2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/sched/signal.h>
16 #include <linux/backing-dev.h>
17 #include <linux/sysctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include <linux/page_owner.h>
26 #ifdef CONFIG_COMPACTION
27 static inline void count_compact_event(enum vm_event_item item
)
32 static inline void count_compact_events(enum vm_event_item item
, long delta
)
34 count_vm_events(item
, delta
);
37 #define count_compact_event(item) do { } while (0)
38 #define count_compact_events(item, delta) do { } while (0)
41 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/compaction.h>
46 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
47 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
48 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
49 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
51 static unsigned long release_freepages(struct list_head
*freelist
)
53 struct page
*page
, *next
;
54 unsigned long high_pfn
= 0;
56 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
57 unsigned long pfn
= page_to_pfn(page
);
67 static void map_pages(struct list_head
*list
)
69 unsigned int i
, order
, nr_pages
;
70 struct page
*page
, *next
;
73 list_for_each_entry_safe(page
, next
, list
, lru
) {
76 order
= page_private(page
);
77 nr_pages
= 1 << order
;
79 post_alloc_hook(page
, order
, __GFP_MOVABLE
);
81 split_page(page
, order
);
83 for (i
= 0; i
< nr_pages
; i
++) {
84 list_add(&page
->lru
, &tmp_list
);
89 list_splice(&tmp_list
, list
);
92 static inline bool migrate_async_suitable(int migratetype
)
94 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
97 #ifdef CONFIG_COMPACTION
99 int PageMovable(struct page
*page
)
101 struct address_space
*mapping
;
103 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
104 if (!__PageMovable(page
))
107 mapping
= page_mapping(page
);
108 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->isolate_page
)
113 EXPORT_SYMBOL(PageMovable
);
115 void __SetPageMovable(struct page
*page
, struct address_space
*mapping
)
117 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
118 VM_BUG_ON_PAGE((unsigned long)mapping
& PAGE_MAPPING_MOVABLE
, page
);
119 page
->mapping
= (void *)((unsigned long)mapping
| PAGE_MAPPING_MOVABLE
);
121 EXPORT_SYMBOL(__SetPageMovable
);
123 void __ClearPageMovable(struct page
*page
)
125 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
126 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
128 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
129 * flag so that VM can catch up released page by driver after isolation.
130 * With it, VM migration doesn't try to put it back.
132 page
->mapping
= (void *)((unsigned long)page
->mapping
&
133 PAGE_MAPPING_MOVABLE
);
135 EXPORT_SYMBOL(__ClearPageMovable
);
137 /* Do not skip compaction more than 64 times */
138 #define COMPACT_MAX_DEFER_SHIFT 6
141 * Compaction is deferred when compaction fails to result in a page
142 * allocation success. 1 << compact_defer_limit compactions are skipped up
143 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
145 void defer_compaction(struct zone
*zone
, int order
)
147 zone
->compact_considered
= 0;
148 zone
->compact_defer_shift
++;
150 if (order
< zone
->compact_order_failed
)
151 zone
->compact_order_failed
= order
;
153 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
154 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
156 trace_mm_compaction_defer_compaction(zone
, order
);
159 /* Returns true if compaction should be skipped this time */
160 bool compaction_deferred(struct zone
*zone
, int order
)
162 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
164 if (order
< zone
->compact_order_failed
)
167 /* Avoid possible overflow */
168 if (++zone
->compact_considered
> defer_limit
)
169 zone
->compact_considered
= defer_limit
;
171 if (zone
->compact_considered
>= defer_limit
)
174 trace_mm_compaction_deferred(zone
, order
);
180 * Update defer tracking counters after successful compaction of given order,
181 * which means an allocation either succeeded (alloc_success == true) or is
182 * expected to succeed.
184 void compaction_defer_reset(struct zone
*zone
, int order
,
188 zone
->compact_considered
= 0;
189 zone
->compact_defer_shift
= 0;
191 if (order
>= zone
->compact_order_failed
)
192 zone
->compact_order_failed
= order
+ 1;
194 trace_mm_compaction_defer_reset(zone
, order
);
197 /* Returns true if restarting compaction after many failures */
198 bool compaction_restarting(struct zone
*zone
, int order
)
200 if (order
< zone
->compact_order_failed
)
203 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
204 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
207 /* Returns true if the pageblock should be scanned for pages to isolate. */
208 static inline bool isolation_suitable(struct compact_control
*cc
,
211 if (cc
->ignore_skip_hint
)
214 return !get_pageblock_skip(page
);
217 static void reset_cached_positions(struct zone
*zone
)
219 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
220 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
221 zone
->compact_cached_free_pfn
=
222 pageblock_start_pfn(zone_end_pfn(zone
) - 1);
226 * This function is called to clear all cached information on pageblocks that
227 * should be skipped for page isolation when the migrate and free page scanner
230 static void __reset_isolation_suitable(struct zone
*zone
)
232 unsigned long start_pfn
= zone
->zone_start_pfn
;
233 unsigned long end_pfn
= zone_end_pfn(zone
);
236 zone
->compact_blockskip_flush
= false;
238 /* Walk the zone and mark every pageblock as suitable for isolation */
239 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
247 page
= pfn_to_page(pfn
);
248 if (zone
!= page_zone(page
))
251 clear_pageblock_skip(page
);
254 reset_cached_positions(zone
);
257 void reset_isolation_suitable(pg_data_t
*pgdat
)
261 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
262 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
263 if (!populated_zone(zone
))
266 /* Only flush if a full compaction finished recently */
267 if (zone
->compact_blockskip_flush
)
268 __reset_isolation_suitable(zone
);
273 * If no pages were isolated then mark this pageblock to be skipped in the
274 * future. The information is later cleared by __reset_isolation_suitable().
276 static void update_pageblock_skip(struct compact_control
*cc
,
277 struct page
*page
, unsigned long nr_isolated
,
278 bool migrate_scanner
)
280 struct zone
*zone
= cc
->zone
;
283 if (cc
->ignore_skip_hint
)
292 set_pageblock_skip(page
);
294 pfn
= page_to_pfn(page
);
296 /* Update where async and sync compaction should restart */
297 if (migrate_scanner
) {
298 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
299 zone
->compact_cached_migrate_pfn
[0] = pfn
;
300 if (cc
->mode
!= MIGRATE_ASYNC
&&
301 pfn
> zone
->compact_cached_migrate_pfn
[1])
302 zone
->compact_cached_migrate_pfn
[1] = pfn
;
304 if (pfn
< zone
->compact_cached_free_pfn
)
305 zone
->compact_cached_free_pfn
= pfn
;
309 static inline bool isolation_suitable(struct compact_control
*cc
,
315 static void update_pageblock_skip(struct compact_control
*cc
,
316 struct page
*page
, unsigned long nr_isolated
,
317 bool migrate_scanner
)
320 #endif /* CONFIG_COMPACTION */
323 * Compaction requires the taking of some coarse locks that are potentially
324 * very heavily contended. For async compaction, back out if the lock cannot
325 * be taken immediately. For sync compaction, spin on the lock if needed.
327 * Returns true if the lock is held
328 * Returns false if the lock is not held and compaction should abort
330 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
331 struct compact_control
*cc
)
333 if (cc
->mode
== MIGRATE_ASYNC
) {
334 if (!spin_trylock_irqsave(lock
, *flags
)) {
335 cc
->contended
= true;
339 spin_lock_irqsave(lock
, *flags
);
346 * Compaction requires the taking of some coarse locks that are potentially
347 * very heavily contended. The lock should be periodically unlocked to avoid
348 * having disabled IRQs for a long time, even when there is nobody waiting on
349 * the lock. It might also be that allowing the IRQs will result in
350 * need_resched() becoming true. If scheduling is needed, async compaction
351 * aborts. Sync compaction schedules.
352 * Either compaction type will also abort if a fatal signal is pending.
353 * In either case if the lock was locked, it is dropped and not regained.
355 * Returns true if compaction should abort due to fatal signal pending, or
356 * async compaction due to need_resched()
357 * Returns false when compaction can continue (sync compaction might have
360 static bool compact_unlock_should_abort(spinlock_t
*lock
,
361 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
364 spin_unlock_irqrestore(lock
, flags
);
368 if (fatal_signal_pending(current
)) {
369 cc
->contended
= true;
373 if (need_resched()) {
374 if (cc
->mode
== MIGRATE_ASYNC
) {
375 cc
->contended
= true;
385 * Aside from avoiding lock contention, compaction also periodically checks
386 * need_resched() and either schedules in sync compaction or aborts async
387 * compaction. This is similar to what compact_unlock_should_abort() does, but
388 * is used where no lock is concerned.
390 * Returns false when no scheduling was needed, or sync compaction scheduled.
391 * Returns true when async compaction should abort.
393 static inline bool compact_should_abort(struct compact_control
*cc
)
395 /* async compaction aborts if contended */
396 if (need_resched()) {
397 if (cc
->mode
== MIGRATE_ASYNC
) {
398 cc
->contended
= true;
409 * Isolate free pages onto a private freelist. If @strict is true, will abort
410 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
411 * (even though it may still end up isolating some pages).
413 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
414 unsigned long *start_pfn
,
415 unsigned long end_pfn
,
416 struct list_head
*freelist
,
419 int nr_scanned
= 0, total_isolated
= 0;
420 struct page
*cursor
, *valid_page
= NULL
;
421 unsigned long flags
= 0;
423 unsigned long blockpfn
= *start_pfn
;
426 cursor
= pfn_to_page(blockpfn
);
428 /* Isolate free pages. */
429 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
431 struct page
*page
= cursor
;
434 * Periodically drop the lock (if held) regardless of its
435 * contention, to give chance to IRQs. Abort if fatal signal
436 * pending or async compaction detects need_resched()
438 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
439 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
444 if (!pfn_valid_within(blockpfn
))
451 * For compound pages such as THP and hugetlbfs, we can save
452 * potentially a lot of iterations if we skip them at once.
453 * The check is racy, but we can consider only valid values
454 * and the only danger is skipping too much.
456 if (PageCompound(page
)) {
457 unsigned int comp_order
= compound_order(page
);
459 if (likely(comp_order
< MAX_ORDER
)) {
460 blockpfn
+= (1UL << comp_order
) - 1;
461 cursor
+= (1UL << comp_order
) - 1;
467 if (!PageBuddy(page
))
471 * If we already hold the lock, we can skip some rechecking.
472 * Note that if we hold the lock now, checked_pageblock was
473 * already set in some previous iteration (or strict is true),
474 * so it is correct to skip the suitable migration target
479 * The zone lock must be held to isolate freepages.
480 * Unfortunately this is a very coarse lock and can be
481 * heavily contended if there are parallel allocations
482 * or parallel compactions. For async compaction do not
483 * spin on the lock and we acquire the lock as late as
486 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
491 /* Recheck this is a buddy page under lock */
492 if (!PageBuddy(page
))
496 /* Found a free page, will break it into order-0 pages */
497 order
= page_order(page
);
498 isolated
= __isolate_free_page(page
, order
);
501 set_page_private(page
, order
);
503 total_isolated
+= isolated
;
504 cc
->nr_freepages
+= isolated
;
505 list_add_tail(&page
->lru
, freelist
);
507 if (!strict
&& cc
->nr_migratepages
<= cc
->nr_freepages
) {
508 blockpfn
+= isolated
;
511 /* Advance to the end of split page */
512 blockpfn
+= isolated
- 1;
513 cursor
+= isolated
- 1;
525 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
528 * There is a tiny chance that we have read bogus compound_order(),
529 * so be careful to not go outside of the pageblock.
531 if (unlikely(blockpfn
> end_pfn
))
534 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
535 nr_scanned
, total_isolated
);
537 /* Record how far we have got within the block */
538 *start_pfn
= blockpfn
;
541 * If strict isolation is requested by CMA then check that all the
542 * pages requested were isolated. If there were any failures, 0 is
543 * returned and CMA will fail.
545 if (strict
&& blockpfn
< end_pfn
)
548 /* Update the pageblock-skip if the whole pageblock was scanned */
549 if (blockpfn
== end_pfn
)
550 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
552 cc
->total_free_scanned
+= nr_scanned
;
554 count_compact_events(COMPACTISOLATED
, total_isolated
);
555 return total_isolated
;
559 * isolate_freepages_range() - isolate free pages.
560 * @start_pfn: The first PFN to start isolating.
561 * @end_pfn: The one-past-last PFN.
563 * Non-free pages, invalid PFNs, or zone boundaries within the
564 * [start_pfn, end_pfn) range are considered errors, cause function to
565 * undo its actions and return zero.
567 * Otherwise, function returns one-past-the-last PFN of isolated page
568 * (which may be greater then end_pfn if end fell in a middle of
572 isolate_freepages_range(struct compact_control
*cc
,
573 unsigned long start_pfn
, unsigned long end_pfn
)
575 unsigned long isolated
, pfn
, block_start_pfn
, block_end_pfn
;
579 block_start_pfn
= pageblock_start_pfn(pfn
);
580 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
581 block_start_pfn
= cc
->zone
->zone_start_pfn
;
582 block_end_pfn
= pageblock_end_pfn(pfn
);
584 for (; pfn
< end_pfn
; pfn
+= isolated
,
585 block_start_pfn
= block_end_pfn
,
586 block_end_pfn
+= pageblock_nr_pages
) {
587 /* Protect pfn from changing by isolate_freepages_block */
588 unsigned long isolate_start_pfn
= pfn
;
590 block_end_pfn
= min(block_end_pfn
, end_pfn
);
593 * pfn could pass the block_end_pfn if isolated freepage
594 * is more than pageblock order. In this case, we adjust
595 * scanning range to right one.
597 if (pfn
>= block_end_pfn
) {
598 block_start_pfn
= pageblock_start_pfn(pfn
);
599 block_end_pfn
= pageblock_end_pfn(pfn
);
600 block_end_pfn
= min(block_end_pfn
, end_pfn
);
603 if (!pageblock_pfn_to_page(block_start_pfn
,
604 block_end_pfn
, cc
->zone
))
607 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
608 block_end_pfn
, &freelist
, true);
611 * In strict mode, isolate_freepages_block() returns 0 if
612 * there are any holes in the block (ie. invalid PFNs or
619 * If we managed to isolate pages, it is always (1 << n) *
620 * pageblock_nr_pages for some non-negative n. (Max order
621 * page may span two pageblocks).
625 /* __isolate_free_page() does not map the pages */
626 map_pages(&freelist
);
629 /* Loop terminated early, cleanup. */
630 release_freepages(&freelist
);
634 /* We don't use freelists for anything. */
638 /* Similar to reclaim, but different enough that they don't share logic */
639 static bool too_many_isolated(struct zone
*zone
)
641 unsigned long active
, inactive
, isolated
;
643 inactive
= node_page_state(zone
->zone_pgdat
, NR_INACTIVE_FILE
) +
644 node_page_state(zone
->zone_pgdat
, NR_INACTIVE_ANON
);
645 active
= node_page_state(zone
->zone_pgdat
, NR_ACTIVE_FILE
) +
646 node_page_state(zone
->zone_pgdat
, NR_ACTIVE_ANON
);
647 isolated
= node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
) +
648 node_page_state(zone
->zone_pgdat
, NR_ISOLATED_ANON
);
650 return isolated
> (inactive
+ active
) / 2;
654 * isolate_migratepages_block() - isolate all migrate-able pages within
656 * @cc: Compaction control structure.
657 * @low_pfn: The first PFN to isolate
658 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
659 * @isolate_mode: Isolation mode to be used.
661 * Isolate all pages that can be migrated from the range specified by
662 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
663 * Returns zero if there is a fatal signal pending, otherwise PFN of the
664 * first page that was not scanned (which may be both less, equal to or more
667 * The pages are isolated on cc->migratepages list (not required to be empty),
668 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
669 * is neither read nor updated.
672 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
673 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
675 struct zone
*zone
= cc
->zone
;
676 unsigned long nr_scanned
= 0, nr_isolated
= 0;
677 struct lruvec
*lruvec
;
678 unsigned long flags
= 0;
680 struct page
*page
= NULL
, *valid_page
= NULL
;
681 unsigned long start_pfn
= low_pfn
;
682 bool skip_on_failure
= false;
683 unsigned long next_skip_pfn
= 0;
686 * Ensure that there are not too many pages isolated from the LRU
687 * list by either parallel reclaimers or compaction. If there are,
688 * delay for some time until fewer pages are isolated
690 while (unlikely(too_many_isolated(zone
))) {
691 /* async migration should just abort */
692 if (cc
->mode
== MIGRATE_ASYNC
)
695 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
697 if (fatal_signal_pending(current
))
701 if (compact_should_abort(cc
))
704 if (cc
->direct_compaction
&& (cc
->mode
== MIGRATE_ASYNC
)) {
705 skip_on_failure
= true;
706 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
709 /* Time to isolate some pages for migration */
710 for (; low_pfn
< end_pfn
; low_pfn
++) {
712 if (skip_on_failure
&& low_pfn
>= next_skip_pfn
) {
714 * We have isolated all migration candidates in the
715 * previous order-aligned block, and did not skip it due
716 * to failure. We should migrate the pages now and
717 * hopefully succeed compaction.
723 * We failed to isolate in the previous order-aligned
724 * block. Set the new boundary to the end of the
725 * current block. Note we can't simply increase
726 * next_skip_pfn by 1 << order, as low_pfn might have
727 * been incremented by a higher number due to skipping
728 * a compound or a high-order buddy page in the
729 * previous loop iteration.
731 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
735 * Periodically drop the lock (if held) regardless of its
736 * contention, to give chance to IRQs. Abort async compaction
739 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
740 && compact_unlock_should_abort(zone_lru_lock(zone
), flags
,
744 if (!pfn_valid_within(low_pfn
))
748 page
= pfn_to_page(low_pfn
);
754 * Skip if free. We read page order here without zone lock
755 * which is generally unsafe, but the race window is small and
756 * the worst thing that can happen is that we skip some
757 * potential isolation targets.
759 if (PageBuddy(page
)) {
760 unsigned long freepage_order
= page_order_unsafe(page
);
763 * Without lock, we cannot be sure that what we got is
764 * a valid page order. Consider only values in the
765 * valid order range to prevent low_pfn overflow.
767 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
768 low_pfn
+= (1UL << freepage_order
) - 1;
773 * Regardless of being on LRU, compound pages such as THP and
774 * hugetlbfs are not to be compacted. We can potentially save
775 * a lot of iterations if we skip them at once. The check is
776 * racy, but we can consider only valid values and the only
777 * danger is skipping too much.
779 if (PageCompound(page
)) {
780 unsigned int comp_order
= compound_order(page
);
782 if (likely(comp_order
< MAX_ORDER
))
783 low_pfn
+= (1UL << comp_order
) - 1;
789 * Check may be lockless but that's ok as we recheck later.
790 * It's possible to migrate LRU and non-lru movable pages.
791 * Skip any other type of page
793 if (!PageLRU(page
)) {
795 * __PageMovable can return false positive so we need
796 * to verify it under page_lock.
798 if (unlikely(__PageMovable(page
)) &&
799 !PageIsolated(page
)) {
801 spin_unlock_irqrestore(zone_lru_lock(zone
),
806 if (!isolate_movable_page(page
, isolate_mode
))
807 goto isolate_success
;
814 * Migration will fail if an anonymous page is pinned in memory,
815 * so avoid taking lru_lock and isolating it unnecessarily in an
816 * admittedly racy check.
818 if (!page_mapping(page
) &&
819 page_count(page
) > page_mapcount(page
))
823 * Only allow to migrate anonymous pages in GFP_NOFS context
824 * because those do not depend on fs locks.
826 if (!(cc
->gfp_mask
& __GFP_FS
) && page_mapping(page
))
829 /* If we already hold the lock, we can skip some rechecking */
831 locked
= compact_trylock_irqsave(zone_lru_lock(zone
),
836 /* Recheck PageLRU and PageCompound under lock */
841 * Page become compound since the non-locked check,
842 * and it's on LRU. It can only be a THP so the order
843 * is safe to read and it's 0 for tail pages.
845 if (unlikely(PageCompound(page
))) {
846 low_pfn
+= (1UL << compound_order(page
)) - 1;
851 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
853 /* Try isolate the page */
854 if (__isolate_lru_page(page
, isolate_mode
) != 0)
857 VM_BUG_ON_PAGE(PageCompound(page
), page
);
859 /* Successfully isolated */
860 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
861 inc_node_page_state(page
,
862 NR_ISOLATED_ANON
+ page_is_file_cache(page
));
865 list_add(&page
->lru
, &cc
->migratepages
);
866 cc
->nr_migratepages
++;
870 * Record where we could have freed pages by migration and not
871 * yet flushed them to buddy allocator.
872 * - this is the lowest page that was isolated and likely be
873 * then freed by migration.
875 if (!cc
->last_migrated_pfn
)
876 cc
->last_migrated_pfn
= low_pfn
;
878 /* Avoid isolating too much */
879 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
886 if (!skip_on_failure
)
890 * We have isolated some pages, but then failed. Release them
891 * instead of migrating, as we cannot form the cc->order buddy
896 spin_unlock_irqrestore(zone_lru_lock(zone
), flags
);
899 putback_movable_pages(&cc
->migratepages
);
900 cc
->nr_migratepages
= 0;
901 cc
->last_migrated_pfn
= 0;
905 if (low_pfn
< next_skip_pfn
) {
906 low_pfn
= next_skip_pfn
- 1;
908 * The check near the loop beginning would have updated
909 * next_skip_pfn too, but this is a bit simpler.
911 next_skip_pfn
+= 1UL << cc
->order
;
916 * The PageBuddy() check could have potentially brought us outside
917 * the range to be scanned.
919 if (unlikely(low_pfn
> end_pfn
))
923 spin_unlock_irqrestore(zone_lru_lock(zone
), flags
);
926 * Update the pageblock-skip information and cached scanner pfn,
927 * if the whole pageblock was scanned without isolating any page.
929 if (low_pfn
== end_pfn
)
930 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
932 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
933 nr_scanned
, nr_isolated
);
935 cc
->total_migrate_scanned
+= nr_scanned
;
937 count_compact_events(COMPACTISOLATED
, nr_isolated
);
943 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
944 * @cc: Compaction control structure.
945 * @start_pfn: The first PFN to start isolating.
946 * @end_pfn: The one-past-last PFN.
948 * Returns zero if isolation fails fatally due to e.g. pending signal.
949 * Otherwise, function returns one-past-the-last PFN of isolated page
950 * (which may be greater than end_pfn if end fell in a middle of a THP page).
953 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
954 unsigned long end_pfn
)
956 unsigned long pfn
, block_start_pfn
, block_end_pfn
;
958 /* Scan block by block. First and last block may be incomplete */
960 block_start_pfn
= pageblock_start_pfn(pfn
);
961 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
962 block_start_pfn
= cc
->zone
->zone_start_pfn
;
963 block_end_pfn
= pageblock_end_pfn(pfn
);
965 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
966 block_start_pfn
= block_end_pfn
,
967 block_end_pfn
+= pageblock_nr_pages
) {
969 block_end_pfn
= min(block_end_pfn
, end_pfn
);
971 if (!pageblock_pfn_to_page(block_start_pfn
,
972 block_end_pfn
, cc
->zone
))
975 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
976 ISOLATE_UNEVICTABLE
);
981 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
988 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
989 #ifdef CONFIG_COMPACTION
991 /* Returns true if the page is within a block suitable for migration to */
992 static bool suitable_migration_target(struct compact_control
*cc
,
995 if (cc
->ignore_block_suitable
)
998 /* If the page is a large free page, then disallow migration */
999 if (PageBuddy(page
)) {
1001 * We are checking page_order without zone->lock taken. But
1002 * the only small danger is that we skip a potentially suitable
1003 * pageblock, so it's not worth to check order for valid range.
1005 if (page_order_unsafe(page
) >= pageblock_order
)
1009 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1010 if (migrate_async_suitable(get_pageblock_migratetype(page
)))
1013 /* Otherwise skip the block */
1018 * Test whether the free scanner has reached the same or lower pageblock than
1019 * the migration scanner, and compaction should thus terminate.
1021 static inline bool compact_scanners_met(struct compact_control
*cc
)
1023 return (cc
->free_pfn
>> pageblock_order
)
1024 <= (cc
->migrate_pfn
>> pageblock_order
);
1028 * Based on information in the current compact_control, find blocks
1029 * suitable for isolating free pages from and then isolate them.
1031 static void isolate_freepages(struct compact_control
*cc
)
1033 struct zone
*zone
= cc
->zone
;
1035 unsigned long block_start_pfn
; /* start of current pageblock */
1036 unsigned long isolate_start_pfn
; /* exact pfn we start at */
1037 unsigned long block_end_pfn
; /* end of current pageblock */
1038 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
1039 struct list_head
*freelist
= &cc
->freepages
;
1042 * Initialise the free scanner. The starting point is where we last
1043 * successfully isolated from, zone-cached value, or the end of the
1044 * zone when isolating for the first time. For looping we also need
1045 * this pfn aligned down to the pageblock boundary, because we do
1046 * block_start_pfn -= pageblock_nr_pages in the for loop.
1047 * For ending point, take care when isolating in last pageblock of a
1048 * a zone which ends in the middle of a pageblock.
1049 * The low boundary is the end of the pageblock the migration scanner
1052 isolate_start_pfn
= cc
->free_pfn
;
1053 block_start_pfn
= pageblock_start_pfn(cc
->free_pfn
);
1054 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
1055 zone_end_pfn(zone
));
1056 low_pfn
= pageblock_end_pfn(cc
->migrate_pfn
);
1059 * Isolate free pages until enough are available to migrate the
1060 * pages on cc->migratepages. We stop searching if the migrate
1061 * and free page scanners meet or enough free pages are isolated.
1063 for (; block_start_pfn
>= low_pfn
;
1064 block_end_pfn
= block_start_pfn
,
1065 block_start_pfn
-= pageblock_nr_pages
,
1066 isolate_start_pfn
= block_start_pfn
) {
1068 * This can iterate a massively long zone without finding any
1069 * suitable migration targets, so periodically check if we need
1070 * to schedule, or even abort async compaction.
1072 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1073 && compact_should_abort(cc
))
1076 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1081 /* Check the block is suitable for migration */
1082 if (!suitable_migration_target(cc
, page
))
1085 /* If isolation recently failed, do not retry */
1086 if (!isolation_suitable(cc
, page
))
1089 /* Found a block suitable for isolating free pages from. */
1090 isolate_freepages_block(cc
, &isolate_start_pfn
, block_end_pfn
,
1094 * If we isolated enough freepages, or aborted due to lock
1095 * contention, terminate.
1097 if ((cc
->nr_freepages
>= cc
->nr_migratepages
)
1099 if (isolate_start_pfn
>= block_end_pfn
) {
1101 * Restart at previous pageblock if more
1102 * freepages can be isolated next time.
1105 block_start_pfn
- pageblock_nr_pages
;
1108 } else if (isolate_start_pfn
< block_end_pfn
) {
1110 * If isolation failed early, do not continue
1117 /* __isolate_free_page() does not map the pages */
1118 map_pages(freelist
);
1121 * Record where the free scanner will restart next time. Either we
1122 * broke from the loop and set isolate_start_pfn based on the last
1123 * call to isolate_freepages_block(), or we met the migration scanner
1124 * and the loop terminated due to isolate_start_pfn < low_pfn
1126 cc
->free_pfn
= isolate_start_pfn
;
1130 * This is a migrate-callback that "allocates" freepages by taking pages
1131 * from the isolated freelists in the block we are migrating to.
1133 static struct page
*compaction_alloc(struct page
*migratepage
,
1137 struct compact_control
*cc
= (struct compact_control
*)data
;
1138 struct page
*freepage
;
1141 * Isolate free pages if necessary, and if we are not aborting due to
1144 if (list_empty(&cc
->freepages
)) {
1146 isolate_freepages(cc
);
1148 if (list_empty(&cc
->freepages
))
1152 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1153 list_del(&freepage
->lru
);
1160 * This is a migrate-callback that "frees" freepages back to the isolated
1161 * freelist. All pages on the freelist are from the same zone, so there is no
1162 * special handling needed for NUMA.
1164 static void compaction_free(struct page
*page
, unsigned long data
)
1166 struct compact_control
*cc
= (struct compact_control
*)data
;
1168 list_add(&page
->lru
, &cc
->freepages
);
1172 /* possible outcome of isolate_migratepages */
1174 ISOLATE_ABORT
, /* Abort compaction now */
1175 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1176 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1177 } isolate_migrate_t
;
1180 * Allow userspace to control policy on scanning the unevictable LRU for
1181 * compactable pages.
1183 int sysctl_compact_unevictable_allowed __read_mostly
= 1;
1186 * Isolate all pages that can be migrated from the first suitable block,
1187 * starting at the block pointed to by the migrate scanner pfn within
1190 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1191 struct compact_control
*cc
)
1193 unsigned long block_start_pfn
;
1194 unsigned long block_end_pfn
;
1195 unsigned long low_pfn
;
1197 const isolate_mode_t isolate_mode
=
1198 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
1199 (cc
->mode
!= MIGRATE_SYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1202 * Start at where we last stopped, or beginning of the zone as
1203 * initialized by compact_zone()
1205 low_pfn
= cc
->migrate_pfn
;
1206 block_start_pfn
= pageblock_start_pfn(low_pfn
);
1207 if (block_start_pfn
< zone
->zone_start_pfn
)
1208 block_start_pfn
= zone
->zone_start_pfn
;
1210 /* Only scan within a pageblock boundary */
1211 block_end_pfn
= pageblock_end_pfn(low_pfn
);
1214 * Iterate over whole pageblocks until we find the first suitable.
1215 * Do not cross the free scanner.
1217 for (; block_end_pfn
<= cc
->free_pfn
;
1218 low_pfn
= block_end_pfn
,
1219 block_start_pfn
= block_end_pfn
,
1220 block_end_pfn
+= pageblock_nr_pages
) {
1223 * This can potentially iterate a massively long zone with
1224 * many pageblocks unsuitable, so periodically check if we
1225 * need to schedule, or even abort async compaction.
1227 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1228 && compact_should_abort(cc
))
1231 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1236 /* If isolation recently failed, do not retry */
1237 if (!isolation_suitable(cc
, page
))
1241 * For async compaction, also only scan in MOVABLE blocks.
1242 * Async compaction is optimistic to see if the minimum amount
1243 * of work satisfies the allocation.
1245 if (cc
->mode
== MIGRATE_ASYNC
&&
1246 !migrate_async_suitable(get_pageblock_migratetype(page
)))
1249 /* Perform the isolation */
1250 low_pfn
= isolate_migratepages_block(cc
, low_pfn
,
1251 block_end_pfn
, isolate_mode
);
1253 if (!low_pfn
|| cc
->contended
)
1254 return ISOLATE_ABORT
;
1257 * Either we isolated something and proceed with migration. Or
1258 * we failed and compact_zone should decide if we should
1264 /* Record where migration scanner will be restarted. */
1265 cc
->migrate_pfn
= low_pfn
;
1267 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1271 * order == -1 is expected when compacting via
1272 * /proc/sys/vm/compact_memory
1274 static inline bool is_via_compact_memory(int order
)
1279 static enum compact_result
__compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1280 const int migratetype
)
1283 unsigned long watermark
;
1285 if (cc
->contended
|| fatal_signal_pending(current
))
1286 return COMPACT_CONTENDED
;
1288 /* Compaction run completes if the migrate and free scanner meet */
1289 if (compact_scanners_met(cc
)) {
1290 /* Let the next compaction start anew. */
1291 reset_cached_positions(zone
);
1294 * Mark that the PG_migrate_skip information should be cleared
1295 * by kswapd when it goes to sleep. kcompactd does not set the
1296 * flag itself as the decision to be clear should be directly
1297 * based on an allocation request.
1299 if (cc
->direct_compaction
)
1300 zone
->compact_blockskip_flush
= true;
1303 return COMPACT_COMPLETE
;
1305 return COMPACT_PARTIAL_SKIPPED
;
1308 if (is_via_compact_memory(cc
->order
))
1309 return COMPACT_CONTINUE
;
1311 /* Compaction run is not finished if the watermark is not met */
1312 watermark
= zone
->watermark
[cc
->alloc_flags
& ALLOC_WMARK_MASK
];
1314 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, cc
->classzone_idx
,
1316 return COMPACT_CONTINUE
;
1318 /* Direct compactor: Is a suitable page free? */
1319 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1320 struct free_area
*area
= &zone
->free_area
[order
];
1323 /* Job done if page is free of the right migratetype */
1324 if (!list_empty(&area
->free_list
[migratetype
]))
1325 return COMPACT_SUCCESS
;
1328 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1329 if (migratetype
== MIGRATE_MOVABLE
&&
1330 !list_empty(&area
->free_list
[MIGRATE_CMA
]))
1331 return COMPACT_SUCCESS
;
1334 * Job done if allocation would steal freepages from
1335 * other migratetype buddy lists.
1337 if (find_suitable_fallback(area
, order
, migratetype
,
1338 true, &can_steal
) != -1)
1339 return COMPACT_SUCCESS
;
1342 return COMPACT_NO_SUITABLE_PAGE
;
1345 static enum compact_result
compact_finished(struct zone
*zone
,
1346 struct compact_control
*cc
,
1347 const int migratetype
)
1351 ret
= __compact_finished(zone
, cc
, migratetype
);
1352 trace_mm_compaction_finished(zone
, cc
->order
, ret
);
1353 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1354 ret
= COMPACT_CONTINUE
;
1360 * compaction_suitable: Is this suitable to run compaction on this zone now?
1362 * COMPACT_SKIPPED - If there are too few free pages for compaction
1363 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1364 * COMPACT_CONTINUE - If compaction should run now
1366 static enum compact_result
__compaction_suitable(struct zone
*zone
, int order
,
1367 unsigned int alloc_flags
,
1369 unsigned long wmark_target
)
1371 unsigned long watermark
;
1373 if (is_via_compact_memory(order
))
1374 return COMPACT_CONTINUE
;
1376 watermark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1378 * If watermarks for high-order allocation are already met, there
1379 * should be no need for compaction at all.
1381 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1383 return COMPACT_SUCCESS
;
1386 * Watermarks for order-0 must be met for compaction to be able to
1387 * isolate free pages for migration targets. This means that the
1388 * watermark and alloc_flags have to match, or be more pessimistic than
1389 * the check in __isolate_free_page(). We don't use the direct
1390 * compactor's alloc_flags, as they are not relevant for freepage
1391 * isolation. We however do use the direct compactor's classzone_idx to
1392 * skip over zones where lowmem reserves would prevent allocation even
1393 * if compaction succeeds.
1394 * For costly orders, we require low watermark instead of min for
1395 * compaction to proceed to increase its chances.
1396 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1397 * suitable migration targets
1399 watermark
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
1400 low_wmark_pages(zone
) : min_wmark_pages(zone
);
1401 watermark
+= compact_gap(order
);
1402 if (!__zone_watermark_ok(zone
, 0, watermark
, classzone_idx
,
1403 ALLOC_CMA
, wmark_target
))
1404 return COMPACT_SKIPPED
;
1406 return COMPACT_CONTINUE
;
1409 enum compact_result
compaction_suitable(struct zone
*zone
, int order
,
1410 unsigned int alloc_flags
,
1413 enum compact_result ret
;
1416 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
,
1417 zone_page_state(zone
, NR_FREE_PAGES
));
1419 * fragmentation index determines if allocation failures are due to
1420 * low memory or external fragmentation
1422 * index of -1000 would imply allocations might succeed depending on
1423 * watermarks, but we already failed the high-order watermark check
1424 * index towards 0 implies failure is due to lack of memory
1425 * index towards 1000 implies failure is due to fragmentation
1427 * Only compact if a failure would be due to fragmentation. Also
1428 * ignore fragindex for non-costly orders where the alternative to
1429 * a successful reclaim/compaction is OOM. Fragindex and the
1430 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1431 * excessive compaction for costly orders, but it should not be at the
1432 * expense of system stability.
1434 if (ret
== COMPACT_CONTINUE
&& (order
> PAGE_ALLOC_COSTLY_ORDER
)) {
1435 fragindex
= fragmentation_index(zone
, order
);
1436 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1437 ret
= COMPACT_NOT_SUITABLE_ZONE
;
1440 trace_mm_compaction_suitable(zone
, order
, ret
);
1441 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
1442 ret
= COMPACT_SKIPPED
;
1447 bool compaction_zonelist_suitable(struct alloc_context
*ac
, int order
,
1454 * Make sure at least one zone would pass __compaction_suitable if we continue
1455 * retrying the reclaim.
1457 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1459 unsigned long available
;
1460 enum compact_result compact_result
;
1463 * Do not consider all the reclaimable memory because we do not
1464 * want to trash just for a single high order allocation which
1465 * is even not guaranteed to appear even if __compaction_suitable
1466 * is happy about the watermark check.
1468 available
= zone_reclaimable_pages(zone
) / order
;
1469 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
1470 compact_result
= __compaction_suitable(zone
, order
, alloc_flags
,
1471 ac_classzone_idx(ac
), available
);
1472 if (compact_result
!= COMPACT_SKIPPED
)
1479 static enum compact_result
compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1481 enum compact_result ret
;
1482 unsigned long start_pfn
= zone
->zone_start_pfn
;
1483 unsigned long end_pfn
= zone_end_pfn(zone
);
1484 const int migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1485 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1487 ret
= compaction_suitable(zone
, cc
->order
, cc
->alloc_flags
,
1489 /* Compaction is likely to fail */
1490 if (ret
== COMPACT_SUCCESS
|| ret
== COMPACT_SKIPPED
)
1493 /* huh, compaction_suitable is returning something unexpected */
1494 VM_BUG_ON(ret
!= COMPACT_CONTINUE
);
1497 * Clear pageblock skip if there were failures recently and compaction
1498 * is about to be retried after being deferred.
1500 if (compaction_restarting(zone
, cc
->order
))
1501 __reset_isolation_suitable(zone
);
1504 * Setup to move all movable pages to the end of the zone. Used cached
1505 * information on where the scanners should start (unless we explicitly
1506 * want to compact the whole zone), but check that it is initialised
1507 * by ensuring the values are within zone boundaries.
1509 if (cc
->whole_zone
) {
1510 cc
->migrate_pfn
= start_pfn
;
1511 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
1513 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1514 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1515 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
>= end_pfn
) {
1516 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
1517 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1519 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
>= end_pfn
) {
1520 cc
->migrate_pfn
= start_pfn
;
1521 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1522 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1525 if (cc
->migrate_pfn
== start_pfn
)
1526 cc
->whole_zone
= true;
1529 cc
->last_migrated_pfn
= 0;
1531 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
1532 cc
->free_pfn
, end_pfn
, sync
);
1534 migrate_prep_local();
1536 while ((ret
= compact_finished(zone
, cc
, migratetype
)) ==
1540 switch (isolate_migratepages(zone
, cc
)) {
1542 ret
= COMPACT_CONTENDED
;
1543 putback_movable_pages(&cc
->migratepages
);
1544 cc
->nr_migratepages
= 0;
1548 * We haven't isolated and migrated anything, but
1549 * there might still be unflushed migrations from
1550 * previous cc->order aligned block.
1553 case ISOLATE_SUCCESS
:
1557 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1558 compaction_free
, (unsigned long)cc
, cc
->mode
,
1561 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1564 /* All pages were either migrated or will be released */
1565 cc
->nr_migratepages
= 0;
1567 putback_movable_pages(&cc
->migratepages
);
1569 * migrate_pages() may return -ENOMEM when scanners meet
1570 * and we want compact_finished() to detect it
1572 if (err
== -ENOMEM
&& !compact_scanners_met(cc
)) {
1573 ret
= COMPACT_CONTENDED
;
1577 * We failed to migrate at least one page in the current
1578 * order-aligned block, so skip the rest of it.
1580 if (cc
->direct_compaction
&&
1581 (cc
->mode
== MIGRATE_ASYNC
)) {
1582 cc
->migrate_pfn
= block_end_pfn(
1583 cc
->migrate_pfn
- 1, cc
->order
);
1584 /* Draining pcplists is useless in this case */
1585 cc
->last_migrated_pfn
= 0;
1592 * Has the migration scanner moved away from the previous
1593 * cc->order aligned block where we migrated from? If yes,
1594 * flush the pages that were freed, so that they can merge and
1595 * compact_finished() can detect immediately if allocation
1598 if (cc
->order
> 0 && cc
->last_migrated_pfn
) {
1600 unsigned long current_block_start
=
1601 block_start_pfn(cc
->migrate_pfn
, cc
->order
);
1603 if (cc
->last_migrated_pfn
< current_block_start
) {
1605 lru_add_drain_cpu(cpu
);
1606 drain_local_pages(zone
);
1608 /* No more flushing until we migrate again */
1609 cc
->last_migrated_pfn
= 0;
1617 * Release free pages and update where the free scanner should restart,
1618 * so we don't leave any returned pages behind in the next attempt.
1620 if (cc
->nr_freepages
> 0) {
1621 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
1623 cc
->nr_freepages
= 0;
1624 VM_BUG_ON(free_pfn
== 0);
1625 /* The cached pfn is always the first in a pageblock */
1626 free_pfn
= pageblock_start_pfn(free_pfn
);
1628 * Only go back, not forward. The cached pfn might have been
1629 * already reset to zone end in compact_finished()
1631 if (free_pfn
> zone
->compact_cached_free_pfn
)
1632 zone
->compact_cached_free_pfn
= free_pfn
;
1635 count_compact_events(COMPACTMIGRATE_SCANNED
, cc
->total_migrate_scanned
);
1636 count_compact_events(COMPACTFREE_SCANNED
, cc
->total_free_scanned
);
1638 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
1639 cc
->free_pfn
, end_pfn
, sync
, ret
);
1644 static enum compact_result
compact_zone_order(struct zone
*zone
, int order
,
1645 gfp_t gfp_mask
, enum compact_priority prio
,
1646 unsigned int alloc_flags
, int classzone_idx
)
1648 enum compact_result ret
;
1649 struct compact_control cc
= {
1651 .nr_migratepages
= 0,
1652 .total_migrate_scanned
= 0,
1653 .total_free_scanned
= 0,
1655 .gfp_mask
= gfp_mask
,
1657 .mode
= (prio
== COMPACT_PRIO_ASYNC
) ?
1658 MIGRATE_ASYNC
: MIGRATE_SYNC_LIGHT
,
1659 .alloc_flags
= alloc_flags
,
1660 .classzone_idx
= classzone_idx
,
1661 .direct_compaction
= true,
1662 .whole_zone
= (prio
== MIN_COMPACT_PRIORITY
),
1663 .ignore_skip_hint
= (prio
== MIN_COMPACT_PRIORITY
),
1664 .ignore_block_suitable
= (prio
== MIN_COMPACT_PRIORITY
)
1666 INIT_LIST_HEAD(&cc
.freepages
);
1667 INIT_LIST_HEAD(&cc
.migratepages
);
1669 ret
= compact_zone(zone
, &cc
);
1671 VM_BUG_ON(!list_empty(&cc
.freepages
));
1672 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1677 int sysctl_extfrag_threshold
= 500;
1680 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1681 * @gfp_mask: The GFP mask of the current allocation
1682 * @order: The order of the current allocation
1683 * @alloc_flags: The allocation flags of the current allocation
1684 * @ac: The context of current allocation
1685 * @mode: The migration mode for async, sync light, or sync migration
1687 * This is the main entry point for direct page compaction.
1689 enum compact_result
try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
1690 unsigned int alloc_flags
, const struct alloc_context
*ac
,
1691 enum compact_priority prio
)
1693 int may_perform_io
= gfp_mask
& __GFP_IO
;
1696 enum compact_result rc
= COMPACT_SKIPPED
;
1699 * Check if the GFP flags allow compaction - GFP_NOIO is really
1700 * tricky context because the migration might require IO
1702 if (!may_perform_io
)
1703 return COMPACT_SKIPPED
;
1705 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, prio
);
1707 /* Compact each zone in the list */
1708 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1710 enum compact_result status
;
1712 if (prio
> MIN_COMPACT_PRIORITY
1713 && compaction_deferred(zone
, order
)) {
1714 rc
= max_t(enum compact_result
, COMPACT_DEFERRED
, rc
);
1718 status
= compact_zone_order(zone
, order
, gfp_mask
, prio
,
1719 alloc_flags
, ac_classzone_idx(ac
));
1720 rc
= max(status
, rc
);
1722 /* The allocation should succeed, stop compacting */
1723 if (status
== COMPACT_SUCCESS
) {
1725 * We think the allocation will succeed in this zone,
1726 * but it is not certain, hence the false. The caller
1727 * will repeat this with true if allocation indeed
1728 * succeeds in this zone.
1730 compaction_defer_reset(zone
, order
, false);
1735 if (prio
!= COMPACT_PRIO_ASYNC
&& (status
== COMPACT_COMPLETE
||
1736 status
== COMPACT_PARTIAL_SKIPPED
))
1738 * We think that allocation won't succeed in this zone
1739 * so we defer compaction there. If it ends up
1740 * succeeding after all, it will be reset.
1742 defer_compaction(zone
, order
);
1745 * We might have stopped compacting due to need_resched() in
1746 * async compaction, or due to a fatal signal detected. In that
1747 * case do not try further zones
1749 if ((prio
== COMPACT_PRIO_ASYNC
&& need_resched())
1750 || fatal_signal_pending(current
))
1758 /* Compact all zones within a node */
1759 static void compact_node(int nid
)
1761 pg_data_t
*pgdat
= NODE_DATA(nid
);
1764 struct compact_control cc
= {
1766 .total_migrate_scanned
= 0,
1767 .total_free_scanned
= 0,
1768 .mode
= MIGRATE_SYNC
,
1769 .ignore_skip_hint
= true,
1771 .gfp_mask
= GFP_KERNEL
,
1775 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1777 zone
= &pgdat
->node_zones
[zoneid
];
1778 if (!populated_zone(zone
))
1781 cc
.nr_freepages
= 0;
1782 cc
.nr_migratepages
= 0;
1784 INIT_LIST_HEAD(&cc
.freepages
);
1785 INIT_LIST_HEAD(&cc
.migratepages
);
1787 compact_zone(zone
, &cc
);
1789 VM_BUG_ON(!list_empty(&cc
.freepages
));
1790 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1794 /* Compact all nodes in the system */
1795 static void compact_nodes(void)
1799 /* Flush pending updates to the LRU lists */
1800 lru_add_drain_all();
1802 for_each_online_node(nid
)
1806 /* The written value is actually unused, all memory is compacted */
1807 int sysctl_compact_memory
;
1810 * This is the entry point for compacting all nodes via
1811 * /proc/sys/vm/compact_memory
1813 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1814 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1822 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1823 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1825 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1830 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1831 static ssize_t
sysfs_compact_node(struct device
*dev
,
1832 struct device_attribute
*attr
,
1833 const char *buf
, size_t count
)
1837 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1838 /* Flush pending updates to the LRU lists */
1839 lru_add_drain_all();
1846 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1848 int compaction_register_node(struct node
*node
)
1850 return device_create_file(&node
->dev
, &dev_attr_compact
);
1853 void compaction_unregister_node(struct node
*node
)
1855 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1857 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1859 static inline bool kcompactd_work_requested(pg_data_t
*pgdat
)
1861 return pgdat
->kcompactd_max_order
> 0 || kthread_should_stop();
1864 static bool kcompactd_node_suitable(pg_data_t
*pgdat
)
1868 enum zone_type classzone_idx
= pgdat
->kcompactd_classzone_idx
;
1870 for (zoneid
= 0; zoneid
<= classzone_idx
; zoneid
++) {
1871 zone
= &pgdat
->node_zones
[zoneid
];
1873 if (!populated_zone(zone
))
1876 if (compaction_suitable(zone
, pgdat
->kcompactd_max_order
, 0,
1877 classzone_idx
) == COMPACT_CONTINUE
)
1884 static void kcompactd_do_work(pg_data_t
*pgdat
)
1887 * With no special task, compact all zones so that a page of requested
1888 * order is allocatable.
1892 struct compact_control cc
= {
1893 .order
= pgdat
->kcompactd_max_order
,
1894 .total_migrate_scanned
= 0,
1895 .total_free_scanned
= 0,
1896 .classzone_idx
= pgdat
->kcompactd_classzone_idx
,
1897 .mode
= MIGRATE_SYNC_LIGHT
,
1898 .ignore_skip_hint
= true,
1899 .gfp_mask
= GFP_KERNEL
,
1902 trace_mm_compaction_kcompactd_wake(pgdat
->node_id
, cc
.order
,
1904 count_compact_event(KCOMPACTD_WAKE
);
1906 for (zoneid
= 0; zoneid
<= cc
.classzone_idx
; zoneid
++) {
1909 zone
= &pgdat
->node_zones
[zoneid
];
1910 if (!populated_zone(zone
))
1913 if (compaction_deferred(zone
, cc
.order
))
1916 if (compaction_suitable(zone
, cc
.order
, 0, zoneid
) !=
1920 cc
.nr_freepages
= 0;
1921 cc
.nr_migratepages
= 0;
1922 cc
.total_migrate_scanned
= 0;
1923 cc
.total_free_scanned
= 0;
1925 INIT_LIST_HEAD(&cc
.freepages
);
1926 INIT_LIST_HEAD(&cc
.migratepages
);
1928 if (kthread_should_stop())
1930 status
= compact_zone(zone
, &cc
);
1932 if (status
== COMPACT_SUCCESS
) {
1933 compaction_defer_reset(zone
, cc
.order
, false);
1934 } else if (status
== COMPACT_PARTIAL_SKIPPED
|| status
== COMPACT_COMPLETE
) {
1936 * We use sync migration mode here, so we defer like
1937 * sync direct compaction does.
1939 defer_compaction(zone
, cc
.order
);
1942 count_compact_events(KCOMPACTD_MIGRATE_SCANNED
,
1943 cc
.total_migrate_scanned
);
1944 count_compact_events(KCOMPACTD_FREE_SCANNED
,
1945 cc
.total_free_scanned
);
1947 VM_BUG_ON(!list_empty(&cc
.freepages
));
1948 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1952 * Regardless of success, we are done until woken up next. But remember
1953 * the requested order/classzone_idx in case it was higher/tighter than
1956 if (pgdat
->kcompactd_max_order
<= cc
.order
)
1957 pgdat
->kcompactd_max_order
= 0;
1958 if (pgdat
->kcompactd_classzone_idx
>= cc
.classzone_idx
)
1959 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
1962 void wakeup_kcompactd(pg_data_t
*pgdat
, int order
, int classzone_idx
)
1967 if (pgdat
->kcompactd_max_order
< order
)
1968 pgdat
->kcompactd_max_order
= order
;
1971 * Pairs with implicit barrier in wait_event_freezable()
1972 * such that wakeups are not missed in the lockless
1973 * waitqueue_active() call.
1975 smp_acquire__after_ctrl_dep();
1977 if (pgdat
->kcompactd_classzone_idx
> classzone_idx
)
1978 pgdat
->kcompactd_classzone_idx
= classzone_idx
;
1980 if (!waitqueue_active(&pgdat
->kcompactd_wait
))
1983 if (!kcompactd_node_suitable(pgdat
))
1986 trace_mm_compaction_wakeup_kcompactd(pgdat
->node_id
, order
,
1988 wake_up_interruptible(&pgdat
->kcompactd_wait
);
1992 * The background compaction daemon, started as a kernel thread
1993 * from the init process.
1995 static int kcompactd(void *p
)
1997 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1998 struct task_struct
*tsk
= current
;
2000 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2002 if (!cpumask_empty(cpumask
))
2003 set_cpus_allowed_ptr(tsk
, cpumask
);
2007 pgdat
->kcompactd_max_order
= 0;
2008 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
2010 while (!kthread_should_stop()) {
2011 trace_mm_compaction_kcompactd_sleep(pgdat
->node_id
);
2012 wait_event_freezable(pgdat
->kcompactd_wait
,
2013 kcompactd_work_requested(pgdat
));
2015 kcompactd_do_work(pgdat
);
2022 * This kcompactd start function will be called by init and node-hot-add.
2023 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2025 int kcompactd_run(int nid
)
2027 pg_data_t
*pgdat
= NODE_DATA(nid
);
2030 if (pgdat
->kcompactd
)
2033 pgdat
->kcompactd
= kthread_run(kcompactd
, pgdat
, "kcompactd%d", nid
);
2034 if (IS_ERR(pgdat
->kcompactd
)) {
2035 pr_err("Failed to start kcompactd on node %d\n", nid
);
2036 ret
= PTR_ERR(pgdat
->kcompactd
);
2037 pgdat
->kcompactd
= NULL
;
2043 * Called by memory hotplug when all memory in a node is offlined. Caller must
2044 * hold mem_hotplug_begin/end().
2046 void kcompactd_stop(int nid
)
2048 struct task_struct
*kcompactd
= NODE_DATA(nid
)->kcompactd
;
2051 kthread_stop(kcompactd
);
2052 NODE_DATA(nid
)->kcompactd
= NULL
;
2057 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2058 * not required for correctness. So if the last cpu in a node goes
2059 * away, we get changed to run anywhere: as the first one comes back,
2060 * restore their cpu bindings.
2062 static int kcompactd_cpu_online(unsigned int cpu
)
2066 for_each_node_state(nid
, N_MEMORY
) {
2067 pg_data_t
*pgdat
= NODE_DATA(nid
);
2068 const struct cpumask
*mask
;
2070 mask
= cpumask_of_node(pgdat
->node_id
);
2072 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2073 /* One of our CPUs online: restore mask */
2074 set_cpus_allowed_ptr(pgdat
->kcompactd
, mask
);
2079 static int __init
kcompactd_init(void)
2084 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
2085 "mm/compaction:online",
2086 kcompactd_cpu_online
, NULL
);
2088 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2092 for_each_node_state(nid
, N_MEMORY
)
2096 subsys_initcall(kcompactd_init
)
2098 #endif /* CONFIG_COMPACTION */