cpufreq: pasemi: Use generic cpufreq routines
[linux-2.6/btrfs-unstable.git] / mm / memcontrol.c
blob1c52ddbc839ba1f8f42e940c51bc321ba6b2abfe
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
62 #include <asm/uaccess.h>
64 #include <trace/events/vmscan.h>
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
83 #else
84 #define do_swap_account 0
85 #endif
88 static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
91 "rss_huge",
92 "mapped_file",
93 "writeback",
94 "swap",
97 enum mem_cgroup_events_index {
98 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
99 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
105 static const char * const mem_cgroup_events_names[] = {
106 "pgpgin",
107 "pgpgout",
108 "pgfault",
109 "pgmajfault",
112 static const char * const mem_cgroup_lru_names[] = {
113 "inactive_anon",
114 "active_anon",
115 "inactive_file",
116 "active_file",
117 "unevictable",
121 * Per memcg event counter is incremented at every pagein/pageout. With THP,
122 * it will be incremated by the number of pages. This counter is used for
123 * for trigger some periodic events. This is straightforward and better
124 * than using jiffies etc. to handle periodic memcg event.
126 enum mem_cgroup_events_target {
127 MEM_CGROUP_TARGET_THRESH,
128 MEM_CGROUP_TARGET_SOFTLIMIT,
129 MEM_CGROUP_TARGET_NUMAINFO,
130 MEM_CGROUP_NTARGETS,
132 #define THRESHOLDS_EVENTS_TARGET 128
133 #define SOFTLIMIT_EVENTS_TARGET 1024
134 #define NUMAINFO_EVENTS_TARGET 1024
136 struct mem_cgroup_stat_cpu {
137 long count[MEM_CGROUP_STAT_NSTATS];
138 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
139 unsigned long nr_page_events;
140 unsigned long targets[MEM_CGROUP_NTARGETS];
143 struct mem_cgroup_reclaim_iter {
145 * last scanned hierarchy member. Valid only if last_dead_count
146 * matches memcg->dead_count of the hierarchy root group.
148 struct mem_cgroup *last_visited;
149 unsigned long last_dead_count;
151 /* scan generation, increased every round-trip */
152 unsigned int generation;
156 * per-zone information in memory controller.
158 struct mem_cgroup_per_zone {
159 struct lruvec lruvec;
160 unsigned long lru_size[NR_LRU_LISTS];
162 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
164 struct rb_node tree_node; /* RB tree node */
165 unsigned long long usage_in_excess;/* Set to the value by which */
166 /* the soft limit is exceeded*/
167 bool on_tree;
168 struct mem_cgroup *memcg; /* Back pointer, we cannot */
169 /* use container_of */
172 struct mem_cgroup_per_node {
173 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 * Cgroups above their limits are maintained in a RB-Tree, independent of
178 * their hierarchy representation
181 struct mem_cgroup_tree_per_zone {
182 struct rb_root rb_root;
183 spinlock_t lock;
186 struct mem_cgroup_tree_per_node {
187 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
190 struct mem_cgroup_tree {
191 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
194 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
196 struct mem_cgroup_threshold {
197 struct eventfd_ctx *eventfd;
198 u64 threshold;
201 /* For threshold */
202 struct mem_cgroup_threshold_ary {
203 /* An array index points to threshold just below or equal to usage. */
204 int current_threshold;
205 /* Size of entries[] */
206 unsigned int size;
207 /* Array of thresholds */
208 struct mem_cgroup_threshold entries[0];
211 struct mem_cgroup_thresholds {
212 /* Primary thresholds array */
213 struct mem_cgroup_threshold_ary *primary;
215 * Spare threshold array.
216 * This is needed to make mem_cgroup_unregister_event() "never fail".
217 * It must be able to store at least primary->size - 1 entries.
219 struct mem_cgroup_threshold_ary *spare;
222 /* for OOM */
223 struct mem_cgroup_eventfd_list {
224 struct list_head list;
225 struct eventfd_ctx *eventfd;
228 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
229 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232 * The memory controller data structure. The memory controller controls both
233 * page cache and RSS per cgroup. We would eventually like to provide
234 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
235 * to help the administrator determine what knobs to tune.
237 * TODO: Add a water mark for the memory controller. Reclaim will begin when
238 * we hit the water mark. May be even add a low water mark, such that
239 * no reclaim occurs from a cgroup at it's low water mark, this is
240 * a feature that will be implemented much later in the future.
242 struct mem_cgroup {
243 struct cgroup_subsys_state css;
245 * the counter to account for memory usage
247 struct res_counter res;
249 /* vmpressure notifications */
250 struct vmpressure vmpressure;
253 * the counter to account for mem+swap usage.
255 struct res_counter memsw;
258 * the counter to account for kernel memory usage.
260 struct res_counter kmem;
262 * Should the accounting and control be hierarchical, per subtree?
264 bool use_hierarchy;
265 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
267 bool oom_lock;
268 atomic_t under_oom;
269 atomic_t oom_wakeups;
271 int swappiness;
272 /* OOM-Killer disable */
273 int oom_kill_disable;
275 /* set when res.limit == memsw.limit */
276 bool memsw_is_minimum;
278 /* protect arrays of thresholds */
279 struct mutex thresholds_lock;
281 /* thresholds for memory usage. RCU-protected */
282 struct mem_cgroup_thresholds thresholds;
284 /* thresholds for mem+swap usage. RCU-protected */
285 struct mem_cgroup_thresholds memsw_thresholds;
287 /* For oom notifier event fd */
288 struct list_head oom_notify;
291 * Should we move charges of a task when a task is moved into this
292 * mem_cgroup ? And what type of charges should we move ?
294 unsigned long move_charge_at_immigrate;
296 * set > 0 if pages under this cgroup are moving to other cgroup.
298 atomic_t moving_account;
299 /* taken only while moving_account > 0 */
300 spinlock_t move_lock;
302 * percpu counter.
304 struct mem_cgroup_stat_cpu __percpu *stat;
306 * used when a cpu is offlined or other synchronizations
307 * See mem_cgroup_read_stat().
309 struct mem_cgroup_stat_cpu nocpu_base;
310 spinlock_t pcp_counter_lock;
312 atomic_t dead_count;
313 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
314 struct tcp_memcontrol tcp_mem;
315 #endif
316 #if defined(CONFIG_MEMCG_KMEM)
317 /* analogous to slab_common's slab_caches list. per-memcg */
318 struct list_head memcg_slab_caches;
319 /* Not a spinlock, we can take a lot of time walking the list */
320 struct mutex slab_caches_mutex;
321 /* Index in the kmem_cache->memcg_params->memcg_caches array */
322 int kmemcg_id;
323 #endif
325 int last_scanned_node;
326 #if MAX_NUMNODES > 1
327 nodemask_t scan_nodes;
328 atomic_t numainfo_events;
329 atomic_t numainfo_updating;
330 #endif
332 struct mem_cgroup_per_node *nodeinfo[0];
333 /* WARNING: nodeinfo must be the last member here */
336 static size_t memcg_size(void)
338 return sizeof(struct mem_cgroup) +
339 nr_node_ids * sizeof(struct mem_cgroup_per_node);
342 /* internal only representation about the status of kmem accounting. */
343 enum {
344 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
345 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
346 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
349 /* We account when limit is on, but only after call sites are patched */
350 #define KMEM_ACCOUNTED_MASK \
351 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
353 #ifdef CONFIG_MEMCG_KMEM
354 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
356 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
359 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
364 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
366 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
369 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
371 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
374 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
377 * Our caller must use css_get() first, because memcg_uncharge_kmem()
378 * will call css_put() if it sees the memcg is dead.
380 smp_wmb();
381 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
382 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
385 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
387 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
388 &memcg->kmem_account_flags);
390 #endif
392 /* Stuffs for move charges at task migration. */
394 * Types of charges to be moved. "move_charge_at_immitgrate" and
395 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
397 enum move_type {
398 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
399 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
400 NR_MOVE_TYPE,
403 /* "mc" and its members are protected by cgroup_mutex */
404 static struct move_charge_struct {
405 spinlock_t lock; /* for from, to */
406 struct mem_cgroup *from;
407 struct mem_cgroup *to;
408 unsigned long immigrate_flags;
409 unsigned long precharge;
410 unsigned long moved_charge;
411 unsigned long moved_swap;
412 struct task_struct *moving_task; /* a task moving charges */
413 wait_queue_head_t waitq; /* a waitq for other context */
414 } mc = {
415 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
416 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
419 static bool move_anon(void)
421 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
424 static bool move_file(void)
426 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
430 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
431 * limit reclaim to prevent infinite loops, if they ever occur.
433 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
434 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
436 enum charge_type {
437 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
438 MEM_CGROUP_CHARGE_TYPE_ANON,
439 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
440 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
441 NR_CHARGE_TYPE,
444 /* for encoding cft->private value on file */
445 enum res_type {
446 _MEM,
447 _MEMSWAP,
448 _OOM_TYPE,
449 _KMEM,
452 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
453 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
454 #define MEMFILE_ATTR(val) ((val) & 0xffff)
455 /* Used for OOM nofiier */
456 #define OOM_CONTROL (0)
459 * Reclaim flags for mem_cgroup_hierarchical_reclaim
461 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
462 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
463 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
464 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
467 * The memcg_create_mutex will be held whenever a new cgroup is created.
468 * As a consequence, any change that needs to protect against new child cgroups
469 * appearing has to hold it as well.
471 static DEFINE_MUTEX(memcg_create_mutex);
473 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
475 return s ? container_of(s, struct mem_cgroup, css) : NULL;
478 /* Some nice accessors for the vmpressure. */
479 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
481 if (!memcg)
482 memcg = root_mem_cgroup;
483 return &memcg->vmpressure;
486 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
488 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
491 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
493 return &mem_cgroup_from_css(css)->vmpressure;
496 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
498 return (memcg == root_mem_cgroup);
501 /* Writing them here to avoid exposing memcg's inner layout */
502 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504 void sock_update_memcg(struct sock *sk)
506 if (mem_cgroup_sockets_enabled) {
507 struct mem_cgroup *memcg;
508 struct cg_proto *cg_proto;
510 BUG_ON(!sk->sk_prot->proto_cgroup);
512 /* Socket cloning can throw us here with sk_cgrp already
513 * filled. It won't however, necessarily happen from
514 * process context. So the test for root memcg given
515 * the current task's memcg won't help us in this case.
517 * Respecting the original socket's memcg is a better
518 * decision in this case.
520 if (sk->sk_cgrp) {
521 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
522 css_get(&sk->sk_cgrp->memcg->css);
523 return;
526 rcu_read_lock();
527 memcg = mem_cgroup_from_task(current);
528 cg_proto = sk->sk_prot->proto_cgroup(memcg);
529 if (!mem_cgroup_is_root(memcg) &&
530 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
531 sk->sk_cgrp = cg_proto;
533 rcu_read_unlock();
536 EXPORT_SYMBOL(sock_update_memcg);
538 void sock_release_memcg(struct sock *sk)
540 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
541 struct mem_cgroup *memcg;
542 WARN_ON(!sk->sk_cgrp->memcg);
543 memcg = sk->sk_cgrp->memcg;
544 css_put(&sk->sk_cgrp->memcg->css);
548 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
550 if (!memcg || mem_cgroup_is_root(memcg))
551 return NULL;
553 return &memcg->tcp_mem.cg_proto;
555 EXPORT_SYMBOL(tcp_proto_cgroup);
557 static void disarm_sock_keys(struct mem_cgroup *memcg)
559 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
560 return;
561 static_key_slow_dec(&memcg_socket_limit_enabled);
563 #else
564 static void disarm_sock_keys(struct mem_cgroup *memcg)
567 #endif
569 #ifdef CONFIG_MEMCG_KMEM
571 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
572 * There are two main reasons for not using the css_id for this:
573 * 1) this works better in sparse environments, where we have a lot of memcgs,
574 * but only a few kmem-limited. Or also, if we have, for instance, 200
575 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
576 * 200 entry array for that.
578 * 2) In order not to violate the cgroup API, we would like to do all memory
579 * allocation in ->create(). At that point, we haven't yet allocated the
580 * css_id. Having a separate index prevents us from messing with the cgroup
581 * core for this
583 * The current size of the caches array is stored in
584 * memcg_limited_groups_array_size. It will double each time we have to
585 * increase it.
587 static DEFINE_IDA(kmem_limited_groups);
588 int memcg_limited_groups_array_size;
591 * MIN_SIZE is different than 1, because we would like to avoid going through
592 * the alloc/free process all the time. In a small machine, 4 kmem-limited
593 * cgroups is a reasonable guess. In the future, it could be a parameter or
594 * tunable, but that is strictly not necessary.
596 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
597 * this constant directly from cgroup, but it is understandable that this is
598 * better kept as an internal representation in cgroup.c. In any case, the
599 * css_id space is not getting any smaller, and we don't have to necessarily
600 * increase ours as well if it increases.
602 #define MEMCG_CACHES_MIN_SIZE 4
603 #define MEMCG_CACHES_MAX_SIZE 65535
606 * A lot of the calls to the cache allocation functions are expected to be
607 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
608 * conditional to this static branch, we'll have to allow modules that does
609 * kmem_cache_alloc and the such to see this symbol as well
611 struct static_key memcg_kmem_enabled_key;
612 EXPORT_SYMBOL(memcg_kmem_enabled_key);
614 static void disarm_kmem_keys(struct mem_cgroup *memcg)
616 if (memcg_kmem_is_active(memcg)) {
617 static_key_slow_dec(&memcg_kmem_enabled_key);
618 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
621 * This check can't live in kmem destruction function,
622 * since the charges will outlive the cgroup
624 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
626 #else
627 static void disarm_kmem_keys(struct mem_cgroup *memcg)
630 #endif /* CONFIG_MEMCG_KMEM */
632 static void disarm_static_keys(struct mem_cgroup *memcg)
634 disarm_sock_keys(memcg);
635 disarm_kmem_keys(memcg);
638 static void drain_all_stock_async(struct mem_cgroup *memcg);
640 static struct mem_cgroup_per_zone *
641 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
643 VM_BUG_ON((unsigned)nid >= nr_node_ids);
644 return &memcg->nodeinfo[nid]->zoneinfo[zid];
647 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
649 return &memcg->css;
652 static struct mem_cgroup_per_zone *
653 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
655 int nid = page_to_nid(page);
656 int zid = page_zonenum(page);
658 return mem_cgroup_zoneinfo(memcg, nid, zid);
661 static struct mem_cgroup_tree_per_zone *
662 soft_limit_tree_node_zone(int nid, int zid)
664 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
667 static struct mem_cgroup_tree_per_zone *
668 soft_limit_tree_from_page(struct page *page)
670 int nid = page_to_nid(page);
671 int zid = page_zonenum(page);
673 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
676 static void
677 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
678 struct mem_cgroup_per_zone *mz,
679 struct mem_cgroup_tree_per_zone *mctz,
680 unsigned long long new_usage_in_excess)
682 struct rb_node **p = &mctz->rb_root.rb_node;
683 struct rb_node *parent = NULL;
684 struct mem_cgroup_per_zone *mz_node;
686 if (mz->on_tree)
687 return;
689 mz->usage_in_excess = new_usage_in_excess;
690 if (!mz->usage_in_excess)
691 return;
692 while (*p) {
693 parent = *p;
694 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
695 tree_node);
696 if (mz->usage_in_excess < mz_node->usage_in_excess)
697 p = &(*p)->rb_left;
699 * We can't avoid mem cgroups that are over their soft
700 * limit by the same amount
702 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
703 p = &(*p)->rb_right;
705 rb_link_node(&mz->tree_node, parent, p);
706 rb_insert_color(&mz->tree_node, &mctz->rb_root);
707 mz->on_tree = true;
710 static void
711 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
712 struct mem_cgroup_per_zone *mz,
713 struct mem_cgroup_tree_per_zone *mctz)
715 if (!mz->on_tree)
716 return;
717 rb_erase(&mz->tree_node, &mctz->rb_root);
718 mz->on_tree = false;
721 static void
722 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
723 struct mem_cgroup_per_zone *mz,
724 struct mem_cgroup_tree_per_zone *mctz)
726 spin_lock(&mctz->lock);
727 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
728 spin_unlock(&mctz->lock);
732 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
734 unsigned long long excess;
735 struct mem_cgroup_per_zone *mz;
736 struct mem_cgroup_tree_per_zone *mctz;
737 int nid = page_to_nid(page);
738 int zid = page_zonenum(page);
739 mctz = soft_limit_tree_from_page(page);
742 * Necessary to update all ancestors when hierarchy is used.
743 * because their event counter is not touched.
745 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
746 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
747 excess = res_counter_soft_limit_excess(&memcg->res);
749 * We have to update the tree if mz is on RB-tree or
750 * mem is over its softlimit.
752 if (excess || mz->on_tree) {
753 spin_lock(&mctz->lock);
754 /* if on-tree, remove it */
755 if (mz->on_tree)
756 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
758 * Insert again. mz->usage_in_excess will be updated.
759 * If excess is 0, no tree ops.
761 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
762 spin_unlock(&mctz->lock);
767 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
769 int node, zone;
770 struct mem_cgroup_per_zone *mz;
771 struct mem_cgroup_tree_per_zone *mctz;
773 for_each_node(node) {
774 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
775 mz = mem_cgroup_zoneinfo(memcg, node, zone);
776 mctz = soft_limit_tree_node_zone(node, zone);
777 mem_cgroup_remove_exceeded(memcg, mz, mctz);
782 static struct mem_cgroup_per_zone *
783 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
785 struct rb_node *rightmost = NULL;
786 struct mem_cgroup_per_zone *mz;
788 retry:
789 mz = NULL;
790 rightmost = rb_last(&mctz->rb_root);
791 if (!rightmost)
792 goto done; /* Nothing to reclaim from */
794 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
796 * Remove the node now but someone else can add it back,
797 * we will to add it back at the end of reclaim to its correct
798 * position in the tree.
800 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
801 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
802 !css_tryget(&mz->memcg->css))
803 goto retry;
804 done:
805 return mz;
808 static struct mem_cgroup_per_zone *
809 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811 struct mem_cgroup_per_zone *mz;
813 spin_lock(&mctz->lock);
814 mz = __mem_cgroup_largest_soft_limit_node(mctz);
815 spin_unlock(&mctz->lock);
816 return mz;
820 * Implementation Note: reading percpu statistics for memcg.
822 * Both of vmstat[] and percpu_counter has threshold and do periodic
823 * synchronization to implement "quick" read. There are trade-off between
824 * reading cost and precision of value. Then, we may have a chance to implement
825 * a periodic synchronizion of counter in memcg's counter.
827 * But this _read() function is used for user interface now. The user accounts
828 * memory usage by memory cgroup and he _always_ requires exact value because
829 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
830 * have to visit all online cpus and make sum. So, for now, unnecessary
831 * synchronization is not implemented. (just implemented for cpu hotplug)
833 * If there are kernel internal actions which can make use of some not-exact
834 * value, and reading all cpu value can be performance bottleneck in some
835 * common workload, threashold and synchonization as vmstat[] should be
836 * implemented.
838 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
839 enum mem_cgroup_stat_index idx)
841 long val = 0;
842 int cpu;
844 get_online_cpus();
845 for_each_online_cpu(cpu)
846 val += per_cpu(memcg->stat->count[idx], cpu);
847 #ifdef CONFIG_HOTPLUG_CPU
848 spin_lock(&memcg->pcp_counter_lock);
849 val += memcg->nocpu_base.count[idx];
850 spin_unlock(&memcg->pcp_counter_lock);
851 #endif
852 put_online_cpus();
853 return val;
856 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
857 bool charge)
859 int val = (charge) ? 1 : -1;
860 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
863 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
864 enum mem_cgroup_events_index idx)
866 unsigned long val = 0;
867 int cpu;
869 for_each_online_cpu(cpu)
870 val += per_cpu(memcg->stat->events[idx], cpu);
871 #ifdef CONFIG_HOTPLUG_CPU
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
875 #endif
876 return val;
879 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
880 struct page *page,
881 bool anon, int nr_pages)
883 preempt_disable();
886 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
887 * counted as CACHE even if it's on ANON LRU.
889 if (anon)
890 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
891 nr_pages);
892 else
893 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
894 nr_pages);
896 if (PageTransHuge(page))
897 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
898 nr_pages);
900 /* pagein of a big page is an event. So, ignore page size */
901 if (nr_pages > 0)
902 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
903 else {
904 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
905 nr_pages = -nr_pages; /* for event */
908 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
910 preempt_enable();
913 unsigned long
914 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
916 struct mem_cgroup_per_zone *mz;
918 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
919 return mz->lru_size[lru];
922 static unsigned long
923 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
924 unsigned int lru_mask)
926 struct mem_cgroup_per_zone *mz;
927 enum lru_list lru;
928 unsigned long ret = 0;
930 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
932 for_each_lru(lru) {
933 if (BIT(lru) & lru_mask)
934 ret += mz->lru_size[lru];
936 return ret;
939 static unsigned long
940 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
941 int nid, unsigned int lru_mask)
943 u64 total = 0;
944 int zid;
946 for (zid = 0; zid < MAX_NR_ZONES; zid++)
947 total += mem_cgroup_zone_nr_lru_pages(memcg,
948 nid, zid, lru_mask);
950 return total;
953 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
954 unsigned int lru_mask)
956 int nid;
957 u64 total = 0;
959 for_each_node_state(nid, N_MEMORY)
960 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
961 return total;
964 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
965 enum mem_cgroup_events_target target)
967 unsigned long val, next;
969 val = __this_cpu_read(memcg->stat->nr_page_events);
970 next = __this_cpu_read(memcg->stat->targets[target]);
971 /* from time_after() in jiffies.h */
972 if ((long)next - (long)val < 0) {
973 switch (target) {
974 case MEM_CGROUP_TARGET_THRESH:
975 next = val + THRESHOLDS_EVENTS_TARGET;
976 break;
977 case MEM_CGROUP_TARGET_SOFTLIMIT:
978 next = val + SOFTLIMIT_EVENTS_TARGET;
979 break;
980 case MEM_CGROUP_TARGET_NUMAINFO:
981 next = val + NUMAINFO_EVENTS_TARGET;
982 break;
983 default:
984 break;
986 __this_cpu_write(memcg->stat->targets[target], next);
987 return true;
989 return false;
993 * Check events in order.
996 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
998 preempt_disable();
999 /* threshold event is triggered in finer grain than soft limit */
1000 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1001 MEM_CGROUP_TARGET_THRESH))) {
1002 bool do_softlimit;
1003 bool do_numainfo __maybe_unused;
1005 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1006 MEM_CGROUP_TARGET_SOFTLIMIT);
1007 #if MAX_NUMNODES > 1
1008 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_NUMAINFO);
1010 #endif
1011 preempt_enable();
1013 mem_cgroup_threshold(memcg);
1014 if (unlikely(do_softlimit))
1015 mem_cgroup_update_tree(memcg, page);
1016 #if MAX_NUMNODES > 1
1017 if (unlikely(do_numainfo))
1018 atomic_inc(&memcg->numainfo_events);
1019 #endif
1020 } else
1021 preempt_enable();
1024 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1027 * mm_update_next_owner() may clear mm->owner to NULL
1028 * if it races with swapoff, page migration, etc.
1029 * So this can be called with p == NULL.
1031 if (unlikely(!p))
1032 return NULL;
1034 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1037 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1039 struct mem_cgroup *memcg = NULL;
1041 if (!mm)
1042 return NULL;
1044 * Because we have no locks, mm->owner's may be being moved to other
1045 * cgroup. We use css_tryget() here even if this looks
1046 * pessimistic (rather than adding locks here).
1048 rcu_read_lock();
1049 do {
1050 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1051 if (unlikely(!memcg))
1052 break;
1053 } while (!css_tryget(&memcg->css));
1054 rcu_read_unlock();
1055 return memcg;
1059 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1060 * ref. count) or NULL if the whole root's subtree has been visited.
1062 * helper function to be used by mem_cgroup_iter
1064 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1065 struct mem_cgroup *last_visited)
1067 struct cgroup_subsys_state *prev_css, *next_css;
1069 prev_css = last_visited ? &last_visited->css : NULL;
1070 skip_node:
1071 next_css = css_next_descendant_pre(prev_css, &root->css);
1074 * Even if we found a group we have to make sure it is
1075 * alive. css && !memcg means that the groups should be
1076 * skipped and we should continue the tree walk.
1077 * last_visited css is safe to use because it is
1078 * protected by css_get and the tree walk is rcu safe.
1080 if (next_css) {
1081 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1083 if (css_tryget(&mem->css))
1084 return mem;
1085 else {
1086 prev_css = next_css;
1087 goto skip_node;
1091 return NULL;
1094 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1097 * When a group in the hierarchy below root is destroyed, the
1098 * hierarchy iterator can no longer be trusted since it might
1099 * have pointed to the destroyed group. Invalidate it.
1101 atomic_inc(&root->dead_count);
1104 static struct mem_cgroup *
1105 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1106 struct mem_cgroup *root,
1107 int *sequence)
1109 struct mem_cgroup *position = NULL;
1111 * A cgroup destruction happens in two stages: offlining and
1112 * release. They are separated by a RCU grace period.
1114 * If the iterator is valid, we may still race with an
1115 * offlining. The RCU lock ensures the object won't be
1116 * released, tryget will fail if we lost the race.
1118 *sequence = atomic_read(&root->dead_count);
1119 if (iter->last_dead_count == *sequence) {
1120 smp_rmb();
1121 position = iter->last_visited;
1122 if (position && !css_tryget(&position->css))
1123 position = NULL;
1125 return position;
1128 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1129 struct mem_cgroup *last_visited,
1130 struct mem_cgroup *new_position,
1131 int sequence)
1133 if (last_visited)
1134 css_put(&last_visited->css);
1136 * We store the sequence count from the time @last_visited was
1137 * loaded successfully instead of rereading it here so that we
1138 * don't lose destruction events in between. We could have
1139 * raced with the destruction of @new_position after all.
1141 iter->last_visited = new_position;
1142 smp_wmb();
1143 iter->last_dead_count = sequence;
1147 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1148 * @root: hierarchy root
1149 * @prev: previously returned memcg, NULL on first invocation
1150 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1152 * Returns references to children of the hierarchy below @root, or
1153 * @root itself, or %NULL after a full round-trip.
1155 * Caller must pass the return value in @prev on subsequent
1156 * invocations for reference counting, or use mem_cgroup_iter_break()
1157 * to cancel a hierarchy walk before the round-trip is complete.
1159 * Reclaimers can specify a zone and a priority level in @reclaim to
1160 * divide up the memcgs in the hierarchy among all concurrent
1161 * reclaimers operating on the same zone and priority.
1163 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1164 struct mem_cgroup *prev,
1165 struct mem_cgroup_reclaim_cookie *reclaim)
1167 struct mem_cgroup *memcg = NULL;
1168 struct mem_cgroup *last_visited = NULL;
1170 if (mem_cgroup_disabled())
1171 return NULL;
1173 if (!root)
1174 root = root_mem_cgroup;
1176 if (prev && !reclaim)
1177 last_visited = prev;
1179 if (!root->use_hierarchy && root != root_mem_cgroup) {
1180 if (prev)
1181 goto out_css_put;
1182 return root;
1185 rcu_read_lock();
1186 while (!memcg) {
1187 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1188 int uninitialized_var(seq);
1190 if (reclaim) {
1191 int nid = zone_to_nid(reclaim->zone);
1192 int zid = zone_idx(reclaim->zone);
1193 struct mem_cgroup_per_zone *mz;
1195 mz = mem_cgroup_zoneinfo(root, nid, zid);
1196 iter = &mz->reclaim_iter[reclaim->priority];
1197 if (prev && reclaim->generation != iter->generation) {
1198 iter->last_visited = NULL;
1199 goto out_unlock;
1202 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1205 memcg = __mem_cgroup_iter_next(root, last_visited);
1207 if (reclaim) {
1208 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1210 if (!memcg)
1211 iter->generation++;
1212 else if (!prev && memcg)
1213 reclaim->generation = iter->generation;
1216 if (prev && !memcg)
1217 goto out_unlock;
1219 out_unlock:
1220 rcu_read_unlock();
1221 out_css_put:
1222 if (prev && prev != root)
1223 css_put(&prev->css);
1225 return memcg;
1229 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1230 * @root: hierarchy root
1231 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1233 void mem_cgroup_iter_break(struct mem_cgroup *root,
1234 struct mem_cgroup *prev)
1236 if (!root)
1237 root = root_mem_cgroup;
1238 if (prev && prev != root)
1239 css_put(&prev->css);
1243 * Iteration constructs for visiting all cgroups (under a tree). If
1244 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1245 * be used for reference counting.
1247 #define for_each_mem_cgroup_tree(iter, root) \
1248 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1249 iter != NULL; \
1250 iter = mem_cgroup_iter(root, iter, NULL))
1252 #define for_each_mem_cgroup(iter) \
1253 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1254 iter != NULL; \
1255 iter = mem_cgroup_iter(NULL, iter, NULL))
1257 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1259 struct mem_cgroup *memcg;
1261 rcu_read_lock();
1262 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1263 if (unlikely(!memcg))
1264 goto out;
1266 switch (idx) {
1267 case PGFAULT:
1268 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1269 break;
1270 case PGMAJFAULT:
1271 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1272 break;
1273 default:
1274 BUG();
1276 out:
1277 rcu_read_unlock();
1279 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1282 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1283 * @zone: zone of the wanted lruvec
1284 * @memcg: memcg of the wanted lruvec
1286 * Returns the lru list vector holding pages for the given @zone and
1287 * @mem. This can be the global zone lruvec, if the memory controller
1288 * is disabled.
1290 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1291 struct mem_cgroup *memcg)
1293 struct mem_cgroup_per_zone *mz;
1294 struct lruvec *lruvec;
1296 if (mem_cgroup_disabled()) {
1297 lruvec = &zone->lruvec;
1298 goto out;
1301 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1302 lruvec = &mz->lruvec;
1303 out:
1305 * Since a node can be onlined after the mem_cgroup was created,
1306 * we have to be prepared to initialize lruvec->zone here;
1307 * and if offlined then reonlined, we need to reinitialize it.
1309 if (unlikely(lruvec->zone != zone))
1310 lruvec->zone = zone;
1311 return lruvec;
1315 * Following LRU functions are allowed to be used without PCG_LOCK.
1316 * Operations are called by routine of global LRU independently from memcg.
1317 * What we have to take care of here is validness of pc->mem_cgroup.
1319 * Changes to pc->mem_cgroup happens when
1320 * 1. charge
1321 * 2. moving account
1322 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1323 * It is added to LRU before charge.
1324 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1325 * When moving account, the page is not on LRU. It's isolated.
1329 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1330 * @page: the page
1331 * @zone: zone of the page
1333 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1335 struct mem_cgroup_per_zone *mz;
1336 struct mem_cgroup *memcg;
1337 struct page_cgroup *pc;
1338 struct lruvec *lruvec;
1340 if (mem_cgroup_disabled()) {
1341 lruvec = &zone->lruvec;
1342 goto out;
1345 pc = lookup_page_cgroup(page);
1346 memcg = pc->mem_cgroup;
1349 * Surreptitiously switch any uncharged offlist page to root:
1350 * an uncharged page off lru does nothing to secure
1351 * its former mem_cgroup from sudden removal.
1353 * Our caller holds lru_lock, and PageCgroupUsed is updated
1354 * under page_cgroup lock: between them, they make all uses
1355 * of pc->mem_cgroup safe.
1357 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1358 pc->mem_cgroup = memcg = root_mem_cgroup;
1360 mz = page_cgroup_zoneinfo(memcg, page);
1361 lruvec = &mz->lruvec;
1362 out:
1364 * Since a node can be onlined after the mem_cgroup was created,
1365 * we have to be prepared to initialize lruvec->zone here;
1366 * and if offlined then reonlined, we need to reinitialize it.
1368 if (unlikely(lruvec->zone != zone))
1369 lruvec->zone = zone;
1370 return lruvec;
1374 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1375 * @lruvec: mem_cgroup per zone lru vector
1376 * @lru: index of lru list the page is sitting on
1377 * @nr_pages: positive when adding or negative when removing
1379 * This function must be called when a page is added to or removed from an
1380 * lru list.
1382 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1383 int nr_pages)
1385 struct mem_cgroup_per_zone *mz;
1386 unsigned long *lru_size;
1388 if (mem_cgroup_disabled())
1389 return;
1391 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1392 lru_size = mz->lru_size + lru;
1393 *lru_size += nr_pages;
1394 VM_BUG_ON((long)(*lru_size) < 0);
1398 * Checks whether given mem is same or in the root_mem_cgroup's
1399 * hierarchy subtree
1401 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1402 struct mem_cgroup *memcg)
1404 if (root_memcg == memcg)
1405 return true;
1406 if (!root_memcg->use_hierarchy || !memcg)
1407 return false;
1408 return css_is_ancestor(&memcg->css, &root_memcg->css);
1411 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1412 struct mem_cgroup *memcg)
1414 bool ret;
1416 rcu_read_lock();
1417 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1418 rcu_read_unlock();
1419 return ret;
1422 bool task_in_mem_cgroup(struct task_struct *task,
1423 const struct mem_cgroup *memcg)
1425 struct mem_cgroup *curr = NULL;
1426 struct task_struct *p;
1427 bool ret;
1429 p = find_lock_task_mm(task);
1430 if (p) {
1431 curr = try_get_mem_cgroup_from_mm(p->mm);
1432 task_unlock(p);
1433 } else {
1435 * All threads may have already detached their mm's, but the oom
1436 * killer still needs to detect if they have already been oom
1437 * killed to prevent needlessly killing additional tasks.
1439 rcu_read_lock();
1440 curr = mem_cgroup_from_task(task);
1441 if (curr)
1442 css_get(&curr->css);
1443 rcu_read_unlock();
1445 if (!curr)
1446 return false;
1448 * We should check use_hierarchy of "memcg" not "curr". Because checking
1449 * use_hierarchy of "curr" here make this function true if hierarchy is
1450 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1451 * hierarchy(even if use_hierarchy is disabled in "memcg").
1453 ret = mem_cgroup_same_or_subtree(memcg, curr);
1454 css_put(&curr->css);
1455 return ret;
1458 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1460 unsigned long inactive_ratio;
1461 unsigned long inactive;
1462 unsigned long active;
1463 unsigned long gb;
1465 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1466 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1468 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1469 if (gb)
1470 inactive_ratio = int_sqrt(10 * gb);
1471 else
1472 inactive_ratio = 1;
1474 return inactive * inactive_ratio < active;
1477 #define mem_cgroup_from_res_counter(counter, member) \
1478 container_of(counter, struct mem_cgroup, member)
1481 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1482 * @memcg: the memory cgroup
1484 * Returns the maximum amount of memory @mem can be charged with, in
1485 * pages.
1487 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1489 unsigned long long margin;
1491 margin = res_counter_margin(&memcg->res);
1492 if (do_swap_account)
1493 margin = min(margin, res_counter_margin(&memcg->memsw));
1494 return margin >> PAGE_SHIFT;
1497 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1499 /* root ? */
1500 if (!css_parent(&memcg->css))
1501 return vm_swappiness;
1503 return memcg->swappiness;
1507 * memcg->moving_account is used for checking possibility that some thread is
1508 * calling move_account(). When a thread on CPU-A starts moving pages under
1509 * a memcg, other threads should check memcg->moving_account under
1510 * rcu_read_lock(), like this:
1512 * CPU-A CPU-B
1513 * rcu_read_lock()
1514 * memcg->moving_account+1 if (memcg->mocing_account)
1515 * take heavy locks.
1516 * synchronize_rcu() update something.
1517 * rcu_read_unlock()
1518 * start move here.
1521 /* for quick checking without looking up memcg */
1522 atomic_t memcg_moving __read_mostly;
1524 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1526 atomic_inc(&memcg_moving);
1527 atomic_inc(&memcg->moving_account);
1528 synchronize_rcu();
1531 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1534 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1535 * We check NULL in callee rather than caller.
1537 if (memcg) {
1538 atomic_dec(&memcg_moving);
1539 atomic_dec(&memcg->moving_account);
1544 * 2 routines for checking "mem" is under move_account() or not.
1546 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1547 * is used for avoiding races in accounting. If true,
1548 * pc->mem_cgroup may be overwritten.
1550 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1551 * under hierarchy of moving cgroups. This is for
1552 * waiting at hith-memory prressure caused by "move".
1555 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1557 VM_BUG_ON(!rcu_read_lock_held());
1558 return atomic_read(&memcg->moving_account) > 0;
1561 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1563 struct mem_cgroup *from;
1564 struct mem_cgroup *to;
1565 bool ret = false;
1567 * Unlike task_move routines, we access mc.to, mc.from not under
1568 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1570 spin_lock(&mc.lock);
1571 from = mc.from;
1572 to = mc.to;
1573 if (!from)
1574 goto unlock;
1576 ret = mem_cgroup_same_or_subtree(memcg, from)
1577 || mem_cgroup_same_or_subtree(memcg, to);
1578 unlock:
1579 spin_unlock(&mc.lock);
1580 return ret;
1583 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1585 if (mc.moving_task && current != mc.moving_task) {
1586 if (mem_cgroup_under_move(memcg)) {
1587 DEFINE_WAIT(wait);
1588 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1589 /* moving charge context might have finished. */
1590 if (mc.moving_task)
1591 schedule();
1592 finish_wait(&mc.waitq, &wait);
1593 return true;
1596 return false;
1600 * Take this lock when
1601 * - a code tries to modify page's memcg while it's USED.
1602 * - a code tries to modify page state accounting in a memcg.
1603 * see mem_cgroup_stolen(), too.
1605 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1606 unsigned long *flags)
1608 spin_lock_irqsave(&memcg->move_lock, *flags);
1611 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1612 unsigned long *flags)
1614 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1617 #define K(x) ((x) << (PAGE_SHIFT-10))
1619 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1620 * @memcg: The memory cgroup that went over limit
1621 * @p: Task that is going to be killed
1623 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1624 * enabled
1626 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1628 struct cgroup *task_cgrp;
1629 struct cgroup *mem_cgrp;
1631 * Need a buffer in BSS, can't rely on allocations. The code relies
1632 * on the assumption that OOM is serialized for memory controller.
1633 * If this assumption is broken, revisit this code.
1635 static char memcg_name[PATH_MAX];
1636 int ret;
1637 struct mem_cgroup *iter;
1638 unsigned int i;
1640 if (!p)
1641 return;
1643 rcu_read_lock();
1645 mem_cgrp = memcg->css.cgroup;
1646 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1648 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1649 if (ret < 0) {
1651 * Unfortunately, we are unable to convert to a useful name
1652 * But we'll still print out the usage information
1654 rcu_read_unlock();
1655 goto done;
1657 rcu_read_unlock();
1659 pr_info("Task in %s killed", memcg_name);
1661 rcu_read_lock();
1662 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1663 if (ret < 0) {
1664 rcu_read_unlock();
1665 goto done;
1667 rcu_read_unlock();
1670 * Continues from above, so we don't need an KERN_ level
1672 pr_cont(" as a result of limit of %s\n", memcg_name);
1673 done:
1675 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1676 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1677 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1678 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1679 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1680 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1681 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1682 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1683 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1684 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1685 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1686 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1688 for_each_mem_cgroup_tree(iter, memcg) {
1689 pr_info("Memory cgroup stats");
1691 rcu_read_lock();
1692 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1693 if (!ret)
1694 pr_cont(" for %s", memcg_name);
1695 rcu_read_unlock();
1696 pr_cont(":");
1698 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1699 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1700 continue;
1701 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1702 K(mem_cgroup_read_stat(iter, i)));
1705 for (i = 0; i < NR_LRU_LISTS; i++)
1706 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1707 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1709 pr_cont("\n");
1714 * This function returns the number of memcg under hierarchy tree. Returns
1715 * 1(self count) if no children.
1717 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1719 int num = 0;
1720 struct mem_cgroup *iter;
1722 for_each_mem_cgroup_tree(iter, memcg)
1723 num++;
1724 return num;
1728 * Return the memory (and swap, if configured) limit for a memcg.
1730 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1732 u64 limit;
1734 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1737 * Do not consider swap space if we cannot swap due to swappiness
1739 if (mem_cgroup_swappiness(memcg)) {
1740 u64 memsw;
1742 limit += total_swap_pages << PAGE_SHIFT;
1743 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1746 * If memsw is finite and limits the amount of swap space
1747 * available to this memcg, return that limit.
1749 limit = min(limit, memsw);
1752 return limit;
1755 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1756 int order)
1758 struct mem_cgroup *iter;
1759 unsigned long chosen_points = 0;
1760 unsigned long totalpages;
1761 unsigned int points = 0;
1762 struct task_struct *chosen = NULL;
1765 * If current has a pending SIGKILL or is exiting, then automatically
1766 * select it. The goal is to allow it to allocate so that it may
1767 * quickly exit and free its memory.
1769 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1770 set_thread_flag(TIF_MEMDIE);
1771 return;
1774 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1775 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1776 for_each_mem_cgroup_tree(iter, memcg) {
1777 struct css_task_iter it;
1778 struct task_struct *task;
1780 css_task_iter_start(&iter->css, &it);
1781 while ((task = css_task_iter_next(&it))) {
1782 switch (oom_scan_process_thread(task, totalpages, NULL,
1783 false)) {
1784 case OOM_SCAN_SELECT:
1785 if (chosen)
1786 put_task_struct(chosen);
1787 chosen = task;
1788 chosen_points = ULONG_MAX;
1789 get_task_struct(chosen);
1790 /* fall through */
1791 case OOM_SCAN_CONTINUE:
1792 continue;
1793 case OOM_SCAN_ABORT:
1794 css_task_iter_end(&it);
1795 mem_cgroup_iter_break(memcg, iter);
1796 if (chosen)
1797 put_task_struct(chosen);
1798 return;
1799 case OOM_SCAN_OK:
1800 break;
1802 points = oom_badness(task, memcg, NULL, totalpages);
1803 if (points > chosen_points) {
1804 if (chosen)
1805 put_task_struct(chosen);
1806 chosen = task;
1807 chosen_points = points;
1808 get_task_struct(chosen);
1811 css_task_iter_end(&it);
1814 if (!chosen)
1815 return;
1816 points = chosen_points * 1000 / totalpages;
1817 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1818 NULL, "Memory cgroup out of memory");
1821 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1822 gfp_t gfp_mask,
1823 unsigned long flags)
1825 unsigned long total = 0;
1826 bool noswap = false;
1827 int loop;
1829 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1830 noswap = true;
1831 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1832 noswap = true;
1834 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1835 if (loop)
1836 drain_all_stock_async(memcg);
1837 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1839 * Allow limit shrinkers, which are triggered directly
1840 * by userspace, to catch signals and stop reclaim
1841 * after minimal progress, regardless of the margin.
1843 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1844 break;
1845 if (mem_cgroup_margin(memcg))
1846 break;
1848 * If nothing was reclaimed after two attempts, there
1849 * may be no reclaimable pages in this hierarchy.
1851 if (loop && !total)
1852 break;
1854 return total;
1858 * test_mem_cgroup_node_reclaimable
1859 * @memcg: the target memcg
1860 * @nid: the node ID to be checked.
1861 * @noswap : specify true here if the user wants flle only information.
1863 * This function returns whether the specified memcg contains any
1864 * reclaimable pages on a node. Returns true if there are any reclaimable
1865 * pages in the node.
1867 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1868 int nid, bool noswap)
1870 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1871 return true;
1872 if (noswap || !total_swap_pages)
1873 return false;
1874 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1875 return true;
1876 return false;
1879 #if MAX_NUMNODES > 1
1882 * Always updating the nodemask is not very good - even if we have an empty
1883 * list or the wrong list here, we can start from some node and traverse all
1884 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1887 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1889 int nid;
1891 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1892 * pagein/pageout changes since the last update.
1894 if (!atomic_read(&memcg->numainfo_events))
1895 return;
1896 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1897 return;
1899 /* make a nodemask where this memcg uses memory from */
1900 memcg->scan_nodes = node_states[N_MEMORY];
1902 for_each_node_mask(nid, node_states[N_MEMORY]) {
1904 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1905 node_clear(nid, memcg->scan_nodes);
1908 atomic_set(&memcg->numainfo_events, 0);
1909 atomic_set(&memcg->numainfo_updating, 0);
1913 * Selecting a node where we start reclaim from. Because what we need is just
1914 * reducing usage counter, start from anywhere is O,K. Considering
1915 * memory reclaim from current node, there are pros. and cons.
1917 * Freeing memory from current node means freeing memory from a node which
1918 * we'll use or we've used. So, it may make LRU bad. And if several threads
1919 * hit limits, it will see a contention on a node. But freeing from remote
1920 * node means more costs for memory reclaim because of memory latency.
1922 * Now, we use round-robin. Better algorithm is welcomed.
1924 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1926 int node;
1928 mem_cgroup_may_update_nodemask(memcg);
1929 node = memcg->last_scanned_node;
1931 node = next_node(node, memcg->scan_nodes);
1932 if (node == MAX_NUMNODES)
1933 node = first_node(memcg->scan_nodes);
1935 * We call this when we hit limit, not when pages are added to LRU.
1936 * No LRU may hold pages because all pages are UNEVICTABLE or
1937 * memcg is too small and all pages are not on LRU. In that case,
1938 * we use curret node.
1940 if (unlikely(node == MAX_NUMNODES))
1941 node = numa_node_id();
1943 memcg->last_scanned_node = node;
1944 return node;
1948 * Check all nodes whether it contains reclaimable pages or not.
1949 * For quick scan, we make use of scan_nodes. This will allow us to skip
1950 * unused nodes. But scan_nodes is lazily updated and may not cotain
1951 * enough new information. We need to do double check.
1953 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1955 int nid;
1958 * quick check...making use of scan_node.
1959 * We can skip unused nodes.
1961 if (!nodes_empty(memcg->scan_nodes)) {
1962 for (nid = first_node(memcg->scan_nodes);
1963 nid < MAX_NUMNODES;
1964 nid = next_node(nid, memcg->scan_nodes)) {
1966 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1967 return true;
1971 * Check rest of nodes.
1973 for_each_node_state(nid, N_MEMORY) {
1974 if (node_isset(nid, memcg->scan_nodes))
1975 continue;
1976 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1977 return true;
1979 return false;
1982 #else
1983 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1985 return 0;
1988 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1990 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1992 #endif
1994 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1995 struct zone *zone,
1996 gfp_t gfp_mask,
1997 unsigned long *total_scanned)
1999 struct mem_cgroup *victim = NULL;
2000 int total = 0;
2001 int loop = 0;
2002 unsigned long excess;
2003 unsigned long nr_scanned;
2004 struct mem_cgroup_reclaim_cookie reclaim = {
2005 .zone = zone,
2006 .priority = 0,
2009 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2011 while (1) {
2012 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2013 if (!victim) {
2014 loop++;
2015 if (loop >= 2) {
2017 * If we have not been able to reclaim
2018 * anything, it might because there are
2019 * no reclaimable pages under this hierarchy
2021 if (!total)
2022 break;
2024 * We want to do more targeted reclaim.
2025 * excess >> 2 is not to excessive so as to
2026 * reclaim too much, nor too less that we keep
2027 * coming back to reclaim from this cgroup
2029 if (total >= (excess >> 2) ||
2030 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2031 break;
2033 continue;
2035 if (!mem_cgroup_reclaimable(victim, false))
2036 continue;
2037 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2038 zone, &nr_scanned);
2039 *total_scanned += nr_scanned;
2040 if (!res_counter_soft_limit_excess(&root_memcg->res))
2041 break;
2043 mem_cgroup_iter_break(root_memcg, victim);
2044 return total;
2047 static DEFINE_SPINLOCK(memcg_oom_lock);
2050 * Check OOM-Killer is already running under our hierarchy.
2051 * If someone is running, return false.
2053 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2055 struct mem_cgroup *iter, *failed = NULL;
2057 spin_lock(&memcg_oom_lock);
2059 for_each_mem_cgroup_tree(iter, memcg) {
2060 if (iter->oom_lock) {
2062 * this subtree of our hierarchy is already locked
2063 * so we cannot give a lock.
2065 failed = iter;
2066 mem_cgroup_iter_break(memcg, iter);
2067 break;
2068 } else
2069 iter->oom_lock = true;
2072 if (failed) {
2074 * OK, we failed to lock the whole subtree so we have
2075 * to clean up what we set up to the failing subtree
2077 for_each_mem_cgroup_tree(iter, memcg) {
2078 if (iter == failed) {
2079 mem_cgroup_iter_break(memcg, iter);
2080 break;
2082 iter->oom_lock = false;
2086 spin_unlock(&memcg_oom_lock);
2088 return !failed;
2091 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2093 struct mem_cgroup *iter;
2095 spin_lock(&memcg_oom_lock);
2096 for_each_mem_cgroup_tree(iter, memcg)
2097 iter->oom_lock = false;
2098 spin_unlock(&memcg_oom_lock);
2101 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2103 struct mem_cgroup *iter;
2105 for_each_mem_cgroup_tree(iter, memcg)
2106 atomic_inc(&iter->under_oom);
2109 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2111 struct mem_cgroup *iter;
2114 * When a new child is created while the hierarchy is under oom,
2115 * mem_cgroup_oom_lock() may not be called. We have to use
2116 * atomic_add_unless() here.
2118 for_each_mem_cgroup_tree(iter, memcg)
2119 atomic_add_unless(&iter->under_oom, -1, 0);
2122 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2124 struct oom_wait_info {
2125 struct mem_cgroup *memcg;
2126 wait_queue_t wait;
2129 static int memcg_oom_wake_function(wait_queue_t *wait,
2130 unsigned mode, int sync, void *arg)
2132 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2133 struct mem_cgroup *oom_wait_memcg;
2134 struct oom_wait_info *oom_wait_info;
2136 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2137 oom_wait_memcg = oom_wait_info->memcg;
2140 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2141 * Then we can use css_is_ancestor without taking care of RCU.
2143 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2144 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2145 return 0;
2146 return autoremove_wake_function(wait, mode, sync, arg);
2149 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2151 atomic_inc(&memcg->oom_wakeups);
2152 /* for filtering, pass "memcg" as argument. */
2153 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2156 static void memcg_oom_recover(struct mem_cgroup *memcg)
2158 if (memcg && atomic_read(&memcg->under_oom))
2159 memcg_wakeup_oom(memcg);
2163 * try to call OOM killer
2165 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2167 bool locked;
2168 int wakeups;
2170 if (!current->memcg_oom.may_oom)
2171 return;
2173 current->memcg_oom.in_memcg_oom = 1;
2176 * As with any blocking lock, a contender needs to start
2177 * listening for wakeups before attempting the trylock,
2178 * otherwise it can miss the wakeup from the unlock and sleep
2179 * indefinitely. This is just open-coded because our locking
2180 * is so particular to memcg hierarchies.
2182 wakeups = atomic_read(&memcg->oom_wakeups);
2183 mem_cgroup_mark_under_oom(memcg);
2185 locked = mem_cgroup_oom_trylock(memcg);
2187 if (locked)
2188 mem_cgroup_oom_notify(memcg);
2190 if (locked && !memcg->oom_kill_disable) {
2191 mem_cgroup_unmark_under_oom(memcg);
2192 mem_cgroup_out_of_memory(memcg, mask, order);
2193 mem_cgroup_oom_unlock(memcg);
2195 * There is no guarantee that an OOM-lock contender
2196 * sees the wakeups triggered by the OOM kill
2197 * uncharges. Wake any sleepers explicitely.
2199 memcg_oom_recover(memcg);
2200 } else {
2202 * A system call can just return -ENOMEM, but if this
2203 * is a page fault and somebody else is handling the
2204 * OOM already, we need to sleep on the OOM waitqueue
2205 * for this memcg until the situation is resolved.
2206 * Which can take some time because it might be
2207 * handled by a userspace task.
2209 * However, this is the charge context, which means
2210 * that we may sit on a large call stack and hold
2211 * various filesystem locks, the mmap_sem etc. and we
2212 * don't want the OOM handler to deadlock on them
2213 * while we sit here and wait. Store the current OOM
2214 * context in the task_struct, then return -ENOMEM.
2215 * At the end of the page fault handler, with the
2216 * stack unwound, pagefault_out_of_memory() will check
2217 * back with us by calling
2218 * mem_cgroup_oom_synchronize(), possibly putting the
2219 * task to sleep.
2221 current->memcg_oom.oom_locked = locked;
2222 current->memcg_oom.wakeups = wakeups;
2223 css_get(&memcg->css);
2224 current->memcg_oom.wait_on_memcg = memcg;
2229 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2231 * This has to be called at the end of a page fault if the the memcg
2232 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2234 * Memcg supports userspace OOM handling, so failed allocations must
2235 * sleep on a waitqueue until the userspace task resolves the
2236 * situation. Sleeping directly in the charge context with all kinds
2237 * of locks held is not a good idea, instead we remember an OOM state
2238 * in the task and mem_cgroup_oom_synchronize() has to be called at
2239 * the end of the page fault to put the task to sleep and clean up the
2240 * OOM state.
2242 * Returns %true if an ongoing memcg OOM situation was detected and
2243 * finalized, %false otherwise.
2245 bool mem_cgroup_oom_synchronize(void)
2247 struct oom_wait_info owait;
2248 struct mem_cgroup *memcg;
2250 /* OOM is global, do not handle */
2251 if (!current->memcg_oom.in_memcg_oom)
2252 return false;
2255 * We invoked the OOM killer but there is a chance that a kill
2256 * did not free up any charges. Everybody else might already
2257 * be sleeping, so restart the fault and keep the rampage
2258 * going until some charges are released.
2260 memcg = current->memcg_oom.wait_on_memcg;
2261 if (!memcg)
2262 goto out;
2264 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2265 goto out_memcg;
2267 owait.memcg = memcg;
2268 owait.wait.flags = 0;
2269 owait.wait.func = memcg_oom_wake_function;
2270 owait.wait.private = current;
2271 INIT_LIST_HEAD(&owait.wait.task_list);
2273 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2274 /* Only sleep if we didn't miss any wakeups since OOM */
2275 if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2276 schedule();
2277 finish_wait(&memcg_oom_waitq, &owait.wait);
2278 out_memcg:
2279 mem_cgroup_unmark_under_oom(memcg);
2280 if (current->memcg_oom.oom_locked) {
2281 mem_cgroup_oom_unlock(memcg);
2283 * There is no guarantee that an OOM-lock contender
2284 * sees the wakeups triggered by the OOM kill
2285 * uncharges. Wake any sleepers explicitely.
2287 memcg_oom_recover(memcg);
2289 css_put(&memcg->css);
2290 current->memcg_oom.wait_on_memcg = NULL;
2291 out:
2292 current->memcg_oom.in_memcg_oom = 0;
2293 return true;
2297 * Currently used to update mapped file statistics, but the routine can be
2298 * generalized to update other statistics as well.
2300 * Notes: Race condition
2302 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2303 * it tends to be costly. But considering some conditions, we doesn't need
2304 * to do so _always_.
2306 * Considering "charge", lock_page_cgroup() is not required because all
2307 * file-stat operations happen after a page is attached to radix-tree. There
2308 * are no race with "charge".
2310 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2311 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2312 * if there are race with "uncharge". Statistics itself is properly handled
2313 * by flags.
2315 * Considering "move", this is an only case we see a race. To make the race
2316 * small, we check mm->moving_account and detect there are possibility of race
2317 * If there is, we take a lock.
2320 void __mem_cgroup_begin_update_page_stat(struct page *page,
2321 bool *locked, unsigned long *flags)
2323 struct mem_cgroup *memcg;
2324 struct page_cgroup *pc;
2326 pc = lookup_page_cgroup(page);
2327 again:
2328 memcg = pc->mem_cgroup;
2329 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2330 return;
2332 * If this memory cgroup is not under account moving, we don't
2333 * need to take move_lock_mem_cgroup(). Because we already hold
2334 * rcu_read_lock(), any calls to move_account will be delayed until
2335 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2337 if (!mem_cgroup_stolen(memcg))
2338 return;
2340 move_lock_mem_cgroup(memcg, flags);
2341 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2342 move_unlock_mem_cgroup(memcg, flags);
2343 goto again;
2345 *locked = true;
2348 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2350 struct page_cgroup *pc = lookup_page_cgroup(page);
2353 * It's guaranteed that pc->mem_cgroup never changes while
2354 * lock is held because a routine modifies pc->mem_cgroup
2355 * should take move_lock_mem_cgroup().
2357 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2360 void mem_cgroup_update_page_stat(struct page *page,
2361 enum mem_cgroup_stat_index idx, int val)
2363 struct mem_cgroup *memcg;
2364 struct page_cgroup *pc = lookup_page_cgroup(page);
2365 unsigned long uninitialized_var(flags);
2367 if (mem_cgroup_disabled())
2368 return;
2370 VM_BUG_ON(!rcu_read_lock_held());
2371 memcg = pc->mem_cgroup;
2372 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2373 return;
2375 this_cpu_add(memcg->stat->count[idx], val);
2379 * size of first charge trial. "32" comes from vmscan.c's magic value.
2380 * TODO: maybe necessary to use big numbers in big irons.
2382 #define CHARGE_BATCH 32U
2383 struct memcg_stock_pcp {
2384 struct mem_cgroup *cached; /* this never be root cgroup */
2385 unsigned int nr_pages;
2386 struct work_struct work;
2387 unsigned long flags;
2388 #define FLUSHING_CACHED_CHARGE 0
2390 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2391 static DEFINE_MUTEX(percpu_charge_mutex);
2394 * consume_stock: Try to consume stocked charge on this cpu.
2395 * @memcg: memcg to consume from.
2396 * @nr_pages: how many pages to charge.
2398 * The charges will only happen if @memcg matches the current cpu's memcg
2399 * stock, and at least @nr_pages are available in that stock. Failure to
2400 * service an allocation will refill the stock.
2402 * returns true if successful, false otherwise.
2404 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2406 struct memcg_stock_pcp *stock;
2407 bool ret = true;
2409 if (nr_pages > CHARGE_BATCH)
2410 return false;
2412 stock = &get_cpu_var(memcg_stock);
2413 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2414 stock->nr_pages -= nr_pages;
2415 else /* need to call res_counter_charge */
2416 ret = false;
2417 put_cpu_var(memcg_stock);
2418 return ret;
2422 * Returns stocks cached in percpu to res_counter and reset cached information.
2424 static void drain_stock(struct memcg_stock_pcp *stock)
2426 struct mem_cgroup *old = stock->cached;
2428 if (stock->nr_pages) {
2429 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2431 res_counter_uncharge(&old->res, bytes);
2432 if (do_swap_account)
2433 res_counter_uncharge(&old->memsw, bytes);
2434 stock->nr_pages = 0;
2436 stock->cached = NULL;
2440 * This must be called under preempt disabled or must be called by
2441 * a thread which is pinned to local cpu.
2443 static void drain_local_stock(struct work_struct *dummy)
2445 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2446 drain_stock(stock);
2447 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2450 static void __init memcg_stock_init(void)
2452 int cpu;
2454 for_each_possible_cpu(cpu) {
2455 struct memcg_stock_pcp *stock =
2456 &per_cpu(memcg_stock, cpu);
2457 INIT_WORK(&stock->work, drain_local_stock);
2462 * Cache charges(val) which is from res_counter, to local per_cpu area.
2463 * This will be consumed by consume_stock() function, later.
2465 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2467 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2469 if (stock->cached != memcg) { /* reset if necessary */
2470 drain_stock(stock);
2471 stock->cached = memcg;
2473 stock->nr_pages += nr_pages;
2474 put_cpu_var(memcg_stock);
2478 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2479 * of the hierarchy under it. sync flag says whether we should block
2480 * until the work is done.
2482 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2484 int cpu, curcpu;
2486 /* Notify other cpus that system-wide "drain" is running */
2487 get_online_cpus();
2488 curcpu = get_cpu();
2489 for_each_online_cpu(cpu) {
2490 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2491 struct mem_cgroup *memcg;
2493 memcg = stock->cached;
2494 if (!memcg || !stock->nr_pages)
2495 continue;
2496 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2497 continue;
2498 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2499 if (cpu == curcpu)
2500 drain_local_stock(&stock->work);
2501 else
2502 schedule_work_on(cpu, &stock->work);
2505 put_cpu();
2507 if (!sync)
2508 goto out;
2510 for_each_online_cpu(cpu) {
2511 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2512 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2513 flush_work(&stock->work);
2515 out:
2516 put_online_cpus();
2520 * Tries to drain stocked charges in other cpus. This function is asynchronous
2521 * and just put a work per cpu for draining localy on each cpu. Caller can
2522 * expects some charges will be back to res_counter later but cannot wait for
2523 * it.
2525 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2528 * If someone calls draining, avoid adding more kworker runs.
2530 if (!mutex_trylock(&percpu_charge_mutex))
2531 return;
2532 drain_all_stock(root_memcg, false);
2533 mutex_unlock(&percpu_charge_mutex);
2536 /* This is a synchronous drain interface. */
2537 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2539 /* called when force_empty is called */
2540 mutex_lock(&percpu_charge_mutex);
2541 drain_all_stock(root_memcg, true);
2542 mutex_unlock(&percpu_charge_mutex);
2546 * This function drains percpu counter value from DEAD cpu and
2547 * move it to local cpu. Note that this function can be preempted.
2549 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2551 int i;
2553 spin_lock(&memcg->pcp_counter_lock);
2554 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2555 long x = per_cpu(memcg->stat->count[i], cpu);
2557 per_cpu(memcg->stat->count[i], cpu) = 0;
2558 memcg->nocpu_base.count[i] += x;
2560 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2561 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2563 per_cpu(memcg->stat->events[i], cpu) = 0;
2564 memcg->nocpu_base.events[i] += x;
2566 spin_unlock(&memcg->pcp_counter_lock);
2569 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2570 unsigned long action,
2571 void *hcpu)
2573 int cpu = (unsigned long)hcpu;
2574 struct memcg_stock_pcp *stock;
2575 struct mem_cgroup *iter;
2577 if (action == CPU_ONLINE)
2578 return NOTIFY_OK;
2580 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2581 return NOTIFY_OK;
2583 for_each_mem_cgroup(iter)
2584 mem_cgroup_drain_pcp_counter(iter, cpu);
2586 stock = &per_cpu(memcg_stock, cpu);
2587 drain_stock(stock);
2588 return NOTIFY_OK;
2592 /* See __mem_cgroup_try_charge() for details */
2593 enum {
2594 CHARGE_OK, /* success */
2595 CHARGE_RETRY, /* need to retry but retry is not bad */
2596 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2597 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2600 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2601 unsigned int nr_pages, unsigned int min_pages,
2602 bool invoke_oom)
2604 unsigned long csize = nr_pages * PAGE_SIZE;
2605 struct mem_cgroup *mem_over_limit;
2606 struct res_counter *fail_res;
2607 unsigned long flags = 0;
2608 int ret;
2610 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2612 if (likely(!ret)) {
2613 if (!do_swap_account)
2614 return CHARGE_OK;
2615 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2616 if (likely(!ret))
2617 return CHARGE_OK;
2619 res_counter_uncharge(&memcg->res, csize);
2620 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2621 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2622 } else
2623 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2625 * Never reclaim on behalf of optional batching, retry with a
2626 * single page instead.
2628 if (nr_pages > min_pages)
2629 return CHARGE_RETRY;
2631 if (!(gfp_mask & __GFP_WAIT))
2632 return CHARGE_WOULDBLOCK;
2634 if (gfp_mask & __GFP_NORETRY)
2635 return CHARGE_NOMEM;
2637 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2638 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2639 return CHARGE_RETRY;
2641 * Even though the limit is exceeded at this point, reclaim
2642 * may have been able to free some pages. Retry the charge
2643 * before killing the task.
2645 * Only for regular pages, though: huge pages are rather
2646 * unlikely to succeed so close to the limit, and we fall back
2647 * to regular pages anyway in case of failure.
2649 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2650 return CHARGE_RETRY;
2653 * At task move, charge accounts can be doubly counted. So, it's
2654 * better to wait until the end of task_move if something is going on.
2656 if (mem_cgroup_wait_acct_move(mem_over_limit))
2657 return CHARGE_RETRY;
2659 if (invoke_oom)
2660 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2662 return CHARGE_NOMEM;
2666 * __mem_cgroup_try_charge() does
2667 * 1. detect memcg to be charged against from passed *mm and *ptr,
2668 * 2. update res_counter
2669 * 3. call memory reclaim if necessary.
2671 * In some special case, if the task is fatal, fatal_signal_pending() or
2672 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2673 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2674 * as possible without any hazards. 2: all pages should have a valid
2675 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2676 * pointer, that is treated as a charge to root_mem_cgroup.
2678 * So __mem_cgroup_try_charge() will return
2679 * 0 ... on success, filling *ptr with a valid memcg pointer.
2680 * -ENOMEM ... charge failure because of resource limits.
2681 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2683 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2684 * the oom-killer can be invoked.
2686 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2687 gfp_t gfp_mask,
2688 unsigned int nr_pages,
2689 struct mem_cgroup **ptr,
2690 bool oom)
2692 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2693 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2694 struct mem_cgroup *memcg = NULL;
2695 int ret;
2698 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2699 * in system level. So, allow to go ahead dying process in addition to
2700 * MEMDIE process.
2702 if (unlikely(test_thread_flag(TIF_MEMDIE)
2703 || fatal_signal_pending(current)))
2704 goto bypass;
2707 * We always charge the cgroup the mm_struct belongs to.
2708 * The mm_struct's mem_cgroup changes on task migration if the
2709 * thread group leader migrates. It's possible that mm is not
2710 * set, if so charge the root memcg (happens for pagecache usage).
2712 if (!*ptr && !mm)
2713 *ptr = root_mem_cgroup;
2714 again:
2715 if (*ptr) { /* css should be a valid one */
2716 memcg = *ptr;
2717 if (mem_cgroup_is_root(memcg))
2718 goto done;
2719 if (consume_stock(memcg, nr_pages))
2720 goto done;
2721 css_get(&memcg->css);
2722 } else {
2723 struct task_struct *p;
2725 rcu_read_lock();
2726 p = rcu_dereference(mm->owner);
2728 * Because we don't have task_lock(), "p" can exit.
2729 * In that case, "memcg" can point to root or p can be NULL with
2730 * race with swapoff. Then, we have small risk of mis-accouning.
2731 * But such kind of mis-account by race always happens because
2732 * we don't have cgroup_mutex(). It's overkill and we allo that
2733 * small race, here.
2734 * (*) swapoff at el will charge against mm-struct not against
2735 * task-struct. So, mm->owner can be NULL.
2737 memcg = mem_cgroup_from_task(p);
2738 if (!memcg)
2739 memcg = root_mem_cgroup;
2740 if (mem_cgroup_is_root(memcg)) {
2741 rcu_read_unlock();
2742 goto done;
2744 if (consume_stock(memcg, nr_pages)) {
2746 * It seems dagerous to access memcg without css_get().
2747 * But considering how consume_stok works, it's not
2748 * necessary. If consume_stock success, some charges
2749 * from this memcg are cached on this cpu. So, we
2750 * don't need to call css_get()/css_tryget() before
2751 * calling consume_stock().
2753 rcu_read_unlock();
2754 goto done;
2756 /* after here, we may be blocked. we need to get refcnt */
2757 if (!css_tryget(&memcg->css)) {
2758 rcu_read_unlock();
2759 goto again;
2761 rcu_read_unlock();
2764 do {
2765 bool invoke_oom = oom && !nr_oom_retries;
2767 /* If killed, bypass charge */
2768 if (fatal_signal_pending(current)) {
2769 css_put(&memcg->css);
2770 goto bypass;
2773 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2774 nr_pages, invoke_oom);
2775 switch (ret) {
2776 case CHARGE_OK:
2777 break;
2778 case CHARGE_RETRY: /* not in OOM situation but retry */
2779 batch = nr_pages;
2780 css_put(&memcg->css);
2781 memcg = NULL;
2782 goto again;
2783 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2784 css_put(&memcg->css);
2785 goto nomem;
2786 case CHARGE_NOMEM: /* OOM routine works */
2787 if (!oom || invoke_oom) {
2788 css_put(&memcg->css);
2789 goto nomem;
2791 nr_oom_retries--;
2792 break;
2794 } while (ret != CHARGE_OK);
2796 if (batch > nr_pages)
2797 refill_stock(memcg, batch - nr_pages);
2798 css_put(&memcg->css);
2799 done:
2800 *ptr = memcg;
2801 return 0;
2802 nomem:
2803 *ptr = NULL;
2804 return -ENOMEM;
2805 bypass:
2806 *ptr = root_mem_cgroup;
2807 return -EINTR;
2811 * Somemtimes we have to undo a charge we got by try_charge().
2812 * This function is for that and do uncharge, put css's refcnt.
2813 * gotten by try_charge().
2815 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2816 unsigned int nr_pages)
2818 if (!mem_cgroup_is_root(memcg)) {
2819 unsigned long bytes = nr_pages * PAGE_SIZE;
2821 res_counter_uncharge(&memcg->res, bytes);
2822 if (do_swap_account)
2823 res_counter_uncharge(&memcg->memsw, bytes);
2828 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2829 * This is useful when moving usage to parent cgroup.
2831 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2832 unsigned int nr_pages)
2834 unsigned long bytes = nr_pages * PAGE_SIZE;
2836 if (mem_cgroup_is_root(memcg))
2837 return;
2839 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2840 if (do_swap_account)
2841 res_counter_uncharge_until(&memcg->memsw,
2842 memcg->memsw.parent, bytes);
2846 * A helper function to get mem_cgroup from ID. must be called under
2847 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2848 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2849 * called against removed memcg.)
2851 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2853 struct cgroup_subsys_state *css;
2855 /* ID 0 is unused ID */
2856 if (!id)
2857 return NULL;
2858 css = css_lookup(&mem_cgroup_subsys, id);
2859 if (!css)
2860 return NULL;
2861 return mem_cgroup_from_css(css);
2864 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2866 struct mem_cgroup *memcg = NULL;
2867 struct page_cgroup *pc;
2868 unsigned short id;
2869 swp_entry_t ent;
2871 VM_BUG_ON(!PageLocked(page));
2873 pc = lookup_page_cgroup(page);
2874 lock_page_cgroup(pc);
2875 if (PageCgroupUsed(pc)) {
2876 memcg = pc->mem_cgroup;
2877 if (memcg && !css_tryget(&memcg->css))
2878 memcg = NULL;
2879 } else if (PageSwapCache(page)) {
2880 ent.val = page_private(page);
2881 id = lookup_swap_cgroup_id(ent);
2882 rcu_read_lock();
2883 memcg = mem_cgroup_lookup(id);
2884 if (memcg && !css_tryget(&memcg->css))
2885 memcg = NULL;
2886 rcu_read_unlock();
2888 unlock_page_cgroup(pc);
2889 return memcg;
2892 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2893 struct page *page,
2894 unsigned int nr_pages,
2895 enum charge_type ctype,
2896 bool lrucare)
2898 struct page_cgroup *pc = lookup_page_cgroup(page);
2899 struct zone *uninitialized_var(zone);
2900 struct lruvec *lruvec;
2901 bool was_on_lru = false;
2902 bool anon;
2904 lock_page_cgroup(pc);
2905 VM_BUG_ON(PageCgroupUsed(pc));
2907 * we don't need page_cgroup_lock about tail pages, becase they are not
2908 * accessed by any other context at this point.
2912 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2913 * may already be on some other mem_cgroup's LRU. Take care of it.
2915 if (lrucare) {
2916 zone = page_zone(page);
2917 spin_lock_irq(&zone->lru_lock);
2918 if (PageLRU(page)) {
2919 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2920 ClearPageLRU(page);
2921 del_page_from_lru_list(page, lruvec, page_lru(page));
2922 was_on_lru = true;
2926 pc->mem_cgroup = memcg;
2928 * We access a page_cgroup asynchronously without lock_page_cgroup().
2929 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2930 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2931 * before USED bit, we need memory barrier here.
2932 * See mem_cgroup_add_lru_list(), etc.
2934 smp_wmb();
2935 SetPageCgroupUsed(pc);
2937 if (lrucare) {
2938 if (was_on_lru) {
2939 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2940 VM_BUG_ON(PageLRU(page));
2941 SetPageLRU(page);
2942 add_page_to_lru_list(page, lruvec, page_lru(page));
2944 spin_unlock_irq(&zone->lru_lock);
2947 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2948 anon = true;
2949 else
2950 anon = false;
2952 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2953 unlock_page_cgroup(pc);
2956 * "charge_statistics" updated event counter. Then, check it.
2957 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2958 * if they exceeds softlimit.
2960 memcg_check_events(memcg, page);
2963 static DEFINE_MUTEX(set_limit_mutex);
2965 #ifdef CONFIG_MEMCG_KMEM
2966 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2968 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2969 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2973 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2974 * in the memcg_cache_params struct.
2976 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2978 struct kmem_cache *cachep;
2980 VM_BUG_ON(p->is_root_cache);
2981 cachep = p->root_cache;
2982 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2985 #ifdef CONFIG_SLABINFO
2986 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2987 struct cftype *cft, struct seq_file *m)
2989 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2990 struct memcg_cache_params *params;
2992 if (!memcg_can_account_kmem(memcg))
2993 return -EIO;
2995 print_slabinfo_header(m);
2997 mutex_lock(&memcg->slab_caches_mutex);
2998 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2999 cache_show(memcg_params_to_cache(params), m);
3000 mutex_unlock(&memcg->slab_caches_mutex);
3002 return 0;
3004 #endif
3006 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3008 struct res_counter *fail_res;
3009 struct mem_cgroup *_memcg;
3010 int ret = 0;
3011 bool may_oom;
3013 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3014 if (ret)
3015 return ret;
3018 * Conditions under which we can wait for the oom_killer. Those are
3019 * the same conditions tested by the core page allocator
3021 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3023 _memcg = memcg;
3024 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3025 &_memcg, may_oom);
3027 if (ret == -EINTR) {
3029 * __mem_cgroup_try_charge() chosed to bypass to root due to
3030 * OOM kill or fatal signal. Since our only options are to
3031 * either fail the allocation or charge it to this cgroup, do
3032 * it as a temporary condition. But we can't fail. From a
3033 * kmem/slab perspective, the cache has already been selected,
3034 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3035 * our minds.
3037 * This condition will only trigger if the task entered
3038 * memcg_charge_kmem in a sane state, but was OOM-killed during
3039 * __mem_cgroup_try_charge() above. Tasks that were already
3040 * dying when the allocation triggers should have been already
3041 * directed to the root cgroup in memcontrol.h
3043 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3044 if (do_swap_account)
3045 res_counter_charge_nofail(&memcg->memsw, size,
3046 &fail_res);
3047 ret = 0;
3048 } else if (ret)
3049 res_counter_uncharge(&memcg->kmem, size);
3051 return ret;
3054 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3056 res_counter_uncharge(&memcg->res, size);
3057 if (do_swap_account)
3058 res_counter_uncharge(&memcg->memsw, size);
3060 /* Not down to 0 */
3061 if (res_counter_uncharge(&memcg->kmem, size))
3062 return;
3065 * Releases a reference taken in kmem_cgroup_css_offline in case
3066 * this last uncharge is racing with the offlining code or it is
3067 * outliving the memcg existence.
3069 * The memory barrier imposed by test&clear is paired with the
3070 * explicit one in memcg_kmem_mark_dead().
3072 if (memcg_kmem_test_and_clear_dead(memcg))
3073 css_put(&memcg->css);
3076 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3078 if (!memcg)
3079 return;
3081 mutex_lock(&memcg->slab_caches_mutex);
3082 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3083 mutex_unlock(&memcg->slab_caches_mutex);
3087 * helper for acessing a memcg's index. It will be used as an index in the
3088 * child cache array in kmem_cache, and also to derive its name. This function
3089 * will return -1 when this is not a kmem-limited memcg.
3091 int memcg_cache_id(struct mem_cgroup *memcg)
3093 return memcg ? memcg->kmemcg_id : -1;
3097 * This ends up being protected by the set_limit mutex, during normal
3098 * operation, because that is its main call site.
3100 * But when we create a new cache, we can call this as well if its parent
3101 * is kmem-limited. That will have to hold set_limit_mutex as well.
3103 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3105 int num, ret;
3107 num = ida_simple_get(&kmem_limited_groups,
3108 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3109 if (num < 0)
3110 return num;
3112 * After this point, kmem_accounted (that we test atomically in
3113 * the beginning of this conditional), is no longer 0. This
3114 * guarantees only one process will set the following boolean
3115 * to true. We don't need test_and_set because we're protected
3116 * by the set_limit_mutex anyway.
3118 memcg_kmem_set_activated(memcg);
3120 ret = memcg_update_all_caches(num+1);
3121 if (ret) {
3122 ida_simple_remove(&kmem_limited_groups, num);
3123 memcg_kmem_clear_activated(memcg);
3124 return ret;
3127 memcg->kmemcg_id = num;
3128 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3129 mutex_init(&memcg->slab_caches_mutex);
3130 return 0;
3133 static size_t memcg_caches_array_size(int num_groups)
3135 ssize_t size;
3136 if (num_groups <= 0)
3137 return 0;
3139 size = 2 * num_groups;
3140 if (size < MEMCG_CACHES_MIN_SIZE)
3141 size = MEMCG_CACHES_MIN_SIZE;
3142 else if (size > MEMCG_CACHES_MAX_SIZE)
3143 size = MEMCG_CACHES_MAX_SIZE;
3145 return size;
3149 * We should update the current array size iff all caches updates succeed. This
3150 * can only be done from the slab side. The slab mutex needs to be held when
3151 * calling this.
3153 void memcg_update_array_size(int num)
3155 if (num > memcg_limited_groups_array_size)
3156 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3159 static void kmem_cache_destroy_work_func(struct work_struct *w);
3161 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3163 struct memcg_cache_params *cur_params = s->memcg_params;
3165 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3167 if (num_groups > memcg_limited_groups_array_size) {
3168 int i;
3169 ssize_t size = memcg_caches_array_size(num_groups);
3171 size *= sizeof(void *);
3172 size += offsetof(struct memcg_cache_params, memcg_caches);
3174 s->memcg_params = kzalloc(size, GFP_KERNEL);
3175 if (!s->memcg_params) {
3176 s->memcg_params = cur_params;
3177 return -ENOMEM;
3180 s->memcg_params->is_root_cache = true;
3183 * There is the chance it will be bigger than
3184 * memcg_limited_groups_array_size, if we failed an allocation
3185 * in a cache, in which case all caches updated before it, will
3186 * have a bigger array.
3188 * But if that is the case, the data after
3189 * memcg_limited_groups_array_size is certainly unused
3191 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3192 if (!cur_params->memcg_caches[i])
3193 continue;
3194 s->memcg_params->memcg_caches[i] =
3195 cur_params->memcg_caches[i];
3199 * Ideally, we would wait until all caches succeed, and only
3200 * then free the old one. But this is not worth the extra
3201 * pointer per-cache we'd have to have for this.
3203 * It is not a big deal if some caches are left with a size
3204 * bigger than the others. And all updates will reset this
3205 * anyway.
3207 kfree(cur_params);
3209 return 0;
3212 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3213 struct kmem_cache *root_cache)
3215 size_t size;
3217 if (!memcg_kmem_enabled())
3218 return 0;
3220 if (!memcg) {
3221 size = offsetof(struct memcg_cache_params, memcg_caches);
3222 size += memcg_limited_groups_array_size * sizeof(void *);
3223 } else
3224 size = sizeof(struct memcg_cache_params);
3226 s->memcg_params = kzalloc(size, GFP_KERNEL);
3227 if (!s->memcg_params)
3228 return -ENOMEM;
3230 if (memcg) {
3231 s->memcg_params->memcg = memcg;
3232 s->memcg_params->root_cache = root_cache;
3233 INIT_WORK(&s->memcg_params->destroy,
3234 kmem_cache_destroy_work_func);
3235 } else
3236 s->memcg_params->is_root_cache = true;
3238 return 0;
3241 void memcg_release_cache(struct kmem_cache *s)
3243 struct kmem_cache *root;
3244 struct mem_cgroup *memcg;
3245 int id;
3248 * This happens, for instance, when a root cache goes away before we
3249 * add any memcg.
3251 if (!s->memcg_params)
3252 return;
3254 if (s->memcg_params->is_root_cache)
3255 goto out;
3257 memcg = s->memcg_params->memcg;
3258 id = memcg_cache_id(memcg);
3260 root = s->memcg_params->root_cache;
3261 root->memcg_params->memcg_caches[id] = NULL;
3263 mutex_lock(&memcg->slab_caches_mutex);
3264 list_del(&s->memcg_params->list);
3265 mutex_unlock(&memcg->slab_caches_mutex);
3267 css_put(&memcg->css);
3268 out:
3269 kfree(s->memcg_params);
3273 * During the creation a new cache, we need to disable our accounting mechanism
3274 * altogether. This is true even if we are not creating, but rather just
3275 * enqueing new caches to be created.
3277 * This is because that process will trigger allocations; some visible, like
3278 * explicit kmallocs to auxiliary data structures, name strings and internal
3279 * cache structures; some well concealed, like INIT_WORK() that can allocate
3280 * objects during debug.
3282 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3283 * to it. This may not be a bounded recursion: since the first cache creation
3284 * failed to complete (waiting on the allocation), we'll just try to create the
3285 * cache again, failing at the same point.
3287 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3288 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3289 * inside the following two functions.
3291 static inline void memcg_stop_kmem_account(void)
3293 VM_BUG_ON(!current->mm);
3294 current->memcg_kmem_skip_account++;
3297 static inline void memcg_resume_kmem_account(void)
3299 VM_BUG_ON(!current->mm);
3300 current->memcg_kmem_skip_account--;
3303 static void kmem_cache_destroy_work_func(struct work_struct *w)
3305 struct kmem_cache *cachep;
3306 struct memcg_cache_params *p;
3308 p = container_of(w, struct memcg_cache_params, destroy);
3310 cachep = memcg_params_to_cache(p);
3313 * If we get down to 0 after shrink, we could delete right away.
3314 * However, memcg_release_pages() already puts us back in the workqueue
3315 * in that case. If we proceed deleting, we'll get a dangling
3316 * reference, and removing the object from the workqueue in that case
3317 * is unnecessary complication. We are not a fast path.
3319 * Note that this case is fundamentally different from racing with
3320 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3321 * kmem_cache_shrink, not only we would be reinserting a dead cache
3322 * into the queue, but doing so from inside the worker racing to
3323 * destroy it.
3325 * So if we aren't down to zero, we'll just schedule a worker and try
3326 * again
3328 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3329 kmem_cache_shrink(cachep);
3330 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3331 return;
3332 } else
3333 kmem_cache_destroy(cachep);
3336 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3338 if (!cachep->memcg_params->dead)
3339 return;
3342 * There are many ways in which we can get here.
3344 * We can get to a memory-pressure situation while the delayed work is
3345 * still pending to run. The vmscan shrinkers can then release all
3346 * cache memory and get us to destruction. If this is the case, we'll
3347 * be executed twice, which is a bug (the second time will execute over
3348 * bogus data). In this case, cancelling the work should be fine.
3350 * But we can also get here from the worker itself, if
3351 * kmem_cache_shrink is enough to shake all the remaining objects and
3352 * get the page count to 0. In this case, we'll deadlock if we try to
3353 * cancel the work (the worker runs with an internal lock held, which
3354 * is the same lock we would hold for cancel_work_sync().)
3356 * Since we can't possibly know who got us here, just refrain from
3357 * running if there is already work pending
3359 if (work_pending(&cachep->memcg_params->destroy))
3360 return;
3362 * We have to defer the actual destroying to a workqueue, because
3363 * we might currently be in a context that cannot sleep.
3365 schedule_work(&cachep->memcg_params->destroy);
3369 * This lock protects updaters, not readers. We want readers to be as fast as
3370 * they can, and they will either see NULL or a valid cache value. Our model
3371 * allow them to see NULL, in which case the root memcg will be selected.
3373 * We need this lock because multiple allocations to the same cache from a non
3374 * will span more than one worker. Only one of them can create the cache.
3376 static DEFINE_MUTEX(memcg_cache_mutex);
3379 * Called with memcg_cache_mutex held
3381 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3382 struct kmem_cache *s)
3384 struct kmem_cache *new;
3385 static char *tmp_name = NULL;
3387 lockdep_assert_held(&memcg_cache_mutex);
3390 * kmem_cache_create_memcg duplicates the given name and
3391 * cgroup_name for this name requires RCU context.
3392 * This static temporary buffer is used to prevent from
3393 * pointless shortliving allocation.
3395 if (!tmp_name) {
3396 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3397 if (!tmp_name)
3398 return NULL;
3401 rcu_read_lock();
3402 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3403 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3404 rcu_read_unlock();
3406 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3407 (s->flags & ~SLAB_PANIC), s->ctor, s);
3409 if (new)
3410 new->allocflags |= __GFP_KMEMCG;
3412 return new;
3415 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3416 struct kmem_cache *cachep)
3418 struct kmem_cache *new_cachep;
3419 int idx;
3421 BUG_ON(!memcg_can_account_kmem(memcg));
3423 idx = memcg_cache_id(memcg);
3425 mutex_lock(&memcg_cache_mutex);
3426 new_cachep = cachep->memcg_params->memcg_caches[idx];
3427 if (new_cachep) {
3428 css_put(&memcg->css);
3429 goto out;
3432 new_cachep = kmem_cache_dup(memcg, cachep);
3433 if (new_cachep == NULL) {
3434 new_cachep = cachep;
3435 css_put(&memcg->css);
3436 goto out;
3439 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3441 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3443 * the readers won't lock, make sure everybody sees the updated value,
3444 * so they won't put stuff in the queue again for no reason
3446 wmb();
3447 out:
3448 mutex_unlock(&memcg_cache_mutex);
3449 return new_cachep;
3452 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3454 struct kmem_cache *c;
3455 int i;
3457 if (!s->memcg_params)
3458 return;
3459 if (!s->memcg_params->is_root_cache)
3460 return;
3463 * If the cache is being destroyed, we trust that there is no one else
3464 * requesting objects from it. Even if there are, the sanity checks in
3465 * kmem_cache_destroy should caught this ill-case.
3467 * Still, we don't want anyone else freeing memcg_caches under our
3468 * noses, which can happen if a new memcg comes to life. As usual,
3469 * we'll take the set_limit_mutex to protect ourselves against this.
3471 mutex_lock(&set_limit_mutex);
3472 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3473 c = s->memcg_params->memcg_caches[i];
3474 if (!c)
3475 continue;
3478 * We will now manually delete the caches, so to avoid races
3479 * we need to cancel all pending destruction workers and
3480 * proceed with destruction ourselves.
3482 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3483 * and that could spawn the workers again: it is likely that
3484 * the cache still have active pages until this very moment.
3485 * This would lead us back to mem_cgroup_destroy_cache.
3487 * But that will not execute at all if the "dead" flag is not
3488 * set, so flip it down to guarantee we are in control.
3490 c->memcg_params->dead = false;
3491 cancel_work_sync(&c->memcg_params->destroy);
3492 kmem_cache_destroy(c);
3494 mutex_unlock(&set_limit_mutex);
3497 struct create_work {
3498 struct mem_cgroup *memcg;
3499 struct kmem_cache *cachep;
3500 struct work_struct work;
3503 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3505 struct kmem_cache *cachep;
3506 struct memcg_cache_params *params;
3508 if (!memcg_kmem_is_active(memcg))
3509 return;
3511 mutex_lock(&memcg->slab_caches_mutex);
3512 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3513 cachep = memcg_params_to_cache(params);
3514 cachep->memcg_params->dead = true;
3515 schedule_work(&cachep->memcg_params->destroy);
3517 mutex_unlock(&memcg->slab_caches_mutex);
3520 static void memcg_create_cache_work_func(struct work_struct *w)
3522 struct create_work *cw;
3524 cw = container_of(w, struct create_work, work);
3525 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3526 kfree(cw);
3530 * Enqueue the creation of a per-memcg kmem_cache.
3532 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3533 struct kmem_cache *cachep)
3535 struct create_work *cw;
3537 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3538 if (cw == NULL) {
3539 css_put(&memcg->css);
3540 return;
3543 cw->memcg = memcg;
3544 cw->cachep = cachep;
3546 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3547 schedule_work(&cw->work);
3550 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3551 struct kmem_cache *cachep)
3554 * We need to stop accounting when we kmalloc, because if the
3555 * corresponding kmalloc cache is not yet created, the first allocation
3556 * in __memcg_create_cache_enqueue will recurse.
3558 * However, it is better to enclose the whole function. Depending on
3559 * the debugging options enabled, INIT_WORK(), for instance, can
3560 * trigger an allocation. This too, will make us recurse. Because at
3561 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3562 * the safest choice is to do it like this, wrapping the whole function.
3564 memcg_stop_kmem_account();
3565 __memcg_create_cache_enqueue(memcg, cachep);
3566 memcg_resume_kmem_account();
3569 * Return the kmem_cache we're supposed to use for a slab allocation.
3570 * We try to use the current memcg's version of the cache.
3572 * If the cache does not exist yet, if we are the first user of it,
3573 * we either create it immediately, if possible, or create it asynchronously
3574 * in a workqueue.
3575 * In the latter case, we will let the current allocation go through with
3576 * the original cache.
3578 * Can't be called in interrupt context or from kernel threads.
3579 * This function needs to be called with rcu_read_lock() held.
3581 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3582 gfp_t gfp)
3584 struct mem_cgroup *memcg;
3585 int idx;
3587 VM_BUG_ON(!cachep->memcg_params);
3588 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3590 if (!current->mm || current->memcg_kmem_skip_account)
3591 return cachep;
3593 rcu_read_lock();
3594 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3596 if (!memcg_can_account_kmem(memcg))
3597 goto out;
3599 idx = memcg_cache_id(memcg);
3602 * barrier to mare sure we're always seeing the up to date value. The
3603 * code updating memcg_caches will issue a write barrier to match this.
3605 read_barrier_depends();
3606 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3607 cachep = cachep->memcg_params->memcg_caches[idx];
3608 goto out;
3611 /* The corresponding put will be done in the workqueue. */
3612 if (!css_tryget(&memcg->css))
3613 goto out;
3614 rcu_read_unlock();
3617 * If we are in a safe context (can wait, and not in interrupt
3618 * context), we could be be predictable and return right away.
3619 * This would guarantee that the allocation being performed
3620 * already belongs in the new cache.
3622 * However, there are some clashes that can arrive from locking.
3623 * For instance, because we acquire the slab_mutex while doing
3624 * kmem_cache_dup, this means no further allocation could happen
3625 * with the slab_mutex held.
3627 * Also, because cache creation issue get_online_cpus(), this
3628 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3629 * that ends up reversed during cpu hotplug. (cpuset allocates
3630 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3631 * better to defer everything.
3633 memcg_create_cache_enqueue(memcg, cachep);
3634 return cachep;
3635 out:
3636 rcu_read_unlock();
3637 return cachep;
3639 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3642 * We need to verify if the allocation against current->mm->owner's memcg is
3643 * possible for the given order. But the page is not allocated yet, so we'll
3644 * need a further commit step to do the final arrangements.
3646 * It is possible for the task to switch cgroups in this mean time, so at
3647 * commit time, we can't rely on task conversion any longer. We'll then use
3648 * the handle argument to return to the caller which cgroup we should commit
3649 * against. We could also return the memcg directly and avoid the pointer
3650 * passing, but a boolean return value gives better semantics considering
3651 * the compiled-out case as well.
3653 * Returning true means the allocation is possible.
3655 bool
3656 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3658 struct mem_cgroup *memcg;
3659 int ret;
3661 *_memcg = NULL;
3664 * Disabling accounting is only relevant for some specific memcg
3665 * internal allocations. Therefore we would initially not have such
3666 * check here, since direct calls to the page allocator that are marked
3667 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3668 * concerned with cache allocations, and by having this test at
3669 * memcg_kmem_get_cache, we are already able to relay the allocation to
3670 * the root cache and bypass the memcg cache altogether.
3672 * There is one exception, though: the SLUB allocator does not create
3673 * large order caches, but rather service large kmallocs directly from
3674 * the page allocator. Therefore, the following sequence when backed by
3675 * the SLUB allocator:
3677 * memcg_stop_kmem_account();
3678 * kmalloc(<large_number>)
3679 * memcg_resume_kmem_account();
3681 * would effectively ignore the fact that we should skip accounting,
3682 * since it will drive us directly to this function without passing
3683 * through the cache selector memcg_kmem_get_cache. Such large
3684 * allocations are extremely rare but can happen, for instance, for the
3685 * cache arrays. We bring this test here.
3687 if (!current->mm || current->memcg_kmem_skip_account)
3688 return true;
3690 memcg = try_get_mem_cgroup_from_mm(current->mm);
3693 * very rare case described in mem_cgroup_from_task. Unfortunately there
3694 * isn't much we can do without complicating this too much, and it would
3695 * be gfp-dependent anyway. Just let it go
3697 if (unlikely(!memcg))
3698 return true;
3700 if (!memcg_can_account_kmem(memcg)) {
3701 css_put(&memcg->css);
3702 return true;
3705 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3706 if (!ret)
3707 *_memcg = memcg;
3709 css_put(&memcg->css);
3710 return (ret == 0);
3713 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3714 int order)
3716 struct page_cgroup *pc;
3718 VM_BUG_ON(mem_cgroup_is_root(memcg));
3720 /* The page allocation failed. Revert */
3721 if (!page) {
3722 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3723 return;
3726 pc = lookup_page_cgroup(page);
3727 lock_page_cgroup(pc);
3728 pc->mem_cgroup = memcg;
3729 SetPageCgroupUsed(pc);
3730 unlock_page_cgroup(pc);
3733 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3735 struct mem_cgroup *memcg = NULL;
3736 struct page_cgroup *pc;
3739 pc = lookup_page_cgroup(page);
3741 * Fast unlocked return. Theoretically might have changed, have to
3742 * check again after locking.
3744 if (!PageCgroupUsed(pc))
3745 return;
3747 lock_page_cgroup(pc);
3748 if (PageCgroupUsed(pc)) {
3749 memcg = pc->mem_cgroup;
3750 ClearPageCgroupUsed(pc);
3752 unlock_page_cgroup(pc);
3755 * We trust that only if there is a memcg associated with the page, it
3756 * is a valid allocation
3758 if (!memcg)
3759 return;
3761 VM_BUG_ON(mem_cgroup_is_root(memcg));
3762 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3764 #else
3765 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3768 #endif /* CONFIG_MEMCG_KMEM */
3770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3772 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3774 * Because tail pages are not marked as "used", set it. We're under
3775 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3776 * charge/uncharge will be never happen and move_account() is done under
3777 * compound_lock(), so we don't have to take care of races.
3779 void mem_cgroup_split_huge_fixup(struct page *head)
3781 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3782 struct page_cgroup *pc;
3783 struct mem_cgroup *memcg;
3784 int i;
3786 if (mem_cgroup_disabled())
3787 return;
3789 memcg = head_pc->mem_cgroup;
3790 for (i = 1; i < HPAGE_PMD_NR; i++) {
3791 pc = head_pc + i;
3792 pc->mem_cgroup = memcg;
3793 smp_wmb();/* see __commit_charge() */
3794 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3796 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3797 HPAGE_PMD_NR);
3799 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3801 static inline
3802 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3803 struct mem_cgroup *to,
3804 unsigned int nr_pages,
3805 enum mem_cgroup_stat_index idx)
3807 /* Update stat data for mem_cgroup */
3808 preempt_disable();
3809 WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3810 __this_cpu_add(from->stat->count[idx], -nr_pages);
3811 __this_cpu_add(to->stat->count[idx], nr_pages);
3812 preempt_enable();
3816 * mem_cgroup_move_account - move account of the page
3817 * @page: the page
3818 * @nr_pages: number of regular pages (>1 for huge pages)
3819 * @pc: page_cgroup of the page.
3820 * @from: mem_cgroup which the page is moved from.
3821 * @to: mem_cgroup which the page is moved to. @from != @to.
3823 * The caller must confirm following.
3824 * - page is not on LRU (isolate_page() is useful.)
3825 * - compound_lock is held when nr_pages > 1
3827 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3828 * from old cgroup.
3830 static int mem_cgroup_move_account(struct page *page,
3831 unsigned int nr_pages,
3832 struct page_cgroup *pc,
3833 struct mem_cgroup *from,
3834 struct mem_cgroup *to)
3836 unsigned long flags;
3837 int ret;
3838 bool anon = PageAnon(page);
3840 VM_BUG_ON(from == to);
3841 VM_BUG_ON(PageLRU(page));
3843 * The page is isolated from LRU. So, collapse function
3844 * will not handle this page. But page splitting can happen.
3845 * Do this check under compound_page_lock(). The caller should
3846 * hold it.
3848 ret = -EBUSY;
3849 if (nr_pages > 1 && !PageTransHuge(page))
3850 goto out;
3852 lock_page_cgroup(pc);
3854 ret = -EINVAL;
3855 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3856 goto unlock;
3858 move_lock_mem_cgroup(from, &flags);
3860 if (!anon && page_mapped(page))
3861 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3862 MEM_CGROUP_STAT_FILE_MAPPED);
3864 if (PageWriteback(page))
3865 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3866 MEM_CGROUP_STAT_WRITEBACK);
3868 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3870 /* caller should have done css_get */
3871 pc->mem_cgroup = to;
3872 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3873 move_unlock_mem_cgroup(from, &flags);
3874 ret = 0;
3875 unlock:
3876 unlock_page_cgroup(pc);
3878 * check events
3880 memcg_check_events(to, page);
3881 memcg_check_events(from, page);
3882 out:
3883 return ret;
3887 * mem_cgroup_move_parent - moves page to the parent group
3888 * @page: the page to move
3889 * @pc: page_cgroup of the page
3890 * @child: page's cgroup
3892 * move charges to its parent or the root cgroup if the group has no
3893 * parent (aka use_hierarchy==0).
3894 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3895 * mem_cgroup_move_account fails) the failure is always temporary and
3896 * it signals a race with a page removal/uncharge or migration. In the
3897 * first case the page is on the way out and it will vanish from the LRU
3898 * on the next attempt and the call should be retried later.
3899 * Isolation from the LRU fails only if page has been isolated from
3900 * the LRU since we looked at it and that usually means either global
3901 * reclaim or migration going on. The page will either get back to the
3902 * LRU or vanish.
3903 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3904 * (!PageCgroupUsed) or moved to a different group. The page will
3905 * disappear in the next attempt.
3907 static int mem_cgroup_move_parent(struct page *page,
3908 struct page_cgroup *pc,
3909 struct mem_cgroup *child)
3911 struct mem_cgroup *parent;
3912 unsigned int nr_pages;
3913 unsigned long uninitialized_var(flags);
3914 int ret;
3916 VM_BUG_ON(mem_cgroup_is_root(child));
3918 ret = -EBUSY;
3919 if (!get_page_unless_zero(page))
3920 goto out;
3921 if (isolate_lru_page(page))
3922 goto put;
3924 nr_pages = hpage_nr_pages(page);
3926 parent = parent_mem_cgroup(child);
3928 * If no parent, move charges to root cgroup.
3930 if (!parent)
3931 parent = root_mem_cgroup;
3933 if (nr_pages > 1) {
3934 VM_BUG_ON(!PageTransHuge(page));
3935 flags = compound_lock_irqsave(page);
3938 ret = mem_cgroup_move_account(page, nr_pages,
3939 pc, child, parent);
3940 if (!ret)
3941 __mem_cgroup_cancel_local_charge(child, nr_pages);
3943 if (nr_pages > 1)
3944 compound_unlock_irqrestore(page, flags);
3945 putback_lru_page(page);
3946 put:
3947 put_page(page);
3948 out:
3949 return ret;
3953 * Charge the memory controller for page usage.
3954 * Return
3955 * 0 if the charge was successful
3956 * < 0 if the cgroup is over its limit
3958 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3959 gfp_t gfp_mask, enum charge_type ctype)
3961 struct mem_cgroup *memcg = NULL;
3962 unsigned int nr_pages = 1;
3963 bool oom = true;
3964 int ret;
3966 if (PageTransHuge(page)) {
3967 nr_pages <<= compound_order(page);
3968 VM_BUG_ON(!PageTransHuge(page));
3970 * Never OOM-kill a process for a huge page. The
3971 * fault handler will fall back to regular pages.
3973 oom = false;
3976 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3977 if (ret == -ENOMEM)
3978 return ret;
3979 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3980 return 0;
3983 int mem_cgroup_newpage_charge(struct page *page,
3984 struct mm_struct *mm, gfp_t gfp_mask)
3986 if (mem_cgroup_disabled())
3987 return 0;
3988 VM_BUG_ON(page_mapped(page));
3989 VM_BUG_ON(page->mapping && !PageAnon(page));
3990 VM_BUG_ON(!mm);
3991 return mem_cgroup_charge_common(page, mm, gfp_mask,
3992 MEM_CGROUP_CHARGE_TYPE_ANON);
3996 * While swap-in, try_charge -> commit or cancel, the page is locked.
3997 * And when try_charge() successfully returns, one refcnt to memcg without
3998 * struct page_cgroup is acquired. This refcnt will be consumed by
3999 * "commit()" or removed by "cancel()"
4001 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4002 struct page *page,
4003 gfp_t mask,
4004 struct mem_cgroup **memcgp)
4006 struct mem_cgroup *memcg;
4007 struct page_cgroup *pc;
4008 int ret;
4010 pc = lookup_page_cgroup(page);
4012 * Every swap fault against a single page tries to charge the
4013 * page, bail as early as possible. shmem_unuse() encounters
4014 * already charged pages, too. The USED bit is protected by
4015 * the page lock, which serializes swap cache removal, which
4016 * in turn serializes uncharging.
4018 if (PageCgroupUsed(pc))
4019 return 0;
4020 if (!do_swap_account)
4021 goto charge_cur_mm;
4022 memcg = try_get_mem_cgroup_from_page(page);
4023 if (!memcg)
4024 goto charge_cur_mm;
4025 *memcgp = memcg;
4026 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4027 css_put(&memcg->css);
4028 if (ret == -EINTR)
4029 ret = 0;
4030 return ret;
4031 charge_cur_mm:
4032 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4033 if (ret == -EINTR)
4034 ret = 0;
4035 return ret;
4038 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4039 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4041 *memcgp = NULL;
4042 if (mem_cgroup_disabled())
4043 return 0;
4045 * A racing thread's fault, or swapoff, may have already
4046 * updated the pte, and even removed page from swap cache: in
4047 * those cases unuse_pte()'s pte_same() test will fail; but
4048 * there's also a KSM case which does need to charge the page.
4050 if (!PageSwapCache(page)) {
4051 int ret;
4053 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4054 if (ret == -EINTR)
4055 ret = 0;
4056 return ret;
4058 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4061 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4063 if (mem_cgroup_disabled())
4064 return;
4065 if (!memcg)
4066 return;
4067 __mem_cgroup_cancel_charge(memcg, 1);
4070 static void
4071 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4072 enum charge_type ctype)
4074 if (mem_cgroup_disabled())
4075 return;
4076 if (!memcg)
4077 return;
4079 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4081 * Now swap is on-memory. This means this page may be
4082 * counted both as mem and swap....double count.
4083 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4084 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4085 * may call delete_from_swap_cache() before reach here.
4087 if (do_swap_account && PageSwapCache(page)) {
4088 swp_entry_t ent = {.val = page_private(page)};
4089 mem_cgroup_uncharge_swap(ent);
4093 void mem_cgroup_commit_charge_swapin(struct page *page,
4094 struct mem_cgroup *memcg)
4096 __mem_cgroup_commit_charge_swapin(page, memcg,
4097 MEM_CGROUP_CHARGE_TYPE_ANON);
4100 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4101 gfp_t gfp_mask)
4103 struct mem_cgroup *memcg = NULL;
4104 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4105 int ret;
4107 if (mem_cgroup_disabled())
4108 return 0;
4109 if (PageCompound(page))
4110 return 0;
4112 if (!PageSwapCache(page))
4113 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4114 else { /* page is swapcache/shmem */
4115 ret = __mem_cgroup_try_charge_swapin(mm, page,
4116 gfp_mask, &memcg);
4117 if (!ret)
4118 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4120 return ret;
4123 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4124 unsigned int nr_pages,
4125 const enum charge_type ctype)
4127 struct memcg_batch_info *batch = NULL;
4128 bool uncharge_memsw = true;
4130 /* If swapout, usage of swap doesn't decrease */
4131 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4132 uncharge_memsw = false;
4134 batch = &current->memcg_batch;
4136 * In usual, we do css_get() when we remember memcg pointer.
4137 * But in this case, we keep res->usage until end of a series of
4138 * uncharges. Then, it's ok to ignore memcg's refcnt.
4140 if (!batch->memcg)
4141 batch->memcg = memcg;
4143 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4144 * In those cases, all pages freed continuously can be expected to be in
4145 * the same cgroup and we have chance to coalesce uncharges.
4146 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4147 * because we want to do uncharge as soon as possible.
4150 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4151 goto direct_uncharge;
4153 if (nr_pages > 1)
4154 goto direct_uncharge;
4157 * In typical case, batch->memcg == mem. This means we can
4158 * merge a series of uncharges to an uncharge of res_counter.
4159 * If not, we uncharge res_counter ony by one.
4161 if (batch->memcg != memcg)
4162 goto direct_uncharge;
4163 /* remember freed charge and uncharge it later */
4164 batch->nr_pages++;
4165 if (uncharge_memsw)
4166 batch->memsw_nr_pages++;
4167 return;
4168 direct_uncharge:
4169 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4170 if (uncharge_memsw)
4171 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4172 if (unlikely(batch->memcg != memcg))
4173 memcg_oom_recover(memcg);
4177 * uncharge if !page_mapped(page)
4179 static struct mem_cgroup *
4180 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4181 bool end_migration)
4183 struct mem_cgroup *memcg = NULL;
4184 unsigned int nr_pages = 1;
4185 struct page_cgroup *pc;
4186 bool anon;
4188 if (mem_cgroup_disabled())
4189 return NULL;
4191 if (PageTransHuge(page)) {
4192 nr_pages <<= compound_order(page);
4193 VM_BUG_ON(!PageTransHuge(page));
4196 * Check if our page_cgroup is valid
4198 pc = lookup_page_cgroup(page);
4199 if (unlikely(!PageCgroupUsed(pc)))
4200 return NULL;
4202 lock_page_cgroup(pc);
4204 memcg = pc->mem_cgroup;
4206 if (!PageCgroupUsed(pc))
4207 goto unlock_out;
4209 anon = PageAnon(page);
4211 switch (ctype) {
4212 case MEM_CGROUP_CHARGE_TYPE_ANON:
4214 * Generally PageAnon tells if it's the anon statistics to be
4215 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4216 * used before page reached the stage of being marked PageAnon.
4218 anon = true;
4219 /* fallthrough */
4220 case MEM_CGROUP_CHARGE_TYPE_DROP:
4221 /* See mem_cgroup_prepare_migration() */
4222 if (page_mapped(page))
4223 goto unlock_out;
4225 * Pages under migration may not be uncharged. But
4226 * end_migration() /must/ be the one uncharging the
4227 * unused post-migration page and so it has to call
4228 * here with the migration bit still set. See the
4229 * res_counter handling below.
4231 if (!end_migration && PageCgroupMigration(pc))
4232 goto unlock_out;
4233 break;
4234 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4235 if (!PageAnon(page)) { /* Shared memory */
4236 if (page->mapping && !page_is_file_cache(page))
4237 goto unlock_out;
4238 } else if (page_mapped(page)) /* Anon */
4239 goto unlock_out;
4240 break;
4241 default:
4242 break;
4245 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4247 ClearPageCgroupUsed(pc);
4249 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4250 * freed from LRU. This is safe because uncharged page is expected not
4251 * to be reused (freed soon). Exception is SwapCache, it's handled by
4252 * special functions.
4255 unlock_page_cgroup(pc);
4257 * even after unlock, we have memcg->res.usage here and this memcg
4258 * will never be freed, so it's safe to call css_get().
4260 memcg_check_events(memcg, page);
4261 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4262 mem_cgroup_swap_statistics(memcg, true);
4263 css_get(&memcg->css);
4266 * Migration does not charge the res_counter for the
4267 * replacement page, so leave it alone when phasing out the
4268 * page that is unused after the migration.
4270 if (!end_migration && !mem_cgroup_is_root(memcg))
4271 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4273 return memcg;
4275 unlock_out:
4276 unlock_page_cgroup(pc);
4277 return NULL;
4280 void mem_cgroup_uncharge_page(struct page *page)
4282 /* early check. */
4283 if (page_mapped(page))
4284 return;
4285 VM_BUG_ON(page->mapping && !PageAnon(page));
4287 * If the page is in swap cache, uncharge should be deferred
4288 * to the swap path, which also properly accounts swap usage
4289 * and handles memcg lifetime.
4291 * Note that this check is not stable and reclaim may add the
4292 * page to swap cache at any time after this. However, if the
4293 * page is not in swap cache by the time page->mapcount hits
4294 * 0, there won't be any page table references to the swap
4295 * slot, and reclaim will free it and not actually write the
4296 * page to disk.
4298 if (PageSwapCache(page))
4299 return;
4300 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4303 void mem_cgroup_uncharge_cache_page(struct page *page)
4305 VM_BUG_ON(page_mapped(page));
4306 VM_BUG_ON(page->mapping);
4307 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4311 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4312 * In that cases, pages are freed continuously and we can expect pages
4313 * are in the same memcg. All these calls itself limits the number of
4314 * pages freed at once, then uncharge_start/end() is called properly.
4315 * This may be called prural(2) times in a context,
4318 void mem_cgroup_uncharge_start(void)
4320 current->memcg_batch.do_batch++;
4321 /* We can do nest. */
4322 if (current->memcg_batch.do_batch == 1) {
4323 current->memcg_batch.memcg = NULL;
4324 current->memcg_batch.nr_pages = 0;
4325 current->memcg_batch.memsw_nr_pages = 0;
4329 void mem_cgroup_uncharge_end(void)
4331 struct memcg_batch_info *batch = &current->memcg_batch;
4333 if (!batch->do_batch)
4334 return;
4336 batch->do_batch--;
4337 if (batch->do_batch) /* If stacked, do nothing. */
4338 return;
4340 if (!batch->memcg)
4341 return;
4343 * This "batch->memcg" is valid without any css_get/put etc...
4344 * bacause we hide charges behind us.
4346 if (batch->nr_pages)
4347 res_counter_uncharge(&batch->memcg->res,
4348 batch->nr_pages * PAGE_SIZE);
4349 if (batch->memsw_nr_pages)
4350 res_counter_uncharge(&batch->memcg->memsw,
4351 batch->memsw_nr_pages * PAGE_SIZE);
4352 memcg_oom_recover(batch->memcg);
4353 /* forget this pointer (for sanity check) */
4354 batch->memcg = NULL;
4357 #ifdef CONFIG_SWAP
4359 * called after __delete_from_swap_cache() and drop "page" account.
4360 * memcg information is recorded to swap_cgroup of "ent"
4362 void
4363 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4365 struct mem_cgroup *memcg;
4366 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4368 if (!swapout) /* this was a swap cache but the swap is unused ! */
4369 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4371 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4374 * record memcg information, if swapout && memcg != NULL,
4375 * css_get() was called in uncharge().
4377 if (do_swap_account && swapout && memcg)
4378 swap_cgroup_record(ent, css_id(&memcg->css));
4380 #endif
4382 #ifdef CONFIG_MEMCG_SWAP
4384 * called from swap_entry_free(). remove record in swap_cgroup and
4385 * uncharge "memsw" account.
4387 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4389 struct mem_cgroup *memcg;
4390 unsigned short id;
4392 if (!do_swap_account)
4393 return;
4395 id = swap_cgroup_record(ent, 0);
4396 rcu_read_lock();
4397 memcg = mem_cgroup_lookup(id);
4398 if (memcg) {
4400 * We uncharge this because swap is freed.
4401 * This memcg can be obsolete one. We avoid calling css_tryget
4403 if (!mem_cgroup_is_root(memcg))
4404 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4405 mem_cgroup_swap_statistics(memcg, false);
4406 css_put(&memcg->css);
4408 rcu_read_unlock();
4412 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4413 * @entry: swap entry to be moved
4414 * @from: mem_cgroup which the entry is moved from
4415 * @to: mem_cgroup which the entry is moved to
4417 * It succeeds only when the swap_cgroup's record for this entry is the same
4418 * as the mem_cgroup's id of @from.
4420 * Returns 0 on success, -EINVAL on failure.
4422 * The caller must have charged to @to, IOW, called res_counter_charge() about
4423 * both res and memsw, and called css_get().
4425 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4426 struct mem_cgroup *from, struct mem_cgroup *to)
4428 unsigned short old_id, new_id;
4430 old_id = css_id(&from->css);
4431 new_id = css_id(&to->css);
4433 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4434 mem_cgroup_swap_statistics(from, false);
4435 mem_cgroup_swap_statistics(to, true);
4437 * This function is only called from task migration context now.
4438 * It postpones res_counter and refcount handling till the end
4439 * of task migration(mem_cgroup_clear_mc()) for performance
4440 * improvement. But we cannot postpone css_get(to) because if
4441 * the process that has been moved to @to does swap-in, the
4442 * refcount of @to might be decreased to 0.
4444 * We are in attach() phase, so the cgroup is guaranteed to be
4445 * alive, so we can just call css_get().
4447 css_get(&to->css);
4448 return 0;
4450 return -EINVAL;
4452 #else
4453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4454 struct mem_cgroup *from, struct mem_cgroup *to)
4456 return -EINVAL;
4458 #endif
4461 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4462 * page belongs to.
4464 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4465 struct mem_cgroup **memcgp)
4467 struct mem_cgroup *memcg = NULL;
4468 unsigned int nr_pages = 1;
4469 struct page_cgroup *pc;
4470 enum charge_type ctype;
4472 *memcgp = NULL;
4474 if (mem_cgroup_disabled())
4475 return;
4477 if (PageTransHuge(page))
4478 nr_pages <<= compound_order(page);
4480 pc = lookup_page_cgroup(page);
4481 lock_page_cgroup(pc);
4482 if (PageCgroupUsed(pc)) {
4483 memcg = pc->mem_cgroup;
4484 css_get(&memcg->css);
4486 * At migrating an anonymous page, its mapcount goes down
4487 * to 0 and uncharge() will be called. But, even if it's fully
4488 * unmapped, migration may fail and this page has to be
4489 * charged again. We set MIGRATION flag here and delay uncharge
4490 * until end_migration() is called
4492 * Corner Case Thinking
4493 * A)
4494 * When the old page was mapped as Anon and it's unmap-and-freed
4495 * while migration was ongoing.
4496 * If unmap finds the old page, uncharge() of it will be delayed
4497 * until end_migration(). If unmap finds a new page, it's
4498 * uncharged when it make mapcount to be 1->0. If unmap code
4499 * finds swap_migration_entry, the new page will not be mapped
4500 * and end_migration() will find it(mapcount==0).
4502 * B)
4503 * When the old page was mapped but migraion fails, the kernel
4504 * remaps it. A charge for it is kept by MIGRATION flag even
4505 * if mapcount goes down to 0. We can do remap successfully
4506 * without charging it again.
4508 * C)
4509 * The "old" page is under lock_page() until the end of
4510 * migration, so, the old page itself will not be swapped-out.
4511 * If the new page is swapped out before end_migraton, our
4512 * hook to usual swap-out path will catch the event.
4514 if (PageAnon(page))
4515 SetPageCgroupMigration(pc);
4517 unlock_page_cgroup(pc);
4519 * If the page is not charged at this point,
4520 * we return here.
4522 if (!memcg)
4523 return;
4525 *memcgp = memcg;
4527 * We charge new page before it's used/mapped. So, even if unlock_page()
4528 * is called before end_migration, we can catch all events on this new
4529 * page. In the case new page is migrated but not remapped, new page's
4530 * mapcount will be finally 0 and we call uncharge in end_migration().
4532 if (PageAnon(page))
4533 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4534 else
4535 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4537 * The page is committed to the memcg, but it's not actually
4538 * charged to the res_counter since we plan on replacing the
4539 * old one and only one page is going to be left afterwards.
4541 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4544 /* remove redundant charge if migration failed*/
4545 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4546 struct page *oldpage, struct page *newpage, bool migration_ok)
4548 struct page *used, *unused;
4549 struct page_cgroup *pc;
4550 bool anon;
4552 if (!memcg)
4553 return;
4555 if (!migration_ok) {
4556 used = oldpage;
4557 unused = newpage;
4558 } else {
4559 used = newpage;
4560 unused = oldpage;
4562 anon = PageAnon(used);
4563 __mem_cgroup_uncharge_common(unused,
4564 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4565 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4566 true);
4567 css_put(&memcg->css);
4569 * We disallowed uncharge of pages under migration because mapcount
4570 * of the page goes down to zero, temporarly.
4571 * Clear the flag and check the page should be charged.
4573 pc = lookup_page_cgroup(oldpage);
4574 lock_page_cgroup(pc);
4575 ClearPageCgroupMigration(pc);
4576 unlock_page_cgroup(pc);
4579 * If a page is a file cache, radix-tree replacement is very atomic
4580 * and we can skip this check. When it was an Anon page, its mapcount
4581 * goes down to 0. But because we added MIGRATION flage, it's not
4582 * uncharged yet. There are several case but page->mapcount check
4583 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4584 * check. (see prepare_charge() also)
4586 if (anon)
4587 mem_cgroup_uncharge_page(used);
4591 * At replace page cache, newpage is not under any memcg but it's on
4592 * LRU. So, this function doesn't touch res_counter but handles LRU
4593 * in correct way. Both pages are locked so we cannot race with uncharge.
4595 void mem_cgroup_replace_page_cache(struct page *oldpage,
4596 struct page *newpage)
4598 struct mem_cgroup *memcg = NULL;
4599 struct page_cgroup *pc;
4600 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4602 if (mem_cgroup_disabled())
4603 return;
4605 pc = lookup_page_cgroup(oldpage);
4606 /* fix accounting on old pages */
4607 lock_page_cgroup(pc);
4608 if (PageCgroupUsed(pc)) {
4609 memcg = pc->mem_cgroup;
4610 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4611 ClearPageCgroupUsed(pc);
4613 unlock_page_cgroup(pc);
4616 * When called from shmem_replace_page(), in some cases the
4617 * oldpage has already been charged, and in some cases not.
4619 if (!memcg)
4620 return;
4622 * Even if newpage->mapping was NULL before starting replacement,
4623 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4624 * LRU while we overwrite pc->mem_cgroup.
4626 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4629 #ifdef CONFIG_DEBUG_VM
4630 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4632 struct page_cgroup *pc;
4634 pc = lookup_page_cgroup(page);
4636 * Can be NULL while feeding pages into the page allocator for
4637 * the first time, i.e. during boot or memory hotplug;
4638 * or when mem_cgroup_disabled().
4640 if (likely(pc) && PageCgroupUsed(pc))
4641 return pc;
4642 return NULL;
4645 bool mem_cgroup_bad_page_check(struct page *page)
4647 if (mem_cgroup_disabled())
4648 return false;
4650 return lookup_page_cgroup_used(page) != NULL;
4653 void mem_cgroup_print_bad_page(struct page *page)
4655 struct page_cgroup *pc;
4657 pc = lookup_page_cgroup_used(page);
4658 if (pc) {
4659 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4660 pc, pc->flags, pc->mem_cgroup);
4663 #endif
4665 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4666 unsigned long long val)
4668 int retry_count;
4669 u64 memswlimit, memlimit;
4670 int ret = 0;
4671 int children = mem_cgroup_count_children(memcg);
4672 u64 curusage, oldusage;
4673 int enlarge;
4676 * For keeping hierarchical_reclaim simple, how long we should retry
4677 * is depends on callers. We set our retry-count to be function
4678 * of # of children which we should visit in this loop.
4680 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4682 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4684 enlarge = 0;
4685 while (retry_count) {
4686 if (signal_pending(current)) {
4687 ret = -EINTR;
4688 break;
4691 * Rather than hide all in some function, I do this in
4692 * open coded manner. You see what this really does.
4693 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4695 mutex_lock(&set_limit_mutex);
4696 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4697 if (memswlimit < val) {
4698 ret = -EINVAL;
4699 mutex_unlock(&set_limit_mutex);
4700 break;
4703 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4704 if (memlimit < val)
4705 enlarge = 1;
4707 ret = res_counter_set_limit(&memcg->res, val);
4708 if (!ret) {
4709 if (memswlimit == val)
4710 memcg->memsw_is_minimum = true;
4711 else
4712 memcg->memsw_is_minimum = false;
4714 mutex_unlock(&set_limit_mutex);
4716 if (!ret)
4717 break;
4719 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4720 MEM_CGROUP_RECLAIM_SHRINK);
4721 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4722 /* Usage is reduced ? */
4723 if (curusage >= oldusage)
4724 retry_count--;
4725 else
4726 oldusage = curusage;
4728 if (!ret && enlarge)
4729 memcg_oom_recover(memcg);
4731 return ret;
4734 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4735 unsigned long long val)
4737 int retry_count;
4738 u64 memlimit, memswlimit, oldusage, curusage;
4739 int children = mem_cgroup_count_children(memcg);
4740 int ret = -EBUSY;
4741 int enlarge = 0;
4743 /* see mem_cgroup_resize_res_limit */
4744 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4745 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4746 while (retry_count) {
4747 if (signal_pending(current)) {
4748 ret = -EINTR;
4749 break;
4752 * Rather than hide all in some function, I do this in
4753 * open coded manner. You see what this really does.
4754 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4756 mutex_lock(&set_limit_mutex);
4757 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4758 if (memlimit > val) {
4759 ret = -EINVAL;
4760 mutex_unlock(&set_limit_mutex);
4761 break;
4763 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4764 if (memswlimit < val)
4765 enlarge = 1;
4766 ret = res_counter_set_limit(&memcg->memsw, val);
4767 if (!ret) {
4768 if (memlimit == val)
4769 memcg->memsw_is_minimum = true;
4770 else
4771 memcg->memsw_is_minimum = false;
4773 mutex_unlock(&set_limit_mutex);
4775 if (!ret)
4776 break;
4778 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4779 MEM_CGROUP_RECLAIM_NOSWAP |
4780 MEM_CGROUP_RECLAIM_SHRINK);
4781 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4782 /* Usage is reduced ? */
4783 if (curusage >= oldusage)
4784 retry_count--;
4785 else
4786 oldusage = curusage;
4788 if (!ret && enlarge)
4789 memcg_oom_recover(memcg);
4790 return ret;
4793 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4794 gfp_t gfp_mask,
4795 unsigned long *total_scanned)
4797 unsigned long nr_reclaimed = 0;
4798 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4799 unsigned long reclaimed;
4800 int loop = 0;
4801 struct mem_cgroup_tree_per_zone *mctz;
4802 unsigned long long excess;
4803 unsigned long nr_scanned;
4805 if (order > 0)
4806 return 0;
4808 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4810 * This loop can run a while, specially if mem_cgroup's continuously
4811 * keep exceeding their soft limit and putting the system under
4812 * pressure
4814 do {
4815 if (next_mz)
4816 mz = next_mz;
4817 else
4818 mz = mem_cgroup_largest_soft_limit_node(mctz);
4819 if (!mz)
4820 break;
4822 nr_scanned = 0;
4823 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4824 gfp_mask, &nr_scanned);
4825 nr_reclaimed += reclaimed;
4826 *total_scanned += nr_scanned;
4827 spin_lock(&mctz->lock);
4830 * If we failed to reclaim anything from this memory cgroup
4831 * it is time to move on to the next cgroup
4833 next_mz = NULL;
4834 if (!reclaimed) {
4835 do {
4837 * Loop until we find yet another one.
4839 * By the time we get the soft_limit lock
4840 * again, someone might have aded the
4841 * group back on the RB tree. Iterate to
4842 * make sure we get a different mem.
4843 * mem_cgroup_largest_soft_limit_node returns
4844 * NULL if no other cgroup is present on
4845 * the tree
4847 next_mz =
4848 __mem_cgroup_largest_soft_limit_node(mctz);
4849 if (next_mz == mz)
4850 css_put(&next_mz->memcg->css);
4851 else /* next_mz == NULL or other memcg */
4852 break;
4853 } while (1);
4855 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4856 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4858 * One school of thought says that we should not add
4859 * back the node to the tree if reclaim returns 0.
4860 * But our reclaim could return 0, simply because due
4861 * to priority we are exposing a smaller subset of
4862 * memory to reclaim from. Consider this as a longer
4863 * term TODO.
4865 /* If excess == 0, no tree ops */
4866 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4867 spin_unlock(&mctz->lock);
4868 css_put(&mz->memcg->css);
4869 loop++;
4871 * Could not reclaim anything and there are no more
4872 * mem cgroups to try or we seem to be looping without
4873 * reclaiming anything.
4875 if (!nr_reclaimed &&
4876 (next_mz == NULL ||
4877 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4878 break;
4879 } while (!nr_reclaimed);
4880 if (next_mz)
4881 css_put(&next_mz->memcg->css);
4882 return nr_reclaimed;
4886 * mem_cgroup_force_empty_list - clears LRU of a group
4887 * @memcg: group to clear
4888 * @node: NUMA node
4889 * @zid: zone id
4890 * @lru: lru to to clear
4892 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4893 * reclaim the pages page themselves - pages are moved to the parent (or root)
4894 * group.
4896 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4897 int node, int zid, enum lru_list lru)
4899 struct lruvec *lruvec;
4900 unsigned long flags;
4901 struct list_head *list;
4902 struct page *busy;
4903 struct zone *zone;
4905 zone = &NODE_DATA(node)->node_zones[zid];
4906 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4907 list = &lruvec->lists[lru];
4909 busy = NULL;
4910 do {
4911 struct page_cgroup *pc;
4912 struct page *page;
4914 spin_lock_irqsave(&zone->lru_lock, flags);
4915 if (list_empty(list)) {
4916 spin_unlock_irqrestore(&zone->lru_lock, flags);
4917 break;
4919 page = list_entry(list->prev, struct page, lru);
4920 if (busy == page) {
4921 list_move(&page->lru, list);
4922 busy = NULL;
4923 spin_unlock_irqrestore(&zone->lru_lock, flags);
4924 continue;
4926 spin_unlock_irqrestore(&zone->lru_lock, flags);
4928 pc = lookup_page_cgroup(page);
4930 if (mem_cgroup_move_parent(page, pc, memcg)) {
4931 /* found lock contention or "pc" is obsolete. */
4932 busy = page;
4933 cond_resched();
4934 } else
4935 busy = NULL;
4936 } while (!list_empty(list));
4940 * make mem_cgroup's charge to be 0 if there is no task by moving
4941 * all the charges and pages to the parent.
4942 * This enables deleting this mem_cgroup.
4944 * Caller is responsible for holding css reference on the memcg.
4946 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4948 int node, zid;
4949 u64 usage;
4951 do {
4952 /* This is for making all *used* pages to be on LRU. */
4953 lru_add_drain_all();
4954 drain_all_stock_sync(memcg);
4955 mem_cgroup_start_move(memcg);
4956 for_each_node_state(node, N_MEMORY) {
4957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4958 enum lru_list lru;
4959 for_each_lru(lru) {
4960 mem_cgroup_force_empty_list(memcg,
4961 node, zid, lru);
4965 mem_cgroup_end_move(memcg);
4966 memcg_oom_recover(memcg);
4967 cond_resched();
4970 * Kernel memory may not necessarily be trackable to a specific
4971 * process. So they are not migrated, and therefore we can't
4972 * expect their value to drop to 0 here.
4973 * Having res filled up with kmem only is enough.
4975 * This is a safety check because mem_cgroup_force_empty_list
4976 * could have raced with mem_cgroup_replace_page_cache callers
4977 * so the lru seemed empty but the page could have been added
4978 * right after the check. RES_USAGE should be safe as we always
4979 * charge before adding to the LRU.
4981 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4982 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4983 } while (usage > 0);
4987 * This mainly exists for tests during the setting of set of use_hierarchy.
4988 * Since this is the very setting we are changing, the current hierarchy value
4989 * is meaningless
4991 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4993 struct cgroup_subsys_state *pos;
4995 /* bounce at first found */
4996 css_for_each_child(pos, &memcg->css)
4997 return true;
4998 return false;
5002 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
5003 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
5004 * from mem_cgroup_count_children(), in the sense that we don't really care how
5005 * many children we have; we only need to know if we have any. It also counts
5006 * any memcg without hierarchy as infertile.
5008 static inline bool memcg_has_children(struct mem_cgroup *memcg)
5010 return memcg->use_hierarchy && __memcg_has_children(memcg);
5014 * Reclaims as many pages from the given memcg as possible and moves
5015 * the rest to the parent.
5017 * Caller is responsible for holding css reference for memcg.
5019 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5021 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5022 struct cgroup *cgrp = memcg->css.cgroup;
5024 /* returns EBUSY if there is a task or if we come here twice. */
5025 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5026 return -EBUSY;
5028 /* we call try-to-free pages for make this cgroup empty */
5029 lru_add_drain_all();
5030 /* try to free all pages in this cgroup */
5031 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5032 int progress;
5034 if (signal_pending(current))
5035 return -EINTR;
5037 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5038 false);
5039 if (!progress) {
5040 nr_retries--;
5041 /* maybe some writeback is necessary */
5042 congestion_wait(BLK_RW_ASYNC, HZ/10);
5046 lru_add_drain();
5047 mem_cgroup_reparent_charges(memcg);
5049 return 0;
5052 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5053 unsigned int event)
5055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5057 if (mem_cgroup_is_root(memcg))
5058 return -EINVAL;
5059 return mem_cgroup_force_empty(memcg);
5062 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5063 struct cftype *cft)
5065 return mem_cgroup_from_css(css)->use_hierarchy;
5068 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5069 struct cftype *cft, u64 val)
5071 int retval = 0;
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5073 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5075 mutex_lock(&memcg_create_mutex);
5077 if (memcg->use_hierarchy == val)
5078 goto out;
5081 * If parent's use_hierarchy is set, we can't make any modifications
5082 * in the child subtrees. If it is unset, then the change can
5083 * occur, provided the current cgroup has no children.
5085 * For the root cgroup, parent_mem is NULL, we allow value to be
5086 * set if there are no children.
5088 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5089 (val == 1 || val == 0)) {
5090 if (!__memcg_has_children(memcg))
5091 memcg->use_hierarchy = val;
5092 else
5093 retval = -EBUSY;
5094 } else
5095 retval = -EINVAL;
5097 out:
5098 mutex_unlock(&memcg_create_mutex);
5100 return retval;
5104 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5105 enum mem_cgroup_stat_index idx)
5107 struct mem_cgroup *iter;
5108 long val = 0;
5110 /* Per-cpu values can be negative, use a signed accumulator */
5111 for_each_mem_cgroup_tree(iter, memcg)
5112 val += mem_cgroup_read_stat(iter, idx);
5114 if (val < 0) /* race ? */
5115 val = 0;
5116 return val;
5119 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5121 u64 val;
5123 if (!mem_cgroup_is_root(memcg)) {
5124 if (!swap)
5125 return res_counter_read_u64(&memcg->res, RES_USAGE);
5126 else
5127 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5131 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5132 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5134 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5135 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5137 if (swap)
5138 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5140 return val << PAGE_SHIFT;
5143 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5144 struct cftype *cft, struct file *file,
5145 char __user *buf, size_t nbytes, loff_t *ppos)
5147 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5148 char str[64];
5149 u64 val;
5150 int name, len;
5151 enum res_type type;
5153 type = MEMFILE_TYPE(cft->private);
5154 name = MEMFILE_ATTR(cft->private);
5156 switch (type) {
5157 case _MEM:
5158 if (name == RES_USAGE)
5159 val = mem_cgroup_usage(memcg, false);
5160 else
5161 val = res_counter_read_u64(&memcg->res, name);
5162 break;
5163 case _MEMSWAP:
5164 if (name == RES_USAGE)
5165 val = mem_cgroup_usage(memcg, true);
5166 else
5167 val = res_counter_read_u64(&memcg->memsw, name);
5168 break;
5169 case _KMEM:
5170 val = res_counter_read_u64(&memcg->kmem, name);
5171 break;
5172 default:
5173 BUG();
5176 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5177 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5180 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5182 int ret = -EINVAL;
5183 #ifdef CONFIG_MEMCG_KMEM
5184 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5186 * For simplicity, we won't allow this to be disabled. It also can't
5187 * be changed if the cgroup has children already, or if tasks had
5188 * already joined.
5190 * If tasks join before we set the limit, a person looking at
5191 * kmem.usage_in_bytes will have no way to determine when it took
5192 * place, which makes the value quite meaningless.
5194 * After it first became limited, changes in the value of the limit are
5195 * of course permitted.
5197 mutex_lock(&memcg_create_mutex);
5198 mutex_lock(&set_limit_mutex);
5199 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5200 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5201 ret = -EBUSY;
5202 goto out;
5204 ret = res_counter_set_limit(&memcg->kmem, val);
5205 VM_BUG_ON(ret);
5207 ret = memcg_update_cache_sizes(memcg);
5208 if (ret) {
5209 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5210 goto out;
5212 static_key_slow_inc(&memcg_kmem_enabled_key);
5214 * setting the active bit after the inc will guarantee no one
5215 * starts accounting before all call sites are patched
5217 memcg_kmem_set_active(memcg);
5218 } else
5219 ret = res_counter_set_limit(&memcg->kmem, val);
5220 out:
5221 mutex_unlock(&set_limit_mutex);
5222 mutex_unlock(&memcg_create_mutex);
5223 #endif
5224 return ret;
5227 #ifdef CONFIG_MEMCG_KMEM
5228 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5230 int ret = 0;
5231 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5232 if (!parent)
5233 goto out;
5235 memcg->kmem_account_flags = parent->kmem_account_flags;
5237 * When that happen, we need to disable the static branch only on those
5238 * memcgs that enabled it. To achieve this, we would be forced to
5239 * complicate the code by keeping track of which memcgs were the ones
5240 * that actually enabled limits, and which ones got it from its
5241 * parents.
5243 * It is a lot simpler just to do static_key_slow_inc() on every child
5244 * that is accounted.
5246 if (!memcg_kmem_is_active(memcg))
5247 goto out;
5250 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5251 * memcg is active already. If the later initialization fails then the
5252 * cgroup core triggers the cleanup so we do not have to do it here.
5254 static_key_slow_inc(&memcg_kmem_enabled_key);
5256 mutex_lock(&set_limit_mutex);
5257 memcg_stop_kmem_account();
5258 ret = memcg_update_cache_sizes(memcg);
5259 memcg_resume_kmem_account();
5260 mutex_unlock(&set_limit_mutex);
5261 out:
5262 return ret;
5264 #endif /* CONFIG_MEMCG_KMEM */
5267 * The user of this function is...
5268 * RES_LIMIT.
5270 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5271 const char *buffer)
5273 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5274 enum res_type type;
5275 int name;
5276 unsigned long long val;
5277 int ret;
5279 type = MEMFILE_TYPE(cft->private);
5280 name = MEMFILE_ATTR(cft->private);
5282 switch (name) {
5283 case RES_LIMIT:
5284 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5285 ret = -EINVAL;
5286 break;
5288 /* This function does all necessary parse...reuse it */
5289 ret = res_counter_memparse_write_strategy(buffer, &val);
5290 if (ret)
5291 break;
5292 if (type == _MEM)
5293 ret = mem_cgroup_resize_limit(memcg, val);
5294 else if (type == _MEMSWAP)
5295 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5296 else if (type == _KMEM)
5297 ret = memcg_update_kmem_limit(css, val);
5298 else
5299 return -EINVAL;
5300 break;
5301 case RES_SOFT_LIMIT:
5302 ret = res_counter_memparse_write_strategy(buffer, &val);
5303 if (ret)
5304 break;
5306 * For memsw, soft limits are hard to implement in terms
5307 * of semantics, for now, we support soft limits for
5308 * control without swap
5310 if (type == _MEM)
5311 ret = res_counter_set_soft_limit(&memcg->res, val);
5312 else
5313 ret = -EINVAL;
5314 break;
5315 default:
5316 ret = -EINVAL; /* should be BUG() ? */
5317 break;
5319 return ret;
5322 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5323 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5325 unsigned long long min_limit, min_memsw_limit, tmp;
5327 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5328 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5329 if (!memcg->use_hierarchy)
5330 goto out;
5332 while (css_parent(&memcg->css)) {
5333 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5334 if (!memcg->use_hierarchy)
5335 break;
5336 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5337 min_limit = min(min_limit, tmp);
5338 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5339 min_memsw_limit = min(min_memsw_limit, tmp);
5341 out:
5342 *mem_limit = min_limit;
5343 *memsw_limit = min_memsw_limit;
5346 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5348 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5349 int name;
5350 enum res_type type;
5352 type = MEMFILE_TYPE(event);
5353 name = MEMFILE_ATTR(event);
5355 switch (name) {
5356 case RES_MAX_USAGE:
5357 if (type == _MEM)
5358 res_counter_reset_max(&memcg->res);
5359 else if (type == _MEMSWAP)
5360 res_counter_reset_max(&memcg->memsw);
5361 else if (type == _KMEM)
5362 res_counter_reset_max(&memcg->kmem);
5363 else
5364 return -EINVAL;
5365 break;
5366 case RES_FAILCNT:
5367 if (type == _MEM)
5368 res_counter_reset_failcnt(&memcg->res);
5369 else if (type == _MEMSWAP)
5370 res_counter_reset_failcnt(&memcg->memsw);
5371 else if (type == _KMEM)
5372 res_counter_reset_failcnt(&memcg->kmem);
5373 else
5374 return -EINVAL;
5375 break;
5378 return 0;
5381 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5382 struct cftype *cft)
5384 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5387 #ifdef CONFIG_MMU
5388 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5389 struct cftype *cft, u64 val)
5391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5393 if (val >= (1 << NR_MOVE_TYPE))
5394 return -EINVAL;
5397 * No kind of locking is needed in here, because ->can_attach() will
5398 * check this value once in the beginning of the process, and then carry
5399 * on with stale data. This means that changes to this value will only
5400 * affect task migrations starting after the change.
5402 memcg->move_charge_at_immigrate = val;
5403 return 0;
5405 #else
5406 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5407 struct cftype *cft, u64 val)
5409 return -ENOSYS;
5411 #endif
5413 #ifdef CONFIG_NUMA
5414 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5415 struct cftype *cft, struct seq_file *m)
5417 int nid;
5418 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5419 unsigned long node_nr;
5420 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5422 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5423 seq_printf(m, "total=%lu", total_nr);
5424 for_each_node_state(nid, N_MEMORY) {
5425 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5426 seq_printf(m, " N%d=%lu", nid, node_nr);
5428 seq_putc(m, '\n');
5430 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5431 seq_printf(m, "file=%lu", file_nr);
5432 for_each_node_state(nid, N_MEMORY) {
5433 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5434 LRU_ALL_FILE);
5435 seq_printf(m, " N%d=%lu", nid, node_nr);
5437 seq_putc(m, '\n');
5439 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5440 seq_printf(m, "anon=%lu", anon_nr);
5441 for_each_node_state(nid, N_MEMORY) {
5442 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5443 LRU_ALL_ANON);
5444 seq_printf(m, " N%d=%lu", nid, node_nr);
5446 seq_putc(m, '\n');
5448 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5449 seq_printf(m, "unevictable=%lu", unevictable_nr);
5450 for_each_node_state(nid, N_MEMORY) {
5451 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5452 BIT(LRU_UNEVICTABLE));
5453 seq_printf(m, " N%d=%lu", nid, node_nr);
5455 seq_putc(m, '\n');
5456 return 0;
5458 #endif /* CONFIG_NUMA */
5460 static inline void mem_cgroup_lru_names_not_uptodate(void)
5462 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5465 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5466 struct seq_file *m)
5468 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5469 struct mem_cgroup *mi;
5470 unsigned int i;
5472 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5473 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5474 continue;
5475 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5476 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5479 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5480 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5481 mem_cgroup_read_events(memcg, i));
5483 for (i = 0; i < NR_LRU_LISTS; i++)
5484 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5485 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5487 /* Hierarchical information */
5489 unsigned long long limit, memsw_limit;
5490 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5491 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5492 if (do_swap_account)
5493 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5494 memsw_limit);
5497 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5498 long long val = 0;
5500 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5501 continue;
5502 for_each_mem_cgroup_tree(mi, memcg)
5503 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5504 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5507 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5508 unsigned long long val = 0;
5510 for_each_mem_cgroup_tree(mi, memcg)
5511 val += mem_cgroup_read_events(mi, i);
5512 seq_printf(m, "total_%s %llu\n",
5513 mem_cgroup_events_names[i], val);
5516 for (i = 0; i < NR_LRU_LISTS; i++) {
5517 unsigned long long val = 0;
5519 for_each_mem_cgroup_tree(mi, memcg)
5520 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5521 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5524 #ifdef CONFIG_DEBUG_VM
5526 int nid, zid;
5527 struct mem_cgroup_per_zone *mz;
5528 struct zone_reclaim_stat *rstat;
5529 unsigned long recent_rotated[2] = {0, 0};
5530 unsigned long recent_scanned[2] = {0, 0};
5532 for_each_online_node(nid)
5533 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5534 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5535 rstat = &mz->lruvec.reclaim_stat;
5537 recent_rotated[0] += rstat->recent_rotated[0];
5538 recent_rotated[1] += rstat->recent_rotated[1];
5539 recent_scanned[0] += rstat->recent_scanned[0];
5540 recent_scanned[1] += rstat->recent_scanned[1];
5542 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5543 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5544 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5545 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5547 #endif
5549 return 0;
5552 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5553 struct cftype *cft)
5555 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5557 return mem_cgroup_swappiness(memcg);
5560 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5561 struct cftype *cft, u64 val)
5563 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5564 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5566 if (val > 100 || !parent)
5567 return -EINVAL;
5569 mutex_lock(&memcg_create_mutex);
5571 /* If under hierarchy, only empty-root can set this value */
5572 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5573 mutex_unlock(&memcg_create_mutex);
5574 return -EINVAL;
5577 memcg->swappiness = val;
5579 mutex_unlock(&memcg_create_mutex);
5581 return 0;
5584 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5586 struct mem_cgroup_threshold_ary *t;
5587 u64 usage;
5588 int i;
5590 rcu_read_lock();
5591 if (!swap)
5592 t = rcu_dereference(memcg->thresholds.primary);
5593 else
5594 t = rcu_dereference(memcg->memsw_thresholds.primary);
5596 if (!t)
5597 goto unlock;
5599 usage = mem_cgroup_usage(memcg, swap);
5602 * current_threshold points to threshold just below or equal to usage.
5603 * If it's not true, a threshold was crossed after last
5604 * call of __mem_cgroup_threshold().
5606 i = t->current_threshold;
5609 * Iterate backward over array of thresholds starting from
5610 * current_threshold and check if a threshold is crossed.
5611 * If none of thresholds below usage is crossed, we read
5612 * only one element of the array here.
5614 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5615 eventfd_signal(t->entries[i].eventfd, 1);
5617 /* i = current_threshold + 1 */
5618 i++;
5621 * Iterate forward over array of thresholds starting from
5622 * current_threshold+1 and check if a threshold is crossed.
5623 * If none of thresholds above usage is crossed, we read
5624 * only one element of the array here.
5626 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5627 eventfd_signal(t->entries[i].eventfd, 1);
5629 /* Update current_threshold */
5630 t->current_threshold = i - 1;
5631 unlock:
5632 rcu_read_unlock();
5635 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5637 while (memcg) {
5638 __mem_cgroup_threshold(memcg, false);
5639 if (do_swap_account)
5640 __mem_cgroup_threshold(memcg, true);
5642 memcg = parent_mem_cgroup(memcg);
5646 static int compare_thresholds(const void *a, const void *b)
5648 const struct mem_cgroup_threshold *_a = a;
5649 const struct mem_cgroup_threshold *_b = b;
5651 if (_a->threshold > _b->threshold)
5652 return 1;
5654 if (_a->threshold < _b->threshold)
5655 return -1;
5657 return 0;
5660 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5662 struct mem_cgroup_eventfd_list *ev;
5664 list_for_each_entry(ev, &memcg->oom_notify, list)
5665 eventfd_signal(ev->eventfd, 1);
5666 return 0;
5669 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5671 struct mem_cgroup *iter;
5673 for_each_mem_cgroup_tree(iter, memcg)
5674 mem_cgroup_oom_notify_cb(iter);
5677 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5678 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5680 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5681 struct mem_cgroup_thresholds *thresholds;
5682 struct mem_cgroup_threshold_ary *new;
5683 enum res_type type = MEMFILE_TYPE(cft->private);
5684 u64 threshold, usage;
5685 int i, size, ret;
5687 ret = res_counter_memparse_write_strategy(args, &threshold);
5688 if (ret)
5689 return ret;
5691 mutex_lock(&memcg->thresholds_lock);
5693 if (type == _MEM)
5694 thresholds = &memcg->thresholds;
5695 else if (type == _MEMSWAP)
5696 thresholds = &memcg->memsw_thresholds;
5697 else
5698 BUG();
5700 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5702 /* Check if a threshold crossed before adding a new one */
5703 if (thresholds->primary)
5704 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5706 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5708 /* Allocate memory for new array of thresholds */
5709 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5710 GFP_KERNEL);
5711 if (!new) {
5712 ret = -ENOMEM;
5713 goto unlock;
5715 new->size = size;
5717 /* Copy thresholds (if any) to new array */
5718 if (thresholds->primary) {
5719 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5720 sizeof(struct mem_cgroup_threshold));
5723 /* Add new threshold */
5724 new->entries[size - 1].eventfd = eventfd;
5725 new->entries[size - 1].threshold = threshold;
5727 /* Sort thresholds. Registering of new threshold isn't time-critical */
5728 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5729 compare_thresholds, NULL);
5731 /* Find current threshold */
5732 new->current_threshold = -1;
5733 for (i = 0; i < size; i++) {
5734 if (new->entries[i].threshold <= usage) {
5736 * new->current_threshold will not be used until
5737 * rcu_assign_pointer(), so it's safe to increment
5738 * it here.
5740 ++new->current_threshold;
5741 } else
5742 break;
5745 /* Free old spare buffer and save old primary buffer as spare */
5746 kfree(thresholds->spare);
5747 thresholds->spare = thresholds->primary;
5749 rcu_assign_pointer(thresholds->primary, new);
5751 /* To be sure that nobody uses thresholds */
5752 synchronize_rcu();
5754 unlock:
5755 mutex_unlock(&memcg->thresholds_lock);
5757 return ret;
5760 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5761 struct cftype *cft, struct eventfd_ctx *eventfd)
5763 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5764 struct mem_cgroup_thresholds *thresholds;
5765 struct mem_cgroup_threshold_ary *new;
5766 enum res_type type = MEMFILE_TYPE(cft->private);
5767 u64 usage;
5768 int i, j, size;
5770 mutex_lock(&memcg->thresholds_lock);
5771 if (type == _MEM)
5772 thresholds = &memcg->thresholds;
5773 else if (type == _MEMSWAP)
5774 thresholds = &memcg->memsw_thresholds;
5775 else
5776 BUG();
5778 if (!thresholds->primary)
5779 goto unlock;
5781 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5783 /* Check if a threshold crossed before removing */
5784 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5786 /* Calculate new number of threshold */
5787 size = 0;
5788 for (i = 0; i < thresholds->primary->size; i++) {
5789 if (thresholds->primary->entries[i].eventfd != eventfd)
5790 size++;
5793 new = thresholds->spare;
5795 /* Set thresholds array to NULL if we don't have thresholds */
5796 if (!size) {
5797 kfree(new);
5798 new = NULL;
5799 goto swap_buffers;
5802 new->size = size;
5804 /* Copy thresholds and find current threshold */
5805 new->current_threshold = -1;
5806 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5807 if (thresholds->primary->entries[i].eventfd == eventfd)
5808 continue;
5810 new->entries[j] = thresholds->primary->entries[i];
5811 if (new->entries[j].threshold <= usage) {
5813 * new->current_threshold will not be used
5814 * until rcu_assign_pointer(), so it's safe to increment
5815 * it here.
5817 ++new->current_threshold;
5819 j++;
5822 swap_buffers:
5823 /* Swap primary and spare array */
5824 thresholds->spare = thresholds->primary;
5825 /* If all events are unregistered, free the spare array */
5826 if (!new) {
5827 kfree(thresholds->spare);
5828 thresholds->spare = NULL;
5831 rcu_assign_pointer(thresholds->primary, new);
5833 /* To be sure that nobody uses thresholds */
5834 synchronize_rcu();
5835 unlock:
5836 mutex_unlock(&memcg->thresholds_lock);
5839 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5840 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5842 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5843 struct mem_cgroup_eventfd_list *event;
5844 enum res_type type = MEMFILE_TYPE(cft->private);
5846 BUG_ON(type != _OOM_TYPE);
5847 event = kmalloc(sizeof(*event), GFP_KERNEL);
5848 if (!event)
5849 return -ENOMEM;
5851 spin_lock(&memcg_oom_lock);
5853 event->eventfd = eventfd;
5854 list_add(&event->list, &memcg->oom_notify);
5856 /* already in OOM ? */
5857 if (atomic_read(&memcg->under_oom))
5858 eventfd_signal(eventfd, 1);
5859 spin_unlock(&memcg_oom_lock);
5861 return 0;
5864 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5865 struct cftype *cft, struct eventfd_ctx *eventfd)
5867 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5868 struct mem_cgroup_eventfd_list *ev, *tmp;
5869 enum res_type type = MEMFILE_TYPE(cft->private);
5871 BUG_ON(type != _OOM_TYPE);
5873 spin_lock(&memcg_oom_lock);
5875 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5876 if (ev->eventfd == eventfd) {
5877 list_del(&ev->list);
5878 kfree(ev);
5882 spin_unlock(&memcg_oom_lock);
5885 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5886 struct cftype *cft, struct cgroup_map_cb *cb)
5888 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5890 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5892 if (atomic_read(&memcg->under_oom))
5893 cb->fill(cb, "under_oom", 1);
5894 else
5895 cb->fill(cb, "under_oom", 0);
5896 return 0;
5899 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5900 struct cftype *cft, u64 val)
5902 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5903 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5905 /* cannot set to root cgroup and only 0 and 1 are allowed */
5906 if (!parent || !((val == 0) || (val == 1)))
5907 return -EINVAL;
5909 mutex_lock(&memcg_create_mutex);
5910 /* oom-kill-disable is a flag for subhierarchy. */
5911 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5912 mutex_unlock(&memcg_create_mutex);
5913 return -EINVAL;
5915 memcg->oom_kill_disable = val;
5916 if (!val)
5917 memcg_oom_recover(memcg);
5918 mutex_unlock(&memcg_create_mutex);
5919 return 0;
5922 #ifdef CONFIG_MEMCG_KMEM
5923 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5925 int ret;
5927 memcg->kmemcg_id = -1;
5928 ret = memcg_propagate_kmem(memcg);
5929 if (ret)
5930 return ret;
5932 return mem_cgroup_sockets_init(memcg, ss);
5935 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5937 mem_cgroup_sockets_destroy(memcg);
5940 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5942 if (!memcg_kmem_is_active(memcg))
5943 return;
5946 * kmem charges can outlive the cgroup. In the case of slab
5947 * pages, for instance, a page contain objects from various
5948 * processes. As we prevent from taking a reference for every
5949 * such allocation we have to be careful when doing uncharge
5950 * (see memcg_uncharge_kmem) and here during offlining.
5952 * The idea is that that only the _last_ uncharge which sees
5953 * the dead memcg will drop the last reference. An additional
5954 * reference is taken here before the group is marked dead
5955 * which is then paired with css_put during uncharge resp. here.
5957 * Although this might sound strange as this path is called from
5958 * css_offline() when the referencemight have dropped down to 0
5959 * and shouldn't be incremented anymore (css_tryget would fail)
5960 * we do not have other options because of the kmem allocations
5961 * lifetime.
5963 css_get(&memcg->css);
5965 memcg_kmem_mark_dead(memcg);
5967 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5968 return;
5970 if (memcg_kmem_test_and_clear_dead(memcg))
5971 css_put(&memcg->css);
5973 #else
5974 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5976 return 0;
5979 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5983 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5986 #endif
5988 static struct cftype mem_cgroup_files[] = {
5990 .name = "usage_in_bytes",
5991 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5992 .read = mem_cgroup_read,
5993 .register_event = mem_cgroup_usage_register_event,
5994 .unregister_event = mem_cgroup_usage_unregister_event,
5997 .name = "max_usage_in_bytes",
5998 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5999 .trigger = mem_cgroup_reset,
6000 .read = mem_cgroup_read,
6003 .name = "limit_in_bytes",
6004 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6005 .write_string = mem_cgroup_write,
6006 .read = mem_cgroup_read,
6009 .name = "soft_limit_in_bytes",
6010 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6011 .write_string = mem_cgroup_write,
6012 .read = mem_cgroup_read,
6015 .name = "failcnt",
6016 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6017 .trigger = mem_cgroup_reset,
6018 .read = mem_cgroup_read,
6021 .name = "stat",
6022 .read_seq_string = memcg_stat_show,
6025 .name = "force_empty",
6026 .trigger = mem_cgroup_force_empty_write,
6029 .name = "use_hierarchy",
6030 .flags = CFTYPE_INSANE,
6031 .write_u64 = mem_cgroup_hierarchy_write,
6032 .read_u64 = mem_cgroup_hierarchy_read,
6035 .name = "swappiness",
6036 .read_u64 = mem_cgroup_swappiness_read,
6037 .write_u64 = mem_cgroup_swappiness_write,
6040 .name = "move_charge_at_immigrate",
6041 .read_u64 = mem_cgroup_move_charge_read,
6042 .write_u64 = mem_cgroup_move_charge_write,
6045 .name = "oom_control",
6046 .read_map = mem_cgroup_oom_control_read,
6047 .write_u64 = mem_cgroup_oom_control_write,
6048 .register_event = mem_cgroup_oom_register_event,
6049 .unregister_event = mem_cgroup_oom_unregister_event,
6050 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6053 .name = "pressure_level",
6054 .register_event = vmpressure_register_event,
6055 .unregister_event = vmpressure_unregister_event,
6057 #ifdef CONFIG_NUMA
6059 .name = "numa_stat",
6060 .read_seq_string = memcg_numa_stat_show,
6062 #endif
6063 #ifdef CONFIG_MEMCG_KMEM
6065 .name = "kmem.limit_in_bytes",
6066 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6067 .write_string = mem_cgroup_write,
6068 .read = mem_cgroup_read,
6071 .name = "kmem.usage_in_bytes",
6072 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6073 .read = mem_cgroup_read,
6076 .name = "kmem.failcnt",
6077 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6078 .trigger = mem_cgroup_reset,
6079 .read = mem_cgroup_read,
6082 .name = "kmem.max_usage_in_bytes",
6083 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6084 .trigger = mem_cgroup_reset,
6085 .read = mem_cgroup_read,
6087 #ifdef CONFIG_SLABINFO
6089 .name = "kmem.slabinfo",
6090 .read_seq_string = mem_cgroup_slabinfo_read,
6092 #endif
6093 #endif
6094 { }, /* terminate */
6097 #ifdef CONFIG_MEMCG_SWAP
6098 static struct cftype memsw_cgroup_files[] = {
6100 .name = "memsw.usage_in_bytes",
6101 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6102 .read = mem_cgroup_read,
6103 .register_event = mem_cgroup_usage_register_event,
6104 .unregister_event = mem_cgroup_usage_unregister_event,
6107 .name = "memsw.max_usage_in_bytes",
6108 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6109 .trigger = mem_cgroup_reset,
6110 .read = mem_cgroup_read,
6113 .name = "memsw.limit_in_bytes",
6114 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6115 .write_string = mem_cgroup_write,
6116 .read = mem_cgroup_read,
6119 .name = "memsw.failcnt",
6120 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6121 .trigger = mem_cgroup_reset,
6122 .read = mem_cgroup_read,
6124 { }, /* terminate */
6126 #endif
6127 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6129 struct mem_cgroup_per_node *pn;
6130 struct mem_cgroup_per_zone *mz;
6131 int zone, tmp = node;
6133 * This routine is called against possible nodes.
6134 * But it's BUG to call kmalloc() against offline node.
6136 * TODO: this routine can waste much memory for nodes which will
6137 * never be onlined. It's better to use memory hotplug callback
6138 * function.
6140 if (!node_state(node, N_NORMAL_MEMORY))
6141 tmp = -1;
6142 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6143 if (!pn)
6144 return 1;
6146 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6147 mz = &pn->zoneinfo[zone];
6148 lruvec_init(&mz->lruvec);
6149 mz->usage_in_excess = 0;
6150 mz->on_tree = false;
6151 mz->memcg = memcg;
6153 memcg->nodeinfo[node] = pn;
6154 return 0;
6157 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6159 kfree(memcg->nodeinfo[node]);
6162 static struct mem_cgroup *mem_cgroup_alloc(void)
6164 struct mem_cgroup *memcg;
6165 size_t size = memcg_size();
6167 /* Can be very big if nr_node_ids is very big */
6168 if (size < PAGE_SIZE)
6169 memcg = kzalloc(size, GFP_KERNEL);
6170 else
6171 memcg = vzalloc(size);
6173 if (!memcg)
6174 return NULL;
6176 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6177 if (!memcg->stat)
6178 goto out_free;
6179 spin_lock_init(&memcg->pcp_counter_lock);
6180 return memcg;
6182 out_free:
6183 if (size < PAGE_SIZE)
6184 kfree(memcg);
6185 else
6186 vfree(memcg);
6187 return NULL;
6191 * At destroying mem_cgroup, references from swap_cgroup can remain.
6192 * (scanning all at force_empty is too costly...)
6194 * Instead of clearing all references at force_empty, we remember
6195 * the number of reference from swap_cgroup and free mem_cgroup when
6196 * it goes down to 0.
6198 * Removal of cgroup itself succeeds regardless of refs from swap.
6201 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6203 int node;
6204 size_t size = memcg_size();
6206 mem_cgroup_remove_from_trees(memcg);
6207 free_css_id(&mem_cgroup_subsys, &memcg->css);
6209 for_each_node(node)
6210 free_mem_cgroup_per_zone_info(memcg, node);
6212 free_percpu(memcg->stat);
6215 * We need to make sure that (at least for now), the jump label
6216 * destruction code runs outside of the cgroup lock. This is because
6217 * get_online_cpus(), which is called from the static_branch update,
6218 * can't be called inside the cgroup_lock. cpusets are the ones
6219 * enforcing this dependency, so if they ever change, we might as well.
6221 * schedule_work() will guarantee this happens. Be careful if you need
6222 * to move this code around, and make sure it is outside
6223 * the cgroup_lock.
6225 disarm_static_keys(memcg);
6226 if (size < PAGE_SIZE)
6227 kfree(memcg);
6228 else
6229 vfree(memcg);
6233 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6235 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6237 if (!memcg->res.parent)
6238 return NULL;
6239 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6241 EXPORT_SYMBOL(parent_mem_cgroup);
6243 static void __init mem_cgroup_soft_limit_tree_init(void)
6245 struct mem_cgroup_tree_per_node *rtpn;
6246 struct mem_cgroup_tree_per_zone *rtpz;
6247 int tmp, node, zone;
6249 for_each_node(node) {
6250 tmp = node;
6251 if (!node_state(node, N_NORMAL_MEMORY))
6252 tmp = -1;
6253 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6254 BUG_ON(!rtpn);
6256 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6258 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6259 rtpz = &rtpn->rb_tree_per_zone[zone];
6260 rtpz->rb_root = RB_ROOT;
6261 spin_lock_init(&rtpz->lock);
6266 static struct cgroup_subsys_state * __ref
6267 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6269 struct mem_cgroup *memcg;
6270 long error = -ENOMEM;
6271 int node;
6273 memcg = mem_cgroup_alloc();
6274 if (!memcg)
6275 return ERR_PTR(error);
6277 for_each_node(node)
6278 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6279 goto free_out;
6281 /* root ? */
6282 if (parent_css == NULL) {
6283 root_mem_cgroup = memcg;
6284 res_counter_init(&memcg->res, NULL);
6285 res_counter_init(&memcg->memsw, NULL);
6286 res_counter_init(&memcg->kmem, NULL);
6289 memcg->last_scanned_node = MAX_NUMNODES;
6290 INIT_LIST_HEAD(&memcg->oom_notify);
6291 memcg->move_charge_at_immigrate = 0;
6292 mutex_init(&memcg->thresholds_lock);
6293 spin_lock_init(&memcg->move_lock);
6294 vmpressure_init(&memcg->vmpressure);
6296 return &memcg->css;
6298 free_out:
6299 __mem_cgroup_free(memcg);
6300 return ERR_PTR(error);
6303 static int
6304 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6306 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6307 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6308 int error = 0;
6310 if (!parent)
6311 return 0;
6313 mutex_lock(&memcg_create_mutex);
6315 memcg->use_hierarchy = parent->use_hierarchy;
6316 memcg->oom_kill_disable = parent->oom_kill_disable;
6317 memcg->swappiness = mem_cgroup_swappiness(parent);
6319 if (parent->use_hierarchy) {
6320 res_counter_init(&memcg->res, &parent->res);
6321 res_counter_init(&memcg->memsw, &parent->memsw);
6322 res_counter_init(&memcg->kmem, &parent->kmem);
6325 * No need to take a reference to the parent because cgroup
6326 * core guarantees its existence.
6328 } else {
6329 res_counter_init(&memcg->res, NULL);
6330 res_counter_init(&memcg->memsw, NULL);
6331 res_counter_init(&memcg->kmem, NULL);
6333 * Deeper hierachy with use_hierarchy == false doesn't make
6334 * much sense so let cgroup subsystem know about this
6335 * unfortunate state in our controller.
6337 if (parent != root_mem_cgroup)
6338 mem_cgroup_subsys.broken_hierarchy = true;
6341 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6342 mutex_unlock(&memcg_create_mutex);
6343 return error;
6347 * Announce all parents that a group from their hierarchy is gone.
6349 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6351 struct mem_cgroup *parent = memcg;
6353 while ((parent = parent_mem_cgroup(parent)))
6354 mem_cgroup_iter_invalidate(parent);
6357 * if the root memcg is not hierarchical we have to check it
6358 * explicitely.
6360 if (!root_mem_cgroup->use_hierarchy)
6361 mem_cgroup_iter_invalidate(root_mem_cgroup);
6364 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6368 kmem_cgroup_css_offline(memcg);
6370 mem_cgroup_invalidate_reclaim_iterators(memcg);
6371 mem_cgroup_reparent_charges(memcg);
6372 mem_cgroup_destroy_all_caches(memcg);
6373 vmpressure_cleanup(&memcg->vmpressure);
6376 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6378 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6380 memcg_destroy_kmem(memcg);
6381 __mem_cgroup_free(memcg);
6384 #ifdef CONFIG_MMU
6385 /* Handlers for move charge at task migration. */
6386 #define PRECHARGE_COUNT_AT_ONCE 256
6387 static int mem_cgroup_do_precharge(unsigned long count)
6389 int ret = 0;
6390 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6391 struct mem_cgroup *memcg = mc.to;
6393 if (mem_cgroup_is_root(memcg)) {
6394 mc.precharge += count;
6395 /* we don't need css_get for root */
6396 return ret;
6398 /* try to charge at once */
6399 if (count > 1) {
6400 struct res_counter *dummy;
6402 * "memcg" cannot be under rmdir() because we've already checked
6403 * by cgroup_lock_live_cgroup() that it is not removed and we
6404 * are still under the same cgroup_mutex. So we can postpone
6405 * css_get().
6407 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6408 goto one_by_one;
6409 if (do_swap_account && res_counter_charge(&memcg->memsw,
6410 PAGE_SIZE * count, &dummy)) {
6411 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6412 goto one_by_one;
6414 mc.precharge += count;
6415 return ret;
6417 one_by_one:
6418 /* fall back to one by one charge */
6419 while (count--) {
6420 if (signal_pending(current)) {
6421 ret = -EINTR;
6422 break;
6424 if (!batch_count--) {
6425 batch_count = PRECHARGE_COUNT_AT_ONCE;
6426 cond_resched();
6428 ret = __mem_cgroup_try_charge(NULL,
6429 GFP_KERNEL, 1, &memcg, false);
6430 if (ret)
6431 /* mem_cgroup_clear_mc() will do uncharge later */
6432 return ret;
6433 mc.precharge++;
6435 return ret;
6439 * get_mctgt_type - get target type of moving charge
6440 * @vma: the vma the pte to be checked belongs
6441 * @addr: the address corresponding to the pte to be checked
6442 * @ptent: the pte to be checked
6443 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6445 * Returns
6446 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6447 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6448 * move charge. if @target is not NULL, the page is stored in target->page
6449 * with extra refcnt got(Callers should handle it).
6450 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6451 * target for charge migration. if @target is not NULL, the entry is stored
6452 * in target->ent.
6454 * Called with pte lock held.
6456 union mc_target {
6457 struct page *page;
6458 swp_entry_t ent;
6461 enum mc_target_type {
6462 MC_TARGET_NONE = 0,
6463 MC_TARGET_PAGE,
6464 MC_TARGET_SWAP,
6467 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6468 unsigned long addr, pte_t ptent)
6470 struct page *page = vm_normal_page(vma, addr, ptent);
6472 if (!page || !page_mapped(page))
6473 return NULL;
6474 if (PageAnon(page)) {
6475 /* we don't move shared anon */
6476 if (!move_anon())
6477 return NULL;
6478 } else if (!move_file())
6479 /* we ignore mapcount for file pages */
6480 return NULL;
6481 if (!get_page_unless_zero(page))
6482 return NULL;
6484 return page;
6487 #ifdef CONFIG_SWAP
6488 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6489 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6491 struct page *page = NULL;
6492 swp_entry_t ent = pte_to_swp_entry(ptent);
6494 if (!move_anon() || non_swap_entry(ent))
6495 return NULL;
6497 * Because lookup_swap_cache() updates some statistics counter,
6498 * we call find_get_page() with swapper_space directly.
6500 page = find_get_page(swap_address_space(ent), ent.val);
6501 if (do_swap_account)
6502 entry->val = ent.val;
6504 return page;
6506 #else
6507 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6508 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6510 return NULL;
6512 #endif
6514 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6515 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6517 struct page *page = NULL;
6518 struct address_space *mapping;
6519 pgoff_t pgoff;
6521 if (!vma->vm_file) /* anonymous vma */
6522 return NULL;
6523 if (!move_file())
6524 return NULL;
6526 mapping = vma->vm_file->f_mapping;
6527 if (pte_none(ptent))
6528 pgoff = linear_page_index(vma, addr);
6529 else /* pte_file(ptent) is true */
6530 pgoff = pte_to_pgoff(ptent);
6532 /* page is moved even if it's not RSS of this task(page-faulted). */
6533 page = find_get_page(mapping, pgoff);
6535 #ifdef CONFIG_SWAP
6536 /* shmem/tmpfs may report page out on swap: account for that too. */
6537 if (radix_tree_exceptional_entry(page)) {
6538 swp_entry_t swap = radix_to_swp_entry(page);
6539 if (do_swap_account)
6540 *entry = swap;
6541 page = find_get_page(swap_address_space(swap), swap.val);
6543 #endif
6544 return page;
6547 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6548 unsigned long addr, pte_t ptent, union mc_target *target)
6550 struct page *page = NULL;
6551 struct page_cgroup *pc;
6552 enum mc_target_type ret = MC_TARGET_NONE;
6553 swp_entry_t ent = { .val = 0 };
6555 if (pte_present(ptent))
6556 page = mc_handle_present_pte(vma, addr, ptent);
6557 else if (is_swap_pte(ptent))
6558 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6559 else if (pte_none(ptent) || pte_file(ptent))
6560 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6562 if (!page && !ent.val)
6563 return ret;
6564 if (page) {
6565 pc = lookup_page_cgroup(page);
6567 * Do only loose check w/o page_cgroup lock.
6568 * mem_cgroup_move_account() checks the pc is valid or not under
6569 * the lock.
6571 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6572 ret = MC_TARGET_PAGE;
6573 if (target)
6574 target->page = page;
6576 if (!ret || !target)
6577 put_page(page);
6579 /* There is a swap entry and a page doesn't exist or isn't charged */
6580 if (ent.val && !ret &&
6581 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6582 ret = MC_TARGET_SWAP;
6583 if (target)
6584 target->ent = ent;
6586 return ret;
6589 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6591 * We don't consider swapping or file mapped pages because THP does not
6592 * support them for now.
6593 * Caller should make sure that pmd_trans_huge(pmd) is true.
6595 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6596 unsigned long addr, pmd_t pmd, union mc_target *target)
6598 struct page *page = NULL;
6599 struct page_cgroup *pc;
6600 enum mc_target_type ret = MC_TARGET_NONE;
6602 page = pmd_page(pmd);
6603 VM_BUG_ON(!page || !PageHead(page));
6604 if (!move_anon())
6605 return ret;
6606 pc = lookup_page_cgroup(page);
6607 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6608 ret = MC_TARGET_PAGE;
6609 if (target) {
6610 get_page(page);
6611 target->page = page;
6614 return ret;
6616 #else
6617 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6618 unsigned long addr, pmd_t pmd, union mc_target *target)
6620 return MC_TARGET_NONE;
6622 #endif
6624 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6625 unsigned long addr, unsigned long end,
6626 struct mm_walk *walk)
6628 struct vm_area_struct *vma = walk->private;
6629 pte_t *pte;
6630 spinlock_t *ptl;
6632 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6633 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6634 mc.precharge += HPAGE_PMD_NR;
6635 spin_unlock(&vma->vm_mm->page_table_lock);
6636 return 0;
6639 if (pmd_trans_unstable(pmd))
6640 return 0;
6641 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6642 for (; addr != end; pte++, addr += PAGE_SIZE)
6643 if (get_mctgt_type(vma, addr, *pte, NULL))
6644 mc.precharge++; /* increment precharge temporarily */
6645 pte_unmap_unlock(pte - 1, ptl);
6646 cond_resched();
6648 return 0;
6651 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6653 unsigned long precharge;
6654 struct vm_area_struct *vma;
6656 down_read(&mm->mmap_sem);
6657 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6658 struct mm_walk mem_cgroup_count_precharge_walk = {
6659 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6660 .mm = mm,
6661 .private = vma,
6663 if (is_vm_hugetlb_page(vma))
6664 continue;
6665 walk_page_range(vma->vm_start, vma->vm_end,
6666 &mem_cgroup_count_precharge_walk);
6668 up_read(&mm->mmap_sem);
6670 precharge = mc.precharge;
6671 mc.precharge = 0;
6673 return precharge;
6676 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6678 unsigned long precharge = mem_cgroup_count_precharge(mm);
6680 VM_BUG_ON(mc.moving_task);
6681 mc.moving_task = current;
6682 return mem_cgroup_do_precharge(precharge);
6685 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6686 static void __mem_cgroup_clear_mc(void)
6688 struct mem_cgroup *from = mc.from;
6689 struct mem_cgroup *to = mc.to;
6690 int i;
6692 /* we must uncharge all the leftover precharges from mc.to */
6693 if (mc.precharge) {
6694 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6695 mc.precharge = 0;
6698 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6699 * we must uncharge here.
6701 if (mc.moved_charge) {
6702 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6703 mc.moved_charge = 0;
6705 /* we must fixup refcnts and charges */
6706 if (mc.moved_swap) {
6707 /* uncharge swap account from the old cgroup */
6708 if (!mem_cgroup_is_root(mc.from))
6709 res_counter_uncharge(&mc.from->memsw,
6710 PAGE_SIZE * mc.moved_swap);
6712 for (i = 0; i < mc.moved_swap; i++)
6713 css_put(&mc.from->css);
6715 if (!mem_cgroup_is_root(mc.to)) {
6717 * we charged both to->res and to->memsw, so we should
6718 * uncharge to->res.
6720 res_counter_uncharge(&mc.to->res,
6721 PAGE_SIZE * mc.moved_swap);
6723 /* we've already done css_get(mc.to) */
6724 mc.moved_swap = 0;
6726 memcg_oom_recover(from);
6727 memcg_oom_recover(to);
6728 wake_up_all(&mc.waitq);
6731 static void mem_cgroup_clear_mc(void)
6733 struct mem_cgroup *from = mc.from;
6736 * we must clear moving_task before waking up waiters at the end of
6737 * task migration.
6739 mc.moving_task = NULL;
6740 __mem_cgroup_clear_mc();
6741 spin_lock(&mc.lock);
6742 mc.from = NULL;
6743 mc.to = NULL;
6744 spin_unlock(&mc.lock);
6745 mem_cgroup_end_move(from);
6748 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6749 struct cgroup_taskset *tset)
6751 struct task_struct *p = cgroup_taskset_first(tset);
6752 int ret = 0;
6753 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6754 unsigned long move_charge_at_immigrate;
6757 * We are now commited to this value whatever it is. Changes in this
6758 * tunable will only affect upcoming migrations, not the current one.
6759 * So we need to save it, and keep it going.
6761 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6762 if (move_charge_at_immigrate) {
6763 struct mm_struct *mm;
6764 struct mem_cgroup *from = mem_cgroup_from_task(p);
6766 VM_BUG_ON(from == memcg);
6768 mm = get_task_mm(p);
6769 if (!mm)
6770 return 0;
6771 /* We move charges only when we move a owner of the mm */
6772 if (mm->owner == p) {
6773 VM_BUG_ON(mc.from);
6774 VM_BUG_ON(mc.to);
6775 VM_BUG_ON(mc.precharge);
6776 VM_BUG_ON(mc.moved_charge);
6777 VM_BUG_ON(mc.moved_swap);
6778 mem_cgroup_start_move(from);
6779 spin_lock(&mc.lock);
6780 mc.from = from;
6781 mc.to = memcg;
6782 mc.immigrate_flags = move_charge_at_immigrate;
6783 spin_unlock(&mc.lock);
6784 /* We set mc.moving_task later */
6786 ret = mem_cgroup_precharge_mc(mm);
6787 if (ret)
6788 mem_cgroup_clear_mc();
6790 mmput(mm);
6792 return ret;
6795 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6796 struct cgroup_taskset *tset)
6798 mem_cgroup_clear_mc();
6801 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6802 unsigned long addr, unsigned long end,
6803 struct mm_walk *walk)
6805 int ret = 0;
6806 struct vm_area_struct *vma = walk->private;
6807 pte_t *pte;
6808 spinlock_t *ptl;
6809 enum mc_target_type target_type;
6810 union mc_target target;
6811 struct page *page;
6812 struct page_cgroup *pc;
6815 * We don't take compound_lock() here but no race with splitting thp
6816 * happens because:
6817 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6818 * under splitting, which means there's no concurrent thp split,
6819 * - if another thread runs into split_huge_page() just after we
6820 * entered this if-block, the thread must wait for page table lock
6821 * to be unlocked in __split_huge_page_splitting(), where the main
6822 * part of thp split is not executed yet.
6824 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6825 if (mc.precharge < HPAGE_PMD_NR) {
6826 spin_unlock(&vma->vm_mm->page_table_lock);
6827 return 0;
6829 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6830 if (target_type == MC_TARGET_PAGE) {
6831 page = target.page;
6832 if (!isolate_lru_page(page)) {
6833 pc = lookup_page_cgroup(page);
6834 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6835 pc, mc.from, mc.to)) {
6836 mc.precharge -= HPAGE_PMD_NR;
6837 mc.moved_charge += HPAGE_PMD_NR;
6839 putback_lru_page(page);
6841 put_page(page);
6843 spin_unlock(&vma->vm_mm->page_table_lock);
6844 return 0;
6847 if (pmd_trans_unstable(pmd))
6848 return 0;
6849 retry:
6850 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6851 for (; addr != end; addr += PAGE_SIZE) {
6852 pte_t ptent = *(pte++);
6853 swp_entry_t ent;
6855 if (!mc.precharge)
6856 break;
6858 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6859 case MC_TARGET_PAGE:
6860 page = target.page;
6861 if (isolate_lru_page(page))
6862 goto put;
6863 pc = lookup_page_cgroup(page);
6864 if (!mem_cgroup_move_account(page, 1, pc,
6865 mc.from, mc.to)) {
6866 mc.precharge--;
6867 /* we uncharge from mc.from later. */
6868 mc.moved_charge++;
6870 putback_lru_page(page);
6871 put: /* get_mctgt_type() gets the page */
6872 put_page(page);
6873 break;
6874 case MC_TARGET_SWAP:
6875 ent = target.ent;
6876 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6877 mc.precharge--;
6878 /* we fixup refcnts and charges later. */
6879 mc.moved_swap++;
6881 break;
6882 default:
6883 break;
6886 pte_unmap_unlock(pte - 1, ptl);
6887 cond_resched();
6889 if (addr != end) {
6891 * We have consumed all precharges we got in can_attach().
6892 * We try charge one by one, but don't do any additional
6893 * charges to mc.to if we have failed in charge once in attach()
6894 * phase.
6896 ret = mem_cgroup_do_precharge(1);
6897 if (!ret)
6898 goto retry;
6901 return ret;
6904 static void mem_cgroup_move_charge(struct mm_struct *mm)
6906 struct vm_area_struct *vma;
6908 lru_add_drain_all();
6909 retry:
6910 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6912 * Someone who are holding the mmap_sem might be waiting in
6913 * waitq. So we cancel all extra charges, wake up all waiters,
6914 * and retry. Because we cancel precharges, we might not be able
6915 * to move enough charges, but moving charge is a best-effort
6916 * feature anyway, so it wouldn't be a big problem.
6918 __mem_cgroup_clear_mc();
6919 cond_resched();
6920 goto retry;
6922 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6923 int ret;
6924 struct mm_walk mem_cgroup_move_charge_walk = {
6925 .pmd_entry = mem_cgroup_move_charge_pte_range,
6926 .mm = mm,
6927 .private = vma,
6929 if (is_vm_hugetlb_page(vma))
6930 continue;
6931 ret = walk_page_range(vma->vm_start, vma->vm_end,
6932 &mem_cgroup_move_charge_walk);
6933 if (ret)
6935 * means we have consumed all precharges and failed in
6936 * doing additional charge. Just abandon here.
6938 break;
6940 up_read(&mm->mmap_sem);
6943 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6944 struct cgroup_taskset *tset)
6946 struct task_struct *p = cgroup_taskset_first(tset);
6947 struct mm_struct *mm = get_task_mm(p);
6949 if (mm) {
6950 if (mc.to)
6951 mem_cgroup_move_charge(mm);
6952 mmput(mm);
6954 if (mc.to)
6955 mem_cgroup_clear_mc();
6957 #else /* !CONFIG_MMU */
6958 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6959 struct cgroup_taskset *tset)
6961 return 0;
6963 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6964 struct cgroup_taskset *tset)
6967 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6968 struct cgroup_taskset *tset)
6971 #endif
6974 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6975 * to verify sane_behavior flag on each mount attempt.
6977 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6980 * use_hierarchy is forced with sane_behavior. cgroup core
6981 * guarantees that @root doesn't have any children, so turning it
6982 * on for the root memcg is enough.
6984 if (cgroup_sane_behavior(root_css->cgroup))
6985 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6988 struct cgroup_subsys mem_cgroup_subsys = {
6989 .name = "memory",
6990 .subsys_id = mem_cgroup_subsys_id,
6991 .css_alloc = mem_cgroup_css_alloc,
6992 .css_online = mem_cgroup_css_online,
6993 .css_offline = mem_cgroup_css_offline,
6994 .css_free = mem_cgroup_css_free,
6995 .can_attach = mem_cgroup_can_attach,
6996 .cancel_attach = mem_cgroup_cancel_attach,
6997 .attach = mem_cgroup_move_task,
6998 .bind = mem_cgroup_bind,
6999 .base_cftypes = mem_cgroup_files,
7000 .early_init = 0,
7001 .use_id = 1,
7004 #ifdef CONFIG_MEMCG_SWAP
7005 static int __init enable_swap_account(char *s)
7007 if (!strcmp(s, "1"))
7008 really_do_swap_account = 1;
7009 else if (!strcmp(s, "0"))
7010 really_do_swap_account = 0;
7011 return 1;
7013 __setup("swapaccount=", enable_swap_account);
7015 static void __init memsw_file_init(void)
7017 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7020 static void __init enable_swap_cgroup(void)
7022 if (!mem_cgroup_disabled() && really_do_swap_account) {
7023 do_swap_account = 1;
7024 memsw_file_init();
7028 #else
7029 static void __init enable_swap_cgroup(void)
7032 #endif
7035 * subsys_initcall() for memory controller.
7037 * Some parts like hotcpu_notifier() have to be initialized from this context
7038 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7039 * everything that doesn't depend on a specific mem_cgroup structure should
7040 * be initialized from here.
7042 static int __init mem_cgroup_init(void)
7044 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7045 enable_swap_cgroup();
7046 mem_cgroup_soft_limit_tree_init();
7047 memcg_stock_init();
7048 return 0;
7050 subsys_initcall(mem_cgroup_init);