drm/i915: update FDI mPHY setup code
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / i915 / intel_display.c
blob880981360e0985496ba0af544459e8d5ba88c6d5
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48 typedef struct {
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
58 } intel_clock_t;
60 typedef struct {
61 int min, max;
62 } intel_range_t;
64 typedef struct {
65 int dot_limit;
66 int p2_slow, p2_fast;
67 } intel_p2_t;
69 #define INTEL_P2_NUM 2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 /**
75 * find_pll() - Find the best values for the PLL
76 * @limit: limits for the PLL
77 * @crtc: current CRTC
78 * @target: target frequency in kHz
79 * @refclk: reference clock frequency in kHz
80 * @match_clock: if provided, @best_clock P divider must
81 * match the P divider from @match_clock
82 * used for LVDS downclocking
83 * @best_clock: best PLL values found
85 * Returns true on success, false on failure.
87 bool (*find_pll)(const intel_limit_t *limit,
88 struct drm_crtc *crtc,
89 int target, int refclk,
90 intel_clock_t *match_clock,
91 intel_clock_t *best_clock);
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
97 int
98 intel_pch_rawclk(struct drm_device *dev)
100 struct drm_i915_private *dev_priv = dev->dev_private;
102 WARN_ON(!HAS_PCH_SPLIT(dev));
104 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109 int target, int refclk, intel_clock_t *match_clock,
110 intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118 int target, int refclk, intel_clock_t *match_clock,
119 intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122 int target, int refclk, intel_clock_t *match_clock,
123 intel_clock_t *best_clock);
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127 int target, int refclk, intel_clock_t *match_clock,
128 intel_clock_t *best_clock);
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
133 if (IS_GEN5(dev)) {
134 struct drm_i915_private *dev_priv = dev->dev_private;
135 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136 } else
137 return 27;
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 2, .max = 33 },
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 4, .p2_fast = 2 },
151 .find_pll = intel_find_best_PLL,
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155 .dot = { .min = 25000, .max = 350000 },
156 .vco = { .min = 930000, .max = 1400000 },
157 .n = { .min = 3, .max = 16 },
158 .m = { .min = 96, .max = 140 },
159 .m1 = { .min = 18, .max = 26 },
160 .m2 = { .min = 6, .max = 16 },
161 .p = { .min = 4, .max = 128 },
162 .p1 = { .min = 1, .max = 6 },
163 .p2 = { .dot_limit = 165000,
164 .p2_slow = 14, .p2_fast = 7 },
165 .find_pll = intel_find_best_PLL,
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 8, .max = 18 },
174 .m2 = { .min = 3, .max = 7 },
175 .p = { .min = 5, .max = 80 },
176 .p1 = { .min = 1, .max = 8 },
177 .p2 = { .dot_limit = 200000,
178 .p2_slow = 10, .p2_fast = 5 },
179 .find_pll = intel_find_best_PLL,
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183 .dot = { .min = 20000, .max = 400000 },
184 .vco = { .min = 1400000, .max = 2800000 },
185 .n = { .min = 1, .max = 6 },
186 .m = { .min = 70, .max = 120 },
187 .m1 = { .min = 8, .max = 18 },
188 .m2 = { .min = 3, .max = 7 },
189 .p = { .min = 7, .max = 98 },
190 .p1 = { .min = 1, .max = 8 },
191 .p2 = { .dot_limit = 112000,
192 .p2_slow = 14, .p2_fast = 7 },
193 .find_pll = intel_find_best_PLL,
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198 .dot = { .min = 25000, .max = 270000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 17, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 10, .max = 30 },
205 .p1 = { .min = 1, .max = 3},
206 .p2 = { .dot_limit = 270000,
207 .p2_slow = 10,
208 .p2_fast = 10
210 .find_pll = intel_g4x_find_best_PLL,
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214 .dot = { .min = 22000, .max = 400000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 16, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 5, .max = 80 },
221 .p1 = { .min = 1, .max = 8},
222 .p2 = { .dot_limit = 165000,
223 .p2_slow = 10, .p2_fast = 5 },
224 .find_pll = intel_g4x_find_best_PLL,
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228 .dot = { .min = 20000, .max = 115000 },
229 .vco = { .min = 1750000, .max = 3500000 },
230 .n = { .min = 1, .max = 3 },
231 .m = { .min = 104, .max = 138 },
232 .m1 = { .min = 17, .max = 23 },
233 .m2 = { .min = 5, .max = 11 },
234 .p = { .min = 28, .max = 112 },
235 .p1 = { .min = 2, .max = 8 },
236 .p2 = { .dot_limit = 0,
237 .p2_slow = 14, .p2_fast = 14
239 .find_pll = intel_g4x_find_best_PLL,
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243 .dot = { .min = 80000, .max = 224000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 14, .max = 42 },
250 .p1 = { .min = 2, .max = 6 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 7, .p2_fast = 7
254 .find_pll = intel_g4x_find_best_PLL,
257 static const intel_limit_t intel_limits_g4x_display_port = {
258 .dot = { .min = 161670, .max = 227000 },
259 .vco = { .min = 1750000, .max = 3500000},
260 .n = { .min = 1, .max = 2 },
261 .m = { .min = 97, .max = 108 },
262 .m1 = { .min = 0x10, .max = 0x12 },
263 .m2 = { .min = 0x05, .max = 0x06 },
264 .p = { .min = 10, .max = 20 },
265 .p1 = { .min = 1, .max = 2},
266 .p2 = { .dot_limit = 0,
267 .p2_slow = 10, .p2_fast = 10 },
268 .find_pll = intel_find_pll_g4x_dp,
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272 .dot = { .min = 20000, .max = 400000},
273 .vco = { .min = 1700000, .max = 3500000 },
274 /* Pineview's Ncounter is a ring counter */
275 .n = { .min = 3, .max = 6 },
276 .m = { .min = 2, .max = 256 },
277 /* Pineview only has one combined m divider, which we treat as m2. */
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 200000,
283 .p2_slow = 10, .p2_fast = 5 },
284 .find_pll = intel_find_best_PLL,
287 static const intel_limit_t intel_limits_pineview_lvds = {
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1700000, .max = 3500000 },
290 .n = { .min = 3, .max = 6 },
291 .m = { .min = 2, .max = 256 },
292 .m1 = { .min = 0, .max = 0 },
293 .m2 = { .min = 0, .max = 254 },
294 .p = { .min = 7, .max = 112 },
295 .p1 = { .min = 1, .max = 8 },
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 14 },
298 .find_pll = intel_find_best_PLL,
301 /* Ironlake / Sandybridge
303 * We calculate clock using (register_value + 2) for N/M1/M2, so here
304 * the range value for them is (actual_value - 2).
306 static const intel_limit_t intel_limits_ironlake_dac = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 5 },
310 .m = { .min = 79, .max = 127 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 5, .max = 80 },
314 .p1 = { .min = 1, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 10, .p2_fast = 5 },
317 .find_pll = intel_g4x_find_best_PLL,
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 118 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 28, .max = 112 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 14, .p2_fast = 14 },
331 .find_pll = intel_g4x_find_best_PLL,
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 3 },
338 .m = { .min = 79, .max = 127 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 14, .max = 56 },
342 .p1 = { .min = 2, .max = 8 },
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 7, .p2_fast = 7 },
345 .find_pll = intel_g4x_find_best_PLL,
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 2 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 28, .max = 112 },
357 .p1 = { .min = 2, .max = 8 },
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 14, .p2_fast = 14 },
360 .find_pll = intel_g4x_find_best_PLL,
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000 },
366 .n = { .min = 1, .max = 3 },
367 .m = { .min = 79, .max = 126 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 14, .max = 42 },
371 .p1 = { .min = 2, .max = 6 },
372 .p2 = { .dot_limit = 225000,
373 .p2_slow = 7, .p2_fast = 7 },
374 .find_pll = intel_g4x_find_best_PLL,
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378 .dot = { .min = 25000, .max = 350000 },
379 .vco = { .min = 1760000, .max = 3510000},
380 .n = { .min = 1, .max = 2 },
381 .m = { .min = 81, .max = 90 },
382 .m1 = { .min = 12, .max = 22 },
383 .m2 = { .min = 5, .max = 9 },
384 .p = { .min = 10, .max = 20 },
385 .p1 = { .min = 1, .max = 2},
386 .p2 = { .dot_limit = 0,
387 .p2_slow = 10, .p2_fast = 10 },
388 .find_pll = intel_find_pll_ironlake_dp,
391 static const intel_limit_t intel_limits_vlv_dac = {
392 .dot = { .min = 25000, .max = 270000 },
393 .vco = { .min = 4000000, .max = 6000000 },
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 22, .max = 450 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406 .dot = { .min = 20000, .max = 165000 },
407 .vco = { .min = 4000000, .max = 5994000},
408 .n = { .min = 1, .max = 7 },
409 .m = { .min = 60, .max = 300 }, /* guess */
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
419 static const intel_limit_t intel_limits_vlv_dp = {
420 .dot = { .min = 25000, .max = 270000 },
421 .vco = { .min = 4000000, .max = 6000000 },
422 .n = { .min = 1, .max = 7 },
423 .m = { .min = 22, .max = 450 },
424 .m1 = { .min = 2, .max = 3 },
425 .m2 = { .min = 11, .max = 156 },
426 .p = { .min = 10, .max = 30 },
427 .p1 = { .min = 2, .max = 3 },
428 .p2 = { .dot_limit = 270000,
429 .p2_slow = 2, .p2_fast = 20 },
430 .find_pll = intel_vlv_find_best_pll,
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
435 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
437 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438 DRM_ERROR("DPIO idle wait timed out\n");
439 return 0;
442 I915_WRITE(DPIO_REG, reg);
443 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444 DPIO_BYTE);
445 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446 DRM_ERROR("DPIO read wait timed out\n");
447 return 0;
450 return I915_READ(DPIO_DATA);
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454 u32 val)
456 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
458 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459 DRM_ERROR("DPIO idle wait timed out\n");
460 return;
463 I915_WRITE(DPIO_DATA, val);
464 I915_WRITE(DPIO_REG, reg);
465 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466 DPIO_BYTE);
467 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468 DRM_ERROR("DPIO write wait timed out\n");
471 static void vlv_init_dpio(struct drm_device *dev)
473 struct drm_i915_private *dev_priv = dev->dev_private;
475 /* Reset the DPIO config */
476 I915_WRITE(DPIO_CTL, 0);
477 POSTING_READ(DPIO_CTL);
478 I915_WRITE(DPIO_CTL, 1);
479 POSTING_READ(DPIO_CTL);
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483 int refclk)
485 struct drm_device *dev = crtc->dev;
486 const intel_limit_t *limit;
488 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489 if (intel_is_dual_link_lvds(dev)) {
490 if (refclk == 100000)
491 limit = &intel_limits_ironlake_dual_lvds_100m;
492 else
493 limit = &intel_limits_ironlake_dual_lvds;
494 } else {
495 if (refclk == 100000)
496 limit = &intel_limits_ironlake_single_lvds_100m;
497 else
498 limit = &intel_limits_ironlake_single_lvds;
500 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502 limit = &intel_limits_ironlake_display_port;
503 else
504 limit = &intel_limits_ironlake_dac;
506 return limit;
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
511 struct drm_device *dev = crtc->dev;
512 const intel_limit_t *limit;
514 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515 if (intel_is_dual_link_lvds(dev))
516 limit = &intel_limits_g4x_dual_channel_lvds;
517 else
518 limit = &intel_limits_g4x_single_channel_lvds;
519 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521 limit = &intel_limits_g4x_hdmi;
522 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523 limit = &intel_limits_g4x_sdvo;
524 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525 limit = &intel_limits_g4x_display_port;
526 } else /* The option is for other outputs */
527 limit = &intel_limits_i9xx_sdvo;
529 return limit;
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
534 struct drm_device *dev = crtc->dev;
535 const intel_limit_t *limit;
537 if (HAS_PCH_SPLIT(dev))
538 limit = intel_ironlake_limit(crtc, refclk);
539 else if (IS_G4X(dev)) {
540 limit = intel_g4x_limit(crtc);
541 } else if (IS_PINEVIEW(dev)) {
542 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543 limit = &intel_limits_pineview_lvds;
544 else
545 limit = &intel_limits_pineview_sdvo;
546 } else if (IS_VALLEYVIEW(dev)) {
547 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548 limit = &intel_limits_vlv_dac;
549 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550 limit = &intel_limits_vlv_hdmi;
551 else
552 limit = &intel_limits_vlv_dp;
553 } else if (!IS_GEN2(dev)) {
554 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555 limit = &intel_limits_i9xx_lvds;
556 else
557 limit = &intel_limits_i9xx_sdvo;
558 } else {
559 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560 limit = &intel_limits_i8xx_lvds;
561 else
562 limit = &intel_limits_i8xx_dvo;
564 return limit;
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
570 clock->m = clock->m2 + 2;
571 clock->p = clock->p1 * clock->p2;
572 clock->vco = refclk * clock->m / clock->n;
573 clock->dot = clock->vco / clock->p;
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
578 if (IS_PINEVIEW(dev)) {
579 pineview_clock(refclk, clock);
580 return;
582 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583 clock->p = clock->p1 * clock->p2;
584 clock->vco = refclk * clock->m / (clock->n + 2);
585 clock->dot = clock->vco / clock->p;
589 * Returns whether any output on the specified pipe is of the specified type
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
593 struct drm_device *dev = crtc->dev;
594 struct intel_encoder *encoder;
596 for_each_encoder_on_crtc(dev, crtc, encoder)
597 if (encoder->type == type)
598 return true;
600 return false;
603 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
605 * Returns whether the given set of divisors are valid for a given refclk with
606 * the given connectors.
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610 const intel_limit_t *limit,
611 const intel_clock_t *clock)
613 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
614 INTELPllInvalid("p1 out of range\n");
615 if (clock->p < limit->p.min || limit->p.max < clock->p)
616 INTELPllInvalid("p out of range\n");
617 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
618 INTELPllInvalid("m2 out of range\n");
619 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
620 INTELPllInvalid("m1 out of range\n");
621 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622 INTELPllInvalid("m1 <= m2\n");
623 if (clock->m < limit->m.min || limit->m.max < clock->m)
624 INTELPllInvalid("m out of range\n");
625 if (clock->n < limit->n.min || limit->n.max < clock->n)
626 INTELPllInvalid("n out of range\n");
627 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628 INTELPllInvalid("vco out of range\n");
629 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630 * connector, etc., rather than just a single range.
632 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633 INTELPllInvalid("dot out of range\n");
635 return true;
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640 int target, int refclk, intel_clock_t *match_clock,
641 intel_clock_t *best_clock)
644 struct drm_device *dev = crtc->dev;
645 intel_clock_t clock;
646 int err = target;
648 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
650 * For LVDS just rely on its current settings for dual-channel.
651 * We haven't figured out how to reliably set up different
652 * single/dual channel state, if we even can.
654 if (intel_is_dual_link_lvds(dev))
655 clock.p2 = limit->p2.p2_fast;
656 else
657 clock.p2 = limit->p2.p2_slow;
658 } else {
659 if (target < limit->p2.dot_limit)
660 clock.p2 = limit->p2.p2_slow;
661 else
662 clock.p2 = limit->p2.p2_fast;
665 memset(best_clock, 0, sizeof(*best_clock));
667 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668 clock.m1++) {
669 for (clock.m2 = limit->m2.min;
670 clock.m2 <= limit->m2.max; clock.m2++) {
671 /* m1 is always 0 in Pineview */
672 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673 break;
674 for (clock.n = limit->n.min;
675 clock.n <= limit->n.max; clock.n++) {
676 for (clock.p1 = limit->p1.min;
677 clock.p1 <= limit->p1.max; clock.p1++) {
678 int this_err;
680 intel_clock(dev, refclk, &clock);
681 if (!intel_PLL_is_valid(dev, limit,
682 &clock))
683 continue;
684 if (match_clock &&
685 clock.p != match_clock->p)
686 continue;
688 this_err = abs(clock.dot - target);
689 if (this_err < err) {
690 *best_clock = clock;
691 err = this_err;
698 return (err != target);
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703 int target, int refclk, intel_clock_t *match_clock,
704 intel_clock_t *best_clock)
706 struct drm_device *dev = crtc->dev;
707 intel_clock_t clock;
708 int max_n;
709 bool found;
710 /* approximately equals target * 0.00585 */
711 int err_most = (target >> 8) + (target >> 9);
712 found = false;
714 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715 int lvds_reg;
717 if (HAS_PCH_SPLIT(dev))
718 lvds_reg = PCH_LVDS;
719 else
720 lvds_reg = LVDS;
721 if (intel_is_dual_link_lvds(dev))
722 clock.p2 = limit->p2.p2_fast;
723 else
724 clock.p2 = limit->p2.p2_slow;
725 } else {
726 if (target < limit->p2.dot_limit)
727 clock.p2 = limit->p2.p2_slow;
728 else
729 clock.p2 = limit->p2.p2_fast;
732 memset(best_clock, 0, sizeof(*best_clock));
733 max_n = limit->n.max;
734 /* based on hardware requirement, prefer smaller n to precision */
735 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736 /* based on hardware requirement, prefere larger m1,m2 */
737 for (clock.m1 = limit->m1.max;
738 clock.m1 >= limit->m1.min; clock.m1--) {
739 for (clock.m2 = limit->m2.max;
740 clock.m2 >= limit->m2.min; clock.m2--) {
741 for (clock.p1 = limit->p1.max;
742 clock.p1 >= limit->p1.min; clock.p1--) {
743 int this_err;
745 intel_clock(dev, refclk, &clock);
746 if (!intel_PLL_is_valid(dev, limit,
747 &clock))
748 continue;
749 if (match_clock &&
750 clock.p != match_clock->p)
751 continue;
753 this_err = abs(clock.dot - target);
754 if (this_err < err_most) {
755 *best_clock = clock;
756 err_most = this_err;
757 max_n = clock.n;
758 found = true;
764 return found;
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769 int target, int refclk, intel_clock_t *match_clock,
770 intel_clock_t *best_clock)
772 struct drm_device *dev = crtc->dev;
773 intel_clock_t clock;
775 if (target < 200000) {
776 clock.n = 1;
777 clock.p1 = 2;
778 clock.p2 = 10;
779 clock.m1 = 12;
780 clock.m2 = 9;
781 } else {
782 clock.n = 2;
783 clock.p1 = 1;
784 clock.p2 = 10;
785 clock.m1 = 14;
786 clock.m2 = 8;
788 intel_clock(dev, refclk, &clock);
789 memcpy(best_clock, &clock, sizeof(intel_clock_t));
790 return true;
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796 int target, int refclk, intel_clock_t *match_clock,
797 intel_clock_t *best_clock)
799 intel_clock_t clock;
800 if (target < 200000) {
801 clock.p1 = 2;
802 clock.p2 = 10;
803 clock.n = 2;
804 clock.m1 = 23;
805 clock.m2 = 8;
806 } else {
807 clock.p1 = 1;
808 clock.p2 = 10;
809 clock.n = 1;
810 clock.m1 = 14;
811 clock.m2 = 2;
813 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814 clock.p = (clock.p1 * clock.p2);
815 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816 clock.vco = 0;
817 memcpy(best_clock, &clock, sizeof(intel_clock_t));
818 return true;
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822 int target, int refclk, intel_clock_t *match_clock,
823 intel_clock_t *best_clock)
825 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826 u32 m, n, fastclk;
827 u32 updrate, minupdate, fracbits, p;
828 unsigned long bestppm, ppm, absppm;
829 int dotclk, flag;
831 flag = 0;
832 dotclk = target * 1000;
833 bestppm = 1000000;
834 ppm = absppm = 0;
835 fastclk = dotclk / (2*100);
836 updrate = 0;
837 minupdate = 19200;
838 fracbits = 1;
839 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840 bestm1 = bestm2 = bestp1 = bestp2 = 0;
842 /* based on hardware requirement, prefer smaller n to precision */
843 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844 updrate = refclk / n;
845 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847 if (p2 > 10)
848 p2 = p2 - 1;
849 p = p1 * p2;
850 /* based on hardware requirement, prefer bigger m1,m2 values */
851 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852 m2 = (((2*(fastclk * p * n / m1 )) +
853 refclk) / (2*refclk));
854 m = m1 * m2;
855 vco = updrate * m;
856 if (vco >= limit->vco.min && vco < limit->vco.max) {
857 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858 absppm = (ppm > 0) ? ppm : (-ppm);
859 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860 bestppm = 0;
861 flag = 1;
863 if (absppm < bestppm - 10) {
864 bestppm = absppm;
865 flag = 1;
867 if (flag) {
868 bestn = n;
869 bestm1 = m1;
870 bestm2 = m2;
871 bestp1 = p1;
872 bestp2 = p2;
873 flag = 0;
880 best_clock->n = bestn;
881 best_clock->m1 = bestm1;
882 best_clock->m2 = bestm2;
883 best_clock->p1 = bestp1;
884 best_clock->p2 = bestp2;
886 return true;
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890 enum pipe pipe)
892 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
895 return intel_crtc->cpu_transcoder;
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
900 struct drm_i915_private *dev_priv = dev->dev_private;
901 u32 frame, frame_reg = PIPEFRAME(pipe);
903 frame = I915_READ(frame_reg);
905 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906 DRM_DEBUG_KMS("vblank wait timed out\n");
910 * intel_wait_for_vblank - wait for vblank on a given pipe
911 * @dev: drm device
912 * @pipe: pipe to wait for
914 * Wait for vblank to occur on a given pipe. Needed for various bits of
915 * mode setting code.
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
919 struct drm_i915_private *dev_priv = dev->dev_private;
920 int pipestat_reg = PIPESTAT(pipe);
922 if (INTEL_INFO(dev)->gen >= 5) {
923 ironlake_wait_for_vblank(dev, pipe);
924 return;
927 /* Clear existing vblank status. Note this will clear any other
928 * sticky status fields as well.
930 * This races with i915_driver_irq_handler() with the result
931 * that either function could miss a vblank event. Here it is not
932 * fatal, as we will either wait upon the next vblank interrupt or
933 * timeout. Generally speaking intel_wait_for_vblank() is only
934 * called during modeset at which time the GPU should be idle and
935 * should *not* be performing page flips and thus not waiting on
936 * vblanks...
937 * Currently, the result of us stealing a vblank from the irq
938 * handler is that a single frame will be skipped during swapbuffers.
940 I915_WRITE(pipestat_reg,
941 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
943 /* Wait for vblank interrupt bit to set */
944 if (wait_for(I915_READ(pipestat_reg) &
945 PIPE_VBLANK_INTERRUPT_STATUS,
946 50))
947 DRM_DEBUG_KMS("vblank wait timed out\n");
951 * intel_wait_for_pipe_off - wait for pipe to turn off
952 * @dev: drm device
953 * @pipe: pipe to wait for
955 * After disabling a pipe, we can't wait for vblank in the usual way,
956 * spinning on the vblank interrupt status bit, since we won't actually
957 * see an interrupt when the pipe is disabled.
959 * On Gen4 and above:
960 * wait for the pipe register state bit to turn off
962 * Otherwise:
963 * wait for the display line value to settle (it usually
964 * ends up stopping at the start of the next frame).
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
969 struct drm_i915_private *dev_priv = dev->dev_private;
970 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971 pipe);
973 if (INTEL_INFO(dev)->gen >= 4) {
974 int reg = PIPECONF(cpu_transcoder);
976 /* Wait for the Pipe State to go off */
977 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978 100))
979 WARN(1, "pipe_off wait timed out\n");
980 } else {
981 u32 last_line, line_mask;
982 int reg = PIPEDSL(pipe);
983 unsigned long timeout = jiffies + msecs_to_jiffies(100);
985 if (IS_GEN2(dev))
986 line_mask = DSL_LINEMASK_GEN2;
987 else
988 line_mask = DSL_LINEMASK_GEN3;
990 /* Wait for the display line to settle */
991 do {
992 last_line = I915_READ(reg) & line_mask;
993 mdelay(5);
994 } while (((I915_READ(reg) & line_mask) != last_line) &&
995 time_after(timeout, jiffies));
996 if (time_after(jiffies, timeout))
997 WARN(1, "pipe_off wait timed out\n");
1002 * ibx_digital_port_connected - is the specified port connected?
1003 * @dev_priv: i915 private structure
1004 * @port: the port to test
1006 * Returns true if @port is connected, false otherwise.
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009 struct intel_digital_port *port)
1011 u32 bit;
1013 if (HAS_PCH_IBX(dev_priv->dev)) {
1014 switch(port->port) {
1015 case PORT_B:
1016 bit = SDE_PORTB_HOTPLUG;
1017 break;
1018 case PORT_C:
1019 bit = SDE_PORTC_HOTPLUG;
1020 break;
1021 case PORT_D:
1022 bit = SDE_PORTD_HOTPLUG;
1023 break;
1024 default:
1025 return true;
1027 } else {
1028 switch(port->port) {
1029 case PORT_B:
1030 bit = SDE_PORTB_HOTPLUG_CPT;
1031 break;
1032 case PORT_C:
1033 bit = SDE_PORTC_HOTPLUG_CPT;
1034 break;
1035 case PORT_D:
1036 bit = SDE_PORTD_HOTPLUG_CPT;
1037 break;
1038 default:
1039 return true;
1043 return I915_READ(SDEISR) & bit;
1046 static const char *state_string(bool enabled)
1048 return enabled ? "on" : "off";
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053 enum pipe pipe, bool state)
1055 int reg;
1056 u32 val;
1057 bool cur_state;
1059 reg = DPLL(pipe);
1060 val = I915_READ(reg);
1061 cur_state = !!(val & DPLL_VCO_ENABLE);
1062 WARN(cur_state != state,
1063 "PLL state assertion failure (expected %s, current %s)\n",
1064 state_string(state), state_string(cur_state));
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071 struct intel_pch_pll *pll,
1072 struct intel_crtc *crtc,
1073 bool state)
1075 u32 val;
1076 bool cur_state;
1078 if (HAS_PCH_LPT(dev_priv->dev)) {
1079 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080 return;
1083 if (WARN (!pll,
1084 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085 return;
1087 val = I915_READ(pll->pll_reg);
1088 cur_state = !!(val & DPLL_VCO_ENABLE);
1089 WARN(cur_state != state,
1090 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091 pll->pll_reg, state_string(state), state_string(cur_state), val);
1093 /* Make sure the selected PLL is correctly attached to the transcoder */
1094 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095 u32 pch_dpll;
1097 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100 "PLL[%d] not attached to this transcoder %d: %08x\n",
1101 cur_state, crtc->pipe, pch_dpll)) {
1102 cur_state = !!(val >> (4*crtc->pipe + 3));
1103 WARN(cur_state != state,
1104 "PLL[%d] not %s on this transcoder %d: %08x\n",
1105 pll->pll_reg == _PCH_DPLL_B,
1106 state_string(state),
1107 crtc->pipe,
1108 val);
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1118 int reg;
1119 u32 val;
1120 bool cur_state;
1121 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122 pipe);
1124 if (HAS_DDI(dev_priv->dev)) {
1125 /* DDI does not have a specific FDI_TX register */
1126 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129 } else {
1130 reg = FDI_TX_CTL(pipe);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & FDI_TX_ENABLE);
1134 WARN(cur_state != state,
1135 "FDI TX state assertion failure (expected %s, current %s)\n",
1136 state_string(state), state_string(cur_state));
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX state assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
1161 int reg;
1162 u32 val;
1164 /* ILK FDI PLL is always enabled */
1165 if (dev_priv->info->gen == 5)
1166 return;
1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169 if (HAS_DDI(dev_priv->dev))
1170 return;
1172 reg = FDI_TX_CTL(pipe);
1173 val = I915_READ(reg);
1174 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178 enum pipe pipe)
1180 int reg;
1181 u32 val;
1183 reg = FDI_RX_CTL(pipe);
1184 val = I915_READ(reg);
1185 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1191 int pp_reg, lvds_reg;
1192 u32 val;
1193 enum pipe panel_pipe = PIPE_A;
1194 bool locked = true;
1196 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197 pp_reg = PCH_PP_CONTROL;
1198 lvds_reg = PCH_LVDS;
1199 } else {
1200 pp_reg = PP_CONTROL;
1201 lvds_reg = LVDS;
1204 val = I915_READ(pp_reg);
1205 if (!(val & PANEL_POWER_ON) ||
1206 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207 locked = false;
1209 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210 panel_pipe = PIPE_B;
1212 WARN(panel_pipe == pipe && locked,
1213 "panel assertion failure, pipe %c regs locked\n",
1214 pipe_name(pipe));
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
1220 int reg;
1221 u32 val;
1222 bool cur_state;
1223 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224 pipe);
1226 /* if we need the pipe A quirk it must be always on */
1227 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228 state = true;
1230 if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1231 !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1239 WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
1241 pipe_name(pipe), state_string(state), state_string(cur_state));
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
1247 int reg;
1248 u32 val;
1249 bool cur_state;
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1265 int reg, i;
1266 u32 val;
1267 int cur_pipe;
1269 /* Planes are fixed to pipes on ILK+ */
1270 if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271 reg = DSPCNTR(pipe);
1272 val = I915_READ(reg);
1273 WARN((val & DISPLAY_PLANE_ENABLE),
1274 "plane %c assertion failure, should be disabled but not\n",
1275 plane_name(pipe));
1276 return;
1279 /* Need to check both planes against the pipe */
1280 for (i = 0; i < 2; i++) {
1281 reg = DSPCNTR(i);
1282 val = I915_READ(reg);
1283 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284 DISPPLANE_SEL_PIPE_SHIFT;
1285 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287 plane_name(i), pipe_name(pipe));
1291 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1294 int reg, i;
1295 u32 val;
1297 if (!IS_VALLEYVIEW(dev_priv->dev))
1298 return;
1300 /* Need to check both planes against the pipe */
1301 for (i = 0; i < dev_priv->num_plane; i++) {
1302 reg = SPCNTR(pipe, i);
1303 val = I915_READ(reg);
1304 WARN((val & SP_ENABLE),
1305 "sprite %d assertion failure, should be off on pipe %c but is still active\n",
1306 pipe * 2 + i, pipe_name(pipe));
1310 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1312 u32 val;
1313 bool enabled;
1315 if (HAS_PCH_LPT(dev_priv->dev)) {
1316 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1317 return;
1320 val = I915_READ(PCH_DREF_CONTROL);
1321 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1322 DREF_SUPERSPREAD_SOURCE_MASK));
1323 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1326 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1327 enum pipe pipe)
1329 int reg;
1330 u32 val;
1331 bool enabled;
1333 reg = TRANSCONF(pipe);
1334 val = I915_READ(reg);
1335 enabled = !!(val & TRANS_ENABLE);
1336 WARN(enabled,
1337 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1338 pipe_name(pipe));
1341 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1342 enum pipe pipe, u32 port_sel, u32 val)
1344 if ((val & DP_PORT_EN) == 0)
1345 return false;
1347 if (HAS_PCH_CPT(dev_priv->dev)) {
1348 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1349 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1350 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1351 return false;
1352 } else {
1353 if ((val & DP_PIPE_MASK) != (pipe << 30))
1354 return false;
1356 return true;
1359 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1360 enum pipe pipe, u32 val)
1362 if ((val & SDVO_ENABLE) == 0)
1363 return false;
1365 if (HAS_PCH_CPT(dev_priv->dev)) {
1366 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1367 return false;
1368 } else {
1369 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1370 return false;
1372 return true;
1375 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1376 enum pipe pipe, u32 val)
1378 if ((val & LVDS_PORT_EN) == 0)
1379 return false;
1381 if (HAS_PCH_CPT(dev_priv->dev)) {
1382 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1383 return false;
1384 } else {
1385 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1386 return false;
1388 return true;
1391 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1392 enum pipe pipe, u32 val)
1394 if ((val & ADPA_DAC_ENABLE) == 0)
1395 return false;
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
1397 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1398 return false;
1399 } else {
1400 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1401 return false;
1403 return true;
1406 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, int reg, u32 port_sel)
1409 u32 val = I915_READ(reg);
1410 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1411 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1412 reg, pipe_name(pipe));
1414 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1415 && (val & DP_PIPEB_SELECT),
1416 "IBX PCH dp port still using transcoder B\n");
1419 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1420 enum pipe pipe, int reg)
1422 u32 val = I915_READ(reg);
1423 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1424 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1425 reg, pipe_name(pipe));
1427 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1428 && (val & SDVO_PIPE_B_SELECT),
1429 "IBX PCH hdmi port still using transcoder B\n");
1432 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1433 enum pipe pipe)
1435 int reg;
1436 u32 val;
1438 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1439 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1440 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1442 reg = PCH_ADPA;
1443 val = I915_READ(reg);
1444 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1445 "PCH VGA enabled on transcoder %c, should be disabled\n",
1446 pipe_name(pipe));
1448 reg = PCH_LVDS;
1449 val = I915_READ(reg);
1450 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1451 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1452 pipe_name(pipe));
1454 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1455 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1456 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1460 * intel_enable_pll - enable a PLL
1461 * @dev_priv: i915 private structure
1462 * @pipe: pipe PLL to enable
1464 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1465 * make sure the PLL reg is writable first though, since the panel write
1466 * protect mechanism may be enabled.
1468 * Note! This is for pre-ILK only.
1470 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1472 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1474 int reg;
1475 u32 val;
1477 /* No really, not for ILK+ */
1478 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1480 /* PLL is protected by panel, make sure we can write it */
1481 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1482 assert_panel_unlocked(dev_priv, pipe);
1484 reg = DPLL(pipe);
1485 val = I915_READ(reg);
1486 val |= DPLL_VCO_ENABLE;
1488 /* We do this three times for luck */
1489 I915_WRITE(reg, val);
1490 POSTING_READ(reg);
1491 udelay(150); /* wait for warmup */
1492 I915_WRITE(reg, val);
1493 POSTING_READ(reg);
1494 udelay(150); /* wait for warmup */
1495 I915_WRITE(reg, val);
1496 POSTING_READ(reg);
1497 udelay(150); /* wait for warmup */
1501 * intel_disable_pll - disable a PLL
1502 * @dev_priv: i915 private structure
1503 * @pipe: pipe PLL to disable
1505 * Disable the PLL for @pipe, making sure the pipe is off first.
1507 * Note! This is for pre-ILK only.
1509 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1511 int reg;
1512 u32 val;
1514 /* Don't disable pipe A or pipe A PLLs if needed */
1515 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1516 return;
1518 /* Make sure the pipe isn't still relying on us */
1519 assert_pipe_disabled(dev_priv, pipe);
1521 reg = DPLL(pipe);
1522 val = I915_READ(reg);
1523 val &= ~DPLL_VCO_ENABLE;
1524 I915_WRITE(reg, val);
1525 POSTING_READ(reg);
1528 /* SBI access */
1529 static void
1530 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1531 enum intel_sbi_destination destination)
1533 u32 tmp;
1535 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1537 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1538 100)) {
1539 DRM_ERROR("timeout waiting for SBI to become ready\n");
1540 return;
1543 I915_WRITE(SBI_ADDR, (reg << 16));
1544 I915_WRITE(SBI_DATA, value);
1546 if (destination == SBI_ICLK)
1547 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1548 else
1549 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1550 I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1552 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1553 100)) {
1554 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1555 return;
1559 static u32
1560 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1561 enum intel_sbi_destination destination)
1563 u32 value = 0;
1564 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1566 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1567 100)) {
1568 DRM_ERROR("timeout waiting for SBI to become ready\n");
1569 return 0;
1572 I915_WRITE(SBI_ADDR, (reg << 16));
1574 if (destination == SBI_ICLK)
1575 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1576 else
1577 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1578 I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1580 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1581 100)) {
1582 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1583 return 0;
1586 return I915_READ(SBI_DATA);
1590 * ironlake_enable_pch_pll - enable PCH PLL
1591 * @dev_priv: i915 private structure
1592 * @pipe: pipe PLL to enable
1594 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1595 * drives the transcoder clock.
1597 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1599 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1600 struct intel_pch_pll *pll;
1601 int reg;
1602 u32 val;
1604 /* PCH PLLs only available on ILK, SNB and IVB */
1605 BUG_ON(dev_priv->info->gen < 5);
1606 pll = intel_crtc->pch_pll;
1607 if (pll == NULL)
1608 return;
1610 if (WARN_ON(pll->refcount == 0))
1611 return;
1613 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1614 pll->pll_reg, pll->active, pll->on,
1615 intel_crtc->base.base.id);
1617 /* PCH refclock must be enabled first */
1618 assert_pch_refclk_enabled(dev_priv);
1620 if (pll->active++ && pll->on) {
1621 assert_pch_pll_enabled(dev_priv, pll, NULL);
1622 return;
1625 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1627 reg = pll->pll_reg;
1628 val = I915_READ(reg);
1629 val |= DPLL_VCO_ENABLE;
1630 I915_WRITE(reg, val);
1631 POSTING_READ(reg);
1632 udelay(200);
1634 pll->on = true;
1637 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1639 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1640 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1641 int reg;
1642 u32 val;
1644 /* PCH only available on ILK+ */
1645 BUG_ON(dev_priv->info->gen < 5);
1646 if (pll == NULL)
1647 return;
1649 if (WARN_ON(pll->refcount == 0))
1650 return;
1652 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1653 pll->pll_reg, pll->active, pll->on,
1654 intel_crtc->base.base.id);
1656 if (WARN_ON(pll->active == 0)) {
1657 assert_pch_pll_disabled(dev_priv, pll, NULL);
1658 return;
1661 if (--pll->active) {
1662 assert_pch_pll_enabled(dev_priv, pll, NULL);
1663 return;
1666 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1668 /* Make sure transcoder isn't still depending on us */
1669 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1671 reg = pll->pll_reg;
1672 val = I915_READ(reg);
1673 val &= ~DPLL_VCO_ENABLE;
1674 I915_WRITE(reg, val);
1675 POSTING_READ(reg);
1676 udelay(200);
1678 pll->on = false;
1681 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1682 enum pipe pipe)
1684 struct drm_device *dev = dev_priv->dev;
1685 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1686 uint32_t reg, val, pipeconf_val;
1688 /* PCH only available on ILK+ */
1689 BUG_ON(dev_priv->info->gen < 5);
1691 /* Make sure PCH DPLL is enabled */
1692 assert_pch_pll_enabled(dev_priv,
1693 to_intel_crtc(crtc)->pch_pll,
1694 to_intel_crtc(crtc));
1696 /* FDI must be feeding us bits for PCH ports */
1697 assert_fdi_tx_enabled(dev_priv, pipe);
1698 assert_fdi_rx_enabled(dev_priv, pipe);
1700 if (HAS_PCH_CPT(dev)) {
1701 /* Workaround: Set the timing override bit before enabling the
1702 * pch transcoder. */
1703 reg = TRANS_CHICKEN2(pipe);
1704 val = I915_READ(reg);
1705 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1706 I915_WRITE(reg, val);
1709 reg = TRANSCONF(pipe);
1710 val = I915_READ(reg);
1711 pipeconf_val = I915_READ(PIPECONF(pipe));
1713 if (HAS_PCH_IBX(dev_priv->dev)) {
1715 * make the BPC in transcoder be consistent with
1716 * that in pipeconf reg.
1718 val &= ~PIPECONF_BPC_MASK;
1719 val |= pipeconf_val & PIPECONF_BPC_MASK;
1722 val &= ~TRANS_INTERLACE_MASK;
1723 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1724 if (HAS_PCH_IBX(dev_priv->dev) &&
1725 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1726 val |= TRANS_LEGACY_INTERLACED_ILK;
1727 else
1728 val |= TRANS_INTERLACED;
1729 else
1730 val |= TRANS_PROGRESSIVE;
1732 I915_WRITE(reg, val | TRANS_ENABLE);
1733 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1734 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1737 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1738 enum transcoder cpu_transcoder)
1740 u32 val, pipeconf_val;
1742 /* PCH only available on ILK+ */
1743 BUG_ON(dev_priv->info->gen < 5);
1745 /* FDI must be feeding us bits for PCH ports */
1746 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1747 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1749 /* Workaround: set timing override bit. */
1750 val = I915_READ(_TRANSA_CHICKEN2);
1751 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1752 I915_WRITE(_TRANSA_CHICKEN2, val);
1754 val = TRANS_ENABLE;
1755 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1757 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1758 PIPECONF_INTERLACED_ILK)
1759 val |= TRANS_INTERLACED;
1760 else
1761 val |= TRANS_PROGRESSIVE;
1763 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1764 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1765 DRM_ERROR("Failed to enable PCH transcoder\n");
1768 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1769 enum pipe pipe)
1771 struct drm_device *dev = dev_priv->dev;
1772 uint32_t reg, val;
1774 /* FDI relies on the transcoder */
1775 assert_fdi_tx_disabled(dev_priv, pipe);
1776 assert_fdi_rx_disabled(dev_priv, pipe);
1778 /* Ports must be off as well */
1779 assert_pch_ports_disabled(dev_priv, pipe);
1781 reg = TRANSCONF(pipe);
1782 val = I915_READ(reg);
1783 val &= ~TRANS_ENABLE;
1784 I915_WRITE(reg, val);
1785 /* wait for PCH transcoder off, transcoder state */
1786 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1787 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1789 if (!HAS_PCH_IBX(dev)) {
1790 /* Workaround: Clear the timing override chicken bit again. */
1791 reg = TRANS_CHICKEN2(pipe);
1792 val = I915_READ(reg);
1793 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1794 I915_WRITE(reg, val);
1798 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1800 u32 val;
1802 val = I915_READ(_TRANSACONF);
1803 val &= ~TRANS_ENABLE;
1804 I915_WRITE(_TRANSACONF, val);
1805 /* wait for PCH transcoder off, transcoder state */
1806 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1807 DRM_ERROR("Failed to disable PCH transcoder\n");
1809 /* Workaround: clear timing override bit. */
1810 val = I915_READ(_TRANSA_CHICKEN2);
1811 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1812 I915_WRITE(_TRANSA_CHICKEN2, val);
1816 * intel_enable_pipe - enable a pipe, asserting requirements
1817 * @dev_priv: i915 private structure
1818 * @pipe: pipe to enable
1819 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1821 * Enable @pipe, making sure that various hardware specific requirements
1822 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1824 * @pipe should be %PIPE_A or %PIPE_B.
1826 * Will wait until the pipe is actually running (i.e. first vblank) before
1827 * returning.
1829 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1830 bool pch_port)
1832 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1833 pipe);
1834 enum pipe pch_transcoder;
1835 int reg;
1836 u32 val;
1838 if (HAS_PCH_LPT(dev_priv->dev))
1839 pch_transcoder = TRANSCODER_A;
1840 else
1841 pch_transcoder = pipe;
1844 * A pipe without a PLL won't actually be able to drive bits from
1845 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1846 * need the check.
1848 if (!HAS_PCH_SPLIT(dev_priv->dev))
1849 assert_pll_enabled(dev_priv, pipe);
1850 else {
1851 if (pch_port) {
1852 /* if driving the PCH, we need FDI enabled */
1853 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1854 assert_fdi_tx_pll_enabled(dev_priv,
1855 (enum pipe) cpu_transcoder);
1857 /* FIXME: assert CPU port conditions for SNB+ */
1860 reg = PIPECONF(cpu_transcoder);
1861 val = I915_READ(reg);
1862 if (val & PIPECONF_ENABLE)
1863 return;
1865 I915_WRITE(reg, val | PIPECONF_ENABLE);
1866 intel_wait_for_vblank(dev_priv->dev, pipe);
1870 * intel_disable_pipe - disable a pipe, asserting requirements
1871 * @dev_priv: i915 private structure
1872 * @pipe: pipe to disable
1874 * Disable @pipe, making sure that various hardware specific requirements
1875 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1877 * @pipe should be %PIPE_A or %PIPE_B.
1879 * Will wait until the pipe has shut down before returning.
1881 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1882 enum pipe pipe)
1884 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1885 pipe);
1886 int reg;
1887 u32 val;
1890 * Make sure planes won't keep trying to pump pixels to us,
1891 * or we might hang the display.
1893 assert_planes_disabled(dev_priv, pipe);
1894 assert_sprites_disabled(dev_priv, pipe);
1896 /* Don't disable pipe A or pipe A PLLs if needed */
1897 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1898 return;
1900 reg = PIPECONF(cpu_transcoder);
1901 val = I915_READ(reg);
1902 if ((val & PIPECONF_ENABLE) == 0)
1903 return;
1905 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1906 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1910 * Plane regs are double buffered, going from enabled->disabled needs a
1911 * trigger in order to latch. The display address reg provides this.
1913 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1914 enum plane plane)
1916 if (dev_priv->info->gen >= 4)
1917 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1918 else
1919 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1923 * intel_enable_plane - enable a display plane on a given pipe
1924 * @dev_priv: i915 private structure
1925 * @plane: plane to enable
1926 * @pipe: pipe being fed
1928 * Enable @plane on @pipe, making sure that @pipe is running first.
1930 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1931 enum plane plane, enum pipe pipe)
1933 int reg;
1934 u32 val;
1936 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1937 assert_pipe_enabled(dev_priv, pipe);
1939 reg = DSPCNTR(plane);
1940 val = I915_READ(reg);
1941 if (val & DISPLAY_PLANE_ENABLE)
1942 return;
1944 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1945 intel_flush_display_plane(dev_priv, plane);
1946 intel_wait_for_vblank(dev_priv->dev, pipe);
1950 * intel_disable_plane - disable a display plane
1951 * @dev_priv: i915 private structure
1952 * @plane: plane to disable
1953 * @pipe: pipe consuming the data
1955 * Disable @plane; should be an independent operation.
1957 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1958 enum plane plane, enum pipe pipe)
1960 int reg;
1961 u32 val;
1963 reg = DSPCNTR(plane);
1964 val = I915_READ(reg);
1965 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1966 return;
1968 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1969 intel_flush_display_plane(dev_priv, plane);
1970 intel_wait_for_vblank(dev_priv->dev, pipe);
1973 static bool need_vtd_wa(struct drm_device *dev)
1975 #ifdef CONFIG_INTEL_IOMMU
1976 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1977 return true;
1978 #endif
1979 return false;
1983 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1984 struct drm_i915_gem_object *obj,
1985 struct intel_ring_buffer *pipelined)
1987 struct drm_i915_private *dev_priv = dev->dev_private;
1988 u32 alignment;
1989 int ret;
1991 switch (obj->tiling_mode) {
1992 case I915_TILING_NONE:
1993 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1994 alignment = 128 * 1024;
1995 else if (INTEL_INFO(dev)->gen >= 4)
1996 alignment = 4 * 1024;
1997 else
1998 alignment = 64 * 1024;
1999 break;
2000 case I915_TILING_X:
2001 /* pin() will align the object as required by fence */
2002 alignment = 0;
2003 break;
2004 case I915_TILING_Y:
2005 /* Despite that we check this in framebuffer_init userspace can
2006 * screw us over and change the tiling after the fact. Only
2007 * pinned buffers can't change their tiling. */
2008 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
2009 return -EINVAL;
2010 default:
2011 BUG();
2014 /* Note that the w/a also requires 64 PTE of padding following the
2015 * bo. We currently fill all unused PTE with the shadow page and so
2016 * we should always have valid PTE following the scanout preventing
2017 * the VT-d warning.
2019 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2020 alignment = 256 * 1024;
2022 dev_priv->mm.interruptible = false;
2023 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2024 if (ret)
2025 goto err_interruptible;
2027 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2028 * fence, whereas 965+ only requires a fence if using
2029 * framebuffer compression. For simplicity, we always install
2030 * a fence as the cost is not that onerous.
2032 ret = i915_gem_object_get_fence(obj);
2033 if (ret)
2034 goto err_unpin;
2036 i915_gem_object_pin_fence(obj);
2038 dev_priv->mm.interruptible = true;
2039 return 0;
2041 err_unpin:
2042 i915_gem_object_unpin(obj);
2043 err_interruptible:
2044 dev_priv->mm.interruptible = true;
2045 return ret;
2048 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2050 i915_gem_object_unpin_fence(obj);
2051 i915_gem_object_unpin(obj);
2054 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2055 * is assumed to be a power-of-two. */
2056 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2057 unsigned int tiling_mode,
2058 unsigned int cpp,
2059 unsigned int pitch)
2061 if (tiling_mode != I915_TILING_NONE) {
2062 unsigned int tile_rows, tiles;
2064 tile_rows = *y / 8;
2065 *y %= 8;
2067 tiles = *x / (512/cpp);
2068 *x %= 512/cpp;
2070 return tile_rows * pitch * 8 + tiles * 4096;
2071 } else {
2072 unsigned int offset;
2074 offset = *y * pitch + *x * cpp;
2075 *y = 0;
2076 *x = (offset & 4095) / cpp;
2077 return offset & -4096;
2081 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2082 int x, int y)
2084 struct drm_device *dev = crtc->dev;
2085 struct drm_i915_private *dev_priv = dev->dev_private;
2086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2087 struct intel_framebuffer *intel_fb;
2088 struct drm_i915_gem_object *obj;
2089 int plane = intel_crtc->plane;
2090 unsigned long linear_offset;
2091 u32 dspcntr;
2092 u32 reg;
2094 switch (plane) {
2095 case 0:
2096 case 1:
2097 break;
2098 default:
2099 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2100 return -EINVAL;
2103 intel_fb = to_intel_framebuffer(fb);
2104 obj = intel_fb->obj;
2106 reg = DSPCNTR(plane);
2107 dspcntr = I915_READ(reg);
2108 /* Mask out pixel format bits in case we change it */
2109 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2110 switch (fb->pixel_format) {
2111 case DRM_FORMAT_C8:
2112 dspcntr |= DISPPLANE_8BPP;
2113 break;
2114 case DRM_FORMAT_XRGB1555:
2115 case DRM_FORMAT_ARGB1555:
2116 dspcntr |= DISPPLANE_BGRX555;
2117 break;
2118 case DRM_FORMAT_RGB565:
2119 dspcntr |= DISPPLANE_BGRX565;
2120 break;
2121 case DRM_FORMAT_XRGB8888:
2122 case DRM_FORMAT_ARGB8888:
2123 dspcntr |= DISPPLANE_BGRX888;
2124 break;
2125 case DRM_FORMAT_XBGR8888:
2126 case DRM_FORMAT_ABGR8888:
2127 dspcntr |= DISPPLANE_RGBX888;
2128 break;
2129 case DRM_FORMAT_XRGB2101010:
2130 case DRM_FORMAT_ARGB2101010:
2131 dspcntr |= DISPPLANE_BGRX101010;
2132 break;
2133 case DRM_FORMAT_XBGR2101010:
2134 case DRM_FORMAT_ABGR2101010:
2135 dspcntr |= DISPPLANE_RGBX101010;
2136 break;
2137 default:
2138 BUG();
2141 if (INTEL_INFO(dev)->gen >= 4) {
2142 if (obj->tiling_mode != I915_TILING_NONE)
2143 dspcntr |= DISPPLANE_TILED;
2144 else
2145 dspcntr &= ~DISPPLANE_TILED;
2148 I915_WRITE(reg, dspcntr);
2150 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2152 if (INTEL_INFO(dev)->gen >= 4) {
2153 intel_crtc->dspaddr_offset =
2154 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2155 fb->bits_per_pixel / 8,
2156 fb->pitches[0]);
2157 linear_offset -= intel_crtc->dspaddr_offset;
2158 } else {
2159 intel_crtc->dspaddr_offset = linear_offset;
2162 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2163 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2164 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2165 if (INTEL_INFO(dev)->gen >= 4) {
2166 I915_MODIFY_DISPBASE(DSPSURF(plane),
2167 obj->gtt_offset + intel_crtc->dspaddr_offset);
2168 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2169 I915_WRITE(DSPLINOFF(plane), linear_offset);
2170 } else
2171 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2172 POSTING_READ(reg);
2174 return 0;
2177 static int ironlake_update_plane(struct drm_crtc *crtc,
2178 struct drm_framebuffer *fb, int x, int y)
2180 struct drm_device *dev = crtc->dev;
2181 struct drm_i915_private *dev_priv = dev->dev_private;
2182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2183 struct intel_framebuffer *intel_fb;
2184 struct drm_i915_gem_object *obj;
2185 int plane = intel_crtc->plane;
2186 unsigned long linear_offset;
2187 u32 dspcntr;
2188 u32 reg;
2190 switch (plane) {
2191 case 0:
2192 case 1:
2193 case 2:
2194 break;
2195 default:
2196 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2197 return -EINVAL;
2200 intel_fb = to_intel_framebuffer(fb);
2201 obj = intel_fb->obj;
2203 reg = DSPCNTR(plane);
2204 dspcntr = I915_READ(reg);
2205 /* Mask out pixel format bits in case we change it */
2206 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2207 switch (fb->pixel_format) {
2208 case DRM_FORMAT_C8:
2209 dspcntr |= DISPPLANE_8BPP;
2210 break;
2211 case DRM_FORMAT_RGB565:
2212 dspcntr |= DISPPLANE_BGRX565;
2213 break;
2214 case DRM_FORMAT_XRGB8888:
2215 case DRM_FORMAT_ARGB8888:
2216 dspcntr |= DISPPLANE_BGRX888;
2217 break;
2218 case DRM_FORMAT_XBGR8888:
2219 case DRM_FORMAT_ABGR8888:
2220 dspcntr |= DISPPLANE_RGBX888;
2221 break;
2222 case DRM_FORMAT_XRGB2101010:
2223 case DRM_FORMAT_ARGB2101010:
2224 dspcntr |= DISPPLANE_BGRX101010;
2225 break;
2226 case DRM_FORMAT_XBGR2101010:
2227 case DRM_FORMAT_ABGR2101010:
2228 dspcntr |= DISPPLANE_RGBX101010;
2229 break;
2230 default:
2231 BUG();
2234 if (obj->tiling_mode != I915_TILING_NONE)
2235 dspcntr |= DISPPLANE_TILED;
2236 else
2237 dspcntr &= ~DISPPLANE_TILED;
2239 /* must disable */
2240 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2242 I915_WRITE(reg, dspcntr);
2244 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2245 intel_crtc->dspaddr_offset =
2246 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2247 fb->bits_per_pixel / 8,
2248 fb->pitches[0]);
2249 linear_offset -= intel_crtc->dspaddr_offset;
2251 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2252 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2253 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2254 I915_MODIFY_DISPBASE(DSPSURF(plane),
2255 obj->gtt_offset + intel_crtc->dspaddr_offset);
2256 if (IS_HASWELL(dev)) {
2257 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2258 } else {
2259 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2260 I915_WRITE(DSPLINOFF(plane), linear_offset);
2262 POSTING_READ(reg);
2264 return 0;
2267 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2268 static int
2269 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2270 int x, int y, enum mode_set_atomic state)
2272 struct drm_device *dev = crtc->dev;
2273 struct drm_i915_private *dev_priv = dev->dev_private;
2275 if (dev_priv->display.disable_fbc)
2276 dev_priv->display.disable_fbc(dev);
2277 intel_increase_pllclock(crtc);
2279 return dev_priv->display.update_plane(crtc, fb, x, y);
2282 void intel_display_handle_reset(struct drm_device *dev)
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 struct drm_crtc *crtc;
2288 * Flips in the rings have been nuked by the reset,
2289 * so complete all pending flips so that user space
2290 * will get its events and not get stuck.
2292 * Also update the base address of all primary
2293 * planes to the the last fb to make sure we're
2294 * showing the correct fb after a reset.
2296 * Need to make two loops over the crtcs so that we
2297 * don't try to grab a crtc mutex before the
2298 * pending_flip_queue really got woken up.
2301 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2303 enum plane plane = intel_crtc->plane;
2305 intel_prepare_page_flip(dev, plane);
2306 intel_finish_page_flip_plane(dev, plane);
2309 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2310 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2312 mutex_lock(&crtc->mutex);
2313 if (intel_crtc->active)
2314 dev_priv->display.update_plane(crtc, crtc->fb,
2315 crtc->x, crtc->y);
2316 mutex_unlock(&crtc->mutex);
2320 static int
2321 intel_finish_fb(struct drm_framebuffer *old_fb)
2323 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2324 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2325 bool was_interruptible = dev_priv->mm.interruptible;
2326 int ret;
2328 /* Big Hammer, we also need to ensure that any pending
2329 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2330 * current scanout is retired before unpinning the old
2331 * framebuffer.
2333 * This should only fail upon a hung GPU, in which case we
2334 * can safely continue.
2336 dev_priv->mm.interruptible = false;
2337 ret = i915_gem_object_finish_gpu(obj);
2338 dev_priv->mm.interruptible = was_interruptible;
2340 return ret;
2343 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2345 struct drm_device *dev = crtc->dev;
2346 struct drm_i915_master_private *master_priv;
2347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2349 if (!dev->primary->master)
2350 return;
2352 master_priv = dev->primary->master->driver_priv;
2353 if (!master_priv->sarea_priv)
2354 return;
2356 switch (intel_crtc->pipe) {
2357 case 0:
2358 master_priv->sarea_priv->pipeA_x = x;
2359 master_priv->sarea_priv->pipeA_y = y;
2360 break;
2361 case 1:
2362 master_priv->sarea_priv->pipeB_x = x;
2363 master_priv->sarea_priv->pipeB_y = y;
2364 break;
2365 default:
2366 break;
2370 static int
2371 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2372 struct drm_framebuffer *fb)
2374 struct drm_device *dev = crtc->dev;
2375 struct drm_i915_private *dev_priv = dev->dev_private;
2376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377 struct drm_framebuffer *old_fb;
2378 int ret;
2380 /* no fb bound */
2381 if (!fb) {
2382 DRM_ERROR("No FB bound\n");
2383 return 0;
2386 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2387 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2388 intel_crtc->plane,
2389 INTEL_INFO(dev)->num_pipes);
2390 return -EINVAL;
2393 mutex_lock(&dev->struct_mutex);
2394 ret = intel_pin_and_fence_fb_obj(dev,
2395 to_intel_framebuffer(fb)->obj,
2396 NULL);
2397 if (ret != 0) {
2398 mutex_unlock(&dev->struct_mutex);
2399 DRM_ERROR("pin & fence failed\n");
2400 return ret;
2403 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2404 if (ret) {
2405 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2406 mutex_unlock(&dev->struct_mutex);
2407 DRM_ERROR("failed to update base address\n");
2408 return ret;
2411 old_fb = crtc->fb;
2412 crtc->fb = fb;
2413 crtc->x = x;
2414 crtc->y = y;
2416 if (old_fb) {
2417 intel_wait_for_vblank(dev, intel_crtc->pipe);
2418 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2421 intel_update_fbc(dev);
2422 mutex_unlock(&dev->struct_mutex);
2424 intel_crtc_update_sarea_pos(crtc, x, y);
2426 return 0;
2429 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2431 struct drm_device *dev = crtc->dev;
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2434 int pipe = intel_crtc->pipe;
2435 u32 reg, temp;
2437 /* enable normal train */
2438 reg = FDI_TX_CTL(pipe);
2439 temp = I915_READ(reg);
2440 if (IS_IVYBRIDGE(dev)) {
2441 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2442 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2443 } else {
2444 temp &= ~FDI_LINK_TRAIN_NONE;
2445 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2447 I915_WRITE(reg, temp);
2449 reg = FDI_RX_CTL(pipe);
2450 temp = I915_READ(reg);
2451 if (HAS_PCH_CPT(dev)) {
2452 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2453 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2454 } else {
2455 temp &= ~FDI_LINK_TRAIN_NONE;
2456 temp |= FDI_LINK_TRAIN_NONE;
2458 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2460 /* wait one idle pattern time */
2461 POSTING_READ(reg);
2462 udelay(1000);
2464 /* IVB wants error correction enabled */
2465 if (IS_IVYBRIDGE(dev))
2466 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2467 FDI_FE_ERRC_ENABLE);
2470 static void ivb_modeset_global_resources(struct drm_device *dev)
2472 struct drm_i915_private *dev_priv = dev->dev_private;
2473 struct intel_crtc *pipe_B_crtc =
2474 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2475 struct intel_crtc *pipe_C_crtc =
2476 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2477 uint32_t temp;
2479 /* When everything is off disable fdi C so that we could enable fdi B
2480 * with all lanes. XXX: This misses the case where a pipe is not using
2481 * any pch resources and so doesn't need any fdi lanes. */
2482 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2483 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2484 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2486 temp = I915_READ(SOUTH_CHICKEN1);
2487 temp &= ~FDI_BC_BIFURCATION_SELECT;
2488 DRM_DEBUG_KMS("disabling fdi C rx\n");
2489 I915_WRITE(SOUTH_CHICKEN1, temp);
2493 /* The FDI link training functions for ILK/Ibexpeak. */
2494 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2496 struct drm_device *dev = crtc->dev;
2497 struct drm_i915_private *dev_priv = dev->dev_private;
2498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2499 int pipe = intel_crtc->pipe;
2500 int plane = intel_crtc->plane;
2501 u32 reg, temp, tries;
2503 /* FDI needs bits from pipe & plane first */
2504 assert_pipe_enabled(dev_priv, pipe);
2505 assert_plane_enabled(dev_priv, plane);
2507 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2508 for train result */
2509 reg = FDI_RX_IMR(pipe);
2510 temp = I915_READ(reg);
2511 temp &= ~FDI_RX_SYMBOL_LOCK;
2512 temp &= ~FDI_RX_BIT_LOCK;
2513 I915_WRITE(reg, temp);
2514 I915_READ(reg);
2515 udelay(150);
2517 /* enable CPU FDI TX and PCH FDI RX */
2518 reg = FDI_TX_CTL(pipe);
2519 temp = I915_READ(reg);
2520 temp &= ~(7 << 19);
2521 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2522 temp &= ~FDI_LINK_TRAIN_NONE;
2523 temp |= FDI_LINK_TRAIN_PATTERN_1;
2524 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2526 reg = FDI_RX_CTL(pipe);
2527 temp = I915_READ(reg);
2528 temp &= ~FDI_LINK_TRAIN_NONE;
2529 temp |= FDI_LINK_TRAIN_PATTERN_1;
2530 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2532 POSTING_READ(reg);
2533 udelay(150);
2535 /* Ironlake workaround, enable clock pointer after FDI enable*/
2536 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2537 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2538 FDI_RX_PHASE_SYNC_POINTER_EN);
2540 reg = FDI_RX_IIR(pipe);
2541 for (tries = 0; tries < 5; tries++) {
2542 temp = I915_READ(reg);
2543 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2545 if ((temp & FDI_RX_BIT_LOCK)) {
2546 DRM_DEBUG_KMS("FDI train 1 done.\n");
2547 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2548 break;
2551 if (tries == 5)
2552 DRM_ERROR("FDI train 1 fail!\n");
2554 /* Train 2 */
2555 reg = FDI_TX_CTL(pipe);
2556 temp = I915_READ(reg);
2557 temp &= ~FDI_LINK_TRAIN_NONE;
2558 temp |= FDI_LINK_TRAIN_PATTERN_2;
2559 I915_WRITE(reg, temp);
2561 reg = FDI_RX_CTL(pipe);
2562 temp = I915_READ(reg);
2563 temp &= ~FDI_LINK_TRAIN_NONE;
2564 temp |= FDI_LINK_TRAIN_PATTERN_2;
2565 I915_WRITE(reg, temp);
2567 POSTING_READ(reg);
2568 udelay(150);
2570 reg = FDI_RX_IIR(pipe);
2571 for (tries = 0; tries < 5; tries++) {
2572 temp = I915_READ(reg);
2573 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2575 if (temp & FDI_RX_SYMBOL_LOCK) {
2576 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2577 DRM_DEBUG_KMS("FDI train 2 done.\n");
2578 break;
2581 if (tries == 5)
2582 DRM_ERROR("FDI train 2 fail!\n");
2584 DRM_DEBUG_KMS("FDI train done\n");
2588 static const int snb_b_fdi_train_param[] = {
2589 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2590 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2591 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2592 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2595 /* The FDI link training functions for SNB/Cougarpoint. */
2596 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2598 struct drm_device *dev = crtc->dev;
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601 int pipe = intel_crtc->pipe;
2602 u32 reg, temp, i, retry;
2604 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2605 for train result */
2606 reg = FDI_RX_IMR(pipe);
2607 temp = I915_READ(reg);
2608 temp &= ~FDI_RX_SYMBOL_LOCK;
2609 temp &= ~FDI_RX_BIT_LOCK;
2610 I915_WRITE(reg, temp);
2612 POSTING_READ(reg);
2613 udelay(150);
2615 /* enable CPU FDI TX and PCH FDI RX */
2616 reg = FDI_TX_CTL(pipe);
2617 temp = I915_READ(reg);
2618 temp &= ~(7 << 19);
2619 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2620 temp &= ~FDI_LINK_TRAIN_NONE;
2621 temp |= FDI_LINK_TRAIN_PATTERN_1;
2622 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2623 /* SNB-B */
2624 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2625 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2627 I915_WRITE(FDI_RX_MISC(pipe),
2628 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2630 reg = FDI_RX_CTL(pipe);
2631 temp = I915_READ(reg);
2632 if (HAS_PCH_CPT(dev)) {
2633 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2634 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2635 } else {
2636 temp &= ~FDI_LINK_TRAIN_NONE;
2637 temp |= FDI_LINK_TRAIN_PATTERN_1;
2639 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2641 POSTING_READ(reg);
2642 udelay(150);
2644 for (i = 0; i < 4; i++) {
2645 reg = FDI_TX_CTL(pipe);
2646 temp = I915_READ(reg);
2647 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2648 temp |= snb_b_fdi_train_param[i];
2649 I915_WRITE(reg, temp);
2651 POSTING_READ(reg);
2652 udelay(500);
2654 for (retry = 0; retry < 5; retry++) {
2655 reg = FDI_RX_IIR(pipe);
2656 temp = I915_READ(reg);
2657 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658 if (temp & FDI_RX_BIT_LOCK) {
2659 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2660 DRM_DEBUG_KMS("FDI train 1 done.\n");
2661 break;
2663 udelay(50);
2665 if (retry < 5)
2666 break;
2668 if (i == 4)
2669 DRM_ERROR("FDI train 1 fail!\n");
2671 /* Train 2 */
2672 reg = FDI_TX_CTL(pipe);
2673 temp = I915_READ(reg);
2674 temp &= ~FDI_LINK_TRAIN_NONE;
2675 temp |= FDI_LINK_TRAIN_PATTERN_2;
2676 if (IS_GEN6(dev)) {
2677 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2678 /* SNB-B */
2679 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2681 I915_WRITE(reg, temp);
2683 reg = FDI_RX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 if (HAS_PCH_CPT(dev)) {
2686 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2688 } else {
2689 temp &= ~FDI_LINK_TRAIN_NONE;
2690 temp |= FDI_LINK_TRAIN_PATTERN_2;
2692 I915_WRITE(reg, temp);
2694 POSTING_READ(reg);
2695 udelay(150);
2697 for (i = 0; i < 4; i++) {
2698 reg = FDI_TX_CTL(pipe);
2699 temp = I915_READ(reg);
2700 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2701 temp |= snb_b_fdi_train_param[i];
2702 I915_WRITE(reg, temp);
2704 POSTING_READ(reg);
2705 udelay(500);
2707 for (retry = 0; retry < 5; retry++) {
2708 reg = FDI_RX_IIR(pipe);
2709 temp = I915_READ(reg);
2710 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2711 if (temp & FDI_RX_SYMBOL_LOCK) {
2712 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2713 DRM_DEBUG_KMS("FDI train 2 done.\n");
2714 break;
2716 udelay(50);
2718 if (retry < 5)
2719 break;
2721 if (i == 4)
2722 DRM_ERROR("FDI train 2 fail!\n");
2724 DRM_DEBUG_KMS("FDI train done.\n");
2727 /* Manual link training for Ivy Bridge A0 parts */
2728 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2730 struct drm_device *dev = crtc->dev;
2731 struct drm_i915_private *dev_priv = dev->dev_private;
2732 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2733 int pipe = intel_crtc->pipe;
2734 u32 reg, temp, i;
2736 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2737 for train result */
2738 reg = FDI_RX_IMR(pipe);
2739 temp = I915_READ(reg);
2740 temp &= ~FDI_RX_SYMBOL_LOCK;
2741 temp &= ~FDI_RX_BIT_LOCK;
2742 I915_WRITE(reg, temp);
2744 POSTING_READ(reg);
2745 udelay(150);
2747 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2748 I915_READ(FDI_RX_IIR(pipe)));
2750 /* enable CPU FDI TX and PCH FDI RX */
2751 reg = FDI_TX_CTL(pipe);
2752 temp = I915_READ(reg);
2753 temp &= ~(7 << 19);
2754 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2755 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2756 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2757 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2758 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2759 temp |= FDI_COMPOSITE_SYNC;
2760 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2762 I915_WRITE(FDI_RX_MISC(pipe),
2763 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~FDI_LINK_TRAIN_AUTO;
2768 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2769 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2770 temp |= FDI_COMPOSITE_SYNC;
2771 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2773 POSTING_READ(reg);
2774 udelay(150);
2776 for (i = 0; i < 4; i++) {
2777 reg = FDI_TX_CTL(pipe);
2778 temp = I915_READ(reg);
2779 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2780 temp |= snb_b_fdi_train_param[i];
2781 I915_WRITE(reg, temp);
2783 POSTING_READ(reg);
2784 udelay(500);
2786 reg = FDI_RX_IIR(pipe);
2787 temp = I915_READ(reg);
2788 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2790 if (temp & FDI_RX_BIT_LOCK ||
2791 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2792 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2793 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2794 break;
2797 if (i == 4)
2798 DRM_ERROR("FDI train 1 fail!\n");
2800 /* Train 2 */
2801 reg = FDI_TX_CTL(pipe);
2802 temp = I915_READ(reg);
2803 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2804 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2805 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2806 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2807 I915_WRITE(reg, temp);
2809 reg = FDI_RX_CTL(pipe);
2810 temp = I915_READ(reg);
2811 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2812 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2813 I915_WRITE(reg, temp);
2815 POSTING_READ(reg);
2816 udelay(150);
2818 for (i = 0; i < 4; i++) {
2819 reg = FDI_TX_CTL(pipe);
2820 temp = I915_READ(reg);
2821 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2822 temp |= snb_b_fdi_train_param[i];
2823 I915_WRITE(reg, temp);
2825 POSTING_READ(reg);
2826 udelay(500);
2828 reg = FDI_RX_IIR(pipe);
2829 temp = I915_READ(reg);
2830 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2832 if (temp & FDI_RX_SYMBOL_LOCK) {
2833 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2834 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2835 break;
2838 if (i == 4)
2839 DRM_ERROR("FDI train 2 fail!\n");
2841 DRM_DEBUG_KMS("FDI train done.\n");
2844 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2846 struct drm_device *dev = intel_crtc->base.dev;
2847 struct drm_i915_private *dev_priv = dev->dev_private;
2848 int pipe = intel_crtc->pipe;
2849 u32 reg, temp;
2852 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2853 reg = FDI_RX_CTL(pipe);
2854 temp = I915_READ(reg);
2855 temp &= ~((0x7 << 19) | (0x7 << 16));
2856 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2857 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2858 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2860 POSTING_READ(reg);
2861 udelay(200);
2863 /* Switch from Rawclk to PCDclk */
2864 temp = I915_READ(reg);
2865 I915_WRITE(reg, temp | FDI_PCDCLK);
2867 POSTING_READ(reg);
2868 udelay(200);
2870 /* Enable CPU FDI TX PLL, always on for Ironlake */
2871 reg = FDI_TX_CTL(pipe);
2872 temp = I915_READ(reg);
2873 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2874 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2876 POSTING_READ(reg);
2877 udelay(100);
2881 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2883 struct drm_device *dev = intel_crtc->base.dev;
2884 struct drm_i915_private *dev_priv = dev->dev_private;
2885 int pipe = intel_crtc->pipe;
2886 u32 reg, temp;
2888 /* Switch from PCDclk to Rawclk */
2889 reg = FDI_RX_CTL(pipe);
2890 temp = I915_READ(reg);
2891 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2893 /* Disable CPU FDI TX PLL */
2894 reg = FDI_TX_CTL(pipe);
2895 temp = I915_READ(reg);
2896 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2898 POSTING_READ(reg);
2899 udelay(100);
2901 reg = FDI_RX_CTL(pipe);
2902 temp = I915_READ(reg);
2903 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2905 /* Wait for the clocks to turn off. */
2906 POSTING_READ(reg);
2907 udelay(100);
2910 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2912 struct drm_device *dev = crtc->dev;
2913 struct drm_i915_private *dev_priv = dev->dev_private;
2914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2915 int pipe = intel_crtc->pipe;
2916 u32 reg, temp;
2918 /* disable CPU FDI tx and PCH FDI rx */
2919 reg = FDI_TX_CTL(pipe);
2920 temp = I915_READ(reg);
2921 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2922 POSTING_READ(reg);
2924 reg = FDI_RX_CTL(pipe);
2925 temp = I915_READ(reg);
2926 temp &= ~(0x7 << 16);
2927 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2928 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2930 POSTING_READ(reg);
2931 udelay(100);
2933 /* Ironlake workaround, disable clock pointer after downing FDI */
2934 if (HAS_PCH_IBX(dev)) {
2935 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2938 /* still set train pattern 1 */
2939 reg = FDI_TX_CTL(pipe);
2940 temp = I915_READ(reg);
2941 temp &= ~FDI_LINK_TRAIN_NONE;
2942 temp |= FDI_LINK_TRAIN_PATTERN_1;
2943 I915_WRITE(reg, temp);
2945 reg = FDI_RX_CTL(pipe);
2946 temp = I915_READ(reg);
2947 if (HAS_PCH_CPT(dev)) {
2948 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2949 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2950 } else {
2951 temp &= ~FDI_LINK_TRAIN_NONE;
2952 temp |= FDI_LINK_TRAIN_PATTERN_1;
2954 /* BPC in FDI rx is consistent with that in PIPECONF */
2955 temp &= ~(0x07 << 16);
2956 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2957 I915_WRITE(reg, temp);
2959 POSTING_READ(reg);
2960 udelay(100);
2963 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2965 struct drm_device *dev = crtc->dev;
2966 struct drm_i915_private *dev_priv = dev->dev_private;
2967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2968 unsigned long flags;
2969 bool pending;
2971 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2972 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2973 return false;
2975 spin_lock_irqsave(&dev->event_lock, flags);
2976 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2977 spin_unlock_irqrestore(&dev->event_lock, flags);
2979 return pending;
2982 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2984 struct drm_device *dev = crtc->dev;
2985 struct drm_i915_private *dev_priv = dev->dev_private;
2987 if (crtc->fb == NULL)
2988 return;
2990 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2992 wait_event(dev_priv->pending_flip_queue,
2993 !intel_crtc_has_pending_flip(crtc));
2995 mutex_lock(&dev->struct_mutex);
2996 intel_finish_fb(crtc->fb);
2997 mutex_unlock(&dev->struct_mutex);
3000 /* Program iCLKIP clock to the desired frequency */
3001 static void lpt_program_iclkip(struct drm_crtc *crtc)
3003 struct drm_device *dev = crtc->dev;
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3006 u32 temp;
3008 mutex_lock(&dev_priv->dpio_lock);
3010 /* It is necessary to ungate the pixclk gate prior to programming
3011 * the divisors, and gate it back when it is done.
3013 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3015 /* Disable SSCCTL */
3016 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3017 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3018 SBI_SSCCTL_DISABLE,
3019 SBI_ICLK);
3021 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3022 if (crtc->mode.clock == 20000) {
3023 auxdiv = 1;
3024 divsel = 0x41;
3025 phaseinc = 0x20;
3026 } else {
3027 /* The iCLK virtual clock root frequency is in MHz,
3028 * but the crtc->mode.clock in in KHz. To get the divisors,
3029 * it is necessary to divide one by another, so we
3030 * convert the virtual clock precision to KHz here for higher
3031 * precision.
3033 u32 iclk_virtual_root_freq = 172800 * 1000;
3034 u32 iclk_pi_range = 64;
3035 u32 desired_divisor, msb_divisor_value, pi_value;
3037 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3038 msb_divisor_value = desired_divisor / iclk_pi_range;
3039 pi_value = desired_divisor % iclk_pi_range;
3041 auxdiv = 0;
3042 divsel = msb_divisor_value - 2;
3043 phaseinc = pi_value;
3046 /* This should not happen with any sane values */
3047 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3048 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3049 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3050 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3052 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3053 crtc->mode.clock,
3054 auxdiv,
3055 divsel,
3056 phasedir,
3057 phaseinc);
3059 /* Program SSCDIVINTPHASE6 */
3060 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3061 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3062 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3063 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3064 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3065 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3066 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3067 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3069 /* Program SSCAUXDIV */
3070 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3071 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3072 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3073 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3075 /* Enable modulator and associated divider */
3076 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3077 temp &= ~SBI_SSCCTL_DISABLE;
3078 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3080 /* Wait for initialization time */
3081 udelay(24);
3083 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3085 mutex_unlock(&dev_priv->dpio_lock);
3089 * Enable PCH resources required for PCH ports:
3090 * - PCH PLLs
3091 * - FDI training & RX/TX
3092 * - update transcoder timings
3093 * - DP transcoding bits
3094 * - transcoder
3096 static void ironlake_pch_enable(struct drm_crtc *crtc)
3098 struct drm_device *dev = crtc->dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101 int pipe = intel_crtc->pipe;
3102 u32 reg, temp;
3104 assert_transcoder_disabled(dev_priv, pipe);
3106 /* Write the TU size bits before fdi link training, so that error
3107 * detection works. */
3108 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3109 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3111 /* For PCH output, training FDI link */
3112 dev_priv->display.fdi_link_train(crtc);
3114 /* XXX: pch pll's can be enabled any time before we enable the PCH
3115 * transcoder, and we actually should do this to not upset any PCH
3116 * transcoder that already use the clock when we share it.
3118 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3119 * unconditionally resets the pll - we need that to have the right LVDS
3120 * enable sequence. */
3121 ironlake_enable_pch_pll(intel_crtc);
3123 if (HAS_PCH_CPT(dev)) {
3124 u32 sel;
3126 temp = I915_READ(PCH_DPLL_SEL);
3127 switch (pipe) {
3128 default:
3129 case 0:
3130 temp |= TRANSA_DPLL_ENABLE;
3131 sel = TRANSA_DPLLB_SEL;
3132 break;
3133 case 1:
3134 temp |= TRANSB_DPLL_ENABLE;
3135 sel = TRANSB_DPLLB_SEL;
3136 break;
3137 case 2:
3138 temp |= TRANSC_DPLL_ENABLE;
3139 sel = TRANSC_DPLLB_SEL;
3140 break;
3142 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3143 temp |= sel;
3144 else
3145 temp &= ~sel;
3146 I915_WRITE(PCH_DPLL_SEL, temp);
3149 /* set transcoder timing, panel must allow it */
3150 assert_panel_unlocked(dev_priv, pipe);
3151 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3152 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3153 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3155 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3156 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3157 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3158 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3160 intel_fdi_normal_train(crtc);
3162 /* For PCH DP, enable TRANS_DP_CTL */
3163 if (HAS_PCH_CPT(dev) &&
3164 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3165 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3166 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3167 reg = TRANS_DP_CTL(pipe);
3168 temp = I915_READ(reg);
3169 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3170 TRANS_DP_SYNC_MASK |
3171 TRANS_DP_BPC_MASK);
3172 temp |= (TRANS_DP_OUTPUT_ENABLE |
3173 TRANS_DP_ENH_FRAMING);
3174 temp |= bpc << 9; /* same format but at 11:9 */
3176 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3177 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3178 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3179 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3181 switch (intel_trans_dp_port_sel(crtc)) {
3182 case PCH_DP_B:
3183 temp |= TRANS_DP_PORT_SEL_B;
3184 break;
3185 case PCH_DP_C:
3186 temp |= TRANS_DP_PORT_SEL_C;
3187 break;
3188 case PCH_DP_D:
3189 temp |= TRANS_DP_PORT_SEL_D;
3190 break;
3191 default:
3192 BUG();
3195 I915_WRITE(reg, temp);
3198 ironlake_enable_pch_transcoder(dev_priv, pipe);
3201 static void lpt_pch_enable(struct drm_crtc *crtc)
3203 struct drm_device *dev = crtc->dev;
3204 struct drm_i915_private *dev_priv = dev->dev_private;
3205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3206 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3208 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3210 lpt_program_iclkip(crtc);
3212 /* Set transcoder timing. */
3213 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3214 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3215 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
3217 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3218 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3219 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3220 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3222 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3225 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3227 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3229 if (pll == NULL)
3230 return;
3232 if (pll->refcount == 0) {
3233 WARN(1, "bad PCH PLL refcount\n");
3234 return;
3237 --pll->refcount;
3238 intel_crtc->pch_pll = NULL;
3241 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3243 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3244 struct intel_pch_pll *pll;
3245 int i;
3247 pll = intel_crtc->pch_pll;
3248 if (pll) {
3249 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3250 intel_crtc->base.base.id, pll->pll_reg);
3251 goto prepare;
3254 if (HAS_PCH_IBX(dev_priv->dev)) {
3255 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3256 i = intel_crtc->pipe;
3257 pll = &dev_priv->pch_plls[i];
3259 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3260 intel_crtc->base.base.id, pll->pll_reg);
3262 goto found;
3265 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3266 pll = &dev_priv->pch_plls[i];
3268 /* Only want to check enabled timings first */
3269 if (pll->refcount == 0)
3270 continue;
3272 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3273 fp == I915_READ(pll->fp0_reg)) {
3274 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3275 intel_crtc->base.base.id,
3276 pll->pll_reg, pll->refcount, pll->active);
3278 goto found;
3282 /* Ok no matching timings, maybe there's a free one? */
3283 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3284 pll = &dev_priv->pch_plls[i];
3285 if (pll->refcount == 0) {
3286 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3287 intel_crtc->base.base.id, pll->pll_reg);
3288 goto found;
3292 return NULL;
3294 found:
3295 intel_crtc->pch_pll = pll;
3296 pll->refcount++;
3297 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3298 prepare: /* separate function? */
3299 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3301 /* Wait for the clocks to stabilize before rewriting the regs */
3302 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3303 POSTING_READ(pll->pll_reg);
3304 udelay(150);
3306 I915_WRITE(pll->fp0_reg, fp);
3307 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3308 pll->on = false;
3309 return pll;
3312 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315 int dslreg = PIPEDSL(pipe);
3316 u32 temp;
3318 temp = I915_READ(dslreg);
3319 udelay(500);
3320 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3321 if (wait_for(I915_READ(dslreg) != temp, 5))
3322 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3326 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3328 struct drm_device *dev = crtc->dev;
3329 struct drm_i915_private *dev_priv = dev->dev_private;
3330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3331 struct intel_encoder *encoder;
3332 int pipe = intel_crtc->pipe;
3333 int plane = intel_crtc->plane;
3334 u32 temp;
3336 WARN_ON(!crtc->enabled);
3338 if (intel_crtc->active)
3339 return;
3341 intel_crtc->active = true;
3342 intel_update_watermarks(dev);
3344 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3345 temp = I915_READ(PCH_LVDS);
3346 if ((temp & LVDS_PORT_EN) == 0)
3347 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3351 if (intel_crtc->config.has_pch_encoder) {
3352 /* Note: FDI PLL enabling _must_ be done before we enable the
3353 * cpu pipes, hence this is separate from all the other fdi/pch
3354 * enabling. */
3355 ironlake_fdi_pll_enable(intel_crtc);
3356 } else {
3357 assert_fdi_tx_disabled(dev_priv, pipe);
3358 assert_fdi_rx_disabled(dev_priv, pipe);
3361 for_each_encoder_on_crtc(dev, crtc, encoder)
3362 if (encoder->pre_enable)
3363 encoder->pre_enable(encoder);
3365 /* Enable panel fitting for LVDS */
3366 if (dev_priv->pch_pf_size &&
3367 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3368 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3369 /* Force use of hard-coded filter coefficients
3370 * as some pre-programmed values are broken,
3371 * e.g. x201.
3373 if (IS_IVYBRIDGE(dev))
3374 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3375 PF_PIPE_SEL_IVB(pipe));
3376 else
3377 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3378 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3379 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3383 * On ILK+ LUT must be loaded before the pipe is running but with
3384 * clocks enabled
3386 intel_crtc_load_lut(crtc);
3388 intel_enable_pipe(dev_priv, pipe,
3389 intel_crtc->config.has_pch_encoder);
3390 intel_enable_plane(dev_priv, plane, pipe);
3392 if (intel_crtc->config.has_pch_encoder)
3393 ironlake_pch_enable(crtc);
3395 mutex_lock(&dev->struct_mutex);
3396 intel_update_fbc(dev);
3397 mutex_unlock(&dev->struct_mutex);
3399 intel_crtc_update_cursor(crtc, true);
3401 for_each_encoder_on_crtc(dev, crtc, encoder)
3402 encoder->enable(encoder);
3404 if (HAS_PCH_CPT(dev))
3405 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3408 * There seems to be a race in PCH platform hw (at least on some
3409 * outputs) where an enabled pipe still completes any pageflip right
3410 * away (as if the pipe is off) instead of waiting for vblank. As soon
3411 * as the first vblank happend, everything works as expected. Hence just
3412 * wait for one vblank before returning to avoid strange things
3413 * happening.
3415 intel_wait_for_vblank(dev, intel_crtc->pipe);
3418 static void haswell_crtc_enable(struct drm_crtc *crtc)
3420 struct drm_device *dev = crtc->dev;
3421 struct drm_i915_private *dev_priv = dev->dev_private;
3422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3423 struct intel_encoder *encoder;
3424 int pipe = intel_crtc->pipe;
3425 int plane = intel_crtc->plane;
3427 WARN_ON(!crtc->enabled);
3429 if (intel_crtc->active)
3430 return;
3432 intel_crtc->active = true;
3433 intel_update_watermarks(dev);
3435 if (intel_crtc->config.has_pch_encoder)
3436 dev_priv->display.fdi_link_train(crtc);
3438 for_each_encoder_on_crtc(dev, crtc, encoder)
3439 if (encoder->pre_enable)
3440 encoder->pre_enable(encoder);
3442 intel_ddi_enable_pipe_clock(intel_crtc);
3444 /* Enable panel fitting for eDP */
3445 if (dev_priv->pch_pf_size &&
3446 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3447 /* Force use of hard-coded filter coefficients
3448 * as some pre-programmed values are broken,
3449 * e.g. x201.
3451 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3452 PF_PIPE_SEL_IVB(pipe));
3453 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3454 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3458 * On ILK+ LUT must be loaded before the pipe is running but with
3459 * clocks enabled
3461 intel_crtc_load_lut(crtc);
3463 intel_ddi_set_pipe_settings(crtc);
3464 intel_ddi_enable_transcoder_func(crtc);
3466 intel_enable_pipe(dev_priv, pipe,
3467 intel_crtc->config.has_pch_encoder);
3468 intel_enable_plane(dev_priv, plane, pipe);
3470 if (intel_crtc->config.has_pch_encoder)
3471 lpt_pch_enable(crtc);
3473 mutex_lock(&dev->struct_mutex);
3474 intel_update_fbc(dev);
3475 mutex_unlock(&dev->struct_mutex);
3477 intel_crtc_update_cursor(crtc, true);
3479 for_each_encoder_on_crtc(dev, crtc, encoder)
3480 encoder->enable(encoder);
3483 * There seems to be a race in PCH platform hw (at least on some
3484 * outputs) where an enabled pipe still completes any pageflip right
3485 * away (as if the pipe is off) instead of waiting for vblank. As soon
3486 * as the first vblank happend, everything works as expected. Hence just
3487 * wait for one vblank before returning to avoid strange things
3488 * happening.
3490 intel_wait_for_vblank(dev, intel_crtc->pipe);
3493 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3495 struct drm_device *dev = crtc->dev;
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3498 struct intel_encoder *encoder;
3499 int pipe = intel_crtc->pipe;
3500 int plane = intel_crtc->plane;
3501 u32 reg, temp;
3504 if (!intel_crtc->active)
3505 return;
3507 for_each_encoder_on_crtc(dev, crtc, encoder)
3508 encoder->disable(encoder);
3510 intel_crtc_wait_for_pending_flips(crtc);
3511 drm_vblank_off(dev, pipe);
3512 intel_crtc_update_cursor(crtc, false);
3514 intel_disable_plane(dev_priv, plane, pipe);
3516 if (dev_priv->cfb_plane == plane)
3517 intel_disable_fbc(dev);
3519 intel_disable_pipe(dev_priv, pipe);
3521 /* Disable PF */
3522 I915_WRITE(PF_CTL(pipe), 0);
3523 I915_WRITE(PF_WIN_SZ(pipe), 0);
3525 for_each_encoder_on_crtc(dev, crtc, encoder)
3526 if (encoder->post_disable)
3527 encoder->post_disable(encoder);
3529 ironlake_fdi_disable(crtc);
3531 ironlake_disable_pch_transcoder(dev_priv, pipe);
3533 if (HAS_PCH_CPT(dev)) {
3534 /* disable TRANS_DP_CTL */
3535 reg = TRANS_DP_CTL(pipe);
3536 temp = I915_READ(reg);
3537 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3538 temp |= TRANS_DP_PORT_SEL_NONE;
3539 I915_WRITE(reg, temp);
3541 /* disable DPLL_SEL */
3542 temp = I915_READ(PCH_DPLL_SEL);
3543 switch (pipe) {
3544 case 0:
3545 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3546 break;
3547 case 1:
3548 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3549 break;
3550 case 2:
3551 /* C shares PLL A or B */
3552 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3553 break;
3554 default:
3555 BUG(); /* wtf */
3557 I915_WRITE(PCH_DPLL_SEL, temp);
3560 /* disable PCH DPLL */
3561 intel_disable_pch_pll(intel_crtc);
3563 ironlake_fdi_pll_disable(intel_crtc);
3565 intel_crtc->active = false;
3566 intel_update_watermarks(dev);
3568 mutex_lock(&dev->struct_mutex);
3569 intel_update_fbc(dev);
3570 mutex_unlock(&dev->struct_mutex);
3573 static void haswell_crtc_disable(struct drm_crtc *crtc)
3575 struct drm_device *dev = crtc->dev;
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3578 struct intel_encoder *encoder;
3579 int pipe = intel_crtc->pipe;
3580 int plane = intel_crtc->plane;
3581 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3583 if (!intel_crtc->active)
3584 return;
3586 for_each_encoder_on_crtc(dev, crtc, encoder)
3587 encoder->disable(encoder);
3589 intel_crtc_wait_for_pending_flips(crtc);
3590 drm_vblank_off(dev, pipe);
3591 intel_crtc_update_cursor(crtc, false);
3593 intel_disable_plane(dev_priv, plane, pipe);
3595 if (dev_priv->cfb_plane == plane)
3596 intel_disable_fbc(dev);
3598 intel_disable_pipe(dev_priv, pipe);
3600 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3602 /* Disable PF */
3603 I915_WRITE(PF_CTL(pipe), 0);
3604 I915_WRITE(PF_WIN_SZ(pipe), 0);
3606 intel_ddi_disable_pipe_clock(intel_crtc);
3608 for_each_encoder_on_crtc(dev, crtc, encoder)
3609 if (encoder->post_disable)
3610 encoder->post_disable(encoder);
3612 if (intel_crtc->config.has_pch_encoder) {
3613 lpt_disable_pch_transcoder(dev_priv);
3614 intel_ddi_fdi_disable(crtc);
3617 intel_crtc->active = false;
3618 intel_update_watermarks(dev);
3620 mutex_lock(&dev->struct_mutex);
3621 intel_update_fbc(dev);
3622 mutex_unlock(&dev->struct_mutex);
3625 static void ironlake_crtc_off(struct drm_crtc *crtc)
3627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3628 intel_put_pch_pll(intel_crtc);
3631 static void haswell_crtc_off(struct drm_crtc *crtc)
3633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3635 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3636 * start using it. */
3637 intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3639 intel_ddi_put_crtc_pll(crtc);
3642 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3644 if (!enable && intel_crtc->overlay) {
3645 struct drm_device *dev = intel_crtc->base.dev;
3646 struct drm_i915_private *dev_priv = dev->dev_private;
3648 mutex_lock(&dev->struct_mutex);
3649 dev_priv->mm.interruptible = false;
3650 (void) intel_overlay_switch_off(intel_crtc->overlay);
3651 dev_priv->mm.interruptible = true;
3652 mutex_unlock(&dev->struct_mutex);
3655 /* Let userspace switch the overlay on again. In most cases userspace
3656 * has to recompute where to put it anyway.
3661 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3662 * cursor plane briefly if not already running after enabling the display
3663 * plane.
3664 * This workaround avoids occasional blank screens when self refresh is
3665 * enabled.
3667 static void
3668 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3670 u32 cntl = I915_READ(CURCNTR(pipe));
3672 if ((cntl & CURSOR_MODE) == 0) {
3673 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3675 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3676 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3677 intel_wait_for_vblank(dev_priv->dev, pipe);
3678 I915_WRITE(CURCNTR(pipe), cntl);
3679 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3680 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3684 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3686 struct drm_device *dev = crtc->dev;
3687 struct drm_i915_private *dev_priv = dev->dev_private;
3688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3689 struct intel_encoder *encoder;
3690 int pipe = intel_crtc->pipe;
3691 int plane = intel_crtc->plane;
3693 WARN_ON(!crtc->enabled);
3695 if (intel_crtc->active)
3696 return;
3698 intel_crtc->active = true;
3699 intel_update_watermarks(dev);
3701 intel_enable_pll(dev_priv, pipe);
3703 for_each_encoder_on_crtc(dev, crtc, encoder)
3704 if (encoder->pre_enable)
3705 encoder->pre_enable(encoder);
3707 intel_enable_pipe(dev_priv, pipe, false);
3708 intel_enable_plane(dev_priv, plane, pipe);
3709 if (IS_G4X(dev))
3710 g4x_fixup_plane(dev_priv, pipe);
3712 intel_crtc_load_lut(crtc);
3713 intel_update_fbc(dev);
3715 /* Give the overlay scaler a chance to enable if it's on this pipe */
3716 intel_crtc_dpms_overlay(intel_crtc, true);
3717 intel_crtc_update_cursor(crtc, true);
3719 for_each_encoder_on_crtc(dev, crtc, encoder)
3720 encoder->enable(encoder);
3723 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3725 struct drm_device *dev = crtc->dev;
3726 struct drm_i915_private *dev_priv = dev->dev_private;
3727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3728 struct intel_encoder *encoder;
3729 int pipe = intel_crtc->pipe;
3730 int plane = intel_crtc->plane;
3731 u32 pctl;
3734 if (!intel_crtc->active)
3735 return;
3737 for_each_encoder_on_crtc(dev, crtc, encoder)
3738 encoder->disable(encoder);
3740 /* Give the overlay scaler a chance to disable if it's on this pipe */
3741 intel_crtc_wait_for_pending_flips(crtc);
3742 drm_vblank_off(dev, pipe);
3743 intel_crtc_dpms_overlay(intel_crtc, false);
3744 intel_crtc_update_cursor(crtc, false);
3746 if (dev_priv->cfb_plane == plane)
3747 intel_disable_fbc(dev);
3749 intel_disable_plane(dev_priv, plane, pipe);
3750 intel_disable_pipe(dev_priv, pipe);
3752 /* Disable pannel fitter if it is on this pipe. */
3753 pctl = I915_READ(PFIT_CONTROL);
3754 if ((pctl & PFIT_ENABLE) &&
3755 ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3756 I915_WRITE(PFIT_CONTROL, 0);
3758 intel_disable_pll(dev_priv, pipe);
3760 intel_crtc->active = false;
3761 intel_update_fbc(dev);
3762 intel_update_watermarks(dev);
3765 static void i9xx_crtc_off(struct drm_crtc *crtc)
3769 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3770 bool enabled)
3772 struct drm_device *dev = crtc->dev;
3773 struct drm_i915_master_private *master_priv;
3774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3775 int pipe = intel_crtc->pipe;
3777 if (!dev->primary->master)
3778 return;
3780 master_priv = dev->primary->master->driver_priv;
3781 if (!master_priv->sarea_priv)
3782 return;
3784 switch (pipe) {
3785 case 0:
3786 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3787 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3788 break;
3789 case 1:
3790 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3791 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3792 break;
3793 default:
3794 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3795 break;
3800 * Sets the power management mode of the pipe and plane.
3802 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3804 struct drm_device *dev = crtc->dev;
3805 struct drm_i915_private *dev_priv = dev->dev_private;
3806 struct intel_encoder *intel_encoder;
3807 bool enable = false;
3809 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3810 enable |= intel_encoder->connectors_active;
3812 if (enable)
3813 dev_priv->display.crtc_enable(crtc);
3814 else
3815 dev_priv->display.crtc_disable(crtc);
3817 intel_crtc_update_sarea(crtc, enable);
3820 static void intel_crtc_disable(struct drm_crtc *crtc)
3822 struct drm_device *dev = crtc->dev;
3823 struct drm_connector *connector;
3824 struct drm_i915_private *dev_priv = dev->dev_private;
3825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3827 /* crtc should still be enabled when we disable it. */
3828 WARN_ON(!crtc->enabled);
3830 intel_crtc->eld_vld = false;
3831 dev_priv->display.crtc_disable(crtc);
3832 intel_crtc_update_sarea(crtc, false);
3833 dev_priv->display.off(crtc);
3835 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3836 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3838 if (crtc->fb) {
3839 mutex_lock(&dev->struct_mutex);
3840 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3841 mutex_unlock(&dev->struct_mutex);
3842 crtc->fb = NULL;
3845 /* Update computed state. */
3846 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3847 if (!connector->encoder || !connector->encoder->crtc)
3848 continue;
3850 if (connector->encoder->crtc != crtc)
3851 continue;
3853 connector->dpms = DRM_MODE_DPMS_OFF;
3854 to_intel_encoder(connector->encoder)->connectors_active = false;
3858 void intel_modeset_disable(struct drm_device *dev)
3860 struct drm_crtc *crtc;
3862 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3863 if (crtc->enabled)
3864 intel_crtc_disable(crtc);
3868 void intel_encoder_destroy(struct drm_encoder *encoder)
3870 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3872 drm_encoder_cleanup(encoder);
3873 kfree(intel_encoder);
3876 /* Simple dpms helper for encodres with just one connector, no cloning and only
3877 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3878 * state of the entire output pipe. */
3879 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3881 if (mode == DRM_MODE_DPMS_ON) {
3882 encoder->connectors_active = true;
3884 intel_crtc_update_dpms(encoder->base.crtc);
3885 } else {
3886 encoder->connectors_active = false;
3888 intel_crtc_update_dpms(encoder->base.crtc);
3892 /* Cross check the actual hw state with our own modeset state tracking (and it's
3893 * internal consistency). */
3894 static void intel_connector_check_state(struct intel_connector *connector)
3896 if (connector->get_hw_state(connector)) {
3897 struct intel_encoder *encoder = connector->encoder;
3898 struct drm_crtc *crtc;
3899 bool encoder_enabled;
3900 enum pipe pipe;
3902 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3903 connector->base.base.id,
3904 drm_get_connector_name(&connector->base));
3906 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3907 "wrong connector dpms state\n");
3908 WARN(connector->base.encoder != &encoder->base,
3909 "active connector not linked to encoder\n");
3910 WARN(!encoder->connectors_active,
3911 "encoder->connectors_active not set\n");
3913 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3914 WARN(!encoder_enabled, "encoder not enabled\n");
3915 if (WARN_ON(!encoder->base.crtc))
3916 return;
3918 crtc = encoder->base.crtc;
3920 WARN(!crtc->enabled, "crtc not enabled\n");
3921 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3922 WARN(pipe != to_intel_crtc(crtc)->pipe,
3923 "encoder active on the wrong pipe\n");
3927 /* Even simpler default implementation, if there's really no special case to
3928 * consider. */
3929 void intel_connector_dpms(struct drm_connector *connector, int mode)
3931 struct intel_encoder *encoder = intel_attached_encoder(connector);
3933 /* All the simple cases only support two dpms states. */
3934 if (mode != DRM_MODE_DPMS_ON)
3935 mode = DRM_MODE_DPMS_OFF;
3937 if (mode == connector->dpms)
3938 return;
3940 connector->dpms = mode;
3942 /* Only need to change hw state when actually enabled */
3943 if (encoder->base.crtc)
3944 intel_encoder_dpms(encoder, mode);
3945 else
3946 WARN_ON(encoder->connectors_active != false);
3948 intel_modeset_check_state(connector->dev);
3951 /* Simple connector->get_hw_state implementation for encoders that support only
3952 * one connector and no cloning and hence the encoder state determines the state
3953 * of the connector. */
3954 bool intel_connector_get_hw_state(struct intel_connector *connector)
3956 enum pipe pipe = 0;
3957 struct intel_encoder *encoder = connector->encoder;
3959 return encoder->get_hw_state(encoder, &pipe);
3962 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3963 struct intel_crtc_config *pipe_config)
3965 struct drm_device *dev = crtc->dev;
3966 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3968 if (HAS_PCH_SPLIT(dev)) {
3969 /* FDI link clock is fixed at 2.7G */
3970 if (pipe_config->requested_mode.clock * 3
3971 > IRONLAKE_FDI_FREQ * 4)
3972 return false;
3975 /* All interlaced capable intel hw wants timings in frames. Note though
3976 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3977 * timings, so we need to be careful not to clobber these.*/
3978 if (!pipe_config->timings_set)
3979 drm_mode_set_crtcinfo(adjusted_mode, 0);
3981 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3982 * with a hsync front porch of 0.
3984 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3985 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3986 return false;
3988 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10) {
3989 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
3990 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8) {
3991 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
3992 * for lvds. */
3993 pipe_config->pipe_bpp = 8*3;
3996 return true;
3999 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4001 return 400000; /* FIXME */
4004 static int i945_get_display_clock_speed(struct drm_device *dev)
4006 return 400000;
4009 static int i915_get_display_clock_speed(struct drm_device *dev)
4011 return 333000;
4014 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4016 return 200000;
4019 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4021 u16 gcfgc = 0;
4023 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4025 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4026 return 133000;
4027 else {
4028 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4029 case GC_DISPLAY_CLOCK_333_MHZ:
4030 return 333000;
4031 default:
4032 case GC_DISPLAY_CLOCK_190_200_MHZ:
4033 return 190000;
4038 static int i865_get_display_clock_speed(struct drm_device *dev)
4040 return 266000;
4043 static int i855_get_display_clock_speed(struct drm_device *dev)
4045 u16 hpllcc = 0;
4046 /* Assume that the hardware is in the high speed state. This
4047 * should be the default.
4049 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4050 case GC_CLOCK_133_200:
4051 case GC_CLOCK_100_200:
4052 return 200000;
4053 case GC_CLOCK_166_250:
4054 return 250000;
4055 case GC_CLOCK_100_133:
4056 return 133000;
4059 /* Shouldn't happen */
4060 return 0;
4063 static int i830_get_display_clock_speed(struct drm_device *dev)
4065 return 133000;
4068 static void
4069 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4071 while (*num > 0xffffff || *den > 0xffffff) {
4072 *num >>= 1;
4073 *den >>= 1;
4077 void
4078 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4079 int pixel_clock, int link_clock,
4080 struct intel_link_m_n *m_n)
4082 m_n->tu = 64;
4083 m_n->gmch_m = bits_per_pixel * pixel_clock;
4084 m_n->gmch_n = link_clock * nlanes * 8;
4085 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4086 m_n->link_m = pixel_clock;
4087 m_n->link_n = link_clock;
4088 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4091 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4093 if (i915_panel_use_ssc >= 0)
4094 return i915_panel_use_ssc != 0;
4095 return dev_priv->lvds_use_ssc
4096 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4099 static int vlv_get_refclk(struct drm_crtc *crtc)
4101 struct drm_device *dev = crtc->dev;
4102 struct drm_i915_private *dev_priv = dev->dev_private;
4103 int refclk = 27000; /* for DP & HDMI */
4105 return 100000; /* only one validated so far */
4107 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4108 refclk = 96000;
4109 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4110 if (intel_panel_use_ssc(dev_priv))
4111 refclk = 100000;
4112 else
4113 refclk = 96000;
4114 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4115 refclk = 100000;
4118 return refclk;
4121 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4123 struct drm_device *dev = crtc->dev;
4124 struct drm_i915_private *dev_priv = dev->dev_private;
4125 int refclk;
4127 if (IS_VALLEYVIEW(dev)) {
4128 refclk = vlv_get_refclk(crtc);
4129 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4130 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4131 refclk = dev_priv->lvds_ssc_freq * 1000;
4132 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4133 refclk / 1000);
4134 } else if (!IS_GEN2(dev)) {
4135 refclk = 96000;
4136 } else {
4137 refclk = 48000;
4140 return refclk;
4143 static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
4145 unsigned dotclock = crtc->config.adjusted_mode.clock;
4146 struct dpll *clock = &crtc->config.dpll;
4148 /* SDVO TV has fixed PLL values depend on its clock range,
4149 this mirrors vbios setting. */
4150 if (dotclock >= 100000 && dotclock < 140500) {
4151 clock->p1 = 2;
4152 clock->p2 = 10;
4153 clock->n = 3;
4154 clock->m1 = 16;
4155 clock->m2 = 8;
4156 } else if (dotclock >= 140500 && dotclock <= 200000) {
4157 clock->p1 = 1;
4158 clock->p2 = 10;
4159 clock->n = 6;
4160 clock->m1 = 12;
4161 clock->m2 = 8;
4164 crtc->config.clock_set = true;
4167 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4168 intel_clock_t *reduced_clock)
4170 struct drm_device *dev = crtc->base.dev;
4171 struct drm_i915_private *dev_priv = dev->dev_private;
4172 int pipe = crtc->pipe;
4173 u32 fp, fp2 = 0;
4174 struct dpll *clock = &crtc->config.dpll;
4176 if (IS_PINEVIEW(dev)) {
4177 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4178 if (reduced_clock)
4179 fp2 = (1 << reduced_clock->n) << 16 |
4180 reduced_clock->m1 << 8 | reduced_clock->m2;
4181 } else {
4182 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4183 if (reduced_clock)
4184 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4185 reduced_clock->m2;
4188 I915_WRITE(FP0(pipe), fp);
4190 crtc->lowfreq_avail = false;
4191 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4192 reduced_clock && i915_powersave) {
4193 I915_WRITE(FP1(pipe), fp2);
4194 crtc->lowfreq_avail = true;
4195 } else {
4196 I915_WRITE(FP1(pipe), fp);
4200 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4202 if (crtc->config.has_pch_encoder)
4203 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4204 else
4205 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4208 static void vlv_update_pll(struct intel_crtc *crtc)
4210 struct drm_device *dev = crtc->base.dev;
4211 struct drm_i915_private *dev_priv = dev->dev_private;
4212 int pipe = crtc->pipe;
4213 u32 dpll, mdiv, pdiv;
4214 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4215 bool is_sdvo;
4216 u32 temp;
4218 mutex_lock(&dev_priv->dpio_lock);
4220 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4221 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4223 dpll = DPLL_VGA_MODE_DIS;
4224 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4225 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4226 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4228 I915_WRITE(DPLL(pipe), dpll);
4229 POSTING_READ(DPLL(pipe));
4231 bestn = crtc->config.dpll.n;
4232 bestm1 = crtc->config.dpll.m1;
4233 bestm2 = crtc->config.dpll.m2;
4234 bestp1 = crtc->config.dpll.p1;
4235 bestp2 = crtc->config.dpll.p2;
4238 * In Valleyview PLL and program lane counter registers are exposed
4239 * through DPIO interface
4241 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4242 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4243 mdiv |= ((bestn << DPIO_N_SHIFT));
4244 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4245 mdiv |= (1 << DPIO_K_SHIFT);
4246 mdiv |= DPIO_ENABLE_CALIBRATION;
4247 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4249 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4251 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4252 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4253 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4254 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4255 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4257 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4259 dpll |= DPLL_VCO_ENABLE;
4260 I915_WRITE(DPLL(pipe), dpll);
4261 POSTING_READ(DPLL(pipe));
4262 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4263 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4265 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4267 if (crtc->config.has_dp_encoder)
4268 intel_dp_set_m_n(crtc);
4270 I915_WRITE(DPLL(pipe), dpll);
4272 /* Wait for the clocks to stabilize. */
4273 POSTING_READ(DPLL(pipe));
4274 udelay(150);
4276 temp = 0;
4277 if (is_sdvo) {
4278 temp = 0;
4279 if (crtc->config.pixel_multiplier > 1) {
4280 temp = (crtc->config.pixel_multiplier - 1)
4281 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4284 I915_WRITE(DPLL_MD(pipe), temp);
4285 POSTING_READ(DPLL_MD(pipe));
4287 /* Now program lane control registers */
4288 if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)
4289 || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
4290 temp = 0x1000C4;
4291 if(pipe == 1)
4292 temp |= (1 << 21);
4293 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4296 if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
4297 temp = 0x1000C4;
4298 if(pipe == 1)
4299 temp |= (1 << 21);
4300 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4303 mutex_unlock(&dev_priv->dpio_lock);
4306 static void i9xx_update_pll(struct intel_crtc *crtc,
4307 intel_clock_t *reduced_clock,
4308 int num_connectors)
4310 struct drm_device *dev = crtc->base.dev;
4311 struct drm_i915_private *dev_priv = dev->dev_private;
4312 struct intel_encoder *encoder;
4313 int pipe = crtc->pipe;
4314 u32 dpll;
4315 bool is_sdvo;
4316 struct dpll *clock = &crtc->config.dpll;
4318 i9xx_update_pll_dividers(crtc, reduced_clock);
4320 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4321 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4323 dpll = DPLL_VGA_MODE_DIS;
4325 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4326 dpll |= DPLLB_MODE_LVDS;
4327 else
4328 dpll |= DPLLB_MODE_DAC_SERIAL;
4330 if (is_sdvo) {
4331 if ((crtc->config.pixel_multiplier > 1) &&
4332 (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4333 dpll |= (crtc->config.pixel_multiplier - 1)
4334 << SDVO_MULTIPLIER_SHIFT_HIRES;
4336 dpll |= DPLL_DVO_HIGH_SPEED;
4338 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4339 dpll |= DPLL_DVO_HIGH_SPEED;
4341 /* compute bitmask from p1 value */
4342 if (IS_PINEVIEW(dev))
4343 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4344 else {
4345 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4346 if (IS_G4X(dev) && reduced_clock)
4347 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4349 switch (clock->p2) {
4350 case 5:
4351 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4352 break;
4353 case 7:
4354 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4355 break;
4356 case 10:
4357 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4358 break;
4359 case 14:
4360 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4361 break;
4363 if (INTEL_INFO(dev)->gen >= 4)
4364 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4366 if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4367 dpll |= PLL_REF_INPUT_TVCLKINBC;
4368 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4369 /* XXX: just matching BIOS for now */
4370 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4371 dpll |= 3;
4372 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4373 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4374 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4375 else
4376 dpll |= PLL_REF_INPUT_DREFCLK;
4378 dpll |= DPLL_VCO_ENABLE;
4379 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4380 POSTING_READ(DPLL(pipe));
4381 udelay(150);
4383 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4384 if (encoder->pre_pll_enable)
4385 encoder->pre_pll_enable(encoder);
4387 if (crtc->config.has_dp_encoder)
4388 intel_dp_set_m_n(crtc);
4390 I915_WRITE(DPLL(pipe), dpll);
4392 /* Wait for the clocks to stabilize. */
4393 POSTING_READ(DPLL(pipe));
4394 udelay(150);
4396 if (INTEL_INFO(dev)->gen >= 4) {
4397 u32 temp = 0;
4398 if (is_sdvo) {
4399 temp = 0;
4400 if (crtc->config.pixel_multiplier > 1) {
4401 temp = (crtc->config.pixel_multiplier - 1)
4402 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4405 I915_WRITE(DPLL_MD(pipe), temp);
4406 } else {
4407 /* The pixel multiplier can only be updated once the
4408 * DPLL is enabled and the clocks are stable.
4410 * So write it again.
4412 I915_WRITE(DPLL(pipe), dpll);
4416 static void i8xx_update_pll(struct intel_crtc *crtc,
4417 struct drm_display_mode *adjusted_mode,
4418 intel_clock_t *reduced_clock,
4419 int num_connectors)
4421 struct drm_device *dev = crtc->base.dev;
4422 struct drm_i915_private *dev_priv = dev->dev_private;
4423 struct intel_encoder *encoder;
4424 int pipe = crtc->pipe;
4425 u32 dpll;
4426 struct dpll *clock = &crtc->config.dpll;
4428 i9xx_update_pll_dividers(crtc, reduced_clock);
4430 dpll = DPLL_VGA_MODE_DIS;
4432 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4433 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4434 } else {
4435 if (clock->p1 == 2)
4436 dpll |= PLL_P1_DIVIDE_BY_TWO;
4437 else
4438 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4439 if (clock->p2 == 4)
4440 dpll |= PLL_P2_DIVIDE_BY_4;
4443 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4444 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4445 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4446 else
4447 dpll |= PLL_REF_INPUT_DREFCLK;
4449 dpll |= DPLL_VCO_ENABLE;
4450 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4451 POSTING_READ(DPLL(pipe));
4452 udelay(150);
4454 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4455 if (encoder->pre_pll_enable)
4456 encoder->pre_pll_enable(encoder);
4458 I915_WRITE(DPLL(pipe), dpll);
4460 /* Wait for the clocks to stabilize. */
4461 POSTING_READ(DPLL(pipe));
4462 udelay(150);
4464 /* The pixel multiplier can only be updated once the
4465 * DPLL is enabled and the clocks are stable.
4467 * So write it again.
4469 I915_WRITE(DPLL(pipe), dpll);
4472 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4473 struct drm_display_mode *mode,
4474 struct drm_display_mode *adjusted_mode)
4476 struct drm_device *dev = intel_crtc->base.dev;
4477 struct drm_i915_private *dev_priv = dev->dev_private;
4478 enum pipe pipe = intel_crtc->pipe;
4479 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4480 uint32_t vsyncshift;
4482 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4483 /* the chip adds 2 halflines automatically */
4484 adjusted_mode->crtc_vtotal -= 1;
4485 adjusted_mode->crtc_vblank_end -= 1;
4486 vsyncshift = adjusted_mode->crtc_hsync_start
4487 - adjusted_mode->crtc_htotal / 2;
4488 } else {
4489 vsyncshift = 0;
4492 if (INTEL_INFO(dev)->gen > 3)
4493 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4495 I915_WRITE(HTOTAL(cpu_transcoder),
4496 (adjusted_mode->crtc_hdisplay - 1) |
4497 ((adjusted_mode->crtc_htotal - 1) << 16));
4498 I915_WRITE(HBLANK(cpu_transcoder),
4499 (adjusted_mode->crtc_hblank_start - 1) |
4500 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4501 I915_WRITE(HSYNC(cpu_transcoder),
4502 (adjusted_mode->crtc_hsync_start - 1) |
4503 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4505 I915_WRITE(VTOTAL(cpu_transcoder),
4506 (adjusted_mode->crtc_vdisplay - 1) |
4507 ((adjusted_mode->crtc_vtotal - 1) << 16));
4508 I915_WRITE(VBLANK(cpu_transcoder),
4509 (adjusted_mode->crtc_vblank_start - 1) |
4510 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4511 I915_WRITE(VSYNC(cpu_transcoder),
4512 (adjusted_mode->crtc_vsync_start - 1) |
4513 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4515 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4516 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4517 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4518 * bits. */
4519 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4520 (pipe == PIPE_B || pipe == PIPE_C))
4521 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4523 /* pipesrc controls the size that is scaled from, which should
4524 * always be the user's requested size.
4526 I915_WRITE(PIPESRC(pipe),
4527 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4530 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4532 struct drm_device *dev = intel_crtc->base.dev;
4533 struct drm_i915_private *dev_priv = dev->dev_private;
4534 uint32_t pipeconf;
4536 pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4538 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4539 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4540 * core speed.
4542 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4543 * pipe == 0 check?
4545 if (intel_crtc->config.requested_mode.clock >
4546 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4547 pipeconf |= PIPECONF_DOUBLE_WIDE;
4548 else
4549 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4552 /* default to 8bpc */
4553 pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4554 if (intel_crtc->config.has_dp_encoder) {
4555 if (intel_crtc->config.dither) {
4556 pipeconf |= PIPECONF_6BPC |
4557 PIPECONF_DITHER_EN |
4558 PIPECONF_DITHER_TYPE_SP;
4562 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(&intel_crtc->base,
4563 INTEL_OUTPUT_EDP)) {
4564 if (intel_crtc->config.dither) {
4565 pipeconf |= PIPECONF_6BPC |
4566 PIPECONF_ENABLE |
4567 I965_PIPECONF_ACTIVE;
4571 if (HAS_PIPE_CXSR(dev)) {
4572 if (intel_crtc->lowfreq_avail) {
4573 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4574 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4575 } else {
4576 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4577 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4581 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4582 if (!IS_GEN2(dev) &&
4583 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4584 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4585 else
4586 pipeconf |= PIPECONF_PROGRESSIVE;
4588 if (IS_VALLEYVIEW(dev)) {
4589 if (intel_crtc->config.limited_color_range)
4590 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4591 else
4592 pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4595 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4596 POSTING_READ(PIPECONF(intel_crtc->pipe));
4599 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4600 int x, int y,
4601 struct drm_framebuffer *fb)
4603 struct drm_device *dev = crtc->dev;
4604 struct drm_i915_private *dev_priv = dev->dev_private;
4605 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4606 struct drm_display_mode *adjusted_mode =
4607 &intel_crtc->config.adjusted_mode;
4608 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4609 int pipe = intel_crtc->pipe;
4610 int plane = intel_crtc->plane;
4611 int refclk, num_connectors = 0;
4612 intel_clock_t clock, reduced_clock;
4613 u32 dspcntr;
4614 bool ok, has_reduced_clock = false, is_sdvo = false;
4615 bool is_lvds = false, is_tv = false;
4616 struct intel_encoder *encoder;
4617 const intel_limit_t *limit;
4618 int ret;
4620 for_each_encoder_on_crtc(dev, crtc, encoder) {
4621 switch (encoder->type) {
4622 case INTEL_OUTPUT_LVDS:
4623 is_lvds = true;
4624 break;
4625 case INTEL_OUTPUT_SDVO:
4626 case INTEL_OUTPUT_HDMI:
4627 is_sdvo = true;
4628 if (encoder->needs_tv_clock)
4629 is_tv = true;
4630 break;
4631 case INTEL_OUTPUT_TVOUT:
4632 is_tv = true;
4633 break;
4636 num_connectors++;
4639 refclk = i9xx_get_refclk(crtc, num_connectors);
4642 * Returns a set of divisors for the desired target clock with the given
4643 * refclk, or FALSE. The returned values represent the clock equation:
4644 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4646 limit = intel_limit(crtc, refclk);
4647 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4648 &clock);
4649 if (!ok) {
4650 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4651 return -EINVAL;
4654 /* Ensure that the cursor is valid for the new mode before changing... */
4655 intel_crtc_update_cursor(crtc, true);
4657 if (is_lvds && dev_priv->lvds_downclock_avail) {
4659 * Ensure we match the reduced clock's P to the target clock.
4660 * If the clocks don't match, we can't switch the display clock
4661 * by using the FP0/FP1. In such case we will disable the LVDS
4662 * downclock feature.
4664 has_reduced_clock = limit->find_pll(limit, crtc,
4665 dev_priv->lvds_downclock,
4666 refclk,
4667 &clock,
4668 &reduced_clock);
4670 /* Compat-code for transition, will disappear. */
4671 if (!intel_crtc->config.clock_set) {
4672 intel_crtc->config.dpll.n = clock.n;
4673 intel_crtc->config.dpll.m1 = clock.m1;
4674 intel_crtc->config.dpll.m2 = clock.m2;
4675 intel_crtc->config.dpll.p1 = clock.p1;
4676 intel_crtc->config.dpll.p2 = clock.p2;
4679 if (is_sdvo && is_tv)
4680 i9xx_adjust_sdvo_tv_clock(intel_crtc);
4682 if (IS_GEN2(dev))
4683 i8xx_update_pll(intel_crtc, adjusted_mode,
4684 has_reduced_clock ? &reduced_clock : NULL,
4685 num_connectors);
4686 else if (IS_VALLEYVIEW(dev))
4687 vlv_update_pll(intel_crtc);
4688 else
4689 i9xx_update_pll(intel_crtc,
4690 has_reduced_clock ? &reduced_clock : NULL,
4691 num_connectors);
4693 /* Set up the display plane register */
4694 dspcntr = DISPPLANE_GAMMA_ENABLE;
4696 if (!IS_VALLEYVIEW(dev)) {
4697 if (pipe == 0)
4698 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4699 else
4700 dspcntr |= DISPPLANE_SEL_PIPE_B;
4703 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4704 drm_mode_debug_printmodeline(mode);
4706 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4708 /* pipesrc and dspsize control the size that is scaled from,
4709 * which should always be the user's requested size.
4711 I915_WRITE(DSPSIZE(plane),
4712 ((mode->vdisplay - 1) << 16) |
4713 (mode->hdisplay - 1));
4714 I915_WRITE(DSPPOS(plane), 0);
4716 i9xx_set_pipeconf(intel_crtc);
4718 intel_enable_pipe(dev_priv, pipe, false);
4720 intel_wait_for_vblank(dev, pipe);
4722 I915_WRITE(DSPCNTR(plane), dspcntr);
4723 POSTING_READ(DSPCNTR(plane));
4725 ret = intel_pipe_set_base(crtc, x, y, fb);
4727 intel_update_watermarks(dev);
4729 return ret;
4732 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4733 struct intel_crtc_config *pipe_config)
4735 struct drm_device *dev = crtc->base.dev;
4736 struct drm_i915_private *dev_priv = dev->dev_private;
4737 uint32_t tmp;
4739 tmp = I915_READ(PIPECONF(crtc->pipe));
4740 if (!(tmp & PIPECONF_ENABLE))
4741 return false;
4743 return true;
4746 static void ironlake_init_pch_refclk(struct drm_device *dev)
4748 struct drm_i915_private *dev_priv = dev->dev_private;
4749 struct drm_mode_config *mode_config = &dev->mode_config;
4750 struct intel_encoder *encoder;
4751 u32 val, final;
4752 bool has_lvds = false;
4753 bool has_cpu_edp = false;
4754 bool has_pch_edp = false;
4755 bool has_panel = false;
4756 bool has_ck505 = false;
4757 bool can_ssc = false;
4759 /* We need to take the global config into account */
4760 list_for_each_entry(encoder, &mode_config->encoder_list,
4761 base.head) {
4762 switch (encoder->type) {
4763 case INTEL_OUTPUT_LVDS:
4764 has_panel = true;
4765 has_lvds = true;
4766 break;
4767 case INTEL_OUTPUT_EDP:
4768 has_panel = true;
4769 if (intel_encoder_is_pch_edp(&encoder->base))
4770 has_pch_edp = true;
4771 else
4772 has_cpu_edp = true;
4773 break;
4777 if (HAS_PCH_IBX(dev)) {
4778 has_ck505 = dev_priv->display_clock_mode;
4779 can_ssc = has_ck505;
4780 } else {
4781 has_ck505 = false;
4782 can_ssc = true;
4785 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4786 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4787 has_ck505);
4789 /* Ironlake: try to setup display ref clock before DPLL
4790 * enabling. This is only under driver's control after
4791 * PCH B stepping, previous chipset stepping should be
4792 * ignoring this setting.
4794 val = I915_READ(PCH_DREF_CONTROL);
4796 /* As we must carefully and slowly disable/enable each source in turn,
4797 * compute the final state we want first and check if we need to
4798 * make any changes at all.
4800 final = val;
4801 final &= ~DREF_NONSPREAD_SOURCE_MASK;
4802 if (has_ck505)
4803 final |= DREF_NONSPREAD_CK505_ENABLE;
4804 else
4805 final |= DREF_NONSPREAD_SOURCE_ENABLE;
4807 final &= ~DREF_SSC_SOURCE_MASK;
4808 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4809 final &= ~DREF_SSC1_ENABLE;
4811 if (has_panel) {
4812 final |= DREF_SSC_SOURCE_ENABLE;
4814 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4815 final |= DREF_SSC1_ENABLE;
4817 if (has_cpu_edp) {
4818 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4819 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4820 else
4821 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4822 } else
4823 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4824 } else {
4825 final |= DREF_SSC_SOURCE_DISABLE;
4826 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4829 if (final == val)
4830 return;
4832 /* Always enable nonspread source */
4833 val &= ~DREF_NONSPREAD_SOURCE_MASK;
4835 if (has_ck505)
4836 val |= DREF_NONSPREAD_CK505_ENABLE;
4837 else
4838 val |= DREF_NONSPREAD_SOURCE_ENABLE;
4840 if (has_panel) {
4841 val &= ~DREF_SSC_SOURCE_MASK;
4842 val |= DREF_SSC_SOURCE_ENABLE;
4844 /* SSC must be turned on before enabling the CPU output */
4845 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4846 DRM_DEBUG_KMS("Using SSC on panel\n");
4847 val |= DREF_SSC1_ENABLE;
4848 } else
4849 val &= ~DREF_SSC1_ENABLE;
4851 /* Get SSC going before enabling the outputs */
4852 I915_WRITE(PCH_DREF_CONTROL, val);
4853 POSTING_READ(PCH_DREF_CONTROL);
4854 udelay(200);
4856 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4858 /* Enable CPU source on CPU attached eDP */
4859 if (has_cpu_edp) {
4860 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4861 DRM_DEBUG_KMS("Using SSC on eDP\n");
4862 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4864 else
4865 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4866 } else
4867 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4869 I915_WRITE(PCH_DREF_CONTROL, val);
4870 POSTING_READ(PCH_DREF_CONTROL);
4871 udelay(200);
4872 } else {
4873 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4875 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4877 /* Turn off CPU output */
4878 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4880 I915_WRITE(PCH_DREF_CONTROL, val);
4881 POSTING_READ(PCH_DREF_CONTROL);
4882 udelay(200);
4884 /* Turn off the SSC source */
4885 val &= ~DREF_SSC_SOURCE_MASK;
4886 val |= DREF_SSC_SOURCE_DISABLE;
4888 /* Turn off SSC1 */
4889 val &= ~DREF_SSC1_ENABLE;
4891 I915_WRITE(PCH_DREF_CONTROL, val);
4892 POSTING_READ(PCH_DREF_CONTROL);
4893 udelay(200);
4896 BUG_ON(val != final);
4899 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4900 static void lpt_init_pch_refclk(struct drm_device *dev)
4902 struct drm_i915_private *dev_priv = dev->dev_private;
4903 struct drm_mode_config *mode_config = &dev->mode_config;
4904 struct intel_encoder *encoder;
4905 bool has_vga = false;
4906 bool is_sdv = false;
4907 u32 tmp;
4909 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4910 switch (encoder->type) {
4911 case INTEL_OUTPUT_ANALOG:
4912 has_vga = true;
4913 break;
4917 if (!has_vga)
4918 return;
4920 mutex_lock(&dev_priv->dpio_lock);
4922 /* XXX: Rip out SDV support once Haswell ships for real. */
4923 if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4924 is_sdv = true;
4926 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4927 tmp &= ~SBI_SSCCTL_DISABLE;
4928 tmp |= SBI_SSCCTL_PATHALT;
4929 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4931 udelay(24);
4933 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4934 tmp &= ~SBI_SSCCTL_PATHALT;
4935 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4937 if (!is_sdv) {
4938 tmp = I915_READ(SOUTH_CHICKEN2);
4939 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4940 I915_WRITE(SOUTH_CHICKEN2, tmp);
4942 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4943 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4944 DRM_ERROR("FDI mPHY reset assert timeout\n");
4946 tmp = I915_READ(SOUTH_CHICKEN2);
4947 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4948 I915_WRITE(SOUTH_CHICKEN2, tmp);
4950 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4951 FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4952 100))
4953 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4956 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4957 tmp &= ~(0xFF << 24);
4958 tmp |= (0x12 << 24);
4959 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4961 if (is_sdv) {
4962 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4963 tmp |= 0x7FFF;
4964 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4967 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4968 tmp |= (1 << 11);
4969 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4971 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4972 tmp |= (1 << 11);
4973 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4975 if (is_sdv) {
4976 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4977 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4978 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4980 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
4981 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4982 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
4984 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
4985 tmp |= (0x3F << 8);
4986 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
4988 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
4989 tmp |= (0x3F << 8);
4990 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
4993 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
4994 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4995 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
4997 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
4998 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4999 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5001 if (!is_sdv) {
5002 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5003 tmp &= ~(7 << 13);
5004 tmp |= (5 << 13);
5005 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5007 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5008 tmp &= ~(7 << 13);
5009 tmp |= (5 << 13);
5010 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5013 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5014 tmp &= ~0xFF;
5015 tmp |= 0x1C;
5016 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5018 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5019 tmp &= ~0xFF;
5020 tmp |= 0x1C;
5021 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5023 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5024 tmp &= ~(0xFF << 16);
5025 tmp |= (0x1C << 16);
5026 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5028 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5029 tmp &= ~(0xFF << 16);
5030 tmp |= (0x1C << 16);
5031 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5033 if (!is_sdv) {
5034 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5035 tmp |= (1 << 27);
5036 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5038 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5039 tmp |= (1 << 27);
5040 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5042 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5043 tmp &= ~(0xF << 28);
5044 tmp |= (4 << 28);
5045 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5047 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5048 tmp &= ~(0xF << 28);
5049 tmp |= (4 << 28);
5050 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5053 /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5054 tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5055 tmp |= SBI_DBUFF0_ENABLE;
5056 intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5058 mutex_unlock(&dev_priv->dpio_lock);
5062 * Initialize reference clocks when the driver loads
5064 void intel_init_pch_refclk(struct drm_device *dev)
5066 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5067 ironlake_init_pch_refclk(dev);
5068 else if (HAS_PCH_LPT(dev))
5069 lpt_init_pch_refclk(dev);
5072 static int ironlake_get_refclk(struct drm_crtc *crtc)
5074 struct drm_device *dev = crtc->dev;
5075 struct drm_i915_private *dev_priv = dev->dev_private;
5076 struct intel_encoder *encoder;
5077 struct intel_encoder *edp_encoder = NULL;
5078 int num_connectors = 0;
5079 bool is_lvds = false;
5081 for_each_encoder_on_crtc(dev, crtc, encoder) {
5082 switch (encoder->type) {
5083 case INTEL_OUTPUT_LVDS:
5084 is_lvds = true;
5085 break;
5086 case INTEL_OUTPUT_EDP:
5087 edp_encoder = encoder;
5088 break;
5090 num_connectors++;
5093 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5094 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5095 dev_priv->lvds_ssc_freq);
5096 return dev_priv->lvds_ssc_freq * 1000;
5099 return 120000;
5102 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5103 struct drm_display_mode *adjusted_mode,
5104 bool dither)
5106 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5107 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5108 int pipe = intel_crtc->pipe;
5109 uint32_t val;
5111 val = I915_READ(PIPECONF(pipe));
5113 val &= ~PIPECONF_BPC_MASK;
5114 switch (intel_crtc->config.pipe_bpp) {
5115 case 18:
5116 val |= PIPECONF_6BPC;
5117 break;
5118 case 24:
5119 val |= PIPECONF_8BPC;
5120 break;
5121 case 30:
5122 val |= PIPECONF_10BPC;
5123 break;
5124 case 36:
5125 val |= PIPECONF_12BPC;
5126 break;
5127 default:
5128 /* Case prevented by intel_choose_pipe_bpp_dither. */
5129 BUG();
5132 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5133 if (dither)
5134 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5136 val &= ~PIPECONF_INTERLACE_MASK;
5137 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5138 val |= PIPECONF_INTERLACED_ILK;
5139 else
5140 val |= PIPECONF_PROGRESSIVE;
5142 if (intel_crtc->config.limited_color_range)
5143 val |= PIPECONF_COLOR_RANGE_SELECT;
5144 else
5145 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5147 I915_WRITE(PIPECONF(pipe), val);
5148 POSTING_READ(PIPECONF(pipe));
5152 * Set up the pipe CSC unit.
5154 * Currently only full range RGB to limited range RGB conversion
5155 * is supported, but eventually this should handle various
5156 * RGB<->YCbCr scenarios as well.
5158 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5160 struct drm_device *dev = crtc->dev;
5161 struct drm_i915_private *dev_priv = dev->dev_private;
5162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5163 int pipe = intel_crtc->pipe;
5164 uint16_t coeff = 0x7800; /* 1.0 */
5167 * TODO: Check what kind of values actually come out of the pipe
5168 * with these coeff/postoff values and adjust to get the best
5169 * accuracy. Perhaps we even need to take the bpc value into
5170 * consideration.
5173 if (intel_crtc->config.limited_color_range)
5174 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5177 * GY/GU and RY/RU should be the other way around according
5178 * to BSpec, but reality doesn't agree. Just set them up in
5179 * a way that results in the correct picture.
5181 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5182 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5184 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5185 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5187 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5188 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5190 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5191 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5192 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5194 if (INTEL_INFO(dev)->gen > 6) {
5195 uint16_t postoff = 0;
5197 if (intel_crtc->config.limited_color_range)
5198 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5200 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5201 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5202 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5204 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5205 } else {
5206 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5208 if (intel_crtc->config.limited_color_range)
5209 mode |= CSC_BLACK_SCREEN_OFFSET;
5211 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5215 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5216 struct drm_display_mode *adjusted_mode,
5217 bool dither)
5219 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5221 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5222 uint32_t val;
5224 val = I915_READ(PIPECONF(cpu_transcoder));
5226 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5227 if (dither)
5228 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5230 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5231 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5232 val |= PIPECONF_INTERLACED_ILK;
5233 else
5234 val |= PIPECONF_PROGRESSIVE;
5236 I915_WRITE(PIPECONF(cpu_transcoder), val);
5237 POSTING_READ(PIPECONF(cpu_transcoder));
5240 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5241 struct drm_display_mode *adjusted_mode,
5242 intel_clock_t *clock,
5243 bool *has_reduced_clock,
5244 intel_clock_t *reduced_clock)
5246 struct drm_device *dev = crtc->dev;
5247 struct drm_i915_private *dev_priv = dev->dev_private;
5248 struct intel_encoder *intel_encoder;
5249 int refclk;
5250 const intel_limit_t *limit;
5251 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5253 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5254 switch (intel_encoder->type) {
5255 case INTEL_OUTPUT_LVDS:
5256 is_lvds = true;
5257 break;
5258 case INTEL_OUTPUT_SDVO:
5259 case INTEL_OUTPUT_HDMI:
5260 is_sdvo = true;
5261 if (intel_encoder->needs_tv_clock)
5262 is_tv = true;
5263 break;
5264 case INTEL_OUTPUT_TVOUT:
5265 is_tv = true;
5266 break;
5270 refclk = ironlake_get_refclk(crtc);
5273 * Returns a set of divisors for the desired target clock with the given
5274 * refclk, or FALSE. The returned values represent the clock equation:
5275 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5277 limit = intel_limit(crtc, refclk);
5278 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5279 clock);
5280 if (!ret)
5281 return false;
5283 if (is_lvds && dev_priv->lvds_downclock_avail) {
5285 * Ensure we match the reduced clock's P to the target clock.
5286 * If the clocks don't match, we can't switch the display clock
5287 * by using the FP0/FP1. In such case we will disable the LVDS
5288 * downclock feature.
5290 *has_reduced_clock = limit->find_pll(limit, crtc,
5291 dev_priv->lvds_downclock,
5292 refclk,
5293 clock,
5294 reduced_clock);
5297 if (is_sdvo && is_tv)
5298 i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
5300 return true;
5303 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5305 struct drm_i915_private *dev_priv = dev->dev_private;
5306 uint32_t temp;
5308 temp = I915_READ(SOUTH_CHICKEN1);
5309 if (temp & FDI_BC_BIFURCATION_SELECT)
5310 return;
5312 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5313 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5315 temp |= FDI_BC_BIFURCATION_SELECT;
5316 DRM_DEBUG_KMS("enabling fdi C rx\n");
5317 I915_WRITE(SOUTH_CHICKEN1, temp);
5318 POSTING_READ(SOUTH_CHICKEN1);
5321 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5323 struct drm_device *dev = intel_crtc->base.dev;
5324 struct drm_i915_private *dev_priv = dev->dev_private;
5325 struct intel_crtc *pipe_B_crtc =
5326 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5328 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5329 intel_crtc->pipe, intel_crtc->fdi_lanes);
5330 if (intel_crtc->fdi_lanes > 4) {
5331 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5332 intel_crtc->pipe, intel_crtc->fdi_lanes);
5333 /* Clamp lanes to avoid programming the hw with bogus values. */
5334 intel_crtc->fdi_lanes = 4;
5336 return false;
5339 if (INTEL_INFO(dev)->num_pipes == 2)
5340 return true;
5342 switch (intel_crtc->pipe) {
5343 case PIPE_A:
5344 return true;
5345 case PIPE_B:
5346 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5347 intel_crtc->fdi_lanes > 2) {
5348 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5349 intel_crtc->pipe, intel_crtc->fdi_lanes);
5350 /* Clamp lanes to avoid programming the hw with bogus values. */
5351 intel_crtc->fdi_lanes = 2;
5353 return false;
5356 if (intel_crtc->fdi_lanes > 2)
5357 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5358 else
5359 cpt_enable_fdi_bc_bifurcation(dev);
5361 return true;
5362 case PIPE_C:
5363 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5364 if (intel_crtc->fdi_lanes > 2) {
5365 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5366 intel_crtc->pipe, intel_crtc->fdi_lanes);
5367 /* Clamp lanes to avoid programming the hw with bogus values. */
5368 intel_crtc->fdi_lanes = 2;
5370 return false;
5372 } else {
5373 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5374 return false;
5377 cpt_enable_fdi_bc_bifurcation(dev);
5379 return true;
5380 default:
5381 BUG();
5385 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5388 * Account for spread spectrum to avoid
5389 * oversubscribing the link. Max center spread
5390 * is 2.5%; use 5% for safety's sake.
5392 u32 bps = target_clock * bpp * 21 / 20;
5393 return bps / (link_bw * 8) + 1;
5396 void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5397 struct intel_link_m_n *m_n)
5399 struct drm_device *dev = crtc->base.dev;
5400 struct drm_i915_private *dev_priv = dev->dev_private;
5401 int pipe = crtc->pipe;
5403 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5404 I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
5405 I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
5406 I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
5409 void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5410 struct intel_link_m_n *m_n)
5412 struct drm_device *dev = crtc->base.dev;
5413 struct drm_i915_private *dev_priv = dev->dev_private;
5414 int pipe = crtc->pipe;
5415 enum transcoder transcoder = crtc->cpu_transcoder;
5417 if (INTEL_INFO(dev)->gen >= 5) {
5418 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5419 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5420 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5421 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5422 } else {
5423 I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5424 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
5425 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
5426 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
5430 static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
5432 struct drm_device *dev = crtc->dev;
5433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5434 struct drm_display_mode *adjusted_mode =
5435 &intel_crtc->config.adjusted_mode;
5436 struct intel_link_m_n m_n = {0};
5437 int target_clock, lane, link_bw;
5439 /* FDI is a binary signal running at ~2.7GHz, encoding
5440 * each output octet as 10 bits. The actual frequency
5441 * is stored as a divider into a 100MHz clock, and the
5442 * mode pixel clock is stored in units of 1KHz.
5443 * Hence the bw of each lane in terms of the mode signal
5444 * is:
5446 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5448 if (intel_crtc->config.pixel_target_clock)
5449 target_clock = intel_crtc->config.pixel_target_clock;
5450 else
5451 target_clock = adjusted_mode->clock;
5453 lane = ironlake_get_lanes_required(target_clock, link_bw,
5454 intel_crtc->config.pipe_bpp);
5456 intel_crtc->fdi_lanes = lane;
5458 if (intel_crtc->config.pixel_multiplier > 1)
5459 link_bw *= intel_crtc->config.pixel_multiplier;
5460 intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5461 link_bw, &m_n);
5463 intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
5466 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5467 intel_clock_t *clock, u32 *fp,
5468 intel_clock_t *reduced_clock, u32 *fp2)
5470 struct drm_crtc *crtc = &intel_crtc->base;
5471 struct drm_device *dev = crtc->dev;
5472 struct drm_i915_private *dev_priv = dev->dev_private;
5473 struct intel_encoder *intel_encoder;
5474 uint32_t dpll;
5475 int factor, num_connectors = 0;
5476 bool is_lvds = false, is_sdvo = false, is_tv = false;
5478 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5479 switch (intel_encoder->type) {
5480 case INTEL_OUTPUT_LVDS:
5481 is_lvds = true;
5482 break;
5483 case INTEL_OUTPUT_SDVO:
5484 case INTEL_OUTPUT_HDMI:
5485 is_sdvo = true;
5486 if (intel_encoder->needs_tv_clock)
5487 is_tv = true;
5488 break;
5489 case INTEL_OUTPUT_TVOUT:
5490 is_tv = true;
5491 break;
5494 num_connectors++;
5497 /* Enable autotuning of the PLL clock (if permissible) */
5498 factor = 21;
5499 if (is_lvds) {
5500 if ((intel_panel_use_ssc(dev_priv) &&
5501 dev_priv->lvds_ssc_freq == 100) ||
5502 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5503 factor = 25;
5504 } else if (is_sdvo && is_tv)
5505 factor = 20;
5507 if (clock->m < factor * clock->n)
5508 *fp |= FP_CB_TUNE;
5510 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5511 *fp2 |= FP_CB_TUNE;
5513 dpll = 0;
5515 if (is_lvds)
5516 dpll |= DPLLB_MODE_LVDS;
5517 else
5518 dpll |= DPLLB_MODE_DAC_SERIAL;
5519 if (is_sdvo) {
5520 if (intel_crtc->config.pixel_multiplier > 1) {
5521 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5522 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5524 dpll |= DPLL_DVO_HIGH_SPEED;
5526 if (intel_crtc->config.has_dp_encoder &&
5527 intel_crtc->config.has_pch_encoder)
5528 dpll |= DPLL_DVO_HIGH_SPEED;
5530 /* compute bitmask from p1 value */
5531 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5532 /* also FPA1 */
5533 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5535 switch (clock->p2) {
5536 case 5:
5537 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5538 break;
5539 case 7:
5540 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5541 break;
5542 case 10:
5543 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5544 break;
5545 case 14:
5546 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5547 break;
5550 if (is_sdvo && is_tv)
5551 dpll |= PLL_REF_INPUT_TVCLKINBC;
5552 else if (is_tv)
5553 /* XXX: just matching BIOS for now */
5554 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5555 dpll |= 3;
5556 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5557 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5558 else
5559 dpll |= PLL_REF_INPUT_DREFCLK;
5561 return dpll;
5564 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5565 int x, int y,
5566 struct drm_framebuffer *fb)
5568 struct drm_device *dev = crtc->dev;
5569 struct drm_i915_private *dev_priv = dev->dev_private;
5570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5571 struct drm_display_mode *adjusted_mode =
5572 &intel_crtc->config.adjusted_mode;
5573 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5574 int pipe = intel_crtc->pipe;
5575 int plane = intel_crtc->plane;
5576 int num_connectors = 0;
5577 intel_clock_t clock, reduced_clock;
5578 u32 dpll, fp = 0, fp2 = 0;
5579 bool ok, has_reduced_clock = false;
5580 bool is_lvds = false;
5581 struct intel_encoder *encoder;
5582 int ret;
5583 bool dither, fdi_config_ok;
5585 for_each_encoder_on_crtc(dev, crtc, encoder) {
5586 switch (encoder->type) {
5587 case INTEL_OUTPUT_LVDS:
5588 is_lvds = true;
5589 break;
5592 num_connectors++;
5595 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5596 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5598 intel_crtc->cpu_transcoder = pipe;
5600 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5601 &has_reduced_clock, &reduced_clock);
5602 if (!ok) {
5603 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5604 return -EINVAL;
5606 /* Compat-code for transition, will disappear. */
5607 if (!intel_crtc->config.clock_set) {
5608 intel_crtc->config.dpll.n = clock.n;
5609 intel_crtc->config.dpll.m1 = clock.m1;
5610 intel_crtc->config.dpll.m2 = clock.m2;
5611 intel_crtc->config.dpll.p1 = clock.p1;
5612 intel_crtc->config.dpll.p2 = clock.p2;
5615 /* Ensure that the cursor is valid for the new mode before changing... */
5616 intel_crtc_update_cursor(crtc, true);
5618 /* determine panel color depth */
5619 dither = intel_crtc->config.dither;
5620 if (is_lvds && dev_priv->lvds_dither)
5621 dither = true;
5623 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5624 if (has_reduced_clock)
5625 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5626 reduced_clock.m2;
5628 dpll = ironlake_compute_dpll(intel_crtc, &clock, &fp, &reduced_clock,
5629 has_reduced_clock ? &fp2 : NULL);
5631 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5632 drm_mode_debug_printmodeline(mode);
5634 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5635 if (intel_crtc->config.has_pch_encoder) {
5636 struct intel_pch_pll *pll;
5638 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5639 if (pll == NULL) {
5640 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5641 pipe);
5642 return -EINVAL;
5644 } else
5645 intel_put_pch_pll(intel_crtc);
5647 if (intel_crtc->config.has_dp_encoder)
5648 intel_dp_set_m_n(intel_crtc);
5650 for_each_encoder_on_crtc(dev, crtc, encoder)
5651 if (encoder->pre_pll_enable)
5652 encoder->pre_pll_enable(encoder);
5654 if (intel_crtc->pch_pll) {
5655 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5657 /* Wait for the clocks to stabilize. */
5658 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5659 udelay(150);
5661 /* The pixel multiplier can only be updated once the
5662 * DPLL is enabled and the clocks are stable.
5664 * So write it again.
5666 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5669 intel_crtc->lowfreq_avail = false;
5670 if (intel_crtc->pch_pll) {
5671 if (is_lvds && has_reduced_clock && i915_powersave) {
5672 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5673 intel_crtc->lowfreq_avail = true;
5674 } else {
5675 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5679 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5681 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5682 * ironlake_check_fdi_lanes. */
5683 intel_crtc->fdi_lanes = 0;
5684 if (intel_crtc->config.has_pch_encoder)
5685 ironlake_fdi_set_m_n(crtc);
5687 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5689 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5691 intel_wait_for_vblank(dev, pipe);
5693 /* Set up the display plane register */
5694 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5695 POSTING_READ(DSPCNTR(plane));
5697 ret = intel_pipe_set_base(crtc, x, y, fb);
5699 intel_update_watermarks(dev);
5701 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5703 return fdi_config_ok ? ret : -EINVAL;
5706 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5707 struct intel_crtc_config *pipe_config)
5709 struct drm_device *dev = crtc->base.dev;
5710 struct drm_i915_private *dev_priv = dev->dev_private;
5711 uint32_t tmp;
5713 tmp = I915_READ(PIPECONF(crtc->pipe));
5714 if (!(tmp & PIPECONF_ENABLE))
5715 return false;
5717 if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE)
5718 pipe_config->has_pch_encoder = true;
5720 return true;
5723 static void haswell_modeset_global_resources(struct drm_device *dev)
5725 struct drm_i915_private *dev_priv = dev->dev_private;
5726 bool enable = false;
5727 struct intel_crtc *crtc;
5728 struct intel_encoder *encoder;
5730 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5731 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5732 enable = true;
5733 /* XXX: Should check for edp transcoder here, but thanks to init
5734 * sequence that's not yet available. Just in case desktop eDP
5735 * on PORT D is possible on haswell, too. */
5738 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5739 base.head) {
5740 if (encoder->type != INTEL_OUTPUT_EDP &&
5741 encoder->connectors_active)
5742 enable = true;
5745 /* Even the eDP panel fitter is outside the always-on well. */
5746 if (dev_priv->pch_pf_size)
5747 enable = true;
5749 intel_set_power_well(dev, enable);
5752 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5753 int x, int y,
5754 struct drm_framebuffer *fb)
5756 struct drm_device *dev = crtc->dev;
5757 struct drm_i915_private *dev_priv = dev->dev_private;
5758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5759 struct drm_display_mode *adjusted_mode =
5760 &intel_crtc->config.adjusted_mode;
5761 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5762 int pipe = intel_crtc->pipe;
5763 int plane = intel_crtc->plane;
5764 int num_connectors = 0;
5765 bool is_cpu_edp = false;
5766 struct intel_encoder *encoder;
5767 int ret;
5768 bool dither;
5770 for_each_encoder_on_crtc(dev, crtc, encoder) {
5771 switch (encoder->type) {
5772 case INTEL_OUTPUT_EDP:
5773 if (!intel_encoder_is_pch_edp(&encoder->base))
5774 is_cpu_edp = true;
5775 break;
5778 num_connectors++;
5781 if (is_cpu_edp)
5782 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5783 else
5784 intel_crtc->cpu_transcoder = pipe;
5786 /* We are not sure yet this won't happen. */
5787 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5788 INTEL_PCH_TYPE(dev));
5790 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5791 num_connectors, pipe_name(pipe));
5793 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5794 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5796 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5798 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5799 return -EINVAL;
5801 /* Ensure that the cursor is valid for the new mode before changing... */
5802 intel_crtc_update_cursor(crtc, true);
5804 /* determine panel color depth */
5805 dither = intel_crtc->config.dither;
5807 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5808 drm_mode_debug_printmodeline(mode);
5810 if (intel_crtc->config.has_dp_encoder)
5811 intel_dp_set_m_n(intel_crtc);
5813 intel_crtc->lowfreq_avail = false;
5815 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5817 if (intel_crtc->config.has_pch_encoder)
5818 ironlake_fdi_set_m_n(crtc);
5820 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5822 intel_set_pipe_csc(crtc);
5824 /* Set up the display plane register */
5825 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5826 POSTING_READ(DSPCNTR(plane));
5828 ret = intel_pipe_set_base(crtc, x, y, fb);
5830 intel_update_watermarks(dev);
5832 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5834 return ret;
5837 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5838 struct intel_crtc_config *pipe_config)
5840 struct drm_device *dev = crtc->base.dev;
5841 struct drm_i915_private *dev_priv = dev->dev_private;
5842 uint32_t tmp;
5844 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
5845 if (!(tmp & PIPECONF_ENABLE))
5846 return false;
5849 * aswell has only FDI/PCH transcoder A. It is which is connected to
5850 * DDI E. So just check whether this pipe is wired to DDI E and whether
5851 * the PCH transcoder is on.
5853 tmp = I915_READ(TRANS_DDI_FUNC_CTL(crtc->pipe));
5854 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5855 I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE)
5856 pipe_config->has_pch_encoder = true;
5859 return true;
5862 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5863 int x, int y,
5864 struct drm_framebuffer *fb)
5866 struct drm_device *dev = crtc->dev;
5867 struct drm_i915_private *dev_priv = dev->dev_private;
5868 struct drm_encoder_helper_funcs *encoder_funcs;
5869 struct intel_encoder *encoder;
5870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5871 struct drm_display_mode *adjusted_mode =
5872 &intel_crtc->config.adjusted_mode;
5873 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5874 int pipe = intel_crtc->pipe;
5875 int ret;
5877 drm_vblank_pre_modeset(dev, pipe);
5879 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5881 drm_vblank_post_modeset(dev, pipe);
5883 if (ret != 0)
5884 return ret;
5886 for_each_encoder_on_crtc(dev, crtc, encoder) {
5887 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5888 encoder->base.base.id,
5889 drm_get_encoder_name(&encoder->base),
5890 mode->base.id, mode->name);
5891 if (encoder->mode_set) {
5892 encoder->mode_set(encoder);
5893 } else {
5894 encoder_funcs = encoder->base.helper_private;
5895 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5899 return 0;
5902 static bool intel_eld_uptodate(struct drm_connector *connector,
5903 int reg_eldv, uint32_t bits_eldv,
5904 int reg_elda, uint32_t bits_elda,
5905 int reg_edid)
5907 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5908 uint8_t *eld = connector->eld;
5909 uint32_t i;
5911 i = I915_READ(reg_eldv);
5912 i &= bits_eldv;
5914 if (!eld[0])
5915 return !i;
5917 if (!i)
5918 return false;
5920 i = I915_READ(reg_elda);
5921 i &= ~bits_elda;
5922 I915_WRITE(reg_elda, i);
5924 for (i = 0; i < eld[2]; i++)
5925 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5926 return false;
5928 return true;
5931 static void g4x_write_eld(struct drm_connector *connector,
5932 struct drm_crtc *crtc)
5934 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5935 uint8_t *eld = connector->eld;
5936 uint32_t eldv;
5937 uint32_t len;
5938 uint32_t i;
5940 i = I915_READ(G4X_AUD_VID_DID);
5942 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5943 eldv = G4X_ELDV_DEVCL_DEVBLC;
5944 else
5945 eldv = G4X_ELDV_DEVCTG;
5947 if (intel_eld_uptodate(connector,
5948 G4X_AUD_CNTL_ST, eldv,
5949 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5950 G4X_HDMIW_HDMIEDID))
5951 return;
5953 i = I915_READ(G4X_AUD_CNTL_ST);
5954 i &= ~(eldv | G4X_ELD_ADDR);
5955 len = (i >> 9) & 0x1f; /* ELD buffer size */
5956 I915_WRITE(G4X_AUD_CNTL_ST, i);
5958 if (!eld[0])
5959 return;
5961 len = min_t(uint8_t, eld[2], len);
5962 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5963 for (i = 0; i < len; i++)
5964 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5966 i = I915_READ(G4X_AUD_CNTL_ST);
5967 i |= eldv;
5968 I915_WRITE(G4X_AUD_CNTL_ST, i);
5971 static void haswell_write_eld(struct drm_connector *connector,
5972 struct drm_crtc *crtc)
5974 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5975 uint8_t *eld = connector->eld;
5976 struct drm_device *dev = crtc->dev;
5977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5978 uint32_t eldv;
5979 uint32_t i;
5980 int len;
5981 int pipe = to_intel_crtc(crtc)->pipe;
5982 int tmp;
5984 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5985 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5986 int aud_config = HSW_AUD_CFG(pipe);
5987 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5990 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5992 /* Audio output enable */
5993 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5994 tmp = I915_READ(aud_cntrl_st2);
5995 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5996 I915_WRITE(aud_cntrl_st2, tmp);
5998 /* Wait for 1 vertical blank */
5999 intel_wait_for_vblank(dev, pipe);
6001 /* Set ELD valid state */
6002 tmp = I915_READ(aud_cntrl_st2);
6003 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6004 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6005 I915_WRITE(aud_cntrl_st2, tmp);
6006 tmp = I915_READ(aud_cntrl_st2);
6007 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6009 /* Enable HDMI mode */
6010 tmp = I915_READ(aud_config);
6011 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6012 /* clear N_programing_enable and N_value_index */
6013 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6014 I915_WRITE(aud_config, tmp);
6016 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6018 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6019 intel_crtc->eld_vld = true;
6021 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6022 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6023 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6024 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6025 } else
6026 I915_WRITE(aud_config, 0);
6028 if (intel_eld_uptodate(connector,
6029 aud_cntrl_st2, eldv,
6030 aud_cntl_st, IBX_ELD_ADDRESS,
6031 hdmiw_hdmiedid))
6032 return;
6034 i = I915_READ(aud_cntrl_st2);
6035 i &= ~eldv;
6036 I915_WRITE(aud_cntrl_st2, i);
6038 if (!eld[0])
6039 return;
6041 i = I915_READ(aud_cntl_st);
6042 i &= ~IBX_ELD_ADDRESS;
6043 I915_WRITE(aud_cntl_st, i);
6044 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6045 DRM_DEBUG_DRIVER("port num:%d\n", i);
6047 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6048 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6049 for (i = 0; i < len; i++)
6050 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6052 i = I915_READ(aud_cntrl_st2);
6053 i |= eldv;
6054 I915_WRITE(aud_cntrl_st2, i);
6058 static void ironlake_write_eld(struct drm_connector *connector,
6059 struct drm_crtc *crtc)
6061 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6062 uint8_t *eld = connector->eld;
6063 uint32_t eldv;
6064 uint32_t i;
6065 int len;
6066 int hdmiw_hdmiedid;
6067 int aud_config;
6068 int aud_cntl_st;
6069 int aud_cntrl_st2;
6070 int pipe = to_intel_crtc(crtc)->pipe;
6072 if (HAS_PCH_IBX(connector->dev)) {
6073 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6074 aud_config = IBX_AUD_CFG(pipe);
6075 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6076 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6077 } else {
6078 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6079 aud_config = CPT_AUD_CFG(pipe);
6080 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6081 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6084 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6086 i = I915_READ(aud_cntl_st);
6087 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6088 if (!i) {
6089 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6090 /* operate blindly on all ports */
6091 eldv = IBX_ELD_VALIDB;
6092 eldv |= IBX_ELD_VALIDB << 4;
6093 eldv |= IBX_ELD_VALIDB << 8;
6094 } else {
6095 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6096 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6099 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6100 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6101 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6102 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6103 } else
6104 I915_WRITE(aud_config, 0);
6106 if (intel_eld_uptodate(connector,
6107 aud_cntrl_st2, eldv,
6108 aud_cntl_st, IBX_ELD_ADDRESS,
6109 hdmiw_hdmiedid))
6110 return;
6112 i = I915_READ(aud_cntrl_st2);
6113 i &= ~eldv;
6114 I915_WRITE(aud_cntrl_st2, i);
6116 if (!eld[0])
6117 return;
6119 i = I915_READ(aud_cntl_st);
6120 i &= ~IBX_ELD_ADDRESS;
6121 I915_WRITE(aud_cntl_st, i);
6123 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6124 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6125 for (i = 0; i < len; i++)
6126 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6128 i = I915_READ(aud_cntrl_st2);
6129 i |= eldv;
6130 I915_WRITE(aud_cntrl_st2, i);
6133 void intel_write_eld(struct drm_encoder *encoder,
6134 struct drm_display_mode *mode)
6136 struct drm_crtc *crtc = encoder->crtc;
6137 struct drm_connector *connector;
6138 struct drm_device *dev = encoder->dev;
6139 struct drm_i915_private *dev_priv = dev->dev_private;
6141 connector = drm_select_eld(encoder, mode);
6142 if (!connector)
6143 return;
6145 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6146 connector->base.id,
6147 drm_get_connector_name(connector),
6148 connector->encoder->base.id,
6149 drm_get_encoder_name(connector->encoder));
6151 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6153 if (dev_priv->display.write_eld)
6154 dev_priv->display.write_eld(connector, crtc);
6157 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6158 void intel_crtc_load_lut(struct drm_crtc *crtc)
6160 struct drm_device *dev = crtc->dev;
6161 struct drm_i915_private *dev_priv = dev->dev_private;
6162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6163 int palreg = PALETTE(intel_crtc->pipe);
6164 int i;
6166 /* The clocks have to be on to load the palette. */
6167 if (!crtc->enabled || !intel_crtc->active)
6168 return;
6170 /* use legacy palette for Ironlake */
6171 if (HAS_PCH_SPLIT(dev))
6172 palreg = LGC_PALETTE(intel_crtc->pipe);
6174 for (i = 0; i < 256; i++) {
6175 I915_WRITE(palreg + 4 * i,
6176 (intel_crtc->lut_r[i] << 16) |
6177 (intel_crtc->lut_g[i] << 8) |
6178 intel_crtc->lut_b[i]);
6182 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6184 struct drm_device *dev = crtc->dev;
6185 struct drm_i915_private *dev_priv = dev->dev_private;
6186 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6187 bool visible = base != 0;
6188 u32 cntl;
6190 if (intel_crtc->cursor_visible == visible)
6191 return;
6193 cntl = I915_READ(_CURACNTR);
6194 if (visible) {
6195 /* On these chipsets we can only modify the base whilst
6196 * the cursor is disabled.
6198 I915_WRITE(_CURABASE, base);
6200 cntl &= ~(CURSOR_FORMAT_MASK);
6201 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6202 cntl |= CURSOR_ENABLE |
6203 CURSOR_GAMMA_ENABLE |
6204 CURSOR_FORMAT_ARGB;
6205 } else
6206 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6207 I915_WRITE(_CURACNTR, cntl);
6209 intel_crtc->cursor_visible = visible;
6212 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6214 struct drm_device *dev = crtc->dev;
6215 struct drm_i915_private *dev_priv = dev->dev_private;
6216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6217 int pipe = intel_crtc->pipe;
6218 bool visible = base != 0;
6220 if (intel_crtc->cursor_visible != visible) {
6221 uint32_t cntl = I915_READ(CURCNTR(pipe));
6222 if (base) {
6223 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6224 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6225 cntl |= pipe << 28; /* Connect to correct pipe */
6226 } else {
6227 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6228 cntl |= CURSOR_MODE_DISABLE;
6230 I915_WRITE(CURCNTR(pipe), cntl);
6232 intel_crtc->cursor_visible = visible;
6234 /* and commit changes on next vblank */
6235 I915_WRITE(CURBASE(pipe), base);
6238 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6240 struct drm_device *dev = crtc->dev;
6241 struct drm_i915_private *dev_priv = dev->dev_private;
6242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6243 int pipe = intel_crtc->pipe;
6244 bool visible = base != 0;
6246 if (intel_crtc->cursor_visible != visible) {
6247 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6248 if (base) {
6249 cntl &= ~CURSOR_MODE;
6250 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6251 } else {
6252 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6253 cntl |= CURSOR_MODE_DISABLE;
6255 if (IS_HASWELL(dev))
6256 cntl |= CURSOR_PIPE_CSC_ENABLE;
6257 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6259 intel_crtc->cursor_visible = visible;
6261 /* and commit changes on next vblank */
6262 I915_WRITE(CURBASE_IVB(pipe), base);
6265 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6266 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6267 bool on)
6269 struct drm_device *dev = crtc->dev;
6270 struct drm_i915_private *dev_priv = dev->dev_private;
6271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6272 int pipe = intel_crtc->pipe;
6273 int x = intel_crtc->cursor_x;
6274 int y = intel_crtc->cursor_y;
6275 u32 base, pos;
6276 bool visible;
6278 pos = 0;
6280 if (on && crtc->enabled && crtc->fb) {
6281 base = intel_crtc->cursor_addr;
6282 if (x > (int) crtc->fb->width)
6283 base = 0;
6285 if (y > (int) crtc->fb->height)
6286 base = 0;
6287 } else
6288 base = 0;
6290 if (x < 0) {
6291 if (x + intel_crtc->cursor_width < 0)
6292 base = 0;
6294 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6295 x = -x;
6297 pos |= x << CURSOR_X_SHIFT;
6299 if (y < 0) {
6300 if (y + intel_crtc->cursor_height < 0)
6301 base = 0;
6303 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6304 y = -y;
6306 pos |= y << CURSOR_Y_SHIFT;
6308 visible = base != 0;
6309 if (!visible && !intel_crtc->cursor_visible)
6310 return;
6312 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6313 I915_WRITE(CURPOS_IVB(pipe), pos);
6314 ivb_update_cursor(crtc, base);
6315 } else {
6316 I915_WRITE(CURPOS(pipe), pos);
6317 if (IS_845G(dev) || IS_I865G(dev))
6318 i845_update_cursor(crtc, base);
6319 else
6320 i9xx_update_cursor(crtc, base);
6324 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6325 struct drm_file *file,
6326 uint32_t handle,
6327 uint32_t width, uint32_t height)
6329 struct drm_device *dev = crtc->dev;
6330 struct drm_i915_private *dev_priv = dev->dev_private;
6331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6332 struct drm_i915_gem_object *obj;
6333 uint32_t addr;
6334 int ret;
6336 /* if we want to turn off the cursor ignore width and height */
6337 if (!handle) {
6338 DRM_DEBUG_KMS("cursor off\n");
6339 addr = 0;
6340 obj = NULL;
6341 mutex_lock(&dev->struct_mutex);
6342 goto finish;
6345 /* Currently we only support 64x64 cursors */
6346 if (width != 64 || height != 64) {
6347 DRM_ERROR("we currently only support 64x64 cursors\n");
6348 return -EINVAL;
6351 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6352 if (&obj->base == NULL)
6353 return -ENOENT;
6355 if (obj->base.size < width * height * 4) {
6356 DRM_ERROR("buffer is to small\n");
6357 ret = -ENOMEM;
6358 goto fail;
6361 /* we only need to pin inside GTT if cursor is non-phy */
6362 mutex_lock(&dev->struct_mutex);
6363 if (!dev_priv->info->cursor_needs_physical) {
6364 unsigned alignment;
6366 if (obj->tiling_mode) {
6367 DRM_ERROR("cursor cannot be tiled\n");
6368 ret = -EINVAL;
6369 goto fail_locked;
6372 /* Note that the w/a also requires 2 PTE of padding following
6373 * the bo. We currently fill all unused PTE with the shadow
6374 * page and so we should always have valid PTE following the
6375 * cursor preventing the VT-d warning.
6377 alignment = 0;
6378 if (need_vtd_wa(dev))
6379 alignment = 64*1024;
6381 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6382 if (ret) {
6383 DRM_ERROR("failed to move cursor bo into the GTT\n");
6384 goto fail_locked;
6387 ret = i915_gem_object_put_fence(obj);
6388 if (ret) {
6389 DRM_ERROR("failed to release fence for cursor");
6390 goto fail_unpin;
6393 addr = obj->gtt_offset;
6394 } else {
6395 int align = IS_I830(dev) ? 16 * 1024 : 256;
6396 ret = i915_gem_attach_phys_object(dev, obj,
6397 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6398 align);
6399 if (ret) {
6400 DRM_ERROR("failed to attach phys object\n");
6401 goto fail_locked;
6403 addr = obj->phys_obj->handle->busaddr;
6406 if (IS_GEN2(dev))
6407 I915_WRITE(CURSIZE, (height << 12) | width);
6409 finish:
6410 if (intel_crtc->cursor_bo) {
6411 if (dev_priv->info->cursor_needs_physical) {
6412 if (intel_crtc->cursor_bo != obj)
6413 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6414 } else
6415 i915_gem_object_unpin(intel_crtc->cursor_bo);
6416 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6419 mutex_unlock(&dev->struct_mutex);
6421 intel_crtc->cursor_addr = addr;
6422 intel_crtc->cursor_bo = obj;
6423 intel_crtc->cursor_width = width;
6424 intel_crtc->cursor_height = height;
6426 intel_crtc_update_cursor(crtc, true);
6428 return 0;
6429 fail_unpin:
6430 i915_gem_object_unpin(obj);
6431 fail_locked:
6432 mutex_unlock(&dev->struct_mutex);
6433 fail:
6434 drm_gem_object_unreference_unlocked(&obj->base);
6435 return ret;
6438 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6442 intel_crtc->cursor_x = x;
6443 intel_crtc->cursor_y = y;
6445 intel_crtc_update_cursor(crtc, true);
6447 return 0;
6450 /** Sets the color ramps on behalf of RandR */
6451 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6452 u16 blue, int regno)
6454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6456 intel_crtc->lut_r[regno] = red >> 8;
6457 intel_crtc->lut_g[regno] = green >> 8;
6458 intel_crtc->lut_b[regno] = blue >> 8;
6461 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6462 u16 *blue, int regno)
6464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6466 *red = intel_crtc->lut_r[regno] << 8;
6467 *green = intel_crtc->lut_g[regno] << 8;
6468 *blue = intel_crtc->lut_b[regno] << 8;
6471 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6472 u16 *blue, uint32_t start, uint32_t size)
6474 int end = (start + size > 256) ? 256 : start + size, i;
6475 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6477 for (i = start; i < end; i++) {
6478 intel_crtc->lut_r[i] = red[i] >> 8;
6479 intel_crtc->lut_g[i] = green[i] >> 8;
6480 intel_crtc->lut_b[i] = blue[i] >> 8;
6483 intel_crtc_load_lut(crtc);
6486 /* VESA 640x480x72Hz mode to set on the pipe */
6487 static struct drm_display_mode load_detect_mode = {
6488 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6489 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6492 static struct drm_framebuffer *
6493 intel_framebuffer_create(struct drm_device *dev,
6494 struct drm_mode_fb_cmd2 *mode_cmd,
6495 struct drm_i915_gem_object *obj)
6497 struct intel_framebuffer *intel_fb;
6498 int ret;
6500 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6501 if (!intel_fb) {
6502 drm_gem_object_unreference_unlocked(&obj->base);
6503 return ERR_PTR(-ENOMEM);
6506 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6507 if (ret) {
6508 drm_gem_object_unreference_unlocked(&obj->base);
6509 kfree(intel_fb);
6510 return ERR_PTR(ret);
6513 return &intel_fb->base;
6516 static u32
6517 intel_framebuffer_pitch_for_width(int width, int bpp)
6519 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6520 return ALIGN(pitch, 64);
6523 static u32
6524 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6526 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6527 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6530 static struct drm_framebuffer *
6531 intel_framebuffer_create_for_mode(struct drm_device *dev,
6532 struct drm_display_mode *mode,
6533 int depth, int bpp)
6535 struct drm_i915_gem_object *obj;
6536 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6538 obj = i915_gem_alloc_object(dev,
6539 intel_framebuffer_size_for_mode(mode, bpp));
6540 if (obj == NULL)
6541 return ERR_PTR(-ENOMEM);
6543 mode_cmd.width = mode->hdisplay;
6544 mode_cmd.height = mode->vdisplay;
6545 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6546 bpp);
6547 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6549 return intel_framebuffer_create(dev, &mode_cmd, obj);
6552 static struct drm_framebuffer *
6553 mode_fits_in_fbdev(struct drm_device *dev,
6554 struct drm_display_mode *mode)
6556 struct drm_i915_private *dev_priv = dev->dev_private;
6557 struct drm_i915_gem_object *obj;
6558 struct drm_framebuffer *fb;
6560 if (dev_priv->fbdev == NULL)
6561 return NULL;
6563 obj = dev_priv->fbdev->ifb.obj;
6564 if (obj == NULL)
6565 return NULL;
6567 fb = &dev_priv->fbdev->ifb.base;
6568 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6569 fb->bits_per_pixel))
6570 return NULL;
6572 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6573 return NULL;
6575 return fb;
6578 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6579 struct drm_display_mode *mode,
6580 struct intel_load_detect_pipe *old)
6582 struct intel_crtc *intel_crtc;
6583 struct intel_encoder *intel_encoder =
6584 intel_attached_encoder(connector);
6585 struct drm_crtc *possible_crtc;
6586 struct drm_encoder *encoder = &intel_encoder->base;
6587 struct drm_crtc *crtc = NULL;
6588 struct drm_device *dev = encoder->dev;
6589 struct drm_framebuffer *fb;
6590 int i = -1;
6592 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6593 connector->base.id, drm_get_connector_name(connector),
6594 encoder->base.id, drm_get_encoder_name(encoder));
6597 * Algorithm gets a little messy:
6599 * - if the connector already has an assigned crtc, use it (but make
6600 * sure it's on first)
6602 * - try to find the first unused crtc that can drive this connector,
6603 * and use that if we find one
6606 /* See if we already have a CRTC for this connector */
6607 if (encoder->crtc) {
6608 crtc = encoder->crtc;
6610 mutex_lock(&crtc->mutex);
6612 old->dpms_mode = connector->dpms;
6613 old->load_detect_temp = false;
6615 /* Make sure the crtc and connector are running */
6616 if (connector->dpms != DRM_MODE_DPMS_ON)
6617 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6619 return true;
6622 /* Find an unused one (if possible) */
6623 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6624 i++;
6625 if (!(encoder->possible_crtcs & (1 << i)))
6626 continue;
6627 if (!possible_crtc->enabled) {
6628 crtc = possible_crtc;
6629 break;
6634 * If we didn't find an unused CRTC, don't use any.
6636 if (!crtc) {
6637 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6638 return false;
6641 mutex_lock(&crtc->mutex);
6642 intel_encoder->new_crtc = to_intel_crtc(crtc);
6643 to_intel_connector(connector)->new_encoder = intel_encoder;
6645 intel_crtc = to_intel_crtc(crtc);
6646 old->dpms_mode = connector->dpms;
6647 old->load_detect_temp = true;
6648 old->release_fb = NULL;
6650 if (!mode)
6651 mode = &load_detect_mode;
6653 /* We need a framebuffer large enough to accommodate all accesses
6654 * that the plane may generate whilst we perform load detection.
6655 * We can not rely on the fbcon either being present (we get called
6656 * during its initialisation to detect all boot displays, or it may
6657 * not even exist) or that it is large enough to satisfy the
6658 * requested mode.
6660 fb = mode_fits_in_fbdev(dev, mode);
6661 if (fb == NULL) {
6662 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6663 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6664 old->release_fb = fb;
6665 } else
6666 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6667 if (IS_ERR(fb)) {
6668 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6669 mutex_unlock(&crtc->mutex);
6670 return false;
6673 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6674 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6675 if (old->release_fb)
6676 old->release_fb->funcs->destroy(old->release_fb);
6677 mutex_unlock(&crtc->mutex);
6678 return false;
6681 /* let the connector get through one full cycle before testing */
6682 intel_wait_for_vblank(dev, intel_crtc->pipe);
6683 return true;
6686 void intel_release_load_detect_pipe(struct drm_connector *connector,
6687 struct intel_load_detect_pipe *old)
6689 struct intel_encoder *intel_encoder =
6690 intel_attached_encoder(connector);
6691 struct drm_encoder *encoder = &intel_encoder->base;
6692 struct drm_crtc *crtc = encoder->crtc;
6694 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6695 connector->base.id, drm_get_connector_name(connector),
6696 encoder->base.id, drm_get_encoder_name(encoder));
6698 if (old->load_detect_temp) {
6699 to_intel_connector(connector)->new_encoder = NULL;
6700 intel_encoder->new_crtc = NULL;
6701 intel_set_mode(crtc, NULL, 0, 0, NULL);
6703 if (old->release_fb) {
6704 drm_framebuffer_unregister_private(old->release_fb);
6705 drm_framebuffer_unreference(old->release_fb);
6708 mutex_unlock(&crtc->mutex);
6709 return;
6712 /* Switch crtc and encoder back off if necessary */
6713 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6714 connector->funcs->dpms(connector, old->dpms_mode);
6716 mutex_unlock(&crtc->mutex);
6719 /* Returns the clock of the currently programmed mode of the given pipe. */
6720 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6722 struct drm_i915_private *dev_priv = dev->dev_private;
6723 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6724 int pipe = intel_crtc->pipe;
6725 u32 dpll = I915_READ(DPLL(pipe));
6726 u32 fp;
6727 intel_clock_t clock;
6729 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6730 fp = I915_READ(FP0(pipe));
6731 else
6732 fp = I915_READ(FP1(pipe));
6734 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6735 if (IS_PINEVIEW(dev)) {
6736 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6737 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6738 } else {
6739 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6740 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6743 if (!IS_GEN2(dev)) {
6744 if (IS_PINEVIEW(dev))
6745 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6746 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6747 else
6748 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6749 DPLL_FPA01_P1_POST_DIV_SHIFT);
6751 switch (dpll & DPLL_MODE_MASK) {
6752 case DPLLB_MODE_DAC_SERIAL:
6753 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6754 5 : 10;
6755 break;
6756 case DPLLB_MODE_LVDS:
6757 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6758 7 : 14;
6759 break;
6760 default:
6761 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6762 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6763 return 0;
6766 /* XXX: Handle the 100Mhz refclk */
6767 intel_clock(dev, 96000, &clock);
6768 } else {
6769 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6771 if (is_lvds) {
6772 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6773 DPLL_FPA01_P1_POST_DIV_SHIFT);
6774 clock.p2 = 14;
6776 if ((dpll & PLL_REF_INPUT_MASK) ==
6777 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6778 /* XXX: might not be 66MHz */
6779 intel_clock(dev, 66000, &clock);
6780 } else
6781 intel_clock(dev, 48000, &clock);
6782 } else {
6783 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6784 clock.p1 = 2;
6785 else {
6786 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6787 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6789 if (dpll & PLL_P2_DIVIDE_BY_4)
6790 clock.p2 = 4;
6791 else
6792 clock.p2 = 2;
6794 intel_clock(dev, 48000, &clock);
6798 /* XXX: It would be nice to validate the clocks, but we can't reuse
6799 * i830PllIsValid() because it relies on the xf86_config connector
6800 * configuration being accurate, which it isn't necessarily.
6803 return clock.dot;
6806 /** Returns the currently programmed mode of the given pipe. */
6807 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6808 struct drm_crtc *crtc)
6810 struct drm_i915_private *dev_priv = dev->dev_private;
6811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6812 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6813 struct drm_display_mode *mode;
6814 int htot = I915_READ(HTOTAL(cpu_transcoder));
6815 int hsync = I915_READ(HSYNC(cpu_transcoder));
6816 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6817 int vsync = I915_READ(VSYNC(cpu_transcoder));
6819 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6820 if (!mode)
6821 return NULL;
6823 mode->clock = intel_crtc_clock_get(dev, crtc);
6824 mode->hdisplay = (htot & 0xffff) + 1;
6825 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6826 mode->hsync_start = (hsync & 0xffff) + 1;
6827 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6828 mode->vdisplay = (vtot & 0xffff) + 1;
6829 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6830 mode->vsync_start = (vsync & 0xffff) + 1;
6831 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6833 drm_mode_set_name(mode);
6835 return mode;
6838 static void intel_increase_pllclock(struct drm_crtc *crtc)
6840 struct drm_device *dev = crtc->dev;
6841 drm_i915_private_t *dev_priv = dev->dev_private;
6842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6843 int pipe = intel_crtc->pipe;
6844 int dpll_reg = DPLL(pipe);
6845 int dpll;
6847 if (HAS_PCH_SPLIT(dev))
6848 return;
6850 if (!dev_priv->lvds_downclock_avail)
6851 return;
6853 dpll = I915_READ(dpll_reg);
6854 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6855 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6857 assert_panel_unlocked(dev_priv, pipe);
6859 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6860 I915_WRITE(dpll_reg, dpll);
6861 intel_wait_for_vblank(dev, pipe);
6863 dpll = I915_READ(dpll_reg);
6864 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6865 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6869 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6871 struct drm_device *dev = crtc->dev;
6872 drm_i915_private_t *dev_priv = dev->dev_private;
6873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6875 if (HAS_PCH_SPLIT(dev))
6876 return;
6878 if (!dev_priv->lvds_downclock_avail)
6879 return;
6882 * Since this is called by a timer, we should never get here in
6883 * the manual case.
6885 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6886 int pipe = intel_crtc->pipe;
6887 int dpll_reg = DPLL(pipe);
6888 int dpll;
6890 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6892 assert_panel_unlocked(dev_priv, pipe);
6894 dpll = I915_READ(dpll_reg);
6895 dpll |= DISPLAY_RATE_SELECT_FPA1;
6896 I915_WRITE(dpll_reg, dpll);
6897 intel_wait_for_vblank(dev, pipe);
6898 dpll = I915_READ(dpll_reg);
6899 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6900 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6905 void intel_mark_busy(struct drm_device *dev)
6907 i915_update_gfx_val(dev->dev_private);
6910 void intel_mark_idle(struct drm_device *dev)
6912 struct drm_crtc *crtc;
6914 if (!i915_powersave)
6915 return;
6917 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6918 if (!crtc->fb)
6919 continue;
6921 intel_decrease_pllclock(crtc);
6925 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6927 struct drm_device *dev = obj->base.dev;
6928 struct drm_crtc *crtc;
6930 if (!i915_powersave)
6931 return;
6933 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6934 if (!crtc->fb)
6935 continue;
6937 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6938 intel_increase_pllclock(crtc);
6942 static void intel_crtc_destroy(struct drm_crtc *crtc)
6944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6945 struct drm_device *dev = crtc->dev;
6946 struct intel_unpin_work *work;
6947 unsigned long flags;
6949 spin_lock_irqsave(&dev->event_lock, flags);
6950 work = intel_crtc->unpin_work;
6951 intel_crtc->unpin_work = NULL;
6952 spin_unlock_irqrestore(&dev->event_lock, flags);
6954 if (work) {
6955 cancel_work_sync(&work->work);
6956 kfree(work);
6959 drm_crtc_cleanup(crtc);
6961 kfree(intel_crtc);
6964 static void intel_unpin_work_fn(struct work_struct *__work)
6966 struct intel_unpin_work *work =
6967 container_of(__work, struct intel_unpin_work, work);
6968 struct drm_device *dev = work->crtc->dev;
6970 mutex_lock(&dev->struct_mutex);
6971 intel_unpin_fb_obj(work->old_fb_obj);
6972 drm_gem_object_unreference(&work->pending_flip_obj->base);
6973 drm_gem_object_unreference(&work->old_fb_obj->base);
6975 intel_update_fbc(dev);
6976 mutex_unlock(&dev->struct_mutex);
6978 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6979 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6981 kfree(work);
6984 static void do_intel_finish_page_flip(struct drm_device *dev,
6985 struct drm_crtc *crtc)
6987 drm_i915_private_t *dev_priv = dev->dev_private;
6988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6989 struct intel_unpin_work *work;
6990 unsigned long flags;
6992 /* Ignore early vblank irqs */
6993 if (intel_crtc == NULL)
6994 return;
6996 spin_lock_irqsave(&dev->event_lock, flags);
6997 work = intel_crtc->unpin_work;
6999 /* Ensure we don't miss a work->pending update ... */
7000 smp_rmb();
7002 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7003 spin_unlock_irqrestore(&dev->event_lock, flags);
7004 return;
7007 /* and that the unpin work is consistent wrt ->pending. */
7008 smp_rmb();
7010 intel_crtc->unpin_work = NULL;
7012 if (work->event)
7013 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7015 drm_vblank_put(dev, intel_crtc->pipe);
7017 spin_unlock_irqrestore(&dev->event_lock, flags);
7019 wake_up_all(&dev_priv->pending_flip_queue);
7021 queue_work(dev_priv->wq, &work->work);
7023 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7026 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7028 drm_i915_private_t *dev_priv = dev->dev_private;
7029 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7031 do_intel_finish_page_flip(dev, crtc);
7034 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7036 drm_i915_private_t *dev_priv = dev->dev_private;
7037 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7039 do_intel_finish_page_flip(dev, crtc);
7042 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7044 drm_i915_private_t *dev_priv = dev->dev_private;
7045 struct intel_crtc *intel_crtc =
7046 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7047 unsigned long flags;
7049 /* NB: An MMIO update of the plane base pointer will also
7050 * generate a page-flip completion irq, i.e. every modeset
7051 * is also accompanied by a spurious intel_prepare_page_flip().
7053 spin_lock_irqsave(&dev->event_lock, flags);
7054 if (intel_crtc->unpin_work)
7055 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7056 spin_unlock_irqrestore(&dev->event_lock, flags);
7059 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7061 /* Ensure that the work item is consistent when activating it ... */
7062 smp_wmb();
7063 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7064 /* and that it is marked active as soon as the irq could fire. */
7065 smp_wmb();
7068 static int intel_gen2_queue_flip(struct drm_device *dev,
7069 struct drm_crtc *crtc,
7070 struct drm_framebuffer *fb,
7071 struct drm_i915_gem_object *obj)
7073 struct drm_i915_private *dev_priv = dev->dev_private;
7074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7075 u32 flip_mask;
7076 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7077 int ret;
7079 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7080 if (ret)
7081 goto err;
7083 ret = intel_ring_begin(ring, 6);
7084 if (ret)
7085 goto err_unpin;
7087 /* Can't queue multiple flips, so wait for the previous
7088 * one to finish before executing the next.
7090 if (intel_crtc->plane)
7091 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7092 else
7093 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7094 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7095 intel_ring_emit(ring, MI_NOOP);
7096 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7097 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7098 intel_ring_emit(ring, fb->pitches[0]);
7099 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7100 intel_ring_emit(ring, 0); /* aux display base address, unused */
7102 intel_mark_page_flip_active(intel_crtc);
7103 intel_ring_advance(ring);
7104 return 0;
7106 err_unpin:
7107 intel_unpin_fb_obj(obj);
7108 err:
7109 return ret;
7112 static int intel_gen3_queue_flip(struct drm_device *dev,
7113 struct drm_crtc *crtc,
7114 struct drm_framebuffer *fb,
7115 struct drm_i915_gem_object *obj)
7117 struct drm_i915_private *dev_priv = dev->dev_private;
7118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7119 u32 flip_mask;
7120 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7121 int ret;
7123 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7124 if (ret)
7125 goto err;
7127 ret = intel_ring_begin(ring, 6);
7128 if (ret)
7129 goto err_unpin;
7131 if (intel_crtc->plane)
7132 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7133 else
7134 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7135 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7136 intel_ring_emit(ring, MI_NOOP);
7137 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7138 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7139 intel_ring_emit(ring, fb->pitches[0]);
7140 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7141 intel_ring_emit(ring, MI_NOOP);
7143 intel_mark_page_flip_active(intel_crtc);
7144 intel_ring_advance(ring);
7145 return 0;
7147 err_unpin:
7148 intel_unpin_fb_obj(obj);
7149 err:
7150 return ret;
7153 static int intel_gen4_queue_flip(struct drm_device *dev,
7154 struct drm_crtc *crtc,
7155 struct drm_framebuffer *fb,
7156 struct drm_i915_gem_object *obj)
7158 struct drm_i915_private *dev_priv = dev->dev_private;
7159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7160 uint32_t pf, pipesrc;
7161 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7162 int ret;
7164 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7165 if (ret)
7166 goto err;
7168 ret = intel_ring_begin(ring, 4);
7169 if (ret)
7170 goto err_unpin;
7172 /* i965+ uses the linear or tiled offsets from the
7173 * Display Registers (which do not change across a page-flip)
7174 * so we need only reprogram the base address.
7176 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7177 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7178 intel_ring_emit(ring, fb->pitches[0]);
7179 intel_ring_emit(ring,
7180 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7181 obj->tiling_mode);
7183 /* XXX Enabling the panel-fitter across page-flip is so far
7184 * untested on non-native modes, so ignore it for now.
7185 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7187 pf = 0;
7188 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7189 intel_ring_emit(ring, pf | pipesrc);
7191 intel_mark_page_flip_active(intel_crtc);
7192 intel_ring_advance(ring);
7193 return 0;
7195 err_unpin:
7196 intel_unpin_fb_obj(obj);
7197 err:
7198 return ret;
7201 static int intel_gen6_queue_flip(struct drm_device *dev,
7202 struct drm_crtc *crtc,
7203 struct drm_framebuffer *fb,
7204 struct drm_i915_gem_object *obj)
7206 struct drm_i915_private *dev_priv = dev->dev_private;
7207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7208 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7209 uint32_t pf, pipesrc;
7210 int ret;
7212 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7213 if (ret)
7214 goto err;
7216 ret = intel_ring_begin(ring, 4);
7217 if (ret)
7218 goto err_unpin;
7220 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7221 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7222 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7223 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7225 /* Contrary to the suggestions in the documentation,
7226 * "Enable Panel Fitter" does not seem to be required when page
7227 * flipping with a non-native mode, and worse causes a normal
7228 * modeset to fail.
7229 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7231 pf = 0;
7232 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7233 intel_ring_emit(ring, pf | pipesrc);
7235 intel_mark_page_flip_active(intel_crtc);
7236 intel_ring_advance(ring);
7237 return 0;
7239 err_unpin:
7240 intel_unpin_fb_obj(obj);
7241 err:
7242 return ret;
7246 * On gen7 we currently use the blit ring because (in early silicon at least)
7247 * the render ring doesn't give us interrpts for page flip completion, which
7248 * means clients will hang after the first flip is queued. Fortunately the
7249 * blit ring generates interrupts properly, so use it instead.
7251 static int intel_gen7_queue_flip(struct drm_device *dev,
7252 struct drm_crtc *crtc,
7253 struct drm_framebuffer *fb,
7254 struct drm_i915_gem_object *obj)
7256 struct drm_i915_private *dev_priv = dev->dev_private;
7257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7258 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7259 uint32_t plane_bit = 0;
7260 int ret;
7262 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7263 if (ret)
7264 goto err;
7266 switch(intel_crtc->plane) {
7267 case PLANE_A:
7268 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7269 break;
7270 case PLANE_B:
7271 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7272 break;
7273 case PLANE_C:
7274 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7275 break;
7276 default:
7277 WARN_ONCE(1, "unknown plane in flip command\n");
7278 ret = -ENODEV;
7279 goto err_unpin;
7282 ret = intel_ring_begin(ring, 4);
7283 if (ret)
7284 goto err_unpin;
7286 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7287 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7288 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7289 intel_ring_emit(ring, (MI_NOOP));
7291 intel_mark_page_flip_active(intel_crtc);
7292 intel_ring_advance(ring);
7293 return 0;
7295 err_unpin:
7296 intel_unpin_fb_obj(obj);
7297 err:
7298 return ret;
7301 static int intel_default_queue_flip(struct drm_device *dev,
7302 struct drm_crtc *crtc,
7303 struct drm_framebuffer *fb,
7304 struct drm_i915_gem_object *obj)
7306 return -ENODEV;
7309 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7310 struct drm_framebuffer *fb,
7311 struct drm_pending_vblank_event *event)
7313 struct drm_device *dev = crtc->dev;
7314 struct drm_i915_private *dev_priv = dev->dev_private;
7315 struct drm_framebuffer *old_fb = crtc->fb;
7316 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7317 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7318 struct intel_unpin_work *work;
7319 unsigned long flags;
7320 int ret;
7322 /* Can't change pixel format via MI display flips. */
7323 if (fb->pixel_format != crtc->fb->pixel_format)
7324 return -EINVAL;
7327 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7328 * Note that pitch changes could also affect these register.
7330 if (INTEL_INFO(dev)->gen > 3 &&
7331 (fb->offsets[0] != crtc->fb->offsets[0] ||
7332 fb->pitches[0] != crtc->fb->pitches[0]))
7333 return -EINVAL;
7335 work = kzalloc(sizeof *work, GFP_KERNEL);
7336 if (work == NULL)
7337 return -ENOMEM;
7339 work->event = event;
7340 work->crtc = crtc;
7341 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7342 INIT_WORK(&work->work, intel_unpin_work_fn);
7344 ret = drm_vblank_get(dev, intel_crtc->pipe);
7345 if (ret)
7346 goto free_work;
7348 /* We borrow the event spin lock for protecting unpin_work */
7349 spin_lock_irqsave(&dev->event_lock, flags);
7350 if (intel_crtc->unpin_work) {
7351 spin_unlock_irqrestore(&dev->event_lock, flags);
7352 kfree(work);
7353 drm_vblank_put(dev, intel_crtc->pipe);
7355 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7356 return -EBUSY;
7358 intel_crtc->unpin_work = work;
7359 spin_unlock_irqrestore(&dev->event_lock, flags);
7361 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7362 flush_workqueue(dev_priv->wq);
7364 ret = i915_mutex_lock_interruptible(dev);
7365 if (ret)
7366 goto cleanup;
7368 /* Reference the objects for the scheduled work. */
7369 drm_gem_object_reference(&work->old_fb_obj->base);
7370 drm_gem_object_reference(&obj->base);
7372 crtc->fb = fb;
7374 work->pending_flip_obj = obj;
7376 work->enable_stall_check = true;
7378 atomic_inc(&intel_crtc->unpin_work_count);
7379 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7381 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7382 if (ret)
7383 goto cleanup_pending;
7385 intel_disable_fbc(dev);
7386 intel_mark_fb_busy(obj);
7387 mutex_unlock(&dev->struct_mutex);
7389 trace_i915_flip_request(intel_crtc->plane, obj);
7391 return 0;
7393 cleanup_pending:
7394 atomic_dec(&intel_crtc->unpin_work_count);
7395 crtc->fb = old_fb;
7396 drm_gem_object_unreference(&work->old_fb_obj->base);
7397 drm_gem_object_unreference(&obj->base);
7398 mutex_unlock(&dev->struct_mutex);
7400 cleanup:
7401 spin_lock_irqsave(&dev->event_lock, flags);
7402 intel_crtc->unpin_work = NULL;
7403 spin_unlock_irqrestore(&dev->event_lock, flags);
7405 drm_vblank_put(dev, intel_crtc->pipe);
7406 free_work:
7407 kfree(work);
7409 return ret;
7412 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7413 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7414 .load_lut = intel_crtc_load_lut,
7417 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7419 struct intel_encoder *other_encoder;
7420 struct drm_crtc *crtc = &encoder->new_crtc->base;
7422 if (WARN_ON(!crtc))
7423 return false;
7425 list_for_each_entry(other_encoder,
7426 &crtc->dev->mode_config.encoder_list,
7427 base.head) {
7429 if (&other_encoder->new_crtc->base != crtc ||
7430 encoder == other_encoder)
7431 continue;
7432 else
7433 return true;
7436 return false;
7439 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7440 struct drm_crtc *crtc)
7442 struct drm_device *dev;
7443 struct drm_crtc *tmp;
7444 int crtc_mask = 1;
7446 WARN(!crtc, "checking null crtc?\n");
7448 dev = crtc->dev;
7450 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7451 if (tmp == crtc)
7452 break;
7453 crtc_mask <<= 1;
7456 if (encoder->possible_crtcs & crtc_mask)
7457 return true;
7458 return false;
7462 * intel_modeset_update_staged_output_state
7464 * Updates the staged output configuration state, e.g. after we've read out the
7465 * current hw state.
7467 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7469 struct intel_encoder *encoder;
7470 struct intel_connector *connector;
7472 list_for_each_entry(connector, &dev->mode_config.connector_list,
7473 base.head) {
7474 connector->new_encoder =
7475 to_intel_encoder(connector->base.encoder);
7478 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7479 base.head) {
7480 encoder->new_crtc =
7481 to_intel_crtc(encoder->base.crtc);
7486 * intel_modeset_commit_output_state
7488 * This function copies the stage display pipe configuration to the real one.
7490 static void intel_modeset_commit_output_state(struct drm_device *dev)
7492 struct intel_encoder *encoder;
7493 struct intel_connector *connector;
7495 list_for_each_entry(connector, &dev->mode_config.connector_list,
7496 base.head) {
7497 connector->base.encoder = &connector->new_encoder->base;
7500 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7501 base.head) {
7502 encoder->base.crtc = &encoder->new_crtc->base;
7506 static int
7507 pipe_config_set_bpp(struct drm_crtc *crtc,
7508 struct drm_framebuffer *fb,
7509 struct intel_crtc_config *pipe_config)
7511 struct drm_device *dev = crtc->dev;
7512 struct drm_connector *connector;
7513 int bpp;
7515 switch (fb->pixel_format) {
7516 case DRM_FORMAT_C8:
7517 bpp = 8*3; /* since we go through a colormap */
7518 break;
7519 case DRM_FORMAT_XRGB1555:
7520 case DRM_FORMAT_ARGB1555:
7521 /* checked in intel_framebuffer_init already */
7522 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7523 return -EINVAL;
7524 case DRM_FORMAT_RGB565:
7525 bpp = 6*3; /* min is 18bpp */
7526 break;
7527 case DRM_FORMAT_XBGR8888:
7528 case DRM_FORMAT_ABGR8888:
7529 /* checked in intel_framebuffer_init already */
7530 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7531 return -EINVAL;
7532 case DRM_FORMAT_XRGB8888:
7533 case DRM_FORMAT_ARGB8888:
7534 bpp = 8*3;
7535 break;
7536 case DRM_FORMAT_XRGB2101010:
7537 case DRM_FORMAT_ARGB2101010:
7538 case DRM_FORMAT_XBGR2101010:
7539 case DRM_FORMAT_ABGR2101010:
7540 /* checked in intel_framebuffer_init already */
7541 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7542 return -EINVAL;
7543 bpp = 10*3;
7544 break;
7545 /* TODO: gen4+ supports 16 bpc floating point, too. */
7546 default:
7547 DRM_DEBUG_KMS("unsupported depth\n");
7548 return -EINVAL;
7551 pipe_config->pipe_bpp = bpp;
7553 /* Clamp display bpp to EDID value */
7554 list_for_each_entry(connector, &dev->mode_config.connector_list,
7555 head) {
7556 if (connector->encoder && connector->encoder->crtc != crtc)
7557 continue;
7559 /* Don't use an invalid EDID bpc value */
7560 if (connector->display_info.bpc &&
7561 connector->display_info.bpc * 3 < bpp) {
7562 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7563 bpp, connector->display_info.bpc*3);
7564 pipe_config->pipe_bpp = connector->display_info.bpc*3;
7568 return bpp;
7571 static struct intel_crtc_config *
7572 intel_modeset_pipe_config(struct drm_crtc *crtc,
7573 struct drm_framebuffer *fb,
7574 struct drm_display_mode *mode)
7576 struct drm_device *dev = crtc->dev;
7577 struct drm_encoder_helper_funcs *encoder_funcs;
7578 struct intel_encoder *encoder;
7579 struct intel_crtc_config *pipe_config;
7580 int plane_bpp;
7582 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7583 if (!pipe_config)
7584 return ERR_PTR(-ENOMEM);
7586 drm_mode_copy(&pipe_config->adjusted_mode, mode);
7587 drm_mode_copy(&pipe_config->requested_mode, mode);
7589 plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7590 if (plane_bpp < 0)
7591 goto fail;
7593 /* Pass our mode to the connectors and the CRTC to give them a chance to
7594 * adjust it according to limitations or connector properties, and also
7595 * a chance to reject the mode entirely.
7597 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7598 base.head) {
7600 if (&encoder->new_crtc->base != crtc)
7601 continue;
7603 if (encoder->compute_config) {
7604 if (!(encoder->compute_config(encoder, pipe_config))) {
7605 DRM_DEBUG_KMS("Encoder config failure\n");
7606 goto fail;
7609 continue;
7612 encoder_funcs = encoder->base.helper_private;
7613 if (!(encoder_funcs->mode_fixup(&encoder->base,
7614 &pipe_config->requested_mode,
7615 &pipe_config->adjusted_mode))) {
7616 DRM_DEBUG_KMS("Encoder fixup failed\n");
7617 goto fail;
7621 if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7622 DRM_DEBUG_KMS("CRTC fixup failed\n");
7623 goto fail;
7625 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7627 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7628 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7629 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7631 return pipe_config;
7632 fail:
7633 kfree(pipe_config);
7634 return ERR_PTR(-EINVAL);
7637 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7638 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7639 static void
7640 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7641 unsigned *prepare_pipes, unsigned *disable_pipes)
7643 struct intel_crtc *intel_crtc;
7644 struct drm_device *dev = crtc->dev;
7645 struct intel_encoder *encoder;
7646 struct intel_connector *connector;
7647 struct drm_crtc *tmp_crtc;
7649 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7651 /* Check which crtcs have changed outputs connected to them, these need
7652 * to be part of the prepare_pipes mask. We don't (yet) support global
7653 * modeset across multiple crtcs, so modeset_pipes will only have one
7654 * bit set at most. */
7655 list_for_each_entry(connector, &dev->mode_config.connector_list,
7656 base.head) {
7657 if (connector->base.encoder == &connector->new_encoder->base)
7658 continue;
7660 if (connector->base.encoder) {
7661 tmp_crtc = connector->base.encoder->crtc;
7663 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7666 if (connector->new_encoder)
7667 *prepare_pipes |=
7668 1 << connector->new_encoder->new_crtc->pipe;
7671 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7672 base.head) {
7673 if (encoder->base.crtc == &encoder->new_crtc->base)
7674 continue;
7676 if (encoder->base.crtc) {
7677 tmp_crtc = encoder->base.crtc;
7679 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7682 if (encoder->new_crtc)
7683 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7686 /* Check for any pipes that will be fully disabled ... */
7687 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7688 base.head) {
7689 bool used = false;
7691 /* Don't try to disable disabled crtcs. */
7692 if (!intel_crtc->base.enabled)
7693 continue;
7695 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7696 base.head) {
7697 if (encoder->new_crtc == intel_crtc)
7698 used = true;
7701 if (!used)
7702 *disable_pipes |= 1 << intel_crtc->pipe;
7706 /* set_mode is also used to update properties on life display pipes. */
7707 intel_crtc = to_intel_crtc(crtc);
7708 if (crtc->enabled)
7709 *prepare_pipes |= 1 << intel_crtc->pipe;
7711 /* We only support modeset on one single crtc, hence we need to do that
7712 * only for the passed in crtc iff we change anything else than just
7713 * disable crtcs.
7715 * This is actually not true, to be fully compatible with the old crtc
7716 * helper we automatically disable _any_ output (i.e. doesn't need to be
7717 * connected to the crtc we're modesetting on) if it's disconnected.
7718 * Which is a rather nutty api (since changed the output configuration
7719 * without userspace's explicit request can lead to confusion), but
7720 * alas. Hence we currently need to modeset on all pipes we prepare. */
7721 if (*prepare_pipes)
7722 *modeset_pipes = *prepare_pipes;
7724 /* ... and mask these out. */
7725 *modeset_pipes &= ~(*disable_pipes);
7726 *prepare_pipes &= ~(*disable_pipes);
7729 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7731 struct drm_encoder *encoder;
7732 struct drm_device *dev = crtc->dev;
7734 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7735 if (encoder->crtc == crtc)
7736 return true;
7738 return false;
7741 static void
7742 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7744 struct intel_encoder *intel_encoder;
7745 struct intel_crtc *intel_crtc;
7746 struct drm_connector *connector;
7748 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7749 base.head) {
7750 if (!intel_encoder->base.crtc)
7751 continue;
7753 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7755 if (prepare_pipes & (1 << intel_crtc->pipe))
7756 intel_encoder->connectors_active = false;
7759 intel_modeset_commit_output_state(dev);
7761 /* Update computed state. */
7762 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7763 base.head) {
7764 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7767 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7768 if (!connector->encoder || !connector->encoder->crtc)
7769 continue;
7771 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7773 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7774 struct drm_property *dpms_property =
7775 dev->mode_config.dpms_property;
7777 connector->dpms = DRM_MODE_DPMS_ON;
7778 drm_object_property_set_value(&connector->base,
7779 dpms_property,
7780 DRM_MODE_DPMS_ON);
7782 intel_encoder = to_intel_encoder(connector->encoder);
7783 intel_encoder->connectors_active = true;
7789 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7790 list_for_each_entry((intel_crtc), \
7791 &(dev)->mode_config.crtc_list, \
7792 base.head) \
7793 if (mask & (1 <<(intel_crtc)->pipe)) \
7795 static bool
7796 intel_pipe_config_compare(struct intel_crtc_config *current_config,
7797 struct intel_crtc_config *pipe_config)
7799 if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
7800 DRM_ERROR("mismatch in has_pch_encoder "
7801 "(expected %i, found %i)\n",
7802 current_config->has_pch_encoder,
7803 pipe_config->has_pch_encoder);
7804 return false;
7807 return true;
7810 void
7811 intel_modeset_check_state(struct drm_device *dev)
7813 drm_i915_private_t *dev_priv = dev->dev_private;
7814 struct intel_crtc *crtc;
7815 struct intel_encoder *encoder;
7816 struct intel_connector *connector;
7817 struct intel_crtc_config pipe_config;
7819 list_for_each_entry(connector, &dev->mode_config.connector_list,
7820 base.head) {
7821 /* This also checks the encoder/connector hw state with the
7822 * ->get_hw_state callbacks. */
7823 intel_connector_check_state(connector);
7825 WARN(&connector->new_encoder->base != connector->base.encoder,
7826 "connector's staged encoder doesn't match current encoder\n");
7829 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7830 base.head) {
7831 bool enabled = false;
7832 bool active = false;
7833 enum pipe pipe, tracked_pipe;
7835 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7836 encoder->base.base.id,
7837 drm_get_encoder_name(&encoder->base));
7839 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7840 "encoder's stage crtc doesn't match current crtc\n");
7841 WARN(encoder->connectors_active && !encoder->base.crtc,
7842 "encoder's active_connectors set, but no crtc\n");
7844 list_for_each_entry(connector, &dev->mode_config.connector_list,
7845 base.head) {
7846 if (connector->base.encoder != &encoder->base)
7847 continue;
7848 enabled = true;
7849 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7850 active = true;
7852 WARN(!!encoder->base.crtc != enabled,
7853 "encoder's enabled state mismatch "
7854 "(expected %i, found %i)\n",
7855 !!encoder->base.crtc, enabled);
7856 WARN(active && !encoder->base.crtc,
7857 "active encoder with no crtc\n");
7859 WARN(encoder->connectors_active != active,
7860 "encoder's computed active state doesn't match tracked active state "
7861 "(expected %i, found %i)\n", active, encoder->connectors_active);
7863 active = encoder->get_hw_state(encoder, &pipe);
7864 WARN(active != encoder->connectors_active,
7865 "encoder's hw state doesn't match sw tracking "
7866 "(expected %i, found %i)\n",
7867 encoder->connectors_active, active);
7869 if (!encoder->base.crtc)
7870 continue;
7872 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7873 WARN(active && pipe != tracked_pipe,
7874 "active encoder's pipe doesn't match"
7875 "(expected %i, found %i)\n",
7876 tracked_pipe, pipe);
7880 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7881 base.head) {
7882 bool enabled = false;
7883 bool active = false;
7885 DRM_DEBUG_KMS("[CRTC:%d]\n",
7886 crtc->base.base.id);
7888 WARN(crtc->active && !crtc->base.enabled,
7889 "active crtc, but not enabled in sw tracking\n");
7891 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7892 base.head) {
7893 if (encoder->base.crtc != &crtc->base)
7894 continue;
7895 enabled = true;
7896 if (encoder->connectors_active)
7897 active = true;
7899 WARN(active != crtc->active,
7900 "crtc's computed active state doesn't match tracked active state "
7901 "(expected %i, found %i)\n", active, crtc->active);
7902 WARN(enabled != crtc->base.enabled,
7903 "crtc's computed enabled state doesn't match tracked enabled state "
7904 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7906 memset(&pipe_config, 0, sizeof(pipe_config));
7907 active = dev_priv->display.get_pipe_config(crtc,
7908 &pipe_config);
7909 WARN(crtc->active != active,
7910 "crtc active state doesn't match with hw state "
7911 "(expected %i, found %i)\n", crtc->active, active);
7913 WARN(active &&
7914 !intel_pipe_config_compare(&crtc->config, &pipe_config),
7915 "pipe state doesn't match!\n");
7919 int intel_set_mode(struct drm_crtc *crtc,
7920 struct drm_display_mode *mode,
7921 int x, int y, struct drm_framebuffer *fb)
7923 struct drm_device *dev = crtc->dev;
7924 drm_i915_private_t *dev_priv = dev->dev_private;
7925 struct drm_display_mode *saved_mode, *saved_hwmode;
7926 struct intel_crtc_config *pipe_config = NULL;
7927 struct intel_crtc *intel_crtc;
7928 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7929 int ret = 0;
7931 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7932 if (!saved_mode)
7933 return -ENOMEM;
7934 saved_hwmode = saved_mode + 1;
7936 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7937 &prepare_pipes, &disable_pipes);
7939 *saved_hwmode = crtc->hwmode;
7940 *saved_mode = crtc->mode;
7942 /* Hack: Because we don't (yet) support global modeset on multiple
7943 * crtcs, we don't keep track of the new mode for more than one crtc.
7944 * Hence simply check whether any bit is set in modeset_pipes in all the
7945 * pieces of code that are not yet converted to deal with mutliple crtcs
7946 * changing their mode at the same time. */
7947 if (modeset_pipes) {
7948 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
7949 if (IS_ERR(pipe_config)) {
7950 ret = PTR_ERR(pipe_config);
7951 pipe_config = NULL;
7953 goto out;
7957 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7958 modeset_pipes, prepare_pipes, disable_pipes);
7960 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7961 intel_crtc_disable(&intel_crtc->base);
7963 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7964 if (intel_crtc->base.enabled)
7965 dev_priv->display.crtc_disable(&intel_crtc->base);
7968 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7969 * to set it here already despite that we pass it down the callchain.
7971 if (modeset_pipes) {
7972 crtc->mode = *mode;
7973 /* mode_set/enable/disable functions rely on a correct pipe
7974 * config. */
7975 to_intel_crtc(crtc)->config = *pipe_config;
7978 /* Only after disabling all output pipelines that will be changed can we
7979 * update the the output configuration. */
7980 intel_modeset_update_state(dev, prepare_pipes);
7982 if (dev_priv->display.modeset_global_resources)
7983 dev_priv->display.modeset_global_resources(dev);
7985 /* Set up the DPLL and any encoders state that needs to adjust or depend
7986 * on the DPLL.
7988 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7989 ret = intel_crtc_mode_set(&intel_crtc->base,
7990 x, y, fb);
7991 if (ret)
7992 goto done;
7995 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7996 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7997 dev_priv->display.crtc_enable(&intel_crtc->base);
7999 if (modeset_pipes) {
8000 /* Store real post-adjustment hardware mode. */
8001 crtc->hwmode = pipe_config->adjusted_mode;
8003 /* Calculate and store various constants which
8004 * are later needed by vblank and swap-completion
8005 * timestamping. They are derived from true hwmode.
8007 drm_calc_timestamping_constants(crtc);
8010 /* FIXME: add subpixel order */
8011 done:
8012 if (ret && crtc->enabled) {
8013 crtc->hwmode = *saved_hwmode;
8014 crtc->mode = *saved_mode;
8015 } else {
8016 intel_modeset_check_state(dev);
8019 out:
8020 kfree(pipe_config);
8021 kfree(saved_mode);
8022 return ret;
8025 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8027 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8030 #undef for_each_intel_crtc_masked
8032 static void intel_set_config_free(struct intel_set_config *config)
8034 if (!config)
8035 return;
8037 kfree(config->save_connector_encoders);
8038 kfree(config->save_encoder_crtcs);
8039 kfree(config);
8042 static int intel_set_config_save_state(struct drm_device *dev,
8043 struct intel_set_config *config)
8045 struct drm_encoder *encoder;
8046 struct drm_connector *connector;
8047 int count;
8049 config->save_encoder_crtcs =
8050 kcalloc(dev->mode_config.num_encoder,
8051 sizeof(struct drm_crtc *), GFP_KERNEL);
8052 if (!config->save_encoder_crtcs)
8053 return -ENOMEM;
8055 config->save_connector_encoders =
8056 kcalloc(dev->mode_config.num_connector,
8057 sizeof(struct drm_encoder *), GFP_KERNEL);
8058 if (!config->save_connector_encoders)
8059 return -ENOMEM;
8061 /* Copy data. Note that driver private data is not affected.
8062 * Should anything bad happen only the expected state is
8063 * restored, not the drivers personal bookkeeping.
8065 count = 0;
8066 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8067 config->save_encoder_crtcs[count++] = encoder->crtc;
8070 count = 0;
8071 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8072 config->save_connector_encoders[count++] = connector->encoder;
8075 return 0;
8078 static void intel_set_config_restore_state(struct drm_device *dev,
8079 struct intel_set_config *config)
8081 struct intel_encoder *encoder;
8082 struct intel_connector *connector;
8083 int count;
8085 count = 0;
8086 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8087 encoder->new_crtc =
8088 to_intel_crtc(config->save_encoder_crtcs[count++]);
8091 count = 0;
8092 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8093 connector->new_encoder =
8094 to_intel_encoder(config->save_connector_encoders[count++]);
8098 static void
8099 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8100 struct intel_set_config *config)
8103 /* We should be able to check here if the fb has the same properties
8104 * and then just flip_or_move it */
8105 if (set->crtc->fb != set->fb) {
8106 /* If we have no fb then treat it as a full mode set */
8107 if (set->crtc->fb == NULL) {
8108 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8109 config->mode_changed = true;
8110 } else if (set->fb == NULL) {
8111 config->mode_changed = true;
8112 } else if (set->fb->pixel_format !=
8113 set->crtc->fb->pixel_format) {
8114 config->mode_changed = true;
8115 } else
8116 config->fb_changed = true;
8119 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8120 config->fb_changed = true;
8122 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8123 DRM_DEBUG_KMS("modes are different, full mode set\n");
8124 drm_mode_debug_printmodeline(&set->crtc->mode);
8125 drm_mode_debug_printmodeline(set->mode);
8126 config->mode_changed = true;
8130 static int
8131 intel_modeset_stage_output_state(struct drm_device *dev,
8132 struct drm_mode_set *set,
8133 struct intel_set_config *config)
8135 struct drm_crtc *new_crtc;
8136 struct intel_connector *connector;
8137 struct intel_encoder *encoder;
8138 int count, ro;
8140 /* The upper layers ensure that we either disable a crtc or have a list
8141 * of connectors. For paranoia, double-check this. */
8142 WARN_ON(!set->fb && (set->num_connectors != 0));
8143 WARN_ON(set->fb && (set->num_connectors == 0));
8145 count = 0;
8146 list_for_each_entry(connector, &dev->mode_config.connector_list,
8147 base.head) {
8148 /* Otherwise traverse passed in connector list and get encoders
8149 * for them. */
8150 for (ro = 0; ro < set->num_connectors; ro++) {
8151 if (set->connectors[ro] == &connector->base) {
8152 connector->new_encoder = connector->encoder;
8153 break;
8157 /* If we disable the crtc, disable all its connectors. Also, if
8158 * the connector is on the changing crtc but not on the new
8159 * connector list, disable it. */
8160 if ((!set->fb || ro == set->num_connectors) &&
8161 connector->base.encoder &&
8162 connector->base.encoder->crtc == set->crtc) {
8163 connector->new_encoder = NULL;
8165 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8166 connector->base.base.id,
8167 drm_get_connector_name(&connector->base));
8171 if (&connector->new_encoder->base != connector->base.encoder) {
8172 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8173 config->mode_changed = true;
8176 /* connector->new_encoder is now updated for all connectors. */
8178 /* Update crtc of enabled connectors. */
8179 count = 0;
8180 list_for_each_entry(connector, &dev->mode_config.connector_list,
8181 base.head) {
8182 if (!connector->new_encoder)
8183 continue;
8185 new_crtc = connector->new_encoder->base.crtc;
8187 for (ro = 0; ro < set->num_connectors; ro++) {
8188 if (set->connectors[ro] == &connector->base)
8189 new_crtc = set->crtc;
8192 /* Make sure the new CRTC will work with the encoder */
8193 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8194 new_crtc)) {
8195 return -EINVAL;
8197 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8199 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8200 connector->base.base.id,
8201 drm_get_connector_name(&connector->base),
8202 new_crtc->base.id);
8205 /* Check for any encoders that needs to be disabled. */
8206 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8207 base.head) {
8208 list_for_each_entry(connector,
8209 &dev->mode_config.connector_list,
8210 base.head) {
8211 if (connector->new_encoder == encoder) {
8212 WARN_ON(!connector->new_encoder->new_crtc);
8214 goto next_encoder;
8217 encoder->new_crtc = NULL;
8218 next_encoder:
8219 /* Only now check for crtc changes so we don't miss encoders
8220 * that will be disabled. */
8221 if (&encoder->new_crtc->base != encoder->base.crtc) {
8222 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8223 config->mode_changed = true;
8226 /* Now we've also updated encoder->new_crtc for all encoders. */
8228 return 0;
8231 static int intel_crtc_set_config(struct drm_mode_set *set)
8233 struct drm_device *dev;
8234 struct drm_mode_set save_set;
8235 struct intel_set_config *config;
8236 int ret;
8238 BUG_ON(!set);
8239 BUG_ON(!set->crtc);
8240 BUG_ON(!set->crtc->helper_private);
8242 /* Enforce sane interface api - has been abused by the fb helper. */
8243 BUG_ON(!set->mode && set->fb);
8244 BUG_ON(set->fb && set->num_connectors == 0);
8246 if (set->fb) {
8247 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8248 set->crtc->base.id, set->fb->base.id,
8249 (int)set->num_connectors, set->x, set->y);
8250 } else {
8251 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8254 dev = set->crtc->dev;
8256 ret = -ENOMEM;
8257 config = kzalloc(sizeof(*config), GFP_KERNEL);
8258 if (!config)
8259 goto out_config;
8261 ret = intel_set_config_save_state(dev, config);
8262 if (ret)
8263 goto out_config;
8265 save_set.crtc = set->crtc;
8266 save_set.mode = &set->crtc->mode;
8267 save_set.x = set->crtc->x;
8268 save_set.y = set->crtc->y;
8269 save_set.fb = set->crtc->fb;
8271 /* Compute whether we need a full modeset, only an fb base update or no
8272 * change at all. In the future we might also check whether only the
8273 * mode changed, e.g. for LVDS where we only change the panel fitter in
8274 * such cases. */
8275 intel_set_config_compute_mode_changes(set, config);
8277 ret = intel_modeset_stage_output_state(dev, set, config);
8278 if (ret)
8279 goto fail;
8281 if (config->mode_changed) {
8282 if (set->mode) {
8283 DRM_DEBUG_KMS("attempting to set mode from"
8284 " userspace\n");
8285 drm_mode_debug_printmodeline(set->mode);
8288 ret = intel_set_mode(set->crtc, set->mode,
8289 set->x, set->y, set->fb);
8290 if (ret) {
8291 DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8292 set->crtc->base.id, ret);
8293 goto fail;
8295 } else if (config->fb_changed) {
8296 intel_crtc_wait_for_pending_flips(set->crtc);
8298 ret = intel_pipe_set_base(set->crtc,
8299 set->x, set->y, set->fb);
8302 intel_set_config_free(config);
8304 return 0;
8306 fail:
8307 intel_set_config_restore_state(dev, config);
8309 /* Try to restore the config */
8310 if (config->mode_changed &&
8311 intel_set_mode(save_set.crtc, save_set.mode,
8312 save_set.x, save_set.y, save_set.fb))
8313 DRM_ERROR("failed to restore config after modeset failure\n");
8315 out_config:
8316 intel_set_config_free(config);
8317 return ret;
8320 static const struct drm_crtc_funcs intel_crtc_funcs = {
8321 .cursor_set = intel_crtc_cursor_set,
8322 .cursor_move = intel_crtc_cursor_move,
8323 .gamma_set = intel_crtc_gamma_set,
8324 .set_config = intel_crtc_set_config,
8325 .destroy = intel_crtc_destroy,
8326 .page_flip = intel_crtc_page_flip,
8329 static void intel_cpu_pll_init(struct drm_device *dev)
8331 if (HAS_DDI(dev))
8332 intel_ddi_pll_init(dev);
8335 static void intel_pch_pll_init(struct drm_device *dev)
8337 drm_i915_private_t *dev_priv = dev->dev_private;
8338 int i;
8340 if (dev_priv->num_pch_pll == 0) {
8341 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8342 return;
8345 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8346 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8347 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8348 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8352 static void intel_crtc_init(struct drm_device *dev, int pipe)
8354 drm_i915_private_t *dev_priv = dev->dev_private;
8355 struct intel_crtc *intel_crtc;
8356 int i;
8358 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8359 if (intel_crtc == NULL)
8360 return;
8362 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8364 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8365 for (i = 0; i < 256; i++) {
8366 intel_crtc->lut_r[i] = i;
8367 intel_crtc->lut_g[i] = i;
8368 intel_crtc->lut_b[i] = i;
8371 /* Swap pipes & planes for FBC on pre-965 */
8372 intel_crtc->pipe = pipe;
8373 intel_crtc->plane = pipe;
8374 intel_crtc->cpu_transcoder = pipe;
8375 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8376 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8377 intel_crtc->plane = !pipe;
8380 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8381 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8382 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8383 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8385 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8388 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8389 struct drm_file *file)
8391 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8392 struct drm_mode_object *drmmode_obj;
8393 struct intel_crtc *crtc;
8395 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8396 return -ENODEV;
8398 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8399 DRM_MODE_OBJECT_CRTC);
8401 if (!drmmode_obj) {
8402 DRM_ERROR("no such CRTC id\n");
8403 return -EINVAL;
8406 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8407 pipe_from_crtc_id->pipe = crtc->pipe;
8409 return 0;
8412 static int intel_encoder_clones(struct intel_encoder *encoder)
8414 struct drm_device *dev = encoder->base.dev;
8415 struct intel_encoder *source_encoder;
8416 int index_mask = 0;
8417 int entry = 0;
8419 list_for_each_entry(source_encoder,
8420 &dev->mode_config.encoder_list, base.head) {
8422 if (encoder == source_encoder)
8423 index_mask |= (1 << entry);
8425 /* Intel hw has only one MUX where enocoders could be cloned. */
8426 if (encoder->cloneable && source_encoder->cloneable)
8427 index_mask |= (1 << entry);
8429 entry++;
8432 return index_mask;
8435 static bool has_edp_a(struct drm_device *dev)
8437 struct drm_i915_private *dev_priv = dev->dev_private;
8439 if (!IS_MOBILE(dev))
8440 return false;
8442 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8443 return false;
8445 if (IS_GEN5(dev) &&
8446 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8447 return false;
8449 return true;
8452 static void intel_setup_outputs(struct drm_device *dev)
8454 struct drm_i915_private *dev_priv = dev->dev_private;
8455 struct intel_encoder *encoder;
8456 bool dpd_is_edp = false;
8457 bool has_lvds;
8459 has_lvds = intel_lvds_init(dev);
8460 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8461 /* disable the panel fitter on everything but LVDS */
8462 I915_WRITE(PFIT_CONTROL, 0);
8465 if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8466 intel_crt_init(dev);
8468 if (HAS_DDI(dev)) {
8469 int found;
8471 /* Haswell uses DDI functions to detect digital outputs */
8472 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8473 /* DDI A only supports eDP */
8474 if (found)
8475 intel_ddi_init(dev, PORT_A);
8477 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8478 * register */
8479 found = I915_READ(SFUSE_STRAP);
8481 if (found & SFUSE_STRAP_DDIB_DETECTED)
8482 intel_ddi_init(dev, PORT_B);
8483 if (found & SFUSE_STRAP_DDIC_DETECTED)
8484 intel_ddi_init(dev, PORT_C);
8485 if (found & SFUSE_STRAP_DDID_DETECTED)
8486 intel_ddi_init(dev, PORT_D);
8487 } else if (HAS_PCH_SPLIT(dev)) {
8488 int found;
8489 dpd_is_edp = intel_dpd_is_edp(dev);
8491 if (has_edp_a(dev))
8492 intel_dp_init(dev, DP_A, PORT_A);
8494 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8495 /* PCH SDVOB multiplex with HDMIB */
8496 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8497 if (!found)
8498 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8499 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8500 intel_dp_init(dev, PCH_DP_B, PORT_B);
8503 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8504 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8506 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8507 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8509 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8510 intel_dp_init(dev, PCH_DP_C, PORT_C);
8512 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8513 intel_dp_init(dev, PCH_DP_D, PORT_D);
8514 } else if (IS_VALLEYVIEW(dev)) {
8515 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8516 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8517 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8519 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8520 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8521 PORT_B);
8522 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8523 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8525 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8526 bool found = false;
8528 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8529 DRM_DEBUG_KMS("probing SDVOB\n");
8530 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8531 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8532 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8533 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8536 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8537 DRM_DEBUG_KMS("probing DP_B\n");
8538 intel_dp_init(dev, DP_B, PORT_B);
8542 /* Before G4X SDVOC doesn't have its own detect register */
8544 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8545 DRM_DEBUG_KMS("probing SDVOC\n");
8546 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8549 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8551 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8552 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8553 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8555 if (SUPPORTS_INTEGRATED_DP(dev)) {
8556 DRM_DEBUG_KMS("probing DP_C\n");
8557 intel_dp_init(dev, DP_C, PORT_C);
8561 if (SUPPORTS_INTEGRATED_DP(dev) &&
8562 (I915_READ(DP_D) & DP_DETECTED)) {
8563 DRM_DEBUG_KMS("probing DP_D\n");
8564 intel_dp_init(dev, DP_D, PORT_D);
8566 } else if (IS_GEN2(dev))
8567 intel_dvo_init(dev);
8569 if (SUPPORTS_TV(dev))
8570 intel_tv_init(dev);
8572 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8573 encoder->base.possible_crtcs = encoder->crtc_mask;
8574 encoder->base.possible_clones =
8575 intel_encoder_clones(encoder);
8578 intel_init_pch_refclk(dev);
8580 drm_helper_move_panel_connectors_to_head(dev);
8583 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8585 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8587 drm_framebuffer_cleanup(fb);
8588 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8590 kfree(intel_fb);
8593 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8594 struct drm_file *file,
8595 unsigned int *handle)
8597 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8598 struct drm_i915_gem_object *obj = intel_fb->obj;
8600 return drm_gem_handle_create(file, &obj->base, handle);
8603 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8604 .destroy = intel_user_framebuffer_destroy,
8605 .create_handle = intel_user_framebuffer_create_handle,
8608 int intel_framebuffer_init(struct drm_device *dev,
8609 struct intel_framebuffer *intel_fb,
8610 struct drm_mode_fb_cmd2 *mode_cmd,
8611 struct drm_i915_gem_object *obj)
8613 int ret;
8615 if (obj->tiling_mode == I915_TILING_Y) {
8616 DRM_DEBUG("hardware does not support tiling Y\n");
8617 return -EINVAL;
8620 if (mode_cmd->pitches[0] & 63) {
8621 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8622 mode_cmd->pitches[0]);
8623 return -EINVAL;
8626 /* FIXME <= Gen4 stride limits are bit unclear */
8627 if (mode_cmd->pitches[0] > 32768) {
8628 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8629 mode_cmd->pitches[0]);
8630 return -EINVAL;
8633 if (obj->tiling_mode != I915_TILING_NONE &&
8634 mode_cmd->pitches[0] != obj->stride) {
8635 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8636 mode_cmd->pitches[0], obj->stride);
8637 return -EINVAL;
8640 /* Reject formats not supported by any plane early. */
8641 switch (mode_cmd->pixel_format) {
8642 case DRM_FORMAT_C8:
8643 case DRM_FORMAT_RGB565:
8644 case DRM_FORMAT_XRGB8888:
8645 case DRM_FORMAT_ARGB8888:
8646 break;
8647 case DRM_FORMAT_XRGB1555:
8648 case DRM_FORMAT_ARGB1555:
8649 if (INTEL_INFO(dev)->gen > 3) {
8650 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8651 return -EINVAL;
8653 break;
8654 case DRM_FORMAT_XBGR8888:
8655 case DRM_FORMAT_ABGR8888:
8656 case DRM_FORMAT_XRGB2101010:
8657 case DRM_FORMAT_ARGB2101010:
8658 case DRM_FORMAT_XBGR2101010:
8659 case DRM_FORMAT_ABGR2101010:
8660 if (INTEL_INFO(dev)->gen < 4) {
8661 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8662 return -EINVAL;
8664 break;
8665 case DRM_FORMAT_YUYV:
8666 case DRM_FORMAT_UYVY:
8667 case DRM_FORMAT_YVYU:
8668 case DRM_FORMAT_VYUY:
8669 if (INTEL_INFO(dev)->gen < 5) {
8670 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8671 return -EINVAL;
8673 break;
8674 default:
8675 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8676 return -EINVAL;
8679 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8680 if (mode_cmd->offsets[0] != 0)
8681 return -EINVAL;
8683 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8684 intel_fb->obj = obj;
8686 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8687 if (ret) {
8688 DRM_ERROR("framebuffer init failed %d\n", ret);
8689 return ret;
8692 return 0;
8695 static struct drm_framebuffer *
8696 intel_user_framebuffer_create(struct drm_device *dev,
8697 struct drm_file *filp,
8698 struct drm_mode_fb_cmd2 *mode_cmd)
8700 struct drm_i915_gem_object *obj;
8702 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8703 mode_cmd->handles[0]));
8704 if (&obj->base == NULL)
8705 return ERR_PTR(-ENOENT);
8707 return intel_framebuffer_create(dev, mode_cmd, obj);
8710 static const struct drm_mode_config_funcs intel_mode_funcs = {
8711 .fb_create = intel_user_framebuffer_create,
8712 .output_poll_changed = intel_fb_output_poll_changed,
8715 /* Set up chip specific display functions */
8716 static void intel_init_display(struct drm_device *dev)
8718 struct drm_i915_private *dev_priv = dev->dev_private;
8720 if (HAS_DDI(dev)) {
8721 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8722 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8723 dev_priv->display.crtc_enable = haswell_crtc_enable;
8724 dev_priv->display.crtc_disable = haswell_crtc_disable;
8725 dev_priv->display.off = haswell_crtc_off;
8726 dev_priv->display.update_plane = ironlake_update_plane;
8727 } else if (HAS_PCH_SPLIT(dev)) {
8728 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
8729 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8730 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8731 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8732 dev_priv->display.off = ironlake_crtc_off;
8733 dev_priv->display.update_plane = ironlake_update_plane;
8734 } else {
8735 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8736 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8737 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8738 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8739 dev_priv->display.off = i9xx_crtc_off;
8740 dev_priv->display.update_plane = i9xx_update_plane;
8743 /* Returns the core display clock speed */
8744 if (IS_VALLEYVIEW(dev))
8745 dev_priv->display.get_display_clock_speed =
8746 valleyview_get_display_clock_speed;
8747 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8748 dev_priv->display.get_display_clock_speed =
8749 i945_get_display_clock_speed;
8750 else if (IS_I915G(dev))
8751 dev_priv->display.get_display_clock_speed =
8752 i915_get_display_clock_speed;
8753 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8754 dev_priv->display.get_display_clock_speed =
8755 i9xx_misc_get_display_clock_speed;
8756 else if (IS_I915GM(dev))
8757 dev_priv->display.get_display_clock_speed =
8758 i915gm_get_display_clock_speed;
8759 else if (IS_I865G(dev))
8760 dev_priv->display.get_display_clock_speed =
8761 i865_get_display_clock_speed;
8762 else if (IS_I85X(dev))
8763 dev_priv->display.get_display_clock_speed =
8764 i855_get_display_clock_speed;
8765 else /* 852, 830 */
8766 dev_priv->display.get_display_clock_speed =
8767 i830_get_display_clock_speed;
8769 if (HAS_PCH_SPLIT(dev)) {
8770 if (IS_GEN5(dev)) {
8771 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8772 dev_priv->display.write_eld = ironlake_write_eld;
8773 } else if (IS_GEN6(dev)) {
8774 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8775 dev_priv->display.write_eld = ironlake_write_eld;
8776 } else if (IS_IVYBRIDGE(dev)) {
8777 /* FIXME: detect B0+ stepping and use auto training */
8778 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8779 dev_priv->display.write_eld = ironlake_write_eld;
8780 dev_priv->display.modeset_global_resources =
8781 ivb_modeset_global_resources;
8782 } else if (IS_HASWELL(dev)) {
8783 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8784 dev_priv->display.write_eld = haswell_write_eld;
8785 dev_priv->display.modeset_global_resources =
8786 haswell_modeset_global_resources;
8788 } else if (IS_G4X(dev)) {
8789 dev_priv->display.write_eld = g4x_write_eld;
8792 /* Default just returns -ENODEV to indicate unsupported */
8793 dev_priv->display.queue_flip = intel_default_queue_flip;
8795 switch (INTEL_INFO(dev)->gen) {
8796 case 2:
8797 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8798 break;
8800 case 3:
8801 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8802 break;
8804 case 4:
8805 case 5:
8806 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8807 break;
8809 case 6:
8810 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8811 break;
8812 case 7:
8813 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8814 break;
8819 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8820 * resume, or other times. This quirk makes sure that's the case for
8821 * affected systems.
8823 static void quirk_pipea_force(struct drm_device *dev)
8825 struct drm_i915_private *dev_priv = dev->dev_private;
8827 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8828 DRM_INFO("applying pipe a force quirk\n");
8832 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8834 static void quirk_ssc_force_disable(struct drm_device *dev)
8836 struct drm_i915_private *dev_priv = dev->dev_private;
8837 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8838 DRM_INFO("applying lvds SSC disable quirk\n");
8842 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8843 * brightness value
8845 static void quirk_invert_brightness(struct drm_device *dev)
8847 struct drm_i915_private *dev_priv = dev->dev_private;
8848 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8849 DRM_INFO("applying inverted panel brightness quirk\n");
8852 struct intel_quirk {
8853 int device;
8854 int subsystem_vendor;
8855 int subsystem_device;
8856 void (*hook)(struct drm_device *dev);
8859 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8860 struct intel_dmi_quirk {
8861 void (*hook)(struct drm_device *dev);
8862 const struct dmi_system_id (*dmi_id_list)[];
8865 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8867 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8868 return 1;
8871 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8873 .dmi_id_list = &(const struct dmi_system_id[]) {
8875 .callback = intel_dmi_reverse_brightness,
8876 .ident = "NCR Corporation",
8877 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8878 DMI_MATCH(DMI_PRODUCT_NAME, ""),
8881 { } /* terminating entry */
8883 .hook = quirk_invert_brightness,
8887 static struct intel_quirk intel_quirks[] = {
8888 /* HP Mini needs pipe A force quirk (LP: #322104) */
8889 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8891 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8892 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8894 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8895 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8897 /* 830/845 need to leave pipe A & dpll A up */
8898 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8899 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8901 /* Lenovo U160 cannot use SSC on LVDS */
8902 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8904 /* Sony Vaio Y cannot use SSC on LVDS */
8905 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8907 /* Acer Aspire 5734Z must invert backlight brightness */
8908 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8910 /* Acer/eMachines G725 */
8911 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8913 /* Acer/eMachines e725 */
8914 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8916 /* Acer/Packard Bell NCL20 */
8917 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8919 /* Acer Aspire 4736Z */
8920 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8923 static void intel_init_quirks(struct drm_device *dev)
8925 struct pci_dev *d = dev->pdev;
8926 int i;
8928 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8929 struct intel_quirk *q = &intel_quirks[i];
8931 if (d->device == q->device &&
8932 (d->subsystem_vendor == q->subsystem_vendor ||
8933 q->subsystem_vendor == PCI_ANY_ID) &&
8934 (d->subsystem_device == q->subsystem_device ||
8935 q->subsystem_device == PCI_ANY_ID))
8936 q->hook(dev);
8938 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8939 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8940 intel_dmi_quirks[i].hook(dev);
8944 /* Disable the VGA plane that we never use */
8945 static void i915_disable_vga(struct drm_device *dev)
8947 struct drm_i915_private *dev_priv = dev->dev_private;
8948 u8 sr1;
8949 u32 vga_reg = i915_vgacntrl_reg(dev);
8951 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8952 outb(SR01, VGA_SR_INDEX);
8953 sr1 = inb(VGA_SR_DATA);
8954 outb(sr1 | 1<<5, VGA_SR_DATA);
8955 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8956 udelay(300);
8958 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8959 POSTING_READ(vga_reg);
8962 void intel_modeset_init_hw(struct drm_device *dev)
8964 intel_init_power_well(dev);
8966 intel_prepare_ddi(dev);
8968 intel_init_clock_gating(dev);
8970 mutex_lock(&dev->struct_mutex);
8971 intel_enable_gt_powersave(dev);
8972 mutex_unlock(&dev->struct_mutex);
8975 void intel_modeset_init(struct drm_device *dev)
8977 struct drm_i915_private *dev_priv = dev->dev_private;
8978 int i, j, ret;
8980 drm_mode_config_init(dev);
8982 dev->mode_config.min_width = 0;
8983 dev->mode_config.min_height = 0;
8985 dev->mode_config.preferred_depth = 24;
8986 dev->mode_config.prefer_shadow = 1;
8988 dev->mode_config.funcs = &intel_mode_funcs;
8990 intel_init_quirks(dev);
8992 intel_init_pm(dev);
8994 if (INTEL_INFO(dev)->num_pipes == 0)
8995 return;
8997 intel_init_display(dev);
8999 if (IS_GEN2(dev)) {
9000 dev->mode_config.max_width = 2048;
9001 dev->mode_config.max_height = 2048;
9002 } else if (IS_GEN3(dev)) {
9003 dev->mode_config.max_width = 4096;
9004 dev->mode_config.max_height = 4096;
9005 } else {
9006 dev->mode_config.max_width = 8192;
9007 dev->mode_config.max_height = 8192;
9009 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9011 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9012 INTEL_INFO(dev)->num_pipes,
9013 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9015 for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9016 intel_crtc_init(dev, i);
9017 for (j = 0; j < dev_priv->num_plane; j++) {
9018 ret = intel_plane_init(dev, i, j);
9019 if (ret)
9020 DRM_DEBUG_KMS("pipe %d plane %d init failed: %d\n",
9021 i, j, ret);
9025 intel_cpu_pll_init(dev);
9026 intel_pch_pll_init(dev);
9028 /* Just disable it once at startup */
9029 i915_disable_vga(dev);
9030 intel_setup_outputs(dev);
9032 /* Just in case the BIOS is doing something questionable. */
9033 intel_disable_fbc(dev);
9036 static void
9037 intel_connector_break_all_links(struct intel_connector *connector)
9039 connector->base.dpms = DRM_MODE_DPMS_OFF;
9040 connector->base.encoder = NULL;
9041 connector->encoder->connectors_active = false;
9042 connector->encoder->base.crtc = NULL;
9045 static void intel_enable_pipe_a(struct drm_device *dev)
9047 struct intel_connector *connector;
9048 struct drm_connector *crt = NULL;
9049 struct intel_load_detect_pipe load_detect_temp;
9051 /* We can't just switch on the pipe A, we need to set things up with a
9052 * proper mode and output configuration. As a gross hack, enable pipe A
9053 * by enabling the load detect pipe once. */
9054 list_for_each_entry(connector,
9055 &dev->mode_config.connector_list,
9056 base.head) {
9057 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9058 crt = &connector->base;
9059 break;
9063 if (!crt)
9064 return;
9066 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9067 intel_release_load_detect_pipe(crt, &load_detect_temp);
9072 static bool
9073 intel_check_plane_mapping(struct intel_crtc *crtc)
9075 struct drm_device *dev = crtc->base.dev;
9076 struct drm_i915_private *dev_priv = dev->dev_private;
9077 u32 reg, val;
9079 if (INTEL_INFO(dev)->num_pipes == 1)
9080 return true;
9082 reg = DSPCNTR(!crtc->plane);
9083 val = I915_READ(reg);
9085 if ((val & DISPLAY_PLANE_ENABLE) &&
9086 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9087 return false;
9089 return true;
9092 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9094 struct drm_device *dev = crtc->base.dev;
9095 struct drm_i915_private *dev_priv = dev->dev_private;
9096 u32 reg;
9098 /* Clear any frame start delays used for debugging left by the BIOS */
9099 reg = PIPECONF(crtc->cpu_transcoder);
9100 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9102 /* We need to sanitize the plane -> pipe mapping first because this will
9103 * disable the crtc (and hence change the state) if it is wrong. Note
9104 * that gen4+ has a fixed plane -> pipe mapping. */
9105 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9106 struct intel_connector *connector;
9107 bool plane;
9109 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9110 crtc->base.base.id);
9112 /* Pipe has the wrong plane attached and the plane is active.
9113 * Temporarily change the plane mapping and disable everything
9114 * ... */
9115 plane = crtc->plane;
9116 crtc->plane = !plane;
9117 dev_priv->display.crtc_disable(&crtc->base);
9118 crtc->plane = plane;
9120 /* ... and break all links. */
9121 list_for_each_entry(connector, &dev->mode_config.connector_list,
9122 base.head) {
9123 if (connector->encoder->base.crtc != &crtc->base)
9124 continue;
9126 intel_connector_break_all_links(connector);
9129 WARN_ON(crtc->active);
9130 crtc->base.enabled = false;
9133 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9134 crtc->pipe == PIPE_A && !crtc->active) {
9135 /* BIOS forgot to enable pipe A, this mostly happens after
9136 * resume. Force-enable the pipe to fix this, the update_dpms
9137 * call below we restore the pipe to the right state, but leave
9138 * the required bits on. */
9139 intel_enable_pipe_a(dev);
9142 /* Adjust the state of the output pipe according to whether we
9143 * have active connectors/encoders. */
9144 intel_crtc_update_dpms(&crtc->base);
9146 if (crtc->active != crtc->base.enabled) {
9147 struct intel_encoder *encoder;
9149 /* This can happen either due to bugs in the get_hw_state
9150 * functions or because the pipe is force-enabled due to the
9151 * pipe A quirk. */
9152 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9153 crtc->base.base.id,
9154 crtc->base.enabled ? "enabled" : "disabled",
9155 crtc->active ? "enabled" : "disabled");
9157 crtc->base.enabled = crtc->active;
9159 /* Because we only establish the connector -> encoder ->
9160 * crtc links if something is active, this means the
9161 * crtc is now deactivated. Break the links. connector
9162 * -> encoder links are only establish when things are
9163 * actually up, hence no need to break them. */
9164 WARN_ON(crtc->active);
9166 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9167 WARN_ON(encoder->connectors_active);
9168 encoder->base.crtc = NULL;
9173 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9175 struct intel_connector *connector;
9176 struct drm_device *dev = encoder->base.dev;
9178 /* We need to check both for a crtc link (meaning that the
9179 * encoder is active and trying to read from a pipe) and the
9180 * pipe itself being active. */
9181 bool has_active_crtc = encoder->base.crtc &&
9182 to_intel_crtc(encoder->base.crtc)->active;
9184 if (encoder->connectors_active && !has_active_crtc) {
9185 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9186 encoder->base.base.id,
9187 drm_get_encoder_name(&encoder->base));
9189 /* Connector is active, but has no active pipe. This is
9190 * fallout from our resume register restoring. Disable
9191 * the encoder manually again. */
9192 if (encoder->base.crtc) {
9193 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9194 encoder->base.base.id,
9195 drm_get_encoder_name(&encoder->base));
9196 encoder->disable(encoder);
9199 /* Inconsistent output/port/pipe state happens presumably due to
9200 * a bug in one of the get_hw_state functions. Or someplace else
9201 * in our code, like the register restore mess on resume. Clamp
9202 * things to off as a safer default. */
9203 list_for_each_entry(connector,
9204 &dev->mode_config.connector_list,
9205 base.head) {
9206 if (connector->encoder != encoder)
9207 continue;
9209 intel_connector_break_all_links(connector);
9212 /* Enabled encoders without active connectors will be fixed in
9213 * the crtc fixup. */
9216 void i915_redisable_vga(struct drm_device *dev)
9218 struct drm_i915_private *dev_priv = dev->dev_private;
9219 u32 vga_reg = i915_vgacntrl_reg(dev);
9221 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9222 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9223 i915_disable_vga(dev);
9227 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9228 * and i915 state tracking structures. */
9229 void intel_modeset_setup_hw_state(struct drm_device *dev,
9230 bool force_restore)
9232 struct drm_i915_private *dev_priv = dev->dev_private;
9233 enum pipe pipe;
9234 u32 tmp;
9235 struct drm_plane *plane;
9236 struct intel_crtc *crtc;
9237 struct intel_encoder *encoder;
9238 struct intel_connector *connector;
9240 if (HAS_DDI(dev)) {
9241 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9243 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9244 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9245 case TRANS_DDI_EDP_INPUT_A_ON:
9246 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9247 pipe = PIPE_A;
9248 break;
9249 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9250 pipe = PIPE_B;
9251 break;
9252 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9253 pipe = PIPE_C;
9254 break;
9255 default:
9256 /* A bogus value has been programmed, disable
9257 * the transcoder */
9258 WARN(1, "Bogus eDP source %08x\n", tmp);
9259 intel_ddi_disable_transcoder_func(dev_priv,
9260 TRANSCODER_EDP);
9261 goto setup_pipes;
9264 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9265 crtc->cpu_transcoder = TRANSCODER_EDP;
9267 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9268 pipe_name(pipe));
9272 setup_pipes:
9273 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9274 base.head) {
9275 memset(&crtc->config, 0, sizeof(crtc->config));
9276 crtc->active = dev_priv->display.get_pipe_config(crtc,
9277 &crtc->config);
9279 crtc->base.enabled = crtc->active;
9281 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9282 crtc->base.base.id,
9283 crtc->active ? "enabled" : "disabled");
9286 if (HAS_DDI(dev))
9287 intel_ddi_setup_hw_pll_state(dev);
9289 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9290 base.head) {
9291 pipe = 0;
9293 if (encoder->get_hw_state(encoder, &pipe)) {
9294 encoder->base.crtc =
9295 dev_priv->pipe_to_crtc_mapping[pipe];
9296 } else {
9297 encoder->base.crtc = NULL;
9300 encoder->connectors_active = false;
9301 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9302 encoder->base.base.id,
9303 drm_get_encoder_name(&encoder->base),
9304 encoder->base.crtc ? "enabled" : "disabled",
9305 pipe);
9308 list_for_each_entry(connector, &dev->mode_config.connector_list,
9309 base.head) {
9310 if (connector->get_hw_state(connector)) {
9311 connector->base.dpms = DRM_MODE_DPMS_ON;
9312 connector->encoder->connectors_active = true;
9313 connector->base.encoder = &connector->encoder->base;
9314 } else {
9315 connector->base.dpms = DRM_MODE_DPMS_OFF;
9316 connector->base.encoder = NULL;
9318 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9319 connector->base.base.id,
9320 drm_get_connector_name(&connector->base),
9321 connector->base.encoder ? "enabled" : "disabled");
9324 /* HW state is read out, now we need to sanitize this mess. */
9325 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9326 base.head) {
9327 intel_sanitize_encoder(encoder);
9330 for_each_pipe(pipe) {
9331 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9332 intel_sanitize_crtc(crtc);
9335 if (force_restore) {
9336 for_each_pipe(pipe) {
9337 struct drm_crtc *crtc =
9338 dev_priv->pipe_to_crtc_mapping[pipe];
9339 intel_crtc_restore_mode(crtc);
9341 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9342 intel_plane_restore(plane);
9344 i915_redisable_vga(dev);
9345 } else {
9346 intel_modeset_update_staged_output_state(dev);
9349 intel_modeset_check_state(dev);
9351 drm_mode_config_reset(dev);
9354 void intel_modeset_gem_init(struct drm_device *dev)
9356 intel_modeset_init_hw(dev);
9358 intel_setup_overlay(dev);
9360 intel_modeset_setup_hw_state(dev, false);
9363 void intel_modeset_cleanup(struct drm_device *dev)
9365 struct drm_i915_private *dev_priv = dev->dev_private;
9366 struct drm_crtc *crtc;
9367 struct intel_crtc *intel_crtc;
9369 drm_kms_helper_poll_fini(dev);
9370 mutex_lock(&dev->struct_mutex);
9372 intel_unregister_dsm_handler();
9375 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9376 /* Skip inactive CRTCs */
9377 if (!crtc->fb)
9378 continue;
9380 intel_crtc = to_intel_crtc(crtc);
9381 intel_increase_pllclock(crtc);
9384 intel_disable_fbc(dev);
9386 intel_disable_gt_powersave(dev);
9388 ironlake_teardown_rc6(dev);
9390 if (IS_VALLEYVIEW(dev))
9391 vlv_init_dpio(dev);
9393 mutex_unlock(&dev->struct_mutex);
9395 /* Disable the irq before mode object teardown, for the irq might
9396 * enqueue unpin/hotplug work. */
9397 drm_irq_uninstall(dev);
9398 cancel_work_sync(&dev_priv->hotplug_work);
9399 cancel_work_sync(&dev_priv->rps.work);
9401 /* flush any delayed tasks or pending work */
9402 flush_scheduled_work();
9404 drm_mode_config_cleanup(dev);
9406 intel_cleanup_overlay(dev);
9410 * Return which encoder is currently attached for connector.
9412 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9414 return &intel_attached_encoder(connector)->base;
9417 void intel_connector_attach_encoder(struct intel_connector *connector,
9418 struct intel_encoder *encoder)
9420 connector->encoder = encoder;
9421 drm_mode_connector_attach_encoder(&connector->base,
9422 &encoder->base);
9426 * set vga decode state - true == enable VGA decode
9428 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9430 struct drm_i915_private *dev_priv = dev->dev_private;
9431 u16 gmch_ctrl;
9433 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9434 if (state)
9435 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9436 else
9437 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9438 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9439 return 0;
9442 #ifdef CONFIG_DEBUG_FS
9443 #include <linux/seq_file.h>
9445 struct intel_display_error_state {
9446 struct intel_cursor_error_state {
9447 u32 control;
9448 u32 position;
9449 u32 base;
9450 u32 size;
9451 } cursor[I915_MAX_PIPES];
9453 struct intel_pipe_error_state {
9454 u32 conf;
9455 u32 source;
9457 u32 htotal;
9458 u32 hblank;
9459 u32 hsync;
9460 u32 vtotal;
9461 u32 vblank;
9462 u32 vsync;
9463 } pipe[I915_MAX_PIPES];
9465 struct intel_plane_error_state {
9466 u32 control;
9467 u32 stride;
9468 u32 size;
9469 u32 pos;
9470 u32 addr;
9471 u32 surface;
9472 u32 tile_offset;
9473 } plane[I915_MAX_PIPES];
9476 struct intel_display_error_state *
9477 intel_display_capture_error_state(struct drm_device *dev)
9479 drm_i915_private_t *dev_priv = dev->dev_private;
9480 struct intel_display_error_state *error;
9481 enum transcoder cpu_transcoder;
9482 int i;
9484 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9485 if (error == NULL)
9486 return NULL;
9488 for_each_pipe(i) {
9489 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9491 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9492 error->cursor[i].control = I915_READ(CURCNTR(i));
9493 error->cursor[i].position = I915_READ(CURPOS(i));
9494 error->cursor[i].base = I915_READ(CURBASE(i));
9495 } else {
9496 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9497 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9498 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9501 error->plane[i].control = I915_READ(DSPCNTR(i));
9502 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9503 if (INTEL_INFO(dev)->gen <= 3) {
9504 error->plane[i].size = I915_READ(DSPSIZE(i));
9505 error->plane[i].pos = I915_READ(DSPPOS(i));
9507 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9508 error->plane[i].addr = I915_READ(DSPADDR(i));
9509 if (INTEL_INFO(dev)->gen >= 4) {
9510 error->plane[i].surface = I915_READ(DSPSURF(i));
9511 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9514 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9515 error->pipe[i].source = I915_READ(PIPESRC(i));
9516 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9517 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9518 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9519 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9520 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9521 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9524 return error;
9527 void
9528 intel_display_print_error_state(struct seq_file *m,
9529 struct drm_device *dev,
9530 struct intel_display_error_state *error)
9532 int i;
9534 seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9535 for_each_pipe(i) {
9536 seq_printf(m, "Pipe [%d]:\n", i);
9537 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9538 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9539 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9540 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9541 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9542 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9543 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9544 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9546 seq_printf(m, "Plane [%d]:\n", i);
9547 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9548 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9549 if (INTEL_INFO(dev)->gen <= 3) {
9550 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9551 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9553 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9554 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9555 if (INTEL_INFO(dev)->gen >= 4) {
9556 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9557 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9560 seq_printf(m, "Cursor [%d]:\n", i);
9561 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9562 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9563 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9566 #endif