Merge tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6/btrfs-unstable.git] / fs / ext4 / inode.c
blobd0dd585add6a005684c569d6edaecc481f926f2d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * from
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
82 return csum;
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
88 __u32 provided, calculated;
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
103 return provided == calculated;
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
109 __u32 csum;
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
126 trace_ext4_begin_ordered_truncate(inode, new_size);
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151 int ext4_inode_is_fast_symlink(struct inode *inode)
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157 if (ext4_has_inline_data(inode))
158 return 0;
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 int nblocks)
174 int ret;
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
189 return ret;
193 * Called at the last iput() if i_nlink is zero.
195 void ext4_evict_inode(struct inode *inode)
197 handle_t *handle;
198 int err;
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
202 trace_ext4_evict_inode(inode);
204 if (inode->i_nlink) {
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
220 * Note that directories do not have this problem because they
221 * don't use page cache.
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
233 truncate_inode_pages_final(&inode->i_data);
235 goto no_delete;
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
250 sb_start_intwrite(inode->i_sb);
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
266 goto no_delete;
269 if (IS_SYNC(inode))
270 ext4_handle_sync(handle);
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 inode->i_size = 0;
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
337 return;
338 no_delete:
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
345 return &EXT4_I(inode)->i_reserved_quota;
347 #endif
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
353 void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 else {
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
393 if ((ei->i_reserved_data_blocks == 0) &&
394 (atomic_read(&inode->i_writecount) == 0))
395 ext4_discard_preallocations(inode);
398 static int __check_block_validity(struct inode *inode, const char *func,
399 unsigned int line,
400 struct ext4_map_blocks *map)
402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403 map->m_len)) {
404 ext4_error_inode(inode, func, line, map->m_pblk,
405 "lblock %lu mapped to illegal pblock %llu "
406 "(length %d)", (unsigned long) map->m_lblk,
407 map->m_pblk, map->m_len);
408 return -EFSCORRUPTED;
410 return 0;
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414 ext4_lblk_t len)
416 int ret;
418 if (ext4_encrypted_inode(inode))
419 return fscrypt_zeroout_range(inode, lblk, pblk, len);
421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422 if (ret > 0)
423 ret = 0;
425 return ret;
428 #define check_block_validity(inode, map) \
429 __check_block_validity((inode), __func__, __LINE__, (map))
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433 struct inode *inode,
434 struct ext4_map_blocks *es_map,
435 struct ext4_map_blocks *map,
436 int flags)
438 int retval;
440 map->m_flags = 0;
442 * There is a race window that the result is not the same.
443 * e.g. xfstests #223 when dioread_nolock enables. The reason
444 * is that we lookup a block mapping in extent status tree with
445 * out taking i_data_sem. So at the time the unwritten extent
446 * could be converted.
448 down_read(&EXT4_I(inode)->i_data_sem);
449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 } else {
453 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 EXT4_GET_BLOCKS_KEEP_SIZE);
456 up_read((&EXT4_I(inode)->i_data_sem));
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
465 printk("ES cache assertion failed for inode: %lu "
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
471 retval, flags);
474 #endif /* ES_AGGRESSIVE_TEST */
477 * The ext4_map_blocks() function tries to look up the requested blocks,
478 * and returns if the blocks are already mapped.
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
482 * mapped.
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486 * based files
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
496 * It returns the error in case of allocation failure.
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
501 struct extent_status es;
502 int retval;
503 int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
507 memcpy(&orig_map, map, sizeof(*map));
508 #endif
510 map->m_flags = 0;
511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 (unsigned long) map->m_lblk);
516 * ext4_map_blocks returns an int, and m_len is an unsigned int
518 if (unlikely(map->m_len > INT_MAX))
519 map->m_len = INT_MAX;
521 /* We can handle the block number less than EXT_MAX_BLOCKS */
522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523 return -EFSCORRUPTED;
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
534 retval = map->m_len;
535 map->m_len = retval;
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 map->m_pblk = 0;
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
540 retval = map->m_len;
541 map->m_len = retval;
542 retval = 0;
543 } else {
544 BUG_ON(1);
546 #ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549 #endif
550 goto found;
554 * Try to see if we can get the block without requesting a new
555 * file system block.
557 down_read(&EXT4_I(inode)->i_data_sem);
558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
561 } else {
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
565 if (retval > 0) {
566 unsigned int status;
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
573 WARN_ON(1);
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 !(status & EXTENT_STATUS_WRITTEN) &&
580 ext4_find_delalloc_range(inode, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
588 up_read((&EXT4_I(inode)->i_data_sem));
590 found:
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 ret = check_block_validity(inode, map);
593 if (ret != 0)
594 return ret;
597 /* If it is only a block(s) look up */
598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599 return retval;
602 * Returns if the blocks have already allocated
604 * Note that if blocks have been preallocated
605 * ext4_ext_get_block() returns the create = 0
606 * with buffer head unmapped.
608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 return retval;
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
621 map->m_flags &= ~EXT4_MAP_FLAGS;
624 * New blocks allocate and/or writing to unwritten extent
625 * will possibly result in updating i_data, so we take
626 * the write lock of i_data_sem, and call get_block()
627 * with create == 1 flag.
629 down_write(&EXT4_I(inode)->i_data_sem);
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637 } else {
638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
655 if ((retval > 0) &&
656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 ext4_da_update_reserve_space(inode, retval, 1);
660 if (retval > 0) {
661 unsigned int status;
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
668 WARN_ON(1);
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682 map->m_len);
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697 if (ext4_es_is_written(&es))
698 goto out_sem;
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 !(status & EXTENT_STATUS_WRITTEN) &&
704 ext4_find_delalloc_range(inode, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
709 if (ret < 0) {
710 retval = ret;
711 goto out_sem;
715 out_sem:
716 up_write((&EXT4_I(inode)->i_data_sem));
717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 ret = check_block_validity(inode, map);
719 if (ret != 0)
720 return ret;
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 !ext4_is_quota_file(inode) &&
731 ext4_should_order_data(inode)) {
732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733 ret = ext4_jbd2_inode_add_wait(handle, inode);
734 else
735 ret = ext4_jbd2_inode_add_write(handle, inode);
736 if (ret)
737 return ret;
740 return retval;
744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745 * we have to be careful as someone else may be manipulating b_state as well.
747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
749 unsigned long old_state;
750 unsigned long new_state;
752 flags &= EXT4_MAP_FLAGS;
754 /* Dummy buffer_head? Set non-atomically. */
755 if (!bh->b_page) {
756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757 return;
760 * Someone else may be modifying b_state. Be careful! This is ugly but
761 * once we get rid of using bh as a container for mapping information
762 * to pass to / from get_block functions, this can go away.
764 do {
765 old_state = READ_ONCE(bh->b_state);
766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767 } while (unlikely(
768 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh, int flags)
774 struct ext4_map_blocks map;
775 int ret = 0;
777 if (ext4_has_inline_data(inode))
778 return -ERANGE;
780 map.m_lblk = iblock;
781 map.m_len = bh->b_size >> inode->i_blkbits;
783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 flags);
785 if (ret > 0) {
786 map_bh(bh, inode->i_sb, map.m_pblk);
787 ext4_update_bh_state(bh, map.m_flags);
788 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 ret = 0;
790 } else if (ret == 0) {
791 /* hole case, need to fill in bh->b_size */
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
794 return ret;
797 int ext4_get_block(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh, int create)
800 return _ext4_get_block(inode, iblock, bh,
801 create ? EXT4_GET_BLOCKS_CREATE : 0);
805 * Get block function used when preparing for buffered write if we require
806 * creating an unwritten extent if blocks haven't been allocated. The extent
807 * will be converted to written after the IO is complete.
809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int create)
812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 inode->i_ino, create);
814 return _ext4_get_block(inode, iblock, bh_result,
815 EXT4_GET_BLOCKS_IO_CREATE_EXT);
818 /* Maximum number of blocks we map for direct IO at once. */
819 #define DIO_MAX_BLOCKS 4096
822 * Get blocks function for the cases that need to start a transaction -
823 * generally difference cases of direct IO and DAX IO. It also handles retries
824 * in case of ENOSPC.
826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827 struct buffer_head *bh_result, int flags)
829 int dio_credits;
830 handle_t *handle;
831 int retries = 0;
832 int ret;
834 /* Trim mapping request to maximum we can map at once for DIO */
835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837 dio_credits = ext4_chunk_trans_blocks(inode,
838 bh_result->b_size >> inode->i_blkbits);
839 retry:
840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841 if (IS_ERR(handle))
842 return PTR_ERR(handle);
844 ret = _ext4_get_block(inode, iblock, bh_result, flags);
845 ext4_journal_stop(handle);
847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848 goto retry;
849 return ret;
852 /* Get block function for DIO reads and writes to inodes without extents */
853 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh, int create)
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
859 if (!create)
860 return _ext4_get_block(inode, iblock, bh, 0);
861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
865 * Get block function for AIO DIO writes when we create unwritten extent if
866 * blocks are not allocated yet. The extent will be converted to written
867 * after IO is complete.
869 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870 sector_t iblock, struct buffer_head *bh_result, int create)
872 int ret;
874 /* We don't expect handle for direct IO */
875 WARN_ON_ONCE(ext4_journal_current_handle());
877 ret = ext4_get_block_trans(inode, iblock, bh_result,
878 EXT4_GET_BLOCKS_IO_CREATE_EXT);
881 * When doing DIO using unwritten extents, we need io_end to convert
882 * unwritten extents to written on IO completion. We allocate io_end
883 * once we spot unwritten extent and store it in b_private. Generic
884 * DIO code keeps b_private set and furthermore passes the value to
885 * our completion callback in 'private' argument.
887 if (!ret && buffer_unwritten(bh_result)) {
888 if (!bh_result->b_private) {
889 ext4_io_end_t *io_end;
891 io_end = ext4_init_io_end(inode, GFP_KERNEL);
892 if (!io_end)
893 return -ENOMEM;
894 bh_result->b_private = io_end;
895 ext4_set_io_unwritten_flag(inode, io_end);
897 set_buffer_defer_completion(bh_result);
900 return ret;
904 * Get block function for non-AIO DIO writes when we create unwritten extent if
905 * blocks are not allocated yet. The extent will be converted to written
906 * after IO is complete by ext4_direct_IO_write().
908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909 sector_t iblock, struct buffer_head *bh_result, int create)
911 int ret;
913 /* We don't expect handle for direct IO */
914 WARN_ON_ONCE(ext4_journal_current_handle());
916 ret = ext4_get_block_trans(inode, iblock, bh_result,
917 EXT4_GET_BLOCKS_IO_CREATE_EXT);
920 * Mark inode as having pending DIO writes to unwritten extents.
921 * ext4_direct_IO_write() checks this flag and converts extents to
922 * written.
924 if (!ret && buffer_unwritten(bh_result))
925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
927 return ret;
930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931 struct buffer_head *bh_result, int create)
933 int ret;
935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936 inode->i_ino, create);
937 /* We don't expect handle for direct IO */
938 WARN_ON_ONCE(ext4_journal_current_handle());
940 ret = _ext4_get_block(inode, iblock, bh_result, 0);
942 * Blocks should have been preallocated! ext4_file_write_iter() checks
943 * that.
945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
947 return ret;
952 * `handle' can be NULL if create is zero
954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955 ext4_lblk_t block, int map_flags)
957 struct ext4_map_blocks map;
958 struct buffer_head *bh;
959 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960 int err;
962 J_ASSERT(handle != NULL || create == 0);
964 map.m_lblk = block;
965 map.m_len = 1;
966 err = ext4_map_blocks(handle, inode, &map, map_flags);
968 if (err == 0)
969 return create ? ERR_PTR(-ENOSPC) : NULL;
970 if (err < 0)
971 return ERR_PTR(err);
973 bh = sb_getblk(inode->i_sb, map.m_pblk);
974 if (unlikely(!bh))
975 return ERR_PTR(-ENOMEM);
976 if (map.m_flags & EXT4_MAP_NEW) {
977 J_ASSERT(create != 0);
978 J_ASSERT(handle != NULL);
981 * Now that we do not always journal data, we should
982 * keep in mind whether this should always journal the
983 * new buffer as metadata. For now, regular file
984 * writes use ext4_get_block instead, so it's not a
985 * problem.
987 lock_buffer(bh);
988 BUFFER_TRACE(bh, "call get_create_access");
989 err = ext4_journal_get_create_access(handle, bh);
990 if (unlikely(err)) {
991 unlock_buffer(bh);
992 goto errout;
994 if (!buffer_uptodate(bh)) {
995 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996 set_buffer_uptodate(bh);
998 unlock_buffer(bh);
999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000 err = ext4_handle_dirty_metadata(handle, inode, bh);
1001 if (unlikely(err))
1002 goto errout;
1003 } else
1004 BUFFER_TRACE(bh, "not a new buffer");
1005 return bh;
1006 errout:
1007 brelse(bh);
1008 return ERR_PTR(err);
1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012 ext4_lblk_t block, int map_flags)
1014 struct buffer_head *bh;
1016 bh = ext4_getblk(handle, inode, block, map_flags);
1017 if (IS_ERR(bh))
1018 return bh;
1019 if (!bh || buffer_uptodate(bh))
1020 return bh;
1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022 wait_on_buffer(bh);
1023 if (buffer_uptodate(bh))
1024 return bh;
1025 put_bh(bh);
1026 return ERR_PTR(-EIO);
1029 /* Read a contiguous batch of blocks. */
1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031 bool wait, struct buffer_head **bhs)
1033 int i, err;
1035 for (i = 0; i < bh_count; i++) {
1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037 if (IS_ERR(bhs[i])) {
1038 err = PTR_ERR(bhs[i]);
1039 bh_count = i;
1040 goto out_brelse;
1044 for (i = 0; i < bh_count; i++)
1045 /* Note that NULL bhs[i] is valid because of holes. */
1046 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048 &bhs[i]);
1050 if (!wait)
1051 return 0;
1053 for (i = 0; i < bh_count; i++)
1054 if (bhs[i])
1055 wait_on_buffer(bhs[i]);
1057 for (i = 0; i < bh_count; i++) {
1058 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059 err = -EIO;
1060 goto out_brelse;
1063 return 0;
1065 out_brelse:
1066 for (i = 0; i < bh_count; i++) {
1067 brelse(bhs[i]);
1068 bhs[i] = NULL;
1070 return err;
1073 int ext4_walk_page_buffers(handle_t *handle,
1074 struct buffer_head *head,
1075 unsigned from,
1076 unsigned to,
1077 int *partial,
1078 int (*fn)(handle_t *handle,
1079 struct buffer_head *bh))
1081 struct buffer_head *bh;
1082 unsigned block_start, block_end;
1083 unsigned blocksize = head->b_size;
1084 int err, ret = 0;
1085 struct buffer_head *next;
1087 for (bh = head, block_start = 0;
1088 ret == 0 && (bh != head || !block_start);
1089 block_start = block_end, bh = next) {
1090 next = bh->b_this_page;
1091 block_end = block_start + blocksize;
1092 if (block_end <= from || block_start >= to) {
1093 if (partial && !buffer_uptodate(bh))
1094 *partial = 1;
1095 continue;
1097 err = (*fn)(handle, bh);
1098 if (!ret)
1099 ret = err;
1101 return ret;
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction. We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write(). So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1111 * Also, this function can nest inside ext4_writepage(). In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page. So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes. If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated. We'll still have enough credits for the tiny quotafile
1126 * write.
1128 int do_journal_get_write_access(handle_t *handle,
1129 struct buffer_head *bh)
1131 int dirty = buffer_dirty(bh);
1132 int ret;
1134 if (!buffer_mapped(bh) || buffer_freed(bh))
1135 return 0;
1137 * __block_write_begin() could have dirtied some buffers. Clean
1138 * the dirty bit as jbd2_journal_get_write_access() could complain
1139 * otherwise about fs integrity issues. Setting of the dirty bit
1140 * by __block_write_begin() isn't a real problem here as we clear
1141 * the bit before releasing a page lock and thus writeback cannot
1142 * ever write the buffer.
1144 if (dirty)
1145 clear_buffer_dirty(bh);
1146 BUFFER_TRACE(bh, "get write access");
1147 ret = ext4_journal_get_write_access(handle, bh);
1148 if (!ret && dirty)
1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150 return ret;
1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155 get_block_t *get_block)
1157 unsigned from = pos & (PAGE_SIZE - 1);
1158 unsigned to = from + len;
1159 struct inode *inode = page->mapping->host;
1160 unsigned block_start, block_end;
1161 sector_t block;
1162 int err = 0;
1163 unsigned blocksize = inode->i_sb->s_blocksize;
1164 unsigned bbits;
1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166 bool decrypt = false;
1168 BUG_ON(!PageLocked(page));
1169 BUG_ON(from > PAGE_SIZE);
1170 BUG_ON(to > PAGE_SIZE);
1171 BUG_ON(from > to);
1173 if (!page_has_buffers(page))
1174 create_empty_buffers(page, blocksize, 0);
1175 head = page_buffers(page);
1176 bbits = ilog2(blocksize);
1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1179 for (bh = head, block_start = 0; bh != head || !block_start;
1180 block++, block_start = block_end, bh = bh->b_this_page) {
1181 block_end = block_start + blocksize;
1182 if (block_end <= from || block_start >= to) {
1183 if (PageUptodate(page)) {
1184 if (!buffer_uptodate(bh))
1185 set_buffer_uptodate(bh);
1187 continue;
1189 if (buffer_new(bh))
1190 clear_buffer_new(bh);
1191 if (!buffer_mapped(bh)) {
1192 WARN_ON(bh->b_size != blocksize);
1193 err = get_block(inode, block, bh, 1);
1194 if (err)
1195 break;
1196 if (buffer_new(bh)) {
1197 clean_bdev_bh_alias(bh);
1198 if (PageUptodate(page)) {
1199 clear_buffer_new(bh);
1200 set_buffer_uptodate(bh);
1201 mark_buffer_dirty(bh);
1202 continue;
1204 if (block_end > to || block_start < from)
1205 zero_user_segments(page, to, block_end,
1206 block_start, from);
1207 continue;
1210 if (PageUptodate(page)) {
1211 if (!buffer_uptodate(bh))
1212 set_buffer_uptodate(bh);
1213 continue;
1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216 !buffer_unwritten(bh) &&
1217 (block_start < from || block_end > to)) {
1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219 *wait_bh++ = bh;
1220 decrypt = ext4_encrypted_inode(inode) &&
1221 S_ISREG(inode->i_mode);
1225 * If we issued read requests, let them complete.
1227 while (wait_bh > wait) {
1228 wait_on_buffer(*--wait_bh);
1229 if (!buffer_uptodate(*wait_bh))
1230 err = -EIO;
1232 if (unlikely(err))
1233 page_zero_new_buffers(page, from, to);
1234 else if (decrypt)
1235 err = fscrypt_decrypt_page(page->mapping->host, page,
1236 PAGE_SIZE, 0, page->index);
1237 return err;
1239 #endif
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242 loff_t pos, unsigned len, unsigned flags,
1243 struct page **pagep, void **fsdata)
1245 struct inode *inode = mapping->host;
1246 int ret, needed_blocks;
1247 handle_t *handle;
1248 int retries = 0;
1249 struct page *page;
1250 pgoff_t index;
1251 unsigned from, to;
1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254 return -EIO;
1256 trace_ext4_write_begin(inode, pos, len, flags);
1258 * Reserve one block more for addition to orphan list in case
1259 * we allocate blocks but write fails for some reason
1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262 index = pos >> PAGE_SHIFT;
1263 from = pos & (PAGE_SIZE - 1);
1264 to = from + len;
1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268 flags, pagep);
1269 if (ret < 0)
1270 return ret;
1271 if (ret == 1)
1272 return 0;
1276 * grab_cache_page_write_begin() can take a long time if the
1277 * system is thrashing due to memory pressure, or if the page
1278 * is being written back. So grab it first before we start
1279 * the transaction handle. This also allows us to allocate
1280 * the page (if needed) without using GFP_NOFS.
1282 retry_grab:
1283 page = grab_cache_page_write_begin(mapping, index, flags);
1284 if (!page)
1285 return -ENOMEM;
1286 unlock_page(page);
1288 retry_journal:
1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290 if (IS_ERR(handle)) {
1291 put_page(page);
1292 return PTR_ERR(handle);
1295 lock_page(page);
1296 if (page->mapping != mapping) {
1297 /* The page got truncated from under us */
1298 unlock_page(page);
1299 put_page(page);
1300 ext4_journal_stop(handle);
1301 goto retry_grab;
1303 /* In case writeback began while the page was unlocked */
1304 wait_for_stable_page(page);
1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1307 if (ext4_should_dioread_nolock(inode))
1308 ret = ext4_block_write_begin(page, pos, len,
1309 ext4_get_block_unwritten);
1310 else
1311 ret = ext4_block_write_begin(page, pos, len,
1312 ext4_get_block);
1313 #else
1314 if (ext4_should_dioread_nolock(inode))
1315 ret = __block_write_begin(page, pos, len,
1316 ext4_get_block_unwritten);
1317 else
1318 ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320 if (!ret && ext4_should_journal_data(inode)) {
1321 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322 from, to, NULL,
1323 do_journal_get_write_access);
1326 if (ret) {
1327 unlock_page(page);
1329 * __block_write_begin may have instantiated a few blocks
1330 * outside i_size. Trim these off again. Don't need
1331 * i_size_read because we hold i_mutex.
1333 * Add inode to orphan list in case we crash before
1334 * truncate finishes
1336 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337 ext4_orphan_add(handle, inode);
1339 ext4_journal_stop(handle);
1340 if (pos + len > inode->i_size) {
1341 ext4_truncate_failed_write(inode);
1343 * If truncate failed early the inode might
1344 * still be on the orphan list; we need to
1345 * make sure the inode is removed from the
1346 * orphan list in that case.
1348 if (inode->i_nlink)
1349 ext4_orphan_del(NULL, inode);
1352 if (ret == -ENOSPC &&
1353 ext4_should_retry_alloc(inode->i_sb, &retries))
1354 goto retry_journal;
1355 put_page(page);
1356 return ret;
1358 *pagep = page;
1359 return ret;
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1365 int ret;
1366 if (!buffer_mapped(bh) || buffer_freed(bh))
1367 return 0;
1368 set_buffer_uptodate(bh);
1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 clear_buffer_meta(bh);
1371 clear_buffer_prio(bh);
1372 return ret;
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1380 * buffers are managed internally.
1382 static int ext4_write_end(struct file *file,
1383 struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
1387 handle_t *handle = ext4_journal_current_handle();
1388 struct inode *inode = mapping->host;
1389 loff_t old_size = inode->i_size;
1390 int ret = 0, ret2;
1391 int i_size_changed = 0;
1392 int inline_data = ext4_has_inline_data(inode);
1394 trace_ext4_write_end(inode, pos, len, copied);
1395 if (inline_data) {
1396 ret = ext4_write_inline_data_end(inode, pos, len,
1397 copied, page);
1398 if (ret < 0) {
1399 unlock_page(page);
1400 put_page(page);
1401 goto errout;
1403 copied = ret;
1404 } else
1405 copied = block_write_end(file, mapping, pos,
1406 len, copied, page, fsdata);
1408 * it's important to update i_size while still holding page lock:
1409 * page writeout could otherwise come in and zero beyond i_size.
1411 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1412 unlock_page(page);
1413 put_page(page);
1415 if (old_size < pos)
1416 pagecache_isize_extended(inode, old_size, pos);
1418 * Don't mark the inode dirty under page lock. First, it unnecessarily
1419 * makes the holding time of page lock longer. Second, it forces lock
1420 * ordering of page lock and transaction start for journaling
1421 * filesystems.
1423 if (i_size_changed || inline_data)
1424 ext4_mark_inode_dirty(handle, inode);
1426 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1427 /* if we have allocated more blocks and copied
1428 * less. We will have blocks allocated outside
1429 * inode->i_size. So truncate them
1431 ext4_orphan_add(handle, inode);
1432 errout:
1433 ret2 = ext4_journal_stop(handle);
1434 if (!ret)
1435 ret = ret2;
1437 if (pos + len > inode->i_size) {
1438 ext4_truncate_failed_write(inode);
1440 * If truncate failed early the inode might still be
1441 * on the orphan list; we need to make sure the inode
1442 * is removed from the orphan list in that case.
1444 if (inode->i_nlink)
1445 ext4_orphan_del(NULL, inode);
1448 return ret ? ret : copied;
1452 * This is a private version of page_zero_new_buffers() which doesn't
1453 * set the buffer to be dirty, since in data=journalled mode we need
1454 * to call ext4_handle_dirty_metadata() instead.
1456 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1457 struct page *page,
1458 unsigned from, unsigned to)
1460 unsigned int block_start = 0, block_end;
1461 struct buffer_head *head, *bh;
1463 bh = head = page_buffers(page);
1464 do {
1465 block_end = block_start + bh->b_size;
1466 if (buffer_new(bh)) {
1467 if (block_end > from && block_start < to) {
1468 if (!PageUptodate(page)) {
1469 unsigned start, size;
1471 start = max(from, block_start);
1472 size = min(to, block_end) - start;
1474 zero_user(page, start, size);
1475 write_end_fn(handle, bh);
1477 clear_buffer_new(bh);
1480 block_start = block_end;
1481 bh = bh->b_this_page;
1482 } while (bh != head);
1485 static int ext4_journalled_write_end(struct file *file,
1486 struct address_space *mapping,
1487 loff_t pos, unsigned len, unsigned copied,
1488 struct page *page, void *fsdata)
1490 handle_t *handle = ext4_journal_current_handle();
1491 struct inode *inode = mapping->host;
1492 loff_t old_size = inode->i_size;
1493 int ret = 0, ret2;
1494 int partial = 0;
1495 unsigned from, to;
1496 int size_changed = 0;
1497 int inline_data = ext4_has_inline_data(inode);
1499 trace_ext4_journalled_write_end(inode, pos, len, copied);
1500 from = pos & (PAGE_SIZE - 1);
1501 to = from + len;
1503 BUG_ON(!ext4_handle_valid(handle));
1505 if (inline_data) {
1506 ret = ext4_write_inline_data_end(inode, pos, len,
1507 copied, page);
1508 if (ret < 0) {
1509 unlock_page(page);
1510 put_page(page);
1511 goto errout;
1513 copied = ret;
1514 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1515 copied = 0;
1516 ext4_journalled_zero_new_buffers(handle, page, from, to);
1517 } else {
1518 if (unlikely(copied < len))
1519 ext4_journalled_zero_new_buffers(handle, page,
1520 from + copied, to);
1521 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1522 from + copied, &partial,
1523 write_end_fn);
1524 if (!partial)
1525 SetPageUptodate(page);
1527 size_changed = ext4_update_inode_size(inode, pos + copied);
1528 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1529 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1530 unlock_page(page);
1531 put_page(page);
1533 if (old_size < pos)
1534 pagecache_isize_extended(inode, old_size, pos);
1536 if (size_changed || inline_data) {
1537 ret2 = ext4_mark_inode_dirty(handle, inode);
1538 if (!ret)
1539 ret = ret2;
1542 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1543 /* if we have allocated more blocks and copied
1544 * less. We will have blocks allocated outside
1545 * inode->i_size. So truncate them
1547 ext4_orphan_add(handle, inode);
1549 errout:
1550 ret2 = ext4_journal_stop(handle);
1551 if (!ret)
1552 ret = ret2;
1553 if (pos + len > inode->i_size) {
1554 ext4_truncate_failed_write(inode);
1556 * If truncate failed early the inode might still be
1557 * on the orphan list; we need to make sure the inode
1558 * is removed from the orphan list in that case.
1560 if (inode->i_nlink)
1561 ext4_orphan_del(NULL, inode);
1564 return ret ? ret : copied;
1568 * Reserve space for a single cluster
1570 static int ext4_da_reserve_space(struct inode *inode)
1572 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1573 struct ext4_inode_info *ei = EXT4_I(inode);
1574 int ret;
1577 * We will charge metadata quota at writeout time; this saves
1578 * us from metadata over-estimation, though we may go over by
1579 * a small amount in the end. Here we just reserve for data.
1581 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1582 if (ret)
1583 return ret;
1585 spin_lock(&ei->i_block_reservation_lock);
1586 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1587 spin_unlock(&ei->i_block_reservation_lock);
1588 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1589 return -ENOSPC;
1591 ei->i_reserved_data_blocks++;
1592 trace_ext4_da_reserve_space(inode);
1593 spin_unlock(&ei->i_block_reservation_lock);
1595 return 0; /* success */
1598 static void ext4_da_release_space(struct inode *inode, int to_free)
1600 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1601 struct ext4_inode_info *ei = EXT4_I(inode);
1603 if (!to_free)
1604 return; /* Nothing to release, exit */
1606 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1608 trace_ext4_da_release_space(inode, to_free);
1609 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1611 * if there aren't enough reserved blocks, then the
1612 * counter is messed up somewhere. Since this
1613 * function is called from invalidate page, it's
1614 * harmless to return without any action.
1616 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1617 "ino %lu, to_free %d with only %d reserved "
1618 "data blocks", inode->i_ino, to_free,
1619 ei->i_reserved_data_blocks);
1620 WARN_ON(1);
1621 to_free = ei->i_reserved_data_blocks;
1623 ei->i_reserved_data_blocks -= to_free;
1625 /* update fs dirty data blocks counter */
1626 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1628 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1630 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1633 static void ext4_da_page_release_reservation(struct page *page,
1634 unsigned int offset,
1635 unsigned int length)
1637 int to_release = 0, contiguous_blks = 0;
1638 struct buffer_head *head, *bh;
1639 unsigned int curr_off = 0;
1640 struct inode *inode = page->mapping->host;
1641 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1642 unsigned int stop = offset + length;
1643 int num_clusters;
1644 ext4_fsblk_t lblk;
1646 BUG_ON(stop > PAGE_SIZE || stop < length);
1648 head = page_buffers(page);
1649 bh = head;
1650 do {
1651 unsigned int next_off = curr_off + bh->b_size;
1653 if (next_off > stop)
1654 break;
1656 if ((offset <= curr_off) && (buffer_delay(bh))) {
1657 to_release++;
1658 contiguous_blks++;
1659 clear_buffer_delay(bh);
1660 } else if (contiguous_blks) {
1661 lblk = page->index <<
1662 (PAGE_SHIFT - inode->i_blkbits);
1663 lblk += (curr_off >> inode->i_blkbits) -
1664 contiguous_blks;
1665 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1666 contiguous_blks = 0;
1668 curr_off = next_off;
1669 } while ((bh = bh->b_this_page) != head);
1671 if (contiguous_blks) {
1672 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1673 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1674 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1677 /* If we have released all the blocks belonging to a cluster, then we
1678 * need to release the reserved space for that cluster. */
1679 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1680 while (num_clusters > 0) {
1681 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1682 ((num_clusters - 1) << sbi->s_cluster_bits);
1683 if (sbi->s_cluster_ratio == 1 ||
1684 !ext4_find_delalloc_cluster(inode, lblk))
1685 ext4_da_release_space(inode, 1);
1687 num_clusters--;
1692 * Delayed allocation stuff
1695 struct mpage_da_data {
1696 struct inode *inode;
1697 struct writeback_control *wbc;
1699 pgoff_t first_page; /* The first page to write */
1700 pgoff_t next_page; /* Current page to examine */
1701 pgoff_t last_page; /* Last page to examine */
1703 * Extent to map - this can be after first_page because that can be
1704 * fully mapped. We somewhat abuse m_flags to store whether the extent
1705 * is delalloc or unwritten.
1707 struct ext4_map_blocks map;
1708 struct ext4_io_submit io_submit; /* IO submission data */
1709 unsigned int do_map:1;
1712 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1713 bool invalidate)
1715 int nr_pages, i;
1716 pgoff_t index, end;
1717 struct pagevec pvec;
1718 struct inode *inode = mpd->inode;
1719 struct address_space *mapping = inode->i_mapping;
1721 /* This is necessary when next_page == 0. */
1722 if (mpd->first_page >= mpd->next_page)
1723 return;
1725 index = mpd->first_page;
1726 end = mpd->next_page - 1;
1727 if (invalidate) {
1728 ext4_lblk_t start, last;
1729 start = index << (PAGE_SHIFT - inode->i_blkbits);
1730 last = end << (PAGE_SHIFT - inode->i_blkbits);
1731 ext4_es_remove_extent(inode, start, last - start + 1);
1734 pagevec_init(&pvec);
1735 while (index <= end) {
1736 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1737 if (nr_pages == 0)
1738 break;
1739 for (i = 0; i < nr_pages; i++) {
1740 struct page *page = pvec.pages[i];
1742 BUG_ON(!PageLocked(page));
1743 BUG_ON(PageWriteback(page));
1744 if (invalidate) {
1745 if (page_mapped(page))
1746 clear_page_dirty_for_io(page);
1747 block_invalidatepage(page, 0, PAGE_SIZE);
1748 ClearPageUptodate(page);
1750 unlock_page(page);
1752 pagevec_release(&pvec);
1756 static void ext4_print_free_blocks(struct inode *inode)
1758 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1759 struct super_block *sb = inode->i_sb;
1760 struct ext4_inode_info *ei = EXT4_I(inode);
1762 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1763 EXT4_C2B(EXT4_SB(inode->i_sb),
1764 ext4_count_free_clusters(sb)));
1765 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1766 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1767 (long long) EXT4_C2B(EXT4_SB(sb),
1768 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1769 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1770 (long long) EXT4_C2B(EXT4_SB(sb),
1771 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1772 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1773 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1774 ei->i_reserved_data_blocks);
1775 return;
1778 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1780 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1784 * This function is grabs code from the very beginning of
1785 * ext4_map_blocks, but assumes that the caller is from delayed write
1786 * time. This function looks up the requested blocks and sets the
1787 * buffer delay bit under the protection of i_data_sem.
1789 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1790 struct ext4_map_blocks *map,
1791 struct buffer_head *bh)
1793 struct extent_status es;
1794 int retval;
1795 sector_t invalid_block = ~((sector_t) 0xffff);
1796 #ifdef ES_AGGRESSIVE_TEST
1797 struct ext4_map_blocks orig_map;
1799 memcpy(&orig_map, map, sizeof(*map));
1800 #endif
1802 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1803 invalid_block = ~0;
1805 map->m_flags = 0;
1806 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1807 "logical block %lu\n", inode->i_ino, map->m_len,
1808 (unsigned long) map->m_lblk);
1810 /* Lookup extent status tree firstly */
1811 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1812 if (ext4_es_is_hole(&es)) {
1813 retval = 0;
1814 down_read(&EXT4_I(inode)->i_data_sem);
1815 goto add_delayed;
1819 * Delayed extent could be allocated by fallocate.
1820 * So we need to check it.
1822 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1823 map_bh(bh, inode->i_sb, invalid_block);
1824 set_buffer_new(bh);
1825 set_buffer_delay(bh);
1826 return 0;
1829 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1830 retval = es.es_len - (iblock - es.es_lblk);
1831 if (retval > map->m_len)
1832 retval = map->m_len;
1833 map->m_len = retval;
1834 if (ext4_es_is_written(&es))
1835 map->m_flags |= EXT4_MAP_MAPPED;
1836 else if (ext4_es_is_unwritten(&es))
1837 map->m_flags |= EXT4_MAP_UNWRITTEN;
1838 else
1839 BUG_ON(1);
1841 #ifdef ES_AGGRESSIVE_TEST
1842 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1843 #endif
1844 return retval;
1848 * Try to see if we can get the block without requesting a new
1849 * file system block.
1851 down_read(&EXT4_I(inode)->i_data_sem);
1852 if (ext4_has_inline_data(inode))
1853 retval = 0;
1854 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1855 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1856 else
1857 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1859 add_delayed:
1860 if (retval == 0) {
1861 int ret;
1863 * XXX: __block_prepare_write() unmaps passed block,
1864 * is it OK?
1867 * If the block was allocated from previously allocated cluster,
1868 * then we don't need to reserve it again. However we still need
1869 * to reserve metadata for every block we're going to write.
1871 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1872 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1873 ret = ext4_da_reserve_space(inode);
1874 if (ret) {
1875 /* not enough space to reserve */
1876 retval = ret;
1877 goto out_unlock;
1881 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1882 ~0, EXTENT_STATUS_DELAYED);
1883 if (ret) {
1884 retval = ret;
1885 goto out_unlock;
1888 map_bh(bh, inode->i_sb, invalid_block);
1889 set_buffer_new(bh);
1890 set_buffer_delay(bh);
1891 } else if (retval > 0) {
1892 int ret;
1893 unsigned int status;
1895 if (unlikely(retval != map->m_len)) {
1896 ext4_warning(inode->i_sb,
1897 "ES len assertion failed for inode "
1898 "%lu: retval %d != map->m_len %d",
1899 inode->i_ino, retval, map->m_len);
1900 WARN_ON(1);
1903 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1904 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1905 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1906 map->m_pblk, status);
1907 if (ret != 0)
1908 retval = ret;
1911 out_unlock:
1912 up_read((&EXT4_I(inode)->i_data_sem));
1914 return retval;
1918 * This is a special get_block_t callback which is used by
1919 * ext4_da_write_begin(). It will either return mapped block or
1920 * reserve space for a single block.
1922 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1923 * We also have b_blocknr = -1 and b_bdev initialized properly
1925 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1926 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1927 * initialized properly.
1929 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1930 struct buffer_head *bh, int create)
1932 struct ext4_map_blocks map;
1933 int ret = 0;
1935 BUG_ON(create == 0);
1936 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1938 map.m_lblk = iblock;
1939 map.m_len = 1;
1942 * first, we need to know whether the block is allocated already
1943 * preallocated blocks are unmapped but should treated
1944 * the same as allocated blocks.
1946 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1947 if (ret <= 0)
1948 return ret;
1950 map_bh(bh, inode->i_sb, map.m_pblk);
1951 ext4_update_bh_state(bh, map.m_flags);
1953 if (buffer_unwritten(bh)) {
1954 /* A delayed write to unwritten bh should be marked
1955 * new and mapped. Mapped ensures that we don't do
1956 * get_block multiple times when we write to the same
1957 * offset and new ensures that we do proper zero out
1958 * for partial write.
1960 set_buffer_new(bh);
1961 set_buffer_mapped(bh);
1963 return 0;
1966 static int bget_one(handle_t *handle, struct buffer_head *bh)
1968 get_bh(bh);
1969 return 0;
1972 static int bput_one(handle_t *handle, struct buffer_head *bh)
1974 put_bh(bh);
1975 return 0;
1978 static int __ext4_journalled_writepage(struct page *page,
1979 unsigned int len)
1981 struct address_space *mapping = page->mapping;
1982 struct inode *inode = mapping->host;
1983 struct buffer_head *page_bufs = NULL;
1984 handle_t *handle = NULL;
1985 int ret = 0, err = 0;
1986 int inline_data = ext4_has_inline_data(inode);
1987 struct buffer_head *inode_bh = NULL;
1989 ClearPageChecked(page);
1991 if (inline_data) {
1992 BUG_ON(page->index != 0);
1993 BUG_ON(len > ext4_get_max_inline_size(inode));
1994 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1995 if (inode_bh == NULL)
1996 goto out;
1997 } else {
1998 page_bufs = page_buffers(page);
1999 if (!page_bufs) {
2000 BUG();
2001 goto out;
2003 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2004 NULL, bget_one);
2007 * We need to release the page lock before we start the
2008 * journal, so grab a reference so the page won't disappear
2009 * out from under us.
2011 get_page(page);
2012 unlock_page(page);
2014 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2015 ext4_writepage_trans_blocks(inode));
2016 if (IS_ERR(handle)) {
2017 ret = PTR_ERR(handle);
2018 put_page(page);
2019 goto out_no_pagelock;
2021 BUG_ON(!ext4_handle_valid(handle));
2023 lock_page(page);
2024 put_page(page);
2025 if (page->mapping != mapping) {
2026 /* The page got truncated from under us */
2027 ext4_journal_stop(handle);
2028 ret = 0;
2029 goto out;
2032 if (inline_data) {
2033 ret = ext4_mark_inode_dirty(handle, inode);
2034 } else {
2035 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2036 do_journal_get_write_access);
2038 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2039 write_end_fn);
2041 if (ret == 0)
2042 ret = err;
2043 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2044 err = ext4_journal_stop(handle);
2045 if (!ret)
2046 ret = err;
2048 if (!ext4_has_inline_data(inode))
2049 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2050 NULL, bput_one);
2051 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2052 out:
2053 unlock_page(page);
2054 out_no_pagelock:
2055 brelse(inode_bh);
2056 return ret;
2060 * Note that we don't need to start a transaction unless we're journaling data
2061 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2062 * need to file the inode to the transaction's list in ordered mode because if
2063 * we are writing back data added by write(), the inode is already there and if
2064 * we are writing back data modified via mmap(), no one guarantees in which
2065 * transaction the data will hit the disk. In case we are journaling data, we
2066 * cannot start transaction directly because transaction start ranks above page
2067 * lock so we have to do some magic.
2069 * This function can get called via...
2070 * - ext4_writepages after taking page lock (have journal handle)
2071 * - journal_submit_inode_data_buffers (no journal handle)
2072 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2073 * - grab_page_cache when doing write_begin (have journal handle)
2075 * We don't do any block allocation in this function. If we have page with
2076 * multiple blocks we need to write those buffer_heads that are mapped. This
2077 * is important for mmaped based write. So if we do with blocksize 1K
2078 * truncate(f, 1024);
2079 * a = mmap(f, 0, 4096);
2080 * a[0] = 'a';
2081 * truncate(f, 4096);
2082 * we have in the page first buffer_head mapped via page_mkwrite call back
2083 * but other buffer_heads would be unmapped but dirty (dirty done via the
2084 * do_wp_page). So writepage should write the first block. If we modify
2085 * the mmap area beyond 1024 we will again get a page_fault and the
2086 * page_mkwrite callback will do the block allocation and mark the
2087 * buffer_heads mapped.
2089 * We redirty the page if we have any buffer_heads that is either delay or
2090 * unwritten in the page.
2092 * We can get recursively called as show below.
2094 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2095 * ext4_writepage()
2097 * But since we don't do any block allocation we should not deadlock.
2098 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2100 static int ext4_writepage(struct page *page,
2101 struct writeback_control *wbc)
2103 int ret = 0;
2104 loff_t size;
2105 unsigned int len;
2106 struct buffer_head *page_bufs = NULL;
2107 struct inode *inode = page->mapping->host;
2108 struct ext4_io_submit io_submit;
2109 bool keep_towrite = false;
2111 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2112 ext4_invalidatepage(page, 0, PAGE_SIZE);
2113 unlock_page(page);
2114 return -EIO;
2117 trace_ext4_writepage(page);
2118 size = i_size_read(inode);
2119 if (page->index == size >> PAGE_SHIFT)
2120 len = size & ~PAGE_MASK;
2121 else
2122 len = PAGE_SIZE;
2124 page_bufs = page_buffers(page);
2126 * We cannot do block allocation or other extent handling in this
2127 * function. If there are buffers needing that, we have to redirty
2128 * the page. But we may reach here when we do a journal commit via
2129 * journal_submit_inode_data_buffers() and in that case we must write
2130 * allocated buffers to achieve data=ordered mode guarantees.
2132 * Also, if there is only one buffer per page (the fs block
2133 * size == the page size), if one buffer needs block
2134 * allocation or needs to modify the extent tree to clear the
2135 * unwritten flag, we know that the page can't be written at
2136 * all, so we might as well refuse the write immediately.
2137 * Unfortunately if the block size != page size, we can't as
2138 * easily detect this case using ext4_walk_page_buffers(), but
2139 * for the extremely common case, this is an optimization that
2140 * skips a useless round trip through ext4_bio_write_page().
2142 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2143 ext4_bh_delay_or_unwritten)) {
2144 redirty_page_for_writepage(wbc, page);
2145 if ((current->flags & PF_MEMALLOC) ||
2146 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2148 * For memory cleaning there's no point in writing only
2149 * some buffers. So just bail out. Warn if we came here
2150 * from direct reclaim.
2152 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2153 == PF_MEMALLOC);
2154 unlock_page(page);
2155 return 0;
2157 keep_towrite = true;
2160 if (PageChecked(page) && ext4_should_journal_data(inode))
2162 * It's mmapped pagecache. Add buffers and journal it. There
2163 * doesn't seem much point in redirtying the page here.
2165 return __ext4_journalled_writepage(page, len);
2167 ext4_io_submit_init(&io_submit, wbc);
2168 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2169 if (!io_submit.io_end) {
2170 redirty_page_for_writepage(wbc, page);
2171 unlock_page(page);
2172 return -ENOMEM;
2174 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2175 ext4_io_submit(&io_submit);
2176 /* Drop io_end reference we got from init */
2177 ext4_put_io_end_defer(io_submit.io_end);
2178 return ret;
2181 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2183 int len;
2184 loff_t size;
2185 int err;
2187 BUG_ON(page->index != mpd->first_page);
2188 clear_page_dirty_for_io(page);
2190 * We have to be very careful here! Nothing protects writeback path
2191 * against i_size changes and the page can be writeably mapped into
2192 * page tables. So an application can be growing i_size and writing
2193 * data through mmap while writeback runs. clear_page_dirty_for_io()
2194 * write-protects our page in page tables and the page cannot get
2195 * written to again until we release page lock. So only after
2196 * clear_page_dirty_for_io() we are safe to sample i_size for
2197 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2198 * on the barrier provided by TestClearPageDirty in
2199 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2200 * after page tables are updated.
2202 size = i_size_read(mpd->inode);
2203 if (page->index == size >> PAGE_SHIFT)
2204 len = size & ~PAGE_MASK;
2205 else
2206 len = PAGE_SIZE;
2207 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2208 if (!err)
2209 mpd->wbc->nr_to_write--;
2210 mpd->first_page++;
2212 return err;
2215 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218 * mballoc gives us at most this number of blocks...
2219 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2220 * The rest of mballoc seems to handle chunks up to full group size.
2222 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2225 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2227 * @mpd - extent of blocks
2228 * @lblk - logical number of the block in the file
2229 * @bh - buffer head we want to add to the extent
2231 * The function is used to collect contig. blocks in the same state. If the
2232 * buffer doesn't require mapping for writeback and we haven't started the
2233 * extent of buffers to map yet, the function returns 'true' immediately - the
2234 * caller can write the buffer right away. Otherwise the function returns true
2235 * if the block has been added to the extent, false if the block couldn't be
2236 * added.
2238 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2239 struct buffer_head *bh)
2241 struct ext4_map_blocks *map = &mpd->map;
2243 /* Buffer that doesn't need mapping for writeback? */
2244 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2245 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2246 /* So far no extent to map => we write the buffer right away */
2247 if (map->m_len == 0)
2248 return true;
2249 return false;
2252 /* First block in the extent? */
2253 if (map->m_len == 0) {
2254 /* We cannot map unless handle is started... */
2255 if (!mpd->do_map)
2256 return false;
2257 map->m_lblk = lblk;
2258 map->m_len = 1;
2259 map->m_flags = bh->b_state & BH_FLAGS;
2260 return true;
2263 /* Don't go larger than mballoc is willing to allocate */
2264 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2265 return false;
2267 /* Can we merge the block to our big extent? */
2268 if (lblk == map->m_lblk + map->m_len &&
2269 (bh->b_state & BH_FLAGS) == map->m_flags) {
2270 map->m_len++;
2271 return true;
2273 return false;
2277 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2279 * @mpd - extent of blocks for mapping
2280 * @head - the first buffer in the page
2281 * @bh - buffer we should start processing from
2282 * @lblk - logical number of the block in the file corresponding to @bh
2284 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2285 * the page for IO if all buffers in this page were mapped and there's no
2286 * accumulated extent of buffers to map or add buffers in the page to the
2287 * extent of buffers to map. The function returns 1 if the caller can continue
2288 * by processing the next page, 0 if it should stop adding buffers to the
2289 * extent to map because we cannot extend it anymore. It can also return value
2290 * < 0 in case of error during IO submission.
2292 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2293 struct buffer_head *head,
2294 struct buffer_head *bh,
2295 ext4_lblk_t lblk)
2297 struct inode *inode = mpd->inode;
2298 int err;
2299 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2300 >> inode->i_blkbits;
2302 do {
2303 BUG_ON(buffer_locked(bh));
2305 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2306 /* Found extent to map? */
2307 if (mpd->map.m_len)
2308 return 0;
2309 /* Buffer needs mapping and handle is not started? */
2310 if (!mpd->do_map)
2311 return 0;
2312 /* Everything mapped so far and we hit EOF */
2313 break;
2315 } while (lblk++, (bh = bh->b_this_page) != head);
2316 /* So far everything mapped? Submit the page for IO. */
2317 if (mpd->map.m_len == 0) {
2318 err = mpage_submit_page(mpd, head->b_page);
2319 if (err < 0)
2320 return err;
2322 return lblk < blocks;
2326 * mpage_map_buffers - update buffers corresponding to changed extent and
2327 * submit fully mapped pages for IO
2329 * @mpd - description of extent to map, on return next extent to map
2331 * Scan buffers corresponding to changed extent (we expect corresponding pages
2332 * to be already locked) and update buffer state according to new extent state.
2333 * We map delalloc buffers to their physical location, clear unwritten bits,
2334 * and mark buffers as uninit when we perform writes to unwritten extents
2335 * and do extent conversion after IO is finished. If the last page is not fully
2336 * mapped, we update @map to the next extent in the last page that needs
2337 * mapping. Otherwise we submit the page for IO.
2339 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2341 struct pagevec pvec;
2342 int nr_pages, i;
2343 struct inode *inode = mpd->inode;
2344 struct buffer_head *head, *bh;
2345 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2346 pgoff_t start, end;
2347 ext4_lblk_t lblk;
2348 sector_t pblock;
2349 int err;
2351 start = mpd->map.m_lblk >> bpp_bits;
2352 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2353 lblk = start << bpp_bits;
2354 pblock = mpd->map.m_pblk;
2356 pagevec_init(&pvec);
2357 while (start <= end) {
2358 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2359 &start, end);
2360 if (nr_pages == 0)
2361 break;
2362 for (i = 0; i < nr_pages; i++) {
2363 struct page *page = pvec.pages[i];
2365 bh = head = page_buffers(page);
2366 do {
2367 if (lblk < mpd->map.m_lblk)
2368 continue;
2369 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2371 * Buffer after end of mapped extent.
2372 * Find next buffer in the page to map.
2374 mpd->map.m_len = 0;
2375 mpd->map.m_flags = 0;
2377 * FIXME: If dioread_nolock supports
2378 * blocksize < pagesize, we need to make
2379 * sure we add size mapped so far to
2380 * io_end->size as the following call
2381 * can submit the page for IO.
2383 err = mpage_process_page_bufs(mpd, head,
2384 bh, lblk);
2385 pagevec_release(&pvec);
2386 if (err > 0)
2387 err = 0;
2388 return err;
2390 if (buffer_delay(bh)) {
2391 clear_buffer_delay(bh);
2392 bh->b_blocknr = pblock++;
2394 clear_buffer_unwritten(bh);
2395 } while (lblk++, (bh = bh->b_this_page) != head);
2398 * FIXME: This is going to break if dioread_nolock
2399 * supports blocksize < pagesize as we will try to
2400 * convert potentially unmapped parts of inode.
2402 mpd->io_submit.io_end->size += PAGE_SIZE;
2403 /* Page fully mapped - let IO run! */
2404 err = mpage_submit_page(mpd, page);
2405 if (err < 0) {
2406 pagevec_release(&pvec);
2407 return err;
2410 pagevec_release(&pvec);
2412 /* Extent fully mapped and matches with page boundary. We are done. */
2413 mpd->map.m_len = 0;
2414 mpd->map.m_flags = 0;
2415 return 0;
2418 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2420 struct inode *inode = mpd->inode;
2421 struct ext4_map_blocks *map = &mpd->map;
2422 int get_blocks_flags;
2423 int err, dioread_nolock;
2425 trace_ext4_da_write_pages_extent(inode, map);
2427 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2428 * to convert an unwritten extent to be initialized (in the case
2429 * where we have written into one or more preallocated blocks). It is
2430 * possible that we're going to need more metadata blocks than
2431 * previously reserved. However we must not fail because we're in
2432 * writeback and there is nothing we can do about it so it might result
2433 * in data loss. So use reserved blocks to allocate metadata if
2434 * possible.
2436 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2437 * the blocks in question are delalloc blocks. This indicates
2438 * that the blocks and quotas has already been checked when
2439 * the data was copied into the page cache.
2441 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2442 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2443 EXT4_GET_BLOCKS_IO_SUBMIT;
2444 dioread_nolock = ext4_should_dioread_nolock(inode);
2445 if (dioread_nolock)
2446 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2447 if (map->m_flags & (1 << BH_Delay))
2448 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2450 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2451 if (err < 0)
2452 return err;
2453 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2454 if (!mpd->io_submit.io_end->handle &&
2455 ext4_handle_valid(handle)) {
2456 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2457 handle->h_rsv_handle = NULL;
2459 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462 BUG_ON(map->m_len == 0);
2463 if (map->m_flags & EXT4_MAP_NEW) {
2464 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2465 map->m_len);
2467 return 0;
2471 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2472 * mpd->len and submit pages underlying it for IO
2474 * @handle - handle for journal operations
2475 * @mpd - extent to map
2476 * @give_up_on_write - we set this to true iff there is a fatal error and there
2477 * is no hope of writing the data. The caller should discard
2478 * dirty pages to avoid infinite loops.
2480 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2481 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2482 * them to initialized or split the described range from larger unwritten
2483 * extent. Note that we need not map all the described range since allocation
2484 * can return less blocks or the range is covered by more unwritten extents. We
2485 * cannot map more because we are limited by reserved transaction credits. On
2486 * the other hand we always make sure that the last touched page is fully
2487 * mapped so that it can be written out (and thus forward progress is
2488 * guaranteed). After mapping we submit all mapped pages for IO.
2490 static int mpage_map_and_submit_extent(handle_t *handle,
2491 struct mpage_da_data *mpd,
2492 bool *give_up_on_write)
2494 struct inode *inode = mpd->inode;
2495 struct ext4_map_blocks *map = &mpd->map;
2496 int err;
2497 loff_t disksize;
2498 int progress = 0;
2500 mpd->io_submit.io_end->offset =
2501 ((loff_t)map->m_lblk) << inode->i_blkbits;
2502 do {
2503 err = mpage_map_one_extent(handle, mpd);
2504 if (err < 0) {
2505 struct super_block *sb = inode->i_sb;
2507 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2508 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2509 goto invalidate_dirty_pages;
2511 * Let the uper layers retry transient errors.
2512 * In the case of ENOSPC, if ext4_count_free_blocks()
2513 * is non-zero, a commit should free up blocks.
2515 if ((err == -ENOMEM) ||
2516 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2517 if (progress)
2518 goto update_disksize;
2519 return err;
2521 ext4_msg(sb, KERN_CRIT,
2522 "Delayed block allocation failed for "
2523 "inode %lu at logical offset %llu with"
2524 " max blocks %u with error %d",
2525 inode->i_ino,
2526 (unsigned long long)map->m_lblk,
2527 (unsigned)map->m_len, -err);
2528 ext4_msg(sb, KERN_CRIT,
2529 "This should not happen!! Data will "
2530 "be lost\n");
2531 if (err == -ENOSPC)
2532 ext4_print_free_blocks(inode);
2533 invalidate_dirty_pages:
2534 *give_up_on_write = true;
2535 return err;
2537 progress = 1;
2539 * Update buffer state, submit mapped pages, and get us new
2540 * extent to map
2542 err = mpage_map_and_submit_buffers(mpd);
2543 if (err < 0)
2544 goto update_disksize;
2545 } while (map->m_len);
2547 update_disksize:
2549 * Update on-disk size after IO is submitted. Races with
2550 * truncate are avoided by checking i_size under i_data_sem.
2552 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2553 if (disksize > EXT4_I(inode)->i_disksize) {
2554 int err2;
2555 loff_t i_size;
2557 down_write(&EXT4_I(inode)->i_data_sem);
2558 i_size = i_size_read(inode);
2559 if (disksize > i_size)
2560 disksize = i_size;
2561 if (disksize > EXT4_I(inode)->i_disksize)
2562 EXT4_I(inode)->i_disksize = disksize;
2563 up_write(&EXT4_I(inode)->i_data_sem);
2564 err2 = ext4_mark_inode_dirty(handle, inode);
2565 if (err2)
2566 ext4_error(inode->i_sb,
2567 "Failed to mark inode %lu dirty",
2568 inode->i_ino);
2569 if (!err)
2570 err = err2;
2572 return err;
2576 * Calculate the total number of credits to reserve for one writepages
2577 * iteration. This is called from ext4_writepages(). We map an extent of
2578 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2579 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2580 * bpp - 1 blocks in bpp different extents.
2582 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2584 int bpp = ext4_journal_blocks_per_page(inode);
2586 return ext4_meta_trans_blocks(inode,
2587 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2591 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2592 * and underlying extent to map
2594 * @mpd - where to look for pages
2596 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2597 * IO immediately. When we find a page which isn't mapped we start accumulating
2598 * extent of buffers underlying these pages that needs mapping (formed by
2599 * either delayed or unwritten buffers). We also lock the pages containing
2600 * these buffers. The extent found is returned in @mpd structure (starting at
2601 * mpd->lblk with length mpd->len blocks).
2603 * Note that this function can attach bios to one io_end structure which are
2604 * neither logically nor physically contiguous. Although it may seem as an
2605 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2606 * case as we need to track IO to all buffers underlying a page in one io_end.
2608 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2610 struct address_space *mapping = mpd->inode->i_mapping;
2611 struct pagevec pvec;
2612 unsigned int nr_pages;
2613 long left = mpd->wbc->nr_to_write;
2614 pgoff_t index = mpd->first_page;
2615 pgoff_t end = mpd->last_page;
2616 int tag;
2617 int i, err = 0;
2618 int blkbits = mpd->inode->i_blkbits;
2619 ext4_lblk_t lblk;
2620 struct buffer_head *head;
2622 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2623 tag = PAGECACHE_TAG_TOWRITE;
2624 else
2625 tag = PAGECACHE_TAG_DIRTY;
2627 pagevec_init(&pvec);
2628 mpd->map.m_len = 0;
2629 mpd->next_page = index;
2630 while (index <= end) {
2631 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2632 tag);
2633 if (nr_pages == 0)
2634 goto out;
2636 for (i = 0; i < nr_pages; i++) {
2637 struct page *page = pvec.pages[i];
2640 * Accumulated enough dirty pages? This doesn't apply
2641 * to WB_SYNC_ALL mode. For integrity sync we have to
2642 * keep going because someone may be concurrently
2643 * dirtying pages, and we might have synced a lot of
2644 * newly appeared dirty pages, but have not synced all
2645 * of the old dirty pages.
2647 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2648 goto out;
2650 /* If we can't merge this page, we are done. */
2651 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2652 goto out;
2654 lock_page(page);
2656 * If the page is no longer dirty, or its mapping no
2657 * longer corresponds to inode we are writing (which
2658 * means it has been truncated or invalidated), or the
2659 * page is already under writeback and we are not doing
2660 * a data integrity writeback, skip the page
2662 if (!PageDirty(page) ||
2663 (PageWriteback(page) &&
2664 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2665 unlikely(page->mapping != mapping)) {
2666 unlock_page(page);
2667 continue;
2670 wait_on_page_writeback(page);
2671 BUG_ON(PageWriteback(page));
2673 if (mpd->map.m_len == 0)
2674 mpd->first_page = page->index;
2675 mpd->next_page = page->index + 1;
2676 /* Add all dirty buffers to mpd */
2677 lblk = ((ext4_lblk_t)page->index) <<
2678 (PAGE_SHIFT - blkbits);
2679 head = page_buffers(page);
2680 err = mpage_process_page_bufs(mpd, head, head, lblk);
2681 if (err <= 0)
2682 goto out;
2683 err = 0;
2684 left--;
2686 pagevec_release(&pvec);
2687 cond_resched();
2689 return 0;
2690 out:
2691 pagevec_release(&pvec);
2692 return err;
2695 static int ext4_writepages(struct address_space *mapping,
2696 struct writeback_control *wbc)
2698 pgoff_t writeback_index = 0;
2699 long nr_to_write = wbc->nr_to_write;
2700 int range_whole = 0;
2701 int cycled = 1;
2702 handle_t *handle = NULL;
2703 struct mpage_da_data mpd;
2704 struct inode *inode = mapping->host;
2705 int needed_blocks, rsv_blocks = 0, ret = 0;
2706 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2707 bool done;
2708 struct blk_plug plug;
2709 bool give_up_on_write = false;
2711 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2712 return -EIO;
2714 percpu_down_read(&sbi->s_journal_flag_rwsem);
2715 trace_ext4_writepages(inode, wbc);
2718 * No pages to write? This is mainly a kludge to avoid starting
2719 * a transaction for special inodes like journal inode on last iput()
2720 * because that could violate lock ordering on umount
2722 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2723 goto out_writepages;
2725 if (ext4_should_journal_data(inode)) {
2726 ret = generic_writepages(mapping, wbc);
2727 goto out_writepages;
2731 * If the filesystem has aborted, it is read-only, so return
2732 * right away instead of dumping stack traces later on that
2733 * will obscure the real source of the problem. We test
2734 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2735 * the latter could be true if the filesystem is mounted
2736 * read-only, and in that case, ext4_writepages should
2737 * *never* be called, so if that ever happens, we would want
2738 * the stack trace.
2740 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2741 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2742 ret = -EROFS;
2743 goto out_writepages;
2746 if (ext4_should_dioread_nolock(inode)) {
2748 * We may need to convert up to one extent per block in
2749 * the page and we may dirty the inode.
2751 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2755 * If we have inline data and arrive here, it means that
2756 * we will soon create the block for the 1st page, so
2757 * we'd better clear the inline data here.
2759 if (ext4_has_inline_data(inode)) {
2760 /* Just inode will be modified... */
2761 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2762 if (IS_ERR(handle)) {
2763 ret = PTR_ERR(handle);
2764 goto out_writepages;
2766 BUG_ON(ext4_test_inode_state(inode,
2767 EXT4_STATE_MAY_INLINE_DATA));
2768 ext4_destroy_inline_data(handle, inode);
2769 ext4_journal_stop(handle);
2772 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2773 range_whole = 1;
2775 if (wbc->range_cyclic) {
2776 writeback_index = mapping->writeback_index;
2777 if (writeback_index)
2778 cycled = 0;
2779 mpd.first_page = writeback_index;
2780 mpd.last_page = -1;
2781 } else {
2782 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2783 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2786 mpd.inode = inode;
2787 mpd.wbc = wbc;
2788 ext4_io_submit_init(&mpd.io_submit, wbc);
2789 retry:
2790 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2791 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2792 done = false;
2793 blk_start_plug(&plug);
2796 * First writeback pages that don't need mapping - we can avoid
2797 * starting a transaction unnecessarily and also avoid being blocked
2798 * in the block layer on device congestion while having transaction
2799 * started.
2801 mpd.do_map = 0;
2802 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2803 if (!mpd.io_submit.io_end) {
2804 ret = -ENOMEM;
2805 goto unplug;
2807 ret = mpage_prepare_extent_to_map(&mpd);
2808 /* Submit prepared bio */
2809 ext4_io_submit(&mpd.io_submit);
2810 ext4_put_io_end_defer(mpd.io_submit.io_end);
2811 mpd.io_submit.io_end = NULL;
2812 /* Unlock pages we didn't use */
2813 mpage_release_unused_pages(&mpd, false);
2814 if (ret < 0)
2815 goto unplug;
2817 while (!done && mpd.first_page <= mpd.last_page) {
2818 /* For each extent of pages we use new io_end */
2819 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2820 if (!mpd.io_submit.io_end) {
2821 ret = -ENOMEM;
2822 break;
2826 * We have two constraints: We find one extent to map and we
2827 * must always write out whole page (makes a difference when
2828 * blocksize < pagesize) so that we don't block on IO when we
2829 * try to write out the rest of the page. Journalled mode is
2830 * not supported by delalloc.
2832 BUG_ON(ext4_should_journal_data(inode));
2833 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2835 /* start a new transaction */
2836 handle = ext4_journal_start_with_reserve(inode,
2837 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2838 if (IS_ERR(handle)) {
2839 ret = PTR_ERR(handle);
2840 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2841 "%ld pages, ino %lu; err %d", __func__,
2842 wbc->nr_to_write, inode->i_ino, ret);
2843 /* Release allocated io_end */
2844 ext4_put_io_end(mpd.io_submit.io_end);
2845 mpd.io_submit.io_end = NULL;
2846 break;
2848 mpd.do_map = 1;
2850 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2851 ret = mpage_prepare_extent_to_map(&mpd);
2852 if (!ret) {
2853 if (mpd.map.m_len)
2854 ret = mpage_map_and_submit_extent(handle, &mpd,
2855 &give_up_on_write);
2856 else {
2858 * We scanned the whole range (or exhausted
2859 * nr_to_write), submitted what was mapped and
2860 * didn't find anything needing mapping. We are
2861 * done.
2863 done = true;
2867 * Caution: If the handle is synchronous,
2868 * ext4_journal_stop() can wait for transaction commit
2869 * to finish which may depend on writeback of pages to
2870 * complete or on page lock to be released. In that
2871 * case, we have to wait until after after we have
2872 * submitted all the IO, released page locks we hold,
2873 * and dropped io_end reference (for extent conversion
2874 * to be able to complete) before stopping the handle.
2876 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2877 ext4_journal_stop(handle);
2878 handle = NULL;
2879 mpd.do_map = 0;
2881 /* Submit prepared bio */
2882 ext4_io_submit(&mpd.io_submit);
2883 /* Unlock pages we didn't use */
2884 mpage_release_unused_pages(&mpd, give_up_on_write);
2886 * Drop our io_end reference we got from init. We have
2887 * to be careful and use deferred io_end finishing if
2888 * we are still holding the transaction as we can
2889 * release the last reference to io_end which may end
2890 * up doing unwritten extent conversion.
2892 if (handle) {
2893 ext4_put_io_end_defer(mpd.io_submit.io_end);
2894 ext4_journal_stop(handle);
2895 } else
2896 ext4_put_io_end(mpd.io_submit.io_end);
2897 mpd.io_submit.io_end = NULL;
2899 if (ret == -ENOSPC && sbi->s_journal) {
2901 * Commit the transaction which would
2902 * free blocks released in the transaction
2903 * and try again
2905 jbd2_journal_force_commit_nested(sbi->s_journal);
2906 ret = 0;
2907 continue;
2909 /* Fatal error - ENOMEM, EIO... */
2910 if (ret)
2911 break;
2913 unplug:
2914 blk_finish_plug(&plug);
2915 if (!ret && !cycled && wbc->nr_to_write > 0) {
2916 cycled = 1;
2917 mpd.last_page = writeback_index - 1;
2918 mpd.first_page = 0;
2919 goto retry;
2922 /* Update index */
2923 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2925 * Set the writeback_index so that range_cyclic
2926 * mode will write it back later
2928 mapping->writeback_index = mpd.first_page;
2930 out_writepages:
2931 trace_ext4_writepages_result(inode, wbc, ret,
2932 nr_to_write - wbc->nr_to_write);
2933 percpu_up_read(&sbi->s_journal_flag_rwsem);
2934 return ret;
2937 static int ext4_dax_writepages(struct address_space *mapping,
2938 struct writeback_control *wbc)
2940 int ret;
2941 long nr_to_write = wbc->nr_to_write;
2942 struct inode *inode = mapping->host;
2943 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2945 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2946 return -EIO;
2948 percpu_down_read(&sbi->s_journal_flag_rwsem);
2949 trace_ext4_writepages(inode, wbc);
2951 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2952 trace_ext4_writepages_result(inode, wbc, ret,
2953 nr_to_write - wbc->nr_to_write);
2954 percpu_up_read(&sbi->s_journal_flag_rwsem);
2955 return ret;
2958 static int ext4_nonda_switch(struct super_block *sb)
2960 s64 free_clusters, dirty_clusters;
2961 struct ext4_sb_info *sbi = EXT4_SB(sb);
2964 * switch to non delalloc mode if we are running low
2965 * on free block. The free block accounting via percpu
2966 * counters can get slightly wrong with percpu_counter_batch getting
2967 * accumulated on each CPU without updating global counters
2968 * Delalloc need an accurate free block accounting. So switch
2969 * to non delalloc when we are near to error range.
2971 free_clusters =
2972 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2973 dirty_clusters =
2974 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2976 * Start pushing delalloc when 1/2 of free blocks are dirty.
2978 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2979 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2981 if (2 * free_clusters < 3 * dirty_clusters ||
2982 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2984 * free block count is less than 150% of dirty blocks
2985 * or free blocks is less than watermark
2987 return 1;
2989 return 0;
2992 /* We always reserve for an inode update; the superblock could be there too */
2993 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2995 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2996 return 1;
2998 if (pos + len <= 0x7fffffffULL)
2999 return 1;
3001 /* We might need to update the superblock to set LARGE_FILE */
3002 return 2;
3005 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3006 loff_t pos, unsigned len, unsigned flags,
3007 struct page **pagep, void **fsdata)
3009 int ret, retries = 0;
3010 struct page *page;
3011 pgoff_t index;
3012 struct inode *inode = mapping->host;
3013 handle_t *handle;
3015 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3016 return -EIO;
3018 index = pos >> PAGE_SHIFT;
3020 if (ext4_nonda_switch(inode->i_sb) ||
3021 S_ISLNK(inode->i_mode)) {
3022 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3023 return ext4_write_begin(file, mapping, pos,
3024 len, flags, pagep, fsdata);
3026 *fsdata = (void *)0;
3027 trace_ext4_da_write_begin(inode, pos, len, flags);
3029 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3030 ret = ext4_da_write_inline_data_begin(mapping, inode,
3031 pos, len, flags,
3032 pagep, fsdata);
3033 if (ret < 0)
3034 return ret;
3035 if (ret == 1)
3036 return 0;
3040 * grab_cache_page_write_begin() can take a long time if the
3041 * system is thrashing due to memory pressure, or if the page
3042 * is being written back. So grab it first before we start
3043 * the transaction handle. This also allows us to allocate
3044 * the page (if needed) without using GFP_NOFS.
3046 retry_grab:
3047 page = grab_cache_page_write_begin(mapping, index, flags);
3048 if (!page)
3049 return -ENOMEM;
3050 unlock_page(page);
3053 * With delayed allocation, we don't log the i_disksize update
3054 * if there is delayed block allocation. But we still need
3055 * to journalling the i_disksize update if writes to the end
3056 * of file which has an already mapped buffer.
3058 retry_journal:
3059 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3060 ext4_da_write_credits(inode, pos, len));
3061 if (IS_ERR(handle)) {
3062 put_page(page);
3063 return PTR_ERR(handle);
3066 lock_page(page);
3067 if (page->mapping != mapping) {
3068 /* The page got truncated from under us */
3069 unlock_page(page);
3070 put_page(page);
3071 ext4_journal_stop(handle);
3072 goto retry_grab;
3074 /* In case writeback began while the page was unlocked */
3075 wait_for_stable_page(page);
3077 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3078 ret = ext4_block_write_begin(page, pos, len,
3079 ext4_da_get_block_prep);
3080 #else
3081 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3082 #endif
3083 if (ret < 0) {
3084 unlock_page(page);
3085 ext4_journal_stop(handle);
3087 * block_write_begin may have instantiated a few blocks
3088 * outside i_size. Trim these off again. Don't need
3089 * i_size_read because we hold i_mutex.
3091 if (pos + len > inode->i_size)
3092 ext4_truncate_failed_write(inode);
3094 if (ret == -ENOSPC &&
3095 ext4_should_retry_alloc(inode->i_sb, &retries))
3096 goto retry_journal;
3098 put_page(page);
3099 return ret;
3102 *pagep = page;
3103 return ret;
3107 * Check if we should update i_disksize
3108 * when write to the end of file but not require block allocation
3110 static int ext4_da_should_update_i_disksize(struct page *page,
3111 unsigned long offset)
3113 struct buffer_head *bh;
3114 struct inode *inode = page->mapping->host;
3115 unsigned int idx;
3116 int i;
3118 bh = page_buffers(page);
3119 idx = offset >> inode->i_blkbits;
3121 for (i = 0; i < idx; i++)
3122 bh = bh->b_this_page;
3124 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3125 return 0;
3126 return 1;
3129 static int ext4_da_write_end(struct file *file,
3130 struct address_space *mapping,
3131 loff_t pos, unsigned len, unsigned copied,
3132 struct page *page, void *fsdata)
3134 struct inode *inode = mapping->host;
3135 int ret = 0, ret2;
3136 handle_t *handle = ext4_journal_current_handle();
3137 loff_t new_i_size;
3138 unsigned long start, end;
3139 int write_mode = (int)(unsigned long)fsdata;
3141 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142 return ext4_write_end(file, mapping, pos,
3143 len, copied, page, fsdata);
3145 trace_ext4_da_write_end(inode, pos, len, copied);
3146 start = pos & (PAGE_SIZE - 1);
3147 end = start + copied - 1;
3150 * generic_write_end() will run mark_inode_dirty() if i_size
3151 * changes. So let's piggyback the i_disksize mark_inode_dirty
3152 * into that.
3154 new_i_size = pos + copied;
3155 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3156 if (ext4_has_inline_data(inode) ||
3157 ext4_da_should_update_i_disksize(page, end)) {
3158 ext4_update_i_disksize(inode, new_i_size);
3159 /* We need to mark inode dirty even if
3160 * new_i_size is less that inode->i_size
3161 * bu greater than i_disksize.(hint delalloc)
3163 ext4_mark_inode_dirty(handle, inode);
3167 if (write_mode != CONVERT_INLINE_DATA &&
3168 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3169 ext4_has_inline_data(inode))
3170 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3171 page);
3172 else
3173 ret2 = generic_write_end(file, mapping, pos, len, copied,
3174 page, fsdata);
3176 copied = ret2;
3177 if (ret2 < 0)
3178 ret = ret2;
3179 ret2 = ext4_journal_stop(handle);
3180 if (!ret)
3181 ret = ret2;
3183 return ret ? ret : copied;
3186 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3187 unsigned int length)
3190 * Drop reserved blocks
3192 BUG_ON(!PageLocked(page));
3193 if (!page_has_buffers(page))
3194 goto out;
3196 ext4_da_page_release_reservation(page, offset, length);
3198 out:
3199 ext4_invalidatepage(page, offset, length);
3201 return;
3205 * Force all delayed allocation blocks to be allocated for a given inode.
3207 int ext4_alloc_da_blocks(struct inode *inode)
3209 trace_ext4_alloc_da_blocks(inode);
3211 if (!EXT4_I(inode)->i_reserved_data_blocks)
3212 return 0;
3215 * We do something simple for now. The filemap_flush() will
3216 * also start triggering a write of the data blocks, which is
3217 * not strictly speaking necessary (and for users of
3218 * laptop_mode, not even desirable). However, to do otherwise
3219 * would require replicating code paths in:
3221 * ext4_writepages() ->
3222 * write_cache_pages() ---> (via passed in callback function)
3223 * __mpage_da_writepage() -->
3224 * mpage_add_bh_to_extent()
3225 * mpage_da_map_blocks()
3227 * The problem is that write_cache_pages(), located in
3228 * mm/page-writeback.c, marks pages clean in preparation for
3229 * doing I/O, which is not desirable if we're not planning on
3230 * doing I/O at all.
3232 * We could call write_cache_pages(), and then redirty all of
3233 * the pages by calling redirty_page_for_writepage() but that
3234 * would be ugly in the extreme. So instead we would need to
3235 * replicate parts of the code in the above functions,
3236 * simplifying them because we wouldn't actually intend to
3237 * write out the pages, but rather only collect contiguous
3238 * logical block extents, call the multi-block allocator, and
3239 * then update the buffer heads with the block allocations.
3241 * For now, though, we'll cheat by calling filemap_flush(),
3242 * which will map the blocks, and start the I/O, but not
3243 * actually wait for the I/O to complete.
3245 return filemap_flush(inode->i_mapping);
3249 * bmap() is special. It gets used by applications such as lilo and by
3250 * the swapper to find the on-disk block of a specific piece of data.
3252 * Naturally, this is dangerous if the block concerned is still in the
3253 * journal. If somebody makes a swapfile on an ext4 data-journaling
3254 * filesystem and enables swap, then they may get a nasty shock when the
3255 * data getting swapped to that swapfile suddenly gets overwritten by
3256 * the original zero's written out previously to the journal and
3257 * awaiting writeback in the kernel's buffer cache.
3259 * So, if we see any bmap calls here on a modified, data-journaled file,
3260 * take extra steps to flush any blocks which might be in the cache.
3262 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3264 struct inode *inode = mapping->host;
3265 journal_t *journal;
3266 int err;
3269 * We can get here for an inline file via the FIBMAP ioctl
3271 if (ext4_has_inline_data(inode))
3272 return 0;
3274 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3275 test_opt(inode->i_sb, DELALLOC)) {
3277 * With delalloc we want to sync the file
3278 * so that we can make sure we allocate
3279 * blocks for file
3281 filemap_write_and_wait(mapping);
3284 if (EXT4_JOURNAL(inode) &&
3285 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3287 * This is a REALLY heavyweight approach, but the use of
3288 * bmap on dirty files is expected to be extremely rare:
3289 * only if we run lilo or swapon on a freshly made file
3290 * do we expect this to happen.
3292 * (bmap requires CAP_SYS_RAWIO so this does not
3293 * represent an unprivileged user DOS attack --- we'd be
3294 * in trouble if mortal users could trigger this path at
3295 * will.)
3297 * NB. EXT4_STATE_JDATA is not set on files other than
3298 * regular files. If somebody wants to bmap a directory
3299 * or symlink and gets confused because the buffer
3300 * hasn't yet been flushed to disk, they deserve
3301 * everything they get.
3304 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3305 journal = EXT4_JOURNAL(inode);
3306 jbd2_journal_lock_updates(journal);
3307 err = jbd2_journal_flush(journal);
3308 jbd2_journal_unlock_updates(journal);
3310 if (err)
3311 return 0;
3314 return generic_block_bmap(mapping, block, ext4_get_block);
3317 static int ext4_readpage(struct file *file, struct page *page)
3319 int ret = -EAGAIN;
3320 struct inode *inode = page->mapping->host;
3322 trace_ext4_readpage(page);
3324 if (ext4_has_inline_data(inode))
3325 ret = ext4_readpage_inline(inode, page);
3327 if (ret == -EAGAIN)
3328 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3329 false);
3331 return ret;
3334 static int
3335 ext4_readpages(struct file *file, struct address_space *mapping,
3336 struct list_head *pages, unsigned nr_pages)
3338 struct inode *inode = mapping->host;
3340 /* If the file has inline data, no need to do readpages. */
3341 if (ext4_has_inline_data(inode))
3342 return 0;
3344 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3347 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3348 unsigned int length)
3350 trace_ext4_invalidatepage(page, offset, length);
3352 /* No journalling happens on data buffers when this function is used */
3353 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3355 block_invalidatepage(page, offset, length);
3358 static int __ext4_journalled_invalidatepage(struct page *page,
3359 unsigned int offset,
3360 unsigned int length)
3362 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3364 trace_ext4_journalled_invalidatepage(page, offset, length);
3367 * If it's a full truncate we just forget about the pending dirtying
3369 if (offset == 0 && length == PAGE_SIZE)
3370 ClearPageChecked(page);
3372 return jbd2_journal_invalidatepage(journal, page, offset, length);
3375 /* Wrapper for aops... */
3376 static void ext4_journalled_invalidatepage(struct page *page,
3377 unsigned int offset,
3378 unsigned int length)
3380 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3383 static int ext4_releasepage(struct page *page, gfp_t wait)
3385 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3387 trace_ext4_releasepage(page);
3389 /* Page has dirty journalled data -> cannot release */
3390 if (PageChecked(page))
3391 return 0;
3392 if (journal)
3393 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3394 else
3395 return try_to_free_buffers(page);
3398 static bool ext4_inode_datasync_dirty(struct inode *inode)
3400 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3402 if (journal)
3403 return !jbd2_transaction_committed(journal,
3404 EXT4_I(inode)->i_datasync_tid);
3405 /* Any metadata buffers to write? */
3406 if (!list_empty(&inode->i_mapping->private_list))
3407 return true;
3408 return inode->i_state & I_DIRTY_DATASYNC;
3411 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3412 unsigned flags, struct iomap *iomap)
3414 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3415 unsigned int blkbits = inode->i_blkbits;
3416 unsigned long first_block = offset >> blkbits;
3417 unsigned long last_block = (offset + length - 1) >> blkbits;
3418 struct ext4_map_blocks map;
3419 bool delalloc = false;
3420 int ret;
3423 if (flags & IOMAP_REPORT) {
3424 if (ext4_has_inline_data(inode)) {
3425 ret = ext4_inline_data_iomap(inode, iomap);
3426 if (ret != -EAGAIN) {
3427 if (ret == 0 && offset >= iomap->length)
3428 ret = -ENOENT;
3429 return ret;
3432 } else {
3433 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3434 return -ERANGE;
3437 map.m_lblk = first_block;
3438 map.m_len = last_block - first_block + 1;
3440 if (flags & IOMAP_REPORT) {
3441 ret = ext4_map_blocks(NULL, inode, &map, 0);
3442 if (ret < 0)
3443 return ret;
3445 if (ret == 0) {
3446 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3447 struct extent_status es;
3449 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3451 if (!es.es_len || es.es_lblk > end) {
3452 /* entire range is a hole */
3453 } else if (es.es_lblk > map.m_lblk) {
3454 /* range starts with a hole */
3455 map.m_len = es.es_lblk - map.m_lblk;
3456 } else {
3457 ext4_lblk_t offs = 0;
3459 if (es.es_lblk < map.m_lblk)
3460 offs = map.m_lblk - es.es_lblk;
3461 map.m_lblk = es.es_lblk + offs;
3462 map.m_len = es.es_len - offs;
3463 delalloc = true;
3466 } else if (flags & IOMAP_WRITE) {
3467 int dio_credits;
3468 handle_t *handle;
3469 int retries = 0;
3471 /* Trim mapping request to maximum we can map at once for DIO */
3472 if (map.m_len > DIO_MAX_BLOCKS)
3473 map.m_len = DIO_MAX_BLOCKS;
3474 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3475 retry:
3477 * Either we allocate blocks and then we don't get unwritten
3478 * extent so we have reserved enough credits, or the blocks
3479 * are already allocated and unwritten and in that case
3480 * extent conversion fits in the credits as well.
3482 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3483 dio_credits);
3484 if (IS_ERR(handle))
3485 return PTR_ERR(handle);
3487 ret = ext4_map_blocks(handle, inode, &map,
3488 EXT4_GET_BLOCKS_CREATE_ZERO);
3489 if (ret < 0) {
3490 ext4_journal_stop(handle);
3491 if (ret == -ENOSPC &&
3492 ext4_should_retry_alloc(inode->i_sb, &retries))
3493 goto retry;
3494 return ret;
3498 * If we added blocks beyond i_size, we need to make sure they
3499 * will get truncated if we crash before updating i_size in
3500 * ext4_iomap_end(). For faults we don't need to do that (and
3501 * even cannot because for orphan list operations inode_lock is
3502 * required) - if we happen to instantiate block beyond i_size,
3503 * it is because we race with truncate which has already added
3504 * the inode to the orphan list.
3506 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3507 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3508 int err;
3510 err = ext4_orphan_add(handle, inode);
3511 if (err < 0) {
3512 ext4_journal_stop(handle);
3513 return err;
3516 ext4_journal_stop(handle);
3517 } else {
3518 ret = ext4_map_blocks(NULL, inode, &map, 0);
3519 if (ret < 0)
3520 return ret;
3523 iomap->flags = 0;
3524 if (ext4_inode_datasync_dirty(inode))
3525 iomap->flags |= IOMAP_F_DIRTY;
3526 iomap->bdev = inode->i_sb->s_bdev;
3527 iomap->dax_dev = sbi->s_daxdev;
3528 iomap->offset = (u64)first_block << blkbits;
3529 iomap->length = (u64)map.m_len << blkbits;
3531 if (ret == 0) {
3532 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3533 iomap->addr = IOMAP_NULL_ADDR;
3534 } else {
3535 if (map.m_flags & EXT4_MAP_MAPPED) {
3536 iomap->type = IOMAP_MAPPED;
3537 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3538 iomap->type = IOMAP_UNWRITTEN;
3539 } else {
3540 WARN_ON_ONCE(1);
3541 return -EIO;
3543 iomap->addr = (u64)map.m_pblk << blkbits;
3546 if (map.m_flags & EXT4_MAP_NEW)
3547 iomap->flags |= IOMAP_F_NEW;
3549 return 0;
3552 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3553 ssize_t written, unsigned flags, struct iomap *iomap)
3555 int ret = 0;
3556 handle_t *handle;
3557 int blkbits = inode->i_blkbits;
3558 bool truncate = false;
3560 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3561 return 0;
3563 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3564 if (IS_ERR(handle)) {
3565 ret = PTR_ERR(handle);
3566 goto orphan_del;
3568 if (ext4_update_inode_size(inode, offset + written))
3569 ext4_mark_inode_dirty(handle, inode);
3571 * We may need to truncate allocated but not written blocks beyond EOF.
3573 if (iomap->offset + iomap->length >
3574 ALIGN(inode->i_size, 1 << blkbits)) {
3575 ext4_lblk_t written_blk, end_blk;
3577 written_blk = (offset + written) >> blkbits;
3578 end_blk = (offset + length) >> blkbits;
3579 if (written_blk < end_blk && ext4_can_truncate(inode))
3580 truncate = true;
3583 * Remove inode from orphan list if we were extending a inode and
3584 * everything went fine.
3586 if (!truncate && inode->i_nlink &&
3587 !list_empty(&EXT4_I(inode)->i_orphan))
3588 ext4_orphan_del(handle, inode);
3589 ext4_journal_stop(handle);
3590 if (truncate) {
3591 ext4_truncate_failed_write(inode);
3592 orphan_del:
3594 * If truncate failed early the inode might still be on the
3595 * orphan list; we need to make sure the inode is removed from
3596 * the orphan list in that case.
3598 if (inode->i_nlink)
3599 ext4_orphan_del(NULL, inode);
3601 return ret;
3604 const struct iomap_ops ext4_iomap_ops = {
3605 .iomap_begin = ext4_iomap_begin,
3606 .iomap_end = ext4_iomap_end,
3609 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3610 ssize_t size, void *private)
3612 ext4_io_end_t *io_end = private;
3614 /* if not async direct IO just return */
3615 if (!io_end)
3616 return 0;
3618 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3619 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3620 io_end, io_end->inode->i_ino, iocb, offset, size);
3623 * Error during AIO DIO. We cannot convert unwritten extents as the
3624 * data was not written. Just clear the unwritten flag and drop io_end.
3626 if (size <= 0) {
3627 ext4_clear_io_unwritten_flag(io_end);
3628 size = 0;
3630 io_end->offset = offset;
3631 io_end->size = size;
3632 ext4_put_io_end(io_end);
3634 return 0;
3638 * Handling of direct IO writes.
3640 * For ext4 extent files, ext4 will do direct-io write even to holes,
3641 * preallocated extents, and those write extend the file, no need to
3642 * fall back to buffered IO.
3644 * For holes, we fallocate those blocks, mark them as unwritten
3645 * If those blocks were preallocated, we mark sure they are split, but
3646 * still keep the range to write as unwritten.
3648 * The unwritten extents will be converted to written when DIO is completed.
3649 * For async direct IO, since the IO may still pending when return, we
3650 * set up an end_io call back function, which will do the conversion
3651 * when async direct IO completed.
3653 * If the O_DIRECT write will extend the file then add this inode to the
3654 * orphan list. So recovery will truncate it back to the original size
3655 * if the machine crashes during the write.
3658 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3660 struct file *file = iocb->ki_filp;
3661 struct inode *inode = file->f_mapping->host;
3662 struct ext4_inode_info *ei = EXT4_I(inode);
3663 ssize_t ret;
3664 loff_t offset = iocb->ki_pos;
3665 size_t count = iov_iter_count(iter);
3666 int overwrite = 0;
3667 get_block_t *get_block_func = NULL;
3668 int dio_flags = 0;
3669 loff_t final_size = offset + count;
3670 int orphan = 0;
3671 handle_t *handle;
3673 if (final_size > inode->i_size || final_size > ei->i_disksize) {
3674 /* Credits for sb + inode write */
3675 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3676 if (IS_ERR(handle)) {
3677 ret = PTR_ERR(handle);
3678 goto out;
3680 ret = ext4_orphan_add(handle, inode);
3681 if (ret) {
3682 ext4_journal_stop(handle);
3683 goto out;
3685 orphan = 1;
3686 ext4_update_i_disksize(inode, inode->i_size);
3687 ext4_journal_stop(handle);
3690 BUG_ON(iocb->private == NULL);
3693 * Make all waiters for direct IO properly wait also for extent
3694 * conversion. This also disallows race between truncate() and
3695 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3697 inode_dio_begin(inode);
3699 /* If we do a overwrite dio, i_mutex locking can be released */
3700 overwrite = *((int *)iocb->private);
3702 if (overwrite)
3703 inode_unlock(inode);
3706 * For extent mapped files we could direct write to holes and fallocate.
3708 * Allocated blocks to fill the hole are marked as unwritten to prevent
3709 * parallel buffered read to expose the stale data before DIO complete
3710 * the data IO.
3712 * As to previously fallocated extents, ext4 get_block will just simply
3713 * mark the buffer mapped but still keep the extents unwritten.
3715 * For non AIO case, we will convert those unwritten extents to written
3716 * after return back from blockdev_direct_IO. That way we save us from
3717 * allocating io_end structure and also the overhead of offloading
3718 * the extent convertion to a workqueue.
3720 * For async DIO, the conversion needs to be deferred when the
3721 * IO is completed. The ext4 end_io callback function will be
3722 * called to take care of the conversion work. Here for async
3723 * case, we allocate an io_end structure to hook to the iocb.
3725 iocb->private = NULL;
3726 if (overwrite)
3727 get_block_func = ext4_dio_get_block_overwrite;
3728 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3729 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3730 get_block_func = ext4_dio_get_block;
3731 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3732 } else if (is_sync_kiocb(iocb)) {
3733 get_block_func = ext4_dio_get_block_unwritten_sync;
3734 dio_flags = DIO_LOCKING;
3735 } else {
3736 get_block_func = ext4_dio_get_block_unwritten_async;
3737 dio_flags = DIO_LOCKING;
3739 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3740 get_block_func, ext4_end_io_dio, NULL,
3741 dio_flags);
3743 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3744 EXT4_STATE_DIO_UNWRITTEN)) {
3745 int err;
3747 * for non AIO case, since the IO is already
3748 * completed, we could do the conversion right here
3750 err = ext4_convert_unwritten_extents(NULL, inode,
3751 offset, ret);
3752 if (err < 0)
3753 ret = err;
3754 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3757 inode_dio_end(inode);
3758 /* take i_mutex locking again if we do a ovewrite dio */
3759 if (overwrite)
3760 inode_lock(inode);
3762 if (ret < 0 && final_size > inode->i_size)
3763 ext4_truncate_failed_write(inode);
3765 /* Handle extending of i_size after direct IO write */
3766 if (orphan) {
3767 int err;
3769 /* Credits for sb + inode write */
3770 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3771 if (IS_ERR(handle)) {
3773 * We wrote the data but cannot extend
3774 * i_size. Bail out. In async io case, we do
3775 * not return error here because we have
3776 * already submmitted the corresponding
3777 * bio. Returning error here makes the caller
3778 * think that this IO is done and failed
3779 * resulting in race with bio's completion
3780 * handler.
3782 if (!ret)
3783 ret = PTR_ERR(handle);
3784 if (inode->i_nlink)
3785 ext4_orphan_del(NULL, inode);
3787 goto out;
3789 if (inode->i_nlink)
3790 ext4_orphan_del(handle, inode);
3791 if (ret > 0) {
3792 loff_t end = offset + ret;
3793 if (end > inode->i_size || end > ei->i_disksize) {
3794 ext4_update_i_disksize(inode, end);
3795 if (end > inode->i_size)
3796 i_size_write(inode, end);
3798 * We're going to return a positive `ret'
3799 * here due to non-zero-length I/O, so there's
3800 * no way of reporting error returns from
3801 * ext4_mark_inode_dirty() to userspace. So
3802 * ignore it.
3804 ext4_mark_inode_dirty(handle, inode);
3807 err = ext4_journal_stop(handle);
3808 if (ret == 0)
3809 ret = err;
3811 out:
3812 return ret;
3815 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3817 struct address_space *mapping = iocb->ki_filp->f_mapping;
3818 struct inode *inode = mapping->host;
3819 size_t count = iov_iter_count(iter);
3820 ssize_t ret;
3823 * Shared inode_lock is enough for us - it protects against concurrent
3824 * writes & truncates and since we take care of writing back page cache,
3825 * we are protected against page writeback as well.
3827 inode_lock_shared(inode);
3828 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3829 iocb->ki_pos + count - 1);
3830 if (ret)
3831 goto out_unlock;
3832 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3833 iter, ext4_dio_get_block, NULL, NULL, 0);
3834 out_unlock:
3835 inode_unlock_shared(inode);
3836 return ret;
3839 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3841 struct file *file = iocb->ki_filp;
3842 struct inode *inode = file->f_mapping->host;
3843 size_t count = iov_iter_count(iter);
3844 loff_t offset = iocb->ki_pos;
3845 ssize_t ret;
3847 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3848 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3849 return 0;
3850 #endif
3853 * If we are doing data journalling we don't support O_DIRECT
3855 if (ext4_should_journal_data(inode))
3856 return 0;
3858 /* Let buffer I/O handle the inline data case. */
3859 if (ext4_has_inline_data(inode))
3860 return 0;
3862 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3863 if (iov_iter_rw(iter) == READ)
3864 ret = ext4_direct_IO_read(iocb, iter);
3865 else
3866 ret = ext4_direct_IO_write(iocb, iter);
3867 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3868 return ret;
3872 * Pages can be marked dirty completely asynchronously from ext4's journalling
3873 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3874 * much here because ->set_page_dirty is called under VFS locks. The page is
3875 * not necessarily locked.
3877 * We cannot just dirty the page and leave attached buffers clean, because the
3878 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3879 * or jbddirty because all the journalling code will explode.
3881 * So what we do is to mark the page "pending dirty" and next time writepage
3882 * is called, propagate that into the buffers appropriately.
3884 static int ext4_journalled_set_page_dirty(struct page *page)
3886 SetPageChecked(page);
3887 return __set_page_dirty_nobuffers(page);
3890 static int ext4_set_page_dirty(struct page *page)
3892 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3893 WARN_ON_ONCE(!page_has_buffers(page));
3894 return __set_page_dirty_buffers(page);
3897 static const struct address_space_operations ext4_aops = {
3898 .readpage = ext4_readpage,
3899 .readpages = ext4_readpages,
3900 .writepage = ext4_writepage,
3901 .writepages = ext4_writepages,
3902 .write_begin = ext4_write_begin,
3903 .write_end = ext4_write_end,
3904 .set_page_dirty = ext4_set_page_dirty,
3905 .bmap = ext4_bmap,
3906 .invalidatepage = ext4_invalidatepage,
3907 .releasepage = ext4_releasepage,
3908 .direct_IO = ext4_direct_IO,
3909 .migratepage = buffer_migrate_page,
3910 .is_partially_uptodate = block_is_partially_uptodate,
3911 .error_remove_page = generic_error_remove_page,
3914 static const struct address_space_operations ext4_journalled_aops = {
3915 .readpage = ext4_readpage,
3916 .readpages = ext4_readpages,
3917 .writepage = ext4_writepage,
3918 .writepages = ext4_writepages,
3919 .write_begin = ext4_write_begin,
3920 .write_end = ext4_journalled_write_end,
3921 .set_page_dirty = ext4_journalled_set_page_dirty,
3922 .bmap = ext4_bmap,
3923 .invalidatepage = ext4_journalled_invalidatepage,
3924 .releasepage = ext4_releasepage,
3925 .direct_IO = ext4_direct_IO,
3926 .is_partially_uptodate = block_is_partially_uptodate,
3927 .error_remove_page = generic_error_remove_page,
3930 static const struct address_space_operations ext4_da_aops = {
3931 .readpage = ext4_readpage,
3932 .readpages = ext4_readpages,
3933 .writepage = ext4_writepage,
3934 .writepages = ext4_writepages,
3935 .write_begin = ext4_da_write_begin,
3936 .write_end = ext4_da_write_end,
3937 .set_page_dirty = ext4_set_page_dirty,
3938 .bmap = ext4_bmap,
3939 .invalidatepage = ext4_da_invalidatepage,
3940 .releasepage = ext4_releasepage,
3941 .direct_IO = ext4_direct_IO,
3942 .migratepage = buffer_migrate_page,
3943 .is_partially_uptodate = block_is_partially_uptodate,
3944 .error_remove_page = generic_error_remove_page,
3947 static const struct address_space_operations ext4_dax_aops = {
3948 .writepages = ext4_dax_writepages,
3949 .direct_IO = noop_direct_IO,
3950 .set_page_dirty = noop_set_page_dirty,
3951 .invalidatepage = noop_invalidatepage,
3954 void ext4_set_aops(struct inode *inode)
3956 switch (ext4_inode_journal_mode(inode)) {
3957 case EXT4_INODE_ORDERED_DATA_MODE:
3958 case EXT4_INODE_WRITEBACK_DATA_MODE:
3959 break;
3960 case EXT4_INODE_JOURNAL_DATA_MODE:
3961 inode->i_mapping->a_ops = &ext4_journalled_aops;
3962 return;
3963 default:
3964 BUG();
3966 if (IS_DAX(inode))
3967 inode->i_mapping->a_ops = &ext4_dax_aops;
3968 else if (test_opt(inode->i_sb, DELALLOC))
3969 inode->i_mapping->a_ops = &ext4_da_aops;
3970 else
3971 inode->i_mapping->a_ops = &ext4_aops;
3974 static int __ext4_block_zero_page_range(handle_t *handle,
3975 struct address_space *mapping, loff_t from, loff_t length)
3977 ext4_fsblk_t index = from >> PAGE_SHIFT;
3978 unsigned offset = from & (PAGE_SIZE-1);
3979 unsigned blocksize, pos;
3980 ext4_lblk_t iblock;
3981 struct inode *inode = mapping->host;
3982 struct buffer_head *bh;
3983 struct page *page;
3984 int err = 0;
3986 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3987 mapping_gfp_constraint(mapping, ~__GFP_FS));
3988 if (!page)
3989 return -ENOMEM;
3991 blocksize = inode->i_sb->s_blocksize;
3993 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3995 if (!page_has_buffers(page))
3996 create_empty_buffers(page, blocksize, 0);
3998 /* Find the buffer that contains "offset" */
3999 bh = page_buffers(page);
4000 pos = blocksize;
4001 while (offset >= pos) {
4002 bh = bh->b_this_page;
4003 iblock++;
4004 pos += blocksize;
4006 if (buffer_freed(bh)) {
4007 BUFFER_TRACE(bh, "freed: skip");
4008 goto unlock;
4010 if (!buffer_mapped(bh)) {
4011 BUFFER_TRACE(bh, "unmapped");
4012 ext4_get_block(inode, iblock, bh, 0);
4013 /* unmapped? It's a hole - nothing to do */
4014 if (!buffer_mapped(bh)) {
4015 BUFFER_TRACE(bh, "still unmapped");
4016 goto unlock;
4020 /* Ok, it's mapped. Make sure it's up-to-date */
4021 if (PageUptodate(page))
4022 set_buffer_uptodate(bh);
4024 if (!buffer_uptodate(bh)) {
4025 err = -EIO;
4026 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4027 wait_on_buffer(bh);
4028 /* Uhhuh. Read error. Complain and punt. */
4029 if (!buffer_uptodate(bh))
4030 goto unlock;
4031 if (S_ISREG(inode->i_mode) &&
4032 ext4_encrypted_inode(inode)) {
4033 /* We expect the key to be set. */
4034 BUG_ON(!fscrypt_has_encryption_key(inode));
4035 BUG_ON(blocksize != PAGE_SIZE);
4036 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4037 page, PAGE_SIZE, 0, page->index));
4040 if (ext4_should_journal_data(inode)) {
4041 BUFFER_TRACE(bh, "get write access");
4042 err = ext4_journal_get_write_access(handle, bh);
4043 if (err)
4044 goto unlock;
4046 zero_user(page, offset, length);
4047 BUFFER_TRACE(bh, "zeroed end of block");
4049 if (ext4_should_journal_data(inode)) {
4050 err = ext4_handle_dirty_metadata(handle, inode, bh);
4051 } else {
4052 err = 0;
4053 mark_buffer_dirty(bh);
4054 if (ext4_should_order_data(inode))
4055 err = ext4_jbd2_inode_add_write(handle, inode);
4058 unlock:
4059 unlock_page(page);
4060 put_page(page);
4061 return err;
4065 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4066 * starting from file offset 'from'. The range to be zero'd must
4067 * be contained with in one block. If the specified range exceeds
4068 * the end of the block it will be shortened to end of the block
4069 * that cooresponds to 'from'
4071 static int ext4_block_zero_page_range(handle_t *handle,
4072 struct address_space *mapping, loff_t from, loff_t length)
4074 struct inode *inode = mapping->host;
4075 unsigned offset = from & (PAGE_SIZE-1);
4076 unsigned blocksize = inode->i_sb->s_blocksize;
4077 unsigned max = blocksize - (offset & (blocksize - 1));
4080 * correct length if it does not fall between
4081 * 'from' and the end of the block
4083 if (length > max || length < 0)
4084 length = max;
4086 if (IS_DAX(inode)) {
4087 return iomap_zero_range(inode, from, length, NULL,
4088 &ext4_iomap_ops);
4090 return __ext4_block_zero_page_range(handle, mapping, from, length);
4094 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4095 * up to the end of the block which corresponds to `from'.
4096 * This required during truncate. We need to physically zero the tail end
4097 * of that block so it doesn't yield old data if the file is later grown.
4099 static int ext4_block_truncate_page(handle_t *handle,
4100 struct address_space *mapping, loff_t from)
4102 unsigned offset = from & (PAGE_SIZE-1);
4103 unsigned length;
4104 unsigned blocksize;
4105 struct inode *inode = mapping->host;
4107 /* If we are processing an encrypted inode during orphan list handling */
4108 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4109 return 0;
4111 blocksize = inode->i_sb->s_blocksize;
4112 length = blocksize - (offset & (blocksize - 1));
4114 return ext4_block_zero_page_range(handle, mapping, from, length);
4117 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4118 loff_t lstart, loff_t length)
4120 struct super_block *sb = inode->i_sb;
4121 struct address_space *mapping = inode->i_mapping;
4122 unsigned partial_start, partial_end;
4123 ext4_fsblk_t start, end;
4124 loff_t byte_end = (lstart + length - 1);
4125 int err = 0;
4127 partial_start = lstart & (sb->s_blocksize - 1);
4128 partial_end = byte_end & (sb->s_blocksize - 1);
4130 start = lstart >> sb->s_blocksize_bits;
4131 end = byte_end >> sb->s_blocksize_bits;
4133 /* Handle partial zero within the single block */
4134 if (start == end &&
4135 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4136 err = ext4_block_zero_page_range(handle, mapping,
4137 lstart, length);
4138 return err;
4140 /* Handle partial zero out on the start of the range */
4141 if (partial_start) {
4142 err = ext4_block_zero_page_range(handle, mapping,
4143 lstart, sb->s_blocksize);
4144 if (err)
4145 return err;
4147 /* Handle partial zero out on the end of the range */
4148 if (partial_end != sb->s_blocksize - 1)
4149 err = ext4_block_zero_page_range(handle, mapping,
4150 byte_end - partial_end,
4151 partial_end + 1);
4152 return err;
4155 int ext4_can_truncate(struct inode *inode)
4157 if (S_ISREG(inode->i_mode))
4158 return 1;
4159 if (S_ISDIR(inode->i_mode))
4160 return 1;
4161 if (S_ISLNK(inode->i_mode))
4162 return !ext4_inode_is_fast_symlink(inode);
4163 return 0;
4167 * We have to make sure i_disksize gets properly updated before we truncate
4168 * page cache due to hole punching or zero range. Otherwise i_disksize update
4169 * can get lost as it may have been postponed to submission of writeback but
4170 * that will never happen after we truncate page cache.
4172 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4173 loff_t len)
4175 handle_t *handle;
4176 loff_t size = i_size_read(inode);
4178 WARN_ON(!inode_is_locked(inode));
4179 if (offset > size || offset + len < size)
4180 return 0;
4182 if (EXT4_I(inode)->i_disksize >= size)
4183 return 0;
4185 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4186 if (IS_ERR(handle))
4187 return PTR_ERR(handle);
4188 ext4_update_i_disksize(inode, size);
4189 ext4_mark_inode_dirty(handle, inode);
4190 ext4_journal_stop(handle);
4192 return 0;
4195 static void ext4_wait_dax_page(struct ext4_inode_info *ei, bool *did_unlock)
4197 *did_unlock = true;
4198 up_write(&ei->i_mmap_sem);
4199 schedule();
4200 down_write(&ei->i_mmap_sem);
4203 int ext4_break_layouts(struct inode *inode)
4205 struct ext4_inode_info *ei = EXT4_I(inode);
4206 struct page *page;
4207 bool retry;
4208 int error;
4210 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4211 return -EINVAL;
4213 do {
4214 retry = false;
4215 page = dax_layout_busy_page(inode->i_mapping);
4216 if (!page)
4217 return 0;
4219 error = ___wait_var_event(&page->_refcount,
4220 atomic_read(&page->_refcount) == 1,
4221 TASK_INTERRUPTIBLE, 0, 0,
4222 ext4_wait_dax_page(ei, &retry));
4223 } while (error == 0 && retry);
4225 return error;
4229 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4230 * associated with the given offset and length
4232 * @inode: File inode
4233 * @offset: The offset where the hole will begin
4234 * @len: The length of the hole
4236 * Returns: 0 on success or negative on failure
4239 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4241 struct super_block *sb = inode->i_sb;
4242 ext4_lblk_t first_block, stop_block;
4243 struct address_space *mapping = inode->i_mapping;
4244 loff_t first_block_offset, last_block_offset;
4245 handle_t *handle;
4246 unsigned int credits;
4247 int ret = 0;
4249 if (!S_ISREG(inode->i_mode))
4250 return -EOPNOTSUPP;
4252 trace_ext4_punch_hole(inode, offset, length, 0);
4255 * Write out all dirty pages to avoid race conditions
4256 * Then release them.
4258 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4259 ret = filemap_write_and_wait_range(mapping, offset,
4260 offset + length - 1);
4261 if (ret)
4262 return ret;
4265 inode_lock(inode);
4267 /* No need to punch hole beyond i_size */
4268 if (offset >= inode->i_size)
4269 goto out_mutex;
4272 * If the hole extends beyond i_size, set the hole
4273 * to end after the page that contains i_size
4275 if (offset + length > inode->i_size) {
4276 length = inode->i_size +
4277 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4278 offset;
4281 if (offset & (sb->s_blocksize - 1) ||
4282 (offset + length) & (sb->s_blocksize - 1)) {
4284 * Attach jinode to inode for jbd2 if we do any zeroing of
4285 * partial block
4287 ret = ext4_inode_attach_jinode(inode);
4288 if (ret < 0)
4289 goto out_mutex;
4293 /* Wait all existing dio workers, newcomers will block on i_mutex */
4294 inode_dio_wait(inode);
4297 * Prevent page faults from reinstantiating pages we have released from
4298 * page cache.
4300 down_write(&EXT4_I(inode)->i_mmap_sem);
4302 ret = ext4_break_layouts(inode);
4303 if (ret)
4304 goto out_dio;
4306 first_block_offset = round_up(offset, sb->s_blocksize);
4307 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4309 /* Now release the pages and zero block aligned part of pages*/
4310 if (last_block_offset > first_block_offset) {
4311 ret = ext4_update_disksize_before_punch(inode, offset, length);
4312 if (ret)
4313 goto out_dio;
4314 truncate_pagecache_range(inode, first_block_offset,
4315 last_block_offset);
4318 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4319 credits = ext4_writepage_trans_blocks(inode);
4320 else
4321 credits = ext4_blocks_for_truncate(inode);
4322 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4323 if (IS_ERR(handle)) {
4324 ret = PTR_ERR(handle);
4325 ext4_std_error(sb, ret);
4326 goto out_dio;
4329 ret = ext4_zero_partial_blocks(handle, inode, offset,
4330 length);
4331 if (ret)
4332 goto out_stop;
4334 first_block = (offset + sb->s_blocksize - 1) >>
4335 EXT4_BLOCK_SIZE_BITS(sb);
4336 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4338 /* If there are blocks to remove, do it */
4339 if (stop_block > first_block) {
4341 down_write(&EXT4_I(inode)->i_data_sem);
4342 ext4_discard_preallocations(inode);
4344 ret = ext4_es_remove_extent(inode, first_block,
4345 stop_block - first_block);
4346 if (ret) {
4347 up_write(&EXT4_I(inode)->i_data_sem);
4348 goto out_stop;
4351 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4352 ret = ext4_ext_remove_space(inode, first_block,
4353 stop_block - 1);
4354 else
4355 ret = ext4_ind_remove_space(handle, inode, first_block,
4356 stop_block);
4358 up_write(&EXT4_I(inode)->i_data_sem);
4360 if (IS_SYNC(inode))
4361 ext4_handle_sync(handle);
4363 inode->i_mtime = inode->i_ctime = current_time(inode);
4364 ext4_mark_inode_dirty(handle, inode);
4365 if (ret >= 0)
4366 ext4_update_inode_fsync_trans(handle, inode, 1);
4367 out_stop:
4368 ext4_journal_stop(handle);
4369 out_dio:
4370 up_write(&EXT4_I(inode)->i_mmap_sem);
4371 out_mutex:
4372 inode_unlock(inode);
4373 return ret;
4376 int ext4_inode_attach_jinode(struct inode *inode)
4378 struct ext4_inode_info *ei = EXT4_I(inode);
4379 struct jbd2_inode *jinode;
4381 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4382 return 0;
4384 jinode = jbd2_alloc_inode(GFP_KERNEL);
4385 spin_lock(&inode->i_lock);
4386 if (!ei->jinode) {
4387 if (!jinode) {
4388 spin_unlock(&inode->i_lock);
4389 return -ENOMEM;
4391 ei->jinode = jinode;
4392 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4393 jinode = NULL;
4395 spin_unlock(&inode->i_lock);
4396 if (unlikely(jinode != NULL))
4397 jbd2_free_inode(jinode);
4398 return 0;
4402 * ext4_truncate()
4404 * We block out ext4_get_block() block instantiations across the entire
4405 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4406 * simultaneously on behalf of the same inode.
4408 * As we work through the truncate and commit bits of it to the journal there
4409 * is one core, guiding principle: the file's tree must always be consistent on
4410 * disk. We must be able to restart the truncate after a crash.
4412 * The file's tree may be transiently inconsistent in memory (although it
4413 * probably isn't), but whenever we close off and commit a journal transaction,
4414 * the contents of (the filesystem + the journal) must be consistent and
4415 * restartable. It's pretty simple, really: bottom up, right to left (although
4416 * left-to-right works OK too).
4418 * Note that at recovery time, journal replay occurs *before* the restart of
4419 * truncate against the orphan inode list.
4421 * The committed inode has the new, desired i_size (which is the same as
4422 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4423 * that this inode's truncate did not complete and it will again call
4424 * ext4_truncate() to have another go. So there will be instantiated blocks
4425 * to the right of the truncation point in a crashed ext4 filesystem. But
4426 * that's fine - as long as they are linked from the inode, the post-crash
4427 * ext4_truncate() run will find them and release them.
4429 int ext4_truncate(struct inode *inode)
4431 struct ext4_inode_info *ei = EXT4_I(inode);
4432 unsigned int credits;
4433 int err = 0;
4434 handle_t *handle;
4435 struct address_space *mapping = inode->i_mapping;
4438 * There is a possibility that we're either freeing the inode
4439 * or it's a completely new inode. In those cases we might not
4440 * have i_mutex locked because it's not necessary.
4442 if (!(inode->i_state & (I_NEW|I_FREEING)))
4443 WARN_ON(!inode_is_locked(inode));
4444 trace_ext4_truncate_enter(inode);
4446 if (!ext4_can_truncate(inode))
4447 return 0;
4449 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4451 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4452 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4454 if (ext4_has_inline_data(inode)) {
4455 int has_inline = 1;
4457 err = ext4_inline_data_truncate(inode, &has_inline);
4458 if (err)
4459 return err;
4460 if (has_inline)
4461 return 0;
4464 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4465 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4466 if (ext4_inode_attach_jinode(inode) < 0)
4467 return 0;
4470 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4471 credits = ext4_writepage_trans_blocks(inode);
4472 else
4473 credits = ext4_blocks_for_truncate(inode);
4475 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4476 if (IS_ERR(handle))
4477 return PTR_ERR(handle);
4479 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4480 ext4_block_truncate_page(handle, mapping, inode->i_size);
4483 * We add the inode to the orphan list, so that if this
4484 * truncate spans multiple transactions, and we crash, we will
4485 * resume the truncate when the filesystem recovers. It also
4486 * marks the inode dirty, to catch the new size.
4488 * Implication: the file must always be in a sane, consistent
4489 * truncatable state while each transaction commits.
4491 err = ext4_orphan_add(handle, inode);
4492 if (err)
4493 goto out_stop;
4495 down_write(&EXT4_I(inode)->i_data_sem);
4497 ext4_discard_preallocations(inode);
4499 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4500 err = ext4_ext_truncate(handle, inode);
4501 else
4502 ext4_ind_truncate(handle, inode);
4504 up_write(&ei->i_data_sem);
4505 if (err)
4506 goto out_stop;
4508 if (IS_SYNC(inode))
4509 ext4_handle_sync(handle);
4511 out_stop:
4513 * If this was a simple ftruncate() and the file will remain alive,
4514 * then we need to clear up the orphan record which we created above.
4515 * However, if this was a real unlink then we were called by
4516 * ext4_evict_inode(), and we allow that function to clean up the
4517 * orphan info for us.
4519 if (inode->i_nlink)
4520 ext4_orphan_del(handle, inode);
4522 inode->i_mtime = inode->i_ctime = current_time(inode);
4523 ext4_mark_inode_dirty(handle, inode);
4524 ext4_journal_stop(handle);
4526 trace_ext4_truncate_exit(inode);
4527 return err;
4531 * ext4_get_inode_loc returns with an extra refcount against the inode's
4532 * underlying buffer_head on success. If 'in_mem' is true, we have all
4533 * data in memory that is needed to recreate the on-disk version of this
4534 * inode.
4536 static int __ext4_get_inode_loc(struct inode *inode,
4537 struct ext4_iloc *iloc, int in_mem)
4539 struct ext4_group_desc *gdp;
4540 struct buffer_head *bh;
4541 struct super_block *sb = inode->i_sb;
4542 ext4_fsblk_t block;
4543 int inodes_per_block, inode_offset;
4545 iloc->bh = NULL;
4546 if (inode->i_ino < EXT4_ROOT_INO ||
4547 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4548 return -EFSCORRUPTED;
4550 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4551 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4552 if (!gdp)
4553 return -EIO;
4556 * Figure out the offset within the block group inode table
4558 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4559 inode_offset = ((inode->i_ino - 1) %
4560 EXT4_INODES_PER_GROUP(sb));
4561 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4562 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4564 bh = sb_getblk(sb, block);
4565 if (unlikely(!bh))
4566 return -ENOMEM;
4567 if (!buffer_uptodate(bh)) {
4568 lock_buffer(bh);
4571 * If the buffer has the write error flag, we have failed
4572 * to write out another inode in the same block. In this
4573 * case, we don't have to read the block because we may
4574 * read the old inode data successfully.
4576 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4577 set_buffer_uptodate(bh);
4579 if (buffer_uptodate(bh)) {
4580 /* someone brought it uptodate while we waited */
4581 unlock_buffer(bh);
4582 goto has_buffer;
4586 * If we have all information of the inode in memory and this
4587 * is the only valid inode in the block, we need not read the
4588 * block.
4590 if (in_mem) {
4591 struct buffer_head *bitmap_bh;
4592 int i, start;
4594 start = inode_offset & ~(inodes_per_block - 1);
4596 /* Is the inode bitmap in cache? */
4597 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4598 if (unlikely(!bitmap_bh))
4599 goto make_io;
4602 * If the inode bitmap isn't in cache then the
4603 * optimisation may end up performing two reads instead
4604 * of one, so skip it.
4606 if (!buffer_uptodate(bitmap_bh)) {
4607 brelse(bitmap_bh);
4608 goto make_io;
4610 for (i = start; i < start + inodes_per_block; i++) {
4611 if (i == inode_offset)
4612 continue;
4613 if (ext4_test_bit(i, bitmap_bh->b_data))
4614 break;
4616 brelse(bitmap_bh);
4617 if (i == start + inodes_per_block) {
4618 /* all other inodes are free, so skip I/O */
4619 memset(bh->b_data, 0, bh->b_size);
4620 set_buffer_uptodate(bh);
4621 unlock_buffer(bh);
4622 goto has_buffer;
4626 make_io:
4628 * If we need to do any I/O, try to pre-readahead extra
4629 * blocks from the inode table.
4631 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4632 ext4_fsblk_t b, end, table;
4633 unsigned num;
4634 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4636 table = ext4_inode_table(sb, gdp);
4637 /* s_inode_readahead_blks is always a power of 2 */
4638 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4639 if (table > b)
4640 b = table;
4641 end = b + ra_blks;
4642 num = EXT4_INODES_PER_GROUP(sb);
4643 if (ext4_has_group_desc_csum(sb))
4644 num -= ext4_itable_unused_count(sb, gdp);
4645 table += num / inodes_per_block;
4646 if (end > table)
4647 end = table;
4648 while (b <= end)
4649 sb_breadahead(sb, b++);
4653 * There are other valid inodes in the buffer, this inode
4654 * has in-inode xattrs, or we don't have this inode in memory.
4655 * Read the block from disk.
4657 trace_ext4_load_inode(inode);
4658 get_bh(bh);
4659 bh->b_end_io = end_buffer_read_sync;
4660 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4661 wait_on_buffer(bh);
4662 if (!buffer_uptodate(bh)) {
4663 EXT4_ERROR_INODE_BLOCK(inode, block,
4664 "unable to read itable block");
4665 brelse(bh);
4666 return -EIO;
4669 has_buffer:
4670 iloc->bh = bh;
4671 return 0;
4674 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4676 /* We have all inode data except xattrs in memory here. */
4677 return __ext4_get_inode_loc(inode, iloc,
4678 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4681 static bool ext4_should_use_dax(struct inode *inode)
4683 if (!test_opt(inode->i_sb, DAX))
4684 return false;
4685 if (!S_ISREG(inode->i_mode))
4686 return false;
4687 if (ext4_should_journal_data(inode))
4688 return false;
4689 if (ext4_has_inline_data(inode))
4690 return false;
4691 if (ext4_encrypted_inode(inode))
4692 return false;
4693 return true;
4696 void ext4_set_inode_flags(struct inode *inode)
4698 unsigned int flags = EXT4_I(inode)->i_flags;
4699 unsigned int new_fl = 0;
4701 if (flags & EXT4_SYNC_FL)
4702 new_fl |= S_SYNC;
4703 if (flags & EXT4_APPEND_FL)
4704 new_fl |= S_APPEND;
4705 if (flags & EXT4_IMMUTABLE_FL)
4706 new_fl |= S_IMMUTABLE;
4707 if (flags & EXT4_NOATIME_FL)
4708 new_fl |= S_NOATIME;
4709 if (flags & EXT4_DIRSYNC_FL)
4710 new_fl |= S_DIRSYNC;
4711 if (ext4_should_use_dax(inode))
4712 new_fl |= S_DAX;
4713 if (flags & EXT4_ENCRYPT_FL)
4714 new_fl |= S_ENCRYPTED;
4715 inode_set_flags(inode, new_fl,
4716 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4717 S_ENCRYPTED);
4720 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4721 struct ext4_inode_info *ei)
4723 blkcnt_t i_blocks ;
4724 struct inode *inode = &(ei->vfs_inode);
4725 struct super_block *sb = inode->i_sb;
4727 if (ext4_has_feature_huge_file(sb)) {
4728 /* we are using combined 48 bit field */
4729 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4730 le32_to_cpu(raw_inode->i_blocks_lo);
4731 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4732 /* i_blocks represent file system block size */
4733 return i_blocks << (inode->i_blkbits - 9);
4734 } else {
4735 return i_blocks;
4737 } else {
4738 return le32_to_cpu(raw_inode->i_blocks_lo);
4742 static inline int ext4_iget_extra_inode(struct inode *inode,
4743 struct ext4_inode *raw_inode,
4744 struct ext4_inode_info *ei)
4746 __le32 *magic = (void *)raw_inode +
4747 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4749 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4750 EXT4_INODE_SIZE(inode->i_sb) &&
4751 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4752 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4753 return ext4_find_inline_data_nolock(inode);
4754 } else
4755 EXT4_I(inode)->i_inline_off = 0;
4756 return 0;
4759 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4761 if (!ext4_has_feature_project(inode->i_sb))
4762 return -EOPNOTSUPP;
4763 *projid = EXT4_I(inode)->i_projid;
4764 return 0;
4768 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4769 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4770 * set.
4772 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4774 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4775 inode_set_iversion_raw(inode, val);
4776 else
4777 inode_set_iversion_queried(inode, val);
4779 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4781 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4782 return inode_peek_iversion_raw(inode);
4783 else
4784 return inode_peek_iversion(inode);
4787 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4789 struct ext4_iloc iloc;
4790 struct ext4_inode *raw_inode;
4791 struct ext4_inode_info *ei;
4792 struct inode *inode;
4793 journal_t *journal = EXT4_SB(sb)->s_journal;
4794 long ret;
4795 loff_t size;
4796 int block;
4797 uid_t i_uid;
4798 gid_t i_gid;
4799 projid_t i_projid;
4801 inode = iget_locked(sb, ino);
4802 if (!inode)
4803 return ERR_PTR(-ENOMEM);
4804 if (!(inode->i_state & I_NEW))
4805 return inode;
4807 ei = EXT4_I(inode);
4808 iloc.bh = NULL;
4810 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4811 if (ret < 0)
4812 goto bad_inode;
4813 raw_inode = ext4_raw_inode(&iloc);
4815 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4816 EXT4_ERROR_INODE(inode, "root inode unallocated");
4817 ret = -EFSCORRUPTED;
4818 goto bad_inode;
4821 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4822 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4823 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4824 EXT4_INODE_SIZE(inode->i_sb) ||
4825 (ei->i_extra_isize & 3)) {
4826 EXT4_ERROR_INODE(inode,
4827 "bad extra_isize %u (inode size %u)",
4828 ei->i_extra_isize,
4829 EXT4_INODE_SIZE(inode->i_sb));
4830 ret = -EFSCORRUPTED;
4831 goto bad_inode;
4833 } else
4834 ei->i_extra_isize = 0;
4836 /* Precompute checksum seed for inode metadata */
4837 if (ext4_has_metadata_csum(sb)) {
4838 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4839 __u32 csum;
4840 __le32 inum = cpu_to_le32(inode->i_ino);
4841 __le32 gen = raw_inode->i_generation;
4842 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4843 sizeof(inum));
4844 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4845 sizeof(gen));
4848 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4849 EXT4_ERROR_INODE(inode, "checksum invalid");
4850 ret = -EFSBADCRC;
4851 goto bad_inode;
4854 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4855 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4856 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4857 if (ext4_has_feature_project(sb) &&
4858 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4859 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4860 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4861 else
4862 i_projid = EXT4_DEF_PROJID;
4864 if (!(test_opt(inode->i_sb, NO_UID32))) {
4865 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4866 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4868 i_uid_write(inode, i_uid);
4869 i_gid_write(inode, i_gid);
4870 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4871 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4873 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4874 ei->i_inline_off = 0;
4875 ei->i_dir_start_lookup = 0;
4876 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4877 /* We now have enough fields to check if the inode was active or not.
4878 * This is needed because nfsd might try to access dead inodes
4879 * the test is that same one that e2fsck uses
4880 * NeilBrown 1999oct15
4882 if (inode->i_nlink == 0) {
4883 if ((inode->i_mode == 0 ||
4884 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4885 ino != EXT4_BOOT_LOADER_INO) {
4886 /* this inode is deleted */
4887 ret = -ESTALE;
4888 goto bad_inode;
4890 /* The only unlinked inodes we let through here have
4891 * valid i_mode and are being read by the orphan
4892 * recovery code: that's fine, we're about to complete
4893 * the process of deleting those.
4894 * OR it is the EXT4_BOOT_LOADER_INO which is
4895 * not initialized on a new filesystem. */
4897 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4898 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4899 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4900 if (ext4_has_feature_64bit(sb))
4901 ei->i_file_acl |=
4902 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4903 inode->i_size = ext4_isize(sb, raw_inode);
4904 if ((size = i_size_read(inode)) < 0) {
4905 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4906 ret = -EFSCORRUPTED;
4907 goto bad_inode;
4909 ei->i_disksize = inode->i_size;
4910 #ifdef CONFIG_QUOTA
4911 ei->i_reserved_quota = 0;
4912 #endif
4913 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4914 ei->i_block_group = iloc.block_group;
4915 ei->i_last_alloc_group = ~0;
4917 * NOTE! The in-memory inode i_data array is in little-endian order
4918 * even on big-endian machines: we do NOT byteswap the block numbers!
4920 for (block = 0; block < EXT4_N_BLOCKS; block++)
4921 ei->i_data[block] = raw_inode->i_block[block];
4922 INIT_LIST_HEAD(&ei->i_orphan);
4925 * Set transaction id's of transactions that have to be committed
4926 * to finish f[data]sync. We set them to currently running transaction
4927 * as we cannot be sure that the inode or some of its metadata isn't
4928 * part of the transaction - the inode could have been reclaimed and
4929 * now it is reread from disk.
4931 if (journal) {
4932 transaction_t *transaction;
4933 tid_t tid;
4935 read_lock(&journal->j_state_lock);
4936 if (journal->j_running_transaction)
4937 transaction = journal->j_running_transaction;
4938 else
4939 transaction = journal->j_committing_transaction;
4940 if (transaction)
4941 tid = transaction->t_tid;
4942 else
4943 tid = journal->j_commit_sequence;
4944 read_unlock(&journal->j_state_lock);
4945 ei->i_sync_tid = tid;
4946 ei->i_datasync_tid = tid;
4949 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4950 if (ei->i_extra_isize == 0) {
4951 /* The extra space is currently unused. Use it. */
4952 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4953 ei->i_extra_isize = sizeof(struct ext4_inode) -
4954 EXT4_GOOD_OLD_INODE_SIZE;
4955 } else {
4956 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4957 if (ret)
4958 goto bad_inode;
4962 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4963 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4964 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4965 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4967 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4968 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4970 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4971 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4972 ivers |=
4973 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4975 ext4_inode_set_iversion_queried(inode, ivers);
4978 ret = 0;
4979 if (ei->i_file_acl &&
4980 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4981 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4982 ei->i_file_acl);
4983 ret = -EFSCORRUPTED;
4984 goto bad_inode;
4985 } else if (!ext4_has_inline_data(inode)) {
4986 /* validate the block references in the inode */
4987 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4988 (S_ISLNK(inode->i_mode) &&
4989 !ext4_inode_is_fast_symlink(inode))) {
4990 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4991 ret = ext4_ext_check_inode(inode);
4992 else
4993 ret = ext4_ind_check_inode(inode);
4996 if (ret)
4997 goto bad_inode;
4999 if (S_ISREG(inode->i_mode)) {
5000 inode->i_op = &ext4_file_inode_operations;
5001 inode->i_fop = &ext4_file_operations;
5002 ext4_set_aops(inode);
5003 } else if (S_ISDIR(inode->i_mode)) {
5004 inode->i_op = &ext4_dir_inode_operations;
5005 inode->i_fop = &ext4_dir_operations;
5006 } else if (S_ISLNK(inode->i_mode)) {
5007 /* VFS does not allow setting these so must be corruption */
5008 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5009 EXT4_ERROR_INODE(inode,
5010 "immutable or append flags not allowed on symlinks");
5011 ret = -EFSCORRUPTED;
5012 goto bad_inode;
5014 if (ext4_encrypted_inode(inode)) {
5015 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5016 ext4_set_aops(inode);
5017 } else if (ext4_inode_is_fast_symlink(inode)) {
5018 inode->i_link = (char *)ei->i_data;
5019 inode->i_op = &ext4_fast_symlink_inode_operations;
5020 nd_terminate_link(ei->i_data, inode->i_size,
5021 sizeof(ei->i_data) - 1);
5022 } else {
5023 inode->i_op = &ext4_symlink_inode_operations;
5024 ext4_set_aops(inode);
5026 inode_nohighmem(inode);
5027 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5028 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5029 inode->i_op = &ext4_special_inode_operations;
5030 if (raw_inode->i_block[0])
5031 init_special_inode(inode, inode->i_mode,
5032 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5033 else
5034 init_special_inode(inode, inode->i_mode,
5035 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5036 } else if (ino == EXT4_BOOT_LOADER_INO) {
5037 make_bad_inode(inode);
5038 } else {
5039 ret = -EFSCORRUPTED;
5040 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5041 goto bad_inode;
5043 brelse(iloc.bh);
5044 ext4_set_inode_flags(inode);
5046 unlock_new_inode(inode);
5047 return inode;
5049 bad_inode:
5050 brelse(iloc.bh);
5051 iget_failed(inode);
5052 return ERR_PTR(ret);
5055 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
5057 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
5058 return ERR_PTR(-EFSCORRUPTED);
5059 return ext4_iget(sb, ino);
5062 static int ext4_inode_blocks_set(handle_t *handle,
5063 struct ext4_inode *raw_inode,
5064 struct ext4_inode_info *ei)
5066 struct inode *inode = &(ei->vfs_inode);
5067 u64 i_blocks = inode->i_blocks;
5068 struct super_block *sb = inode->i_sb;
5070 if (i_blocks <= ~0U) {
5072 * i_blocks can be represented in a 32 bit variable
5073 * as multiple of 512 bytes
5075 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5076 raw_inode->i_blocks_high = 0;
5077 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5078 return 0;
5080 if (!ext4_has_feature_huge_file(sb))
5081 return -EFBIG;
5083 if (i_blocks <= 0xffffffffffffULL) {
5085 * i_blocks can be represented in a 48 bit variable
5086 * as multiple of 512 bytes
5088 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5089 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5090 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5091 } else {
5092 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5093 /* i_block is stored in file system block size */
5094 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5095 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5096 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5098 return 0;
5101 struct other_inode {
5102 unsigned long orig_ino;
5103 struct ext4_inode *raw_inode;
5106 static int other_inode_match(struct inode * inode, unsigned long ino,
5107 void *data)
5109 struct other_inode *oi = (struct other_inode *) data;
5111 if ((inode->i_ino != ino) ||
5112 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5113 I_DIRTY_INODE)) ||
5114 ((inode->i_state & I_DIRTY_TIME) == 0))
5115 return 0;
5116 spin_lock(&inode->i_lock);
5117 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5118 I_DIRTY_INODE)) == 0) &&
5119 (inode->i_state & I_DIRTY_TIME)) {
5120 struct ext4_inode_info *ei = EXT4_I(inode);
5122 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5123 spin_unlock(&inode->i_lock);
5125 spin_lock(&ei->i_raw_lock);
5126 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5127 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5128 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5129 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5130 spin_unlock(&ei->i_raw_lock);
5131 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5132 return -1;
5134 spin_unlock(&inode->i_lock);
5135 return -1;
5139 * Opportunistically update the other time fields for other inodes in
5140 * the same inode table block.
5142 static void ext4_update_other_inodes_time(struct super_block *sb,
5143 unsigned long orig_ino, char *buf)
5145 struct other_inode oi;
5146 unsigned long ino;
5147 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5148 int inode_size = EXT4_INODE_SIZE(sb);
5150 oi.orig_ino = orig_ino;
5152 * Calculate the first inode in the inode table block. Inode
5153 * numbers are one-based. That is, the first inode in a block
5154 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5156 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5157 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5158 if (ino == orig_ino)
5159 continue;
5160 oi.raw_inode = (struct ext4_inode *) buf;
5161 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5166 * Post the struct inode info into an on-disk inode location in the
5167 * buffer-cache. This gobbles the caller's reference to the
5168 * buffer_head in the inode location struct.
5170 * The caller must have write access to iloc->bh.
5172 static int ext4_do_update_inode(handle_t *handle,
5173 struct inode *inode,
5174 struct ext4_iloc *iloc)
5176 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5177 struct ext4_inode_info *ei = EXT4_I(inode);
5178 struct buffer_head *bh = iloc->bh;
5179 struct super_block *sb = inode->i_sb;
5180 int err = 0, rc, block;
5181 int need_datasync = 0, set_large_file = 0;
5182 uid_t i_uid;
5183 gid_t i_gid;
5184 projid_t i_projid;
5186 spin_lock(&ei->i_raw_lock);
5188 /* For fields not tracked in the in-memory inode,
5189 * initialise them to zero for new inodes. */
5190 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5191 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5193 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5194 i_uid = i_uid_read(inode);
5195 i_gid = i_gid_read(inode);
5196 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5197 if (!(test_opt(inode->i_sb, NO_UID32))) {
5198 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5199 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5201 * Fix up interoperability with old kernels. Otherwise, old inodes get
5202 * re-used with the upper 16 bits of the uid/gid intact
5204 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5205 raw_inode->i_uid_high = 0;
5206 raw_inode->i_gid_high = 0;
5207 } else {
5208 raw_inode->i_uid_high =
5209 cpu_to_le16(high_16_bits(i_uid));
5210 raw_inode->i_gid_high =
5211 cpu_to_le16(high_16_bits(i_gid));
5213 } else {
5214 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5215 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5216 raw_inode->i_uid_high = 0;
5217 raw_inode->i_gid_high = 0;
5219 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5221 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5222 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5223 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5224 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5226 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5227 if (err) {
5228 spin_unlock(&ei->i_raw_lock);
5229 goto out_brelse;
5231 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5232 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5233 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5234 raw_inode->i_file_acl_high =
5235 cpu_to_le16(ei->i_file_acl >> 32);
5236 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5237 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5238 ext4_isize_set(raw_inode, ei->i_disksize);
5239 need_datasync = 1;
5241 if (ei->i_disksize > 0x7fffffffULL) {
5242 if (!ext4_has_feature_large_file(sb) ||
5243 EXT4_SB(sb)->s_es->s_rev_level ==
5244 cpu_to_le32(EXT4_GOOD_OLD_REV))
5245 set_large_file = 1;
5247 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5248 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5249 if (old_valid_dev(inode->i_rdev)) {
5250 raw_inode->i_block[0] =
5251 cpu_to_le32(old_encode_dev(inode->i_rdev));
5252 raw_inode->i_block[1] = 0;
5253 } else {
5254 raw_inode->i_block[0] = 0;
5255 raw_inode->i_block[1] =
5256 cpu_to_le32(new_encode_dev(inode->i_rdev));
5257 raw_inode->i_block[2] = 0;
5259 } else if (!ext4_has_inline_data(inode)) {
5260 for (block = 0; block < EXT4_N_BLOCKS; block++)
5261 raw_inode->i_block[block] = ei->i_data[block];
5264 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5265 u64 ivers = ext4_inode_peek_iversion(inode);
5267 raw_inode->i_disk_version = cpu_to_le32(ivers);
5268 if (ei->i_extra_isize) {
5269 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5270 raw_inode->i_version_hi =
5271 cpu_to_le32(ivers >> 32);
5272 raw_inode->i_extra_isize =
5273 cpu_to_le16(ei->i_extra_isize);
5277 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5278 i_projid != EXT4_DEF_PROJID);
5280 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5281 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5282 raw_inode->i_projid = cpu_to_le32(i_projid);
5284 ext4_inode_csum_set(inode, raw_inode, ei);
5285 spin_unlock(&ei->i_raw_lock);
5286 if (inode->i_sb->s_flags & SB_LAZYTIME)
5287 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5288 bh->b_data);
5290 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5291 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5292 if (!err)
5293 err = rc;
5294 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5295 if (set_large_file) {
5296 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5297 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5298 if (err)
5299 goto out_brelse;
5300 ext4_update_dynamic_rev(sb);
5301 ext4_set_feature_large_file(sb);
5302 ext4_handle_sync(handle);
5303 err = ext4_handle_dirty_super(handle, sb);
5305 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5306 out_brelse:
5307 brelse(bh);
5308 ext4_std_error(inode->i_sb, err);
5309 return err;
5313 * ext4_write_inode()
5315 * We are called from a few places:
5317 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5318 * Here, there will be no transaction running. We wait for any running
5319 * transaction to commit.
5321 * - Within flush work (sys_sync(), kupdate and such).
5322 * We wait on commit, if told to.
5324 * - Within iput_final() -> write_inode_now()
5325 * We wait on commit, if told to.
5327 * In all cases it is actually safe for us to return without doing anything,
5328 * because the inode has been copied into a raw inode buffer in
5329 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5330 * writeback.
5332 * Note that we are absolutely dependent upon all inode dirtiers doing the
5333 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5334 * which we are interested.
5336 * It would be a bug for them to not do this. The code:
5338 * mark_inode_dirty(inode)
5339 * stuff();
5340 * inode->i_size = expr;
5342 * is in error because write_inode() could occur while `stuff()' is running,
5343 * and the new i_size will be lost. Plus the inode will no longer be on the
5344 * superblock's dirty inode list.
5346 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5348 int err;
5350 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5351 return 0;
5353 if (EXT4_SB(inode->i_sb)->s_journal) {
5354 if (ext4_journal_current_handle()) {
5355 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5356 dump_stack();
5357 return -EIO;
5361 * No need to force transaction in WB_SYNC_NONE mode. Also
5362 * ext4_sync_fs() will force the commit after everything is
5363 * written.
5365 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5366 return 0;
5368 err = ext4_force_commit(inode->i_sb);
5369 } else {
5370 struct ext4_iloc iloc;
5372 err = __ext4_get_inode_loc(inode, &iloc, 0);
5373 if (err)
5374 return err;
5376 * sync(2) will flush the whole buffer cache. No need to do
5377 * it here separately for each inode.
5379 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5380 sync_dirty_buffer(iloc.bh);
5381 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5382 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5383 "IO error syncing inode");
5384 err = -EIO;
5386 brelse(iloc.bh);
5388 return err;
5392 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5393 * buffers that are attached to a page stradding i_size and are undergoing
5394 * commit. In that case we have to wait for commit to finish and try again.
5396 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5398 struct page *page;
5399 unsigned offset;
5400 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5401 tid_t commit_tid = 0;
5402 int ret;
5404 offset = inode->i_size & (PAGE_SIZE - 1);
5406 * All buffers in the last page remain valid? Then there's nothing to
5407 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5408 * blocksize case
5410 if (offset > PAGE_SIZE - i_blocksize(inode))
5411 return;
5412 while (1) {
5413 page = find_lock_page(inode->i_mapping,
5414 inode->i_size >> PAGE_SHIFT);
5415 if (!page)
5416 return;
5417 ret = __ext4_journalled_invalidatepage(page, offset,
5418 PAGE_SIZE - offset);
5419 unlock_page(page);
5420 put_page(page);
5421 if (ret != -EBUSY)
5422 return;
5423 commit_tid = 0;
5424 read_lock(&journal->j_state_lock);
5425 if (journal->j_committing_transaction)
5426 commit_tid = journal->j_committing_transaction->t_tid;
5427 read_unlock(&journal->j_state_lock);
5428 if (commit_tid)
5429 jbd2_log_wait_commit(journal, commit_tid);
5434 * ext4_setattr()
5436 * Called from notify_change.
5438 * We want to trap VFS attempts to truncate the file as soon as
5439 * possible. In particular, we want to make sure that when the VFS
5440 * shrinks i_size, we put the inode on the orphan list and modify
5441 * i_disksize immediately, so that during the subsequent flushing of
5442 * dirty pages and freeing of disk blocks, we can guarantee that any
5443 * commit will leave the blocks being flushed in an unused state on
5444 * disk. (On recovery, the inode will get truncated and the blocks will
5445 * be freed, so we have a strong guarantee that no future commit will
5446 * leave these blocks visible to the user.)
5448 * Another thing we have to assure is that if we are in ordered mode
5449 * and inode is still attached to the committing transaction, we must
5450 * we start writeout of all the dirty pages which are being truncated.
5451 * This way we are sure that all the data written in the previous
5452 * transaction are already on disk (truncate waits for pages under
5453 * writeback).
5455 * Called with inode->i_mutex down.
5457 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5459 struct inode *inode = d_inode(dentry);
5460 int error, rc = 0;
5461 int orphan = 0;
5462 const unsigned int ia_valid = attr->ia_valid;
5464 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5465 return -EIO;
5467 error = setattr_prepare(dentry, attr);
5468 if (error)
5469 return error;
5471 error = fscrypt_prepare_setattr(dentry, attr);
5472 if (error)
5473 return error;
5475 if (is_quota_modification(inode, attr)) {
5476 error = dquot_initialize(inode);
5477 if (error)
5478 return error;
5480 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5481 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5482 handle_t *handle;
5484 /* (user+group)*(old+new) structure, inode write (sb,
5485 * inode block, ? - but truncate inode update has it) */
5486 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5487 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5488 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5489 if (IS_ERR(handle)) {
5490 error = PTR_ERR(handle);
5491 goto err_out;
5494 /* dquot_transfer() calls back ext4_get_inode_usage() which
5495 * counts xattr inode references.
5497 down_read(&EXT4_I(inode)->xattr_sem);
5498 error = dquot_transfer(inode, attr);
5499 up_read(&EXT4_I(inode)->xattr_sem);
5501 if (error) {
5502 ext4_journal_stop(handle);
5503 return error;
5505 /* Update corresponding info in inode so that everything is in
5506 * one transaction */
5507 if (attr->ia_valid & ATTR_UID)
5508 inode->i_uid = attr->ia_uid;
5509 if (attr->ia_valid & ATTR_GID)
5510 inode->i_gid = attr->ia_gid;
5511 error = ext4_mark_inode_dirty(handle, inode);
5512 ext4_journal_stop(handle);
5515 if (attr->ia_valid & ATTR_SIZE) {
5516 handle_t *handle;
5517 loff_t oldsize = inode->i_size;
5518 int shrink = (attr->ia_size <= inode->i_size);
5520 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5521 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5523 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5524 return -EFBIG;
5526 if (!S_ISREG(inode->i_mode))
5527 return -EINVAL;
5529 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5530 inode_inc_iversion(inode);
5532 if (ext4_should_order_data(inode) &&
5533 (attr->ia_size < inode->i_size)) {
5534 error = ext4_begin_ordered_truncate(inode,
5535 attr->ia_size);
5536 if (error)
5537 goto err_out;
5539 if (attr->ia_size != inode->i_size) {
5540 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5541 if (IS_ERR(handle)) {
5542 error = PTR_ERR(handle);
5543 goto err_out;
5545 if (ext4_handle_valid(handle) && shrink) {
5546 error = ext4_orphan_add(handle, inode);
5547 orphan = 1;
5550 * Update c/mtime on truncate up, ext4_truncate() will
5551 * update c/mtime in shrink case below
5553 if (!shrink) {
5554 inode->i_mtime = current_time(inode);
5555 inode->i_ctime = inode->i_mtime;
5557 down_write(&EXT4_I(inode)->i_data_sem);
5558 EXT4_I(inode)->i_disksize = attr->ia_size;
5559 rc = ext4_mark_inode_dirty(handle, inode);
5560 if (!error)
5561 error = rc;
5563 * We have to update i_size under i_data_sem together
5564 * with i_disksize to avoid races with writeback code
5565 * running ext4_wb_update_i_disksize().
5567 if (!error)
5568 i_size_write(inode, attr->ia_size);
5569 up_write(&EXT4_I(inode)->i_data_sem);
5570 ext4_journal_stop(handle);
5571 if (error) {
5572 if (orphan)
5573 ext4_orphan_del(NULL, inode);
5574 goto err_out;
5577 if (!shrink)
5578 pagecache_isize_extended(inode, oldsize, inode->i_size);
5581 * Blocks are going to be removed from the inode. Wait
5582 * for dio in flight. Temporarily disable
5583 * dioread_nolock to prevent livelock.
5585 if (orphan) {
5586 if (!ext4_should_journal_data(inode)) {
5587 inode_dio_wait(inode);
5588 } else
5589 ext4_wait_for_tail_page_commit(inode);
5591 down_write(&EXT4_I(inode)->i_mmap_sem);
5593 rc = ext4_break_layouts(inode);
5594 if (rc) {
5595 up_write(&EXT4_I(inode)->i_mmap_sem);
5596 error = rc;
5597 goto err_out;
5601 * Truncate pagecache after we've waited for commit
5602 * in data=journal mode to make pages freeable.
5604 truncate_pagecache(inode, inode->i_size);
5605 if (shrink) {
5606 rc = ext4_truncate(inode);
5607 if (rc)
5608 error = rc;
5610 up_write(&EXT4_I(inode)->i_mmap_sem);
5613 if (!error) {
5614 setattr_copy(inode, attr);
5615 mark_inode_dirty(inode);
5619 * If the call to ext4_truncate failed to get a transaction handle at
5620 * all, we need to clean up the in-core orphan list manually.
5622 if (orphan && inode->i_nlink)
5623 ext4_orphan_del(NULL, inode);
5625 if (!error && (ia_valid & ATTR_MODE))
5626 rc = posix_acl_chmod(inode, inode->i_mode);
5628 err_out:
5629 ext4_std_error(inode->i_sb, error);
5630 if (!error)
5631 error = rc;
5632 return error;
5635 int ext4_getattr(const struct path *path, struct kstat *stat,
5636 u32 request_mask, unsigned int query_flags)
5638 struct inode *inode = d_inode(path->dentry);
5639 struct ext4_inode *raw_inode;
5640 struct ext4_inode_info *ei = EXT4_I(inode);
5641 unsigned int flags;
5643 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5644 stat->result_mask |= STATX_BTIME;
5645 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5646 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5649 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5650 if (flags & EXT4_APPEND_FL)
5651 stat->attributes |= STATX_ATTR_APPEND;
5652 if (flags & EXT4_COMPR_FL)
5653 stat->attributes |= STATX_ATTR_COMPRESSED;
5654 if (flags & EXT4_ENCRYPT_FL)
5655 stat->attributes |= STATX_ATTR_ENCRYPTED;
5656 if (flags & EXT4_IMMUTABLE_FL)
5657 stat->attributes |= STATX_ATTR_IMMUTABLE;
5658 if (flags & EXT4_NODUMP_FL)
5659 stat->attributes |= STATX_ATTR_NODUMP;
5661 stat->attributes_mask |= (STATX_ATTR_APPEND |
5662 STATX_ATTR_COMPRESSED |
5663 STATX_ATTR_ENCRYPTED |
5664 STATX_ATTR_IMMUTABLE |
5665 STATX_ATTR_NODUMP);
5667 generic_fillattr(inode, stat);
5668 return 0;
5671 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5672 u32 request_mask, unsigned int query_flags)
5674 struct inode *inode = d_inode(path->dentry);
5675 u64 delalloc_blocks;
5677 ext4_getattr(path, stat, request_mask, query_flags);
5680 * If there is inline data in the inode, the inode will normally not
5681 * have data blocks allocated (it may have an external xattr block).
5682 * Report at least one sector for such files, so tools like tar, rsync,
5683 * others don't incorrectly think the file is completely sparse.
5685 if (unlikely(ext4_has_inline_data(inode)))
5686 stat->blocks += (stat->size + 511) >> 9;
5689 * We can't update i_blocks if the block allocation is delayed
5690 * otherwise in the case of system crash before the real block
5691 * allocation is done, we will have i_blocks inconsistent with
5692 * on-disk file blocks.
5693 * We always keep i_blocks updated together with real
5694 * allocation. But to not confuse with user, stat
5695 * will return the blocks that include the delayed allocation
5696 * blocks for this file.
5698 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5699 EXT4_I(inode)->i_reserved_data_blocks);
5700 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5701 return 0;
5704 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5705 int pextents)
5707 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5708 return ext4_ind_trans_blocks(inode, lblocks);
5709 return ext4_ext_index_trans_blocks(inode, pextents);
5713 * Account for index blocks, block groups bitmaps and block group
5714 * descriptor blocks if modify datablocks and index blocks
5715 * worse case, the indexs blocks spread over different block groups
5717 * If datablocks are discontiguous, they are possible to spread over
5718 * different block groups too. If they are contiguous, with flexbg,
5719 * they could still across block group boundary.
5721 * Also account for superblock, inode, quota and xattr blocks
5723 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5724 int pextents)
5726 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5727 int gdpblocks;
5728 int idxblocks;
5729 int ret = 0;
5732 * How many index blocks need to touch to map @lblocks logical blocks
5733 * to @pextents physical extents?
5735 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5737 ret = idxblocks;
5740 * Now let's see how many group bitmaps and group descriptors need
5741 * to account
5743 groups = idxblocks + pextents;
5744 gdpblocks = groups;
5745 if (groups > ngroups)
5746 groups = ngroups;
5747 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5748 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5750 /* bitmaps and block group descriptor blocks */
5751 ret += groups + gdpblocks;
5753 /* Blocks for super block, inode, quota and xattr blocks */
5754 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5756 return ret;
5760 * Calculate the total number of credits to reserve to fit
5761 * the modification of a single pages into a single transaction,
5762 * which may include multiple chunks of block allocations.
5764 * This could be called via ext4_write_begin()
5766 * We need to consider the worse case, when
5767 * one new block per extent.
5769 int ext4_writepage_trans_blocks(struct inode *inode)
5771 int bpp = ext4_journal_blocks_per_page(inode);
5772 int ret;
5774 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5776 /* Account for data blocks for journalled mode */
5777 if (ext4_should_journal_data(inode))
5778 ret += bpp;
5779 return ret;
5783 * Calculate the journal credits for a chunk of data modification.
5785 * This is called from DIO, fallocate or whoever calling
5786 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5788 * journal buffers for data blocks are not included here, as DIO
5789 * and fallocate do no need to journal data buffers.
5791 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5793 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5797 * The caller must have previously called ext4_reserve_inode_write().
5798 * Give this, we know that the caller already has write access to iloc->bh.
5800 int ext4_mark_iloc_dirty(handle_t *handle,
5801 struct inode *inode, struct ext4_iloc *iloc)
5803 int err = 0;
5805 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5806 return -EIO;
5808 if (IS_I_VERSION(inode))
5809 inode_inc_iversion(inode);
5811 /* the do_update_inode consumes one bh->b_count */
5812 get_bh(iloc->bh);
5814 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5815 err = ext4_do_update_inode(handle, inode, iloc);
5816 put_bh(iloc->bh);
5817 return err;
5821 * On success, We end up with an outstanding reference count against
5822 * iloc->bh. This _must_ be cleaned up later.
5826 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5827 struct ext4_iloc *iloc)
5829 int err;
5831 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5832 return -EIO;
5834 err = ext4_get_inode_loc(inode, iloc);
5835 if (!err) {
5836 BUFFER_TRACE(iloc->bh, "get_write_access");
5837 err = ext4_journal_get_write_access(handle, iloc->bh);
5838 if (err) {
5839 brelse(iloc->bh);
5840 iloc->bh = NULL;
5843 ext4_std_error(inode->i_sb, err);
5844 return err;
5847 static int __ext4_expand_extra_isize(struct inode *inode,
5848 unsigned int new_extra_isize,
5849 struct ext4_iloc *iloc,
5850 handle_t *handle, int *no_expand)
5852 struct ext4_inode *raw_inode;
5853 struct ext4_xattr_ibody_header *header;
5854 int error;
5856 raw_inode = ext4_raw_inode(iloc);
5858 header = IHDR(inode, raw_inode);
5860 /* No extended attributes present */
5861 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5862 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5863 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5864 EXT4_I(inode)->i_extra_isize, 0,
5865 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5866 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5867 return 0;
5870 /* try to expand with EAs present */
5871 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5872 raw_inode, handle);
5873 if (error) {
5875 * Inode size expansion failed; don't try again
5877 *no_expand = 1;
5880 return error;
5884 * Expand an inode by new_extra_isize bytes.
5885 * Returns 0 on success or negative error number on failure.
5887 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5888 unsigned int new_extra_isize,
5889 struct ext4_iloc iloc,
5890 handle_t *handle)
5892 int no_expand;
5893 int error;
5895 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5896 return -EOVERFLOW;
5899 * In nojournal mode, we can immediately attempt to expand
5900 * the inode. When journaled, we first need to obtain extra
5901 * buffer credits since we may write into the EA block
5902 * with this same handle. If journal_extend fails, then it will
5903 * only result in a minor loss of functionality for that inode.
5904 * If this is felt to be critical, then e2fsck should be run to
5905 * force a large enough s_min_extra_isize.
5907 if (ext4_handle_valid(handle) &&
5908 jbd2_journal_extend(handle,
5909 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5910 return -ENOSPC;
5912 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5913 return -EBUSY;
5915 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5916 handle, &no_expand);
5917 ext4_write_unlock_xattr(inode, &no_expand);
5919 return error;
5922 int ext4_expand_extra_isize(struct inode *inode,
5923 unsigned int new_extra_isize,
5924 struct ext4_iloc *iloc)
5926 handle_t *handle;
5927 int no_expand;
5928 int error, rc;
5930 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5931 brelse(iloc->bh);
5932 return -EOVERFLOW;
5935 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5936 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5937 if (IS_ERR(handle)) {
5938 error = PTR_ERR(handle);
5939 brelse(iloc->bh);
5940 return error;
5943 ext4_write_lock_xattr(inode, &no_expand);
5945 BUFFER_TRACE(iloc.bh, "get_write_access");
5946 error = ext4_journal_get_write_access(handle, iloc->bh);
5947 if (error) {
5948 brelse(iloc->bh);
5949 goto out_stop;
5952 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5953 handle, &no_expand);
5955 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5956 if (!error)
5957 error = rc;
5959 ext4_write_unlock_xattr(inode, &no_expand);
5960 out_stop:
5961 ext4_journal_stop(handle);
5962 return error;
5966 * What we do here is to mark the in-core inode as clean with respect to inode
5967 * dirtiness (it may still be data-dirty).
5968 * This means that the in-core inode may be reaped by prune_icache
5969 * without having to perform any I/O. This is a very good thing,
5970 * because *any* task may call prune_icache - even ones which
5971 * have a transaction open against a different journal.
5973 * Is this cheating? Not really. Sure, we haven't written the
5974 * inode out, but prune_icache isn't a user-visible syncing function.
5975 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5976 * we start and wait on commits.
5978 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5980 struct ext4_iloc iloc;
5981 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5982 int err;
5984 might_sleep();
5985 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5986 err = ext4_reserve_inode_write(handle, inode, &iloc);
5987 if (err)
5988 return err;
5990 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5991 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5992 iloc, handle);
5994 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5998 * ext4_dirty_inode() is called from __mark_inode_dirty()
6000 * We're really interested in the case where a file is being extended.
6001 * i_size has been changed by generic_commit_write() and we thus need
6002 * to include the updated inode in the current transaction.
6004 * Also, dquot_alloc_block() will always dirty the inode when blocks
6005 * are allocated to the file.
6007 * If the inode is marked synchronous, we don't honour that here - doing
6008 * so would cause a commit on atime updates, which we don't bother doing.
6009 * We handle synchronous inodes at the highest possible level.
6011 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6012 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6013 * to copy into the on-disk inode structure are the timestamp files.
6015 void ext4_dirty_inode(struct inode *inode, int flags)
6017 handle_t *handle;
6019 if (flags == I_DIRTY_TIME)
6020 return;
6021 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6022 if (IS_ERR(handle))
6023 goto out;
6025 ext4_mark_inode_dirty(handle, inode);
6027 ext4_journal_stop(handle);
6028 out:
6029 return;
6032 #if 0
6034 * Bind an inode's backing buffer_head into this transaction, to prevent
6035 * it from being flushed to disk early. Unlike
6036 * ext4_reserve_inode_write, this leaves behind no bh reference and
6037 * returns no iloc structure, so the caller needs to repeat the iloc
6038 * lookup to mark the inode dirty later.
6040 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6042 struct ext4_iloc iloc;
6044 int err = 0;
6045 if (handle) {
6046 err = ext4_get_inode_loc(inode, &iloc);
6047 if (!err) {
6048 BUFFER_TRACE(iloc.bh, "get_write_access");
6049 err = jbd2_journal_get_write_access(handle, iloc.bh);
6050 if (!err)
6051 err = ext4_handle_dirty_metadata(handle,
6052 NULL,
6053 iloc.bh);
6054 brelse(iloc.bh);
6057 ext4_std_error(inode->i_sb, err);
6058 return err;
6060 #endif
6062 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6064 journal_t *journal;
6065 handle_t *handle;
6066 int err;
6067 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6070 * We have to be very careful here: changing a data block's
6071 * journaling status dynamically is dangerous. If we write a
6072 * data block to the journal, change the status and then delete
6073 * that block, we risk forgetting to revoke the old log record
6074 * from the journal and so a subsequent replay can corrupt data.
6075 * So, first we make sure that the journal is empty and that
6076 * nobody is changing anything.
6079 journal = EXT4_JOURNAL(inode);
6080 if (!journal)
6081 return 0;
6082 if (is_journal_aborted(journal))
6083 return -EROFS;
6085 /* Wait for all existing dio workers */
6086 inode_dio_wait(inode);
6089 * Before flushing the journal and switching inode's aops, we have
6090 * to flush all dirty data the inode has. There can be outstanding
6091 * delayed allocations, there can be unwritten extents created by
6092 * fallocate or buffered writes in dioread_nolock mode covered by
6093 * dirty data which can be converted only after flushing the dirty
6094 * data (and journalled aops don't know how to handle these cases).
6096 if (val) {
6097 down_write(&EXT4_I(inode)->i_mmap_sem);
6098 err = filemap_write_and_wait(inode->i_mapping);
6099 if (err < 0) {
6100 up_write(&EXT4_I(inode)->i_mmap_sem);
6101 return err;
6105 percpu_down_write(&sbi->s_journal_flag_rwsem);
6106 jbd2_journal_lock_updates(journal);
6109 * OK, there are no updates running now, and all cached data is
6110 * synced to disk. We are now in a completely consistent state
6111 * which doesn't have anything in the journal, and we know that
6112 * no filesystem updates are running, so it is safe to modify
6113 * the inode's in-core data-journaling state flag now.
6116 if (val)
6117 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6118 else {
6119 err = jbd2_journal_flush(journal);
6120 if (err < 0) {
6121 jbd2_journal_unlock_updates(journal);
6122 percpu_up_write(&sbi->s_journal_flag_rwsem);
6123 return err;
6125 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6127 ext4_set_aops(inode);
6129 jbd2_journal_unlock_updates(journal);
6130 percpu_up_write(&sbi->s_journal_flag_rwsem);
6132 if (val)
6133 up_write(&EXT4_I(inode)->i_mmap_sem);
6135 /* Finally we can mark the inode as dirty. */
6137 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6138 if (IS_ERR(handle))
6139 return PTR_ERR(handle);
6141 err = ext4_mark_inode_dirty(handle, inode);
6142 ext4_handle_sync(handle);
6143 ext4_journal_stop(handle);
6144 ext4_std_error(inode->i_sb, err);
6146 return err;
6149 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6151 return !buffer_mapped(bh);
6154 int ext4_page_mkwrite(struct vm_fault *vmf)
6156 struct vm_area_struct *vma = vmf->vma;
6157 struct page *page = vmf->page;
6158 loff_t size;
6159 unsigned long len;
6160 int ret;
6161 struct file *file = vma->vm_file;
6162 struct inode *inode = file_inode(file);
6163 struct address_space *mapping = inode->i_mapping;
6164 handle_t *handle;
6165 get_block_t *get_block;
6166 int retries = 0;
6168 sb_start_pagefault(inode->i_sb);
6169 file_update_time(vma->vm_file);
6171 down_read(&EXT4_I(inode)->i_mmap_sem);
6173 ret = ext4_convert_inline_data(inode);
6174 if (ret)
6175 goto out_ret;
6177 /* Delalloc case is easy... */
6178 if (test_opt(inode->i_sb, DELALLOC) &&
6179 !ext4_should_journal_data(inode) &&
6180 !ext4_nonda_switch(inode->i_sb)) {
6181 do {
6182 ret = block_page_mkwrite(vma, vmf,
6183 ext4_da_get_block_prep);
6184 } while (ret == -ENOSPC &&
6185 ext4_should_retry_alloc(inode->i_sb, &retries));
6186 goto out_ret;
6189 lock_page(page);
6190 size = i_size_read(inode);
6191 /* Page got truncated from under us? */
6192 if (page->mapping != mapping || page_offset(page) > size) {
6193 unlock_page(page);
6194 ret = VM_FAULT_NOPAGE;
6195 goto out;
6198 if (page->index == size >> PAGE_SHIFT)
6199 len = size & ~PAGE_MASK;
6200 else
6201 len = PAGE_SIZE;
6203 * Return if we have all the buffers mapped. This avoids the need to do
6204 * journal_start/journal_stop which can block and take a long time
6206 if (page_has_buffers(page)) {
6207 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6208 0, len, NULL,
6209 ext4_bh_unmapped)) {
6210 /* Wait so that we don't change page under IO */
6211 wait_for_stable_page(page);
6212 ret = VM_FAULT_LOCKED;
6213 goto out;
6216 unlock_page(page);
6217 /* OK, we need to fill the hole... */
6218 if (ext4_should_dioread_nolock(inode))
6219 get_block = ext4_get_block_unwritten;
6220 else
6221 get_block = ext4_get_block;
6222 retry_alloc:
6223 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224 ext4_writepage_trans_blocks(inode));
6225 if (IS_ERR(handle)) {
6226 ret = VM_FAULT_SIGBUS;
6227 goto out;
6229 ret = block_page_mkwrite(vma, vmf, get_block);
6230 if (!ret && ext4_should_journal_data(inode)) {
6231 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6232 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6233 unlock_page(page);
6234 ret = VM_FAULT_SIGBUS;
6235 ext4_journal_stop(handle);
6236 goto out;
6238 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6240 ext4_journal_stop(handle);
6241 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6242 goto retry_alloc;
6243 out_ret:
6244 ret = block_page_mkwrite_return(ret);
6245 out:
6246 up_read(&EXT4_I(inode)->i_mmap_sem);
6247 sb_end_pagefault(inode->i_sb);
6248 return ret;
6251 int ext4_filemap_fault(struct vm_fault *vmf)
6253 struct inode *inode = file_inode(vmf->vma->vm_file);
6254 int err;
6256 down_read(&EXT4_I(inode)->i_mmap_sem);
6257 err = filemap_fault(vmf);
6258 up_read(&EXT4_I(inode)->i_mmap_sem);
6260 return err;