Merge tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6/btrfs-unstable.git] / fs / btrfs / reada.c
blobdec14b739b1016223259255d568d17017d79cc69
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include "ctree.h"
13 #include "volumes.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
18 #undef DEBUG
21 * This is the implementation for the generic read ahead framework.
23 * To trigger a readahead, btrfs_reada_add must be called. It will start
24 * a read ahead for the given range [start, end) on tree root. The returned
25 * handle can either be used to wait on the readahead to finish
26 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
28 * The read ahead works as follows:
29 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
30 * reada_start_machine will then search for extents to prefetch and trigger
31 * some reads. When a read finishes for a node, all contained node/leaf
32 * pointers that lie in the given range will also be enqueued. The reads will
33 * be triggered in sequential order, thus giving a big win over a naive
34 * enumeration. It will also make use of multi-device layouts. Each disk
35 * will have its on read pointer and all disks will by utilized in parallel.
36 * Also will no two disks read both sides of a mirror simultaneously, as this
37 * would waste seeking capacity. Instead both disks will read different parts
38 * of the filesystem.
39 * Any number of readaheads can be started in parallel. The read order will be
40 * determined globally, i.e. 2 parallel readaheads will normally finish faster
41 * than the 2 started one after another.
44 #define MAX_IN_FLIGHT 6
46 struct reada_extctl {
47 struct list_head list;
48 struct reada_control *rc;
49 u64 generation;
52 struct reada_extent {
53 u64 logical;
54 struct btrfs_key top;
55 struct list_head extctl;
56 int refcnt;
57 spinlock_t lock;
58 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
59 int nzones;
60 int scheduled;
63 struct reada_zone {
64 u64 start;
65 u64 end;
66 u64 elems;
67 struct list_head list;
68 spinlock_t lock;
69 int locked;
70 struct btrfs_device *device;
71 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
72 * self */
73 int ndevs;
74 struct kref refcnt;
77 struct reada_machine_work {
78 struct btrfs_work work;
79 struct btrfs_fs_info *fs_info;
82 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
83 static void reada_control_release(struct kref *kref);
84 static void reada_zone_release(struct kref *kref);
85 static void reada_start_machine(struct btrfs_fs_info *fs_info);
86 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
88 static int reada_add_block(struct reada_control *rc, u64 logical,
89 struct btrfs_key *top, u64 generation);
91 /* recurses */
92 /* in case of err, eb might be NULL */
93 static void __readahead_hook(struct btrfs_fs_info *fs_info,
94 struct reada_extent *re, struct extent_buffer *eb,
95 int err)
97 int nritems;
98 int i;
99 u64 bytenr;
100 u64 generation;
101 struct list_head list;
103 spin_lock(&re->lock);
105 * just take the full list from the extent. afterwards we
106 * don't need the lock anymore
108 list_replace_init(&re->extctl, &list);
109 re->scheduled = 0;
110 spin_unlock(&re->lock);
113 * this is the error case, the extent buffer has not been
114 * read correctly. We won't access anything from it and
115 * just cleanup our data structures. Effectively this will
116 * cut the branch below this node from read ahead.
118 if (err)
119 goto cleanup;
122 * FIXME: currently we just set nritems to 0 if this is a leaf,
123 * effectively ignoring the content. In a next step we could
124 * trigger more readahead depending from the content, e.g.
125 * fetch the checksums for the extents in the leaf.
127 if (!btrfs_header_level(eb))
128 goto cleanup;
130 nritems = btrfs_header_nritems(eb);
131 generation = btrfs_header_generation(eb);
132 for (i = 0; i < nritems; i++) {
133 struct reada_extctl *rec;
134 u64 n_gen;
135 struct btrfs_key key;
136 struct btrfs_key next_key;
138 btrfs_node_key_to_cpu(eb, &key, i);
139 if (i + 1 < nritems)
140 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
141 else
142 next_key = re->top;
143 bytenr = btrfs_node_blockptr(eb, i);
144 n_gen = btrfs_node_ptr_generation(eb, i);
146 list_for_each_entry(rec, &list, list) {
147 struct reada_control *rc = rec->rc;
150 * if the generation doesn't match, just ignore this
151 * extctl. This will probably cut off a branch from
152 * prefetch. Alternatively one could start a new (sub-)
153 * prefetch for this branch, starting again from root.
154 * FIXME: move the generation check out of this loop
156 #ifdef DEBUG
157 if (rec->generation != generation) {
158 btrfs_debug(fs_info,
159 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
160 key.objectid, key.type, key.offset,
161 rec->generation, generation);
163 #endif
164 if (rec->generation == generation &&
165 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
166 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
167 reada_add_block(rc, bytenr, &next_key, n_gen);
171 cleanup:
173 * free extctl records
175 while (!list_empty(&list)) {
176 struct reada_control *rc;
177 struct reada_extctl *rec;
179 rec = list_first_entry(&list, struct reada_extctl, list);
180 list_del(&rec->list);
181 rc = rec->rc;
182 kfree(rec);
184 kref_get(&rc->refcnt);
185 if (atomic_dec_and_test(&rc->elems)) {
186 kref_put(&rc->refcnt, reada_control_release);
187 wake_up(&rc->wait);
189 kref_put(&rc->refcnt, reada_control_release);
191 reada_extent_put(fs_info, re); /* one ref for each entry */
194 return;
197 int btree_readahead_hook(struct extent_buffer *eb, int err)
199 struct btrfs_fs_info *fs_info = eb->fs_info;
200 int ret = 0;
201 struct reada_extent *re;
203 /* find extent */
204 spin_lock(&fs_info->reada_lock);
205 re = radix_tree_lookup(&fs_info->reada_tree,
206 eb->start >> PAGE_SHIFT);
207 if (re)
208 re->refcnt++;
209 spin_unlock(&fs_info->reada_lock);
210 if (!re) {
211 ret = -1;
212 goto start_machine;
215 __readahead_hook(fs_info, re, eb, err);
216 reada_extent_put(fs_info, re); /* our ref */
218 start_machine:
219 reada_start_machine(fs_info);
220 return ret;
223 static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
224 struct btrfs_bio *bbio)
226 struct btrfs_fs_info *fs_info = dev->fs_info;
227 int ret;
228 struct reada_zone *zone;
229 struct btrfs_block_group_cache *cache = NULL;
230 u64 start;
231 u64 end;
232 int i;
234 zone = NULL;
235 spin_lock(&fs_info->reada_lock);
236 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
237 logical >> PAGE_SHIFT, 1);
238 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
239 kref_get(&zone->refcnt);
240 spin_unlock(&fs_info->reada_lock);
241 return zone;
244 spin_unlock(&fs_info->reada_lock);
246 cache = btrfs_lookup_block_group(fs_info, logical);
247 if (!cache)
248 return NULL;
250 start = cache->key.objectid;
251 end = start + cache->key.offset - 1;
252 btrfs_put_block_group(cache);
254 zone = kzalloc(sizeof(*zone), GFP_KERNEL);
255 if (!zone)
256 return NULL;
258 ret = radix_tree_preload(GFP_KERNEL);
259 if (ret) {
260 kfree(zone);
261 return NULL;
264 zone->start = start;
265 zone->end = end;
266 INIT_LIST_HEAD(&zone->list);
267 spin_lock_init(&zone->lock);
268 zone->locked = 0;
269 kref_init(&zone->refcnt);
270 zone->elems = 0;
271 zone->device = dev; /* our device always sits at index 0 */
272 for (i = 0; i < bbio->num_stripes; ++i) {
273 /* bounds have already been checked */
274 zone->devs[i] = bbio->stripes[i].dev;
276 zone->ndevs = bbio->num_stripes;
278 spin_lock(&fs_info->reada_lock);
279 ret = radix_tree_insert(&dev->reada_zones,
280 (unsigned long)(zone->end >> PAGE_SHIFT),
281 zone);
283 if (ret == -EEXIST) {
284 kfree(zone);
285 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
286 logical >> PAGE_SHIFT, 1);
287 if (ret == 1 && logical >= zone->start && logical <= zone->end)
288 kref_get(&zone->refcnt);
289 else
290 zone = NULL;
292 spin_unlock(&fs_info->reada_lock);
293 radix_tree_preload_end();
295 return zone;
298 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
299 u64 logical,
300 struct btrfs_key *top)
302 int ret;
303 struct reada_extent *re = NULL;
304 struct reada_extent *re_exist = NULL;
305 struct btrfs_bio *bbio = NULL;
306 struct btrfs_device *dev;
307 struct btrfs_device *prev_dev;
308 u64 length;
309 int real_stripes;
310 int nzones = 0;
311 unsigned long index = logical >> PAGE_SHIFT;
312 int dev_replace_is_ongoing;
313 int have_zone = 0;
315 spin_lock(&fs_info->reada_lock);
316 re = radix_tree_lookup(&fs_info->reada_tree, index);
317 if (re)
318 re->refcnt++;
319 spin_unlock(&fs_info->reada_lock);
321 if (re)
322 return re;
324 re = kzalloc(sizeof(*re), GFP_KERNEL);
325 if (!re)
326 return NULL;
328 re->logical = logical;
329 re->top = *top;
330 INIT_LIST_HEAD(&re->extctl);
331 spin_lock_init(&re->lock);
332 re->refcnt = 1;
335 * map block
337 length = fs_info->nodesize;
338 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
339 &length, &bbio, 0);
340 if (ret || !bbio || length < fs_info->nodesize)
341 goto error;
343 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
344 btrfs_err(fs_info,
345 "readahead: more than %d copies not supported",
346 BTRFS_MAX_MIRRORS);
347 goto error;
350 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
351 for (nzones = 0; nzones < real_stripes; ++nzones) {
352 struct reada_zone *zone;
354 dev = bbio->stripes[nzones].dev;
356 /* cannot read ahead on missing device. */
357 if (!dev->bdev)
358 continue;
360 zone = reada_find_zone(dev, logical, bbio);
361 if (!zone)
362 continue;
364 re->zones[re->nzones++] = zone;
365 spin_lock(&zone->lock);
366 if (!zone->elems)
367 kref_get(&zone->refcnt);
368 ++zone->elems;
369 spin_unlock(&zone->lock);
370 spin_lock(&fs_info->reada_lock);
371 kref_put(&zone->refcnt, reada_zone_release);
372 spin_unlock(&fs_info->reada_lock);
374 if (re->nzones == 0) {
375 /* not a single zone found, error and out */
376 goto error;
379 ret = radix_tree_preload(GFP_KERNEL);
380 if (ret)
381 goto error;
383 /* insert extent in reada_tree + all per-device trees, all or nothing */
384 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
385 spin_lock(&fs_info->reada_lock);
386 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
387 if (ret == -EEXIST) {
388 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
389 re_exist->refcnt++;
390 spin_unlock(&fs_info->reada_lock);
391 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
392 radix_tree_preload_end();
393 goto error;
395 if (ret) {
396 spin_unlock(&fs_info->reada_lock);
397 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
398 radix_tree_preload_end();
399 goto error;
401 radix_tree_preload_end();
402 prev_dev = NULL;
403 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
404 &fs_info->dev_replace);
405 for (nzones = 0; nzones < re->nzones; ++nzones) {
406 dev = re->zones[nzones]->device;
408 if (dev == prev_dev) {
410 * in case of DUP, just add the first zone. As both
411 * are on the same device, there's nothing to gain
412 * from adding both.
413 * Also, it wouldn't work, as the tree is per device
414 * and adding would fail with EEXIST
416 continue;
418 if (!dev->bdev)
419 continue;
421 if (dev_replace_is_ongoing &&
422 dev == fs_info->dev_replace.tgtdev) {
424 * as this device is selected for reading only as
425 * a last resort, skip it for read ahead.
427 continue;
429 prev_dev = dev;
430 ret = radix_tree_insert(&dev->reada_extents, index, re);
431 if (ret) {
432 while (--nzones >= 0) {
433 dev = re->zones[nzones]->device;
434 BUG_ON(dev == NULL);
435 /* ignore whether the entry was inserted */
436 radix_tree_delete(&dev->reada_extents, index);
438 radix_tree_delete(&fs_info->reada_tree, index);
439 spin_unlock(&fs_info->reada_lock);
440 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
441 goto error;
443 have_zone = 1;
445 spin_unlock(&fs_info->reada_lock);
446 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
448 if (!have_zone)
449 goto error;
451 btrfs_put_bbio(bbio);
452 return re;
454 error:
455 for (nzones = 0; nzones < re->nzones; ++nzones) {
456 struct reada_zone *zone;
458 zone = re->zones[nzones];
459 kref_get(&zone->refcnt);
460 spin_lock(&zone->lock);
461 --zone->elems;
462 if (zone->elems == 0) {
464 * no fs_info->reada_lock needed, as this can't be
465 * the last ref
467 kref_put(&zone->refcnt, reada_zone_release);
469 spin_unlock(&zone->lock);
471 spin_lock(&fs_info->reada_lock);
472 kref_put(&zone->refcnt, reada_zone_release);
473 spin_unlock(&fs_info->reada_lock);
475 btrfs_put_bbio(bbio);
476 kfree(re);
477 return re_exist;
480 static void reada_extent_put(struct btrfs_fs_info *fs_info,
481 struct reada_extent *re)
483 int i;
484 unsigned long index = re->logical >> PAGE_SHIFT;
486 spin_lock(&fs_info->reada_lock);
487 if (--re->refcnt) {
488 spin_unlock(&fs_info->reada_lock);
489 return;
492 radix_tree_delete(&fs_info->reada_tree, index);
493 for (i = 0; i < re->nzones; ++i) {
494 struct reada_zone *zone = re->zones[i];
496 radix_tree_delete(&zone->device->reada_extents, index);
499 spin_unlock(&fs_info->reada_lock);
501 for (i = 0; i < re->nzones; ++i) {
502 struct reada_zone *zone = re->zones[i];
504 kref_get(&zone->refcnt);
505 spin_lock(&zone->lock);
506 --zone->elems;
507 if (zone->elems == 0) {
508 /* no fs_info->reada_lock needed, as this can't be
509 * the last ref */
510 kref_put(&zone->refcnt, reada_zone_release);
512 spin_unlock(&zone->lock);
514 spin_lock(&fs_info->reada_lock);
515 kref_put(&zone->refcnt, reada_zone_release);
516 spin_unlock(&fs_info->reada_lock);
519 kfree(re);
522 static void reada_zone_release(struct kref *kref)
524 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
526 radix_tree_delete(&zone->device->reada_zones,
527 zone->end >> PAGE_SHIFT);
529 kfree(zone);
532 static void reada_control_release(struct kref *kref)
534 struct reada_control *rc = container_of(kref, struct reada_control,
535 refcnt);
537 kfree(rc);
540 static int reada_add_block(struct reada_control *rc, u64 logical,
541 struct btrfs_key *top, u64 generation)
543 struct btrfs_fs_info *fs_info = rc->fs_info;
544 struct reada_extent *re;
545 struct reada_extctl *rec;
547 /* takes one ref */
548 re = reada_find_extent(fs_info, logical, top);
549 if (!re)
550 return -1;
552 rec = kzalloc(sizeof(*rec), GFP_KERNEL);
553 if (!rec) {
554 reada_extent_put(fs_info, re);
555 return -ENOMEM;
558 rec->rc = rc;
559 rec->generation = generation;
560 atomic_inc(&rc->elems);
562 spin_lock(&re->lock);
563 list_add_tail(&rec->list, &re->extctl);
564 spin_unlock(&re->lock);
566 /* leave the ref on the extent */
568 return 0;
572 * called with fs_info->reada_lock held
574 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
576 int i;
577 unsigned long index = zone->end >> PAGE_SHIFT;
579 for (i = 0; i < zone->ndevs; ++i) {
580 struct reada_zone *peer;
581 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
582 if (peer && peer->device != zone->device)
583 peer->locked = lock;
588 * called with fs_info->reada_lock held
590 static int reada_pick_zone(struct btrfs_device *dev)
592 struct reada_zone *top_zone = NULL;
593 struct reada_zone *top_locked_zone = NULL;
594 u64 top_elems = 0;
595 u64 top_locked_elems = 0;
596 unsigned long index = 0;
597 int ret;
599 if (dev->reada_curr_zone) {
600 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
601 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
602 dev->reada_curr_zone = NULL;
604 /* pick the zone with the most elements */
605 while (1) {
606 struct reada_zone *zone;
608 ret = radix_tree_gang_lookup(&dev->reada_zones,
609 (void **)&zone, index, 1);
610 if (ret == 0)
611 break;
612 index = (zone->end >> PAGE_SHIFT) + 1;
613 if (zone->locked) {
614 if (zone->elems > top_locked_elems) {
615 top_locked_elems = zone->elems;
616 top_locked_zone = zone;
618 } else {
619 if (zone->elems > top_elems) {
620 top_elems = zone->elems;
621 top_zone = zone;
625 if (top_zone)
626 dev->reada_curr_zone = top_zone;
627 else if (top_locked_zone)
628 dev->reada_curr_zone = top_locked_zone;
629 else
630 return 0;
632 dev->reada_next = dev->reada_curr_zone->start;
633 kref_get(&dev->reada_curr_zone->refcnt);
634 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
636 return 1;
639 static int reada_start_machine_dev(struct btrfs_device *dev)
641 struct btrfs_fs_info *fs_info = dev->fs_info;
642 struct reada_extent *re = NULL;
643 int mirror_num = 0;
644 struct extent_buffer *eb = NULL;
645 u64 logical;
646 int ret;
647 int i;
649 spin_lock(&fs_info->reada_lock);
650 if (dev->reada_curr_zone == NULL) {
651 ret = reada_pick_zone(dev);
652 if (!ret) {
653 spin_unlock(&fs_info->reada_lock);
654 return 0;
658 * FIXME currently we issue the reads one extent at a time. If we have
659 * a contiguous block of extents, we could also coagulate them or use
660 * plugging to speed things up
662 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
663 dev->reada_next >> PAGE_SHIFT, 1);
664 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
665 ret = reada_pick_zone(dev);
666 if (!ret) {
667 spin_unlock(&fs_info->reada_lock);
668 return 0;
670 re = NULL;
671 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
672 dev->reada_next >> PAGE_SHIFT, 1);
674 if (ret == 0) {
675 spin_unlock(&fs_info->reada_lock);
676 return 0;
678 dev->reada_next = re->logical + fs_info->nodesize;
679 re->refcnt++;
681 spin_unlock(&fs_info->reada_lock);
683 spin_lock(&re->lock);
684 if (re->scheduled || list_empty(&re->extctl)) {
685 spin_unlock(&re->lock);
686 reada_extent_put(fs_info, re);
687 return 0;
689 re->scheduled = 1;
690 spin_unlock(&re->lock);
693 * find mirror num
695 for (i = 0; i < re->nzones; ++i) {
696 if (re->zones[i]->device == dev) {
697 mirror_num = i + 1;
698 break;
701 logical = re->logical;
703 atomic_inc(&dev->reada_in_flight);
704 ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
705 if (ret)
706 __readahead_hook(fs_info, re, NULL, ret);
707 else if (eb)
708 __readahead_hook(fs_info, re, eb, ret);
710 if (eb)
711 free_extent_buffer(eb);
713 atomic_dec(&dev->reada_in_flight);
714 reada_extent_put(fs_info, re);
716 return 1;
720 static void reada_start_machine_worker(struct btrfs_work *work)
722 struct reada_machine_work *rmw;
723 struct btrfs_fs_info *fs_info;
724 int old_ioprio;
726 rmw = container_of(work, struct reada_machine_work, work);
727 fs_info = rmw->fs_info;
729 kfree(rmw);
731 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
732 task_nice_ioprio(current));
733 set_task_ioprio(current, BTRFS_IOPRIO_READA);
734 __reada_start_machine(fs_info);
735 set_task_ioprio(current, old_ioprio);
737 atomic_dec(&fs_info->reada_works_cnt);
740 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
742 struct btrfs_device *device;
743 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
744 u64 enqueued;
745 u64 total = 0;
746 int i;
748 do {
749 enqueued = 0;
750 mutex_lock(&fs_devices->device_list_mutex);
751 list_for_each_entry(device, &fs_devices->devices, dev_list) {
752 if (atomic_read(&device->reada_in_flight) <
753 MAX_IN_FLIGHT)
754 enqueued += reada_start_machine_dev(device);
756 mutex_unlock(&fs_devices->device_list_mutex);
757 total += enqueued;
758 } while (enqueued && total < 10000);
760 if (enqueued == 0)
761 return;
764 * If everything is already in the cache, this is effectively single
765 * threaded. To a) not hold the caller for too long and b) to utilize
766 * more cores, we broke the loop above after 10000 iterations and now
767 * enqueue to workers to finish it. This will distribute the load to
768 * the cores.
770 for (i = 0; i < 2; ++i) {
771 reada_start_machine(fs_info);
772 if (atomic_read(&fs_info->reada_works_cnt) >
773 BTRFS_MAX_MIRRORS * 2)
774 break;
778 static void reada_start_machine(struct btrfs_fs_info *fs_info)
780 struct reada_machine_work *rmw;
782 rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
783 if (!rmw) {
784 /* FIXME we cannot handle this properly right now */
785 BUG();
787 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
788 reada_start_machine_worker, NULL, NULL);
789 rmw->fs_info = fs_info;
791 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
792 atomic_inc(&fs_info->reada_works_cnt);
795 #ifdef DEBUG
796 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
798 struct btrfs_device *device;
799 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
800 unsigned long index;
801 int ret;
802 int i;
803 int j;
804 int cnt;
806 spin_lock(&fs_info->reada_lock);
807 list_for_each_entry(device, &fs_devices->devices, dev_list) {
808 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
809 atomic_read(&device->reada_in_flight));
810 index = 0;
811 while (1) {
812 struct reada_zone *zone;
813 ret = radix_tree_gang_lookup(&device->reada_zones,
814 (void **)&zone, index, 1);
815 if (ret == 0)
816 break;
817 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
818 zone->start, zone->end, zone->elems,
819 zone->locked);
820 for (j = 0; j < zone->ndevs; ++j) {
821 pr_cont(" %lld",
822 zone->devs[j]->devid);
824 if (device->reada_curr_zone == zone)
825 pr_cont(" curr off %llu",
826 device->reada_next - zone->start);
827 pr_cont("\n");
828 index = (zone->end >> PAGE_SHIFT) + 1;
830 cnt = 0;
831 index = 0;
832 while (all) {
833 struct reada_extent *re = NULL;
835 ret = radix_tree_gang_lookup(&device->reada_extents,
836 (void **)&re, index, 1);
837 if (ret == 0)
838 break;
839 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
840 re->logical, fs_info->nodesize,
841 list_empty(&re->extctl), re->scheduled);
843 for (i = 0; i < re->nzones; ++i) {
844 pr_cont(" zone %llu-%llu devs",
845 re->zones[i]->start,
846 re->zones[i]->end);
847 for (j = 0; j < re->zones[i]->ndevs; ++j) {
848 pr_cont(" %lld",
849 re->zones[i]->devs[j]->devid);
852 pr_cont("\n");
853 index = (re->logical >> PAGE_SHIFT) + 1;
854 if (++cnt > 15)
855 break;
859 index = 0;
860 cnt = 0;
861 while (all) {
862 struct reada_extent *re = NULL;
864 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
865 index, 1);
866 if (ret == 0)
867 break;
868 if (!re->scheduled) {
869 index = (re->logical >> PAGE_SHIFT) + 1;
870 continue;
872 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
873 re->logical, fs_info->nodesize,
874 list_empty(&re->extctl), re->scheduled);
875 for (i = 0; i < re->nzones; ++i) {
876 pr_cont(" zone %llu-%llu devs",
877 re->zones[i]->start,
878 re->zones[i]->end);
879 for (j = 0; j < re->zones[i]->ndevs; ++j) {
880 pr_cont(" %lld",
881 re->zones[i]->devs[j]->devid);
884 pr_cont("\n");
885 index = (re->logical >> PAGE_SHIFT) + 1;
887 spin_unlock(&fs_info->reada_lock);
889 #endif
892 * interface
894 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
895 struct btrfs_key *key_start, struct btrfs_key *key_end)
897 struct reada_control *rc;
898 u64 start;
899 u64 generation;
900 int ret;
901 struct extent_buffer *node;
902 static struct btrfs_key max_key = {
903 .objectid = (u64)-1,
904 .type = (u8)-1,
905 .offset = (u64)-1
908 rc = kzalloc(sizeof(*rc), GFP_KERNEL);
909 if (!rc)
910 return ERR_PTR(-ENOMEM);
912 rc->fs_info = root->fs_info;
913 rc->key_start = *key_start;
914 rc->key_end = *key_end;
915 atomic_set(&rc->elems, 0);
916 init_waitqueue_head(&rc->wait);
917 kref_init(&rc->refcnt);
918 kref_get(&rc->refcnt); /* one ref for having elements */
920 node = btrfs_root_node(root);
921 start = node->start;
922 generation = btrfs_header_generation(node);
923 free_extent_buffer(node);
925 ret = reada_add_block(rc, start, &max_key, generation);
926 if (ret) {
927 kfree(rc);
928 return ERR_PTR(ret);
931 reada_start_machine(root->fs_info);
933 return rc;
936 #ifdef DEBUG
937 int btrfs_reada_wait(void *handle)
939 struct reada_control *rc = handle;
940 struct btrfs_fs_info *fs_info = rc->fs_info;
942 while (atomic_read(&rc->elems)) {
943 if (!atomic_read(&fs_info->reada_works_cnt))
944 reada_start_machine(fs_info);
945 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
946 5 * HZ);
947 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
950 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
952 kref_put(&rc->refcnt, reada_control_release);
954 return 0;
956 #else
957 int btrfs_reada_wait(void *handle)
959 struct reada_control *rc = handle;
960 struct btrfs_fs_info *fs_info = rc->fs_info;
962 while (atomic_read(&rc->elems)) {
963 if (!atomic_read(&fs_info->reada_works_cnt))
964 reada_start_machine(fs_info);
965 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
966 (HZ + 9) / 10);
969 kref_put(&rc->refcnt, reada_control_release);
971 return 0;
973 #endif
975 void btrfs_reada_detach(void *handle)
977 struct reada_control *rc = handle;
979 kref_put(&rc->refcnt, reada_control_release);