bnx2: Protect tx timeout reset with rtnl_lock().
[linux-2.6/btrfs-unstable.git] / drivers / net / bnx2.c
blob03eb51f1c6940ecbd72c4242a4711d51b1bcccc4
1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2009 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.2"
63 #define DRV_MODULE_RELDATE "Aug 21, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
67 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
68 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
70 #define RUN_AT(x) (jiffies + (x))
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT (5*HZ)
75 static char version[] __devinitdata =
76 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
78 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
79 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_MODULE_VERSION);
82 MODULE_FIRMWARE(FW_MIPS_FILE_06);
83 MODULE_FIRMWARE(FW_RV2P_FILE_06);
84 MODULE_FIRMWARE(FW_MIPS_FILE_09);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09);
86 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
88 static int disable_msi = 0;
90 module_param(disable_msi, int, 0);
91 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
93 typedef enum {
94 BCM5706 = 0,
95 NC370T,
96 NC370I,
97 BCM5706S,
98 NC370F,
99 BCM5708,
100 BCM5708S,
101 BCM5709,
102 BCM5709S,
103 BCM5716,
104 BCM5716S,
105 } board_t;
107 /* indexed by board_t, above */
108 static struct {
109 char *name;
110 } board_info[] __devinitdata = {
111 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
112 { "HP NC370T Multifunction Gigabit Server Adapter" },
113 { "HP NC370i Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
115 { "HP NC370F Multifunction Gigabit Server Adapter" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
121 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
124 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
126 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
128 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
132 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
134 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
137 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
139 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
141 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
143 { PCI_VENDOR_ID_BROADCOM, 0x163b,
144 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
145 { PCI_VENDOR_ID_BROADCOM, 0x163c,
146 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
147 { 0, }
150 static const struct flash_spec flash_table[] =
152 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
153 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 /* Slow EEPROM */
155 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
156 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
157 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
158 "EEPROM - slow"},
159 /* Expansion entry 0001 */
160 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
162 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
163 "Entry 0001"},
164 /* Saifun SA25F010 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
168 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
169 "Non-buffered flash (128kB)"},
170 /* Saifun SA25F020 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
174 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
175 "Non-buffered flash (256kB)"},
176 /* Expansion entry 0100 */
177 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
179 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
180 "Entry 0100"},
181 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
182 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
184 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
185 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
186 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
187 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
189 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
190 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
191 /* Saifun SA25F005 (non-buffered flash) */
192 /* strap, cfg1, & write1 need updates */
193 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
196 "Non-buffered flash (64kB)"},
197 /* Fast EEPROM */
198 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
199 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
200 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
201 "EEPROM - fast"},
202 /* Expansion entry 1001 */
203 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
204 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
205 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
206 "Entry 1001"},
207 /* Expansion entry 1010 */
208 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
209 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
211 "Entry 1010"},
212 /* ATMEL AT45DB011B (buffered flash) */
213 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
214 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
215 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
216 "Buffered flash (128kB)"},
217 /* Expansion entry 1100 */
218 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
219 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 "Entry 1100"},
222 /* Expansion entry 1101 */
223 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 "Entry 1101"},
227 /* Ateml Expansion entry 1110 */
228 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
229 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
231 "Entry 1110 (Atmel)"},
232 /* ATMEL AT45DB021B (buffered flash) */
233 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
234 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
235 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
236 "Buffered flash (256kB)"},
239 static const struct flash_spec flash_5709 = {
240 .flags = BNX2_NV_BUFFERED,
241 .page_bits = BCM5709_FLASH_PAGE_BITS,
242 .page_size = BCM5709_FLASH_PAGE_SIZE,
243 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
244 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
245 .name = "5709 Buffered flash (256kB)",
248 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
250 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
252 u32 diff;
254 smp_mb();
256 /* The ring uses 256 indices for 255 entries, one of them
257 * needs to be skipped.
259 diff = txr->tx_prod - txr->tx_cons;
260 if (unlikely(diff >= TX_DESC_CNT)) {
261 diff &= 0xffff;
262 if (diff == TX_DESC_CNT)
263 diff = MAX_TX_DESC_CNT;
265 return (bp->tx_ring_size - diff);
268 static u32
269 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
271 u32 val;
273 spin_lock_bh(&bp->indirect_lock);
274 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
275 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
276 spin_unlock_bh(&bp->indirect_lock);
277 return val;
280 static void
281 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
283 spin_lock_bh(&bp->indirect_lock);
284 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
285 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
286 spin_unlock_bh(&bp->indirect_lock);
289 static void
290 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
292 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
295 static u32
296 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
298 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
301 static void
302 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
304 offset += cid_addr;
305 spin_lock_bh(&bp->indirect_lock);
306 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
307 int i;
309 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
310 REG_WR(bp, BNX2_CTX_CTX_CTRL,
311 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
312 for (i = 0; i < 5; i++) {
313 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
314 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
315 break;
316 udelay(5);
318 } else {
319 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
320 REG_WR(bp, BNX2_CTX_DATA, val);
322 spin_unlock_bh(&bp->indirect_lock);
325 #ifdef BCM_CNIC
326 static int
327 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
329 struct bnx2 *bp = netdev_priv(dev);
330 struct drv_ctl_io *io = &info->data.io;
332 switch (info->cmd) {
333 case DRV_CTL_IO_WR_CMD:
334 bnx2_reg_wr_ind(bp, io->offset, io->data);
335 break;
336 case DRV_CTL_IO_RD_CMD:
337 io->data = bnx2_reg_rd_ind(bp, io->offset);
338 break;
339 case DRV_CTL_CTX_WR_CMD:
340 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
341 break;
342 default:
343 return -EINVAL;
345 return 0;
348 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
350 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
351 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
352 int sb_id;
354 if (bp->flags & BNX2_FLAG_USING_MSIX) {
355 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
356 bnapi->cnic_present = 0;
357 sb_id = bp->irq_nvecs;
358 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
359 } else {
360 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
361 bnapi->cnic_tag = bnapi->last_status_idx;
362 bnapi->cnic_present = 1;
363 sb_id = 0;
364 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
367 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
368 cp->irq_arr[0].status_blk = (void *)
369 ((unsigned long) bnapi->status_blk.msi +
370 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
371 cp->irq_arr[0].status_blk_num = sb_id;
372 cp->num_irq = 1;
375 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
376 void *data)
378 struct bnx2 *bp = netdev_priv(dev);
379 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
381 if (ops == NULL)
382 return -EINVAL;
384 if (cp->drv_state & CNIC_DRV_STATE_REGD)
385 return -EBUSY;
387 bp->cnic_data = data;
388 rcu_assign_pointer(bp->cnic_ops, ops);
390 cp->num_irq = 0;
391 cp->drv_state = CNIC_DRV_STATE_REGD;
393 bnx2_setup_cnic_irq_info(bp);
395 return 0;
398 static int bnx2_unregister_cnic(struct net_device *dev)
400 struct bnx2 *bp = netdev_priv(dev);
401 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
402 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
404 mutex_lock(&bp->cnic_lock);
405 cp->drv_state = 0;
406 bnapi->cnic_present = 0;
407 rcu_assign_pointer(bp->cnic_ops, NULL);
408 mutex_unlock(&bp->cnic_lock);
409 synchronize_rcu();
410 return 0;
413 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
415 struct bnx2 *bp = netdev_priv(dev);
416 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
418 cp->drv_owner = THIS_MODULE;
419 cp->chip_id = bp->chip_id;
420 cp->pdev = bp->pdev;
421 cp->io_base = bp->regview;
422 cp->drv_ctl = bnx2_drv_ctl;
423 cp->drv_register_cnic = bnx2_register_cnic;
424 cp->drv_unregister_cnic = bnx2_unregister_cnic;
426 return cp;
428 EXPORT_SYMBOL(bnx2_cnic_probe);
430 static void
431 bnx2_cnic_stop(struct bnx2 *bp)
433 struct cnic_ops *c_ops;
434 struct cnic_ctl_info info;
436 mutex_lock(&bp->cnic_lock);
437 c_ops = bp->cnic_ops;
438 if (c_ops) {
439 info.cmd = CNIC_CTL_STOP_CMD;
440 c_ops->cnic_ctl(bp->cnic_data, &info);
442 mutex_unlock(&bp->cnic_lock);
445 static void
446 bnx2_cnic_start(struct bnx2 *bp)
448 struct cnic_ops *c_ops;
449 struct cnic_ctl_info info;
451 mutex_lock(&bp->cnic_lock);
452 c_ops = bp->cnic_ops;
453 if (c_ops) {
454 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
455 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
457 bnapi->cnic_tag = bnapi->last_status_idx;
459 info.cmd = CNIC_CTL_START_CMD;
460 c_ops->cnic_ctl(bp->cnic_data, &info);
462 mutex_unlock(&bp->cnic_lock);
465 #else
467 static void
468 bnx2_cnic_stop(struct bnx2 *bp)
472 static void
473 bnx2_cnic_start(struct bnx2 *bp)
477 #endif
479 static int
480 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
482 u32 val1;
483 int i, ret;
485 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
486 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
487 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
489 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
490 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
492 udelay(40);
495 val1 = (bp->phy_addr << 21) | (reg << 16) |
496 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
497 BNX2_EMAC_MDIO_COMM_START_BUSY;
498 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
500 for (i = 0; i < 50; i++) {
501 udelay(10);
503 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
504 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
505 udelay(5);
507 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
508 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
510 break;
514 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
515 *val = 0x0;
516 ret = -EBUSY;
518 else {
519 *val = val1;
520 ret = 0;
523 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
524 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
525 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
527 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
528 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
530 udelay(40);
533 return ret;
536 static int
537 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
539 u32 val1;
540 int i, ret;
542 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
543 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
544 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
546 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
547 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
549 udelay(40);
552 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
553 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
554 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
555 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
557 for (i = 0; i < 50; i++) {
558 udelay(10);
560 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
561 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
562 udelay(5);
563 break;
567 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
568 ret = -EBUSY;
569 else
570 ret = 0;
572 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
573 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
574 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
576 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
577 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
579 udelay(40);
582 return ret;
585 static void
586 bnx2_disable_int(struct bnx2 *bp)
588 int i;
589 struct bnx2_napi *bnapi;
591 for (i = 0; i < bp->irq_nvecs; i++) {
592 bnapi = &bp->bnx2_napi[i];
593 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
594 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
596 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
599 static void
600 bnx2_enable_int(struct bnx2 *bp)
602 int i;
603 struct bnx2_napi *bnapi;
605 for (i = 0; i < bp->irq_nvecs; i++) {
606 bnapi = &bp->bnx2_napi[i];
608 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
609 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
610 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
611 bnapi->last_status_idx);
613 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
614 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
615 bnapi->last_status_idx);
617 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
620 static void
621 bnx2_disable_int_sync(struct bnx2 *bp)
623 int i;
625 atomic_inc(&bp->intr_sem);
626 if (!netif_running(bp->dev))
627 return;
629 bnx2_disable_int(bp);
630 for (i = 0; i < bp->irq_nvecs; i++)
631 synchronize_irq(bp->irq_tbl[i].vector);
634 static void
635 bnx2_napi_disable(struct bnx2 *bp)
637 int i;
639 for (i = 0; i < bp->irq_nvecs; i++)
640 napi_disable(&bp->bnx2_napi[i].napi);
643 static void
644 bnx2_napi_enable(struct bnx2 *bp)
646 int i;
648 for (i = 0; i < bp->irq_nvecs; i++)
649 napi_enable(&bp->bnx2_napi[i].napi);
652 static void
653 bnx2_netif_stop(struct bnx2 *bp)
655 bnx2_cnic_stop(bp);
656 bnx2_disable_int_sync(bp);
657 if (netif_running(bp->dev)) {
658 bnx2_napi_disable(bp);
659 netif_tx_disable(bp->dev);
660 bp->dev->trans_start = jiffies; /* prevent tx timeout */
664 static void
665 bnx2_netif_start(struct bnx2 *bp)
667 if (atomic_dec_and_test(&bp->intr_sem)) {
668 if (netif_running(bp->dev)) {
669 netif_tx_wake_all_queues(bp->dev);
670 bnx2_napi_enable(bp);
671 bnx2_enable_int(bp);
672 bnx2_cnic_start(bp);
677 static void
678 bnx2_free_tx_mem(struct bnx2 *bp)
680 int i;
682 for (i = 0; i < bp->num_tx_rings; i++) {
683 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
684 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
686 if (txr->tx_desc_ring) {
687 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
688 txr->tx_desc_ring,
689 txr->tx_desc_mapping);
690 txr->tx_desc_ring = NULL;
692 kfree(txr->tx_buf_ring);
693 txr->tx_buf_ring = NULL;
697 static void
698 bnx2_free_rx_mem(struct bnx2 *bp)
700 int i;
702 for (i = 0; i < bp->num_rx_rings; i++) {
703 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
704 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
705 int j;
707 for (j = 0; j < bp->rx_max_ring; j++) {
708 if (rxr->rx_desc_ring[j])
709 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
710 rxr->rx_desc_ring[j],
711 rxr->rx_desc_mapping[j]);
712 rxr->rx_desc_ring[j] = NULL;
714 vfree(rxr->rx_buf_ring);
715 rxr->rx_buf_ring = NULL;
717 for (j = 0; j < bp->rx_max_pg_ring; j++) {
718 if (rxr->rx_pg_desc_ring[j])
719 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
720 rxr->rx_pg_desc_ring[j],
721 rxr->rx_pg_desc_mapping[j]);
722 rxr->rx_pg_desc_ring[j] = NULL;
724 vfree(rxr->rx_pg_ring);
725 rxr->rx_pg_ring = NULL;
729 static int
730 bnx2_alloc_tx_mem(struct bnx2 *bp)
732 int i;
734 for (i = 0; i < bp->num_tx_rings; i++) {
735 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
736 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
738 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
739 if (txr->tx_buf_ring == NULL)
740 return -ENOMEM;
742 txr->tx_desc_ring =
743 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
744 &txr->tx_desc_mapping);
745 if (txr->tx_desc_ring == NULL)
746 return -ENOMEM;
748 return 0;
751 static int
752 bnx2_alloc_rx_mem(struct bnx2 *bp)
754 int i;
756 for (i = 0; i < bp->num_rx_rings; i++) {
757 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
758 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
759 int j;
761 rxr->rx_buf_ring =
762 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
763 if (rxr->rx_buf_ring == NULL)
764 return -ENOMEM;
766 memset(rxr->rx_buf_ring, 0,
767 SW_RXBD_RING_SIZE * bp->rx_max_ring);
769 for (j = 0; j < bp->rx_max_ring; j++) {
770 rxr->rx_desc_ring[j] =
771 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
772 &rxr->rx_desc_mapping[j]);
773 if (rxr->rx_desc_ring[j] == NULL)
774 return -ENOMEM;
778 if (bp->rx_pg_ring_size) {
779 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
780 bp->rx_max_pg_ring);
781 if (rxr->rx_pg_ring == NULL)
782 return -ENOMEM;
784 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
785 bp->rx_max_pg_ring);
788 for (j = 0; j < bp->rx_max_pg_ring; j++) {
789 rxr->rx_pg_desc_ring[j] =
790 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
791 &rxr->rx_pg_desc_mapping[j]);
792 if (rxr->rx_pg_desc_ring[j] == NULL)
793 return -ENOMEM;
797 return 0;
800 static void
801 bnx2_free_mem(struct bnx2 *bp)
803 int i;
804 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
806 bnx2_free_tx_mem(bp);
807 bnx2_free_rx_mem(bp);
809 for (i = 0; i < bp->ctx_pages; i++) {
810 if (bp->ctx_blk[i]) {
811 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
812 bp->ctx_blk[i],
813 bp->ctx_blk_mapping[i]);
814 bp->ctx_blk[i] = NULL;
817 if (bnapi->status_blk.msi) {
818 pci_free_consistent(bp->pdev, bp->status_stats_size,
819 bnapi->status_blk.msi,
820 bp->status_blk_mapping);
821 bnapi->status_blk.msi = NULL;
822 bp->stats_blk = NULL;
826 static int
827 bnx2_alloc_mem(struct bnx2 *bp)
829 int i, status_blk_size, err;
830 struct bnx2_napi *bnapi;
831 void *status_blk;
833 /* Combine status and statistics blocks into one allocation. */
834 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
835 if (bp->flags & BNX2_FLAG_MSIX_CAP)
836 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
837 BNX2_SBLK_MSIX_ALIGN_SIZE);
838 bp->status_stats_size = status_blk_size +
839 sizeof(struct statistics_block);
841 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
842 &bp->status_blk_mapping);
843 if (status_blk == NULL)
844 goto alloc_mem_err;
846 memset(status_blk, 0, bp->status_stats_size);
848 bnapi = &bp->bnx2_napi[0];
849 bnapi->status_blk.msi = status_blk;
850 bnapi->hw_tx_cons_ptr =
851 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
852 bnapi->hw_rx_cons_ptr =
853 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
854 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
855 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
856 struct status_block_msix *sblk;
858 bnapi = &bp->bnx2_napi[i];
860 sblk = (void *) (status_blk +
861 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
862 bnapi->status_blk.msix = sblk;
863 bnapi->hw_tx_cons_ptr =
864 &sblk->status_tx_quick_consumer_index;
865 bnapi->hw_rx_cons_ptr =
866 &sblk->status_rx_quick_consumer_index;
867 bnapi->int_num = i << 24;
871 bp->stats_blk = status_blk + status_blk_size;
873 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
875 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
876 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
877 if (bp->ctx_pages == 0)
878 bp->ctx_pages = 1;
879 for (i = 0; i < bp->ctx_pages; i++) {
880 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
881 BCM_PAGE_SIZE,
882 &bp->ctx_blk_mapping[i]);
883 if (bp->ctx_blk[i] == NULL)
884 goto alloc_mem_err;
888 err = bnx2_alloc_rx_mem(bp);
889 if (err)
890 goto alloc_mem_err;
892 err = bnx2_alloc_tx_mem(bp);
893 if (err)
894 goto alloc_mem_err;
896 return 0;
898 alloc_mem_err:
899 bnx2_free_mem(bp);
900 return -ENOMEM;
903 static void
904 bnx2_report_fw_link(struct bnx2 *bp)
906 u32 fw_link_status = 0;
908 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
909 return;
911 if (bp->link_up) {
912 u32 bmsr;
914 switch (bp->line_speed) {
915 case SPEED_10:
916 if (bp->duplex == DUPLEX_HALF)
917 fw_link_status = BNX2_LINK_STATUS_10HALF;
918 else
919 fw_link_status = BNX2_LINK_STATUS_10FULL;
920 break;
921 case SPEED_100:
922 if (bp->duplex == DUPLEX_HALF)
923 fw_link_status = BNX2_LINK_STATUS_100HALF;
924 else
925 fw_link_status = BNX2_LINK_STATUS_100FULL;
926 break;
927 case SPEED_1000:
928 if (bp->duplex == DUPLEX_HALF)
929 fw_link_status = BNX2_LINK_STATUS_1000HALF;
930 else
931 fw_link_status = BNX2_LINK_STATUS_1000FULL;
932 break;
933 case SPEED_2500:
934 if (bp->duplex == DUPLEX_HALF)
935 fw_link_status = BNX2_LINK_STATUS_2500HALF;
936 else
937 fw_link_status = BNX2_LINK_STATUS_2500FULL;
938 break;
941 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
943 if (bp->autoneg) {
944 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
946 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
947 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
949 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
950 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
951 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
952 else
953 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
956 else
957 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
959 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
962 static char *
963 bnx2_xceiver_str(struct bnx2 *bp)
965 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
966 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
967 "Copper"));
970 static void
971 bnx2_report_link(struct bnx2 *bp)
973 if (bp->link_up) {
974 netif_carrier_on(bp->dev);
975 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
976 bnx2_xceiver_str(bp));
978 printk("%d Mbps ", bp->line_speed);
980 if (bp->duplex == DUPLEX_FULL)
981 printk("full duplex");
982 else
983 printk("half duplex");
985 if (bp->flow_ctrl) {
986 if (bp->flow_ctrl & FLOW_CTRL_RX) {
987 printk(", receive ");
988 if (bp->flow_ctrl & FLOW_CTRL_TX)
989 printk("& transmit ");
991 else {
992 printk(", transmit ");
994 printk("flow control ON");
996 printk("\n");
998 else {
999 netif_carrier_off(bp->dev);
1000 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
1001 bnx2_xceiver_str(bp));
1004 bnx2_report_fw_link(bp);
1007 static void
1008 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1010 u32 local_adv, remote_adv;
1012 bp->flow_ctrl = 0;
1013 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1014 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1016 if (bp->duplex == DUPLEX_FULL) {
1017 bp->flow_ctrl = bp->req_flow_ctrl;
1019 return;
1022 if (bp->duplex != DUPLEX_FULL) {
1023 return;
1026 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1027 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1028 u32 val;
1030 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1031 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1032 bp->flow_ctrl |= FLOW_CTRL_TX;
1033 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1034 bp->flow_ctrl |= FLOW_CTRL_RX;
1035 return;
1038 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1039 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1041 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1042 u32 new_local_adv = 0;
1043 u32 new_remote_adv = 0;
1045 if (local_adv & ADVERTISE_1000XPAUSE)
1046 new_local_adv |= ADVERTISE_PAUSE_CAP;
1047 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1048 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1049 if (remote_adv & ADVERTISE_1000XPAUSE)
1050 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1051 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1052 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1054 local_adv = new_local_adv;
1055 remote_adv = new_remote_adv;
1058 /* See Table 28B-3 of 802.3ab-1999 spec. */
1059 if (local_adv & ADVERTISE_PAUSE_CAP) {
1060 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1061 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1062 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1064 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1065 bp->flow_ctrl = FLOW_CTRL_RX;
1068 else {
1069 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1070 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1074 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1075 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1076 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1078 bp->flow_ctrl = FLOW_CTRL_TX;
1083 static int
1084 bnx2_5709s_linkup(struct bnx2 *bp)
1086 u32 val, speed;
1088 bp->link_up = 1;
1090 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1091 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1092 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1094 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1095 bp->line_speed = bp->req_line_speed;
1096 bp->duplex = bp->req_duplex;
1097 return 0;
1099 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1100 switch (speed) {
1101 case MII_BNX2_GP_TOP_AN_SPEED_10:
1102 bp->line_speed = SPEED_10;
1103 break;
1104 case MII_BNX2_GP_TOP_AN_SPEED_100:
1105 bp->line_speed = SPEED_100;
1106 break;
1107 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1108 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1109 bp->line_speed = SPEED_1000;
1110 break;
1111 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1112 bp->line_speed = SPEED_2500;
1113 break;
1115 if (val & MII_BNX2_GP_TOP_AN_FD)
1116 bp->duplex = DUPLEX_FULL;
1117 else
1118 bp->duplex = DUPLEX_HALF;
1119 return 0;
1122 static int
1123 bnx2_5708s_linkup(struct bnx2 *bp)
1125 u32 val;
1127 bp->link_up = 1;
1128 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1129 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1130 case BCM5708S_1000X_STAT1_SPEED_10:
1131 bp->line_speed = SPEED_10;
1132 break;
1133 case BCM5708S_1000X_STAT1_SPEED_100:
1134 bp->line_speed = SPEED_100;
1135 break;
1136 case BCM5708S_1000X_STAT1_SPEED_1G:
1137 bp->line_speed = SPEED_1000;
1138 break;
1139 case BCM5708S_1000X_STAT1_SPEED_2G5:
1140 bp->line_speed = SPEED_2500;
1141 break;
1143 if (val & BCM5708S_1000X_STAT1_FD)
1144 bp->duplex = DUPLEX_FULL;
1145 else
1146 bp->duplex = DUPLEX_HALF;
1148 return 0;
1151 static int
1152 bnx2_5706s_linkup(struct bnx2 *bp)
1154 u32 bmcr, local_adv, remote_adv, common;
1156 bp->link_up = 1;
1157 bp->line_speed = SPEED_1000;
1159 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1160 if (bmcr & BMCR_FULLDPLX) {
1161 bp->duplex = DUPLEX_FULL;
1163 else {
1164 bp->duplex = DUPLEX_HALF;
1167 if (!(bmcr & BMCR_ANENABLE)) {
1168 return 0;
1171 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1172 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1174 common = local_adv & remote_adv;
1175 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1177 if (common & ADVERTISE_1000XFULL) {
1178 bp->duplex = DUPLEX_FULL;
1180 else {
1181 bp->duplex = DUPLEX_HALF;
1185 return 0;
1188 static int
1189 bnx2_copper_linkup(struct bnx2 *bp)
1191 u32 bmcr;
1193 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1194 if (bmcr & BMCR_ANENABLE) {
1195 u32 local_adv, remote_adv, common;
1197 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1198 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1200 common = local_adv & (remote_adv >> 2);
1201 if (common & ADVERTISE_1000FULL) {
1202 bp->line_speed = SPEED_1000;
1203 bp->duplex = DUPLEX_FULL;
1205 else if (common & ADVERTISE_1000HALF) {
1206 bp->line_speed = SPEED_1000;
1207 bp->duplex = DUPLEX_HALF;
1209 else {
1210 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1211 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1213 common = local_adv & remote_adv;
1214 if (common & ADVERTISE_100FULL) {
1215 bp->line_speed = SPEED_100;
1216 bp->duplex = DUPLEX_FULL;
1218 else if (common & ADVERTISE_100HALF) {
1219 bp->line_speed = SPEED_100;
1220 bp->duplex = DUPLEX_HALF;
1222 else if (common & ADVERTISE_10FULL) {
1223 bp->line_speed = SPEED_10;
1224 bp->duplex = DUPLEX_FULL;
1226 else if (common & ADVERTISE_10HALF) {
1227 bp->line_speed = SPEED_10;
1228 bp->duplex = DUPLEX_HALF;
1230 else {
1231 bp->line_speed = 0;
1232 bp->link_up = 0;
1236 else {
1237 if (bmcr & BMCR_SPEED100) {
1238 bp->line_speed = SPEED_100;
1240 else {
1241 bp->line_speed = SPEED_10;
1243 if (bmcr & BMCR_FULLDPLX) {
1244 bp->duplex = DUPLEX_FULL;
1246 else {
1247 bp->duplex = DUPLEX_HALF;
1251 return 0;
1254 static void
1255 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1257 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1259 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1260 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1261 val |= 0x02 << 8;
1263 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1264 u32 lo_water, hi_water;
1266 if (bp->flow_ctrl & FLOW_CTRL_TX)
1267 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1268 else
1269 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1270 if (lo_water >= bp->rx_ring_size)
1271 lo_water = 0;
1273 hi_water = bp->rx_ring_size / 4;
1275 if (hi_water <= lo_water)
1276 lo_water = 0;
1278 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1279 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1281 if (hi_water > 0xf)
1282 hi_water = 0xf;
1283 else if (hi_water == 0)
1284 lo_water = 0;
1285 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1287 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1290 static void
1291 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1293 int i;
1294 u32 cid;
1296 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1297 if (i == 1)
1298 cid = RX_RSS_CID;
1299 bnx2_init_rx_context(bp, cid);
1303 static void
1304 bnx2_set_mac_link(struct bnx2 *bp)
1306 u32 val;
1308 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1309 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1310 (bp->duplex == DUPLEX_HALF)) {
1311 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1314 /* Configure the EMAC mode register. */
1315 val = REG_RD(bp, BNX2_EMAC_MODE);
1317 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1318 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1319 BNX2_EMAC_MODE_25G_MODE);
1321 if (bp->link_up) {
1322 switch (bp->line_speed) {
1323 case SPEED_10:
1324 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1325 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1326 break;
1328 /* fall through */
1329 case SPEED_100:
1330 val |= BNX2_EMAC_MODE_PORT_MII;
1331 break;
1332 case SPEED_2500:
1333 val |= BNX2_EMAC_MODE_25G_MODE;
1334 /* fall through */
1335 case SPEED_1000:
1336 val |= BNX2_EMAC_MODE_PORT_GMII;
1337 break;
1340 else {
1341 val |= BNX2_EMAC_MODE_PORT_GMII;
1344 /* Set the MAC to operate in the appropriate duplex mode. */
1345 if (bp->duplex == DUPLEX_HALF)
1346 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1347 REG_WR(bp, BNX2_EMAC_MODE, val);
1349 /* Enable/disable rx PAUSE. */
1350 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1352 if (bp->flow_ctrl & FLOW_CTRL_RX)
1353 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1354 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1356 /* Enable/disable tx PAUSE. */
1357 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1358 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1360 if (bp->flow_ctrl & FLOW_CTRL_TX)
1361 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1362 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1364 /* Acknowledge the interrupt. */
1365 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1367 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1368 bnx2_init_all_rx_contexts(bp);
1371 static void
1372 bnx2_enable_bmsr1(struct bnx2 *bp)
1374 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1375 (CHIP_NUM(bp) == CHIP_NUM_5709))
1376 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1377 MII_BNX2_BLK_ADDR_GP_STATUS);
1380 static void
1381 bnx2_disable_bmsr1(struct bnx2 *bp)
1383 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1384 (CHIP_NUM(bp) == CHIP_NUM_5709))
1385 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1386 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1389 static int
1390 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1392 u32 up1;
1393 int ret = 1;
1395 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1396 return 0;
1398 if (bp->autoneg & AUTONEG_SPEED)
1399 bp->advertising |= ADVERTISED_2500baseX_Full;
1401 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1402 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1404 bnx2_read_phy(bp, bp->mii_up1, &up1);
1405 if (!(up1 & BCM5708S_UP1_2G5)) {
1406 up1 |= BCM5708S_UP1_2G5;
1407 bnx2_write_phy(bp, bp->mii_up1, up1);
1408 ret = 0;
1411 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1412 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1413 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1415 return ret;
1418 static int
1419 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1421 u32 up1;
1422 int ret = 0;
1424 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1425 return 0;
1427 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1428 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1430 bnx2_read_phy(bp, bp->mii_up1, &up1);
1431 if (up1 & BCM5708S_UP1_2G5) {
1432 up1 &= ~BCM5708S_UP1_2G5;
1433 bnx2_write_phy(bp, bp->mii_up1, up1);
1434 ret = 1;
1437 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1438 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1439 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1441 return ret;
1444 static void
1445 bnx2_enable_forced_2g5(struct bnx2 *bp)
1447 u32 bmcr;
1449 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1450 return;
1452 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1453 u32 val;
1455 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1456 MII_BNX2_BLK_ADDR_SERDES_DIG);
1457 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1458 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1459 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1460 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1462 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1463 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1464 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1466 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1467 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1468 bmcr |= BCM5708S_BMCR_FORCE_2500;
1469 } else {
1470 return;
1473 if (bp->autoneg & AUTONEG_SPEED) {
1474 bmcr &= ~BMCR_ANENABLE;
1475 if (bp->req_duplex == DUPLEX_FULL)
1476 bmcr |= BMCR_FULLDPLX;
1478 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1481 static void
1482 bnx2_disable_forced_2g5(struct bnx2 *bp)
1484 u32 bmcr;
1486 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1487 return;
1489 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1490 u32 val;
1492 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1493 MII_BNX2_BLK_ADDR_SERDES_DIG);
1494 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1495 val &= ~MII_BNX2_SD_MISC1_FORCE;
1496 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1498 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1499 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1500 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1502 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1503 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1504 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1505 } else {
1506 return;
1509 if (bp->autoneg & AUTONEG_SPEED)
1510 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1511 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1514 static void
1515 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1517 u32 val;
1519 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1520 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1521 if (start)
1522 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1523 else
1524 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1527 static int
1528 bnx2_set_link(struct bnx2 *bp)
1530 u32 bmsr;
1531 u8 link_up;
1533 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1534 bp->link_up = 1;
1535 return 0;
1538 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1539 return 0;
1541 link_up = bp->link_up;
1543 bnx2_enable_bmsr1(bp);
1544 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1545 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1546 bnx2_disable_bmsr1(bp);
1548 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1549 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1550 u32 val, an_dbg;
1552 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1553 bnx2_5706s_force_link_dn(bp, 0);
1554 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1556 val = REG_RD(bp, BNX2_EMAC_STATUS);
1558 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1559 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1560 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1562 if ((val & BNX2_EMAC_STATUS_LINK) &&
1563 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1564 bmsr |= BMSR_LSTATUS;
1565 else
1566 bmsr &= ~BMSR_LSTATUS;
1569 if (bmsr & BMSR_LSTATUS) {
1570 bp->link_up = 1;
1572 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1573 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1574 bnx2_5706s_linkup(bp);
1575 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1576 bnx2_5708s_linkup(bp);
1577 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1578 bnx2_5709s_linkup(bp);
1580 else {
1581 bnx2_copper_linkup(bp);
1583 bnx2_resolve_flow_ctrl(bp);
1585 else {
1586 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1587 (bp->autoneg & AUTONEG_SPEED))
1588 bnx2_disable_forced_2g5(bp);
1590 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1591 u32 bmcr;
1593 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1594 bmcr |= BMCR_ANENABLE;
1595 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1597 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1599 bp->link_up = 0;
1602 if (bp->link_up != link_up) {
1603 bnx2_report_link(bp);
1606 bnx2_set_mac_link(bp);
1608 return 0;
1611 static int
1612 bnx2_reset_phy(struct bnx2 *bp)
1614 int i;
1615 u32 reg;
1617 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1619 #define PHY_RESET_MAX_WAIT 100
1620 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1621 udelay(10);
1623 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1624 if (!(reg & BMCR_RESET)) {
1625 udelay(20);
1626 break;
1629 if (i == PHY_RESET_MAX_WAIT) {
1630 return -EBUSY;
1632 return 0;
1635 static u32
1636 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1638 u32 adv = 0;
1640 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1641 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1643 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1644 adv = ADVERTISE_1000XPAUSE;
1646 else {
1647 adv = ADVERTISE_PAUSE_CAP;
1650 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1651 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1652 adv = ADVERTISE_1000XPSE_ASYM;
1654 else {
1655 adv = ADVERTISE_PAUSE_ASYM;
1658 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1659 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1660 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1662 else {
1663 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1666 return adv;
1669 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1671 static int
1672 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1673 __releases(&bp->phy_lock)
1674 __acquires(&bp->phy_lock)
1676 u32 speed_arg = 0, pause_adv;
1678 pause_adv = bnx2_phy_get_pause_adv(bp);
1680 if (bp->autoneg & AUTONEG_SPEED) {
1681 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1682 if (bp->advertising & ADVERTISED_10baseT_Half)
1683 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1684 if (bp->advertising & ADVERTISED_10baseT_Full)
1685 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1686 if (bp->advertising & ADVERTISED_100baseT_Half)
1687 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1688 if (bp->advertising & ADVERTISED_100baseT_Full)
1689 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1690 if (bp->advertising & ADVERTISED_1000baseT_Full)
1691 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1692 if (bp->advertising & ADVERTISED_2500baseX_Full)
1693 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1694 } else {
1695 if (bp->req_line_speed == SPEED_2500)
1696 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1697 else if (bp->req_line_speed == SPEED_1000)
1698 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1699 else if (bp->req_line_speed == SPEED_100) {
1700 if (bp->req_duplex == DUPLEX_FULL)
1701 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1702 else
1703 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1704 } else if (bp->req_line_speed == SPEED_10) {
1705 if (bp->req_duplex == DUPLEX_FULL)
1706 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1707 else
1708 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1712 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1713 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1714 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1715 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1717 if (port == PORT_TP)
1718 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1719 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1721 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1723 spin_unlock_bh(&bp->phy_lock);
1724 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1725 spin_lock_bh(&bp->phy_lock);
1727 return 0;
1730 static int
1731 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1732 __releases(&bp->phy_lock)
1733 __acquires(&bp->phy_lock)
1735 u32 adv, bmcr;
1736 u32 new_adv = 0;
1738 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1739 return (bnx2_setup_remote_phy(bp, port));
1741 if (!(bp->autoneg & AUTONEG_SPEED)) {
1742 u32 new_bmcr;
1743 int force_link_down = 0;
1745 if (bp->req_line_speed == SPEED_2500) {
1746 if (!bnx2_test_and_enable_2g5(bp))
1747 force_link_down = 1;
1748 } else if (bp->req_line_speed == SPEED_1000) {
1749 if (bnx2_test_and_disable_2g5(bp))
1750 force_link_down = 1;
1752 bnx2_read_phy(bp, bp->mii_adv, &adv);
1753 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1755 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1756 new_bmcr = bmcr & ~BMCR_ANENABLE;
1757 new_bmcr |= BMCR_SPEED1000;
1759 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1760 if (bp->req_line_speed == SPEED_2500)
1761 bnx2_enable_forced_2g5(bp);
1762 else if (bp->req_line_speed == SPEED_1000) {
1763 bnx2_disable_forced_2g5(bp);
1764 new_bmcr &= ~0x2000;
1767 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1768 if (bp->req_line_speed == SPEED_2500)
1769 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1770 else
1771 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1774 if (bp->req_duplex == DUPLEX_FULL) {
1775 adv |= ADVERTISE_1000XFULL;
1776 new_bmcr |= BMCR_FULLDPLX;
1778 else {
1779 adv |= ADVERTISE_1000XHALF;
1780 new_bmcr &= ~BMCR_FULLDPLX;
1782 if ((new_bmcr != bmcr) || (force_link_down)) {
1783 /* Force a link down visible on the other side */
1784 if (bp->link_up) {
1785 bnx2_write_phy(bp, bp->mii_adv, adv &
1786 ~(ADVERTISE_1000XFULL |
1787 ADVERTISE_1000XHALF));
1788 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1789 BMCR_ANRESTART | BMCR_ANENABLE);
1791 bp->link_up = 0;
1792 netif_carrier_off(bp->dev);
1793 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1794 bnx2_report_link(bp);
1796 bnx2_write_phy(bp, bp->mii_adv, adv);
1797 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1798 } else {
1799 bnx2_resolve_flow_ctrl(bp);
1800 bnx2_set_mac_link(bp);
1802 return 0;
1805 bnx2_test_and_enable_2g5(bp);
1807 if (bp->advertising & ADVERTISED_1000baseT_Full)
1808 new_adv |= ADVERTISE_1000XFULL;
1810 new_adv |= bnx2_phy_get_pause_adv(bp);
1812 bnx2_read_phy(bp, bp->mii_adv, &adv);
1813 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1815 bp->serdes_an_pending = 0;
1816 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1817 /* Force a link down visible on the other side */
1818 if (bp->link_up) {
1819 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1820 spin_unlock_bh(&bp->phy_lock);
1821 msleep(20);
1822 spin_lock_bh(&bp->phy_lock);
1825 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1826 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1827 BMCR_ANENABLE);
1828 /* Speed up link-up time when the link partner
1829 * does not autonegotiate which is very common
1830 * in blade servers. Some blade servers use
1831 * IPMI for kerboard input and it's important
1832 * to minimize link disruptions. Autoneg. involves
1833 * exchanging base pages plus 3 next pages and
1834 * normally completes in about 120 msec.
1836 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1837 bp->serdes_an_pending = 1;
1838 mod_timer(&bp->timer, jiffies + bp->current_interval);
1839 } else {
1840 bnx2_resolve_flow_ctrl(bp);
1841 bnx2_set_mac_link(bp);
1844 return 0;
1847 #define ETHTOOL_ALL_FIBRE_SPEED \
1848 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1849 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1850 (ADVERTISED_1000baseT_Full)
1852 #define ETHTOOL_ALL_COPPER_SPEED \
1853 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1854 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1855 ADVERTISED_1000baseT_Full)
1857 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1858 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1860 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1862 static void
1863 bnx2_set_default_remote_link(struct bnx2 *bp)
1865 u32 link;
1867 if (bp->phy_port == PORT_TP)
1868 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1869 else
1870 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1872 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1873 bp->req_line_speed = 0;
1874 bp->autoneg |= AUTONEG_SPEED;
1875 bp->advertising = ADVERTISED_Autoneg;
1876 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1877 bp->advertising |= ADVERTISED_10baseT_Half;
1878 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1879 bp->advertising |= ADVERTISED_10baseT_Full;
1880 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1881 bp->advertising |= ADVERTISED_100baseT_Half;
1882 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1883 bp->advertising |= ADVERTISED_100baseT_Full;
1884 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1885 bp->advertising |= ADVERTISED_1000baseT_Full;
1886 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1887 bp->advertising |= ADVERTISED_2500baseX_Full;
1888 } else {
1889 bp->autoneg = 0;
1890 bp->advertising = 0;
1891 bp->req_duplex = DUPLEX_FULL;
1892 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1893 bp->req_line_speed = SPEED_10;
1894 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1895 bp->req_duplex = DUPLEX_HALF;
1897 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1898 bp->req_line_speed = SPEED_100;
1899 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1900 bp->req_duplex = DUPLEX_HALF;
1902 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1903 bp->req_line_speed = SPEED_1000;
1904 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1905 bp->req_line_speed = SPEED_2500;
1909 static void
1910 bnx2_set_default_link(struct bnx2 *bp)
1912 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1913 bnx2_set_default_remote_link(bp);
1914 return;
1917 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1918 bp->req_line_speed = 0;
1919 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1920 u32 reg;
1922 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1924 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1925 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1926 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1927 bp->autoneg = 0;
1928 bp->req_line_speed = bp->line_speed = SPEED_1000;
1929 bp->req_duplex = DUPLEX_FULL;
1931 } else
1932 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1935 static void
1936 bnx2_send_heart_beat(struct bnx2 *bp)
1938 u32 msg;
1939 u32 addr;
1941 spin_lock(&bp->indirect_lock);
1942 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1943 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1944 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1945 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1946 spin_unlock(&bp->indirect_lock);
1949 static void
1950 bnx2_remote_phy_event(struct bnx2 *bp)
1952 u32 msg;
1953 u8 link_up = bp->link_up;
1954 u8 old_port;
1956 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1958 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1959 bnx2_send_heart_beat(bp);
1961 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1963 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1964 bp->link_up = 0;
1965 else {
1966 u32 speed;
1968 bp->link_up = 1;
1969 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1970 bp->duplex = DUPLEX_FULL;
1971 switch (speed) {
1972 case BNX2_LINK_STATUS_10HALF:
1973 bp->duplex = DUPLEX_HALF;
1974 case BNX2_LINK_STATUS_10FULL:
1975 bp->line_speed = SPEED_10;
1976 break;
1977 case BNX2_LINK_STATUS_100HALF:
1978 bp->duplex = DUPLEX_HALF;
1979 case BNX2_LINK_STATUS_100BASE_T4:
1980 case BNX2_LINK_STATUS_100FULL:
1981 bp->line_speed = SPEED_100;
1982 break;
1983 case BNX2_LINK_STATUS_1000HALF:
1984 bp->duplex = DUPLEX_HALF;
1985 case BNX2_LINK_STATUS_1000FULL:
1986 bp->line_speed = SPEED_1000;
1987 break;
1988 case BNX2_LINK_STATUS_2500HALF:
1989 bp->duplex = DUPLEX_HALF;
1990 case BNX2_LINK_STATUS_2500FULL:
1991 bp->line_speed = SPEED_2500;
1992 break;
1993 default:
1994 bp->line_speed = 0;
1995 break;
1998 bp->flow_ctrl = 0;
1999 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
2000 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
2001 if (bp->duplex == DUPLEX_FULL)
2002 bp->flow_ctrl = bp->req_flow_ctrl;
2003 } else {
2004 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2005 bp->flow_ctrl |= FLOW_CTRL_TX;
2006 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2007 bp->flow_ctrl |= FLOW_CTRL_RX;
2010 old_port = bp->phy_port;
2011 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2012 bp->phy_port = PORT_FIBRE;
2013 else
2014 bp->phy_port = PORT_TP;
2016 if (old_port != bp->phy_port)
2017 bnx2_set_default_link(bp);
2020 if (bp->link_up != link_up)
2021 bnx2_report_link(bp);
2023 bnx2_set_mac_link(bp);
2026 static int
2027 bnx2_set_remote_link(struct bnx2 *bp)
2029 u32 evt_code;
2031 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2032 switch (evt_code) {
2033 case BNX2_FW_EVT_CODE_LINK_EVENT:
2034 bnx2_remote_phy_event(bp);
2035 break;
2036 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2037 default:
2038 bnx2_send_heart_beat(bp);
2039 break;
2041 return 0;
2044 static int
2045 bnx2_setup_copper_phy(struct bnx2 *bp)
2046 __releases(&bp->phy_lock)
2047 __acquires(&bp->phy_lock)
2049 u32 bmcr;
2050 u32 new_bmcr;
2052 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2054 if (bp->autoneg & AUTONEG_SPEED) {
2055 u32 adv_reg, adv1000_reg;
2056 u32 new_adv_reg = 0;
2057 u32 new_adv1000_reg = 0;
2059 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2060 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2061 ADVERTISE_PAUSE_ASYM);
2063 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2064 adv1000_reg &= PHY_ALL_1000_SPEED;
2066 if (bp->advertising & ADVERTISED_10baseT_Half)
2067 new_adv_reg |= ADVERTISE_10HALF;
2068 if (bp->advertising & ADVERTISED_10baseT_Full)
2069 new_adv_reg |= ADVERTISE_10FULL;
2070 if (bp->advertising & ADVERTISED_100baseT_Half)
2071 new_adv_reg |= ADVERTISE_100HALF;
2072 if (bp->advertising & ADVERTISED_100baseT_Full)
2073 new_adv_reg |= ADVERTISE_100FULL;
2074 if (bp->advertising & ADVERTISED_1000baseT_Full)
2075 new_adv1000_reg |= ADVERTISE_1000FULL;
2077 new_adv_reg |= ADVERTISE_CSMA;
2079 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2081 if ((adv1000_reg != new_adv1000_reg) ||
2082 (adv_reg != new_adv_reg) ||
2083 ((bmcr & BMCR_ANENABLE) == 0)) {
2085 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2086 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2087 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2088 BMCR_ANENABLE);
2090 else if (bp->link_up) {
2091 /* Flow ctrl may have changed from auto to forced */
2092 /* or vice-versa. */
2094 bnx2_resolve_flow_ctrl(bp);
2095 bnx2_set_mac_link(bp);
2097 return 0;
2100 new_bmcr = 0;
2101 if (bp->req_line_speed == SPEED_100) {
2102 new_bmcr |= BMCR_SPEED100;
2104 if (bp->req_duplex == DUPLEX_FULL) {
2105 new_bmcr |= BMCR_FULLDPLX;
2107 if (new_bmcr != bmcr) {
2108 u32 bmsr;
2110 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2111 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2113 if (bmsr & BMSR_LSTATUS) {
2114 /* Force link down */
2115 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2116 spin_unlock_bh(&bp->phy_lock);
2117 msleep(50);
2118 spin_lock_bh(&bp->phy_lock);
2120 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2121 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2124 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2126 /* Normally, the new speed is setup after the link has
2127 * gone down and up again. In some cases, link will not go
2128 * down so we need to set up the new speed here.
2130 if (bmsr & BMSR_LSTATUS) {
2131 bp->line_speed = bp->req_line_speed;
2132 bp->duplex = bp->req_duplex;
2133 bnx2_resolve_flow_ctrl(bp);
2134 bnx2_set_mac_link(bp);
2136 } else {
2137 bnx2_resolve_flow_ctrl(bp);
2138 bnx2_set_mac_link(bp);
2140 return 0;
2143 static int
2144 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2145 __releases(&bp->phy_lock)
2146 __acquires(&bp->phy_lock)
2148 if (bp->loopback == MAC_LOOPBACK)
2149 return 0;
2151 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2152 return (bnx2_setup_serdes_phy(bp, port));
2154 else {
2155 return (bnx2_setup_copper_phy(bp));
2159 static int
2160 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2162 u32 val;
2164 bp->mii_bmcr = MII_BMCR + 0x10;
2165 bp->mii_bmsr = MII_BMSR + 0x10;
2166 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2167 bp->mii_adv = MII_ADVERTISE + 0x10;
2168 bp->mii_lpa = MII_LPA + 0x10;
2169 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2171 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2172 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2174 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2175 if (reset_phy)
2176 bnx2_reset_phy(bp);
2178 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2180 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2181 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2182 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2183 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2185 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2186 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2187 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2188 val |= BCM5708S_UP1_2G5;
2189 else
2190 val &= ~BCM5708S_UP1_2G5;
2191 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2193 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2194 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2195 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2196 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2198 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2200 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2201 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2202 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2204 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2206 return 0;
2209 static int
2210 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2212 u32 val;
2214 if (reset_phy)
2215 bnx2_reset_phy(bp);
2217 bp->mii_up1 = BCM5708S_UP1;
2219 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2220 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2221 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2223 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2224 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2225 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2227 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2228 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2229 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2231 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2232 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2233 val |= BCM5708S_UP1_2G5;
2234 bnx2_write_phy(bp, BCM5708S_UP1, val);
2237 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2238 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2239 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2240 /* increase tx signal amplitude */
2241 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2242 BCM5708S_BLK_ADDR_TX_MISC);
2243 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2244 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2245 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2246 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2249 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2250 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2252 if (val) {
2253 u32 is_backplane;
2255 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2256 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2257 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2258 BCM5708S_BLK_ADDR_TX_MISC);
2259 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2260 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2261 BCM5708S_BLK_ADDR_DIG);
2264 return 0;
2267 static int
2268 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2270 if (reset_phy)
2271 bnx2_reset_phy(bp);
2273 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2275 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2276 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2278 if (bp->dev->mtu > 1500) {
2279 u32 val;
2281 /* Set extended packet length bit */
2282 bnx2_write_phy(bp, 0x18, 0x7);
2283 bnx2_read_phy(bp, 0x18, &val);
2284 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2286 bnx2_write_phy(bp, 0x1c, 0x6c00);
2287 bnx2_read_phy(bp, 0x1c, &val);
2288 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2290 else {
2291 u32 val;
2293 bnx2_write_phy(bp, 0x18, 0x7);
2294 bnx2_read_phy(bp, 0x18, &val);
2295 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2297 bnx2_write_phy(bp, 0x1c, 0x6c00);
2298 bnx2_read_phy(bp, 0x1c, &val);
2299 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2302 return 0;
2305 static int
2306 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2308 u32 val;
2310 if (reset_phy)
2311 bnx2_reset_phy(bp);
2313 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2314 bnx2_write_phy(bp, 0x18, 0x0c00);
2315 bnx2_write_phy(bp, 0x17, 0x000a);
2316 bnx2_write_phy(bp, 0x15, 0x310b);
2317 bnx2_write_phy(bp, 0x17, 0x201f);
2318 bnx2_write_phy(bp, 0x15, 0x9506);
2319 bnx2_write_phy(bp, 0x17, 0x401f);
2320 bnx2_write_phy(bp, 0x15, 0x14e2);
2321 bnx2_write_phy(bp, 0x18, 0x0400);
2324 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2325 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2326 MII_BNX2_DSP_EXPAND_REG | 0x8);
2327 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2328 val &= ~(1 << 8);
2329 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2332 if (bp->dev->mtu > 1500) {
2333 /* Set extended packet length bit */
2334 bnx2_write_phy(bp, 0x18, 0x7);
2335 bnx2_read_phy(bp, 0x18, &val);
2336 bnx2_write_phy(bp, 0x18, val | 0x4000);
2338 bnx2_read_phy(bp, 0x10, &val);
2339 bnx2_write_phy(bp, 0x10, val | 0x1);
2341 else {
2342 bnx2_write_phy(bp, 0x18, 0x7);
2343 bnx2_read_phy(bp, 0x18, &val);
2344 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2346 bnx2_read_phy(bp, 0x10, &val);
2347 bnx2_write_phy(bp, 0x10, val & ~0x1);
2350 /* ethernet@wirespeed */
2351 bnx2_write_phy(bp, 0x18, 0x7007);
2352 bnx2_read_phy(bp, 0x18, &val);
2353 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2354 return 0;
2358 static int
2359 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2360 __releases(&bp->phy_lock)
2361 __acquires(&bp->phy_lock)
2363 u32 val;
2364 int rc = 0;
2366 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2367 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2369 bp->mii_bmcr = MII_BMCR;
2370 bp->mii_bmsr = MII_BMSR;
2371 bp->mii_bmsr1 = MII_BMSR;
2372 bp->mii_adv = MII_ADVERTISE;
2373 bp->mii_lpa = MII_LPA;
2375 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2377 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2378 goto setup_phy;
2380 bnx2_read_phy(bp, MII_PHYSID1, &val);
2381 bp->phy_id = val << 16;
2382 bnx2_read_phy(bp, MII_PHYSID2, &val);
2383 bp->phy_id |= val & 0xffff;
2385 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2386 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2387 rc = bnx2_init_5706s_phy(bp, reset_phy);
2388 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2389 rc = bnx2_init_5708s_phy(bp, reset_phy);
2390 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2391 rc = bnx2_init_5709s_phy(bp, reset_phy);
2393 else {
2394 rc = bnx2_init_copper_phy(bp, reset_phy);
2397 setup_phy:
2398 if (!rc)
2399 rc = bnx2_setup_phy(bp, bp->phy_port);
2401 return rc;
2404 static int
2405 bnx2_set_mac_loopback(struct bnx2 *bp)
2407 u32 mac_mode;
2409 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2410 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2411 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2412 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2413 bp->link_up = 1;
2414 return 0;
2417 static int bnx2_test_link(struct bnx2 *);
2419 static int
2420 bnx2_set_phy_loopback(struct bnx2 *bp)
2422 u32 mac_mode;
2423 int rc, i;
2425 spin_lock_bh(&bp->phy_lock);
2426 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2427 BMCR_SPEED1000);
2428 spin_unlock_bh(&bp->phy_lock);
2429 if (rc)
2430 return rc;
2432 for (i = 0; i < 10; i++) {
2433 if (bnx2_test_link(bp) == 0)
2434 break;
2435 msleep(100);
2438 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2439 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2440 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2441 BNX2_EMAC_MODE_25G_MODE);
2443 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2444 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2445 bp->link_up = 1;
2446 return 0;
2449 static int
2450 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2452 int i;
2453 u32 val;
2455 bp->fw_wr_seq++;
2456 msg_data |= bp->fw_wr_seq;
2458 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2460 if (!ack)
2461 return 0;
2463 /* wait for an acknowledgement. */
2464 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2465 msleep(10);
2467 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2469 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2470 break;
2472 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2473 return 0;
2475 /* If we timed out, inform the firmware that this is the case. */
2476 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2477 if (!silent)
2478 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2479 "%x\n", msg_data);
2481 msg_data &= ~BNX2_DRV_MSG_CODE;
2482 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2484 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2486 return -EBUSY;
2489 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2490 return -EIO;
2492 return 0;
2495 static int
2496 bnx2_init_5709_context(struct bnx2 *bp)
2498 int i, ret = 0;
2499 u32 val;
2501 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2502 val |= (BCM_PAGE_BITS - 8) << 16;
2503 REG_WR(bp, BNX2_CTX_COMMAND, val);
2504 for (i = 0; i < 10; i++) {
2505 val = REG_RD(bp, BNX2_CTX_COMMAND);
2506 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2507 break;
2508 udelay(2);
2510 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2511 return -EBUSY;
2513 for (i = 0; i < bp->ctx_pages; i++) {
2514 int j;
2516 if (bp->ctx_blk[i])
2517 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2518 else
2519 return -ENOMEM;
2521 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2522 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2523 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2524 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2525 (u64) bp->ctx_blk_mapping[i] >> 32);
2526 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2527 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2528 for (j = 0; j < 10; j++) {
2530 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2531 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2532 break;
2533 udelay(5);
2535 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2536 ret = -EBUSY;
2537 break;
2540 return ret;
2543 static void
2544 bnx2_init_context(struct bnx2 *bp)
2546 u32 vcid;
2548 vcid = 96;
2549 while (vcid) {
2550 u32 vcid_addr, pcid_addr, offset;
2551 int i;
2553 vcid--;
2555 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2556 u32 new_vcid;
2558 vcid_addr = GET_PCID_ADDR(vcid);
2559 if (vcid & 0x8) {
2560 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2562 else {
2563 new_vcid = vcid;
2565 pcid_addr = GET_PCID_ADDR(new_vcid);
2567 else {
2568 vcid_addr = GET_CID_ADDR(vcid);
2569 pcid_addr = vcid_addr;
2572 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2573 vcid_addr += (i << PHY_CTX_SHIFT);
2574 pcid_addr += (i << PHY_CTX_SHIFT);
2576 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2577 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2579 /* Zero out the context. */
2580 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2581 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2586 static int
2587 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2589 u16 *good_mbuf;
2590 u32 good_mbuf_cnt;
2591 u32 val;
2593 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2594 if (good_mbuf == NULL) {
2595 printk(KERN_ERR PFX "Failed to allocate memory in "
2596 "bnx2_alloc_bad_rbuf\n");
2597 return -ENOMEM;
2600 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2601 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2603 good_mbuf_cnt = 0;
2605 /* Allocate a bunch of mbufs and save the good ones in an array. */
2606 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2607 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2608 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2609 BNX2_RBUF_COMMAND_ALLOC_REQ);
2611 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2613 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2615 /* The addresses with Bit 9 set are bad memory blocks. */
2616 if (!(val & (1 << 9))) {
2617 good_mbuf[good_mbuf_cnt] = (u16) val;
2618 good_mbuf_cnt++;
2621 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2624 /* Free the good ones back to the mbuf pool thus discarding
2625 * all the bad ones. */
2626 while (good_mbuf_cnt) {
2627 good_mbuf_cnt--;
2629 val = good_mbuf[good_mbuf_cnt];
2630 val = (val << 9) | val | 1;
2632 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2634 kfree(good_mbuf);
2635 return 0;
2638 static void
2639 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2641 u32 val;
2643 val = (mac_addr[0] << 8) | mac_addr[1];
2645 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2647 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2648 (mac_addr[4] << 8) | mac_addr[5];
2650 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2653 static inline int
2654 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2656 dma_addr_t mapping;
2657 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2658 struct rx_bd *rxbd =
2659 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2660 struct page *page = alloc_page(GFP_ATOMIC);
2662 if (!page)
2663 return -ENOMEM;
2664 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2665 PCI_DMA_FROMDEVICE);
2666 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2667 __free_page(page);
2668 return -EIO;
2671 rx_pg->page = page;
2672 pci_unmap_addr_set(rx_pg, mapping, mapping);
2673 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2674 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2675 return 0;
2678 static void
2679 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2681 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2682 struct page *page = rx_pg->page;
2684 if (!page)
2685 return;
2687 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2688 PCI_DMA_FROMDEVICE);
2690 __free_page(page);
2691 rx_pg->page = NULL;
2694 static inline int
2695 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2697 struct sk_buff *skb;
2698 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2699 dma_addr_t mapping;
2700 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2701 unsigned long align;
2703 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2704 if (skb == NULL) {
2705 return -ENOMEM;
2708 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2709 skb_reserve(skb, BNX2_RX_ALIGN - align);
2711 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2712 PCI_DMA_FROMDEVICE);
2713 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2714 dev_kfree_skb(skb);
2715 return -EIO;
2718 rx_buf->skb = skb;
2719 pci_unmap_addr_set(rx_buf, mapping, mapping);
2721 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2722 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2724 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2726 return 0;
2729 static int
2730 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2732 struct status_block *sblk = bnapi->status_blk.msi;
2733 u32 new_link_state, old_link_state;
2734 int is_set = 1;
2736 new_link_state = sblk->status_attn_bits & event;
2737 old_link_state = sblk->status_attn_bits_ack & event;
2738 if (new_link_state != old_link_state) {
2739 if (new_link_state)
2740 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2741 else
2742 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2743 } else
2744 is_set = 0;
2746 return is_set;
2749 static void
2750 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2752 spin_lock(&bp->phy_lock);
2754 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2755 bnx2_set_link(bp);
2756 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2757 bnx2_set_remote_link(bp);
2759 spin_unlock(&bp->phy_lock);
2763 static inline u16
2764 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2766 u16 cons;
2768 /* Tell compiler that status block fields can change. */
2769 barrier();
2770 cons = *bnapi->hw_tx_cons_ptr;
2771 barrier();
2772 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2773 cons++;
2774 return cons;
2777 static int
2778 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2780 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2781 u16 hw_cons, sw_cons, sw_ring_cons;
2782 int tx_pkt = 0, index;
2783 struct netdev_queue *txq;
2785 index = (bnapi - bp->bnx2_napi);
2786 txq = netdev_get_tx_queue(bp->dev, index);
2788 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2789 sw_cons = txr->tx_cons;
2791 while (sw_cons != hw_cons) {
2792 struct sw_tx_bd *tx_buf;
2793 struct sk_buff *skb;
2794 int i, last;
2796 sw_ring_cons = TX_RING_IDX(sw_cons);
2798 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2799 skb = tx_buf->skb;
2801 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2802 prefetch(&skb->end);
2804 /* partial BD completions possible with TSO packets */
2805 if (tx_buf->is_gso) {
2806 u16 last_idx, last_ring_idx;
2808 last_idx = sw_cons + tx_buf->nr_frags + 1;
2809 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2810 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2811 last_idx++;
2813 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2814 break;
2818 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
2819 skb_headlen(skb), PCI_DMA_TODEVICE);
2821 tx_buf->skb = NULL;
2822 last = tx_buf->nr_frags;
2824 for (i = 0; i < last; i++) {
2825 sw_cons = NEXT_TX_BD(sw_cons);
2827 pci_unmap_page(bp->pdev,
2828 pci_unmap_addr(
2829 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2830 mapping),
2831 skb_shinfo(skb)->frags[i].size,
2832 PCI_DMA_TODEVICE);
2835 sw_cons = NEXT_TX_BD(sw_cons);
2837 dev_kfree_skb(skb);
2838 tx_pkt++;
2839 if (tx_pkt == budget)
2840 break;
2842 if (hw_cons == sw_cons)
2843 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2846 txr->hw_tx_cons = hw_cons;
2847 txr->tx_cons = sw_cons;
2849 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2850 * before checking for netif_tx_queue_stopped(). Without the
2851 * memory barrier, there is a small possibility that bnx2_start_xmit()
2852 * will miss it and cause the queue to be stopped forever.
2854 smp_mb();
2856 if (unlikely(netif_tx_queue_stopped(txq)) &&
2857 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2858 __netif_tx_lock(txq, smp_processor_id());
2859 if ((netif_tx_queue_stopped(txq)) &&
2860 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2861 netif_tx_wake_queue(txq);
2862 __netif_tx_unlock(txq);
2865 return tx_pkt;
2868 static void
2869 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2870 struct sk_buff *skb, int count)
2872 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2873 struct rx_bd *cons_bd, *prod_bd;
2874 int i;
2875 u16 hw_prod, prod;
2876 u16 cons = rxr->rx_pg_cons;
2878 cons_rx_pg = &rxr->rx_pg_ring[cons];
2880 /* The caller was unable to allocate a new page to replace the
2881 * last one in the frags array, so we need to recycle that page
2882 * and then free the skb.
2884 if (skb) {
2885 struct page *page;
2886 struct skb_shared_info *shinfo;
2888 shinfo = skb_shinfo(skb);
2889 shinfo->nr_frags--;
2890 page = shinfo->frags[shinfo->nr_frags].page;
2891 shinfo->frags[shinfo->nr_frags].page = NULL;
2893 cons_rx_pg->page = page;
2894 dev_kfree_skb(skb);
2897 hw_prod = rxr->rx_pg_prod;
2899 for (i = 0; i < count; i++) {
2900 prod = RX_PG_RING_IDX(hw_prod);
2902 prod_rx_pg = &rxr->rx_pg_ring[prod];
2903 cons_rx_pg = &rxr->rx_pg_ring[cons];
2904 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2905 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2907 if (prod != cons) {
2908 prod_rx_pg->page = cons_rx_pg->page;
2909 cons_rx_pg->page = NULL;
2910 pci_unmap_addr_set(prod_rx_pg, mapping,
2911 pci_unmap_addr(cons_rx_pg, mapping));
2913 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2914 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2917 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2918 hw_prod = NEXT_RX_BD(hw_prod);
2920 rxr->rx_pg_prod = hw_prod;
2921 rxr->rx_pg_cons = cons;
2924 static inline void
2925 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2926 struct sk_buff *skb, u16 cons, u16 prod)
2928 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2929 struct rx_bd *cons_bd, *prod_bd;
2931 cons_rx_buf = &rxr->rx_buf_ring[cons];
2932 prod_rx_buf = &rxr->rx_buf_ring[prod];
2934 pci_dma_sync_single_for_device(bp->pdev,
2935 pci_unmap_addr(cons_rx_buf, mapping),
2936 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2938 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2940 prod_rx_buf->skb = skb;
2942 if (cons == prod)
2943 return;
2945 pci_unmap_addr_set(prod_rx_buf, mapping,
2946 pci_unmap_addr(cons_rx_buf, mapping));
2948 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2949 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2950 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2951 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2954 static int
2955 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2956 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2957 u32 ring_idx)
2959 int err;
2960 u16 prod = ring_idx & 0xffff;
2962 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2963 if (unlikely(err)) {
2964 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2965 if (hdr_len) {
2966 unsigned int raw_len = len + 4;
2967 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2969 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2971 return err;
2974 skb_reserve(skb, BNX2_RX_OFFSET);
2975 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2976 PCI_DMA_FROMDEVICE);
2978 if (hdr_len == 0) {
2979 skb_put(skb, len);
2980 return 0;
2981 } else {
2982 unsigned int i, frag_len, frag_size, pages;
2983 struct sw_pg *rx_pg;
2984 u16 pg_cons = rxr->rx_pg_cons;
2985 u16 pg_prod = rxr->rx_pg_prod;
2987 frag_size = len + 4 - hdr_len;
2988 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2989 skb_put(skb, hdr_len);
2991 for (i = 0; i < pages; i++) {
2992 dma_addr_t mapping_old;
2994 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2995 if (unlikely(frag_len <= 4)) {
2996 unsigned int tail = 4 - frag_len;
2998 rxr->rx_pg_cons = pg_cons;
2999 rxr->rx_pg_prod = pg_prod;
3000 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
3001 pages - i);
3002 skb->len -= tail;
3003 if (i == 0) {
3004 skb->tail -= tail;
3005 } else {
3006 skb_frag_t *frag =
3007 &skb_shinfo(skb)->frags[i - 1];
3008 frag->size -= tail;
3009 skb->data_len -= tail;
3010 skb->truesize -= tail;
3012 return 0;
3014 rx_pg = &rxr->rx_pg_ring[pg_cons];
3016 /* Don't unmap yet. If we're unable to allocate a new
3017 * page, we need to recycle the page and the DMA addr.
3019 mapping_old = pci_unmap_addr(rx_pg, mapping);
3020 if (i == pages - 1)
3021 frag_len -= 4;
3023 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3024 rx_pg->page = NULL;
3026 err = bnx2_alloc_rx_page(bp, rxr,
3027 RX_PG_RING_IDX(pg_prod));
3028 if (unlikely(err)) {
3029 rxr->rx_pg_cons = pg_cons;
3030 rxr->rx_pg_prod = pg_prod;
3031 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3032 pages - i);
3033 return err;
3036 pci_unmap_page(bp->pdev, mapping_old,
3037 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3039 frag_size -= frag_len;
3040 skb->data_len += frag_len;
3041 skb->truesize += frag_len;
3042 skb->len += frag_len;
3044 pg_prod = NEXT_RX_BD(pg_prod);
3045 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3047 rxr->rx_pg_prod = pg_prod;
3048 rxr->rx_pg_cons = pg_cons;
3050 return 0;
3053 static inline u16
3054 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3056 u16 cons;
3058 /* Tell compiler that status block fields can change. */
3059 barrier();
3060 cons = *bnapi->hw_rx_cons_ptr;
3061 barrier();
3062 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3063 cons++;
3064 return cons;
3067 static int
3068 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3070 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3071 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3072 struct l2_fhdr *rx_hdr;
3073 int rx_pkt = 0, pg_ring_used = 0;
3075 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3076 sw_cons = rxr->rx_cons;
3077 sw_prod = rxr->rx_prod;
3079 /* Memory barrier necessary as speculative reads of the rx
3080 * buffer can be ahead of the index in the status block
3082 rmb();
3083 while (sw_cons != hw_cons) {
3084 unsigned int len, hdr_len;
3085 u32 status;
3086 struct sw_bd *rx_buf;
3087 struct sk_buff *skb;
3088 dma_addr_t dma_addr;
3089 u16 vtag = 0;
3090 int hw_vlan __maybe_unused = 0;
3092 sw_ring_cons = RX_RING_IDX(sw_cons);
3093 sw_ring_prod = RX_RING_IDX(sw_prod);
3095 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3096 skb = rx_buf->skb;
3098 rx_buf->skb = NULL;
3100 dma_addr = pci_unmap_addr(rx_buf, mapping);
3102 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3103 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3104 PCI_DMA_FROMDEVICE);
3106 rx_hdr = (struct l2_fhdr *) skb->data;
3107 len = rx_hdr->l2_fhdr_pkt_len;
3108 status = rx_hdr->l2_fhdr_status;
3110 hdr_len = 0;
3111 if (status & L2_FHDR_STATUS_SPLIT) {
3112 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3113 pg_ring_used = 1;
3114 } else if (len > bp->rx_jumbo_thresh) {
3115 hdr_len = bp->rx_jumbo_thresh;
3116 pg_ring_used = 1;
3119 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3120 L2_FHDR_ERRORS_PHY_DECODE |
3121 L2_FHDR_ERRORS_ALIGNMENT |
3122 L2_FHDR_ERRORS_TOO_SHORT |
3123 L2_FHDR_ERRORS_GIANT_FRAME))) {
3125 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3126 sw_ring_prod);
3127 if (pg_ring_used) {
3128 int pages;
3130 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3132 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3134 goto next_rx;
3137 len -= 4;
3139 if (len <= bp->rx_copy_thresh) {
3140 struct sk_buff *new_skb;
3142 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3143 if (new_skb == NULL) {
3144 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3145 sw_ring_prod);
3146 goto next_rx;
3149 /* aligned copy */
3150 skb_copy_from_linear_data_offset(skb,
3151 BNX2_RX_OFFSET - 6,
3152 new_skb->data, len + 6);
3153 skb_reserve(new_skb, 6);
3154 skb_put(new_skb, len);
3156 bnx2_reuse_rx_skb(bp, rxr, skb,
3157 sw_ring_cons, sw_ring_prod);
3159 skb = new_skb;
3160 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3161 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3162 goto next_rx;
3164 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3165 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3166 vtag = rx_hdr->l2_fhdr_vlan_tag;
3167 #ifdef BCM_VLAN
3168 if (bp->vlgrp)
3169 hw_vlan = 1;
3170 else
3171 #endif
3173 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3174 __skb_push(skb, 4);
3176 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3177 ve->h_vlan_proto = htons(ETH_P_8021Q);
3178 ve->h_vlan_TCI = htons(vtag);
3179 len += 4;
3183 skb->protocol = eth_type_trans(skb, bp->dev);
3185 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3186 (ntohs(skb->protocol) != 0x8100)) {
3188 dev_kfree_skb(skb);
3189 goto next_rx;
3193 skb->ip_summed = CHECKSUM_NONE;
3194 if (bp->rx_csum &&
3195 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3196 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3198 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3199 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3200 skb->ip_summed = CHECKSUM_UNNECESSARY;
3203 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3205 #ifdef BCM_VLAN
3206 if (hw_vlan)
3207 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3208 else
3209 #endif
3210 netif_receive_skb(skb);
3212 rx_pkt++;
3214 next_rx:
3215 sw_cons = NEXT_RX_BD(sw_cons);
3216 sw_prod = NEXT_RX_BD(sw_prod);
3218 if ((rx_pkt == budget))
3219 break;
3221 /* Refresh hw_cons to see if there is new work */
3222 if (sw_cons == hw_cons) {
3223 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3224 rmb();
3227 rxr->rx_cons = sw_cons;
3228 rxr->rx_prod = sw_prod;
3230 if (pg_ring_used)
3231 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3233 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3235 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3237 mmiowb();
3239 return rx_pkt;
3243 /* MSI ISR - The only difference between this and the INTx ISR
3244 * is that the MSI interrupt is always serviced.
3246 static irqreturn_t
3247 bnx2_msi(int irq, void *dev_instance)
3249 struct bnx2_napi *bnapi = dev_instance;
3250 struct bnx2 *bp = bnapi->bp;
3252 prefetch(bnapi->status_blk.msi);
3253 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3254 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3255 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3257 /* Return here if interrupt is disabled. */
3258 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3259 return IRQ_HANDLED;
3261 napi_schedule(&bnapi->napi);
3263 return IRQ_HANDLED;
3266 static irqreturn_t
3267 bnx2_msi_1shot(int irq, void *dev_instance)
3269 struct bnx2_napi *bnapi = dev_instance;
3270 struct bnx2 *bp = bnapi->bp;
3272 prefetch(bnapi->status_blk.msi);
3274 /* Return here if interrupt is disabled. */
3275 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3276 return IRQ_HANDLED;
3278 napi_schedule(&bnapi->napi);
3280 return IRQ_HANDLED;
3283 static irqreturn_t
3284 bnx2_interrupt(int irq, void *dev_instance)
3286 struct bnx2_napi *bnapi = dev_instance;
3287 struct bnx2 *bp = bnapi->bp;
3288 struct status_block *sblk = bnapi->status_blk.msi;
3290 /* When using INTx, it is possible for the interrupt to arrive
3291 * at the CPU before the status block posted prior to the
3292 * interrupt. Reading a register will flush the status block.
3293 * When using MSI, the MSI message will always complete after
3294 * the status block write.
3296 if ((sblk->status_idx == bnapi->last_status_idx) &&
3297 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3298 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3299 return IRQ_NONE;
3301 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3302 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3303 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3305 /* Read back to deassert IRQ immediately to avoid too many
3306 * spurious interrupts.
3308 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3310 /* Return here if interrupt is shared and is disabled. */
3311 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3312 return IRQ_HANDLED;
3314 if (napi_schedule_prep(&bnapi->napi)) {
3315 bnapi->last_status_idx = sblk->status_idx;
3316 __napi_schedule(&bnapi->napi);
3319 return IRQ_HANDLED;
3322 static inline int
3323 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3325 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3326 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3328 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3329 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3330 return 1;
3331 return 0;
3334 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3335 STATUS_ATTN_BITS_TIMER_ABORT)
3337 static inline int
3338 bnx2_has_work(struct bnx2_napi *bnapi)
3340 struct status_block *sblk = bnapi->status_blk.msi;
3342 if (bnx2_has_fast_work(bnapi))
3343 return 1;
3345 #ifdef BCM_CNIC
3346 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3347 return 1;
3348 #endif
3350 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3351 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3352 return 1;
3354 return 0;
3357 static void
3358 bnx2_chk_missed_msi(struct bnx2 *bp)
3360 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3361 u32 msi_ctrl;
3363 if (bnx2_has_work(bnapi)) {
3364 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3365 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3366 return;
3368 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3369 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3370 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3371 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3372 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3376 bp->idle_chk_status_idx = bnapi->last_status_idx;
3379 #ifdef BCM_CNIC
3380 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3382 struct cnic_ops *c_ops;
3384 if (!bnapi->cnic_present)
3385 return;
3387 rcu_read_lock();
3388 c_ops = rcu_dereference(bp->cnic_ops);
3389 if (c_ops)
3390 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3391 bnapi->status_blk.msi);
3392 rcu_read_unlock();
3394 #endif
3396 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3398 struct status_block *sblk = bnapi->status_blk.msi;
3399 u32 status_attn_bits = sblk->status_attn_bits;
3400 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3402 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3403 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3405 bnx2_phy_int(bp, bnapi);
3407 /* This is needed to take care of transient status
3408 * during link changes.
3410 REG_WR(bp, BNX2_HC_COMMAND,
3411 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3412 REG_RD(bp, BNX2_HC_COMMAND);
3416 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3417 int work_done, int budget)
3419 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3420 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3422 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3423 bnx2_tx_int(bp, bnapi, 0);
3425 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3426 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3428 return work_done;
3431 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3433 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3434 struct bnx2 *bp = bnapi->bp;
3435 int work_done = 0;
3436 struct status_block_msix *sblk = bnapi->status_blk.msix;
3438 while (1) {
3439 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3440 if (unlikely(work_done >= budget))
3441 break;
3443 bnapi->last_status_idx = sblk->status_idx;
3444 /* status idx must be read before checking for more work. */
3445 rmb();
3446 if (likely(!bnx2_has_fast_work(bnapi))) {
3448 napi_complete(napi);
3449 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3450 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3451 bnapi->last_status_idx);
3452 break;
3455 return work_done;
3458 static int bnx2_poll(struct napi_struct *napi, int budget)
3460 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3461 struct bnx2 *bp = bnapi->bp;
3462 int work_done = 0;
3463 struct status_block *sblk = bnapi->status_blk.msi;
3465 while (1) {
3466 bnx2_poll_link(bp, bnapi);
3468 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3470 #ifdef BCM_CNIC
3471 bnx2_poll_cnic(bp, bnapi);
3472 #endif
3474 /* bnapi->last_status_idx is used below to tell the hw how
3475 * much work has been processed, so we must read it before
3476 * checking for more work.
3478 bnapi->last_status_idx = sblk->status_idx;
3480 if (unlikely(work_done >= budget))
3481 break;
3483 rmb();
3484 if (likely(!bnx2_has_work(bnapi))) {
3485 napi_complete(napi);
3486 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3487 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3488 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3489 bnapi->last_status_idx);
3490 break;
3492 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3493 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3494 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3495 bnapi->last_status_idx);
3497 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3498 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3499 bnapi->last_status_idx);
3500 break;
3504 return work_done;
3507 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3508 * from set_multicast.
3510 static void
3511 bnx2_set_rx_mode(struct net_device *dev)
3513 struct bnx2 *bp = netdev_priv(dev);
3514 u32 rx_mode, sort_mode;
3515 struct netdev_hw_addr *ha;
3516 int i;
3518 if (!netif_running(dev))
3519 return;
3521 spin_lock_bh(&bp->phy_lock);
3523 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3524 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3525 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3526 #ifdef BCM_VLAN
3527 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3528 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3529 #else
3530 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3531 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3532 #endif
3533 if (dev->flags & IFF_PROMISC) {
3534 /* Promiscuous mode. */
3535 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3536 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3537 BNX2_RPM_SORT_USER0_PROM_VLAN;
3539 else if (dev->flags & IFF_ALLMULTI) {
3540 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3541 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3542 0xffffffff);
3544 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3546 else {
3547 /* Accept one or more multicast(s). */
3548 struct dev_mc_list *mclist;
3549 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3550 u32 regidx;
3551 u32 bit;
3552 u32 crc;
3554 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3556 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3557 i++, mclist = mclist->next) {
3559 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3560 bit = crc & 0xff;
3561 regidx = (bit & 0xe0) >> 5;
3562 bit &= 0x1f;
3563 mc_filter[regidx] |= (1 << bit);
3566 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3567 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3568 mc_filter[i]);
3571 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3574 if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
3575 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3576 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3577 BNX2_RPM_SORT_USER0_PROM_VLAN;
3578 } else if (!(dev->flags & IFF_PROMISC)) {
3579 /* Add all entries into to the match filter list */
3580 i = 0;
3581 list_for_each_entry(ha, &dev->uc.list, list) {
3582 bnx2_set_mac_addr(bp, ha->addr,
3583 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3584 sort_mode |= (1 <<
3585 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3586 i++;
3591 if (rx_mode != bp->rx_mode) {
3592 bp->rx_mode = rx_mode;
3593 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3596 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3597 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3598 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3600 spin_unlock_bh(&bp->phy_lock);
3603 static int __devinit
3604 check_fw_section(const struct firmware *fw,
3605 const struct bnx2_fw_file_section *section,
3606 u32 alignment, bool non_empty)
3608 u32 offset = be32_to_cpu(section->offset);
3609 u32 len = be32_to_cpu(section->len);
3611 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3612 return -EINVAL;
3613 if ((non_empty && len == 0) || len > fw->size - offset ||
3614 len & (alignment - 1))
3615 return -EINVAL;
3616 return 0;
3619 static int __devinit
3620 check_mips_fw_entry(const struct firmware *fw,
3621 const struct bnx2_mips_fw_file_entry *entry)
3623 if (check_fw_section(fw, &entry->text, 4, true) ||
3624 check_fw_section(fw, &entry->data, 4, false) ||
3625 check_fw_section(fw, &entry->rodata, 4, false))
3626 return -EINVAL;
3627 return 0;
3630 static int __devinit
3631 bnx2_request_firmware(struct bnx2 *bp)
3633 const char *mips_fw_file, *rv2p_fw_file;
3634 const struct bnx2_mips_fw_file *mips_fw;
3635 const struct bnx2_rv2p_fw_file *rv2p_fw;
3636 int rc;
3638 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3639 mips_fw_file = FW_MIPS_FILE_09;
3640 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3641 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3642 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3643 else
3644 rv2p_fw_file = FW_RV2P_FILE_09;
3645 } else {
3646 mips_fw_file = FW_MIPS_FILE_06;
3647 rv2p_fw_file = FW_RV2P_FILE_06;
3650 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3651 if (rc) {
3652 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3653 mips_fw_file);
3654 return rc;
3657 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3658 if (rc) {
3659 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3660 rv2p_fw_file);
3661 return rc;
3663 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3664 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3665 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3666 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3667 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3668 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3669 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3670 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3671 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3672 mips_fw_file);
3673 return -EINVAL;
3675 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3676 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3677 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3678 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3679 rv2p_fw_file);
3680 return -EINVAL;
3683 return 0;
3686 static u32
3687 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3689 switch (idx) {
3690 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3691 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3692 rv2p_code |= RV2P_BD_PAGE_SIZE;
3693 break;
3695 return rv2p_code;
3698 static int
3699 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3700 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3702 u32 rv2p_code_len, file_offset;
3703 __be32 *rv2p_code;
3704 int i;
3705 u32 val, cmd, addr;
3707 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3708 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3710 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3712 if (rv2p_proc == RV2P_PROC1) {
3713 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3714 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3715 } else {
3716 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3717 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3720 for (i = 0; i < rv2p_code_len; i += 8) {
3721 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3722 rv2p_code++;
3723 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3724 rv2p_code++;
3726 val = (i / 8) | cmd;
3727 REG_WR(bp, addr, val);
3730 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3731 for (i = 0; i < 8; i++) {
3732 u32 loc, code;
3734 loc = be32_to_cpu(fw_entry->fixup[i]);
3735 if (loc && ((loc * 4) < rv2p_code_len)) {
3736 code = be32_to_cpu(*(rv2p_code + loc - 1));
3737 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3738 code = be32_to_cpu(*(rv2p_code + loc));
3739 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3740 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3742 val = (loc / 2) | cmd;
3743 REG_WR(bp, addr, val);
3747 /* Reset the processor, un-stall is done later. */
3748 if (rv2p_proc == RV2P_PROC1) {
3749 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3751 else {
3752 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3755 return 0;
3758 static int
3759 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3760 const struct bnx2_mips_fw_file_entry *fw_entry)
3762 u32 addr, len, file_offset;
3763 __be32 *data;
3764 u32 offset;
3765 u32 val;
3767 /* Halt the CPU. */
3768 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3769 val |= cpu_reg->mode_value_halt;
3770 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3771 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3773 /* Load the Text area. */
3774 addr = be32_to_cpu(fw_entry->text.addr);
3775 len = be32_to_cpu(fw_entry->text.len);
3776 file_offset = be32_to_cpu(fw_entry->text.offset);
3777 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3779 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3780 if (len) {
3781 int j;
3783 for (j = 0; j < (len / 4); j++, offset += 4)
3784 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3787 /* Load the Data area. */
3788 addr = be32_to_cpu(fw_entry->data.addr);
3789 len = be32_to_cpu(fw_entry->data.len);
3790 file_offset = be32_to_cpu(fw_entry->data.offset);
3791 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3793 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3794 if (len) {
3795 int j;
3797 for (j = 0; j < (len / 4); j++, offset += 4)
3798 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3801 /* Load the Read-Only area. */
3802 addr = be32_to_cpu(fw_entry->rodata.addr);
3803 len = be32_to_cpu(fw_entry->rodata.len);
3804 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3805 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3807 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3808 if (len) {
3809 int j;
3811 for (j = 0; j < (len / 4); j++, offset += 4)
3812 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3815 /* Clear the pre-fetch instruction. */
3816 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3818 val = be32_to_cpu(fw_entry->start_addr);
3819 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3821 /* Start the CPU. */
3822 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3823 val &= ~cpu_reg->mode_value_halt;
3824 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3825 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3827 return 0;
3830 static int
3831 bnx2_init_cpus(struct bnx2 *bp)
3833 const struct bnx2_mips_fw_file *mips_fw =
3834 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3835 const struct bnx2_rv2p_fw_file *rv2p_fw =
3836 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3837 int rc;
3839 /* Initialize the RV2P processor. */
3840 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3841 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3843 /* Initialize the RX Processor. */
3844 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3845 if (rc)
3846 goto init_cpu_err;
3848 /* Initialize the TX Processor. */
3849 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3850 if (rc)
3851 goto init_cpu_err;
3853 /* Initialize the TX Patch-up Processor. */
3854 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3855 if (rc)
3856 goto init_cpu_err;
3858 /* Initialize the Completion Processor. */
3859 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3860 if (rc)
3861 goto init_cpu_err;
3863 /* Initialize the Command Processor. */
3864 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3866 init_cpu_err:
3867 return rc;
3870 static int
3871 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3873 u16 pmcsr;
3875 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3877 switch (state) {
3878 case PCI_D0: {
3879 u32 val;
3881 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3882 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3883 PCI_PM_CTRL_PME_STATUS);
3885 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3886 /* delay required during transition out of D3hot */
3887 msleep(20);
3889 val = REG_RD(bp, BNX2_EMAC_MODE);
3890 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3891 val &= ~BNX2_EMAC_MODE_MPKT;
3892 REG_WR(bp, BNX2_EMAC_MODE, val);
3894 val = REG_RD(bp, BNX2_RPM_CONFIG);
3895 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3896 REG_WR(bp, BNX2_RPM_CONFIG, val);
3897 break;
3899 case PCI_D3hot: {
3900 int i;
3901 u32 val, wol_msg;
3903 if (bp->wol) {
3904 u32 advertising;
3905 u8 autoneg;
3907 autoneg = bp->autoneg;
3908 advertising = bp->advertising;
3910 if (bp->phy_port == PORT_TP) {
3911 bp->autoneg = AUTONEG_SPEED;
3912 bp->advertising = ADVERTISED_10baseT_Half |
3913 ADVERTISED_10baseT_Full |
3914 ADVERTISED_100baseT_Half |
3915 ADVERTISED_100baseT_Full |
3916 ADVERTISED_Autoneg;
3919 spin_lock_bh(&bp->phy_lock);
3920 bnx2_setup_phy(bp, bp->phy_port);
3921 spin_unlock_bh(&bp->phy_lock);
3923 bp->autoneg = autoneg;
3924 bp->advertising = advertising;
3926 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3928 val = REG_RD(bp, BNX2_EMAC_MODE);
3930 /* Enable port mode. */
3931 val &= ~BNX2_EMAC_MODE_PORT;
3932 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3933 BNX2_EMAC_MODE_ACPI_RCVD |
3934 BNX2_EMAC_MODE_MPKT;
3935 if (bp->phy_port == PORT_TP)
3936 val |= BNX2_EMAC_MODE_PORT_MII;
3937 else {
3938 val |= BNX2_EMAC_MODE_PORT_GMII;
3939 if (bp->line_speed == SPEED_2500)
3940 val |= BNX2_EMAC_MODE_25G_MODE;
3943 REG_WR(bp, BNX2_EMAC_MODE, val);
3945 /* receive all multicast */
3946 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3947 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3948 0xffffffff);
3950 REG_WR(bp, BNX2_EMAC_RX_MODE,
3951 BNX2_EMAC_RX_MODE_SORT_MODE);
3953 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3954 BNX2_RPM_SORT_USER0_MC_EN;
3955 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3956 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3957 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3958 BNX2_RPM_SORT_USER0_ENA);
3960 /* Need to enable EMAC and RPM for WOL. */
3961 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3962 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3963 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3964 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3966 val = REG_RD(bp, BNX2_RPM_CONFIG);
3967 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3968 REG_WR(bp, BNX2_RPM_CONFIG, val);
3970 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3972 else {
3973 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3976 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3977 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3978 1, 0);
3980 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3981 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3982 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3984 if (bp->wol)
3985 pmcsr |= 3;
3987 else {
3988 pmcsr |= 3;
3990 if (bp->wol) {
3991 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3993 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3994 pmcsr);
3996 /* No more memory access after this point until
3997 * device is brought back to D0.
3999 udelay(50);
4000 break;
4002 default:
4003 return -EINVAL;
4005 return 0;
4008 static int
4009 bnx2_acquire_nvram_lock(struct bnx2 *bp)
4011 u32 val;
4012 int j;
4014 /* Request access to the flash interface. */
4015 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4016 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4017 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4018 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4019 break;
4021 udelay(5);
4024 if (j >= NVRAM_TIMEOUT_COUNT)
4025 return -EBUSY;
4027 return 0;
4030 static int
4031 bnx2_release_nvram_lock(struct bnx2 *bp)
4033 int j;
4034 u32 val;
4036 /* Relinquish nvram interface. */
4037 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4039 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4040 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4041 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4042 break;
4044 udelay(5);
4047 if (j >= NVRAM_TIMEOUT_COUNT)
4048 return -EBUSY;
4050 return 0;
4054 static int
4055 bnx2_enable_nvram_write(struct bnx2 *bp)
4057 u32 val;
4059 val = REG_RD(bp, BNX2_MISC_CFG);
4060 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4062 if (bp->flash_info->flags & BNX2_NV_WREN) {
4063 int j;
4065 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4066 REG_WR(bp, BNX2_NVM_COMMAND,
4067 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4069 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4070 udelay(5);
4072 val = REG_RD(bp, BNX2_NVM_COMMAND);
4073 if (val & BNX2_NVM_COMMAND_DONE)
4074 break;
4077 if (j >= NVRAM_TIMEOUT_COUNT)
4078 return -EBUSY;
4080 return 0;
4083 static void
4084 bnx2_disable_nvram_write(struct bnx2 *bp)
4086 u32 val;
4088 val = REG_RD(bp, BNX2_MISC_CFG);
4089 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4093 static void
4094 bnx2_enable_nvram_access(struct bnx2 *bp)
4096 u32 val;
4098 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4099 /* Enable both bits, even on read. */
4100 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4101 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4104 static void
4105 bnx2_disable_nvram_access(struct bnx2 *bp)
4107 u32 val;
4109 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4110 /* Disable both bits, even after read. */
4111 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4112 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4113 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4116 static int
4117 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4119 u32 cmd;
4120 int j;
4122 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4123 /* Buffered flash, no erase needed */
4124 return 0;
4126 /* Build an erase command */
4127 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4128 BNX2_NVM_COMMAND_DOIT;
4130 /* Need to clear DONE bit separately. */
4131 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4133 /* Address of the NVRAM to read from. */
4134 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4136 /* Issue an erase command. */
4137 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4139 /* Wait for completion. */
4140 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4141 u32 val;
4143 udelay(5);
4145 val = REG_RD(bp, BNX2_NVM_COMMAND);
4146 if (val & BNX2_NVM_COMMAND_DONE)
4147 break;
4150 if (j >= NVRAM_TIMEOUT_COUNT)
4151 return -EBUSY;
4153 return 0;
4156 static int
4157 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4159 u32 cmd;
4160 int j;
4162 /* Build the command word. */
4163 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4165 /* Calculate an offset of a buffered flash, not needed for 5709. */
4166 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4167 offset = ((offset / bp->flash_info->page_size) <<
4168 bp->flash_info->page_bits) +
4169 (offset % bp->flash_info->page_size);
4172 /* Need to clear DONE bit separately. */
4173 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4175 /* Address of the NVRAM to read from. */
4176 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4178 /* Issue a read command. */
4179 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4181 /* Wait for completion. */
4182 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4183 u32 val;
4185 udelay(5);
4187 val = REG_RD(bp, BNX2_NVM_COMMAND);
4188 if (val & BNX2_NVM_COMMAND_DONE) {
4189 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4190 memcpy(ret_val, &v, 4);
4191 break;
4194 if (j >= NVRAM_TIMEOUT_COUNT)
4195 return -EBUSY;
4197 return 0;
4201 static int
4202 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4204 u32 cmd;
4205 __be32 val32;
4206 int j;
4208 /* Build the command word. */
4209 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4211 /* Calculate an offset of a buffered flash, not needed for 5709. */
4212 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4213 offset = ((offset / bp->flash_info->page_size) <<
4214 bp->flash_info->page_bits) +
4215 (offset % bp->flash_info->page_size);
4218 /* Need to clear DONE bit separately. */
4219 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4221 memcpy(&val32, val, 4);
4223 /* Write the data. */
4224 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4226 /* Address of the NVRAM to write to. */
4227 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4229 /* Issue the write command. */
4230 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4232 /* Wait for completion. */
4233 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4234 udelay(5);
4236 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4237 break;
4239 if (j >= NVRAM_TIMEOUT_COUNT)
4240 return -EBUSY;
4242 return 0;
4245 static int
4246 bnx2_init_nvram(struct bnx2 *bp)
4248 u32 val;
4249 int j, entry_count, rc = 0;
4250 const struct flash_spec *flash;
4252 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4253 bp->flash_info = &flash_5709;
4254 goto get_flash_size;
4257 /* Determine the selected interface. */
4258 val = REG_RD(bp, BNX2_NVM_CFG1);
4260 entry_count = ARRAY_SIZE(flash_table);
4262 if (val & 0x40000000) {
4264 /* Flash interface has been reconfigured */
4265 for (j = 0, flash = &flash_table[0]; j < entry_count;
4266 j++, flash++) {
4267 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4268 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4269 bp->flash_info = flash;
4270 break;
4274 else {
4275 u32 mask;
4276 /* Not yet been reconfigured */
4278 if (val & (1 << 23))
4279 mask = FLASH_BACKUP_STRAP_MASK;
4280 else
4281 mask = FLASH_STRAP_MASK;
4283 for (j = 0, flash = &flash_table[0]; j < entry_count;
4284 j++, flash++) {
4286 if ((val & mask) == (flash->strapping & mask)) {
4287 bp->flash_info = flash;
4289 /* Request access to the flash interface. */
4290 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4291 return rc;
4293 /* Enable access to flash interface */
4294 bnx2_enable_nvram_access(bp);
4296 /* Reconfigure the flash interface */
4297 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4298 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4299 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4300 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4302 /* Disable access to flash interface */
4303 bnx2_disable_nvram_access(bp);
4304 bnx2_release_nvram_lock(bp);
4306 break;
4309 } /* if (val & 0x40000000) */
4311 if (j == entry_count) {
4312 bp->flash_info = NULL;
4313 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4314 return -ENODEV;
4317 get_flash_size:
4318 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4319 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4320 if (val)
4321 bp->flash_size = val;
4322 else
4323 bp->flash_size = bp->flash_info->total_size;
4325 return rc;
4328 static int
4329 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4330 int buf_size)
4332 int rc = 0;
4333 u32 cmd_flags, offset32, len32, extra;
4335 if (buf_size == 0)
4336 return 0;
4338 /* Request access to the flash interface. */
4339 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4340 return rc;
4342 /* Enable access to flash interface */
4343 bnx2_enable_nvram_access(bp);
4345 len32 = buf_size;
4346 offset32 = offset;
4347 extra = 0;
4349 cmd_flags = 0;
4351 if (offset32 & 3) {
4352 u8 buf[4];
4353 u32 pre_len;
4355 offset32 &= ~3;
4356 pre_len = 4 - (offset & 3);
4358 if (pre_len >= len32) {
4359 pre_len = len32;
4360 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4361 BNX2_NVM_COMMAND_LAST;
4363 else {
4364 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4367 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4369 if (rc)
4370 return rc;
4372 memcpy(ret_buf, buf + (offset & 3), pre_len);
4374 offset32 += 4;
4375 ret_buf += pre_len;
4376 len32 -= pre_len;
4378 if (len32 & 3) {
4379 extra = 4 - (len32 & 3);
4380 len32 = (len32 + 4) & ~3;
4383 if (len32 == 4) {
4384 u8 buf[4];
4386 if (cmd_flags)
4387 cmd_flags = BNX2_NVM_COMMAND_LAST;
4388 else
4389 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4390 BNX2_NVM_COMMAND_LAST;
4392 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4394 memcpy(ret_buf, buf, 4 - extra);
4396 else if (len32 > 0) {
4397 u8 buf[4];
4399 /* Read the first word. */
4400 if (cmd_flags)
4401 cmd_flags = 0;
4402 else
4403 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4405 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4407 /* Advance to the next dword. */
4408 offset32 += 4;
4409 ret_buf += 4;
4410 len32 -= 4;
4412 while (len32 > 4 && rc == 0) {
4413 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4415 /* Advance to the next dword. */
4416 offset32 += 4;
4417 ret_buf += 4;
4418 len32 -= 4;
4421 if (rc)
4422 return rc;
4424 cmd_flags = BNX2_NVM_COMMAND_LAST;
4425 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4427 memcpy(ret_buf, buf, 4 - extra);
4430 /* Disable access to flash interface */
4431 bnx2_disable_nvram_access(bp);
4433 bnx2_release_nvram_lock(bp);
4435 return rc;
4438 static int
4439 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4440 int buf_size)
4442 u32 written, offset32, len32;
4443 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4444 int rc = 0;
4445 int align_start, align_end;
4447 buf = data_buf;
4448 offset32 = offset;
4449 len32 = buf_size;
4450 align_start = align_end = 0;
4452 if ((align_start = (offset32 & 3))) {
4453 offset32 &= ~3;
4454 len32 += align_start;
4455 if (len32 < 4)
4456 len32 = 4;
4457 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4458 return rc;
4461 if (len32 & 3) {
4462 align_end = 4 - (len32 & 3);
4463 len32 += align_end;
4464 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4465 return rc;
4468 if (align_start || align_end) {
4469 align_buf = kmalloc(len32, GFP_KERNEL);
4470 if (align_buf == NULL)
4471 return -ENOMEM;
4472 if (align_start) {
4473 memcpy(align_buf, start, 4);
4475 if (align_end) {
4476 memcpy(align_buf + len32 - 4, end, 4);
4478 memcpy(align_buf + align_start, data_buf, buf_size);
4479 buf = align_buf;
4482 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4483 flash_buffer = kmalloc(264, GFP_KERNEL);
4484 if (flash_buffer == NULL) {
4485 rc = -ENOMEM;
4486 goto nvram_write_end;
4490 written = 0;
4491 while ((written < len32) && (rc == 0)) {
4492 u32 page_start, page_end, data_start, data_end;
4493 u32 addr, cmd_flags;
4494 int i;
4496 /* Find the page_start addr */
4497 page_start = offset32 + written;
4498 page_start -= (page_start % bp->flash_info->page_size);
4499 /* Find the page_end addr */
4500 page_end = page_start + bp->flash_info->page_size;
4501 /* Find the data_start addr */
4502 data_start = (written == 0) ? offset32 : page_start;
4503 /* Find the data_end addr */
4504 data_end = (page_end > offset32 + len32) ?
4505 (offset32 + len32) : page_end;
4507 /* Request access to the flash interface. */
4508 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4509 goto nvram_write_end;
4511 /* Enable access to flash interface */
4512 bnx2_enable_nvram_access(bp);
4514 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4515 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4516 int j;
4518 /* Read the whole page into the buffer
4519 * (non-buffer flash only) */
4520 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4521 if (j == (bp->flash_info->page_size - 4)) {
4522 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4524 rc = bnx2_nvram_read_dword(bp,
4525 page_start + j,
4526 &flash_buffer[j],
4527 cmd_flags);
4529 if (rc)
4530 goto nvram_write_end;
4532 cmd_flags = 0;
4536 /* Enable writes to flash interface (unlock write-protect) */
4537 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4538 goto nvram_write_end;
4540 /* Loop to write back the buffer data from page_start to
4541 * data_start */
4542 i = 0;
4543 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4544 /* Erase the page */
4545 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4546 goto nvram_write_end;
4548 /* Re-enable the write again for the actual write */
4549 bnx2_enable_nvram_write(bp);
4551 for (addr = page_start; addr < data_start;
4552 addr += 4, i += 4) {
4554 rc = bnx2_nvram_write_dword(bp, addr,
4555 &flash_buffer[i], cmd_flags);
4557 if (rc != 0)
4558 goto nvram_write_end;
4560 cmd_flags = 0;
4564 /* Loop to write the new data from data_start to data_end */
4565 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4566 if ((addr == page_end - 4) ||
4567 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4568 (addr == data_end - 4))) {
4570 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4572 rc = bnx2_nvram_write_dword(bp, addr, buf,
4573 cmd_flags);
4575 if (rc != 0)
4576 goto nvram_write_end;
4578 cmd_flags = 0;
4579 buf += 4;
4582 /* Loop to write back the buffer data from data_end
4583 * to page_end */
4584 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4585 for (addr = data_end; addr < page_end;
4586 addr += 4, i += 4) {
4588 if (addr == page_end-4) {
4589 cmd_flags = BNX2_NVM_COMMAND_LAST;
4591 rc = bnx2_nvram_write_dword(bp, addr,
4592 &flash_buffer[i], cmd_flags);
4594 if (rc != 0)
4595 goto nvram_write_end;
4597 cmd_flags = 0;
4601 /* Disable writes to flash interface (lock write-protect) */
4602 bnx2_disable_nvram_write(bp);
4604 /* Disable access to flash interface */
4605 bnx2_disable_nvram_access(bp);
4606 bnx2_release_nvram_lock(bp);
4608 /* Increment written */
4609 written += data_end - data_start;
4612 nvram_write_end:
4613 kfree(flash_buffer);
4614 kfree(align_buf);
4615 return rc;
4618 static void
4619 bnx2_init_fw_cap(struct bnx2 *bp)
4621 u32 val, sig = 0;
4623 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4624 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4626 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4627 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4629 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4630 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4631 return;
4633 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4634 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4635 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4638 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4639 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4640 u32 link;
4642 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4644 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4645 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4646 bp->phy_port = PORT_FIBRE;
4647 else
4648 bp->phy_port = PORT_TP;
4650 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4651 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4654 if (netif_running(bp->dev) && sig)
4655 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4658 static void
4659 bnx2_setup_msix_tbl(struct bnx2 *bp)
4661 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4663 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4664 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4667 static int
4668 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4670 u32 val;
4671 int i, rc = 0;
4672 u8 old_port;
4674 /* Wait for the current PCI transaction to complete before
4675 * issuing a reset. */
4676 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4677 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4678 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4679 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4680 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4681 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4682 udelay(5);
4684 /* Wait for the firmware to tell us it is ok to issue a reset. */
4685 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4687 /* Deposit a driver reset signature so the firmware knows that
4688 * this is a soft reset. */
4689 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4690 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4692 /* Do a dummy read to force the chip to complete all current transaction
4693 * before we issue a reset. */
4694 val = REG_RD(bp, BNX2_MISC_ID);
4696 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4697 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4698 REG_RD(bp, BNX2_MISC_COMMAND);
4699 udelay(5);
4701 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4702 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4704 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4706 } else {
4707 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4708 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4709 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4711 /* Chip reset. */
4712 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4714 /* Reading back any register after chip reset will hang the
4715 * bus on 5706 A0 and A1. The msleep below provides plenty
4716 * of margin for write posting.
4718 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4719 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4720 msleep(20);
4722 /* Reset takes approximate 30 usec */
4723 for (i = 0; i < 10; i++) {
4724 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4725 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4726 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4727 break;
4728 udelay(10);
4731 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4732 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4733 printk(KERN_ERR PFX "Chip reset did not complete\n");
4734 return -EBUSY;
4738 /* Make sure byte swapping is properly configured. */
4739 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4740 if (val != 0x01020304) {
4741 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4742 return -ENODEV;
4745 /* Wait for the firmware to finish its initialization. */
4746 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4747 if (rc)
4748 return rc;
4750 spin_lock_bh(&bp->phy_lock);
4751 old_port = bp->phy_port;
4752 bnx2_init_fw_cap(bp);
4753 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4754 old_port != bp->phy_port)
4755 bnx2_set_default_remote_link(bp);
4756 spin_unlock_bh(&bp->phy_lock);
4758 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4759 /* Adjust the voltage regular to two steps lower. The default
4760 * of this register is 0x0000000e. */
4761 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4763 /* Remove bad rbuf memory from the free pool. */
4764 rc = bnx2_alloc_bad_rbuf(bp);
4767 if (bp->flags & BNX2_FLAG_USING_MSIX)
4768 bnx2_setup_msix_tbl(bp);
4770 return rc;
4773 static int
4774 bnx2_init_chip(struct bnx2 *bp)
4776 u32 val, mtu;
4777 int rc, i;
4779 /* Make sure the interrupt is not active. */
4780 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4782 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4783 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4784 #ifdef __BIG_ENDIAN
4785 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4786 #endif
4787 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4788 DMA_READ_CHANS << 12 |
4789 DMA_WRITE_CHANS << 16;
4791 val |= (0x2 << 20) | (1 << 11);
4793 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4794 val |= (1 << 23);
4796 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4797 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4798 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4800 REG_WR(bp, BNX2_DMA_CONFIG, val);
4802 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4803 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4804 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4805 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4808 if (bp->flags & BNX2_FLAG_PCIX) {
4809 u16 val16;
4811 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4812 &val16);
4813 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4814 val16 & ~PCI_X_CMD_ERO);
4817 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4818 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4819 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4820 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4822 /* Initialize context mapping and zero out the quick contexts. The
4823 * context block must have already been enabled. */
4824 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4825 rc = bnx2_init_5709_context(bp);
4826 if (rc)
4827 return rc;
4828 } else
4829 bnx2_init_context(bp);
4831 if ((rc = bnx2_init_cpus(bp)) != 0)
4832 return rc;
4834 bnx2_init_nvram(bp);
4836 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4838 val = REG_RD(bp, BNX2_MQ_CONFIG);
4839 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4840 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4841 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4842 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4843 if (CHIP_REV(bp) == CHIP_REV_Ax)
4844 val |= BNX2_MQ_CONFIG_HALT_DIS;
4847 REG_WR(bp, BNX2_MQ_CONFIG, val);
4849 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4850 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4851 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4853 val = (BCM_PAGE_BITS - 8) << 24;
4854 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4856 /* Configure page size. */
4857 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4858 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4859 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4860 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4862 val = bp->mac_addr[0] +
4863 (bp->mac_addr[1] << 8) +
4864 (bp->mac_addr[2] << 16) +
4865 bp->mac_addr[3] +
4866 (bp->mac_addr[4] << 8) +
4867 (bp->mac_addr[5] << 16);
4868 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4870 /* Program the MTU. Also include 4 bytes for CRC32. */
4871 mtu = bp->dev->mtu;
4872 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4873 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4874 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4875 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4877 if (mtu < 1500)
4878 mtu = 1500;
4880 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4881 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4882 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4884 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4885 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4886 bp->bnx2_napi[i].last_status_idx = 0;
4888 bp->idle_chk_status_idx = 0xffff;
4890 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4892 /* Set up how to generate a link change interrupt. */
4893 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4895 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4896 (u64) bp->status_blk_mapping & 0xffffffff);
4897 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4899 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4900 (u64) bp->stats_blk_mapping & 0xffffffff);
4901 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4902 (u64) bp->stats_blk_mapping >> 32);
4904 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4905 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4907 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4908 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4910 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4911 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4913 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4915 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4917 REG_WR(bp, BNX2_HC_COM_TICKS,
4918 (bp->com_ticks_int << 16) | bp->com_ticks);
4920 REG_WR(bp, BNX2_HC_CMD_TICKS,
4921 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4923 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4924 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4925 else
4926 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4927 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4929 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4930 val = BNX2_HC_CONFIG_COLLECT_STATS;
4931 else {
4932 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4933 BNX2_HC_CONFIG_COLLECT_STATS;
4936 if (bp->irq_nvecs > 1) {
4937 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4938 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4940 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4943 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4944 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4946 REG_WR(bp, BNX2_HC_CONFIG, val);
4948 for (i = 1; i < bp->irq_nvecs; i++) {
4949 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4950 BNX2_HC_SB_CONFIG_1;
4952 REG_WR(bp, base,
4953 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4954 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4955 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4957 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4958 (bp->tx_quick_cons_trip_int << 16) |
4959 bp->tx_quick_cons_trip);
4961 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4962 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4964 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4965 (bp->rx_quick_cons_trip_int << 16) |
4966 bp->rx_quick_cons_trip);
4968 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4969 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4972 /* Clear internal stats counters. */
4973 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4975 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4977 /* Initialize the receive filter. */
4978 bnx2_set_rx_mode(bp->dev);
4980 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4981 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4982 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4983 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4985 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4986 1, 0);
4988 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4989 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4991 udelay(20);
4993 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4995 return rc;
4998 static void
4999 bnx2_clear_ring_states(struct bnx2 *bp)
5001 struct bnx2_napi *bnapi;
5002 struct bnx2_tx_ring_info *txr;
5003 struct bnx2_rx_ring_info *rxr;
5004 int i;
5006 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5007 bnapi = &bp->bnx2_napi[i];
5008 txr = &bnapi->tx_ring;
5009 rxr = &bnapi->rx_ring;
5011 txr->tx_cons = 0;
5012 txr->hw_tx_cons = 0;
5013 rxr->rx_prod_bseq = 0;
5014 rxr->rx_prod = 0;
5015 rxr->rx_cons = 0;
5016 rxr->rx_pg_prod = 0;
5017 rxr->rx_pg_cons = 0;
5021 static void
5022 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5024 u32 val, offset0, offset1, offset2, offset3;
5025 u32 cid_addr = GET_CID_ADDR(cid);
5027 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5028 offset0 = BNX2_L2CTX_TYPE_XI;
5029 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5030 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5031 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5032 } else {
5033 offset0 = BNX2_L2CTX_TYPE;
5034 offset1 = BNX2_L2CTX_CMD_TYPE;
5035 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5036 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5038 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5039 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5041 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5042 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5044 val = (u64) txr->tx_desc_mapping >> 32;
5045 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5047 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5048 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5051 static void
5052 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5054 struct tx_bd *txbd;
5055 u32 cid = TX_CID;
5056 struct bnx2_napi *bnapi;
5057 struct bnx2_tx_ring_info *txr;
5059 bnapi = &bp->bnx2_napi[ring_num];
5060 txr = &bnapi->tx_ring;
5062 if (ring_num == 0)
5063 cid = TX_CID;
5064 else
5065 cid = TX_TSS_CID + ring_num - 1;
5067 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5069 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5071 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5072 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5074 txr->tx_prod = 0;
5075 txr->tx_prod_bseq = 0;
5077 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5078 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5080 bnx2_init_tx_context(bp, cid, txr);
5083 static void
5084 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5085 int num_rings)
5087 int i;
5088 struct rx_bd *rxbd;
5090 for (i = 0; i < num_rings; i++) {
5091 int j;
5093 rxbd = &rx_ring[i][0];
5094 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5095 rxbd->rx_bd_len = buf_size;
5096 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5098 if (i == (num_rings - 1))
5099 j = 0;
5100 else
5101 j = i + 1;
5102 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5103 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5107 static void
5108 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5110 int i;
5111 u16 prod, ring_prod;
5112 u32 cid, rx_cid_addr, val;
5113 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5114 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5116 if (ring_num == 0)
5117 cid = RX_CID;
5118 else
5119 cid = RX_RSS_CID + ring_num - 1;
5121 rx_cid_addr = GET_CID_ADDR(cid);
5123 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5124 bp->rx_buf_use_size, bp->rx_max_ring);
5126 bnx2_init_rx_context(bp, cid);
5128 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5129 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5130 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5133 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5134 if (bp->rx_pg_ring_size) {
5135 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5136 rxr->rx_pg_desc_mapping,
5137 PAGE_SIZE, bp->rx_max_pg_ring);
5138 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5139 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5140 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5141 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5143 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5144 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5146 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5147 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5149 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5150 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5153 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5154 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5156 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5157 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5159 ring_prod = prod = rxr->rx_pg_prod;
5160 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5161 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
5162 break;
5163 prod = NEXT_RX_BD(prod);
5164 ring_prod = RX_PG_RING_IDX(prod);
5166 rxr->rx_pg_prod = prod;
5168 ring_prod = prod = rxr->rx_prod;
5169 for (i = 0; i < bp->rx_ring_size; i++) {
5170 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
5171 break;
5172 prod = NEXT_RX_BD(prod);
5173 ring_prod = RX_RING_IDX(prod);
5175 rxr->rx_prod = prod;
5177 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5178 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5179 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5181 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5182 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5184 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5187 static void
5188 bnx2_init_all_rings(struct bnx2 *bp)
5190 int i;
5191 u32 val;
5193 bnx2_clear_ring_states(bp);
5195 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5196 for (i = 0; i < bp->num_tx_rings; i++)
5197 bnx2_init_tx_ring(bp, i);
5199 if (bp->num_tx_rings > 1)
5200 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5201 (TX_TSS_CID << 7));
5203 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5204 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5206 for (i = 0; i < bp->num_rx_rings; i++)
5207 bnx2_init_rx_ring(bp, i);
5209 if (bp->num_rx_rings > 1) {
5210 u32 tbl_32;
5211 u8 *tbl = (u8 *) &tbl_32;
5213 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5214 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5216 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5217 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5218 if ((i % 4) == 3)
5219 bnx2_reg_wr_ind(bp,
5220 BNX2_RXP_SCRATCH_RSS_TBL + i,
5221 cpu_to_be32(tbl_32));
5224 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5225 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5227 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5232 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5234 u32 max, num_rings = 1;
5236 while (ring_size > MAX_RX_DESC_CNT) {
5237 ring_size -= MAX_RX_DESC_CNT;
5238 num_rings++;
5240 /* round to next power of 2 */
5241 max = max_size;
5242 while ((max & num_rings) == 0)
5243 max >>= 1;
5245 if (num_rings != max)
5246 max <<= 1;
5248 return max;
5251 static void
5252 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5254 u32 rx_size, rx_space, jumbo_size;
5256 /* 8 for CRC and VLAN */
5257 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5259 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5260 sizeof(struct skb_shared_info);
5262 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5263 bp->rx_pg_ring_size = 0;
5264 bp->rx_max_pg_ring = 0;
5265 bp->rx_max_pg_ring_idx = 0;
5266 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5267 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5269 jumbo_size = size * pages;
5270 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5271 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5273 bp->rx_pg_ring_size = jumbo_size;
5274 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5275 MAX_RX_PG_RINGS);
5276 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5277 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5278 bp->rx_copy_thresh = 0;
5281 bp->rx_buf_use_size = rx_size;
5282 /* hw alignment */
5283 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5284 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5285 bp->rx_ring_size = size;
5286 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5287 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5290 static void
5291 bnx2_free_tx_skbs(struct bnx2 *bp)
5293 int i;
5295 for (i = 0; i < bp->num_tx_rings; i++) {
5296 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5297 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5298 int j;
5300 if (txr->tx_buf_ring == NULL)
5301 continue;
5303 for (j = 0; j < TX_DESC_CNT; ) {
5304 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5305 struct sk_buff *skb = tx_buf->skb;
5306 int k, last;
5308 if (skb == NULL) {
5309 j++;
5310 continue;
5313 pci_unmap_single(bp->pdev,
5314 pci_unmap_addr(tx_buf, mapping),
5315 skb_headlen(skb),
5316 PCI_DMA_TODEVICE);
5318 tx_buf->skb = NULL;
5320 last = tx_buf->nr_frags;
5321 j++;
5322 for (k = 0; k < last; k++, j++) {
5323 tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
5324 pci_unmap_page(bp->pdev,
5325 pci_unmap_addr(tx_buf, mapping),
5326 skb_shinfo(skb)->frags[k].size,
5327 PCI_DMA_TODEVICE);
5329 dev_kfree_skb(skb);
5334 static void
5335 bnx2_free_rx_skbs(struct bnx2 *bp)
5337 int i;
5339 for (i = 0; i < bp->num_rx_rings; i++) {
5340 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5341 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5342 int j;
5344 if (rxr->rx_buf_ring == NULL)
5345 return;
5347 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5348 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5349 struct sk_buff *skb = rx_buf->skb;
5351 if (skb == NULL)
5352 continue;
5354 pci_unmap_single(bp->pdev,
5355 pci_unmap_addr(rx_buf, mapping),
5356 bp->rx_buf_use_size,
5357 PCI_DMA_FROMDEVICE);
5359 rx_buf->skb = NULL;
5361 dev_kfree_skb(skb);
5363 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5364 bnx2_free_rx_page(bp, rxr, j);
5368 static void
5369 bnx2_free_skbs(struct bnx2 *bp)
5371 bnx2_free_tx_skbs(bp);
5372 bnx2_free_rx_skbs(bp);
5375 static int
5376 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5378 int rc;
5380 rc = bnx2_reset_chip(bp, reset_code);
5381 bnx2_free_skbs(bp);
5382 if (rc)
5383 return rc;
5385 if ((rc = bnx2_init_chip(bp)) != 0)
5386 return rc;
5388 bnx2_init_all_rings(bp);
5389 return 0;
5392 static int
5393 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5395 int rc;
5397 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5398 return rc;
5400 spin_lock_bh(&bp->phy_lock);
5401 bnx2_init_phy(bp, reset_phy);
5402 bnx2_set_link(bp);
5403 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5404 bnx2_remote_phy_event(bp);
5405 spin_unlock_bh(&bp->phy_lock);
5406 return 0;
5409 static int
5410 bnx2_shutdown_chip(struct bnx2 *bp)
5412 u32 reset_code;
5414 if (bp->flags & BNX2_FLAG_NO_WOL)
5415 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5416 else if (bp->wol)
5417 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5418 else
5419 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5421 return bnx2_reset_chip(bp, reset_code);
5424 static int
5425 bnx2_test_registers(struct bnx2 *bp)
5427 int ret;
5428 int i, is_5709;
5429 static const struct {
5430 u16 offset;
5431 u16 flags;
5432 #define BNX2_FL_NOT_5709 1
5433 u32 rw_mask;
5434 u32 ro_mask;
5435 } reg_tbl[] = {
5436 { 0x006c, 0, 0x00000000, 0x0000003f },
5437 { 0x0090, 0, 0xffffffff, 0x00000000 },
5438 { 0x0094, 0, 0x00000000, 0x00000000 },
5440 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5441 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5442 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5443 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5444 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5445 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5446 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5447 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5448 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5450 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5451 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5452 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5453 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5454 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5455 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5457 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5458 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5459 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5461 { 0x1000, 0, 0x00000000, 0x00000001 },
5462 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5464 { 0x1408, 0, 0x01c00800, 0x00000000 },
5465 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5466 { 0x14a8, 0, 0x00000000, 0x000001ff },
5467 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5468 { 0x14b0, 0, 0x00000002, 0x00000001 },
5469 { 0x14b8, 0, 0x00000000, 0x00000000 },
5470 { 0x14c0, 0, 0x00000000, 0x00000009 },
5471 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5472 { 0x14cc, 0, 0x00000000, 0x00000001 },
5473 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5475 { 0x1800, 0, 0x00000000, 0x00000001 },
5476 { 0x1804, 0, 0x00000000, 0x00000003 },
5478 { 0x2800, 0, 0x00000000, 0x00000001 },
5479 { 0x2804, 0, 0x00000000, 0x00003f01 },
5480 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5481 { 0x2810, 0, 0xffff0000, 0x00000000 },
5482 { 0x2814, 0, 0xffff0000, 0x00000000 },
5483 { 0x2818, 0, 0xffff0000, 0x00000000 },
5484 { 0x281c, 0, 0xffff0000, 0x00000000 },
5485 { 0x2834, 0, 0xffffffff, 0x00000000 },
5486 { 0x2840, 0, 0x00000000, 0xffffffff },
5487 { 0x2844, 0, 0x00000000, 0xffffffff },
5488 { 0x2848, 0, 0xffffffff, 0x00000000 },
5489 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5491 { 0x2c00, 0, 0x00000000, 0x00000011 },
5492 { 0x2c04, 0, 0x00000000, 0x00030007 },
5494 { 0x3c00, 0, 0x00000000, 0x00000001 },
5495 { 0x3c04, 0, 0x00000000, 0x00070000 },
5496 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5497 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5498 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5499 { 0x3c14, 0, 0x00000000, 0xffffffff },
5500 { 0x3c18, 0, 0x00000000, 0xffffffff },
5501 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5502 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5504 { 0x5004, 0, 0x00000000, 0x0000007f },
5505 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5507 { 0x5c00, 0, 0x00000000, 0x00000001 },
5508 { 0x5c04, 0, 0x00000000, 0x0003000f },
5509 { 0x5c08, 0, 0x00000003, 0x00000000 },
5510 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5511 { 0x5c10, 0, 0x00000000, 0xffffffff },
5512 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5513 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5514 { 0x5c88, 0, 0x00000000, 0x00077373 },
5515 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5517 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5518 { 0x680c, 0, 0xffffffff, 0x00000000 },
5519 { 0x6810, 0, 0xffffffff, 0x00000000 },
5520 { 0x6814, 0, 0xffffffff, 0x00000000 },
5521 { 0x6818, 0, 0xffffffff, 0x00000000 },
5522 { 0x681c, 0, 0xffffffff, 0x00000000 },
5523 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5524 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5525 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5526 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5527 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5528 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5529 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5530 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5531 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5532 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5533 { 0x684c, 0, 0xffffffff, 0x00000000 },
5534 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5535 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5536 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5537 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5538 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5539 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5541 { 0xffff, 0, 0x00000000, 0x00000000 },
5544 ret = 0;
5545 is_5709 = 0;
5546 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5547 is_5709 = 1;
5549 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5550 u32 offset, rw_mask, ro_mask, save_val, val;
5551 u16 flags = reg_tbl[i].flags;
5553 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5554 continue;
5556 offset = (u32) reg_tbl[i].offset;
5557 rw_mask = reg_tbl[i].rw_mask;
5558 ro_mask = reg_tbl[i].ro_mask;
5560 save_val = readl(bp->regview + offset);
5562 writel(0, bp->regview + offset);
5564 val = readl(bp->regview + offset);
5565 if ((val & rw_mask) != 0) {
5566 goto reg_test_err;
5569 if ((val & ro_mask) != (save_val & ro_mask)) {
5570 goto reg_test_err;
5573 writel(0xffffffff, bp->regview + offset);
5575 val = readl(bp->regview + offset);
5576 if ((val & rw_mask) != rw_mask) {
5577 goto reg_test_err;
5580 if ((val & ro_mask) != (save_val & ro_mask)) {
5581 goto reg_test_err;
5584 writel(save_val, bp->regview + offset);
5585 continue;
5587 reg_test_err:
5588 writel(save_val, bp->regview + offset);
5589 ret = -ENODEV;
5590 break;
5592 return ret;
5595 static int
5596 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5598 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5599 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5600 int i;
5602 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5603 u32 offset;
5605 for (offset = 0; offset < size; offset += 4) {
5607 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5609 if (bnx2_reg_rd_ind(bp, start + offset) !=
5610 test_pattern[i]) {
5611 return -ENODEV;
5615 return 0;
5618 static int
5619 bnx2_test_memory(struct bnx2 *bp)
5621 int ret = 0;
5622 int i;
5623 static struct mem_entry {
5624 u32 offset;
5625 u32 len;
5626 } mem_tbl_5706[] = {
5627 { 0x60000, 0x4000 },
5628 { 0xa0000, 0x3000 },
5629 { 0xe0000, 0x4000 },
5630 { 0x120000, 0x4000 },
5631 { 0x1a0000, 0x4000 },
5632 { 0x160000, 0x4000 },
5633 { 0xffffffff, 0 },
5635 mem_tbl_5709[] = {
5636 { 0x60000, 0x4000 },
5637 { 0xa0000, 0x3000 },
5638 { 0xe0000, 0x4000 },
5639 { 0x120000, 0x4000 },
5640 { 0x1a0000, 0x4000 },
5641 { 0xffffffff, 0 },
5643 struct mem_entry *mem_tbl;
5645 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5646 mem_tbl = mem_tbl_5709;
5647 else
5648 mem_tbl = mem_tbl_5706;
5650 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5651 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5652 mem_tbl[i].len)) != 0) {
5653 return ret;
5657 return ret;
5660 #define BNX2_MAC_LOOPBACK 0
5661 #define BNX2_PHY_LOOPBACK 1
5663 static int
5664 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5666 unsigned int pkt_size, num_pkts, i;
5667 struct sk_buff *skb, *rx_skb;
5668 unsigned char *packet;
5669 u16 rx_start_idx, rx_idx;
5670 dma_addr_t map;
5671 struct tx_bd *txbd;
5672 struct sw_bd *rx_buf;
5673 struct l2_fhdr *rx_hdr;
5674 int ret = -ENODEV;
5675 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5676 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5677 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5679 tx_napi = bnapi;
5681 txr = &tx_napi->tx_ring;
5682 rxr = &bnapi->rx_ring;
5683 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5684 bp->loopback = MAC_LOOPBACK;
5685 bnx2_set_mac_loopback(bp);
5687 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5688 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5689 return 0;
5691 bp->loopback = PHY_LOOPBACK;
5692 bnx2_set_phy_loopback(bp);
5694 else
5695 return -EINVAL;
5697 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5698 skb = netdev_alloc_skb(bp->dev, pkt_size);
5699 if (!skb)
5700 return -ENOMEM;
5701 packet = skb_put(skb, pkt_size);
5702 memcpy(packet, bp->dev->dev_addr, 6);
5703 memset(packet + 6, 0x0, 8);
5704 for (i = 14; i < pkt_size; i++)
5705 packet[i] = (unsigned char) (i & 0xff);
5707 map = pci_map_single(bp->pdev, skb->data, pkt_size,
5708 PCI_DMA_TODEVICE);
5709 if (pci_dma_mapping_error(bp->pdev, map)) {
5710 dev_kfree_skb(skb);
5711 return -EIO;
5714 REG_WR(bp, BNX2_HC_COMMAND,
5715 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5717 REG_RD(bp, BNX2_HC_COMMAND);
5719 udelay(5);
5720 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5722 num_pkts = 0;
5724 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5726 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5727 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5728 txbd->tx_bd_mss_nbytes = pkt_size;
5729 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5731 num_pkts++;
5732 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5733 txr->tx_prod_bseq += pkt_size;
5735 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5736 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5738 udelay(100);
5740 REG_WR(bp, BNX2_HC_COMMAND,
5741 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5743 REG_RD(bp, BNX2_HC_COMMAND);
5745 udelay(5);
5747 pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
5748 dev_kfree_skb(skb);
5750 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5751 goto loopback_test_done;
5753 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5754 if (rx_idx != rx_start_idx + num_pkts) {
5755 goto loopback_test_done;
5758 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5759 rx_skb = rx_buf->skb;
5761 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5762 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5764 pci_dma_sync_single_for_cpu(bp->pdev,
5765 pci_unmap_addr(rx_buf, mapping),
5766 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5768 if (rx_hdr->l2_fhdr_status &
5769 (L2_FHDR_ERRORS_BAD_CRC |
5770 L2_FHDR_ERRORS_PHY_DECODE |
5771 L2_FHDR_ERRORS_ALIGNMENT |
5772 L2_FHDR_ERRORS_TOO_SHORT |
5773 L2_FHDR_ERRORS_GIANT_FRAME)) {
5775 goto loopback_test_done;
5778 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5779 goto loopback_test_done;
5782 for (i = 14; i < pkt_size; i++) {
5783 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5784 goto loopback_test_done;
5788 ret = 0;
5790 loopback_test_done:
5791 bp->loopback = 0;
5792 return ret;
5795 #define BNX2_MAC_LOOPBACK_FAILED 1
5796 #define BNX2_PHY_LOOPBACK_FAILED 2
5797 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5798 BNX2_PHY_LOOPBACK_FAILED)
5800 static int
5801 bnx2_test_loopback(struct bnx2 *bp)
5803 int rc = 0;
5805 if (!netif_running(bp->dev))
5806 return BNX2_LOOPBACK_FAILED;
5808 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5809 spin_lock_bh(&bp->phy_lock);
5810 bnx2_init_phy(bp, 1);
5811 spin_unlock_bh(&bp->phy_lock);
5812 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5813 rc |= BNX2_MAC_LOOPBACK_FAILED;
5814 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5815 rc |= BNX2_PHY_LOOPBACK_FAILED;
5816 return rc;
5819 #define NVRAM_SIZE 0x200
5820 #define CRC32_RESIDUAL 0xdebb20e3
5822 static int
5823 bnx2_test_nvram(struct bnx2 *bp)
5825 __be32 buf[NVRAM_SIZE / 4];
5826 u8 *data = (u8 *) buf;
5827 int rc = 0;
5828 u32 magic, csum;
5830 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5831 goto test_nvram_done;
5833 magic = be32_to_cpu(buf[0]);
5834 if (magic != 0x669955aa) {
5835 rc = -ENODEV;
5836 goto test_nvram_done;
5839 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5840 goto test_nvram_done;
5842 csum = ether_crc_le(0x100, data);
5843 if (csum != CRC32_RESIDUAL) {
5844 rc = -ENODEV;
5845 goto test_nvram_done;
5848 csum = ether_crc_le(0x100, data + 0x100);
5849 if (csum != CRC32_RESIDUAL) {
5850 rc = -ENODEV;
5853 test_nvram_done:
5854 return rc;
5857 static int
5858 bnx2_test_link(struct bnx2 *bp)
5860 u32 bmsr;
5862 if (!netif_running(bp->dev))
5863 return -ENODEV;
5865 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5866 if (bp->link_up)
5867 return 0;
5868 return -ENODEV;
5870 spin_lock_bh(&bp->phy_lock);
5871 bnx2_enable_bmsr1(bp);
5872 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5873 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5874 bnx2_disable_bmsr1(bp);
5875 spin_unlock_bh(&bp->phy_lock);
5877 if (bmsr & BMSR_LSTATUS) {
5878 return 0;
5880 return -ENODEV;
5883 static int
5884 bnx2_test_intr(struct bnx2 *bp)
5886 int i;
5887 u16 status_idx;
5889 if (!netif_running(bp->dev))
5890 return -ENODEV;
5892 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5894 /* This register is not touched during run-time. */
5895 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5896 REG_RD(bp, BNX2_HC_COMMAND);
5898 for (i = 0; i < 10; i++) {
5899 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5900 status_idx) {
5902 break;
5905 msleep_interruptible(10);
5907 if (i < 10)
5908 return 0;
5910 return -ENODEV;
5913 /* Determining link for parallel detection. */
5914 static int
5915 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5917 u32 mode_ctl, an_dbg, exp;
5919 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5920 return 0;
5922 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5923 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5925 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5926 return 0;
5928 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5929 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5930 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5932 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5933 return 0;
5935 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5936 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5937 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5939 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5940 return 0;
5942 return 1;
5945 static void
5946 bnx2_5706_serdes_timer(struct bnx2 *bp)
5948 int check_link = 1;
5950 spin_lock(&bp->phy_lock);
5951 if (bp->serdes_an_pending) {
5952 bp->serdes_an_pending--;
5953 check_link = 0;
5954 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5955 u32 bmcr;
5957 bp->current_interval = BNX2_TIMER_INTERVAL;
5959 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5961 if (bmcr & BMCR_ANENABLE) {
5962 if (bnx2_5706_serdes_has_link(bp)) {
5963 bmcr &= ~BMCR_ANENABLE;
5964 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5965 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5966 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5970 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5971 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5972 u32 phy2;
5974 bnx2_write_phy(bp, 0x17, 0x0f01);
5975 bnx2_read_phy(bp, 0x15, &phy2);
5976 if (phy2 & 0x20) {
5977 u32 bmcr;
5979 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5980 bmcr |= BMCR_ANENABLE;
5981 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5983 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5985 } else
5986 bp->current_interval = BNX2_TIMER_INTERVAL;
5988 if (check_link) {
5989 u32 val;
5991 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5992 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5993 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5995 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5996 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5997 bnx2_5706s_force_link_dn(bp, 1);
5998 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5999 } else
6000 bnx2_set_link(bp);
6001 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
6002 bnx2_set_link(bp);
6004 spin_unlock(&bp->phy_lock);
6007 static void
6008 bnx2_5708_serdes_timer(struct bnx2 *bp)
6010 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
6011 return;
6013 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
6014 bp->serdes_an_pending = 0;
6015 return;
6018 spin_lock(&bp->phy_lock);
6019 if (bp->serdes_an_pending)
6020 bp->serdes_an_pending--;
6021 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6022 u32 bmcr;
6024 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6025 if (bmcr & BMCR_ANENABLE) {
6026 bnx2_enable_forced_2g5(bp);
6027 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6028 } else {
6029 bnx2_disable_forced_2g5(bp);
6030 bp->serdes_an_pending = 2;
6031 bp->current_interval = BNX2_TIMER_INTERVAL;
6034 } else
6035 bp->current_interval = BNX2_TIMER_INTERVAL;
6037 spin_unlock(&bp->phy_lock);
6040 static void
6041 bnx2_timer(unsigned long data)
6043 struct bnx2 *bp = (struct bnx2 *) data;
6045 if (!netif_running(bp->dev))
6046 return;
6048 if (atomic_read(&bp->intr_sem) != 0)
6049 goto bnx2_restart_timer;
6051 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6052 BNX2_FLAG_USING_MSI)
6053 bnx2_chk_missed_msi(bp);
6055 bnx2_send_heart_beat(bp);
6057 bp->stats_blk->stat_FwRxDrop =
6058 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6060 /* workaround occasional corrupted counters */
6061 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6062 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6063 BNX2_HC_COMMAND_STATS_NOW);
6065 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6066 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6067 bnx2_5706_serdes_timer(bp);
6068 else
6069 bnx2_5708_serdes_timer(bp);
6072 bnx2_restart_timer:
6073 mod_timer(&bp->timer, jiffies + bp->current_interval);
6076 static int
6077 bnx2_request_irq(struct bnx2 *bp)
6079 unsigned long flags;
6080 struct bnx2_irq *irq;
6081 int rc = 0, i;
6083 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6084 flags = 0;
6085 else
6086 flags = IRQF_SHARED;
6088 for (i = 0; i < bp->irq_nvecs; i++) {
6089 irq = &bp->irq_tbl[i];
6090 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6091 &bp->bnx2_napi[i]);
6092 if (rc)
6093 break;
6094 irq->requested = 1;
6096 return rc;
6099 static void
6100 bnx2_free_irq(struct bnx2 *bp)
6102 struct bnx2_irq *irq;
6103 int i;
6105 for (i = 0; i < bp->irq_nvecs; i++) {
6106 irq = &bp->irq_tbl[i];
6107 if (irq->requested)
6108 free_irq(irq->vector, &bp->bnx2_napi[i]);
6109 irq->requested = 0;
6111 if (bp->flags & BNX2_FLAG_USING_MSI)
6112 pci_disable_msi(bp->pdev);
6113 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6114 pci_disable_msix(bp->pdev);
6116 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6119 static void
6120 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6122 int i, rc;
6123 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6124 struct net_device *dev = bp->dev;
6125 const int len = sizeof(bp->irq_tbl[0].name);
6127 bnx2_setup_msix_tbl(bp);
6128 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6129 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6130 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6132 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6133 msix_ent[i].entry = i;
6134 msix_ent[i].vector = 0;
6137 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6138 if (rc != 0)
6139 return;
6141 bp->irq_nvecs = msix_vecs;
6142 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6143 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6144 bp->irq_tbl[i].vector = msix_ent[i].vector;
6145 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6146 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6150 static void
6151 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6153 int cpus = num_online_cpus();
6154 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6156 bp->irq_tbl[0].handler = bnx2_interrupt;
6157 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6158 bp->irq_nvecs = 1;
6159 bp->irq_tbl[0].vector = bp->pdev->irq;
6161 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
6162 bnx2_enable_msix(bp, msix_vecs);
6164 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6165 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6166 if (pci_enable_msi(bp->pdev) == 0) {
6167 bp->flags |= BNX2_FLAG_USING_MSI;
6168 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6169 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6170 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6171 } else
6172 bp->irq_tbl[0].handler = bnx2_msi;
6174 bp->irq_tbl[0].vector = bp->pdev->irq;
6178 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6179 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6181 bp->num_rx_rings = bp->irq_nvecs;
6184 /* Called with rtnl_lock */
6185 static int
6186 bnx2_open(struct net_device *dev)
6188 struct bnx2 *bp = netdev_priv(dev);
6189 int rc;
6191 netif_carrier_off(dev);
6193 bnx2_set_power_state(bp, PCI_D0);
6194 bnx2_disable_int(bp);
6196 bnx2_setup_int_mode(bp, disable_msi);
6197 bnx2_napi_enable(bp);
6198 rc = bnx2_alloc_mem(bp);
6199 if (rc)
6200 goto open_err;
6202 rc = bnx2_request_irq(bp);
6203 if (rc)
6204 goto open_err;
6206 rc = bnx2_init_nic(bp, 1);
6207 if (rc)
6208 goto open_err;
6210 mod_timer(&bp->timer, jiffies + bp->current_interval);
6212 atomic_set(&bp->intr_sem, 0);
6214 bnx2_enable_int(bp);
6216 if (bp->flags & BNX2_FLAG_USING_MSI) {
6217 /* Test MSI to make sure it is working
6218 * If MSI test fails, go back to INTx mode
6220 if (bnx2_test_intr(bp) != 0) {
6221 printk(KERN_WARNING PFX "%s: No interrupt was generated"
6222 " using MSI, switching to INTx mode. Please"
6223 " report this failure to the PCI maintainer"
6224 " and include system chipset information.\n",
6225 bp->dev->name);
6227 bnx2_disable_int(bp);
6228 bnx2_free_irq(bp);
6230 bnx2_setup_int_mode(bp, 1);
6232 rc = bnx2_init_nic(bp, 0);
6234 if (!rc)
6235 rc = bnx2_request_irq(bp);
6237 if (rc) {
6238 del_timer_sync(&bp->timer);
6239 goto open_err;
6241 bnx2_enable_int(bp);
6244 if (bp->flags & BNX2_FLAG_USING_MSI)
6245 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6246 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6247 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6249 netif_tx_start_all_queues(dev);
6251 return 0;
6253 open_err:
6254 bnx2_napi_disable(bp);
6255 bnx2_free_skbs(bp);
6256 bnx2_free_irq(bp);
6257 bnx2_free_mem(bp);
6258 return rc;
6261 static void
6262 bnx2_reset_task(struct work_struct *work)
6264 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6266 rtnl_lock();
6267 if (!netif_running(bp->dev)) {
6268 rtnl_unlock();
6269 return;
6272 bnx2_netif_stop(bp);
6274 bnx2_init_nic(bp, 1);
6276 atomic_set(&bp->intr_sem, 1);
6277 bnx2_netif_start(bp);
6278 rtnl_unlock();
6281 static void
6282 bnx2_tx_timeout(struct net_device *dev)
6284 struct bnx2 *bp = netdev_priv(dev);
6286 /* This allows the netif to be shutdown gracefully before resetting */
6287 schedule_work(&bp->reset_task);
6290 #ifdef BCM_VLAN
6291 /* Called with rtnl_lock */
6292 static void
6293 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6295 struct bnx2 *bp = netdev_priv(dev);
6297 if (netif_running(dev))
6298 bnx2_netif_stop(bp);
6300 bp->vlgrp = vlgrp;
6302 if (!netif_running(dev))
6303 return;
6305 bnx2_set_rx_mode(dev);
6306 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6307 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6309 bnx2_netif_start(bp);
6311 #endif
6313 /* Called with netif_tx_lock.
6314 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6315 * netif_wake_queue().
6317 static netdev_tx_t
6318 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6320 struct bnx2 *bp = netdev_priv(dev);
6321 dma_addr_t mapping;
6322 struct tx_bd *txbd;
6323 struct sw_tx_bd *tx_buf;
6324 u32 len, vlan_tag_flags, last_frag, mss;
6325 u16 prod, ring_prod;
6326 int i;
6327 struct bnx2_napi *bnapi;
6328 struct bnx2_tx_ring_info *txr;
6329 struct netdev_queue *txq;
6331 /* Determine which tx ring we will be placed on */
6332 i = skb_get_queue_mapping(skb);
6333 bnapi = &bp->bnx2_napi[i];
6334 txr = &bnapi->tx_ring;
6335 txq = netdev_get_tx_queue(dev, i);
6337 if (unlikely(bnx2_tx_avail(bp, txr) <
6338 (skb_shinfo(skb)->nr_frags + 1))) {
6339 netif_tx_stop_queue(txq);
6340 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6341 dev->name);
6343 return NETDEV_TX_BUSY;
6345 len = skb_headlen(skb);
6346 prod = txr->tx_prod;
6347 ring_prod = TX_RING_IDX(prod);
6349 vlan_tag_flags = 0;
6350 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6351 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6354 #ifdef BCM_VLAN
6355 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6356 vlan_tag_flags |=
6357 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6359 #endif
6360 if ((mss = skb_shinfo(skb)->gso_size)) {
6361 u32 tcp_opt_len;
6362 struct iphdr *iph;
6364 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6366 tcp_opt_len = tcp_optlen(skb);
6368 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6369 u32 tcp_off = skb_transport_offset(skb) -
6370 sizeof(struct ipv6hdr) - ETH_HLEN;
6372 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6373 TX_BD_FLAGS_SW_FLAGS;
6374 if (likely(tcp_off == 0))
6375 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6376 else {
6377 tcp_off >>= 3;
6378 vlan_tag_flags |= ((tcp_off & 0x3) <<
6379 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6380 ((tcp_off & 0x10) <<
6381 TX_BD_FLAGS_TCP6_OFF4_SHL);
6382 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6384 } else {
6385 iph = ip_hdr(skb);
6386 if (tcp_opt_len || (iph->ihl > 5)) {
6387 vlan_tag_flags |= ((iph->ihl - 5) +
6388 (tcp_opt_len >> 2)) << 8;
6391 } else
6392 mss = 0;
6394 mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
6395 if (pci_dma_mapping_error(bp->pdev, mapping)) {
6396 dev_kfree_skb(skb);
6397 return NETDEV_TX_OK;
6400 tx_buf = &txr->tx_buf_ring[ring_prod];
6401 tx_buf->skb = skb;
6402 pci_unmap_addr_set(tx_buf, mapping, mapping);
6404 txbd = &txr->tx_desc_ring[ring_prod];
6406 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6407 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6408 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6409 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6411 last_frag = skb_shinfo(skb)->nr_frags;
6412 tx_buf->nr_frags = last_frag;
6413 tx_buf->is_gso = skb_is_gso(skb);
6415 for (i = 0; i < last_frag; i++) {
6416 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6418 prod = NEXT_TX_BD(prod);
6419 ring_prod = TX_RING_IDX(prod);
6420 txbd = &txr->tx_desc_ring[ring_prod];
6422 len = frag->size;
6423 mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
6424 len, PCI_DMA_TODEVICE);
6425 if (pci_dma_mapping_error(bp->pdev, mapping))
6426 goto dma_error;
6427 pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
6428 mapping);
6430 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6431 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6432 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6433 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6436 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6438 prod = NEXT_TX_BD(prod);
6439 txr->tx_prod_bseq += skb->len;
6441 REG_WR16(bp, txr->tx_bidx_addr, prod);
6442 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6444 mmiowb();
6446 txr->tx_prod = prod;
6448 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6449 netif_tx_stop_queue(txq);
6450 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6451 netif_tx_wake_queue(txq);
6454 return NETDEV_TX_OK;
6455 dma_error:
6456 /* save value of frag that failed */
6457 last_frag = i;
6459 /* start back at beginning and unmap skb */
6460 prod = txr->tx_prod;
6461 ring_prod = TX_RING_IDX(prod);
6462 tx_buf = &txr->tx_buf_ring[ring_prod];
6463 tx_buf->skb = NULL;
6464 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
6465 skb_headlen(skb), PCI_DMA_TODEVICE);
6467 /* unmap remaining mapped pages */
6468 for (i = 0; i < last_frag; i++) {
6469 prod = NEXT_TX_BD(prod);
6470 ring_prod = TX_RING_IDX(prod);
6471 tx_buf = &txr->tx_buf_ring[ring_prod];
6472 pci_unmap_page(bp->pdev, pci_unmap_addr(tx_buf, mapping),
6473 skb_shinfo(skb)->frags[i].size,
6474 PCI_DMA_TODEVICE);
6477 dev_kfree_skb(skb);
6478 return NETDEV_TX_OK;
6481 /* Called with rtnl_lock */
6482 static int
6483 bnx2_close(struct net_device *dev)
6485 struct bnx2 *bp = netdev_priv(dev);
6487 cancel_work_sync(&bp->reset_task);
6489 bnx2_disable_int_sync(bp);
6490 bnx2_napi_disable(bp);
6491 del_timer_sync(&bp->timer);
6492 bnx2_shutdown_chip(bp);
6493 bnx2_free_irq(bp);
6494 bnx2_free_skbs(bp);
6495 bnx2_free_mem(bp);
6496 bp->link_up = 0;
6497 netif_carrier_off(bp->dev);
6498 bnx2_set_power_state(bp, PCI_D3hot);
6499 return 0;
6502 #define GET_NET_STATS64(ctr) \
6503 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6504 (unsigned long) (ctr##_lo)
6506 #define GET_NET_STATS32(ctr) \
6507 (ctr##_lo)
6509 #if (BITS_PER_LONG == 64)
6510 #define GET_NET_STATS GET_NET_STATS64
6511 #else
6512 #define GET_NET_STATS GET_NET_STATS32
6513 #endif
6515 static struct net_device_stats *
6516 bnx2_get_stats(struct net_device *dev)
6518 struct bnx2 *bp = netdev_priv(dev);
6519 struct statistics_block *stats_blk = bp->stats_blk;
6520 struct net_device_stats *net_stats = &dev->stats;
6522 if (bp->stats_blk == NULL) {
6523 return net_stats;
6525 net_stats->rx_packets =
6526 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6527 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6528 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6530 net_stats->tx_packets =
6531 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6532 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6533 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6535 net_stats->rx_bytes =
6536 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6538 net_stats->tx_bytes =
6539 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6541 net_stats->multicast =
6542 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6544 net_stats->collisions =
6545 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6547 net_stats->rx_length_errors =
6548 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6549 stats_blk->stat_EtherStatsOverrsizePkts);
6551 net_stats->rx_over_errors =
6552 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6553 stats_blk->stat_IfInMBUFDiscards);
6555 net_stats->rx_frame_errors =
6556 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6558 net_stats->rx_crc_errors =
6559 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6561 net_stats->rx_errors = net_stats->rx_length_errors +
6562 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6563 net_stats->rx_crc_errors;
6565 net_stats->tx_aborted_errors =
6566 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6567 stats_blk->stat_Dot3StatsLateCollisions);
6569 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6570 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6571 net_stats->tx_carrier_errors = 0;
6572 else {
6573 net_stats->tx_carrier_errors =
6574 (unsigned long)
6575 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6578 net_stats->tx_errors =
6579 (unsigned long)
6580 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6582 net_stats->tx_aborted_errors +
6583 net_stats->tx_carrier_errors;
6585 net_stats->rx_missed_errors =
6586 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6587 stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
6589 return net_stats;
6592 /* All ethtool functions called with rtnl_lock */
6594 static int
6595 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6597 struct bnx2 *bp = netdev_priv(dev);
6598 int support_serdes = 0, support_copper = 0;
6600 cmd->supported = SUPPORTED_Autoneg;
6601 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6602 support_serdes = 1;
6603 support_copper = 1;
6604 } else if (bp->phy_port == PORT_FIBRE)
6605 support_serdes = 1;
6606 else
6607 support_copper = 1;
6609 if (support_serdes) {
6610 cmd->supported |= SUPPORTED_1000baseT_Full |
6611 SUPPORTED_FIBRE;
6612 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6613 cmd->supported |= SUPPORTED_2500baseX_Full;
6616 if (support_copper) {
6617 cmd->supported |= SUPPORTED_10baseT_Half |
6618 SUPPORTED_10baseT_Full |
6619 SUPPORTED_100baseT_Half |
6620 SUPPORTED_100baseT_Full |
6621 SUPPORTED_1000baseT_Full |
6622 SUPPORTED_TP;
6626 spin_lock_bh(&bp->phy_lock);
6627 cmd->port = bp->phy_port;
6628 cmd->advertising = bp->advertising;
6630 if (bp->autoneg & AUTONEG_SPEED) {
6631 cmd->autoneg = AUTONEG_ENABLE;
6633 else {
6634 cmd->autoneg = AUTONEG_DISABLE;
6637 if (netif_carrier_ok(dev)) {
6638 cmd->speed = bp->line_speed;
6639 cmd->duplex = bp->duplex;
6641 else {
6642 cmd->speed = -1;
6643 cmd->duplex = -1;
6645 spin_unlock_bh(&bp->phy_lock);
6647 cmd->transceiver = XCVR_INTERNAL;
6648 cmd->phy_address = bp->phy_addr;
6650 return 0;
6653 static int
6654 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6656 struct bnx2 *bp = netdev_priv(dev);
6657 u8 autoneg = bp->autoneg;
6658 u8 req_duplex = bp->req_duplex;
6659 u16 req_line_speed = bp->req_line_speed;
6660 u32 advertising = bp->advertising;
6661 int err = -EINVAL;
6663 spin_lock_bh(&bp->phy_lock);
6665 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6666 goto err_out_unlock;
6668 if (cmd->port != bp->phy_port &&
6669 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6670 goto err_out_unlock;
6672 /* If device is down, we can store the settings only if the user
6673 * is setting the currently active port.
6675 if (!netif_running(dev) && cmd->port != bp->phy_port)
6676 goto err_out_unlock;
6678 if (cmd->autoneg == AUTONEG_ENABLE) {
6679 autoneg |= AUTONEG_SPEED;
6681 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6683 /* allow advertising 1 speed */
6684 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6685 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6686 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6687 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6689 if (cmd->port == PORT_FIBRE)
6690 goto err_out_unlock;
6692 advertising = cmd->advertising;
6694 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6695 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6696 (cmd->port == PORT_TP))
6697 goto err_out_unlock;
6698 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6699 advertising = cmd->advertising;
6700 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6701 goto err_out_unlock;
6702 else {
6703 if (cmd->port == PORT_FIBRE)
6704 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6705 else
6706 advertising = ETHTOOL_ALL_COPPER_SPEED;
6708 advertising |= ADVERTISED_Autoneg;
6710 else {
6711 if (cmd->port == PORT_FIBRE) {
6712 if ((cmd->speed != SPEED_1000 &&
6713 cmd->speed != SPEED_2500) ||
6714 (cmd->duplex != DUPLEX_FULL))
6715 goto err_out_unlock;
6717 if (cmd->speed == SPEED_2500 &&
6718 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6719 goto err_out_unlock;
6721 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6722 goto err_out_unlock;
6724 autoneg &= ~AUTONEG_SPEED;
6725 req_line_speed = cmd->speed;
6726 req_duplex = cmd->duplex;
6727 advertising = 0;
6730 bp->autoneg = autoneg;
6731 bp->advertising = advertising;
6732 bp->req_line_speed = req_line_speed;
6733 bp->req_duplex = req_duplex;
6735 err = 0;
6736 /* If device is down, the new settings will be picked up when it is
6737 * brought up.
6739 if (netif_running(dev))
6740 err = bnx2_setup_phy(bp, cmd->port);
6742 err_out_unlock:
6743 spin_unlock_bh(&bp->phy_lock);
6745 return err;
6748 static void
6749 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6751 struct bnx2 *bp = netdev_priv(dev);
6753 strcpy(info->driver, DRV_MODULE_NAME);
6754 strcpy(info->version, DRV_MODULE_VERSION);
6755 strcpy(info->bus_info, pci_name(bp->pdev));
6756 strcpy(info->fw_version, bp->fw_version);
6759 #define BNX2_REGDUMP_LEN (32 * 1024)
6761 static int
6762 bnx2_get_regs_len(struct net_device *dev)
6764 return BNX2_REGDUMP_LEN;
6767 static void
6768 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6770 u32 *p = _p, i, offset;
6771 u8 *orig_p = _p;
6772 struct bnx2 *bp = netdev_priv(dev);
6773 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6774 0x0800, 0x0880, 0x0c00, 0x0c10,
6775 0x0c30, 0x0d08, 0x1000, 0x101c,
6776 0x1040, 0x1048, 0x1080, 0x10a4,
6777 0x1400, 0x1490, 0x1498, 0x14f0,
6778 0x1500, 0x155c, 0x1580, 0x15dc,
6779 0x1600, 0x1658, 0x1680, 0x16d8,
6780 0x1800, 0x1820, 0x1840, 0x1854,
6781 0x1880, 0x1894, 0x1900, 0x1984,
6782 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6783 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6784 0x2000, 0x2030, 0x23c0, 0x2400,
6785 0x2800, 0x2820, 0x2830, 0x2850,
6786 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6787 0x3c00, 0x3c94, 0x4000, 0x4010,
6788 0x4080, 0x4090, 0x43c0, 0x4458,
6789 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6790 0x4fc0, 0x5010, 0x53c0, 0x5444,
6791 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6792 0x5fc0, 0x6000, 0x6400, 0x6428,
6793 0x6800, 0x6848, 0x684c, 0x6860,
6794 0x6888, 0x6910, 0x8000 };
6796 regs->version = 0;
6798 memset(p, 0, BNX2_REGDUMP_LEN);
6800 if (!netif_running(bp->dev))
6801 return;
6803 i = 0;
6804 offset = reg_boundaries[0];
6805 p += offset;
6806 while (offset < BNX2_REGDUMP_LEN) {
6807 *p++ = REG_RD(bp, offset);
6808 offset += 4;
6809 if (offset == reg_boundaries[i + 1]) {
6810 offset = reg_boundaries[i + 2];
6811 p = (u32 *) (orig_p + offset);
6812 i += 2;
6817 static void
6818 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6820 struct bnx2 *bp = netdev_priv(dev);
6822 if (bp->flags & BNX2_FLAG_NO_WOL) {
6823 wol->supported = 0;
6824 wol->wolopts = 0;
6826 else {
6827 wol->supported = WAKE_MAGIC;
6828 if (bp->wol)
6829 wol->wolopts = WAKE_MAGIC;
6830 else
6831 wol->wolopts = 0;
6833 memset(&wol->sopass, 0, sizeof(wol->sopass));
6836 static int
6837 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6839 struct bnx2 *bp = netdev_priv(dev);
6841 if (wol->wolopts & ~WAKE_MAGIC)
6842 return -EINVAL;
6844 if (wol->wolopts & WAKE_MAGIC) {
6845 if (bp->flags & BNX2_FLAG_NO_WOL)
6846 return -EINVAL;
6848 bp->wol = 1;
6850 else {
6851 bp->wol = 0;
6853 return 0;
6856 static int
6857 bnx2_nway_reset(struct net_device *dev)
6859 struct bnx2 *bp = netdev_priv(dev);
6860 u32 bmcr;
6862 if (!netif_running(dev))
6863 return -EAGAIN;
6865 if (!(bp->autoneg & AUTONEG_SPEED)) {
6866 return -EINVAL;
6869 spin_lock_bh(&bp->phy_lock);
6871 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6872 int rc;
6874 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6875 spin_unlock_bh(&bp->phy_lock);
6876 return rc;
6879 /* Force a link down visible on the other side */
6880 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6881 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6882 spin_unlock_bh(&bp->phy_lock);
6884 msleep(20);
6886 spin_lock_bh(&bp->phy_lock);
6888 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6889 bp->serdes_an_pending = 1;
6890 mod_timer(&bp->timer, jiffies + bp->current_interval);
6893 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6894 bmcr &= ~BMCR_LOOPBACK;
6895 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6897 spin_unlock_bh(&bp->phy_lock);
6899 return 0;
6902 static u32
6903 bnx2_get_link(struct net_device *dev)
6905 struct bnx2 *bp = netdev_priv(dev);
6907 return bp->link_up;
6910 static int
6911 bnx2_get_eeprom_len(struct net_device *dev)
6913 struct bnx2 *bp = netdev_priv(dev);
6915 if (bp->flash_info == NULL)
6916 return 0;
6918 return (int) bp->flash_size;
6921 static int
6922 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6923 u8 *eebuf)
6925 struct bnx2 *bp = netdev_priv(dev);
6926 int rc;
6928 if (!netif_running(dev))
6929 return -EAGAIN;
6931 /* parameters already validated in ethtool_get_eeprom */
6933 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6935 return rc;
6938 static int
6939 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6940 u8 *eebuf)
6942 struct bnx2 *bp = netdev_priv(dev);
6943 int rc;
6945 if (!netif_running(dev))
6946 return -EAGAIN;
6948 /* parameters already validated in ethtool_set_eeprom */
6950 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6952 return rc;
6955 static int
6956 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6958 struct bnx2 *bp = netdev_priv(dev);
6960 memset(coal, 0, sizeof(struct ethtool_coalesce));
6962 coal->rx_coalesce_usecs = bp->rx_ticks;
6963 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6964 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6965 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6967 coal->tx_coalesce_usecs = bp->tx_ticks;
6968 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6969 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6970 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6972 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6974 return 0;
6977 static int
6978 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6980 struct bnx2 *bp = netdev_priv(dev);
6982 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6983 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6985 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6986 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6988 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6989 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6991 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6992 if (bp->rx_quick_cons_trip_int > 0xff)
6993 bp->rx_quick_cons_trip_int = 0xff;
6995 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6996 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6998 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6999 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
7001 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
7002 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
7004 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
7005 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
7006 0xff;
7008 bp->stats_ticks = coal->stats_block_coalesce_usecs;
7009 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
7010 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
7011 bp->stats_ticks = USEC_PER_SEC;
7013 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
7014 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7015 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7017 if (netif_running(bp->dev)) {
7018 bnx2_netif_stop(bp);
7019 bnx2_init_nic(bp, 0);
7020 bnx2_netif_start(bp);
7023 return 0;
7026 static void
7027 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7029 struct bnx2 *bp = netdev_priv(dev);
7031 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
7032 ering->rx_mini_max_pending = 0;
7033 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
7035 ering->rx_pending = bp->rx_ring_size;
7036 ering->rx_mini_pending = 0;
7037 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
7039 ering->tx_max_pending = MAX_TX_DESC_CNT;
7040 ering->tx_pending = bp->tx_ring_size;
7043 static int
7044 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
7046 if (netif_running(bp->dev)) {
7047 bnx2_netif_stop(bp);
7048 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
7049 bnx2_free_skbs(bp);
7050 bnx2_free_mem(bp);
7053 bnx2_set_rx_ring_size(bp, rx);
7054 bp->tx_ring_size = tx;
7056 if (netif_running(bp->dev)) {
7057 int rc;
7059 rc = bnx2_alloc_mem(bp);
7060 if (!rc)
7061 rc = bnx2_init_nic(bp, 0);
7063 if (rc) {
7064 bnx2_napi_enable(bp);
7065 dev_close(bp->dev);
7066 return rc;
7068 bnx2_netif_start(bp);
7070 return 0;
7073 static int
7074 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7076 struct bnx2 *bp = netdev_priv(dev);
7077 int rc;
7079 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7080 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7081 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7083 return -EINVAL;
7085 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7086 return rc;
7089 static void
7090 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7092 struct bnx2 *bp = netdev_priv(dev);
7094 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7095 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7096 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7099 static int
7100 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7102 struct bnx2 *bp = netdev_priv(dev);
7104 bp->req_flow_ctrl = 0;
7105 if (epause->rx_pause)
7106 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7107 if (epause->tx_pause)
7108 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7110 if (epause->autoneg) {
7111 bp->autoneg |= AUTONEG_FLOW_CTRL;
7113 else {
7114 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7117 if (netif_running(dev)) {
7118 spin_lock_bh(&bp->phy_lock);
7119 bnx2_setup_phy(bp, bp->phy_port);
7120 spin_unlock_bh(&bp->phy_lock);
7123 return 0;
7126 static u32
7127 bnx2_get_rx_csum(struct net_device *dev)
7129 struct bnx2 *bp = netdev_priv(dev);
7131 return bp->rx_csum;
7134 static int
7135 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7137 struct bnx2 *bp = netdev_priv(dev);
7139 bp->rx_csum = data;
7140 return 0;
7143 static int
7144 bnx2_set_tso(struct net_device *dev, u32 data)
7146 struct bnx2 *bp = netdev_priv(dev);
7148 if (data) {
7149 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7150 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7151 dev->features |= NETIF_F_TSO6;
7152 } else
7153 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7154 NETIF_F_TSO_ECN);
7155 return 0;
7158 static struct {
7159 char string[ETH_GSTRING_LEN];
7160 } bnx2_stats_str_arr[] = {
7161 { "rx_bytes" },
7162 { "rx_error_bytes" },
7163 { "tx_bytes" },
7164 { "tx_error_bytes" },
7165 { "rx_ucast_packets" },
7166 { "rx_mcast_packets" },
7167 { "rx_bcast_packets" },
7168 { "tx_ucast_packets" },
7169 { "tx_mcast_packets" },
7170 { "tx_bcast_packets" },
7171 { "tx_mac_errors" },
7172 { "tx_carrier_errors" },
7173 { "rx_crc_errors" },
7174 { "rx_align_errors" },
7175 { "tx_single_collisions" },
7176 { "tx_multi_collisions" },
7177 { "tx_deferred" },
7178 { "tx_excess_collisions" },
7179 { "tx_late_collisions" },
7180 { "tx_total_collisions" },
7181 { "rx_fragments" },
7182 { "rx_jabbers" },
7183 { "rx_undersize_packets" },
7184 { "rx_oversize_packets" },
7185 { "rx_64_byte_packets" },
7186 { "rx_65_to_127_byte_packets" },
7187 { "rx_128_to_255_byte_packets" },
7188 { "rx_256_to_511_byte_packets" },
7189 { "rx_512_to_1023_byte_packets" },
7190 { "rx_1024_to_1522_byte_packets" },
7191 { "rx_1523_to_9022_byte_packets" },
7192 { "tx_64_byte_packets" },
7193 { "tx_65_to_127_byte_packets" },
7194 { "tx_128_to_255_byte_packets" },
7195 { "tx_256_to_511_byte_packets" },
7196 { "tx_512_to_1023_byte_packets" },
7197 { "tx_1024_to_1522_byte_packets" },
7198 { "tx_1523_to_9022_byte_packets" },
7199 { "rx_xon_frames" },
7200 { "rx_xoff_frames" },
7201 { "tx_xon_frames" },
7202 { "tx_xoff_frames" },
7203 { "rx_mac_ctrl_frames" },
7204 { "rx_filtered_packets" },
7205 { "rx_ftq_discards" },
7206 { "rx_discards" },
7207 { "rx_fw_discards" },
7210 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7211 sizeof(bnx2_stats_str_arr[0]))
7213 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7215 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7216 STATS_OFFSET32(stat_IfHCInOctets_hi),
7217 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7218 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7219 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7220 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7221 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7222 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7223 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7224 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7225 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7226 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7227 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7228 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7229 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7230 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7231 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7232 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7233 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7234 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7235 STATS_OFFSET32(stat_EtherStatsCollisions),
7236 STATS_OFFSET32(stat_EtherStatsFragments),
7237 STATS_OFFSET32(stat_EtherStatsJabbers),
7238 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7239 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7240 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7241 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7242 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7243 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7244 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7245 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7246 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7247 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7248 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7249 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7250 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7251 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7252 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7253 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7254 STATS_OFFSET32(stat_XonPauseFramesReceived),
7255 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7256 STATS_OFFSET32(stat_OutXonSent),
7257 STATS_OFFSET32(stat_OutXoffSent),
7258 STATS_OFFSET32(stat_MacControlFramesReceived),
7259 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7260 STATS_OFFSET32(stat_IfInFTQDiscards),
7261 STATS_OFFSET32(stat_IfInMBUFDiscards),
7262 STATS_OFFSET32(stat_FwRxDrop),
7265 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7266 * skipped because of errata.
7268 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7269 8,0,8,8,8,8,8,8,8,8,
7270 4,0,4,4,4,4,4,4,4,4,
7271 4,4,4,4,4,4,4,4,4,4,
7272 4,4,4,4,4,4,4,4,4,4,
7273 4,4,4,4,4,4,4,
7276 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7277 8,0,8,8,8,8,8,8,8,8,
7278 4,4,4,4,4,4,4,4,4,4,
7279 4,4,4,4,4,4,4,4,4,4,
7280 4,4,4,4,4,4,4,4,4,4,
7281 4,4,4,4,4,4,4,
7284 #define BNX2_NUM_TESTS 6
7286 static struct {
7287 char string[ETH_GSTRING_LEN];
7288 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7289 { "register_test (offline)" },
7290 { "memory_test (offline)" },
7291 { "loopback_test (offline)" },
7292 { "nvram_test (online)" },
7293 { "interrupt_test (online)" },
7294 { "link_test (online)" },
7297 static int
7298 bnx2_get_sset_count(struct net_device *dev, int sset)
7300 switch (sset) {
7301 case ETH_SS_TEST:
7302 return BNX2_NUM_TESTS;
7303 case ETH_SS_STATS:
7304 return BNX2_NUM_STATS;
7305 default:
7306 return -EOPNOTSUPP;
7310 static void
7311 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7313 struct bnx2 *bp = netdev_priv(dev);
7315 bnx2_set_power_state(bp, PCI_D0);
7317 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7318 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7319 int i;
7321 bnx2_netif_stop(bp);
7322 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7323 bnx2_free_skbs(bp);
7325 if (bnx2_test_registers(bp) != 0) {
7326 buf[0] = 1;
7327 etest->flags |= ETH_TEST_FL_FAILED;
7329 if (bnx2_test_memory(bp) != 0) {
7330 buf[1] = 1;
7331 etest->flags |= ETH_TEST_FL_FAILED;
7333 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7334 etest->flags |= ETH_TEST_FL_FAILED;
7336 if (!netif_running(bp->dev))
7337 bnx2_shutdown_chip(bp);
7338 else {
7339 bnx2_init_nic(bp, 1);
7340 bnx2_netif_start(bp);
7343 /* wait for link up */
7344 for (i = 0; i < 7; i++) {
7345 if (bp->link_up)
7346 break;
7347 msleep_interruptible(1000);
7351 if (bnx2_test_nvram(bp) != 0) {
7352 buf[3] = 1;
7353 etest->flags |= ETH_TEST_FL_FAILED;
7355 if (bnx2_test_intr(bp) != 0) {
7356 buf[4] = 1;
7357 etest->flags |= ETH_TEST_FL_FAILED;
7360 if (bnx2_test_link(bp) != 0) {
7361 buf[5] = 1;
7362 etest->flags |= ETH_TEST_FL_FAILED;
7365 if (!netif_running(bp->dev))
7366 bnx2_set_power_state(bp, PCI_D3hot);
7369 static void
7370 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7372 switch (stringset) {
7373 case ETH_SS_STATS:
7374 memcpy(buf, bnx2_stats_str_arr,
7375 sizeof(bnx2_stats_str_arr));
7376 break;
7377 case ETH_SS_TEST:
7378 memcpy(buf, bnx2_tests_str_arr,
7379 sizeof(bnx2_tests_str_arr));
7380 break;
7384 static void
7385 bnx2_get_ethtool_stats(struct net_device *dev,
7386 struct ethtool_stats *stats, u64 *buf)
7388 struct bnx2 *bp = netdev_priv(dev);
7389 int i;
7390 u32 *hw_stats = (u32 *) bp->stats_blk;
7391 u8 *stats_len_arr = NULL;
7393 if (hw_stats == NULL) {
7394 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7395 return;
7398 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7399 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7400 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7401 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7402 stats_len_arr = bnx2_5706_stats_len_arr;
7403 else
7404 stats_len_arr = bnx2_5708_stats_len_arr;
7406 for (i = 0; i < BNX2_NUM_STATS; i++) {
7407 if (stats_len_arr[i] == 0) {
7408 /* skip this counter */
7409 buf[i] = 0;
7410 continue;
7412 if (stats_len_arr[i] == 4) {
7413 /* 4-byte counter */
7414 buf[i] = (u64)
7415 *(hw_stats + bnx2_stats_offset_arr[i]);
7416 continue;
7418 /* 8-byte counter */
7419 buf[i] = (((u64) *(hw_stats +
7420 bnx2_stats_offset_arr[i])) << 32) +
7421 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7425 static int
7426 bnx2_phys_id(struct net_device *dev, u32 data)
7428 struct bnx2 *bp = netdev_priv(dev);
7429 int i;
7430 u32 save;
7432 bnx2_set_power_state(bp, PCI_D0);
7434 if (data == 0)
7435 data = 2;
7437 save = REG_RD(bp, BNX2_MISC_CFG);
7438 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7440 for (i = 0; i < (data * 2); i++) {
7441 if ((i % 2) == 0) {
7442 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7444 else {
7445 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7446 BNX2_EMAC_LED_1000MB_OVERRIDE |
7447 BNX2_EMAC_LED_100MB_OVERRIDE |
7448 BNX2_EMAC_LED_10MB_OVERRIDE |
7449 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7450 BNX2_EMAC_LED_TRAFFIC);
7452 msleep_interruptible(500);
7453 if (signal_pending(current))
7454 break;
7456 REG_WR(bp, BNX2_EMAC_LED, 0);
7457 REG_WR(bp, BNX2_MISC_CFG, save);
7459 if (!netif_running(dev))
7460 bnx2_set_power_state(bp, PCI_D3hot);
7462 return 0;
7465 static int
7466 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7468 struct bnx2 *bp = netdev_priv(dev);
7470 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7471 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7472 else
7473 return (ethtool_op_set_tx_csum(dev, data));
7476 static const struct ethtool_ops bnx2_ethtool_ops = {
7477 .get_settings = bnx2_get_settings,
7478 .set_settings = bnx2_set_settings,
7479 .get_drvinfo = bnx2_get_drvinfo,
7480 .get_regs_len = bnx2_get_regs_len,
7481 .get_regs = bnx2_get_regs,
7482 .get_wol = bnx2_get_wol,
7483 .set_wol = bnx2_set_wol,
7484 .nway_reset = bnx2_nway_reset,
7485 .get_link = bnx2_get_link,
7486 .get_eeprom_len = bnx2_get_eeprom_len,
7487 .get_eeprom = bnx2_get_eeprom,
7488 .set_eeprom = bnx2_set_eeprom,
7489 .get_coalesce = bnx2_get_coalesce,
7490 .set_coalesce = bnx2_set_coalesce,
7491 .get_ringparam = bnx2_get_ringparam,
7492 .set_ringparam = bnx2_set_ringparam,
7493 .get_pauseparam = bnx2_get_pauseparam,
7494 .set_pauseparam = bnx2_set_pauseparam,
7495 .get_rx_csum = bnx2_get_rx_csum,
7496 .set_rx_csum = bnx2_set_rx_csum,
7497 .set_tx_csum = bnx2_set_tx_csum,
7498 .set_sg = ethtool_op_set_sg,
7499 .set_tso = bnx2_set_tso,
7500 .self_test = bnx2_self_test,
7501 .get_strings = bnx2_get_strings,
7502 .phys_id = bnx2_phys_id,
7503 .get_ethtool_stats = bnx2_get_ethtool_stats,
7504 .get_sset_count = bnx2_get_sset_count,
7507 /* Called with rtnl_lock */
7508 static int
7509 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7511 struct mii_ioctl_data *data = if_mii(ifr);
7512 struct bnx2 *bp = netdev_priv(dev);
7513 int err;
7515 switch(cmd) {
7516 case SIOCGMIIPHY:
7517 data->phy_id = bp->phy_addr;
7519 /* fallthru */
7520 case SIOCGMIIREG: {
7521 u32 mii_regval;
7523 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7524 return -EOPNOTSUPP;
7526 if (!netif_running(dev))
7527 return -EAGAIN;
7529 spin_lock_bh(&bp->phy_lock);
7530 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7531 spin_unlock_bh(&bp->phy_lock);
7533 data->val_out = mii_regval;
7535 return err;
7538 case SIOCSMIIREG:
7539 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7540 return -EOPNOTSUPP;
7542 if (!netif_running(dev))
7543 return -EAGAIN;
7545 spin_lock_bh(&bp->phy_lock);
7546 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7547 spin_unlock_bh(&bp->phy_lock);
7549 return err;
7551 default:
7552 /* do nothing */
7553 break;
7555 return -EOPNOTSUPP;
7558 /* Called with rtnl_lock */
7559 static int
7560 bnx2_change_mac_addr(struct net_device *dev, void *p)
7562 struct sockaddr *addr = p;
7563 struct bnx2 *bp = netdev_priv(dev);
7565 if (!is_valid_ether_addr(addr->sa_data))
7566 return -EINVAL;
7568 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7569 if (netif_running(dev))
7570 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7572 return 0;
7575 /* Called with rtnl_lock */
7576 static int
7577 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7579 struct bnx2 *bp = netdev_priv(dev);
7581 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7582 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7583 return -EINVAL;
7585 dev->mtu = new_mtu;
7586 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7589 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7590 static void
7591 poll_bnx2(struct net_device *dev)
7593 struct bnx2 *bp = netdev_priv(dev);
7594 int i;
7596 for (i = 0; i < bp->irq_nvecs; i++) {
7597 disable_irq(bp->irq_tbl[i].vector);
7598 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7599 enable_irq(bp->irq_tbl[i].vector);
7602 #endif
7604 static void __devinit
7605 bnx2_get_5709_media(struct bnx2 *bp)
7607 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7608 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7609 u32 strap;
7611 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7612 return;
7613 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7614 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7615 return;
7618 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7619 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7620 else
7621 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7623 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7624 switch (strap) {
7625 case 0x4:
7626 case 0x5:
7627 case 0x6:
7628 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7629 return;
7631 } else {
7632 switch (strap) {
7633 case 0x1:
7634 case 0x2:
7635 case 0x4:
7636 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7637 return;
7642 static void __devinit
7643 bnx2_get_pci_speed(struct bnx2 *bp)
7645 u32 reg;
7647 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7648 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7649 u32 clkreg;
7651 bp->flags |= BNX2_FLAG_PCIX;
7653 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7655 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7656 switch (clkreg) {
7657 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7658 bp->bus_speed_mhz = 133;
7659 break;
7661 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7662 bp->bus_speed_mhz = 100;
7663 break;
7665 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7666 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7667 bp->bus_speed_mhz = 66;
7668 break;
7670 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7671 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7672 bp->bus_speed_mhz = 50;
7673 break;
7675 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7676 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7677 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7678 bp->bus_speed_mhz = 33;
7679 break;
7682 else {
7683 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7684 bp->bus_speed_mhz = 66;
7685 else
7686 bp->bus_speed_mhz = 33;
7689 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7690 bp->flags |= BNX2_FLAG_PCI_32BIT;
7694 static int __devinit
7695 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7697 struct bnx2 *bp;
7698 unsigned long mem_len;
7699 int rc, i, j;
7700 u32 reg;
7701 u64 dma_mask, persist_dma_mask;
7703 SET_NETDEV_DEV(dev, &pdev->dev);
7704 bp = netdev_priv(dev);
7706 bp->flags = 0;
7707 bp->phy_flags = 0;
7709 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7710 rc = pci_enable_device(pdev);
7711 if (rc) {
7712 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7713 goto err_out;
7716 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7717 dev_err(&pdev->dev,
7718 "Cannot find PCI device base address, aborting.\n");
7719 rc = -ENODEV;
7720 goto err_out_disable;
7723 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7724 if (rc) {
7725 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7726 goto err_out_disable;
7729 pci_set_master(pdev);
7730 pci_save_state(pdev);
7732 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7733 if (bp->pm_cap == 0) {
7734 dev_err(&pdev->dev,
7735 "Cannot find power management capability, aborting.\n");
7736 rc = -EIO;
7737 goto err_out_release;
7740 bp->dev = dev;
7741 bp->pdev = pdev;
7743 spin_lock_init(&bp->phy_lock);
7744 spin_lock_init(&bp->indirect_lock);
7745 #ifdef BCM_CNIC
7746 mutex_init(&bp->cnic_lock);
7747 #endif
7748 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7750 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7751 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7752 dev->mem_end = dev->mem_start + mem_len;
7753 dev->irq = pdev->irq;
7755 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7757 if (!bp->regview) {
7758 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7759 rc = -ENOMEM;
7760 goto err_out_release;
7763 /* Configure byte swap and enable write to the reg_window registers.
7764 * Rely on CPU to do target byte swapping on big endian systems
7765 * The chip's target access swapping will not swap all accesses
7767 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7768 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7769 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7771 bnx2_set_power_state(bp, PCI_D0);
7773 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7775 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7776 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7777 dev_err(&pdev->dev,
7778 "Cannot find PCIE capability, aborting.\n");
7779 rc = -EIO;
7780 goto err_out_unmap;
7782 bp->flags |= BNX2_FLAG_PCIE;
7783 if (CHIP_REV(bp) == CHIP_REV_Ax)
7784 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7785 } else {
7786 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7787 if (bp->pcix_cap == 0) {
7788 dev_err(&pdev->dev,
7789 "Cannot find PCIX capability, aborting.\n");
7790 rc = -EIO;
7791 goto err_out_unmap;
7793 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7796 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7797 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7798 bp->flags |= BNX2_FLAG_MSIX_CAP;
7801 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7802 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7803 bp->flags |= BNX2_FLAG_MSI_CAP;
7806 /* 5708 cannot support DMA addresses > 40-bit. */
7807 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7808 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7809 else
7810 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7812 /* Configure DMA attributes. */
7813 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7814 dev->features |= NETIF_F_HIGHDMA;
7815 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7816 if (rc) {
7817 dev_err(&pdev->dev,
7818 "pci_set_consistent_dma_mask failed, aborting.\n");
7819 goto err_out_unmap;
7821 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7822 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7823 goto err_out_unmap;
7826 if (!(bp->flags & BNX2_FLAG_PCIE))
7827 bnx2_get_pci_speed(bp);
7829 /* 5706A0 may falsely detect SERR and PERR. */
7830 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7831 reg = REG_RD(bp, PCI_COMMAND);
7832 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7833 REG_WR(bp, PCI_COMMAND, reg);
7835 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7836 !(bp->flags & BNX2_FLAG_PCIX)) {
7838 dev_err(&pdev->dev,
7839 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7840 goto err_out_unmap;
7843 bnx2_init_nvram(bp);
7845 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7847 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7848 BNX2_SHM_HDR_SIGNATURE_SIG) {
7849 u32 off = PCI_FUNC(pdev->devfn) << 2;
7851 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7852 } else
7853 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7855 /* Get the permanent MAC address. First we need to make sure the
7856 * firmware is actually running.
7858 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7860 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7861 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7862 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7863 rc = -ENODEV;
7864 goto err_out_unmap;
7867 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7868 for (i = 0, j = 0; i < 3; i++) {
7869 u8 num, k, skip0;
7871 num = (u8) (reg >> (24 - (i * 8)));
7872 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7873 if (num >= k || !skip0 || k == 1) {
7874 bp->fw_version[j++] = (num / k) + '0';
7875 skip0 = 0;
7878 if (i != 2)
7879 bp->fw_version[j++] = '.';
7881 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7882 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7883 bp->wol = 1;
7885 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7886 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7888 for (i = 0; i < 30; i++) {
7889 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7890 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7891 break;
7892 msleep(10);
7895 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7896 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7897 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7898 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7899 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7901 bp->fw_version[j++] = ' ';
7902 for (i = 0; i < 3; i++) {
7903 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7904 reg = swab32(reg);
7905 memcpy(&bp->fw_version[j], &reg, 4);
7906 j += 4;
7910 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7911 bp->mac_addr[0] = (u8) (reg >> 8);
7912 bp->mac_addr[1] = (u8) reg;
7914 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7915 bp->mac_addr[2] = (u8) (reg >> 24);
7916 bp->mac_addr[3] = (u8) (reg >> 16);
7917 bp->mac_addr[4] = (u8) (reg >> 8);
7918 bp->mac_addr[5] = (u8) reg;
7920 bp->tx_ring_size = MAX_TX_DESC_CNT;
7921 bnx2_set_rx_ring_size(bp, 255);
7923 bp->rx_csum = 1;
7925 bp->tx_quick_cons_trip_int = 2;
7926 bp->tx_quick_cons_trip = 20;
7927 bp->tx_ticks_int = 18;
7928 bp->tx_ticks = 80;
7930 bp->rx_quick_cons_trip_int = 2;
7931 bp->rx_quick_cons_trip = 12;
7932 bp->rx_ticks_int = 18;
7933 bp->rx_ticks = 18;
7935 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7937 bp->current_interval = BNX2_TIMER_INTERVAL;
7939 bp->phy_addr = 1;
7941 /* Disable WOL support if we are running on a SERDES chip. */
7942 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7943 bnx2_get_5709_media(bp);
7944 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7945 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7947 bp->phy_port = PORT_TP;
7948 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7949 bp->phy_port = PORT_FIBRE;
7950 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7951 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7952 bp->flags |= BNX2_FLAG_NO_WOL;
7953 bp->wol = 0;
7955 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7956 /* Don't do parallel detect on this board because of
7957 * some board problems. The link will not go down
7958 * if we do parallel detect.
7960 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7961 pdev->subsystem_device == 0x310c)
7962 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7963 } else {
7964 bp->phy_addr = 2;
7965 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7966 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7968 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7969 CHIP_NUM(bp) == CHIP_NUM_5708)
7970 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7971 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7972 (CHIP_REV(bp) == CHIP_REV_Ax ||
7973 CHIP_REV(bp) == CHIP_REV_Bx))
7974 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7976 bnx2_init_fw_cap(bp);
7978 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7979 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7980 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7981 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7982 bp->flags |= BNX2_FLAG_NO_WOL;
7983 bp->wol = 0;
7986 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7987 bp->tx_quick_cons_trip_int =
7988 bp->tx_quick_cons_trip;
7989 bp->tx_ticks_int = bp->tx_ticks;
7990 bp->rx_quick_cons_trip_int =
7991 bp->rx_quick_cons_trip;
7992 bp->rx_ticks_int = bp->rx_ticks;
7993 bp->comp_prod_trip_int = bp->comp_prod_trip;
7994 bp->com_ticks_int = bp->com_ticks;
7995 bp->cmd_ticks_int = bp->cmd_ticks;
7998 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8000 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8001 * with byte enables disabled on the unused 32-bit word. This is legal
8002 * but causes problems on the AMD 8132 which will eventually stop
8003 * responding after a while.
8005 * AMD believes this incompatibility is unique to the 5706, and
8006 * prefers to locally disable MSI rather than globally disabling it.
8008 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
8009 struct pci_dev *amd_8132 = NULL;
8011 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
8012 PCI_DEVICE_ID_AMD_8132_BRIDGE,
8013 amd_8132))) {
8015 if (amd_8132->revision >= 0x10 &&
8016 amd_8132->revision <= 0x13) {
8017 disable_msi = 1;
8018 pci_dev_put(amd_8132);
8019 break;
8024 bnx2_set_default_link(bp);
8025 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
8027 init_timer(&bp->timer);
8028 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
8029 bp->timer.data = (unsigned long) bp;
8030 bp->timer.function = bnx2_timer;
8032 return 0;
8034 err_out_unmap:
8035 if (bp->regview) {
8036 iounmap(bp->regview);
8037 bp->regview = NULL;
8040 err_out_release:
8041 pci_release_regions(pdev);
8043 err_out_disable:
8044 pci_disable_device(pdev);
8045 pci_set_drvdata(pdev, NULL);
8047 err_out:
8048 return rc;
8051 static char * __devinit
8052 bnx2_bus_string(struct bnx2 *bp, char *str)
8054 char *s = str;
8056 if (bp->flags & BNX2_FLAG_PCIE) {
8057 s += sprintf(s, "PCI Express");
8058 } else {
8059 s += sprintf(s, "PCI");
8060 if (bp->flags & BNX2_FLAG_PCIX)
8061 s += sprintf(s, "-X");
8062 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8063 s += sprintf(s, " 32-bit");
8064 else
8065 s += sprintf(s, " 64-bit");
8066 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8068 return str;
8071 static void __devinit
8072 bnx2_init_napi(struct bnx2 *bp)
8074 int i;
8076 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
8077 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8078 int (*poll)(struct napi_struct *, int);
8080 if (i == 0)
8081 poll = bnx2_poll;
8082 else
8083 poll = bnx2_poll_msix;
8085 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8086 bnapi->bp = bp;
8090 static const struct net_device_ops bnx2_netdev_ops = {
8091 .ndo_open = bnx2_open,
8092 .ndo_start_xmit = bnx2_start_xmit,
8093 .ndo_stop = bnx2_close,
8094 .ndo_get_stats = bnx2_get_stats,
8095 .ndo_set_rx_mode = bnx2_set_rx_mode,
8096 .ndo_do_ioctl = bnx2_ioctl,
8097 .ndo_validate_addr = eth_validate_addr,
8098 .ndo_set_mac_address = bnx2_change_mac_addr,
8099 .ndo_change_mtu = bnx2_change_mtu,
8100 .ndo_tx_timeout = bnx2_tx_timeout,
8101 #ifdef BCM_VLAN
8102 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8103 #endif
8104 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8105 .ndo_poll_controller = poll_bnx2,
8106 #endif
8109 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8111 #ifdef BCM_VLAN
8112 dev->vlan_features |= flags;
8113 #endif
8116 static int __devinit
8117 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8119 static int version_printed = 0;
8120 struct net_device *dev = NULL;
8121 struct bnx2 *bp;
8122 int rc;
8123 char str[40];
8125 if (version_printed++ == 0)
8126 printk(KERN_INFO "%s", version);
8128 /* dev zeroed in init_etherdev */
8129 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8131 if (!dev)
8132 return -ENOMEM;
8134 rc = bnx2_init_board(pdev, dev);
8135 if (rc < 0) {
8136 free_netdev(dev);
8137 return rc;
8140 dev->netdev_ops = &bnx2_netdev_ops;
8141 dev->watchdog_timeo = TX_TIMEOUT;
8142 dev->ethtool_ops = &bnx2_ethtool_ops;
8144 bp = netdev_priv(dev);
8145 bnx2_init_napi(bp);
8147 pci_set_drvdata(pdev, dev);
8149 rc = bnx2_request_firmware(bp);
8150 if (rc)
8151 goto error;
8153 memcpy(dev->dev_addr, bp->mac_addr, 6);
8154 memcpy(dev->perm_addr, bp->mac_addr, 6);
8156 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
8157 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8158 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8159 dev->features |= NETIF_F_IPV6_CSUM;
8160 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8162 #ifdef BCM_VLAN
8163 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8164 #endif
8165 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8166 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8167 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8168 dev->features |= NETIF_F_TSO6;
8169 vlan_features_add(dev, NETIF_F_TSO6);
8171 if ((rc = register_netdev(dev))) {
8172 dev_err(&pdev->dev, "Cannot register net device\n");
8173 goto error;
8176 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
8177 "IRQ %d, node addr %pM\n",
8178 dev->name,
8179 board_info[ent->driver_data].name,
8180 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8181 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8182 bnx2_bus_string(bp, str),
8183 dev->base_addr,
8184 bp->pdev->irq, dev->dev_addr);
8186 return 0;
8188 error:
8189 if (bp->mips_firmware)
8190 release_firmware(bp->mips_firmware);
8191 if (bp->rv2p_firmware)
8192 release_firmware(bp->rv2p_firmware);
8194 if (bp->regview)
8195 iounmap(bp->regview);
8196 pci_release_regions(pdev);
8197 pci_disable_device(pdev);
8198 pci_set_drvdata(pdev, NULL);
8199 free_netdev(dev);
8200 return rc;
8203 static void __devexit
8204 bnx2_remove_one(struct pci_dev *pdev)
8206 struct net_device *dev = pci_get_drvdata(pdev);
8207 struct bnx2 *bp = netdev_priv(dev);
8209 flush_scheduled_work();
8211 unregister_netdev(dev);
8213 if (bp->mips_firmware)
8214 release_firmware(bp->mips_firmware);
8215 if (bp->rv2p_firmware)
8216 release_firmware(bp->rv2p_firmware);
8218 if (bp->regview)
8219 iounmap(bp->regview);
8221 free_netdev(dev);
8222 pci_release_regions(pdev);
8223 pci_disable_device(pdev);
8224 pci_set_drvdata(pdev, NULL);
8227 static int
8228 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8230 struct net_device *dev = pci_get_drvdata(pdev);
8231 struct bnx2 *bp = netdev_priv(dev);
8233 /* PCI register 4 needs to be saved whether netif_running() or not.
8234 * MSI address and data need to be saved if using MSI and
8235 * netif_running().
8237 pci_save_state(pdev);
8238 if (!netif_running(dev))
8239 return 0;
8241 flush_scheduled_work();
8242 bnx2_netif_stop(bp);
8243 netif_device_detach(dev);
8244 del_timer_sync(&bp->timer);
8245 bnx2_shutdown_chip(bp);
8246 bnx2_free_skbs(bp);
8247 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8248 return 0;
8251 static int
8252 bnx2_resume(struct pci_dev *pdev)
8254 struct net_device *dev = pci_get_drvdata(pdev);
8255 struct bnx2 *bp = netdev_priv(dev);
8257 pci_restore_state(pdev);
8258 if (!netif_running(dev))
8259 return 0;
8261 bnx2_set_power_state(bp, PCI_D0);
8262 netif_device_attach(dev);
8263 bnx2_init_nic(bp, 1);
8264 bnx2_netif_start(bp);
8265 return 0;
8269 * bnx2_io_error_detected - called when PCI error is detected
8270 * @pdev: Pointer to PCI device
8271 * @state: The current pci connection state
8273 * This function is called after a PCI bus error affecting
8274 * this device has been detected.
8276 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8277 pci_channel_state_t state)
8279 struct net_device *dev = pci_get_drvdata(pdev);
8280 struct bnx2 *bp = netdev_priv(dev);
8282 rtnl_lock();
8283 netif_device_detach(dev);
8285 if (state == pci_channel_io_perm_failure) {
8286 rtnl_unlock();
8287 return PCI_ERS_RESULT_DISCONNECT;
8290 if (netif_running(dev)) {
8291 bnx2_netif_stop(bp);
8292 del_timer_sync(&bp->timer);
8293 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8296 pci_disable_device(pdev);
8297 rtnl_unlock();
8299 /* Request a slot slot reset. */
8300 return PCI_ERS_RESULT_NEED_RESET;
8304 * bnx2_io_slot_reset - called after the pci bus has been reset.
8305 * @pdev: Pointer to PCI device
8307 * Restart the card from scratch, as if from a cold-boot.
8309 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8311 struct net_device *dev = pci_get_drvdata(pdev);
8312 struct bnx2 *bp = netdev_priv(dev);
8314 rtnl_lock();
8315 if (pci_enable_device(pdev)) {
8316 dev_err(&pdev->dev,
8317 "Cannot re-enable PCI device after reset.\n");
8318 rtnl_unlock();
8319 return PCI_ERS_RESULT_DISCONNECT;
8321 pci_set_master(pdev);
8322 pci_restore_state(pdev);
8323 pci_save_state(pdev);
8325 if (netif_running(dev)) {
8326 bnx2_set_power_state(bp, PCI_D0);
8327 bnx2_init_nic(bp, 1);
8330 rtnl_unlock();
8331 return PCI_ERS_RESULT_RECOVERED;
8335 * bnx2_io_resume - called when traffic can start flowing again.
8336 * @pdev: Pointer to PCI device
8338 * This callback is called when the error recovery driver tells us that
8339 * its OK to resume normal operation.
8341 static void bnx2_io_resume(struct pci_dev *pdev)
8343 struct net_device *dev = pci_get_drvdata(pdev);
8344 struct bnx2 *bp = netdev_priv(dev);
8346 rtnl_lock();
8347 if (netif_running(dev))
8348 bnx2_netif_start(bp);
8350 netif_device_attach(dev);
8351 rtnl_unlock();
8354 static struct pci_error_handlers bnx2_err_handler = {
8355 .error_detected = bnx2_io_error_detected,
8356 .slot_reset = bnx2_io_slot_reset,
8357 .resume = bnx2_io_resume,
8360 static struct pci_driver bnx2_pci_driver = {
8361 .name = DRV_MODULE_NAME,
8362 .id_table = bnx2_pci_tbl,
8363 .probe = bnx2_init_one,
8364 .remove = __devexit_p(bnx2_remove_one),
8365 .suspend = bnx2_suspend,
8366 .resume = bnx2_resume,
8367 .err_handler = &bnx2_err_handler,
8370 static int __init bnx2_init(void)
8372 return pci_register_driver(&bnx2_pci_driver);
8375 static void __exit bnx2_cleanup(void)
8377 pci_unregister_driver(&bnx2_pci_driver);
8380 module_init(bnx2_init);
8381 module_exit(bnx2_cleanup);