net: use SPEED_UNKNOWN and DUPLEX_UNKNOWN when appropriate
[linux-2.6/btrfs-unstable.git] / fs / xfs / xfs_inode_buf.c
blob24e993996bdcf90f9f955ed139d2783840082927
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_error.h"
29 #include "xfs_cksum.h"
30 #include "xfs_icache.h"
31 #include "xfs_trans.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_dinode.h"
36 * Check that none of the inode's in the buffer have a next
37 * unlinked field of 0.
39 #if defined(DEBUG)
40 void
41 xfs_inobp_check(
42 xfs_mount_t *mp,
43 xfs_buf_t *bp)
45 int i;
46 int j;
47 xfs_dinode_t *dip;
49 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
51 for (i = 0; i < j; i++) {
52 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
53 i * mp->m_sb.sb_inodesize);
54 if (!dip->di_next_unlinked) {
55 xfs_alert(mp,
56 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
57 i, (long long)bp->b_bn);
61 #endif
64 * If we are doing readahead on an inode buffer, we might be in log recovery
65 * reading an inode allocation buffer that hasn't yet been replayed, and hence
66 * has not had the inode cores stamped into it. Hence for readahead, the buffer
67 * may be potentially invalid.
69 * If the readahead buffer is invalid, we don't want to mark it with an error,
70 * but we do want to clear the DONE status of the buffer so that a followup read
71 * will re-read it from disk. This will ensure that we don't get an unnecessary
72 * warnings during log recovery and we don't get unnecssary panics on debug
73 * kernels.
75 static void
76 xfs_inode_buf_verify(
77 struct xfs_buf *bp,
78 bool readahead)
80 struct xfs_mount *mp = bp->b_target->bt_mount;
81 int i;
82 int ni;
85 * Validate the magic number and version of every inode in the buffer
87 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
88 for (i = 0; i < ni; i++) {
89 int di_ok;
90 xfs_dinode_t *dip;
92 dip = (struct xfs_dinode *)xfs_buf_offset(bp,
93 (i << mp->m_sb.sb_inodelog));
94 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
95 XFS_DINODE_GOOD_VERSION(dip->di_version);
96 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
97 XFS_ERRTAG_ITOBP_INOTOBP,
98 XFS_RANDOM_ITOBP_INOTOBP))) {
99 if (readahead) {
100 bp->b_flags &= ~XBF_DONE;
101 return;
104 xfs_buf_ioerror(bp, EFSCORRUPTED);
105 xfs_verifier_error(bp);
106 #ifdef DEBUG
107 xfs_alert(mp,
108 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
109 (unsigned long long)bp->b_bn, i,
110 be16_to_cpu(dip->di_magic));
111 #endif
114 xfs_inobp_check(mp, bp);
118 static void
119 xfs_inode_buf_read_verify(
120 struct xfs_buf *bp)
122 xfs_inode_buf_verify(bp, false);
125 static void
126 xfs_inode_buf_readahead_verify(
127 struct xfs_buf *bp)
129 xfs_inode_buf_verify(bp, true);
132 static void
133 xfs_inode_buf_write_verify(
134 struct xfs_buf *bp)
136 xfs_inode_buf_verify(bp, false);
139 const struct xfs_buf_ops xfs_inode_buf_ops = {
140 .verify_read = xfs_inode_buf_read_verify,
141 .verify_write = xfs_inode_buf_write_verify,
144 const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
145 .verify_read = xfs_inode_buf_readahead_verify,
146 .verify_write = xfs_inode_buf_write_verify,
151 * This routine is called to map an inode to the buffer containing the on-disk
152 * version of the inode. It returns a pointer to the buffer containing the
153 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
154 * pointer to the on-disk inode within that buffer.
156 * If a non-zero error is returned, then the contents of bpp and dipp are
157 * undefined.
160 xfs_imap_to_bp(
161 struct xfs_mount *mp,
162 struct xfs_trans *tp,
163 struct xfs_imap *imap,
164 struct xfs_dinode **dipp,
165 struct xfs_buf **bpp,
166 uint buf_flags,
167 uint iget_flags)
169 struct xfs_buf *bp;
170 int error;
172 buf_flags |= XBF_UNMAPPED;
173 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
174 (int)imap->im_len, buf_flags, &bp,
175 &xfs_inode_buf_ops);
176 if (error) {
177 if (error == EAGAIN) {
178 ASSERT(buf_flags & XBF_TRYLOCK);
179 return error;
182 if (error == EFSCORRUPTED &&
183 (iget_flags & XFS_IGET_UNTRUSTED))
184 return XFS_ERROR(EINVAL);
186 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
187 __func__, error);
188 return error;
191 *bpp = bp;
192 *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
193 return 0;
196 void
197 xfs_dinode_from_disk(
198 xfs_icdinode_t *to,
199 xfs_dinode_t *from)
201 to->di_magic = be16_to_cpu(from->di_magic);
202 to->di_mode = be16_to_cpu(from->di_mode);
203 to->di_version = from ->di_version;
204 to->di_format = from->di_format;
205 to->di_onlink = be16_to_cpu(from->di_onlink);
206 to->di_uid = be32_to_cpu(from->di_uid);
207 to->di_gid = be32_to_cpu(from->di_gid);
208 to->di_nlink = be32_to_cpu(from->di_nlink);
209 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
210 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
211 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
212 to->di_flushiter = be16_to_cpu(from->di_flushiter);
213 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
214 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
215 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
216 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
217 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
218 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
219 to->di_size = be64_to_cpu(from->di_size);
220 to->di_nblocks = be64_to_cpu(from->di_nblocks);
221 to->di_extsize = be32_to_cpu(from->di_extsize);
222 to->di_nextents = be32_to_cpu(from->di_nextents);
223 to->di_anextents = be16_to_cpu(from->di_anextents);
224 to->di_forkoff = from->di_forkoff;
225 to->di_aformat = from->di_aformat;
226 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
227 to->di_dmstate = be16_to_cpu(from->di_dmstate);
228 to->di_flags = be16_to_cpu(from->di_flags);
229 to->di_gen = be32_to_cpu(from->di_gen);
231 if (to->di_version == 3) {
232 to->di_changecount = be64_to_cpu(from->di_changecount);
233 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
234 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
235 to->di_flags2 = be64_to_cpu(from->di_flags2);
236 to->di_ino = be64_to_cpu(from->di_ino);
237 to->di_lsn = be64_to_cpu(from->di_lsn);
238 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
239 uuid_copy(&to->di_uuid, &from->di_uuid);
243 void
244 xfs_dinode_to_disk(
245 xfs_dinode_t *to,
246 xfs_icdinode_t *from)
248 to->di_magic = cpu_to_be16(from->di_magic);
249 to->di_mode = cpu_to_be16(from->di_mode);
250 to->di_version = from ->di_version;
251 to->di_format = from->di_format;
252 to->di_onlink = cpu_to_be16(from->di_onlink);
253 to->di_uid = cpu_to_be32(from->di_uid);
254 to->di_gid = cpu_to_be32(from->di_gid);
255 to->di_nlink = cpu_to_be32(from->di_nlink);
256 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
257 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
258 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
259 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
260 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
261 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
262 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
263 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
264 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
265 to->di_size = cpu_to_be64(from->di_size);
266 to->di_nblocks = cpu_to_be64(from->di_nblocks);
267 to->di_extsize = cpu_to_be32(from->di_extsize);
268 to->di_nextents = cpu_to_be32(from->di_nextents);
269 to->di_anextents = cpu_to_be16(from->di_anextents);
270 to->di_forkoff = from->di_forkoff;
271 to->di_aformat = from->di_aformat;
272 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
273 to->di_dmstate = cpu_to_be16(from->di_dmstate);
274 to->di_flags = cpu_to_be16(from->di_flags);
275 to->di_gen = cpu_to_be32(from->di_gen);
277 if (from->di_version == 3) {
278 to->di_changecount = cpu_to_be64(from->di_changecount);
279 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
280 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
281 to->di_flags2 = cpu_to_be64(from->di_flags2);
282 to->di_ino = cpu_to_be64(from->di_ino);
283 to->di_lsn = cpu_to_be64(from->di_lsn);
284 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
285 uuid_copy(&to->di_uuid, &from->di_uuid);
286 to->di_flushiter = 0;
287 } else {
288 to->di_flushiter = cpu_to_be16(from->di_flushiter);
292 static bool
293 xfs_dinode_verify(
294 struct xfs_mount *mp,
295 struct xfs_inode *ip,
296 struct xfs_dinode *dip)
298 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
299 return false;
301 /* only version 3 or greater inodes are extensively verified here */
302 if (dip->di_version < 3)
303 return true;
305 if (!xfs_sb_version_hascrc(&mp->m_sb))
306 return false;
307 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
308 XFS_DINODE_CRC_OFF))
309 return false;
310 if (be64_to_cpu(dip->di_ino) != ip->i_ino)
311 return false;
312 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid))
313 return false;
314 return true;
317 void
318 xfs_dinode_calc_crc(
319 struct xfs_mount *mp,
320 struct xfs_dinode *dip)
322 __uint32_t crc;
324 if (dip->di_version < 3)
325 return;
327 ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
328 crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
329 XFS_DINODE_CRC_OFF);
330 dip->di_crc = xfs_end_cksum(crc);
334 * Read the disk inode attributes into the in-core inode structure.
336 * For version 5 superblocks, if we are initialising a new inode and we are not
337 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
338 * inode core with a random generation number. If we are keeping inodes around,
339 * we need to read the inode cluster to get the existing generation number off
340 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
341 * format) then log recovery is dependent on the di_flushiter field being
342 * initialised from the current on-disk value and hence we must also read the
343 * inode off disk.
346 xfs_iread(
347 xfs_mount_t *mp,
348 xfs_trans_t *tp,
349 xfs_inode_t *ip,
350 uint iget_flags)
352 xfs_buf_t *bp;
353 xfs_dinode_t *dip;
354 int error;
357 * Fill in the location information in the in-core inode.
359 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
360 if (error)
361 return error;
363 /* shortcut IO on inode allocation if possible */
364 if ((iget_flags & XFS_IGET_CREATE) &&
365 xfs_sb_version_hascrc(&mp->m_sb) &&
366 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
367 /* initialise the on-disk inode core */
368 memset(&ip->i_d, 0, sizeof(ip->i_d));
369 ip->i_d.di_magic = XFS_DINODE_MAGIC;
370 ip->i_d.di_gen = prandom_u32();
371 if (xfs_sb_version_hascrc(&mp->m_sb)) {
372 ip->i_d.di_version = 3;
373 ip->i_d.di_ino = ip->i_ino;
374 uuid_copy(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid);
375 } else
376 ip->i_d.di_version = 2;
377 return 0;
381 * Get pointers to the on-disk inode and the buffer containing it.
383 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
384 if (error)
385 return error;
387 /* even unallocated inodes are verified */
388 if (!xfs_dinode_verify(mp, ip, dip)) {
389 xfs_alert(mp, "%s: validation failed for inode %lld failed",
390 __func__, ip->i_ino);
392 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
393 error = XFS_ERROR(EFSCORRUPTED);
394 goto out_brelse;
398 * If the on-disk inode is already linked to a directory
399 * entry, copy all of the inode into the in-core inode.
400 * xfs_iformat_fork() handles copying in the inode format
401 * specific information.
402 * Otherwise, just get the truly permanent information.
404 if (dip->di_mode) {
405 xfs_dinode_from_disk(&ip->i_d, dip);
406 error = xfs_iformat_fork(ip, dip);
407 if (error) {
408 #ifdef DEBUG
409 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
410 __func__, error);
411 #endif /* DEBUG */
412 goto out_brelse;
414 } else {
416 * Partial initialisation of the in-core inode. Just the bits
417 * that xfs_ialloc won't overwrite or relies on being correct.
419 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
420 ip->i_d.di_version = dip->di_version;
421 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
422 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
424 if (dip->di_version == 3) {
425 ip->i_d.di_ino = be64_to_cpu(dip->di_ino);
426 uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid);
430 * Make sure to pull in the mode here as well in
431 * case the inode is released without being used.
432 * This ensures that xfs_inactive() will see that
433 * the inode is already free and not try to mess
434 * with the uninitialized part of it.
436 ip->i_d.di_mode = 0;
440 * The inode format changed when we moved the link count and
441 * made it 32 bits long. If this is an old format inode,
442 * convert it in memory to look like a new one. If it gets
443 * flushed to disk we will convert back before flushing or
444 * logging it. We zero out the new projid field and the old link
445 * count field. We'll handle clearing the pad field (the remains
446 * of the old uuid field) when we actually convert the inode to
447 * the new format. We don't change the version number so that we
448 * can distinguish this from a real new format inode.
450 if (ip->i_d.di_version == 1) {
451 ip->i_d.di_nlink = ip->i_d.di_onlink;
452 ip->i_d.di_onlink = 0;
453 xfs_set_projid(ip, 0);
456 ip->i_delayed_blks = 0;
459 * Mark the buffer containing the inode as something to keep
460 * around for a while. This helps to keep recently accessed
461 * meta-data in-core longer.
463 xfs_buf_set_ref(bp, XFS_INO_REF);
466 * Use xfs_trans_brelse() to release the buffer containing the on-disk
467 * inode, because it was acquired with xfs_trans_read_buf() in
468 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal
469 * brelse(). If we're within a transaction, then xfs_trans_brelse()
470 * will only release the buffer if it is not dirty within the
471 * transaction. It will be OK to release the buffer in this case,
472 * because inodes on disk are never destroyed and we will be locking the
473 * new in-core inode before putting it in the cache where other
474 * processes can find it. Thus we don't have to worry about the inode
475 * being changed just because we released the buffer.
477 out_brelse:
478 xfs_trans_brelse(tp, bp);
479 return error;