPORT_SYMBOL_GPL(cpus_read_unlock);
306 void cpus_write_lock(void)
308 percpu_down_write(&cpu_hotplug_lock);
311 void cpus_write_unlock(void)
313 percpu_up_write(&cpu_hotplug_lock);
316 void lockdep_assert_cpus_held(void)
318 percpu_rwsem_assert_held(&cpu_hotplug_lock);
322 * Wait for currently running CPU hotplug operations to complete (if any) and
323 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
324 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
325 * hotplug path before performing hotplug operations. So acquiring that lock
326 * guarantees mutual exclusion from any currently running hotplug operations.
328 void cpu_hotplug_disable(void)
330 cpu_maps_update_begin();
331 cpu_hotplug_disabled++;
332 cpu_maps_update_done();
334 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
336 static void __cpu_hotplug_enable(void)
338 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
339 return;
340 cpu_hotplug_disabled--;
343 void cpu_hotplug_enable(void)
345 cpu_maps_update_begin();
346 __cpu_hotplug_enable();
347 cpu_maps_update_done();
349 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
350 #endif /* CONFIG_HOTPLUG_CPU */
352 #ifdef CONFIG_HOTPLUG_SMT
353 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
354 EXPORT_SYMBOL_GPL(cpu_smt_control);
356 static bool cpu_smt_available __read_mostly;
358 void __init cpu_smt_disable(bool force)
360 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
361 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
362 return;
364 if (force) {
365 pr_info("SMT: Force disabled\n");
366 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
367 } else {
368 cpu_smt_control = CPU_SMT_DISABLED;
373 * The decision whether SMT is supported can only be done after the full
374 * CPU identification. Called from architecture code before non boot CPUs
375 * are brought up.
377 void __init cpu_smt_check_topology_early(void)
379 if (!topology_smt_supported())
380 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
384 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
385 * brought online. This ensures the smt/l1tf sysfs entries are consistent
386 * with reality. cpu_smt_available is set to true during the bringup of non
387 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
388 * cpu_smt_control's previous setting.
390 void __init cpu_smt_check_topology(void)
392 if (!cpu_smt_available)
393 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
396 static int __init smt_cmdline_disable(char *str)
398 cpu_smt_disable(str && !strcmp(str, "force"));
399 return 0;
401 early_param("nosmt", smt_cmdline_disable);
403 static inline bool cpu_smt_allowed(unsigned int cpu)
405 if (topology_is_primary_thread(cpu))
406 return true;
409 * If the CPU is not a 'primary' thread and the booted_once bit is
410 * set then the processor has SMT support. Store this information
411 * for the late check of SMT support in cpu_smt_check_topology().
413 if (per_cpu(cpuhp_state, cpu).booted_once)
414 cpu_smt_available = true;
416 if (cpu_smt_control == CPU_SMT_ENABLED)
417 return true;
420 * On x86 it's required to boot all logical CPUs at least once so
421 * that the init code can get a chance to set CR4.MCE on each
422 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
423 * core will shutdown the machine.
425 return !per_cpu(cpuhp_state, cpu).booted_once;
427 #else
428 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
429 #endif
431 static inline enum cpuhp_state
432 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
434 enum cpuhp_state prev_state = st->state;
436 st->rollback = false;
437 st->last = NULL;
439 st->target = target;
440 st->single = false;
441 st->bringup = st->state < target;
443 return prev_state;
446 static inline void
447 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
449 st->rollback = true;
452 * If we have st->last we need to undo partial multi_instance of this
453 * state first. Otherwise start undo at the previous state.
455 if (!st->last) {
456 if (st->bringup)
457 st->state--;
458 else
459 st->state++;
462 st->target = prev_state;
463 st->bringup = !st->bringup;
466 /* Regular hotplug invocation of the AP hotplug thread */
467 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
469 if (!st->single && st->state == st->target)
470 return;
472 st->result = 0;
474 * Make sure the above stores are visible before should_run becomes
475 * true. Paired with the mb() above in cpuhp_thread_fun()
477 smp_mb();
478 st->should_run = true;
479 wake_up_process(st->thread);
480 wait_for_ap_thread(st, st->bringup);
483 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
485 enum cpuhp_state prev_state;
486 int ret;
488 prev_state = cpuhp_set_state(st, target);
489 __cpuhp_kick_ap(st);
490 if ((ret = st->result)) {
491 cpuhp_reset_state(st, prev_state);
492 __cpuhp_kick_ap(st);
495 return ret;
498 static int bringup_wait_for_ap(unsigned int cpu)
500 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
502 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
503 wait_for_ap_thread(st, true);
504 if (WARN_ON_ONCE((!cpu_online(cpu))))
505 return -ECANCELED;
507 /* Unpark the stopper thread and the hotplug thread of the target cpu */
508 stop_machine_unpark(cpu);
509 kthread_unpark(st->thread);
512 * SMT soft disabling on X86 requires to bring the CPU out of the
513 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
514 * CPU marked itself as booted_once in cpu_notify_starting() so the
515 * cpu_smt_allowed() check will now return false if this is not the
516 * primary sibling.
518 if (!cpu_smt_allowed(cpu))
519 return -ECANCELED;
521 if (st->target <= CPUHP_AP_ONLINE_IDLE)
522 return 0;
524 return cpuhp_kick_ap(st, st->target);
527 static int bringup_cpu(unsigned int cpu)
529 struct task_struct *idle = idle_thread_get(cpu);
530 int ret;
533 * Some architectures have to walk the irq descriptors to
534 * setup the vector space for the cpu which comes online.
535 * Prevent irq alloc/free across the bringup.
537 irq_lock_sparse();
539 /* Arch-specific enabling code. */
540 ret = __cpu_up(cpu, idle);
541 irq_unlock_sparse();
542 if (ret)
543 return ret;
544 return bringup_wait_for_ap(cpu);
548 * Hotplug state machine related functions
551 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
553 for (st->state--; st->state > st->target; st->state--) {
554 struct cpuhp_step *step = cpuhp_get_step(st->state);
556 if (!step->skip_onerr)
557 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
561 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
562 enum cpuhp_state target)
564 enum cpuhp_state prev_state = st->state;
565 int ret = 0;
567 while (st->state < target) {
568 st->state++;
569 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
570 if (ret) {
571 st->target = prev_state;
572 undo_cpu_up(cpu, st);
573 break;
576 return ret;
580 * The cpu hotplug threads manage the bringup and teardown of the cpus
582 static void cpuhp_create(unsigned int cpu)
584 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
586 init_completion(&st->done_up);
587 init_completion(&st->done_down);
590 static int cpuhp_should_run(unsigned int cpu)
592 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
594 return st->should_run;
598 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
599 * callbacks when a state gets [un]installed at runtime.
601 * Each invocation of this function by the smpboot thread does a single AP
602 * state callback.
604 * It has 3 modes of operation:
605 * - single: runs st->cb_state
606 * - up: runs ++st->state, while st->state < st->target
607 * - down: runs st->state--, while st->state > st->target
609 * When complete or on error, should_run is cleared and the completion is fired.
611 static void cpuhp_thread_fun(unsigned int cpu)
613 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
614 bool bringup = st->bringup;
615 enum cpuhp_state state;
618 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
619 * that if we see ->should_run we also see the rest of the state.
621 smp_mb();
623 if (WARN_ON_ONCE(!st->should_run))
624 return;
626 cpuhp_lock_acquire(bringup);
628 if (st->single) {
629 state = st->cb_state;
630 st->should_run = false;
631 } else {
632 if (bringup) {
633 st->state++;
634 state = st->state;
635 st->should_run = (st->state < st->target);
636 WARN_ON_ONCE(st->state > st->target);
637 } else {
638 state = st->state;
639 st->state--;
640 st->should_run = (st->state > st->target);
641 WARN_ON_ONCE(st->state < st->target);
645 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
647 if (st->rollback) {
648 struct cpuhp_step *step = cpuhp_get_step(state);
649 if (step->skip_onerr)
650 goto next;
653 if (cpuhp_is_atomic_state(state)) {
654 local_irq_disable();
655 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
656 local_irq_enable();
659 * STARTING/DYING must not fail!
661 WARN_ON_ONCE(st->result);
662 } else {
663 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
666 if (st->result) {
668 * If we fail on a rollback, we're up a creek without no
669 * paddle, no way forward, no way back. We loose, thanks for
670 * playing.
672 WARN_ON_ONCE(st->rollback);
673 st->should_run = false;
676 next:
677 cpuhp_lock_release(bringup);
679 if (!st->should_run)
680 complete_ap_thread(st, bringup);
683 /* Invoke a single callback on a remote cpu */
684 static int
685 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
686 struct hlist_node *node)
688 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
689 int ret;
691 if (!cpu_online(cpu))
692 return 0;
694 cpuhp_lock_acquire(false);
695 cpuhp_lock_release(false);
697 cpuhp_lock_acquire(true);
698 cpuhp_lock_release(true);
701 * If we are up and running, use the hotplug thread. For early calls
702 * we invoke the thread function directly.
704 if (!st->thread)
705 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
707 st->rollback = false;
708 st->last = NULL;
710 st->node = node;
711 st->bringup = bringup;
712 st->cb_state = state;
713 st->single = true;
715 __cpuhp_kick_ap(st);
718 * If we failed and did a partial, do a rollback.
720 if ((ret = st->result) && st->last) {
721 st->rollback = true;
722 st->bringup = !bringup;
724 __cpuhp_kick_ap(st);
728 * Clean up the leftovers so the next hotplug operation wont use stale
729 * data.
731 st->node = st->last = NULL;
732 return ret;
735 static int cpuhp_kick_ap_work(unsigned int cpu)
737 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
738 enum cpuhp_state prev_state = st->state;
739 int ret;
741 cpuhp_lock_acquire(false);
742 cpuhp_lock_release(false);
744 cpuhp_lock_acquire(true);
745 cpuhp_lock_release(true);
747 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
748 ret = cpuhp_kick_ap(st, st->target);
749 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
751 return ret;
754 static struct smp_hotplug_thread cpuhp_threads = {
755 .store = &cpuhp_state.thread,
756 .create = &cpuhp_create,
757 .thread_should_run = cpuhp_should_run,
758 .thread_fn = cpuhp_thread_fun,
759 .thread_comm = "cpuhp/%u",
760 .selfparking = true,
763 void __init cpuhp_threads_init(void)
765 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
766 kthread_unpark(this_cpu_read(cpuhp_state.thread));
769 #ifdef CONFIG_HOTPLUG_CPU
771 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
772 * @cpu: a CPU id
774 * This function walks all processes, finds a valid mm struct for each one and
775 * then clears a corresponding bit in mm's cpumask. While this all sounds
776 * trivial, there are various non-obvious corner cases, which this function
777 * tries to solve in a safe manner.
779 * Also note that the function uses a somewhat relaxed locking scheme, so it may
780 * be called only for an already offlined CPU.
782 void clear_tasks_mm_cpumask(int cpu)
784 struct task_struct *p;
787 * This function is called after the cpu is taken down and marked
788 * offline, so its not like new tasks will ever get this cpu set in
789 * their mm mask. -- Peter Zijlstra
790 * Thus, we may use rcu_read_lock() here, instead of grabbing
791 * full-fledged tasklist_lock.
793 WARN_ON(cpu_online(cpu));
794 rcu_read_lock();
795 for_each_process(p) {
796 struct task_struct *t;
799 * Main thread might exit, but other threads may still have
800 * a valid mm. Find one.
802 t = find_lock_task_mm(p);
803 if (!t)
804 continue;
805 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
806 task_unlock(t);
808 rcu_read_unlock();
811 /* Take this CPU down. */
812 static int take_cpu_down(void *_param)
814 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
815 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
816 int err, cpu = smp_processor_id();
817 int ret;
819 /* Ensure this CPU doesn't handle any more interrupts. */
820 err = __cpu_disable();
821 if (err < 0)
822 return err;
825 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
826 * do this step again.
828 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
829 st->state--;
830 /* Invoke the former CPU_DYING callbacks */
831 for (; st->state > target; st->state--) {
832 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
834 * DYING must not fail!
836 WARN_ON_ONCE(ret);
839 /* Give up timekeeping duties */
840 tick_handover_do_timer();
841 /* Park the stopper thread */
842 stop_machine_park(cpu);
843 return 0;
846 static int takedown_cpu(unsigned int cpu)
848 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
849 int err;
851 /* Park the smpboot threads */
852 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
855 * Prevent irq alloc/free while the dying cpu reorganizes the
856 * interrupt affinities.
858 irq_lock_sparse();
861 * So now all preempt/rcu users must observe !cpu_active().
863 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
864 if (err) {
865 /* CPU refused to die */
866 irq_unlock_sparse();
867 /* Unpark the hotplug thread so we can rollback there */
868 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
869 return err;
871 BUG_ON(cpu_online(cpu));
874 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
875 * all runnable tasks from the CPU, there's only the idle task left now
876 * that the migration thread is done doing the stop_machine thing.
878 * Wait for the stop thread to go away.
880 wait_for_ap_thread(st, false);
881 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
883 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
884 irq_unlock_sparse();
886 hotplug_cpu__broadcast_tick_pull(cpu);
887 /* This actually kills the CPU. */
888 __cpu_die(cpu);
890 tick_cleanup_dead_cpu(cpu);
891 rcutree_migrate_callbacks(cpu);
892 return 0;
895 static void cpuhp_complete_idle_dead(void *arg)
897 struct cpuhp_cpu_state *st = arg;
899 complete_ap_thread(st, false);
902 void cpuhp_report_idle_dead(void)
904 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
906 BUG_ON(st->state != CPUHP_AP_OFFLINE);
907 rcu_report_dead(smp_processor_id());
908 st->state = CPUHP_AP_IDLE_DEAD;
910 * We cannot call complete after rcu_report_dead() so we delegate it
911 * to an online cpu.
913 smp_call_function_single(cpumask_first(cpu_online_mask),
914 cpuhp_complete_idle_dead, st, 0);
917 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
919 for (st->state++; st->state < st->target; st->state++) {
920 struct cpuhp_step *step = cpuhp_get_step(st->state);
922 if (!step->skip_onerr)
923 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
927 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
928 enum cpuhp_state target)
930 enum cpuhp_state prev_state = st->state;
931 int ret = 0;
933 for (; st->state > target; st->state--) {
934 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
935 if (ret) {
936 st->target = prev_state;
937 undo_cpu_down(cpu, st);
938 break;
941 return ret;
944 /* Requires cpu_add_remove_lock to be held */
945 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
946 enum cpuhp_state target)
948 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
949 int prev_state, ret = 0;
951 if (num_online_cpus() == 1)
952 return -EBUSY;
954 if (!cpu_present(cpu))
955 return -EINVAL;
957 cpus_write_lock();
959 cpuhp_tasks_frozen = tasks_frozen;
961 prev_state = cpuhp_set_state(st, target);
963 * If the current CPU state is in the range of the AP hotplug thread,
964 * then we need to kick the thread.
966 if (st->state > CPUHP_TEARDOWN_CPU) {
967 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
968 ret = cpuhp_kick_ap_work(cpu);
970 * The AP side has done the error rollback already. Just
971 * return the error code..
973 if (ret)
974 goto out;
977 * We might have stopped still in the range of the AP hotplug
978 * thread. Nothing to do anymore.
980 if (st->state > CPUHP_TEARDOWN_CPU)
981 goto out;
983 st->target = target;
986 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
987 * to do the further cleanups.
989 ret = cpuhp_down_callbacks(cpu, st, target);
990 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
991 cpuhp_reset_state(st, prev_state);
992 __cpuhp_kick_ap(st);
995 out:
996 cpus_write_unlock();
998 * Do post unplug cleanup. This is still protected against
999 * concurrent CPU hotplug via cpu_add_remove_lock.
1001 lockup_detector_cleanup();
1002 return ret;
1005 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1007 if (cpu_hotplug_disabled)
1008 return -EBUSY;
1009 return _cpu_down(cpu, 0, target);
1012 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1014 int err;
1016 cpu_maps_update_begin();
1017 err = cpu_down_maps_locked(cpu, target);
1018 cpu_maps_update_done();
1019 return err;
1022 int cpu_down(unsigned int cpu)
1024 return do_cpu_down(cpu, CPUHP_OFFLINE);
1026 EXPORT_SYMBOL(cpu_down);
1028 #else
1029 #define takedown_cpu NULL
1030 #endif /*CONFIG_HOTPLUG_CPU*/
1033 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1034 * @cpu: cpu that just started
1036 * It must be called by the arch code on the new cpu, before the new cpu
1037 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1039 void notify_cpu_starting(unsigned int cpu)
1041 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1042 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1043 int ret;
1045 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1046 st->booted_once = true;
1047 while (st->state < target) {
1048 st->state++;
1049 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1051 * STARTING must not fail!
1053 WARN_ON_ONCE(ret);
1058 * Called from the idle task. Wake up the controlling task which brings the
1059 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1060 * the rest of the online bringup to the hotplug thread.
1062 void cpuhp_online_idle(enum cpuhp_state state)
1064 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1066 /* Happens for the boot cpu */
1067 if (state != CPUHP_AP_ONLINE_IDLE)
1068 return;
1070 st->state = CPUHP_AP_ONLINE_IDLE;
1071 complete_ap_thread(st, true);
1074 /* Requires cpu_add_remove_lock to be held */
1075 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1077 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1078 struct task_struct *idle;
1079 int ret = 0;
1081 cpus_write_lock();
1083 if (!cpu_present(cpu)) {
1084 ret = -EINVAL;
1085 goto out;
1089 * The caller of do_cpu_up might have raced with another
1090 * caller. Ignore it for now.
1092 if (st->state >= target)
1093 goto out;
1095 if (st->state == CPUHP_OFFLINE) {
1096 /* Let it fail before we try to bring the cpu up */
1097 idle = idle_thread_get(cpu);
1098 if (IS_ERR(idle)) {
1099 ret = PTR_ERR(idle);
1100 goto out;
1104 cpuhp_tasks_frozen = tasks_frozen;
1106 cpuhp_set_state(st, target);
1108 * If the current CPU state is in the range of the AP hotplug thread,
1109 * then we need to kick the thread once more.
1111 if (st->state > CPUHP_BRINGUP_CPU) {
1112 ret = cpuhp_kick_ap_work(cpu);
1114 * The AP side has done the error rollback already. Just
1115 * return the error code..
1117 if (ret)
1118 goto out;
1122 * Try to reach the target state. We max out on the BP at
1123 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1124 * responsible for bringing it up to the target state.
1126 target = min((int)target, CPUHP_BRINGUP_CPU);
1127 ret = cpuhp_up_callbacks(cpu, st, target);
1128 out:
1129 cpus_write_unlock();
1130 return ret;
1133 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1135 int err = 0;
1137 if (!cpu_possible(cpu)) {
1138 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1139 cpu);
1140 #if defined(CONFIG_IA64)
1141 pr_err("please check additional_cpus= boot parameter\n");
1142 #endif
1143 return -EINVAL;
1146 err = try_online_node(cpu_to_node(cpu));
1147 if (err)
1148 return err;
1150 cpu_maps_update_begin();
1152 if (cpu_hotplug_disabled) {
1153 err = -EBUSY;
1154 goto out;
1156 if (!cpu_smt_allowed(cpu)) {
1157 err = -EPERM;
1158 goto out;
1161 err = _cpu_up(cpu, 0, target);
1162 out:
1163 cpu_maps_update_done();
1164 return err;
1167 int cpu_up(unsigned int cpu)
1169 return do_cpu_up(cpu, CPUHP_ONLINE);
1171 EXPORT_SYMBOL_GPL(cpu_up);
1173 #ifdef CONFIG_PM_SLEEP_SMP
1174 static cpumask_var_t frozen_cpus;
1176 int freeze_secondary_cpus(int primary)
1178 int cpu, error = 0;
1180 cpu_maps_update_begin();
1181 if (!cpu_online(primary))
1182 primary = cpumask_first(cpu_online_mask);
1184 * We take down all of the non-boot CPUs in one shot to avoid races
1185 * with the userspace trying to use the CPU hotplug at the same time
1187 cpumask_clear(frozen_cpus);
1189 pr_info("Disabling non-boot CPUs ...\n");
1190 for_each_online_cpu(cpu) {
1191 if (cpu == primary)
1192 continue;
1193 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1194 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1195 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1196 if (!error)
1197 cpumask_set_cpu(cpu, frozen_cpus);
1198 else {
1199 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1200 break;
1204 if (!error)
1205 BUG_ON(num_online_cpus() > 1);
1206 else
1207 pr_err("Non-boot CPUs are not disabled\n");
1210 * Make sure the CPUs won't be enabled by someone else. We need to do
1211 * this even in case of failure as all disable_nonboot_cpus() users are
1212 * supposed to do enable_nonboot_cpus() on the failure path.
1214 cpu_hotplug_disabled++;
1216 cpu_maps_update_done();
1217 return error;
1220 void __weak arch_enable_nonboot_cpus_begin(void)
1224 void __weak arch_enable_nonboot_cpus_end(void)
1228 void enable_nonboot_cpus(void)
1230 int cpu, error;
1232 /* Allow everyone to use the CPU hotplug again */
1233 cpu_maps_update_begin();
1234 __cpu_hotplug_enable();
1235 if (cpumask_empty(frozen_cpus))
1236 goto out;
1238 pr_info("Enabling non-boot CPUs ...\n");
1240 arch_enable_nonboot_cpus_begin();
1242 for_each_cpu(cpu, frozen_cpus) {
1243 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1244 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1245 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1246 if (!error) {
1247 pr_info("CPU%d is up\n", cpu);
1248 continue;
1250 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1253 arch_enable_nonboot_cpus_end();
1255 cpumask_clear(frozen_cpus);
1256 out:
1257 cpu_maps_update_done();
1260 static int __init alloc_frozen_cpus(void)
1262 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1263 return -ENOMEM;
1264 return 0;
1266 core_initcall(alloc_frozen_cpus);
1269 * When callbacks for CPU hotplug notifications are being executed, we must
1270 * ensure that the state of the system with respect to the tasks being frozen
1271 * or not, as reported by the notification, remains unchanged *throughout the
1272 * duration* of the execution of the callbacks.
1273 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1275 * This synchronization is implemented by mutually excluding regular CPU
1276 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1277 * Hibernate notifications.
1279 static int
1280 cpu_hotplug_pm_callback(struct notifier_block *nb,
1281 unsigned long action, void *ptr)
1283 switch (action) {
1285 case PM_SUSPEND_PREPARE:
1286 case PM_HIBERNATION_PREPARE:
1287 cpu_hotplug_disable();
1288 break;
1290 case PM_POST_SUSPEND:
1291 case PM_POST_HIBERNATION:
1292 cpu_hotplug_enable();
1293 break;
1295 default:
1296 return NOTIFY_DONE;
1299 return NOTIFY_OK;
1303 static int __init cpu_hotplug_pm_sync_init(void)
1306 * cpu_hotplug_pm_callback has higher priority than x86
1307 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1308 * to disable cpu hotplug to avoid cpu hotplug race.
1310 pm_notifier(cpu_hotplug_pm_callback, 0);
1311 return 0;
1313 core_initcall(cpu_hotplug_pm_sync_init);
1315 #endif /* CONFIG_PM_SLEEP_SMP */
1317 int __boot_cpu_id;
1319 #endif /* CONFIG_SMP */
1321 /* Boot processor state steps */
1322 static struct cpuhp_step cpuhp_hp_states[] = {
1323 [CPUHP_OFFLINE] = {
1324 .name = "offline",
1325 .startup.single = NULL,
1326 .teardown.single = NULL,
1328 #ifdef CONFIG_SMP
1329 [CPUHP_CREATE_THREADS]= {
1330 .name = "threads:prepare",
1331 .startup.single = smpboot_create_threads,
1332 .teardown.single = NULL,
1333 .cant_stop = true,
1335 [CPUHP_PERF_PREPARE] = {
1336 .name = "perf:prepare",
1337 .startup.single = perf_event_init_cpu,
1338 .teardown.single = perf_event_exit_cpu,
1340 [CPUHP_WORKQUEUE_PREP] = {
1341 .name = "workqueue:prepare",
1342 .startup.single = workqueue_prepare_cpu,
1343 .teardown.single = NULL,
1345 [CPUHP_HRTIMERS_PREPARE] = {
1346 .name = "hrtimers:prepare",
1347 .startup.single = hrtimers_prepare_cpu,
1348 .teardown.single = hrtimers_dead_cpu,
1350 [CPUHP_SMPCFD_PREPARE] = {
1351 .name = "smpcfd:prepare",
1352 .startup.single = smpcfd_prepare_cpu,
1353 .teardown.single = smpcfd_dead_cpu,
1355 [CPUHP_RELAY_PREPARE] = {
1356 .name = "relay:prepare",
1357 .startup.single = relay_prepare_cpu,
1358 .teardown.single = NULL,
1360 [CPUHP_SLAB_PREPARE] = {
1361 .name = "slab:prepare",
1362 .startup.single = slab_prepare_cpu,
1363 .teardown.single = slab_dead_cpu,
1365 [CPUHP_RCUTREE_PREP] = {
1366 .name = "RCU/tree:prepare",
1367 .startup.single = rcutree_prepare_cpu,
1368 .teardown.single = rcutree_dead_cpu,
1371 * On the tear-down path, timers_dead_cpu() must be invoked
1372 * before blk_mq_queue_reinit_notify() from notify_dead(),
1373 * otherwise a RCU stall occurs.
1375 [CPUHP_TIMERS_PREPARE] = {
1376 .name = "timers:prepare",
1377 .startup.single = timers_prepare_cpu,
1378 .teardown.single = timers_dead_cpu,
1380 /* Kicks the plugged cpu into life */
1381 [CPUHP_BRINGUP_CPU] = {
1382 .name = "cpu:bringup",
1383 .startup.single = bringup_cpu,
1384 .teardown.single = NULL,
1385 .cant_stop = true,
1387 /* Final state before CPU kills itself */
1388 [CPUHP_AP_IDLE_DEAD] = {
1389 .name = "idle:dead",
1392 * Last state before CPU enters the idle loop to die. Transient state
1393 * for synchronization.
1395 [CPUHP_AP_OFFLINE] = {
1396 .name = "ap:offline",
1397 .cant_stop = true,
1399 /* First state is scheduler control. Interrupts are disabled */
1400 [CPUHP_AP_SCHED_STARTING] = {
1401 .name = "sched:starting",
1402 .startup.single = sched_cpu_starting,
1403 .teardown.single = sched_cpu_dying,
1405 [CPUHP_AP_RCUTREE_DYING] = {
1406 .name = "RCU/tree:dying",
1407 .startup.single = NULL,
1408 .teardown.single = rcutree_dying_cpu,
1410 [CPUHP_AP_SMPCFD_DYING] = {
1411 .name = "smpcfd:dying",
1412 .startup.single = NULL,
1413 .teardown.single = smpcfd_dying_cpu,
1415 /* Entry state on starting. Interrupts enabled from here on. Transient
1416 * state for synchronsization */
1417 [CPUHP_AP_ONLINE] = {
1418 .name = "ap:online",
1421 * Handled on controll processor until the plugged processor manages
1422 * this itself.
1424 [CPUHP_TEARDOWN_CPU] = {
1425 .name = "cpu:teardown",
1426 .startup.single = NULL,
1427 .teardown.single = takedown_cpu,
1428 .cant_stop = true,
1430 /* Handle smpboot threads park/unpark */
1431 [CPUHP_AP_SMPBOOT_THREADS] = {
1432 .name = "smpboot/threads:online",
1433 .startup.single = smpboot_unpark_threads,
1434 .teardown.single = smpboot_park_threads,
1436 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1437 .name = "irq/affinity:online",
1438 .startup.single = irq_affinity_online_cpu,
1439 .teardown.single = NULL,
1441 [CPUHP_AP_PERF_ONLINE] = {
1442 .name = "perf:online",
1443 .startup.single = perf_event_init_cpu,
1444 .teardown.single = perf_event_exit_cpu,
1446 [CPUHP_AP_WATCHDOG_ONLINE] = {
1447 .name = "lockup_detector:online",
1448 .startup.single = lockup_detector_online_cpu,
1449 .teardown.single = lockup_detector_offline_cpu,
1451 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1452 .name = "workqueue:online",
1453 .startup.single = workqueue_online_cpu,
1454 .teardown.single = workqueue_offline_cpu,
1456 [CPUHP_AP_RCUTREE_ONLINE] = {
1457 .name = "RCU/tree:online",
1458 .startup.single = rcutree_online_cpu,
1459 .teardown.single = rcutree_offline_cpu,
1461 #endif
1463 * The dynamically registered state space is here
1466 #ifdef CONFIG_SMP
1467 /* Last state is scheduler control setting the cpu active */
1468 [CPUHP_AP_ACTIVE] = {
1469 .name = "sched:active",
1470 .startup.single = sched_cpu_activate,
1471 .teardown.single = sched_cpu_deactivate,
1473 #endif
1475 /* CPU is fully up and running. */
1476 [CPUHP_ONLINE] = {
1477 .name = "online",
1478 .startup.single = NULL,
1479 .teardown.single = NULL,
1483 /* Sanity check for callbacks */
1484 static int cpuhp_cb_check(enum cpuhp_state state)
1486 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1487 return -EINVAL;
1488 return 0;
1492 * Returns a free for dynamic slot assignment of the Online state. The states
1493 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1494 * by having no name assigned.
1496 static int cpuhp_reserve_state(enum cpuhp_state state)
1498 enum cpuhp_state i, end;
1499 struct cpuhp_step *step;
1501 switch (state) {
1502 case CPUHP_AP_ONLINE_DYN:
1503 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1504 end = CPUHP_AP_ONLINE_DYN_END;
1505 break;
1506 case CPUHP_BP_PREPARE_DYN:
1507 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1508 end = CPUHP_BP_PREPARE_DYN_END;
1509 break;
1510 default:
1511 return -EINVAL;
1514 for (i = state; i <= end; i++, step++) {
1515 if (!step->name)
1516 return i;
1518 WARN(1, "No more dynamic states available for CPU hotplug\n");
1519 return -ENOSPC;
1522 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1523 int (*startup)(unsigned int cpu),
1524 int (*teardown)(unsigned int cpu),
1525 bool multi_instance)
1527 /* (Un)Install the callbacks for further cpu hotplug operations */
1528 struct cpuhp_step *sp;
1529 int ret = 0;
1532 * If name is NULL, then the state gets removed.
1534 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1535 * the first allocation from these dynamic ranges, so the removal
1536 * would trigger a new allocation and clear the wrong (already
1537 * empty) state, leaving the callbacks of the to be cleared state
1538 * dangling, which causes wreckage on the next hotplug operation.
1540 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1541 state == CPUHP_BP_PREPARE_DYN)) {
1542 ret = cpuhp_reserve_state(state);
1543 if (ret < 0)
1544 return ret;
1545 state = ret;
1547 sp = cpuhp_get_step(state);
1548 if (name && sp->name)
1549 return -EBUSY;
1551 sp->startup.single = startup;
1552 sp->teardown.single = teardown;
1553 sp->name = name;
1554 sp->multi_instance = multi_instance;
1555 INIT_HLIST_HEAD(&sp->list);
1556 return ret;
1559 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1561 return cpuhp_get_step(state)->teardown.single;
1565 * Call the startup/teardown function for a step either on the AP or
1566 * on the current CPU.
1568 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1569 struct hlist_node *node)
1571 struct cpuhp_step *sp = cpuhp_get_step(state);
1572 int ret;
1575 * If there's nothing to do, we done.
1576 * Relies on the union for multi_instance.
1578 if ((bringup && !sp->startup.single) ||
1579 (!bringup && !sp->teardown.single))
1580 return 0;
1582 * The non AP bound callbacks can fail on bringup. On teardown
1583 * e.g. module removal we crash for now.
1585 #ifdef CONFIG_SMP
1586 if (cpuhp_is_ap_state(state))
1587 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1588 else
1589 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1590 #else
1591 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1592 #endif
1593 BUG_ON(ret && !bringup);
1594 return ret;
1598 * Called from __cpuhp_setup_state on a recoverable failure.
1600 * Note: The teardown callbacks for rollback are not allowed to fail!
1602 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1603 struct hlist_node *node)
1605 int cpu;
1607 /* Roll back the already executed steps on the other cpus */
1608 for_each_present_cpu(cpu) {
1609 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1610 int cpustate = st->state;
1612 if (cpu >= failedcpu)
1613 break;
1615 /* Did we invoke the startup call on that cpu ? */
1616 if (cpustate >= state)
1617 cpuhp_issue_call(cpu, state, false, node);
1621 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1622 struct hlist_node *node,
1623 bool invoke)
1625 struct cpuhp_step *sp;
1626 int cpu;
1627 int ret;
1629 lockdep_assert_cpus_held();
1631 sp = cpuhp_get_step(state);
1632 if (sp->multi_instance == false)
1633 return -EINVAL;
1635 mutex_lock(&cpuhp_state_mutex);
1637 if (!invoke || !sp->startup.multi)
1638 goto add_node;
1641 * Try to call the startup callback for each present cpu
1642 * depending on the hotplug state of the cpu.
1644 for_each_present_cpu(cpu) {
1645 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1646 int cpustate = st->state;
1648 if (cpustate < state)
1649 continue;
1651 ret = cpuhp_issue_call(cpu, state, true, node);
1652 if (ret) {
1653 if (sp->teardown.multi)
1654 cpuhp_rollback_install(cpu, state, node);
1655 goto unlock;
1658 add_node:
1659 ret = 0;
1660 hlist_add_head(node, &sp->list);
1661 unlock:
1662 mutex_unlock(&cpuhp_state_mutex);
1663 return ret;
1666 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1667 bool invoke)
1669 int ret;
1671 cpus_read_lock();
1672 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1673 cpus_read_unlock();
1674 return ret;
1676 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1679 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1680 * @state: The state to setup
1681 * @invoke: If true, the startup function is invoked for cpus where
1682 * cpu state >= @state
1683 * @startup: startup callback function
1684 * @teardown: teardown callback function
1685 * @multi_instance: State is set up for multiple instances which get
1686 * added afterwards.
1688 * The caller needs to hold cpus read locked while calling this function.
1689 * Returns:
1690 * On success:
1691 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1692 * 0 for all other states
1693 * On failure: proper (negative) error code
1695 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1696 const char *name, bool invoke,
1697 int (*startup)(unsigned int cpu),
1698 int (*teardown)(unsigned int cpu),
1699 bool multi_instance)
1701 int cpu, ret = 0;
1702 bool dynstate;
1704 lockdep_assert_cpus_held();
1706 if (cpuhp_cb_check(state) || !name)
1707 return -EINVAL;
1709 mutex_lock(&cpuhp_state_mutex);
1711 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1712 multi_instance);
1714 dynstate = state == CPUHP_AP_ONLINE_DYN;
1715 if (ret > 0 && dynstate) {
1716 state = ret;
1717 ret = 0;
1720 if (ret || !invoke || !startup)
1721 goto out;
1724 * Try to call the startup callback for each present cpu
1725 * depending on the hotplug state of the cpu.
1727 for_each_present_cpu(cpu) {
1728 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1729 int cpustate = st->state;
1731 if (cpustate < state)
1732 continue;
1734 ret = cpuhp_issue_call(cpu, state, true, NULL);
1735 if (ret) {
1736 if (teardown)
1737 cpuhp_rollback_install(cpu, state, NULL);
1738 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1739 goto out;
1742 out:
1743 mutex_unlock(&cpuhp_state_mutex);
1745 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1746 * dynamically allocated state in case of success.
1748 if (!ret && dynstate)
1749 return state;
1750 return ret;
1752 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1754 int __cpuhp_setup_state(enum cpuhp_state state,
1755 const char *name, bool invoke,
1756 int (*startup)(unsigned int cpu),
1757 int (*teardown)(unsigned int cpu),
1758 bool multi_instance)
1760 int ret;
1762 cpus_read_lock();
1763 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1764 teardown, multi_instance);
1765 cpus_read_unlock();
1766 return ret;
1768 EXPORT_SYMBOL(__cpuhp_setup_state);
1770 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1771 struct hlist_node *node, bool invoke)
1773 struct cpuhp_step *sp = cpuhp_get_step(state);
1774 int cpu;
1776 BUG_ON(cpuhp_cb_check(state));
1778 if (!sp->multi_instance)
1779 return -EINVAL;
1781 cpus_read_lock();
1782 mutex_lock(&cpuhp_state_mutex);
1784 if (!invoke || !cpuhp_get_teardown_cb(state))
1785 goto remove;
1787 * Call the teardown callback for each present cpu depending
1788 * on the hotplug state of the cpu. This function is not
1789 * allowed to fail currently!
1791 for_each_present_cpu(cpu) {
1792 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1793 int cpustate = st->state;
1795 if (cpustate >= state)
1796 cpuhp_issue_call(cpu, state, false, node);
1799 remove:
1800 hlist_del(node);
1801 mutex_unlock(&cpuhp_state_mutex);
1802 cpus_read_unlock();
1804 return 0;
1806 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1809 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1810 * @state: The state to remove
1811 * @invoke: If true, the teardown function is invoked for cpus where
1812 * cpu state >= @state
1814 * The caller needs to hold cpus read locked while calling this function.
1815 * The teardown callback is currently not allowed to fail. Think
1816 * about module removal!
1818 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1820 struct cpuhp_step *sp = cpuhp_get_step(state);
1821 int cpu;
1823 BUG_ON(cpuhp_cb_check(state));
1825 lockdep_assert_cpus_held();
1827 mutex_lock(&cpuhp_state_mutex);
1828 if (sp->multi_instance) {
1829 WARN(!hlist_empty(&sp->list),
1830 "Error: Removing state %d which has instances left.\n",
1831 state);
1832 goto remove;
1835 if (!invoke || !cpuhp_get_teardown_cb(state))
1836 goto remove;
1839 * Call the teardown callback for each present cpu depending
1840 * on the hotplug state of the cpu. This function is not
1841 * allowed to fail currently!
1843 for_each_present_cpu(cpu) {
1844 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1845 int cpustate = st->state;
1847 if (cpustate >= state)
1848 cpuhp_issue_call(cpu, state, false, NULL);
1850 remove:
1851 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1852 mutex_unlock(&cpuhp_state_mutex);
1854 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1856 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1858 cpus_read_lock();
1859 __cpuhp_remove_state_cpuslocked(state, invoke);
1860 cpus_read_unlock();
1862 EXPORT_SYMBOL(__cpuhp_remove_state);
1864 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1865 static ssize_t show_cpuhp_state(struct device *dev,
1866 struct device_attribute *attr, char *buf)
1868 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1870 return sprintf(buf, "%d\n", st->state);
1872 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1874 static ssize_t write_cpuhp_target(struct device *dev,
1875 struct device_attribute *attr,
1876 const char *buf, size_t count)
1878 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1879 struct cpuhp_step *sp;
1880 int target, ret;
1882 ret = kstrtoint(buf, 10, &target);
1883 if (ret)
1884 return ret;
1886 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1887 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1888 return -EINVAL;
1889 #else
1890 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1891 return -EINVAL;
1892 #endif
1894 ret = lock_device_hotplug_sysfs();
1895 if (ret)
1896 return ret;
1898 mutex_lock(&cpuhp_state_mutex);
1899 sp = cpuhp_get_step(target);
1900 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1901 mutex_unlock(&cpuhp_state_mutex);
1902 if (ret)
1903 goto out;
1905 if (st->state < target)
1906 ret = do_cpu_up(dev->id, target);
1907 else
1908 ret = do_cpu_down(dev->id, target);
1909 out:
1910 unlock_device_hotplug();
1911 return ret ? ret : count;
1914 static ssize_t show_cpuhp_target(struct device *dev,
1915 struct device_attribute *attr, char *buf)
1917 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1919 return sprintf(buf, "%d\n", st->target);
1921 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1924 static ssize_t write_cpuhp_fail(struct device *dev,
1925 struct device_attribute *attr,
1926 const char *buf, size_t count)
1928 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1929 struct cpuhp_step *sp;
1930 int fail, ret;
1932 ret = kstrtoint(buf, 10, &fail);
1933 if (ret)
1934 return ret;
1937 * Cannot fail STARTING/DYING callbacks.
1939 if (cpuhp_is_atomic_state(fail))
1940 return -EINVAL;
1943 * Cannot fail anything that doesn't have callbacks.
1945 mutex_lock(&cpuhp_state_mutex);
1946 sp = cpuhp_get_step(fail);
1947 if (!sp->startup.single && !sp->teardown.single)
1948 ret = -EINVAL;
1949 mutex_unlock(&cpuhp_state_mutex);
1950 if (ret)
1951 return ret;
1953 st->fail = fail;
1955 return count;
1958 static ssize_t show_cpuhp_fail(struct device *dev,
1959 struct device_attribute *attr, char *buf)
1961 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1963 return sprintf(buf, "%d\n", st->fail);
1966 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1968 static struct attribute *cpuhp_cpu_attrs[] = {
1969 &dev_attr_state.attr,
1970 &dev_attr_target.attr,
1971 &dev_attr_fail.attr,
1972 NULL
1975 static const struct attribute_group cpuhp_cpu_attr_group = {
1976 .attrs = cpuhp_cpu_attrs,
1977 .name = "hotplug",
1978 NULL
1981 static ssize_t show_cpuhp_states(struct device *dev,
1982 struct device_attribute *attr, char *buf)
1984 ssize_t cur, res = 0;
1985 int i;
1987 mutex_lock(&cpuhp_state_mutex);
1988 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1989 struct cpuhp_step *sp = cpuhp_get_step(i);
1991 if (sp->name) {
1992 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1993 buf += cur;
1994 res += cur;
1997 mutex_unlock(&cpuhp_state_mutex);
1998 return res;
2000 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2002 static struct attribute *cpuhp_cpu_root_attrs[] = {
2003 &dev_attr_states.attr,
2004 NULL
2007 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2008 .attrs = cpuhp_cpu_root_attrs,
2009 .name = "hotplug",
2010 NULL
2013 #ifdef CONFIG_HOTPLUG_SMT
2015 static const char *smt_states[] = {
2016 [CPU_SMT_ENABLED] = "on",
2017 [CPU_SMT_DISABLED] = "off",
2018 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2019 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2022 static ssize_t
2023 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2025 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2028 static void cpuhp_offline_cpu_device(unsigned int cpu)
2030 struct device *dev = get_cpu_device(cpu);
2032 dev->offline = true;
2033 /* Tell user space about the state change */
2034 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2037 static void cpuhp_online_cpu_device(unsigned int cpu)
2039 struct device *dev = get_cpu_device(cpu);
2041 dev->offline = false;
2042 /* Tell user space about the state change */
2043 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2046 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2048 int cpu, ret = 0;
2050 cpu_maps_update_begin();
2051 for_each_online_cpu(cpu) {
2052 if (topology_is_primary_thread(cpu))
2053 continue;
2054 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2055 if (ret)
2056 break;
2058 * As this needs to hold the cpu maps lock it's impossible
2059 * to call device_offline() because that ends up calling
2060 * cpu_down() which takes cpu maps lock. cpu maps lock
2061 * needs to be held as this might race against in kernel
2062 * abusers of the hotplug machinery (thermal management).
2064 * So nothing would update device:offline state. That would
2065 * leave the sysfs entry stale and prevent onlining after
2066 * smt control has been changed to 'off' again. This is
2067 * called under the sysfs hotplug lock, so it is properly
2068 * serialized against the regular offline usage.
2070 cpuhp_offline_cpu_device(cpu);
2072 if (!ret)
2073 cpu_smt_control = ctrlval;
2074 cpu_maps_update_done();
2075 return ret;
2078 static int cpuhp_smt_enable(void)
2080 int cpu, ret = 0;
2082 cpu_maps_update_begin();
2083 cpu_smt_control = CPU_SMT_ENABLED;
2084 for_each_present_cpu(cpu) {
2085 /* Skip online CPUs and CPUs on offline nodes */
2086 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2087 continue;
2088 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2089 if (ret)
2090 break;
2091 /* See comment in cpuhp_smt_disable() */
2092 cpuhp_online_cpu_device(cpu);
2094 cpu_maps_update_done();
2095 return ret;
2098 static ssize_t
2099 store_smt_control(struct device *dev, struct device_attribute *attr,
2100 const char *buf, size_t count)
2102 int ctrlval, ret;
2104 if (sysfs_streq(buf, "on"))
2105 ctrlval = CPU_SMT_ENABLED;
2106 else if (sysfs_streq(buf, "off"))
2107 ctrlval = CPU_SMT_DISABLED;
2108 else if (sysfs_streq(buf, "forceoff"))
2109 ctrlval = CPU_SMT_FORCE_DISABLED;
2110 else
2111 return -EINVAL;
2113 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2114 return -EPERM;
2116 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2117 return -ENODEV;
2119 ret = lock_device_hotplug_sysfs();
2120 if (ret)
2121 return ret;
2123 if (ctrlval != cpu_smt_control) {
2124 switch (ctrlval) {
2125 case CPU_SMT_ENABLED:
2126 ret = cpuhp_smt_enable();
2127 break;
2128 case CPU_SMT_DISABLED:
2129 case CPU_SMT_FORCE_DISABLED:
2130 ret = cpuhp_smt_disable(ctrlval);
2131 break;
2135 unlock_device_hotplug();
2136 return ret ? ret : count;
2138 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2140 static ssize_t
2141 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2143 bool active = topology_max_smt_threads() > 1;
2145 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2147 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2149 static struct attribute *cpuhp_smt_attrs[] = {
2150 &dev_attr_control.attr,
2151 &dev_attr_active.attr,
2152 NULL
2155 static const struct attribute_group cpuhp_smt_attr_group = {
2156 .attrs = cpuhp_smt_attrs,
2157 .name = "smt",
2158 NULL
2161 static int __init cpu_smt_state_init(void)
2163 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2164 &cpuhp_smt_attr_group);
2167 #else
2168 static inline int cpu_smt_state_init(void) { return 0; }
2169 #endif
2171 static int __init cpuhp_sysfs_init(void)
2173 int cpu, ret;
2175 ret = cpu_smt_state_init();
2176 if (ret)
2177 return ret;
2179 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2180 &cpuhp_cpu_root_attr_group);
2181 if (ret)
2182 return ret;
2184 for_each_possible_cpu(cpu) {
2185 struct device *dev = get_cpu_device(cpu);
2187 if (!dev)
2188 continue;
2189 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2190 if (ret)
2191 return ret;
2193 return 0;
2195 device_initcall(cpuhp_sysfs_init);
2196 #endif
2199 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2200 * represents all NR_CPUS bits binary values of 1<<nr.
2202 * It is used by cpumask_of() to get a constant address to a CPU
2203 * mask value that has a single bit set only.
2206 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2207 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2208 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2209 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2210 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2212 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2214 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2215 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2216 #if BITS_PER_LONG > 32
2217 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2218 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2219 #endif
2221 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2223 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2224 EXPORT_SYMBOL(cpu_all_bits);
2226 #ifdef CONFIG_INIT_ALL_POSSIBLE
2227 struct cpumask __cpu_possible_mask __read_mostly
2228 = {CPU_BITS_ALL};
2229 #else
2230 struct cpumask __cpu_possible_mask __read_mostly;
2231 #endif
2232 EXPORT_SYMBOL(__cpu_possible_mask);
2234 struct cpumask __cpu_online_mask __read_mostly;
2235 EXPORT_SYMBOL(__cpu_online_mask);
2237 struct cpumask __cpu_present_mask __read_mostly;
2238 EXPORT_SYMBOL(__cpu_present_mask);
2240 struct cpumask __cpu_active_mask __read_mostly;
2241 EXPORT_SYMBOL(__cpu_active_mask);
2243 void init_cpu_present(const struct cpumask *src)
2245 cpumask_copy(&__cpu_present_mask, src);
2248 void init_cpu_possible(const struct cpumask *src)
2250 cpumask_copy(&__cpu_possible_mask, src);
2253 void init_cpu_online(const struct cpumask *src)
2255 cpumask_copy(&__cpu_online_mask, src);
2259 * Activate the first processor.
2261 void __init boot_cpu_init(void)
2263 int cpu = smp_processor_id();
2265 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2266 set_cpu_online(cpu, true);
2267 set_cpu_active(cpu, true);
2268 set_cpu_present(cpu, true);
2269 set_cpu_possible(cpu, true);
2271 #ifdef CONFIG_SMP
2272 __boot_cpu_id = cpu;
2273 #endif
2277 * Must be called _AFTER_ setting up the per_cpu areas
2279 void __init boot_cpu_hotplug_init(void)
2281 #ifdef CONFIG_SMP
2282 this_cpu_write(cpuhp_state.booted_once, true);
2283 #endif
2284 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);