Merge tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6/btrfs-unstable.git] / fs / f2fs / node.c
blobdd2e45a661aacdb123b63c92f84e717f17fa59c1
1 /*
2 * fs/f2fs/node.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31 static struct kmem_cache *fsync_node_entry_slab;
34 * Check whether the given nid is within node id range.
36 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
38 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
39 set_sbi_flag(sbi, SBI_NEED_FSCK);
40 f2fs_msg(sbi->sb, KERN_WARNING,
41 "%s: out-of-range nid=%x, run fsck to fix.",
42 __func__, nid);
43 return -EINVAL;
45 return 0;
48 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
50 struct f2fs_nm_info *nm_i = NM_I(sbi);
51 struct sysinfo val;
52 unsigned long avail_ram;
53 unsigned long mem_size = 0;
54 bool res = false;
56 si_meminfo(&val);
58 /* only uses low memory */
59 avail_ram = val.totalram - val.totalhigh;
62 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
64 if (type == FREE_NIDS) {
65 mem_size = (nm_i->nid_cnt[FREE_NID] *
66 sizeof(struct free_nid)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 } else if (type == NAT_ENTRIES) {
69 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
70 PAGE_SHIFT;
71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72 if (excess_cached_nats(sbi))
73 res = false;
74 } else if (type == DIRTY_DENTS) {
75 if (sbi->sb->s_bdi->wb.dirty_exceeded)
76 return false;
77 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79 } else if (type == INO_ENTRIES) {
80 int i;
82 for (i = 0; i < MAX_INO_ENTRY; i++)
83 mem_size += sbi->im[i].ino_num *
84 sizeof(struct ino_entry);
85 mem_size >>= PAGE_SHIFT;
86 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87 } else if (type == EXTENT_CACHE) {
88 mem_size = (atomic_read(&sbi->total_ext_tree) *
89 sizeof(struct extent_tree) +
90 atomic_read(&sbi->total_ext_node) *
91 sizeof(struct extent_node)) >> PAGE_SHIFT;
92 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93 } else if (type == INMEM_PAGES) {
94 /* it allows 20% / total_ram for inmemory pages */
95 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
96 res = mem_size < (val.totalram / 5);
97 } else {
98 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
99 return true;
101 return res;
104 static void clear_node_page_dirty(struct page *page)
106 if (PageDirty(page)) {
107 f2fs_clear_radix_tree_dirty_tag(page);
108 clear_page_dirty_for_io(page);
109 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
111 ClearPageUptodate(page);
114 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
119 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
121 struct page *src_page;
122 struct page *dst_page;
123 pgoff_t dst_off;
124 void *src_addr;
125 void *dst_addr;
126 struct f2fs_nm_info *nm_i = NM_I(sbi);
128 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
130 /* get current nat block page with lock */
131 src_page = get_current_nat_page(sbi, nid);
132 dst_page = f2fs_grab_meta_page(sbi, dst_off);
133 f2fs_bug_on(sbi, PageDirty(src_page));
135 src_addr = page_address(src_page);
136 dst_addr = page_address(dst_page);
137 memcpy(dst_addr, src_addr, PAGE_SIZE);
138 set_page_dirty(dst_page);
139 f2fs_put_page(src_page, 1);
141 set_to_next_nat(nm_i, nid);
143 return dst_page;
146 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
148 struct nat_entry *new;
150 if (no_fail)
151 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 else
153 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
154 if (new) {
155 nat_set_nid(new, nid);
156 nat_reset_flag(new);
158 return new;
161 static void __free_nat_entry(struct nat_entry *e)
163 kmem_cache_free(nat_entry_slab, e);
166 /* must be locked by nat_tree_lock */
167 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
168 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
170 if (no_fail)
171 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
172 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
173 return NULL;
175 if (raw_ne)
176 node_info_from_raw_nat(&ne->ni, raw_ne);
178 spin_lock(&nm_i->nat_list_lock);
179 list_add_tail(&ne->list, &nm_i->nat_entries);
180 spin_unlock(&nm_i->nat_list_lock);
182 nm_i->nat_cnt++;
183 return ne;
186 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
188 struct nat_entry *ne;
190 ne = radix_tree_lookup(&nm_i->nat_root, n);
192 /* for recent accessed nat entry, move it to tail of lru list */
193 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
194 spin_lock(&nm_i->nat_list_lock);
195 if (!list_empty(&ne->list))
196 list_move_tail(&ne->list, &nm_i->nat_entries);
197 spin_unlock(&nm_i->nat_list_lock);
200 return ne;
203 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
204 nid_t start, unsigned int nr, struct nat_entry **ep)
206 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
209 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
211 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
212 nm_i->nat_cnt--;
213 __free_nat_entry(e);
216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 struct nat_entry *ne)
219 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 struct nat_entry_set *head;
222 head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 if (!head) {
224 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
226 INIT_LIST_HEAD(&head->entry_list);
227 INIT_LIST_HEAD(&head->set_list);
228 head->set = set;
229 head->entry_cnt = 0;
230 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
232 return head;
235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 struct nat_entry *ne)
238 struct nat_entry_set *head;
239 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
241 if (!new_ne)
242 head = __grab_nat_entry_set(nm_i, ne);
245 * update entry_cnt in below condition:
246 * 1. update NEW_ADDR to valid block address;
247 * 2. update old block address to new one;
249 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 !get_nat_flag(ne, IS_DIRTY)))
251 head->entry_cnt++;
253 set_nat_flag(ne, IS_PREALLOC, new_ne);
255 if (get_nat_flag(ne, IS_DIRTY))
256 goto refresh_list;
258 nm_i->dirty_nat_cnt++;
259 set_nat_flag(ne, IS_DIRTY, true);
260 refresh_list:
261 spin_lock(&nm_i->nat_list_lock);
262 if (new_ne)
263 list_del_init(&ne->list);
264 else
265 list_move_tail(&ne->list, &head->entry_list);
266 spin_unlock(&nm_i->nat_list_lock);
269 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
270 struct nat_entry_set *set, struct nat_entry *ne)
272 spin_lock(&nm_i->nat_list_lock);
273 list_move_tail(&ne->list, &nm_i->nat_entries);
274 spin_unlock(&nm_i->nat_list_lock);
276 set_nat_flag(ne, IS_DIRTY, false);
277 set->entry_cnt--;
278 nm_i->dirty_nat_cnt--;
281 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
282 nid_t start, unsigned int nr, struct nat_entry_set **ep)
284 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
285 start, nr);
288 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
290 return NODE_MAPPING(sbi) == page->mapping &&
291 IS_DNODE(page) && is_cold_node(page);
294 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
296 spin_lock_init(&sbi->fsync_node_lock);
297 INIT_LIST_HEAD(&sbi->fsync_node_list);
298 sbi->fsync_seg_id = 0;
299 sbi->fsync_node_num = 0;
302 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
303 struct page *page)
305 struct fsync_node_entry *fn;
306 unsigned long flags;
307 unsigned int seq_id;
309 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
311 get_page(page);
312 fn->page = page;
313 INIT_LIST_HEAD(&fn->list);
315 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
316 list_add_tail(&fn->list, &sbi->fsync_node_list);
317 fn->seq_id = sbi->fsync_seg_id++;
318 seq_id = fn->seq_id;
319 sbi->fsync_node_num++;
320 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
322 return seq_id;
325 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
327 struct fsync_node_entry *fn;
328 unsigned long flags;
330 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
331 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
332 if (fn->page == page) {
333 list_del(&fn->list);
334 sbi->fsync_node_num--;
335 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
336 kmem_cache_free(fsync_node_entry_slab, fn);
337 put_page(page);
338 return;
341 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
342 f2fs_bug_on(sbi, 1);
345 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
347 unsigned long flags;
349 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
350 sbi->fsync_seg_id = 0;
351 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
356 struct f2fs_nm_info *nm_i = NM_I(sbi);
357 struct nat_entry *e;
358 bool need = false;
360 down_read(&nm_i->nat_tree_lock);
361 e = __lookup_nat_cache(nm_i, nid);
362 if (e) {
363 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
364 !get_nat_flag(e, HAS_FSYNCED_INODE))
365 need = true;
367 up_read(&nm_i->nat_tree_lock);
368 return need;
371 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
373 struct f2fs_nm_info *nm_i = NM_I(sbi);
374 struct nat_entry *e;
375 bool is_cp = true;
377 down_read(&nm_i->nat_tree_lock);
378 e = __lookup_nat_cache(nm_i, nid);
379 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
380 is_cp = false;
381 up_read(&nm_i->nat_tree_lock);
382 return is_cp;
385 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
387 struct f2fs_nm_info *nm_i = NM_I(sbi);
388 struct nat_entry *e;
389 bool need_update = true;
391 down_read(&nm_i->nat_tree_lock);
392 e = __lookup_nat_cache(nm_i, ino);
393 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
394 (get_nat_flag(e, IS_CHECKPOINTED) ||
395 get_nat_flag(e, HAS_FSYNCED_INODE)))
396 need_update = false;
397 up_read(&nm_i->nat_tree_lock);
398 return need_update;
401 /* must be locked by nat_tree_lock */
402 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
403 struct f2fs_nat_entry *ne)
405 struct f2fs_nm_info *nm_i = NM_I(sbi);
406 struct nat_entry *new, *e;
408 new = __alloc_nat_entry(nid, false);
409 if (!new)
410 return;
412 down_write(&nm_i->nat_tree_lock);
413 e = __lookup_nat_cache(nm_i, nid);
414 if (!e)
415 e = __init_nat_entry(nm_i, new, ne, false);
416 else
417 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
418 nat_get_blkaddr(e) !=
419 le32_to_cpu(ne->block_addr) ||
420 nat_get_version(e) != ne->version);
421 up_write(&nm_i->nat_tree_lock);
422 if (e != new)
423 __free_nat_entry(new);
426 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
427 block_t new_blkaddr, bool fsync_done)
429 struct f2fs_nm_info *nm_i = NM_I(sbi);
430 struct nat_entry *e;
431 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
433 down_write(&nm_i->nat_tree_lock);
434 e = __lookup_nat_cache(nm_i, ni->nid);
435 if (!e) {
436 e = __init_nat_entry(nm_i, new, NULL, true);
437 copy_node_info(&e->ni, ni);
438 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
439 } else if (new_blkaddr == NEW_ADDR) {
441 * when nid is reallocated,
442 * previous nat entry can be remained in nat cache.
443 * So, reinitialize it with new information.
445 copy_node_info(&e->ni, ni);
446 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
448 /* let's free early to reduce memory consumption */
449 if (e != new)
450 __free_nat_entry(new);
452 /* sanity check */
453 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
455 new_blkaddr == NULL_ADDR);
456 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
457 new_blkaddr == NEW_ADDR);
458 f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
459 new_blkaddr == NEW_ADDR);
461 /* increment version no as node is removed */
462 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
463 unsigned char version = nat_get_version(e);
464 nat_set_version(e, inc_node_version(version));
467 /* change address */
468 nat_set_blkaddr(e, new_blkaddr);
469 if (!is_valid_data_blkaddr(sbi, new_blkaddr))
470 set_nat_flag(e, IS_CHECKPOINTED, false);
471 __set_nat_cache_dirty(nm_i, e);
473 /* update fsync_mark if its inode nat entry is still alive */
474 if (ni->nid != ni->ino)
475 e = __lookup_nat_cache(nm_i, ni->ino);
476 if (e) {
477 if (fsync_done && ni->nid == ni->ino)
478 set_nat_flag(e, HAS_FSYNCED_INODE, true);
479 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
481 up_write(&nm_i->nat_tree_lock);
484 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
486 struct f2fs_nm_info *nm_i = NM_I(sbi);
487 int nr = nr_shrink;
489 if (!down_write_trylock(&nm_i->nat_tree_lock))
490 return 0;
492 spin_lock(&nm_i->nat_list_lock);
493 while (nr_shrink) {
494 struct nat_entry *ne;
496 if (list_empty(&nm_i->nat_entries))
497 break;
499 ne = list_first_entry(&nm_i->nat_entries,
500 struct nat_entry, list);
501 list_del(&ne->list);
502 spin_unlock(&nm_i->nat_list_lock);
504 __del_from_nat_cache(nm_i, ne);
505 nr_shrink--;
507 spin_lock(&nm_i->nat_list_lock);
509 spin_unlock(&nm_i->nat_list_lock);
511 up_write(&nm_i->nat_tree_lock);
512 return nr - nr_shrink;
516 * This function always returns success
518 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
519 struct node_info *ni)
521 struct f2fs_nm_info *nm_i = NM_I(sbi);
522 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
523 struct f2fs_journal *journal = curseg->journal;
524 nid_t start_nid = START_NID(nid);
525 struct f2fs_nat_block *nat_blk;
526 struct page *page = NULL;
527 struct f2fs_nat_entry ne;
528 struct nat_entry *e;
529 pgoff_t index;
530 int i;
532 ni->nid = nid;
534 /* Check nat cache */
535 down_read(&nm_i->nat_tree_lock);
536 e = __lookup_nat_cache(nm_i, nid);
537 if (e) {
538 ni->ino = nat_get_ino(e);
539 ni->blk_addr = nat_get_blkaddr(e);
540 ni->version = nat_get_version(e);
541 up_read(&nm_i->nat_tree_lock);
542 return 0;
545 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
547 /* Check current segment summary */
548 down_read(&curseg->journal_rwsem);
549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 if (i >= 0) {
551 ne = nat_in_journal(journal, i);
552 node_info_from_raw_nat(ni, &ne);
554 up_read(&curseg->journal_rwsem);
555 if (i >= 0) {
556 up_read(&nm_i->nat_tree_lock);
557 goto cache;
560 /* Fill node_info from nat page */
561 index = current_nat_addr(sbi, nid);
562 up_read(&nm_i->nat_tree_lock);
564 page = f2fs_get_meta_page(sbi, index);
565 if (IS_ERR(page))
566 return PTR_ERR(page);
568 nat_blk = (struct f2fs_nat_block *)page_address(page);
569 ne = nat_blk->entries[nid - start_nid];
570 node_info_from_raw_nat(ni, &ne);
571 f2fs_put_page(page, 1);
572 cache:
573 /* cache nat entry */
574 cache_nat_entry(sbi, nid, &ne);
575 return 0;
579 * readahead MAX_RA_NODE number of node pages.
581 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
583 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
584 struct blk_plug plug;
585 int i, end;
586 nid_t nid;
588 blk_start_plug(&plug);
590 /* Then, try readahead for siblings of the desired node */
591 end = start + n;
592 end = min(end, NIDS_PER_BLOCK);
593 for (i = start; i < end; i++) {
594 nid = get_nid(parent, i, false);
595 f2fs_ra_node_page(sbi, nid);
598 blk_finish_plug(&plug);
601 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
603 const long direct_index = ADDRS_PER_INODE(dn->inode);
604 const long direct_blks = ADDRS_PER_BLOCK;
605 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
606 unsigned int skipped_unit = ADDRS_PER_BLOCK;
607 int cur_level = dn->cur_level;
608 int max_level = dn->max_level;
609 pgoff_t base = 0;
611 if (!dn->max_level)
612 return pgofs + 1;
614 while (max_level-- > cur_level)
615 skipped_unit *= NIDS_PER_BLOCK;
617 switch (dn->max_level) {
618 case 3:
619 base += 2 * indirect_blks;
620 case 2:
621 base += 2 * direct_blks;
622 case 1:
623 base += direct_index;
624 break;
625 default:
626 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
629 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
633 * The maximum depth is four.
634 * Offset[0] will have raw inode offset.
636 static int get_node_path(struct inode *inode, long block,
637 int offset[4], unsigned int noffset[4])
639 const long direct_index = ADDRS_PER_INODE(inode);
640 const long direct_blks = ADDRS_PER_BLOCK;
641 const long dptrs_per_blk = NIDS_PER_BLOCK;
642 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
643 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
644 int n = 0;
645 int level = 0;
647 noffset[0] = 0;
649 if (block < direct_index) {
650 offset[n] = block;
651 goto got;
653 block -= direct_index;
654 if (block < direct_blks) {
655 offset[n++] = NODE_DIR1_BLOCK;
656 noffset[n] = 1;
657 offset[n] = block;
658 level = 1;
659 goto got;
661 block -= direct_blks;
662 if (block < direct_blks) {
663 offset[n++] = NODE_DIR2_BLOCK;
664 noffset[n] = 2;
665 offset[n] = block;
666 level = 1;
667 goto got;
669 block -= direct_blks;
670 if (block < indirect_blks) {
671 offset[n++] = NODE_IND1_BLOCK;
672 noffset[n] = 3;
673 offset[n++] = block / direct_blks;
674 noffset[n] = 4 + offset[n - 1];
675 offset[n] = block % direct_blks;
676 level = 2;
677 goto got;
679 block -= indirect_blks;
680 if (block < indirect_blks) {
681 offset[n++] = NODE_IND2_BLOCK;
682 noffset[n] = 4 + dptrs_per_blk;
683 offset[n++] = block / direct_blks;
684 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
685 offset[n] = block % direct_blks;
686 level = 2;
687 goto got;
689 block -= indirect_blks;
690 if (block < dindirect_blks) {
691 offset[n++] = NODE_DIND_BLOCK;
692 noffset[n] = 5 + (dptrs_per_blk * 2);
693 offset[n++] = block / indirect_blks;
694 noffset[n] = 6 + (dptrs_per_blk * 2) +
695 offset[n - 1] * (dptrs_per_blk + 1);
696 offset[n++] = (block / direct_blks) % dptrs_per_blk;
697 noffset[n] = 7 + (dptrs_per_blk * 2) +
698 offset[n - 2] * (dptrs_per_blk + 1) +
699 offset[n - 1];
700 offset[n] = block % direct_blks;
701 level = 3;
702 goto got;
703 } else {
704 return -E2BIG;
706 got:
707 return level;
711 * Caller should call f2fs_put_dnode(dn).
712 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
713 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
714 * In the case of RDONLY_NODE, we don't need to care about mutex.
716 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
718 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
719 struct page *npage[4];
720 struct page *parent = NULL;
721 int offset[4];
722 unsigned int noffset[4];
723 nid_t nids[4];
724 int level, i = 0;
725 int err = 0;
727 level = get_node_path(dn->inode, index, offset, noffset);
728 if (level < 0)
729 return level;
731 nids[0] = dn->inode->i_ino;
732 npage[0] = dn->inode_page;
734 if (!npage[0]) {
735 npage[0] = f2fs_get_node_page(sbi, nids[0]);
736 if (IS_ERR(npage[0]))
737 return PTR_ERR(npage[0]);
740 /* if inline_data is set, should not report any block indices */
741 if (f2fs_has_inline_data(dn->inode) && index) {
742 err = -ENOENT;
743 f2fs_put_page(npage[0], 1);
744 goto release_out;
747 parent = npage[0];
748 if (level != 0)
749 nids[1] = get_nid(parent, offset[0], true);
750 dn->inode_page = npage[0];
751 dn->inode_page_locked = true;
753 /* get indirect or direct nodes */
754 for (i = 1; i <= level; i++) {
755 bool done = false;
757 if (!nids[i] && mode == ALLOC_NODE) {
758 /* alloc new node */
759 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
760 err = -ENOSPC;
761 goto release_pages;
764 dn->nid = nids[i];
765 npage[i] = f2fs_new_node_page(dn, noffset[i]);
766 if (IS_ERR(npage[i])) {
767 f2fs_alloc_nid_failed(sbi, nids[i]);
768 err = PTR_ERR(npage[i]);
769 goto release_pages;
772 set_nid(parent, offset[i - 1], nids[i], i == 1);
773 f2fs_alloc_nid_done(sbi, nids[i]);
774 done = true;
775 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
776 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
777 if (IS_ERR(npage[i])) {
778 err = PTR_ERR(npage[i]);
779 goto release_pages;
781 done = true;
783 if (i == 1) {
784 dn->inode_page_locked = false;
785 unlock_page(parent);
786 } else {
787 f2fs_put_page(parent, 1);
790 if (!done) {
791 npage[i] = f2fs_get_node_page(sbi, nids[i]);
792 if (IS_ERR(npage[i])) {
793 err = PTR_ERR(npage[i]);
794 f2fs_put_page(npage[0], 0);
795 goto release_out;
798 if (i < level) {
799 parent = npage[i];
800 nids[i + 1] = get_nid(parent, offset[i], false);
803 dn->nid = nids[level];
804 dn->ofs_in_node = offset[level];
805 dn->node_page = npage[level];
806 dn->data_blkaddr = datablock_addr(dn->inode,
807 dn->node_page, dn->ofs_in_node);
808 return 0;
810 release_pages:
811 f2fs_put_page(parent, 1);
812 if (i > 1)
813 f2fs_put_page(npage[0], 0);
814 release_out:
815 dn->inode_page = NULL;
816 dn->node_page = NULL;
817 if (err == -ENOENT) {
818 dn->cur_level = i;
819 dn->max_level = level;
820 dn->ofs_in_node = offset[level];
822 return err;
825 static int truncate_node(struct dnode_of_data *dn)
827 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
828 struct node_info ni;
829 int err;
831 err = f2fs_get_node_info(sbi, dn->nid, &ni);
832 if (err)
833 return err;
835 /* Deallocate node address */
836 f2fs_invalidate_blocks(sbi, ni.blk_addr);
837 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
838 set_node_addr(sbi, &ni, NULL_ADDR, false);
840 if (dn->nid == dn->inode->i_ino) {
841 f2fs_remove_orphan_inode(sbi, dn->nid);
842 dec_valid_inode_count(sbi);
843 f2fs_inode_synced(dn->inode);
846 clear_node_page_dirty(dn->node_page);
847 set_sbi_flag(sbi, SBI_IS_DIRTY);
849 f2fs_put_page(dn->node_page, 1);
851 invalidate_mapping_pages(NODE_MAPPING(sbi),
852 dn->node_page->index, dn->node_page->index);
854 dn->node_page = NULL;
855 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
857 return 0;
860 static int truncate_dnode(struct dnode_of_data *dn)
862 struct page *page;
863 int err;
865 if (dn->nid == 0)
866 return 1;
868 /* get direct node */
869 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
870 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
871 return 1;
872 else if (IS_ERR(page))
873 return PTR_ERR(page);
875 /* Make dnode_of_data for parameter */
876 dn->node_page = page;
877 dn->ofs_in_node = 0;
878 f2fs_truncate_data_blocks(dn);
879 err = truncate_node(dn);
880 if (err)
881 return err;
883 return 1;
886 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
887 int ofs, int depth)
889 struct dnode_of_data rdn = *dn;
890 struct page *page;
891 struct f2fs_node *rn;
892 nid_t child_nid;
893 unsigned int child_nofs;
894 int freed = 0;
895 int i, ret;
897 if (dn->nid == 0)
898 return NIDS_PER_BLOCK + 1;
900 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
902 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
903 if (IS_ERR(page)) {
904 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
905 return PTR_ERR(page);
908 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
910 rn = F2FS_NODE(page);
911 if (depth < 3) {
912 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
913 child_nid = le32_to_cpu(rn->in.nid[i]);
914 if (child_nid == 0)
915 continue;
916 rdn.nid = child_nid;
917 ret = truncate_dnode(&rdn);
918 if (ret < 0)
919 goto out_err;
920 if (set_nid(page, i, 0, false))
921 dn->node_changed = true;
923 } else {
924 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
925 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
926 child_nid = le32_to_cpu(rn->in.nid[i]);
927 if (child_nid == 0) {
928 child_nofs += NIDS_PER_BLOCK + 1;
929 continue;
931 rdn.nid = child_nid;
932 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
933 if (ret == (NIDS_PER_BLOCK + 1)) {
934 if (set_nid(page, i, 0, false))
935 dn->node_changed = true;
936 child_nofs += ret;
937 } else if (ret < 0 && ret != -ENOENT) {
938 goto out_err;
941 freed = child_nofs;
944 if (!ofs) {
945 /* remove current indirect node */
946 dn->node_page = page;
947 ret = truncate_node(dn);
948 if (ret)
949 goto out_err;
950 freed++;
951 } else {
952 f2fs_put_page(page, 1);
954 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
955 return freed;
957 out_err:
958 f2fs_put_page(page, 1);
959 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
960 return ret;
963 static int truncate_partial_nodes(struct dnode_of_data *dn,
964 struct f2fs_inode *ri, int *offset, int depth)
966 struct page *pages[2];
967 nid_t nid[3];
968 nid_t child_nid;
969 int err = 0;
970 int i;
971 int idx = depth - 2;
973 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
974 if (!nid[0])
975 return 0;
977 /* get indirect nodes in the path */
978 for (i = 0; i < idx + 1; i++) {
979 /* reference count'll be increased */
980 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
981 if (IS_ERR(pages[i])) {
982 err = PTR_ERR(pages[i]);
983 idx = i - 1;
984 goto fail;
986 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
989 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
991 /* free direct nodes linked to a partial indirect node */
992 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
993 child_nid = get_nid(pages[idx], i, false);
994 if (!child_nid)
995 continue;
996 dn->nid = child_nid;
997 err = truncate_dnode(dn);
998 if (err < 0)
999 goto fail;
1000 if (set_nid(pages[idx], i, 0, false))
1001 dn->node_changed = true;
1004 if (offset[idx + 1] == 0) {
1005 dn->node_page = pages[idx];
1006 dn->nid = nid[idx];
1007 err = truncate_node(dn);
1008 if (err)
1009 goto fail;
1010 } else {
1011 f2fs_put_page(pages[idx], 1);
1013 offset[idx]++;
1014 offset[idx + 1] = 0;
1015 idx--;
1016 fail:
1017 for (i = idx; i >= 0; i--)
1018 f2fs_put_page(pages[i], 1);
1020 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1022 return err;
1026 * All the block addresses of data and nodes should be nullified.
1028 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031 int err = 0, cont = 1;
1032 int level, offset[4], noffset[4];
1033 unsigned int nofs = 0;
1034 struct f2fs_inode *ri;
1035 struct dnode_of_data dn;
1036 struct page *page;
1038 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1040 level = get_node_path(inode, from, offset, noffset);
1041 if (level < 0)
1042 return level;
1044 page = f2fs_get_node_page(sbi, inode->i_ino);
1045 if (IS_ERR(page)) {
1046 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1047 return PTR_ERR(page);
1050 set_new_dnode(&dn, inode, page, NULL, 0);
1051 unlock_page(page);
1053 ri = F2FS_INODE(page);
1054 switch (level) {
1055 case 0:
1056 case 1:
1057 nofs = noffset[1];
1058 break;
1059 case 2:
1060 nofs = noffset[1];
1061 if (!offset[level - 1])
1062 goto skip_partial;
1063 err = truncate_partial_nodes(&dn, ri, offset, level);
1064 if (err < 0 && err != -ENOENT)
1065 goto fail;
1066 nofs += 1 + NIDS_PER_BLOCK;
1067 break;
1068 case 3:
1069 nofs = 5 + 2 * NIDS_PER_BLOCK;
1070 if (!offset[level - 1])
1071 goto skip_partial;
1072 err = truncate_partial_nodes(&dn, ri, offset, level);
1073 if (err < 0 && err != -ENOENT)
1074 goto fail;
1075 break;
1076 default:
1077 BUG();
1080 skip_partial:
1081 while (cont) {
1082 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1083 switch (offset[0]) {
1084 case NODE_DIR1_BLOCK:
1085 case NODE_DIR2_BLOCK:
1086 err = truncate_dnode(&dn);
1087 break;
1089 case NODE_IND1_BLOCK:
1090 case NODE_IND2_BLOCK:
1091 err = truncate_nodes(&dn, nofs, offset[1], 2);
1092 break;
1094 case NODE_DIND_BLOCK:
1095 err = truncate_nodes(&dn, nofs, offset[1], 3);
1096 cont = 0;
1097 break;
1099 default:
1100 BUG();
1102 if (err < 0 && err != -ENOENT)
1103 goto fail;
1104 if (offset[1] == 0 &&
1105 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1106 lock_page(page);
1107 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1108 f2fs_wait_on_page_writeback(page, NODE, true);
1109 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1110 set_page_dirty(page);
1111 unlock_page(page);
1113 offset[1] = 0;
1114 offset[0]++;
1115 nofs += err;
1117 fail:
1118 f2fs_put_page(page, 0);
1119 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1120 return err > 0 ? 0 : err;
1123 /* caller must lock inode page */
1124 int f2fs_truncate_xattr_node(struct inode *inode)
1126 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1128 struct dnode_of_data dn;
1129 struct page *npage;
1130 int err;
1132 if (!nid)
1133 return 0;
1135 npage = f2fs_get_node_page(sbi, nid);
1136 if (IS_ERR(npage))
1137 return PTR_ERR(npage);
1139 set_new_dnode(&dn, inode, NULL, npage, nid);
1140 err = truncate_node(&dn);
1141 if (err) {
1142 f2fs_put_page(npage, 1);
1143 return err;
1146 f2fs_i_xnid_write(inode, 0);
1148 return 0;
1152 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1153 * f2fs_unlock_op().
1155 int f2fs_remove_inode_page(struct inode *inode)
1157 struct dnode_of_data dn;
1158 int err;
1160 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1161 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1162 if (err)
1163 return err;
1165 err = f2fs_truncate_xattr_node(inode);
1166 if (err) {
1167 f2fs_put_dnode(&dn);
1168 return err;
1171 /* remove potential inline_data blocks */
1172 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1173 S_ISLNK(inode->i_mode))
1174 f2fs_truncate_data_blocks_range(&dn, 1);
1176 /* 0 is possible, after f2fs_new_inode() has failed */
1177 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1178 f2fs_put_dnode(&dn);
1179 return -EIO;
1181 f2fs_bug_on(F2FS_I_SB(inode),
1182 inode->i_blocks != 0 && inode->i_blocks != 8);
1184 /* will put inode & node pages */
1185 err = truncate_node(&dn);
1186 if (err) {
1187 f2fs_put_dnode(&dn);
1188 return err;
1190 return 0;
1193 struct page *f2fs_new_inode_page(struct inode *inode)
1195 struct dnode_of_data dn;
1197 /* allocate inode page for new inode */
1198 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1200 /* caller should f2fs_put_page(page, 1); */
1201 return f2fs_new_node_page(&dn, 0);
1204 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1206 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1207 struct node_info new_ni;
1208 struct page *page;
1209 int err;
1211 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1212 return ERR_PTR(-EPERM);
1214 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1215 if (!page)
1216 return ERR_PTR(-ENOMEM);
1218 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1219 goto fail;
1221 #ifdef CONFIG_F2FS_CHECK_FS
1222 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1223 if (err) {
1224 dec_valid_node_count(sbi, dn->inode, !ofs);
1225 goto fail;
1227 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1228 #endif
1229 new_ni.nid = dn->nid;
1230 new_ni.ino = dn->inode->i_ino;
1231 new_ni.blk_addr = NULL_ADDR;
1232 new_ni.flag = 0;
1233 new_ni.version = 0;
1234 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1236 f2fs_wait_on_page_writeback(page, NODE, true);
1237 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1238 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1239 if (!PageUptodate(page))
1240 SetPageUptodate(page);
1241 if (set_page_dirty(page))
1242 dn->node_changed = true;
1244 if (f2fs_has_xattr_block(ofs))
1245 f2fs_i_xnid_write(dn->inode, dn->nid);
1247 if (ofs == 0)
1248 inc_valid_inode_count(sbi);
1249 return page;
1251 fail:
1252 clear_node_page_dirty(page);
1253 f2fs_put_page(page, 1);
1254 return ERR_PTR(err);
1258 * Caller should do after getting the following values.
1259 * 0: f2fs_put_page(page, 0)
1260 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1262 static int read_node_page(struct page *page, int op_flags)
1264 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1265 struct node_info ni;
1266 struct f2fs_io_info fio = {
1267 .sbi = sbi,
1268 .type = NODE,
1269 .op = REQ_OP_READ,
1270 .op_flags = op_flags,
1271 .page = page,
1272 .encrypted_page = NULL,
1274 int err;
1276 if (PageUptodate(page)) {
1277 #ifdef CONFIG_F2FS_CHECK_FS
1278 f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
1279 #endif
1280 return LOCKED_PAGE;
1283 err = f2fs_get_node_info(sbi, page->index, &ni);
1284 if (err)
1285 return err;
1287 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1288 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1289 ClearPageUptodate(page);
1290 return -ENOENT;
1293 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1294 return f2fs_submit_page_bio(&fio);
1298 * Readahead a node page
1300 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1302 struct page *apage;
1303 int err;
1305 if (!nid)
1306 return;
1307 if (f2fs_check_nid_range(sbi, nid))
1308 return;
1310 rcu_read_lock();
1311 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1312 rcu_read_unlock();
1313 if (apage)
1314 return;
1316 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1317 if (!apage)
1318 return;
1320 err = read_node_page(apage, REQ_RAHEAD);
1321 f2fs_put_page(apage, err ? 1 : 0);
1324 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1325 struct page *parent, int start)
1327 struct page *page;
1328 int err;
1330 if (!nid)
1331 return ERR_PTR(-ENOENT);
1332 if (f2fs_check_nid_range(sbi, nid))
1333 return ERR_PTR(-EINVAL);
1334 repeat:
1335 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1336 if (!page)
1337 return ERR_PTR(-ENOMEM);
1339 err = read_node_page(page, 0);
1340 if (err < 0) {
1341 f2fs_put_page(page, 1);
1342 return ERR_PTR(err);
1343 } else if (err == LOCKED_PAGE) {
1344 err = 0;
1345 goto page_hit;
1348 if (parent)
1349 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1351 lock_page(page);
1353 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1354 f2fs_put_page(page, 1);
1355 goto repeat;
1358 if (unlikely(!PageUptodate(page))) {
1359 err = -EIO;
1360 goto out_err;
1363 if (!f2fs_inode_chksum_verify(sbi, page)) {
1364 err = -EBADMSG;
1365 goto out_err;
1367 page_hit:
1368 if(unlikely(nid != nid_of_node(page))) {
1369 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1370 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1371 nid, nid_of_node(page), ino_of_node(page),
1372 ofs_of_node(page), cpver_of_node(page),
1373 next_blkaddr_of_node(page));
1374 err = -EINVAL;
1375 out_err:
1376 ClearPageUptodate(page);
1377 f2fs_put_page(page, 1);
1378 return ERR_PTR(err);
1380 return page;
1383 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1385 return __get_node_page(sbi, nid, NULL, 0);
1388 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1390 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1391 nid_t nid = get_nid(parent, start, false);
1393 return __get_node_page(sbi, nid, parent, start);
1396 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1398 struct inode *inode;
1399 struct page *page;
1400 int ret;
1402 /* should flush inline_data before evict_inode */
1403 inode = ilookup(sbi->sb, ino);
1404 if (!inode)
1405 return;
1407 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1408 FGP_LOCK|FGP_NOWAIT, 0);
1409 if (!page)
1410 goto iput_out;
1412 if (!PageUptodate(page))
1413 goto page_out;
1415 if (!PageDirty(page))
1416 goto page_out;
1418 if (!clear_page_dirty_for_io(page))
1419 goto page_out;
1421 ret = f2fs_write_inline_data(inode, page);
1422 inode_dec_dirty_pages(inode);
1423 f2fs_remove_dirty_inode(inode);
1424 if (ret)
1425 set_page_dirty(page);
1426 page_out:
1427 f2fs_put_page(page, 1);
1428 iput_out:
1429 iput(inode);
1432 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1434 pgoff_t index;
1435 struct pagevec pvec;
1436 struct page *last_page = NULL;
1437 int nr_pages;
1439 pagevec_init(&pvec);
1440 index = 0;
1442 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1443 PAGECACHE_TAG_DIRTY))) {
1444 int i;
1446 for (i = 0; i < nr_pages; i++) {
1447 struct page *page = pvec.pages[i];
1449 if (unlikely(f2fs_cp_error(sbi))) {
1450 f2fs_put_page(last_page, 0);
1451 pagevec_release(&pvec);
1452 return ERR_PTR(-EIO);
1455 if (!IS_DNODE(page) || !is_cold_node(page))
1456 continue;
1457 if (ino_of_node(page) != ino)
1458 continue;
1460 lock_page(page);
1462 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1463 continue_unlock:
1464 unlock_page(page);
1465 continue;
1467 if (ino_of_node(page) != ino)
1468 goto continue_unlock;
1470 if (!PageDirty(page)) {
1471 /* someone wrote it for us */
1472 goto continue_unlock;
1475 if (last_page)
1476 f2fs_put_page(last_page, 0);
1478 get_page(page);
1479 last_page = page;
1480 unlock_page(page);
1482 pagevec_release(&pvec);
1483 cond_resched();
1485 return last_page;
1488 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1489 struct writeback_control *wbc, bool do_balance,
1490 enum iostat_type io_type, unsigned int *seq_id)
1492 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1493 nid_t nid;
1494 struct node_info ni;
1495 struct f2fs_io_info fio = {
1496 .sbi = sbi,
1497 .ino = ino_of_node(page),
1498 .type = NODE,
1499 .op = REQ_OP_WRITE,
1500 .op_flags = wbc_to_write_flags(wbc),
1501 .page = page,
1502 .encrypted_page = NULL,
1503 .submitted = false,
1504 .io_type = io_type,
1505 .io_wbc = wbc,
1507 unsigned int seq;
1509 trace_f2fs_writepage(page, NODE);
1511 if (unlikely(f2fs_cp_error(sbi)))
1512 goto redirty_out;
1514 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1515 goto redirty_out;
1517 if (wbc->sync_mode == WB_SYNC_NONE &&
1518 IS_DNODE(page) && is_cold_node(page))
1519 goto redirty_out;
1521 /* get old block addr of this node page */
1522 nid = nid_of_node(page);
1523 f2fs_bug_on(sbi, page->index != nid);
1525 if (f2fs_get_node_info(sbi, nid, &ni))
1526 goto redirty_out;
1528 if (wbc->for_reclaim) {
1529 if (!down_read_trylock(&sbi->node_write))
1530 goto redirty_out;
1531 } else {
1532 down_read(&sbi->node_write);
1535 /* This page is already truncated */
1536 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1537 ClearPageUptodate(page);
1538 dec_page_count(sbi, F2FS_DIRTY_NODES);
1539 up_read(&sbi->node_write);
1540 unlock_page(page);
1541 return 0;
1544 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1545 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC))
1546 goto redirty_out;
1548 if (atomic && !test_opt(sbi, NOBARRIER))
1549 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1551 set_page_writeback(page);
1552 ClearPageError(page);
1554 if (f2fs_in_warm_node_list(sbi, page)) {
1555 seq = f2fs_add_fsync_node_entry(sbi, page);
1556 if (seq_id)
1557 *seq_id = seq;
1560 fio.old_blkaddr = ni.blk_addr;
1561 f2fs_do_write_node_page(nid, &fio);
1562 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1563 dec_page_count(sbi, F2FS_DIRTY_NODES);
1564 up_read(&sbi->node_write);
1566 if (wbc->for_reclaim) {
1567 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1568 page->index, NODE);
1569 submitted = NULL;
1572 unlock_page(page);
1574 if (unlikely(f2fs_cp_error(sbi))) {
1575 f2fs_submit_merged_write(sbi, NODE);
1576 submitted = NULL;
1578 if (submitted)
1579 *submitted = fio.submitted;
1581 if (do_balance)
1582 f2fs_balance_fs(sbi, false);
1583 return 0;
1585 redirty_out:
1586 redirty_page_for_writepage(wbc, page);
1587 return AOP_WRITEPAGE_ACTIVATE;
1590 void f2fs_move_node_page(struct page *node_page, int gc_type)
1592 if (gc_type == FG_GC) {
1593 struct writeback_control wbc = {
1594 .sync_mode = WB_SYNC_ALL,
1595 .nr_to_write = 1,
1596 .for_reclaim = 0,
1599 set_page_dirty(node_page);
1600 f2fs_wait_on_page_writeback(node_page, NODE, true);
1602 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1603 if (!clear_page_dirty_for_io(node_page))
1604 goto out_page;
1606 if (__write_node_page(node_page, false, NULL,
1607 &wbc, false, FS_GC_NODE_IO, NULL))
1608 unlock_page(node_page);
1609 goto release_page;
1610 } else {
1611 /* set page dirty and write it */
1612 if (!PageWriteback(node_page))
1613 set_page_dirty(node_page);
1615 out_page:
1616 unlock_page(node_page);
1617 release_page:
1618 f2fs_put_page(node_page, 0);
1621 static int f2fs_write_node_page(struct page *page,
1622 struct writeback_control *wbc)
1624 return __write_node_page(page, false, NULL, wbc, false,
1625 FS_NODE_IO, NULL);
1628 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1629 struct writeback_control *wbc, bool atomic,
1630 unsigned int *seq_id)
1632 pgoff_t index;
1633 pgoff_t last_idx = ULONG_MAX;
1634 struct pagevec pvec;
1635 int ret = 0;
1636 struct page *last_page = NULL;
1637 bool marked = false;
1638 nid_t ino = inode->i_ino;
1639 int nr_pages;
1641 if (atomic) {
1642 last_page = last_fsync_dnode(sbi, ino);
1643 if (IS_ERR_OR_NULL(last_page))
1644 return PTR_ERR_OR_ZERO(last_page);
1646 retry:
1647 pagevec_init(&pvec);
1648 index = 0;
1650 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1651 PAGECACHE_TAG_DIRTY))) {
1652 int i;
1654 for (i = 0; i < nr_pages; i++) {
1655 struct page *page = pvec.pages[i];
1656 bool submitted = false;
1658 if (unlikely(f2fs_cp_error(sbi))) {
1659 f2fs_put_page(last_page, 0);
1660 pagevec_release(&pvec);
1661 ret = -EIO;
1662 goto out;
1665 if (!IS_DNODE(page) || !is_cold_node(page))
1666 continue;
1667 if (ino_of_node(page) != ino)
1668 continue;
1670 lock_page(page);
1672 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1673 continue_unlock:
1674 unlock_page(page);
1675 continue;
1677 if (ino_of_node(page) != ino)
1678 goto continue_unlock;
1680 if (!PageDirty(page) && page != last_page) {
1681 /* someone wrote it for us */
1682 goto continue_unlock;
1685 f2fs_wait_on_page_writeback(page, NODE, true);
1686 BUG_ON(PageWriteback(page));
1688 set_fsync_mark(page, 0);
1689 set_dentry_mark(page, 0);
1691 if (!atomic || page == last_page) {
1692 set_fsync_mark(page, 1);
1693 if (IS_INODE(page)) {
1694 if (is_inode_flag_set(inode,
1695 FI_DIRTY_INODE))
1696 f2fs_update_inode(inode, page);
1697 set_dentry_mark(page,
1698 f2fs_need_dentry_mark(sbi, ino));
1700 /* may be written by other thread */
1701 if (!PageDirty(page))
1702 set_page_dirty(page);
1705 if (!clear_page_dirty_for_io(page))
1706 goto continue_unlock;
1708 ret = __write_node_page(page, atomic &&
1709 page == last_page,
1710 &submitted, wbc, true,
1711 FS_NODE_IO, seq_id);
1712 if (ret) {
1713 unlock_page(page);
1714 f2fs_put_page(last_page, 0);
1715 break;
1716 } else if (submitted) {
1717 last_idx = page->index;
1720 if (page == last_page) {
1721 f2fs_put_page(page, 0);
1722 marked = true;
1723 break;
1726 pagevec_release(&pvec);
1727 cond_resched();
1729 if (ret || marked)
1730 break;
1732 if (!ret && atomic && !marked) {
1733 f2fs_msg(sbi->sb, KERN_DEBUG,
1734 "Retry to write fsync mark: ino=%u, idx=%lx",
1735 ino, last_page->index);
1736 lock_page(last_page);
1737 f2fs_wait_on_page_writeback(last_page, NODE, true);
1738 set_page_dirty(last_page);
1739 unlock_page(last_page);
1740 goto retry;
1742 out:
1743 if (last_idx != ULONG_MAX)
1744 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1745 return ret ? -EIO: 0;
1748 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1749 struct writeback_control *wbc,
1750 bool do_balance, enum iostat_type io_type)
1752 pgoff_t index;
1753 struct pagevec pvec;
1754 int step = 0;
1755 int nwritten = 0;
1756 int ret = 0;
1757 int nr_pages, done = 0;
1759 pagevec_init(&pvec);
1761 next_step:
1762 index = 0;
1764 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1765 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1766 int i;
1768 for (i = 0; i < nr_pages; i++) {
1769 struct page *page = pvec.pages[i];
1770 bool submitted = false;
1772 /* give a priority to WB_SYNC threads */
1773 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1774 wbc->sync_mode == WB_SYNC_NONE) {
1775 done = 1;
1776 break;
1780 * flushing sequence with step:
1781 * 0. indirect nodes
1782 * 1. dentry dnodes
1783 * 2. file dnodes
1785 if (step == 0 && IS_DNODE(page))
1786 continue;
1787 if (step == 1 && (!IS_DNODE(page) ||
1788 is_cold_node(page)))
1789 continue;
1790 if (step == 2 && (!IS_DNODE(page) ||
1791 !is_cold_node(page)))
1792 continue;
1793 lock_node:
1794 if (wbc->sync_mode == WB_SYNC_ALL)
1795 lock_page(page);
1796 else if (!trylock_page(page))
1797 continue;
1799 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1800 continue_unlock:
1801 unlock_page(page);
1802 continue;
1805 if (!PageDirty(page)) {
1806 /* someone wrote it for us */
1807 goto continue_unlock;
1810 /* flush inline_data */
1811 if (is_inline_node(page)) {
1812 clear_inline_node(page);
1813 unlock_page(page);
1814 flush_inline_data(sbi, ino_of_node(page));
1815 goto lock_node;
1818 f2fs_wait_on_page_writeback(page, NODE, true);
1820 BUG_ON(PageWriteback(page));
1821 if (!clear_page_dirty_for_io(page))
1822 goto continue_unlock;
1824 set_fsync_mark(page, 0);
1825 set_dentry_mark(page, 0);
1827 ret = __write_node_page(page, false, &submitted,
1828 wbc, do_balance, io_type, NULL);
1829 if (ret)
1830 unlock_page(page);
1831 else if (submitted)
1832 nwritten++;
1834 if (--wbc->nr_to_write == 0)
1835 break;
1837 pagevec_release(&pvec);
1838 cond_resched();
1840 if (wbc->nr_to_write == 0) {
1841 step = 2;
1842 break;
1846 if (step < 2) {
1847 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1848 goto out;
1849 step++;
1850 goto next_step;
1852 out:
1853 if (nwritten)
1854 f2fs_submit_merged_write(sbi, NODE);
1856 if (unlikely(f2fs_cp_error(sbi)))
1857 return -EIO;
1858 return ret;
1861 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1862 unsigned int seq_id)
1864 struct fsync_node_entry *fn;
1865 struct page *page;
1866 struct list_head *head = &sbi->fsync_node_list;
1867 unsigned long flags;
1868 unsigned int cur_seq_id = 0;
1869 int ret2, ret = 0;
1871 while (seq_id && cur_seq_id < seq_id) {
1872 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1873 if (list_empty(head)) {
1874 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1875 break;
1877 fn = list_first_entry(head, struct fsync_node_entry, list);
1878 if (fn->seq_id > seq_id) {
1879 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1880 break;
1882 cur_seq_id = fn->seq_id;
1883 page = fn->page;
1884 get_page(page);
1885 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1887 f2fs_wait_on_page_writeback(page, NODE, true);
1888 if (TestClearPageError(page))
1889 ret = -EIO;
1891 put_page(page);
1893 if (ret)
1894 break;
1897 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1898 if (!ret)
1899 ret = ret2;
1901 return ret;
1904 static int f2fs_write_node_pages(struct address_space *mapping,
1905 struct writeback_control *wbc)
1907 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1908 struct blk_plug plug;
1909 long diff;
1911 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1912 goto skip_write;
1914 /* balancing f2fs's metadata in background */
1915 f2fs_balance_fs_bg(sbi);
1917 /* collect a number of dirty node pages and write together */
1918 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1919 goto skip_write;
1921 if (wbc->sync_mode == WB_SYNC_ALL)
1922 atomic_inc(&sbi->wb_sync_req[NODE]);
1923 else if (atomic_read(&sbi->wb_sync_req[NODE]))
1924 goto skip_write;
1926 trace_f2fs_writepages(mapping->host, wbc, NODE);
1928 diff = nr_pages_to_write(sbi, NODE, wbc);
1929 blk_start_plug(&plug);
1930 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1931 blk_finish_plug(&plug);
1932 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1934 if (wbc->sync_mode == WB_SYNC_ALL)
1935 atomic_dec(&sbi->wb_sync_req[NODE]);
1936 return 0;
1938 skip_write:
1939 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1940 trace_f2fs_writepages(mapping->host, wbc, NODE);
1941 return 0;
1944 static int f2fs_set_node_page_dirty(struct page *page)
1946 trace_f2fs_set_page_dirty(page, NODE);
1948 if (!PageUptodate(page))
1949 SetPageUptodate(page);
1950 #ifdef CONFIG_F2FS_CHECK_FS
1951 if (IS_INODE(page))
1952 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1953 #endif
1954 if (!PageDirty(page)) {
1955 __set_page_dirty_nobuffers(page);
1956 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1957 SetPagePrivate(page);
1958 f2fs_trace_pid(page);
1959 return 1;
1961 return 0;
1965 * Structure of the f2fs node operations
1967 const struct address_space_operations f2fs_node_aops = {
1968 .writepage = f2fs_write_node_page,
1969 .writepages = f2fs_write_node_pages,
1970 .set_page_dirty = f2fs_set_node_page_dirty,
1971 .invalidatepage = f2fs_invalidate_page,
1972 .releasepage = f2fs_release_page,
1973 #ifdef CONFIG_MIGRATION
1974 .migratepage = f2fs_migrate_page,
1975 #endif
1978 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1979 nid_t n)
1981 return radix_tree_lookup(&nm_i->free_nid_root, n);
1984 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1985 struct free_nid *i, enum nid_state state)
1987 struct f2fs_nm_info *nm_i = NM_I(sbi);
1989 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1990 if (err)
1991 return err;
1993 f2fs_bug_on(sbi, state != i->state);
1994 nm_i->nid_cnt[state]++;
1995 if (state == FREE_NID)
1996 list_add_tail(&i->list, &nm_i->free_nid_list);
1997 return 0;
2000 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2001 struct free_nid *i, enum nid_state state)
2003 struct f2fs_nm_info *nm_i = NM_I(sbi);
2005 f2fs_bug_on(sbi, state != i->state);
2006 nm_i->nid_cnt[state]--;
2007 if (state == FREE_NID)
2008 list_del(&i->list);
2009 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2012 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2013 enum nid_state org_state, enum nid_state dst_state)
2015 struct f2fs_nm_info *nm_i = NM_I(sbi);
2017 f2fs_bug_on(sbi, org_state != i->state);
2018 i->state = dst_state;
2019 nm_i->nid_cnt[org_state]--;
2020 nm_i->nid_cnt[dst_state]++;
2022 switch (dst_state) {
2023 case PREALLOC_NID:
2024 list_del(&i->list);
2025 break;
2026 case FREE_NID:
2027 list_add_tail(&i->list, &nm_i->free_nid_list);
2028 break;
2029 default:
2030 BUG_ON(1);
2034 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2035 bool set, bool build)
2037 struct f2fs_nm_info *nm_i = NM_I(sbi);
2038 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2039 unsigned int nid_ofs = nid - START_NID(nid);
2041 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2042 return;
2044 if (set) {
2045 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2046 return;
2047 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2048 nm_i->free_nid_count[nat_ofs]++;
2049 } else {
2050 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2051 return;
2052 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2053 if (!build)
2054 nm_i->free_nid_count[nat_ofs]--;
2058 /* return if the nid is recognized as free */
2059 static bool add_free_nid(struct f2fs_sb_info *sbi,
2060 nid_t nid, bool build, bool update)
2062 struct f2fs_nm_info *nm_i = NM_I(sbi);
2063 struct free_nid *i, *e;
2064 struct nat_entry *ne;
2065 int err = -EINVAL;
2066 bool ret = false;
2068 /* 0 nid should not be used */
2069 if (unlikely(nid == 0))
2070 return false;
2072 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2073 i->nid = nid;
2074 i->state = FREE_NID;
2076 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2078 spin_lock(&nm_i->nid_list_lock);
2080 if (build) {
2082 * Thread A Thread B
2083 * - f2fs_create
2084 * - f2fs_new_inode
2085 * - f2fs_alloc_nid
2086 * - __insert_nid_to_list(PREALLOC_NID)
2087 * - f2fs_balance_fs_bg
2088 * - f2fs_build_free_nids
2089 * - __f2fs_build_free_nids
2090 * - scan_nat_page
2091 * - add_free_nid
2092 * - __lookup_nat_cache
2093 * - f2fs_add_link
2094 * - f2fs_init_inode_metadata
2095 * - f2fs_new_inode_page
2096 * - f2fs_new_node_page
2097 * - set_node_addr
2098 * - f2fs_alloc_nid_done
2099 * - __remove_nid_from_list(PREALLOC_NID)
2100 * - __insert_nid_to_list(FREE_NID)
2102 ne = __lookup_nat_cache(nm_i, nid);
2103 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2104 nat_get_blkaddr(ne) != NULL_ADDR))
2105 goto err_out;
2107 e = __lookup_free_nid_list(nm_i, nid);
2108 if (e) {
2109 if (e->state == FREE_NID)
2110 ret = true;
2111 goto err_out;
2114 ret = true;
2115 err = __insert_free_nid(sbi, i, FREE_NID);
2116 err_out:
2117 if (update) {
2118 update_free_nid_bitmap(sbi, nid, ret, build);
2119 if (!build)
2120 nm_i->available_nids++;
2122 spin_unlock(&nm_i->nid_list_lock);
2123 radix_tree_preload_end();
2125 if (err)
2126 kmem_cache_free(free_nid_slab, i);
2127 return ret;
2130 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2132 struct f2fs_nm_info *nm_i = NM_I(sbi);
2133 struct free_nid *i;
2134 bool need_free = false;
2136 spin_lock(&nm_i->nid_list_lock);
2137 i = __lookup_free_nid_list(nm_i, nid);
2138 if (i && i->state == FREE_NID) {
2139 __remove_free_nid(sbi, i, FREE_NID);
2140 need_free = true;
2142 spin_unlock(&nm_i->nid_list_lock);
2144 if (need_free)
2145 kmem_cache_free(free_nid_slab, i);
2148 static int scan_nat_page(struct f2fs_sb_info *sbi,
2149 struct page *nat_page, nid_t start_nid)
2151 struct f2fs_nm_info *nm_i = NM_I(sbi);
2152 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2153 block_t blk_addr;
2154 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2155 int i;
2157 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2159 i = start_nid % NAT_ENTRY_PER_BLOCK;
2161 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2162 if (unlikely(start_nid >= nm_i->max_nid))
2163 break;
2165 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2167 if (blk_addr == NEW_ADDR)
2168 return -EINVAL;
2170 if (blk_addr == NULL_ADDR) {
2171 add_free_nid(sbi, start_nid, true, true);
2172 } else {
2173 spin_lock(&NM_I(sbi)->nid_list_lock);
2174 update_free_nid_bitmap(sbi, start_nid, false, true);
2175 spin_unlock(&NM_I(sbi)->nid_list_lock);
2179 return 0;
2182 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2184 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2185 struct f2fs_journal *journal = curseg->journal;
2186 int i;
2188 down_read(&curseg->journal_rwsem);
2189 for (i = 0; i < nats_in_cursum(journal); i++) {
2190 block_t addr;
2191 nid_t nid;
2193 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2194 nid = le32_to_cpu(nid_in_journal(journal, i));
2195 if (addr == NULL_ADDR)
2196 add_free_nid(sbi, nid, true, false);
2197 else
2198 remove_free_nid(sbi, nid);
2200 up_read(&curseg->journal_rwsem);
2203 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2205 struct f2fs_nm_info *nm_i = NM_I(sbi);
2206 unsigned int i, idx;
2207 nid_t nid;
2209 down_read(&nm_i->nat_tree_lock);
2211 for (i = 0; i < nm_i->nat_blocks; i++) {
2212 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2213 continue;
2214 if (!nm_i->free_nid_count[i])
2215 continue;
2216 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2217 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2218 NAT_ENTRY_PER_BLOCK, idx);
2219 if (idx >= NAT_ENTRY_PER_BLOCK)
2220 break;
2222 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2223 add_free_nid(sbi, nid, true, false);
2225 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2226 goto out;
2229 out:
2230 scan_curseg_cache(sbi);
2232 up_read(&nm_i->nat_tree_lock);
2235 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2236 bool sync, bool mount)
2238 struct f2fs_nm_info *nm_i = NM_I(sbi);
2239 int i = 0, ret;
2240 nid_t nid = nm_i->next_scan_nid;
2242 if (unlikely(nid >= nm_i->max_nid))
2243 nid = 0;
2245 /* Enough entries */
2246 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2247 return 0;
2249 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2250 return 0;
2252 if (!mount) {
2253 /* try to find free nids in free_nid_bitmap */
2254 scan_free_nid_bits(sbi);
2256 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2257 return 0;
2260 /* readahead nat pages to be scanned */
2261 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2262 META_NAT, true);
2264 down_read(&nm_i->nat_tree_lock);
2266 while (1) {
2267 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2268 nm_i->nat_block_bitmap)) {
2269 struct page *page = get_current_nat_page(sbi, nid);
2271 ret = scan_nat_page(sbi, page, nid);
2272 f2fs_put_page(page, 1);
2274 if (ret) {
2275 up_read(&nm_i->nat_tree_lock);
2276 f2fs_bug_on(sbi, !mount);
2277 f2fs_msg(sbi->sb, KERN_ERR,
2278 "NAT is corrupt, run fsck to fix it");
2279 return -EINVAL;
2283 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2284 if (unlikely(nid >= nm_i->max_nid))
2285 nid = 0;
2287 if (++i >= FREE_NID_PAGES)
2288 break;
2291 /* go to the next free nat pages to find free nids abundantly */
2292 nm_i->next_scan_nid = nid;
2294 /* find free nids from current sum_pages */
2295 scan_curseg_cache(sbi);
2297 up_read(&nm_i->nat_tree_lock);
2299 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2300 nm_i->ra_nid_pages, META_NAT, false);
2302 return 0;
2305 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2307 int ret;
2309 mutex_lock(&NM_I(sbi)->build_lock);
2310 ret = __f2fs_build_free_nids(sbi, sync, mount);
2311 mutex_unlock(&NM_I(sbi)->build_lock);
2313 return ret;
2317 * If this function returns success, caller can obtain a new nid
2318 * from second parameter of this function.
2319 * The returned nid could be used ino as well as nid when inode is created.
2321 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2323 struct f2fs_nm_info *nm_i = NM_I(sbi);
2324 struct free_nid *i = NULL;
2325 retry:
2326 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2327 f2fs_show_injection_info(FAULT_ALLOC_NID);
2328 return false;
2331 spin_lock(&nm_i->nid_list_lock);
2333 if (unlikely(nm_i->available_nids == 0)) {
2334 spin_unlock(&nm_i->nid_list_lock);
2335 return false;
2338 /* We should not use stale free nids created by f2fs_build_free_nids */
2339 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2340 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2341 i = list_first_entry(&nm_i->free_nid_list,
2342 struct free_nid, list);
2343 *nid = i->nid;
2345 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2346 nm_i->available_nids--;
2348 update_free_nid_bitmap(sbi, *nid, false, false);
2350 spin_unlock(&nm_i->nid_list_lock);
2351 return true;
2353 spin_unlock(&nm_i->nid_list_lock);
2355 /* Let's scan nat pages and its caches to get free nids */
2356 f2fs_build_free_nids(sbi, true, false);
2357 goto retry;
2361 * f2fs_alloc_nid() should be called prior to this function.
2363 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2365 struct f2fs_nm_info *nm_i = NM_I(sbi);
2366 struct free_nid *i;
2368 spin_lock(&nm_i->nid_list_lock);
2369 i = __lookup_free_nid_list(nm_i, nid);
2370 f2fs_bug_on(sbi, !i);
2371 __remove_free_nid(sbi, i, PREALLOC_NID);
2372 spin_unlock(&nm_i->nid_list_lock);
2374 kmem_cache_free(free_nid_slab, i);
2378 * f2fs_alloc_nid() should be called prior to this function.
2380 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2382 struct f2fs_nm_info *nm_i = NM_I(sbi);
2383 struct free_nid *i;
2384 bool need_free = false;
2386 if (!nid)
2387 return;
2389 spin_lock(&nm_i->nid_list_lock);
2390 i = __lookup_free_nid_list(nm_i, nid);
2391 f2fs_bug_on(sbi, !i);
2393 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2394 __remove_free_nid(sbi, i, PREALLOC_NID);
2395 need_free = true;
2396 } else {
2397 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2400 nm_i->available_nids++;
2402 update_free_nid_bitmap(sbi, nid, true, false);
2404 spin_unlock(&nm_i->nid_list_lock);
2406 if (need_free)
2407 kmem_cache_free(free_nid_slab, i);
2410 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2412 struct f2fs_nm_info *nm_i = NM_I(sbi);
2413 struct free_nid *i, *next;
2414 int nr = nr_shrink;
2416 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2417 return 0;
2419 if (!mutex_trylock(&nm_i->build_lock))
2420 return 0;
2422 spin_lock(&nm_i->nid_list_lock);
2423 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2424 if (nr_shrink <= 0 ||
2425 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2426 break;
2428 __remove_free_nid(sbi, i, FREE_NID);
2429 kmem_cache_free(free_nid_slab, i);
2430 nr_shrink--;
2432 spin_unlock(&nm_i->nid_list_lock);
2433 mutex_unlock(&nm_i->build_lock);
2435 return nr - nr_shrink;
2438 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2440 void *src_addr, *dst_addr;
2441 size_t inline_size;
2442 struct page *ipage;
2443 struct f2fs_inode *ri;
2445 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2446 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2448 ri = F2FS_INODE(page);
2449 if (ri->i_inline & F2FS_INLINE_XATTR) {
2450 set_inode_flag(inode, FI_INLINE_XATTR);
2451 } else {
2452 clear_inode_flag(inode, FI_INLINE_XATTR);
2453 goto update_inode;
2456 dst_addr = inline_xattr_addr(inode, ipage);
2457 src_addr = inline_xattr_addr(inode, page);
2458 inline_size = inline_xattr_size(inode);
2460 f2fs_wait_on_page_writeback(ipage, NODE, true);
2461 memcpy(dst_addr, src_addr, inline_size);
2462 update_inode:
2463 f2fs_update_inode(inode, ipage);
2464 f2fs_put_page(ipage, 1);
2467 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2469 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2470 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2471 nid_t new_xnid;
2472 struct dnode_of_data dn;
2473 struct node_info ni;
2474 struct page *xpage;
2475 int err;
2477 if (!prev_xnid)
2478 goto recover_xnid;
2480 /* 1: invalidate the previous xattr nid */
2481 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2482 if (err)
2483 return err;
2485 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2486 dec_valid_node_count(sbi, inode, false);
2487 set_node_addr(sbi, &ni, NULL_ADDR, false);
2489 recover_xnid:
2490 /* 2: update xattr nid in inode */
2491 if (!f2fs_alloc_nid(sbi, &new_xnid))
2492 return -ENOSPC;
2494 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2495 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2496 if (IS_ERR(xpage)) {
2497 f2fs_alloc_nid_failed(sbi, new_xnid);
2498 return PTR_ERR(xpage);
2501 f2fs_alloc_nid_done(sbi, new_xnid);
2502 f2fs_update_inode_page(inode);
2504 /* 3: update and set xattr node page dirty */
2505 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2507 set_page_dirty(xpage);
2508 f2fs_put_page(xpage, 1);
2510 return 0;
2513 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2515 struct f2fs_inode *src, *dst;
2516 nid_t ino = ino_of_node(page);
2517 struct node_info old_ni, new_ni;
2518 struct page *ipage;
2519 int err;
2521 err = f2fs_get_node_info(sbi, ino, &old_ni);
2522 if (err)
2523 return err;
2525 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2526 return -EINVAL;
2527 retry:
2528 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2529 if (!ipage) {
2530 congestion_wait(BLK_RW_ASYNC, HZ/50);
2531 goto retry;
2534 /* Should not use this inode from free nid list */
2535 remove_free_nid(sbi, ino);
2537 if (!PageUptodate(ipage))
2538 SetPageUptodate(ipage);
2539 fill_node_footer(ipage, ino, ino, 0, true);
2540 set_cold_node(page, false);
2542 src = F2FS_INODE(page);
2543 dst = F2FS_INODE(ipage);
2545 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2546 dst->i_size = 0;
2547 dst->i_blocks = cpu_to_le64(1);
2548 dst->i_links = cpu_to_le32(1);
2549 dst->i_xattr_nid = 0;
2550 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2551 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2552 dst->i_extra_isize = src->i_extra_isize;
2554 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2555 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2556 i_inline_xattr_size))
2557 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2559 if (f2fs_sb_has_project_quota(sbi->sb) &&
2560 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2561 i_projid))
2562 dst->i_projid = src->i_projid;
2565 new_ni = old_ni;
2566 new_ni.ino = ino;
2568 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2569 WARN_ON(1);
2570 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2571 inc_valid_inode_count(sbi);
2572 set_page_dirty(ipage);
2573 f2fs_put_page(ipage, 1);
2574 return 0;
2577 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2578 unsigned int segno, struct f2fs_summary_block *sum)
2580 struct f2fs_node *rn;
2581 struct f2fs_summary *sum_entry;
2582 block_t addr;
2583 int i, idx, last_offset, nrpages;
2585 /* scan the node segment */
2586 last_offset = sbi->blocks_per_seg;
2587 addr = START_BLOCK(sbi, segno);
2588 sum_entry = &sum->entries[0];
2590 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2591 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2593 /* readahead node pages */
2594 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2596 for (idx = addr; idx < addr + nrpages; idx++) {
2597 struct page *page = f2fs_get_tmp_page(sbi, idx);
2599 if (IS_ERR(page))
2600 return PTR_ERR(page);
2602 rn = F2FS_NODE(page);
2603 sum_entry->nid = rn->footer.nid;
2604 sum_entry->version = 0;
2605 sum_entry->ofs_in_node = 0;
2606 sum_entry++;
2607 f2fs_put_page(page, 1);
2610 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2611 addr + nrpages);
2613 return 0;
2616 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2618 struct f2fs_nm_info *nm_i = NM_I(sbi);
2619 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2620 struct f2fs_journal *journal = curseg->journal;
2621 int i;
2623 down_write(&curseg->journal_rwsem);
2624 for (i = 0; i < nats_in_cursum(journal); i++) {
2625 struct nat_entry *ne;
2626 struct f2fs_nat_entry raw_ne;
2627 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2629 raw_ne = nat_in_journal(journal, i);
2631 ne = __lookup_nat_cache(nm_i, nid);
2632 if (!ne) {
2633 ne = __alloc_nat_entry(nid, true);
2634 __init_nat_entry(nm_i, ne, &raw_ne, true);
2638 * if a free nat in journal has not been used after last
2639 * checkpoint, we should remove it from available nids,
2640 * since later we will add it again.
2642 if (!get_nat_flag(ne, IS_DIRTY) &&
2643 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2644 spin_lock(&nm_i->nid_list_lock);
2645 nm_i->available_nids--;
2646 spin_unlock(&nm_i->nid_list_lock);
2649 __set_nat_cache_dirty(nm_i, ne);
2651 update_nats_in_cursum(journal, -i);
2652 up_write(&curseg->journal_rwsem);
2655 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2656 struct list_head *head, int max)
2658 struct nat_entry_set *cur;
2660 if (nes->entry_cnt >= max)
2661 goto add_out;
2663 list_for_each_entry(cur, head, set_list) {
2664 if (cur->entry_cnt >= nes->entry_cnt) {
2665 list_add(&nes->set_list, cur->set_list.prev);
2666 return;
2669 add_out:
2670 list_add_tail(&nes->set_list, head);
2673 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2674 struct page *page)
2676 struct f2fs_nm_info *nm_i = NM_I(sbi);
2677 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2678 struct f2fs_nat_block *nat_blk = page_address(page);
2679 int valid = 0;
2680 int i = 0;
2682 if (!enabled_nat_bits(sbi, NULL))
2683 return;
2685 if (nat_index == 0) {
2686 valid = 1;
2687 i = 1;
2689 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2690 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2691 valid++;
2693 if (valid == 0) {
2694 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2695 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2696 return;
2699 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2700 if (valid == NAT_ENTRY_PER_BLOCK)
2701 __set_bit_le(nat_index, nm_i->full_nat_bits);
2702 else
2703 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2706 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2707 struct nat_entry_set *set, struct cp_control *cpc)
2709 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2710 struct f2fs_journal *journal = curseg->journal;
2711 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2712 bool to_journal = true;
2713 struct f2fs_nat_block *nat_blk;
2714 struct nat_entry *ne, *cur;
2715 struct page *page = NULL;
2718 * there are two steps to flush nat entries:
2719 * #1, flush nat entries to journal in current hot data summary block.
2720 * #2, flush nat entries to nat page.
2722 if (enabled_nat_bits(sbi, cpc) ||
2723 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2724 to_journal = false;
2726 if (to_journal) {
2727 down_write(&curseg->journal_rwsem);
2728 } else {
2729 page = get_next_nat_page(sbi, start_nid);
2730 nat_blk = page_address(page);
2731 f2fs_bug_on(sbi, !nat_blk);
2734 /* flush dirty nats in nat entry set */
2735 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2736 struct f2fs_nat_entry *raw_ne;
2737 nid_t nid = nat_get_nid(ne);
2738 int offset;
2740 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2742 if (to_journal) {
2743 offset = f2fs_lookup_journal_in_cursum(journal,
2744 NAT_JOURNAL, nid, 1);
2745 f2fs_bug_on(sbi, offset < 0);
2746 raw_ne = &nat_in_journal(journal, offset);
2747 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2748 } else {
2749 raw_ne = &nat_blk->entries[nid - start_nid];
2751 raw_nat_from_node_info(raw_ne, &ne->ni);
2752 nat_reset_flag(ne);
2753 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2754 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2755 add_free_nid(sbi, nid, false, true);
2756 } else {
2757 spin_lock(&NM_I(sbi)->nid_list_lock);
2758 update_free_nid_bitmap(sbi, nid, false, false);
2759 spin_unlock(&NM_I(sbi)->nid_list_lock);
2763 if (to_journal) {
2764 up_write(&curseg->journal_rwsem);
2765 } else {
2766 __update_nat_bits(sbi, start_nid, page);
2767 f2fs_put_page(page, 1);
2770 /* Allow dirty nats by node block allocation in write_begin */
2771 if (!set->entry_cnt) {
2772 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2773 kmem_cache_free(nat_entry_set_slab, set);
2778 * This function is called during the checkpointing process.
2780 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2782 struct f2fs_nm_info *nm_i = NM_I(sbi);
2783 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2784 struct f2fs_journal *journal = curseg->journal;
2785 struct nat_entry_set *setvec[SETVEC_SIZE];
2786 struct nat_entry_set *set, *tmp;
2787 unsigned int found;
2788 nid_t set_idx = 0;
2789 LIST_HEAD(sets);
2791 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2792 if (enabled_nat_bits(sbi, cpc)) {
2793 down_write(&nm_i->nat_tree_lock);
2794 remove_nats_in_journal(sbi);
2795 up_write(&nm_i->nat_tree_lock);
2798 if (!nm_i->dirty_nat_cnt)
2799 return;
2801 down_write(&nm_i->nat_tree_lock);
2804 * if there are no enough space in journal to store dirty nat
2805 * entries, remove all entries from journal and merge them
2806 * into nat entry set.
2808 if (enabled_nat_bits(sbi, cpc) ||
2809 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2810 remove_nats_in_journal(sbi);
2812 while ((found = __gang_lookup_nat_set(nm_i,
2813 set_idx, SETVEC_SIZE, setvec))) {
2814 unsigned idx;
2815 set_idx = setvec[found - 1]->set + 1;
2816 for (idx = 0; idx < found; idx++)
2817 __adjust_nat_entry_set(setvec[idx], &sets,
2818 MAX_NAT_JENTRIES(journal));
2821 /* flush dirty nats in nat entry set */
2822 list_for_each_entry_safe(set, tmp, &sets, set_list)
2823 __flush_nat_entry_set(sbi, set, cpc);
2825 up_write(&nm_i->nat_tree_lock);
2826 /* Allow dirty nats by node block allocation in write_begin */
2829 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2831 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2832 struct f2fs_nm_info *nm_i = NM_I(sbi);
2833 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2834 unsigned int i;
2835 __u64 cp_ver = cur_cp_version(ckpt);
2836 block_t nat_bits_addr;
2838 if (!enabled_nat_bits(sbi, NULL))
2839 return 0;
2841 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2842 nm_i->nat_bits = f2fs_kzalloc(sbi,
2843 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2844 if (!nm_i->nat_bits)
2845 return -ENOMEM;
2847 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2848 nm_i->nat_bits_blocks;
2849 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2850 struct page *page;
2852 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2853 if (IS_ERR(page)) {
2854 disable_nat_bits(sbi, true);
2855 return PTR_ERR(page);
2858 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2859 page_address(page), F2FS_BLKSIZE);
2860 f2fs_put_page(page, 1);
2863 cp_ver |= (cur_cp_crc(ckpt) << 32);
2864 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2865 disable_nat_bits(sbi, true);
2866 return 0;
2869 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2870 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2872 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2873 return 0;
2876 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2878 struct f2fs_nm_info *nm_i = NM_I(sbi);
2879 unsigned int i = 0;
2880 nid_t nid, last_nid;
2882 if (!enabled_nat_bits(sbi, NULL))
2883 return;
2885 for (i = 0; i < nm_i->nat_blocks; i++) {
2886 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2887 if (i >= nm_i->nat_blocks)
2888 break;
2890 __set_bit_le(i, nm_i->nat_block_bitmap);
2892 nid = i * NAT_ENTRY_PER_BLOCK;
2893 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2895 spin_lock(&NM_I(sbi)->nid_list_lock);
2896 for (; nid < last_nid; nid++)
2897 update_free_nid_bitmap(sbi, nid, true, true);
2898 spin_unlock(&NM_I(sbi)->nid_list_lock);
2901 for (i = 0; i < nm_i->nat_blocks; i++) {
2902 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2903 if (i >= nm_i->nat_blocks)
2904 break;
2906 __set_bit_le(i, nm_i->nat_block_bitmap);
2910 static int init_node_manager(struct f2fs_sb_info *sbi)
2912 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2913 struct f2fs_nm_info *nm_i = NM_I(sbi);
2914 unsigned char *version_bitmap;
2915 unsigned int nat_segs;
2916 int err;
2918 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2920 /* segment_count_nat includes pair segment so divide to 2. */
2921 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2922 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2923 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2925 /* not used nids: 0, node, meta, (and root counted as valid node) */
2926 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2927 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2928 nm_i->nid_cnt[FREE_NID] = 0;
2929 nm_i->nid_cnt[PREALLOC_NID] = 0;
2930 nm_i->nat_cnt = 0;
2931 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2932 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2933 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2935 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2936 INIT_LIST_HEAD(&nm_i->free_nid_list);
2937 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2938 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2939 INIT_LIST_HEAD(&nm_i->nat_entries);
2940 spin_lock_init(&nm_i->nat_list_lock);
2942 mutex_init(&nm_i->build_lock);
2943 spin_lock_init(&nm_i->nid_list_lock);
2944 init_rwsem(&nm_i->nat_tree_lock);
2946 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2947 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2948 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2949 if (!version_bitmap)
2950 return -EFAULT;
2952 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2953 GFP_KERNEL);
2954 if (!nm_i->nat_bitmap)
2955 return -ENOMEM;
2957 err = __get_nat_bitmaps(sbi);
2958 if (err)
2959 return err;
2961 #ifdef CONFIG_F2FS_CHECK_FS
2962 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2963 GFP_KERNEL);
2964 if (!nm_i->nat_bitmap_mir)
2965 return -ENOMEM;
2966 #endif
2968 return 0;
2971 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2973 struct f2fs_nm_info *nm_i = NM_I(sbi);
2974 int i;
2976 nm_i->free_nid_bitmap =
2977 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
2978 nm_i->nat_blocks),
2979 GFP_KERNEL);
2980 if (!nm_i->free_nid_bitmap)
2981 return -ENOMEM;
2983 for (i = 0; i < nm_i->nat_blocks; i++) {
2984 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2985 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
2986 if (!nm_i->free_nid_bitmap[i])
2987 return -ENOMEM;
2990 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2991 GFP_KERNEL);
2992 if (!nm_i->nat_block_bitmap)
2993 return -ENOMEM;
2995 nm_i->free_nid_count =
2996 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
2997 nm_i->nat_blocks),
2998 GFP_KERNEL);
2999 if (!nm_i->free_nid_count)
3000 return -ENOMEM;
3001 return 0;
3004 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3006 int err;
3008 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3009 GFP_KERNEL);
3010 if (!sbi->nm_info)
3011 return -ENOMEM;
3013 err = init_node_manager(sbi);
3014 if (err)
3015 return err;
3017 err = init_free_nid_cache(sbi);
3018 if (err)
3019 return err;
3021 /* load free nid status from nat_bits table */
3022 load_free_nid_bitmap(sbi);
3024 return f2fs_build_free_nids(sbi, true, true);
3027 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3029 struct f2fs_nm_info *nm_i = NM_I(sbi);
3030 struct free_nid *i, *next_i;
3031 struct nat_entry *natvec[NATVEC_SIZE];
3032 struct nat_entry_set *setvec[SETVEC_SIZE];
3033 nid_t nid = 0;
3034 unsigned int found;
3036 if (!nm_i)
3037 return;
3039 /* destroy free nid list */
3040 spin_lock(&nm_i->nid_list_lock);
3041 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3042 __remove_free_nid(sbi, i, FREE_NID);
3043 spin_unlock(&nm_i->nid_list_lock);
3044 kmem_cache_free(free_nid_slab, i);
3045 spin_lock(&nm_i->nid_list_lock);
3047 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3048 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3049 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3050 spin_unlock(&nm_i->nid_list_lock);
3052 /* destroy nat cache */
3053 down_write(&nm_i->nat_tree_lock);
3054 while ((found = __gang_lookup_nat_cache(nm_i,
3055 nid, NATVEC_SIZE, natvec))) {
3056 unsigned idx;
3058 nid = nat_get_nid(natvec[found - 1]) + 1;
3059 for (idx = 0; idx < found; idx++) {
3060 spin_lock(&nm_i->nat_list_lock);
3061 list_del(&natvec[idx]->list);
3062 spin_unlock(&nm_i->nat_list_lock);
3064 __del_from_nat_cache(nm_i, natvec[idx]);
3067 f2fs_bug_on(sbi, nm_i->nat_cnt);
3069 /* destroy nat set cache */
3070 nid = 0;
3071 while ((found = __gang_lookup_nat_set(nm_i,
3072 nid, SETVEC_SIZE, setvec))) {
3073 unsigned idx;
3075 nid = setvec[found - 1]->set + 1;
3076 for (idx = 0; idx < found; idx++) {
3077 /* entry_cnt is not zero, when cp_error was occurred */
3078 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3079 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3080 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3083 up_write(&nm_i->nat_tree_lock);
3085 kvfree(nm_i->nat_block_bitmap);
3086 if (nm_i->free_nid_bitmap) {
3087 int i;
3089 for (i = 0; i < nm_i->nat_blocks; i++)
3090 kvfree(nm_i->free_nid_bitmap[i]);
3091 kfree(nm_i->free_nid_bitmap);
3093 kvfree(nm_i->free_nid_count);
3095 kfree(nm_i->nat_bitmap);
3096 kfree(nm_i->nat_bits);
3097 #ifdef CONFIG_F2FS_CHECK_FS
3098 kfree(nm_i->nat_bitmap_mir);
3099 #endif
3100 sbi->nm_info = NULL;
3101 kfree(nm_i);
3104 int __init f2fs_create_node_manager_caches(void)
3106 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3107 sizeof(struct nat_entry));
3108 if (!nat_entry_slab)
3109 goto fail;
3111 free_nid_slab = f2fs_kmem_cache_create("free_nid",
3112 sizeof(struct free_nid));
3113 if (!free_nid_slab)
3114 goto destroy_nat_entry;
3116 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3117 sizeof(struct nat_entry_set));
3118 if (!nat_entry_set_slab)
3119 goto destroy_free_nid;
3121 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3122 sizeof(struct fsync_node_entry));
3123 if (!fsync_node_entry_slab)
3124 goto destroy_nat_entry_set;
3125 return 0;
3127 destroy_nat_entry_set:
3128 kmem_cache_destroy(nat_entry_set_slab);
3129 destroy_free_nid:
3130 kmem_cache_destroy(free_nid_slab);
3131 destroy_nat_entry:
3132 kmem_cache_destroy(nat_entry_slab);
3133 fail:
3134 return -ENOMEM;
3137 void f2fs_destroy_node_manager_caches(void)
3139 kmem_cache_destroy(fsync_node_entry_slab);
3140 kmem_cache_destroy(nat_entry_set_slab);
3141 kmem_cache_destroy(free_nid_slab);
3142 kmem_cache_destroy(nat_entry_slab);