workqueue: avoid false negative in assert_manager_or_pool_lock()
[linux-2.6/btrfs-unstable.git] / kernel / workqueue.c
blob47f258799bf2f17ed4e1c29ad50b134cb7e6de92
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
23 * Please read Documentation/workqueue.txt for details.
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
48 #include "workqueue_internal.h"
50 enum {
52 * worker_pool flags
54 * A bound pool is either associated or disassociated with its CPU.
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
61 * be executing on any CPU. The pool behaves as an unbound one.
63 * Note that DISASSOCIATED should be flipped only while holding
64 * manager_mutex to avoid changing binding state while
65 * create_worker() is in progress.
67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
69 POOL_FREEZING = 1 << 3, /* freeze in progress */
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
75 WORKER_PREP = 1 << 3, /* preparing to run works */
76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
78 WORKER_REBOUND = 1 << 8, /* worker was rebound */
80 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
81 WORKER_UNBOUND | WORKER_REBOUND,
83 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
85 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
86 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
101 RESCUER_NICE_LEVEL = -20,
102 HIGHPRI_NICE_LEVEL = -20,
106 * Structure fields follow one of the following exclusion rules.
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
114 * L: pool->lock protected. Access with pool->lock held.
116 * X: During normal operation, modification requires pool->lock and should
117 * be done only from local cpu. Either disabling preemption on local
118 * cpu or grabbing pool->lock is enough for read access. If
119 * POOL_DISASSOCIATED is set, it's identical to L.
121 * F: wq->flush_mutex protected.
123 * MG: pool->manager_mutex and pool->lock protected. Writes require both
124 * locks. Reads can happen under either lock.
126 * WQ: wq_mutex protected.
128 * WR: wq_mutex protected for writes. Sched-RCU protected for reads.
130 * PW: pwq_lock protected.
132 * FR: wq->flush_mutex and pwq_lock protected for writes. Sched-RCU
133 * protected for reads.
135 * MD: wq_mayday_lock protected.
138 /* struct worker is defined in workqueue_internal.h */
140 struct worker_pool {
141 spinlock_t lock; /* the pool lock */
142 int cpu; /* I: the associated cpu */
143 int id; /* I: pool ID */
144 unsigned int flags; /* X: flags */
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
149 /* nr_idle includes the ones off idle_list for rebinding */
150 int nr_idle; /* L: currently idle ones */
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
156 /* a workers is either on busy_hash or idle_list, or the manager */
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
160 /* see manage_workers() for details on the two manager mutexes */
161 struct mutex manager_arb; /* manager arbitration */
162 struct mutex manager_mutex; /* manager exclusion */
163 struct idr worker_idr; /* MG: worker IDs and iteration */
165 struct workqueue_attrs *attrs; /* I: worker attributes */
166 struct hlist_node hash_node; /* WQ: unbound_pool_hash node */
167 int refcnt; /* WQ: refcnt for unbound pools */
170 * The current concurrency level. As it's likely to be accessed
171 * from other CPUs during try_to_wake_up(), put it in a separate
172 * cacheline.
174 atomic_t nr_running ____cacheline_aligned_in_smp;
177 * Destruction of pool is sched-RCU protected to allow dereferences
178 * from get_work_pool().
180 struct rcu_head rcu;
181 } ____cacheline_aligned_in_smp;
184 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
185 * of work_struct->data are used for flags and the remaining high bits
186 * point to the pwq; thus, pwqs need to be aligned at two's power of the
187 * number of flag bits.
189 struct pool_workqueue {
190 struct worker_pool *pool; /* I: the associated pool */
191 struct workqueue_struct *wq; /* I: the owning workqueue */
192 int work_color; /* L: current color */
193 int flush_color; /* L: flushing color */
194 int refcnt; /* L: reference count */
195 int nr_in_flight[WORK_NR_COLORS];
196 /* L: nr of in_flight works */
197 int nr_active; /* L: nr of active works */
198 int max_active; /* L: max active works */
199 struct list_head delayed_works; /* L: delayed works */
200 struct list_head pwqs_node; /* FR: node on wq->pwqs */
201 struct list_head mayday_node; /* MD: node on wq->maydays */
204 * Release of unbound pwq is punted to system_wq. See put_pwq()
205 * and pwq_unbound_release_workfn() for details. pool_workqueue
206 * itself is also sched-RCU protected so that the first pwq can be
207 * determined without grabbing pwq_lock.
209 struct work_struct unbound_release_work;
210 struct rcu_head rcu;
211 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
214 * Structure used to wait for workqueue flush.
216 struct wq_flusher {
217 struct list_head list; /* F: list of flushers */
218 int flush_color; /* F: flush color waiting for */
219 struct completion done; /* flush completion */
222 struct wq_device;
225 * The externally visible workqueue. It relays the issued work items to
226 * the appropriate worker_pool through its pool_workqueues.
228 struct workqueue_struct {
229 unsigned int flags; /* WQ: WQ_* flags */
230 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
231 struct list_head pwqs; /* FR: all pwqs of this wq */
232 struct list_head list; /* WQ: list of all workqueues */
234 struct mutex flush_mutex; /* protects wq flushing */
235 int work_color; /* F: current work color */
236 int flush_color; /* F: current flush color */
237 atomic_t nr_pwqs_to_flush; /* flush in progress */
238 struct wq_flusher *first_flusher; /* F: first flusher */
239 struct list_head flusher_queue; /* F: flush waiters */
240 struct list_head flusher_overflow; /* F: flush overflow list */
242 struct list_head maydays; /* MD: pwqs requesting rescue */
243 struct worker *rescuer; /* I: rescue worker */
245 int nr_drainers; /* WQ: drain in progress */
246 int saved_max_active; /* PW: saved pwq max_active */
248 #ifdef CONFIG_SYSFS
249 struct wq_device *wq_dev; /* I: for sysfs interface */
250 #endif
251 #ifdef CONFIG_LOCKDEP
252 struct lockdep_map lockdep_map;
253 #endif
254 char name[]; /* I: workqueue name */
257 static struct kmem_cache *pwq_cache;
259 static DEFINE_MUTEX(wq_mutex); /* protects workqueues and pools */
260 static DEFINE_SPINLOCK(pwq_lock); /* protects pool_workqueues */
261 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
263 static LIST_HEAD(workqueues); /* WQ: list of all workqueues */
264 static bool workqueue_freezing; /* WQ: have wqs started freezing? */
266 /* the per-cpu worker pools */
267 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
268 cpu_worker_pools);
270 static DEFINE_IDR(worker_pool_idr); /* WR: idr of all pools */
272 /* WQ: hash of all unbound pools keyed by pool->attrs */
273 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
275 /* I: attributes used when instantiating standard unbound pools on demand */
276 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
278 struct workqueue_struct *system_wq __read_mostly;
279 EXPORT_SYMBOL_GPL(system_wq);
280 struct workqueue_struct *system_highpri_wq __read_mostly;
281 EXPORT_SYMBOL_GPL(system_highpri_wq);
282 struct workqueue_struct *system_long_wq __read_mostly;
283 EXPORT_SYMBOL_GPL(system_long_wq);
284 struct workqueue_struct *system_unbound_wq __read_mostly;
285 EXPORT_SYMBOL_GPL(system_unbound_wq);
286 struct workqueue_struct *system_freezable_wq __read_mostly;
287 EXPORT_SYMBOL_GPL(system_freezable_wq);
289 static int worker_thread(void *__worker);
290 static void copy_workqueue_attrs(struct workqueue_attrs *to,
291 const struct workqueue_attrs *from);
293 #define CREATE_TRACE_POINTS
294 #include <trace/events/workqueue.h>
296 #define assert_rcu_or_wq_mutex() \
297 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
298 lockdep_is_held(&wq_mutex), \
299 "sched RCU or wq_mutex should be held")
301 #define assert_rcu_or_pwq_lock() \
302 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
303 lockdep_is_held(&pwq_lock), \
304 "sched RCU or pwq_lock should be held")
306 #ifdef CONFIG_LOCKDEP
307 #define assert_manager_or_pool_lock(pool) \
308 WARN_ONCE(debug_locks && \
309 !lockdep_is_held(&(pool)->manager_mutex) && \
310 !lockdep_is_held(&(pool)->lock), \
311 "pool->manager_mutex or ->lock should be held")
312 #else
313 #define assert_manager_or_pool_lock(pool) do { } while (0)
314 #endif
316 #define for_each_cpu_worker_pool(pool, cpu) \
317 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
318 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
319 (pool)++)
322 * for_each_pool - iterate through all worker_pools in the system
323 * @pool: iteration cursor
324 * @pi: integer used for iteration
326 * This must be called either with wq_mutex held or sched RCU read locked.
327 * If the pool needs to be used beyond the locking in effect, the caller is
328 * responsible for guaranteeing that the pool stays online.
330 * The if/else clause exists only for the lockdep assertion and can be
331 * ignored.
333 #define for_each_pool(pool, pi) \
334 idr_for_each_entry(&worker_pool_idr, pool, pi) \
335 if (({ assert_rcu_or_wq_mutex(); false; })) { } \
336 else
339 * for_each_pool_worker - iterate through all workers of a worker_pool
340 * @worker: iteration cursor
341 * @wi: integer used for iteration
342 * @pool: worker_pool to iterate workers of
344 * This must be called with either @pool->manager_mutex or ->lock held.
346 * The if/else clause exists only for the lockdep assertion and can be
347 * ignored.
349 #define for_each_pool_worker(worker, wi, pool) \
350 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
351 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
352 else
355 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
356 * @pwq: iteration cursor
357 * @wq: the target workqueue
359 * This must be called either with pwq_lock held or sched RCU read locked.
360 * If the pwq needs to be used beyond the locking in effect, the caller is
361 * responsible for guaranteeing that the pwq stays online.
363 * The if/else clause exists only for the lockdep assertion and can be
364 * ignored.
366 #define for_each_pwq(pwq, wq) \
367 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
368 if (({ assert_rcu_or_pwq_lock(); false; })) { } \
369 else
371 #ifdef CONFIG_DEBUG_OBJECTS_WORK
373 static struct debug_obj_descr work_debug_descr;
375 static void *work_debug_hint(void *addr)
377 return ((struct work_struct *) addr)->func;
381 * fixup_init is called when:
382 * - an active object is initialized
384 static int work_fixup_init(void *addr, enum debug_obj_state state)
386 struct work_struct *work = addr;
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 cancel_work_sync(work);
391 debug_object_init(work, &work_debug_descr);
392 return 1;
393 default:
394 return 0;
399 * fixup_activate is called when:
400 * - an active object is activated
401 * - an unknown object is activated (might be a statically initialized object)
403 static int work_fixup_activate(void *addr, enum debug_obj_state state)
405 struct work_struct *work = addr;
407 switch (state) {
409 case ODEBUG_STATE_NOTAVAILABLE:
411 * This is not really a fixup. The work struct was
412 * statically initialized. We just make sure that it
413 * is tracked in the object tracker.
415 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
416 debug_object_init(work, &work_debug_descr);
417 debug_object_activate(work, &work_debug_descr);
418 return 0;
420 WARN_ON_ONCE(1);
421 return 0;
423 case ODEBUG_STATE_ACTIVE:
424 WARN_ON(1);
426 default:
427 return 0;
432 * fixup_free is called when:
433 * - an active object is freed
435 static int work_fixup_free(void *addr, enum debug_obj_state state)
437 struct work_struct *work = addr;
439 switch (state) {
440 case ODEBUG_STATE_ACTIVE:
441 cancel_work_sync(work);
442 debug_object_free(work, &work_debug_descr);
443 return 1;
444 default:
445 return 0;
449 static struct debug_obj_descr work_debug_descr = {
450 .name = "work_struct",
451 .debug_hint = work_debug_hint,
452 .fixup_init = work_fixup_init,
453 .fixup_activate = work_fixup_activate,
454 .fixup_free = work_fixup_free,
457 static inline void debug_work_activate(struct work_struct *work)
459 debug_object_activate(work, &work_debug_descr);
462 static inline void debug_work_deactivate(struct work_struct *work)
464 debug_object_deactivate(work, &work_debug_descr);
467 void __init_work(struct work_struct *work, int onstack)
469 if (onstack)
470 debug_object_init_on_stack(work, &work_debug_descr);
471 else
472 debug_object_init(work, &work_debug_descr);
474 EXPORT_SYMBOL_GPL(__init_work);
476 void destroy_work_on_stack(struct work_struct *work)
478 debug_object_free(work, &work_debug_descr);
480 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
482 #else
483 static inline void debug_work_activate(struct work_struct *work) { }
484 static inline void debug_work_deactivate(struct work_struct *work) { }
485 #endif
487 /* allocate ID and assign it to @pool */
488 static int worker_pool_assign_id(struct worker_pool *pool)
490 int ret;
492 lockdep_assert_held(&wq_mutex);
494 do {
495 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
496 return -ENOMEM;
497 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
498 } while (ret == -EAGAIN);
500 return ret;
504 * first_pwq - return the first pool_workqueue of the specified workqueue
505 * @wq: the target workqueue
507 * This must be called either with pwq_lock held or sched RCU read locked.
508 * If the pwq needs to be used beyond the locking in effect, the caller is
509 * responsible for guaranteeing that the pwq stays online.
511 static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
513 assert_rcu_or_pwq_lock();
514 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
515 pwqs_node);
518 static unsigned int work_color_to_flags(int color)
520 return color << WORK_STRUCT_COLOR_SHIFT;
523 static int get_work_color(struct work_struct *work)
525 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
526 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
529 static int work_next_color(int color)
531 return (color + 1) % WORK_NR_COLORS;
535 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
536 * contain the pointer to the queued pwq. Once execution starts, the flag
537 * is cleared and the high bits contain OFFQ flags and pool ID.
539 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
540 * and clear_work_data() can be used to set the pwq, pool or clear
541 * work->data. These functions should only be called while the work is
542 * owned - ie. while the PENDING bit is set.
544 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
545 * corresponding to a work. Pool is available once the work has been
546 * queued anywhere after initialization until it is sync canceled. pwq is
547 * available only while the work item is queued.
549 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
550 * canceled. While being canceled, a work item may have its PENDING set
551 * but stay off timer and worklist for arbitrarily long and nobody should
552 * try to steal the PENDING bit.
554 static inline void set_work_data(struct work_struct *work, unsigned long data,
555 unsigned long flags)
557 WARN_ON_ONCE(!work_pending(work));
558 atomic_long_set(&work->data, data | flags | work_static(work));
561 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
562 unsigned long extra_flags)
564 set_work_data(work, (unsigned long)pwq,
565 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
568 static void set_work_pool_and_keep_pending(struct work_struct *work,
569 int pool_id)
571 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
572 WORK_STRUCT_PENDING);
575 static void set_work_pool_and_clear_pending(struct work_struct *work,
576 int pool_id)
579 * The following wmb is paired with the implied mb in
580 * test_and_set_bit(PENDING) and ensures all updates to @work made
581 * here are visible to and precede any updates by the next PENDING
582 * owner.
584 smp_wmb();
585 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
588 static void clear_work_data(struct work_struct *work)
590 smp_wmb(); /* see set_work_pool_and_clear_pending() */
591 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
594 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
596 unsigned long data = atomic_long_read(&work->data);
598 if (data & WORK_STRUCT_PWQ)
599 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
600 else
601 return NULL;
605 * get_work_pool - return the worker_pool a given work was associated with
606 * @work: the work item of interest
608 * Return the worker_pool @work was last associated with. %NULL if none.
610 * Pools are created and destroyed under wq_mutex, and allows read access
611 * under sched-RCU read lock. As such, this function should be called
612 * under wq_mutex or with preemption disabled.
614 * All fields of the returned pool are accessible as long as the above
615 * mentioned locking is in effect. If the returned pool needs to be used
616 * beyond the critical section, the caller is responsible for ensuring the
617 * returned pool is and stays online.
619 static struct worker_pool *get_work_pool(struct work_struct *work)
621 unsigned long data = atomic_long_read(&work->data);
622 int pool_id;
624 assert_rcu_or_wq_mutex();
626 if (data & WORK_STRUCT_PWQ)
627 return ((struct pool_workqueue *)
628 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
630 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
631 if (pool_id == WORK_OFFQ_POOL_NONE)
632 return NULL;
634 return idr_find(&worker_pool_idr, pool_id);
638 * get_work_pool_id - return the worker pool ID a given work is associated with
639 * @work: the work item of interest
641 * Return the worker_pool ID @work was last associated with.
642 * %WORK_OFFQ_POOL_NONE if none.
644 static int get_work_pool_id(struct work_struct *work)
646 unsigned long data = atomic_long_read(&work->data);
648 if (data & WORK_STRUCT_PWQ)
649 return ((struct pool_workqueue *)
650 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
652 return data >> WORK_OFFQ_POOL_SHIFT;
655 static void mark_work_canceling(struct work_struct *work)
657 unsigned long pool_id = get_work_pool_id(work);
659 pool_id <<= WORK_OFFQ_POOL_SHIFT;
660 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
663 static bool work_is_canceling(struct work_struct *work)
665 unsigned long data = atomic_long_read(&work->data);
667 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
671 * Policy functions. These define the policies on how the global worker
672 * pools are managed. Unless noted otherwise, these functions assume that
673 * they're being called with pool->lock held.
676 static bool __need_more_worker(struct worker_pool *pool)
678 return !atomic_read(&pool->nr_running);
682 * Need to wake up a worker? Called from anything but currently
683 * running workers.
685 * Note that, because unbound workers never contribute to nr_running, this
686 * function will always return %true for unbound pools as long as the
687 * worklist isn't empty.
689 static bool need_more_worker(struct worker_pool *pool)
691 return !list_empty(&pool->worklist) && __need_more_worker(pool);
694 /* Can I start working? Called from busy but !running workers. */
695 static bool may_start_working(struct worker_pool *pool)
697 return pool->nr_idle;
700 /* Do I need to keep working? Called from currently running workers. */
701 static bool keep_working(struct worker_pool *pool)
703 return !list_empty(&pool->worklist) &&
704 atomic_read(&pool->nr_running) <= 1;
707 /* Do we need a new worker? Called from manager. */
708 static bool need_to_create_worker(struct worker_pool *pool)
710 return need_more_worker(pool) && !may_start_working(pool);
713 /* Do I need to be the manager? */
714 static bool need_to_manage_workers(struct worker_pool *pool)
716 return need_to_create_worker(pool) ||
717 (pool->flags & POOL_MANAGE_WORKERS);
720 /* Do we have too many workers and should some go away? */
721 static bool too_many_workers(struct worker_pool *pool)
723 bool managing = mutex_is_locked(&pool->manager_arb);
724 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
725 int nr_busy = pool->nr_workers - nr_idle;
728 * nr_idle and idle_list may disagree if idle rebinding is in
729 * progress. Never return %true if idle_list is empty.
731 if (list_empty(&pool->idle_list))
732 return false;
734 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
738 * Wake up functions.
741 /* Return the first worker. Safe with preemption disabled */
742 static struct worker *first_worker(struct worker_pool *pool)
744 if (unlikely(list_empty(&pool->idle_list)))
745 return NULL;
747 return list_first_entry(&pool->idle_list, struct worker, entry);
751 * wake_up_worker - wake up an idle worker
752 * @pool: worker pool to wake worker from
754 * Wake up the first idle worker of @pool.
756 * CONTEXT:
757 * spin_lock_irq(pool->lock).
759 static void wake_up_worker(struct worker_pool *pool)
761 struct worker *worker = first_worker(pool);
763 if (likely(worker))
764 wake_up_process(worker->task);
768 * wq_worker_waking_up - a worker is waking up
769 * @task: task waking up
770 * @cpu: CPU @task is waking up to
772 * This function is called during try_to_wake_up() when a worker is
773 * being awoken.
775 * CONTEXT:
776 * spin_lock_irq(rq->lock)
778 void wq_worker_waking_up(struct task_struct *task, int cpu)
780 struct worker *worker = kthread_data(task);
782 if (!(worker->flags & WORKER_NOT_RUNNING)) {
783 WARN_ON_ONCE(worker->pool->cpu != cpu);
784 atomic_inc(&worker->pool->nr_running);
789 * wq_worker_sleeping - a worker is going to sleep
790 * @task: task going to sleep
791 * @cpu: CPU in question, must be the current CPU number
793 * This function is called during schedule() when a busy worker is
794 * going to sleep. Worker on the same cpu can be woken up by
795 * returning pointer to its task.
797 * CONTEXT:
798 * spin_lock_irq(rq->lock)
800 * RETURNS:
801 * Worker task on @cpu to wake up, %NULL if none.
803 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
805 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
806 struct worker_pool *pool;
809 * Rescuers, which may not have all the fields set up like normal
810 * workers, also reach here, let's not access anything before
811 * checking NOT_RUNNING.
813 if (worker->flags & WORKER_NOT_RUNNING)
814 return NULL;
816 pool = worker->pool;
818 /* this can only happen on the local cpu */
819 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
820 return NULL;
823 * The counterpart of the following dec_and_test, implied mb,
824 * worklist not empty test sequence is in insert_work().
825 * Please read comment there.
827 * NOT_RUNNING is clear. This means that we're bound to and
828 * running on the local cpu w/ rq lock held and preemption
829 * disabled, which in turn means that none else could be
830 * manipulating idle_list, so dereferencing idle_list without pool
831 * lock is safe.
833 if (atomic_dec_and_test(&pool->nr_running) &&
834 !list_empty(&pool->worklist))
835 to_wakeup = first_worker(pool);
836 return to_wakeup ? to_wakeup->task : NULL;
840 * worker_set_flags - set worker flags and adjust nr_running accordingly
841 * @worker: self
842 * @flags: flags to set
843 * @wakeup: wakeup an idle worker if necessary
845 * Set @flags in @worker->flags and adjust nr_running accordingly. If
846 * nr_running becomes zero and @wakeup is %true, an idle worker is
847 * woken up.
849 * CONTEXT:
850 * spin_lock_irq(pool->lock)
852 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
853 bool wakeup)
855 struct worker_pool *pool = worker->pool;
857 WARN_ON_ONCE(worker->task != current);
860 * If transitioning into NOT_RUNNING, adjust nr_running and
861 * wake up an idle worker as necessary if requested by
862 * @wakeup.
864 if ((flags & WORKER_NOT_RUNNING) &&
865 !(worker->flags & WORKER_NOT_RUNNING)) {
866 if (wakeup) {
867 if (atomic_dec_and_test(&pool->nr_running) &&
868 !list_empty(&pool->worklist))
869 wake_up_worker(pool);
870 } else
871 atomic_dec(&pool->nr_running);
874 worker->flags |= flags;
878 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
879 * @worker: self
880 * @flags: flags to clear
882 * Clear @flags in @worker->flags and adjust nr_running accordingly.
884 * CONTEXT:
885 * spin_lock_irq(pool->lock)
887 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
889 struct worker_pool *pool = worker->pool;
890 unsigned int oflags = worker->flags;
892 WARN_ON_ONCE(worker->task != current);
894 worker->flags &= ~flags;
897 * If transitioning out of NOT_RUNNING, increment nr_running. Note
898 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
899 * of multiple flags, not a single flag.
901 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
902 if (!(worker->flags & WORKER_NOT_RUNNING))
903 atomic_inc(&pool->nr_running);
907 * find_worker_executing_work - find worker which is executing a work
908 * @pool: pool of interest
909 * @work: work to find worker for
911 * Find a worker which is executing @work on @pool by searching
912 * @pool->busy_hash which is keyed by the address of @work. For a worker
913 * to match, its current execution should match the address of @work and
914 * its work function. This is to avoid unwanted dependency between
915 * unrelated work executions through a work item being recycled while still
916 * being executed.
918 * This is a bit tricky. A work item may be freed once its execution
919 * starts and nothing prevents the freed area from being recycled for
920 * another work item. If the same work item address ends up being reused
921 * before the original execution finishes, workqueue will identify the
922 * recycled work item as currently executing and make it wait until the
923 * current execution finishes, introducing an unwanted dependency.
925 * This function checks the work item address and work function to avoid
926 * false positives. Note that this isn't complete as one may construct a
927 * work function which can introduce dependency onto itself through a
928 * recycled work item. Well, if somebody wants to shoot oneself in the
929 * foot that badly, there's only so much we can do, and if such deadlock
930 * actually occurs, it should be easy to locate the culprit work function.
932 * CONTEXT:
933 * spin_lock_irq(pool->lock).
935 * RETURNS:
936 * Pointer to worker which is executing @work if found, NULL
937 * otherwise.
939 static struct worker *find_worker_executing_work(struct worker_pool *pool,
940 struct work_struct *work)
942 struct worker *worker;
944 hash_for_each_possible(pool->busy_hash, worker, hentry,
945 (unsigned long)work)
946 if (worker->current_work == work &&
947 worker->current_func == work->func)
948 return worker;
950 return NULL;
954 * move_linked_works - move linked works to a list
955 * @work: start of series of works to be scheduled
956 * @head: target list to append @work to
957 * @nextp: out paramter for nested worklist walking
959 * Schedule linked works starting from @work to @head. Work series to
960 * be scheduled starts at @work and includes any consecutive work with
961 * WORK_STRUCT_LINKED set in its predecessor.
963 * If @nextp is not NULL, it's updated to point to the next work of
964 * the last scheduled work. This allows move_linked_works() to be
965 * nested inside outer list_for_each_entry_safe().
967 * CONTEXT:
968 * spin_lock_irq(pool->lock).
970 static void move_linked_works(struct work_struct *work, struct list_head *head,
971 struct work_struct **nextp)
973 struct work_struct *n;
976 * Linked worklist will always end before the end of the list,
977 * use NULL for list head.
979 list_for_each_entry_safe_from(work, n, NULL, entry) {
980 list_move_tail(&work->entry, head);
981 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
982 break;
986 * If we're already inside safe list traversal and have moved
987 * multiple works to the scheduled queue, the next position
988 * needs to be updated.
990 if (nextp)
991 *nextp = n;
995 * get_pwq - get an extra reference on the specified pool_workqueue
996 * @pwq: pool_workqueue to get
998 * Obtain an extra reference on @pwq. The caller should guarantee that
999 * @pwq has positive refcnt and be holding the matching pool->lock.
1001 static void get_pwq(struct pool_workqueue *pwq)
1003 lockdep_assert_held(&pwq->pool->lock);
1004 WARN_ON_ONCE(pwq->refcnt <= 0);
1005 pwq->refcnt++;
1009 * put_pwq - put a pool_workqueue reference
1010 * @pwq: pool_workqueue to put
1012 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1013 * destruction. The caller should be holding the matching pool->lock.
1015 static void put_pwq(struct pool_workqueue *pwq)
1017 lockdep_assert_held(&pwq->pool->lock);
1018 if (likely(--pwq->refcnt))
1019 return;
1020 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1021 return;
1023 * @pwq can't be released under pool->lock, bounce to
1024 * pwq_unbound_release_workfn(). This never recurses on the same
1025 * pool->lock as this path is taken only for unbound workqueues and
1026 * the release work item is scheduled on a per-cpu workqueue. To
1027 * avoid lockdep warning, unbound pool->locks are given lockdep
1028 * subclass of 1 in get_unbound_pool().
1030 schedule_work(&pwq->unbound_release_work);
1033 static void pwq_activate_delayed_work(struct work_struct *work)
1035 struct pool_workqueue *pwq = get_work_pwq(work);
1037 trace_workqueue_activate_work(work);
1038 move_linked_works(work, &pwq->pool->worklist, NULL);
1039 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1040 pwq->nr_active++;
1043 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1045 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1046 struct work_struct, entry);
1048 pwq_activate_delayed_work(work);
1052 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1053 * @pwq: pwq of interest
1054 * @color: color of work which left the queue
1056 * A work either has completed or is removed from pending queue,
1057 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1059 * CONTEXT:
1060 * spin_lock_irq(pool->lock).
1062 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1064 /* uncolored work items don't participate in flushing or nr_active */
1065 if (color == WORK_NO_COLOR)
1066 goto out_put;
1068 pwq->nr_in_flight[color]--;
1070 pwq->nr_active--;
1071 if (!list_empty(&pwq->delayed_works)) {
1072 /* one down, submit a delayed one */
1073 if (pwq->nr_active < pwq->max_active)
1074 pwq_activate_first_delayed(pwq);
1077 /* is flush in progress and are we at the flushing tip? */
1078 if (likely(pwq->flush_color != color))
1079 goto out_put;
1081 /* are there still in-flight works? */
1082 if (pwq->nr_in_flight[color])
1083 goto out_put;
1085 /* this pwq is done, clear flush_color */
1086 pwq->flush_color = -1;
1089 * If this was the last pwq, wake up the first flusher. It
1090 * will handle the rest.
1092 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1093 complete(&pwq->wq->first_flusher->done);
1094 out_put:
1095 put_pwq(pwq);
1099 * try_to_grab_pending - steal work item from worklist and disable irq
1100 * @work: work item to steal
1101 * @is_dwork: @work is a delayed_work
1102 * @flags: place to store irq state
1104 * Try to grab PENDING bit of @work. This function can handle @work in any
1105 * stable state - idle, on timer or on worklist. Return values are
1107 * 1 if @work was pending and we successfully stole PENDING
1108 * 0 if @work was idle and we claimed PENDING
1109 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1110 * -ENOENT if someone else is canceling @work, this state may persist
1111 * for arbitrarily long
1113 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1114 * interrupted while holding PENDING and @work off queue, irq must be
1115 * disabled on entry. This, combined with delayed_work->timer being
1116 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1118 * On successful return, >= 0, irq is disabled and the caller is
1119 * responsible for releasing it using local_irq_restore(*@flags).
1121 * This function is safe to call from any context including IRQ handler.
1123 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1124 unsigned long *flags)
1126 struct worker_pool *pool;
1127 struct pool_workqueue *pwq;
1129 local_irq_save(*flags);
1131 /* try to steal the timer if it exists */
1132 if (is_dwork) {
1133 struct delayed_work *dwork = to_delayed_work(work);
1136 * dwork->timer is irqsafe. If del_timer() fails, it's
1137 * guaranteed that the timer is not queued anywhere and not
1138 * running on the local CPU.
1140 if (likely(del_timer(&dwork->timer)))
1141 return 1;
1144 /* try to claim PENDING the normal way */
1145 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1146 return 0;
1149 * The queueing is in progress, or it is already queued. Try to
1150 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1152 pool = get_work_pool(work);
1153 if (!pool)
1154 goto fail;
1156 spin_lock(&pool->lock);
1158 * work->data is guaranteed to point to pwq only while the work
1159 * item is queued on pwq->wq, and both updating work->data to point
1160 * to pwq on queueing and to pool on dequeueing are done under
1161 * pwq->pool->lock. This in turn guarantees that, if work->data
1162 * points to pwq which is associated with a locked pool, the work
1163 * item is currently queued on that pool.
1165 pwq = get_work_pwq(work);
1166 if (pwq && pwq->pool == pool) {
1167 debug_work_deactivate(work);
1170 * A delayed work item cannot be grabbed directly because
1171 * it might have linked NO_COLOR work items which, if left
1172 * on the delayed_list, will confuse pwq->nr_active
1173 * management later on and cause stall. Make sure the work
1174 * item is activated before grabbing.
1176 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1177 pwq_activate_delayed_work(work);
1179 list_del_init(&work->entry);
1180 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1182 /* work->data points to pwq iff queued, point to pool */
1183 set_work_pool_and_keep_pending(work, pool->id);
1185 spin_unlock(&pool->lock);
1186 return 1;
1188 spin_unlock(&pool->lock);
1189 fail:
1190 local_irq_restore(*flags);
1191 if (work_is_canceling(work))
1192 return -ENOENT;
1193 cpu_relax();
1194 return -EAGAIN;
1198 * insert_work - insert a work into a pool
1199 * @pwq: pwq @work belongs to
1200 * @work: work to insert
1201 * @head: insertion point
1202 * @extra_flags: extra WORK_STRUCT_* flags to set
1204 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1205 * work_struct flags.
1207 * CONTEXT:
1208 * spin_lock_irq(pool->lock).
1210 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1211 struct list_head *head, unsigned int extra_flags)
1213 struct worker_pool *pool = pwq->pool;
1215 /* we own @work, set data and link */
1216 set_work_pwq(work, pwq, extra_flags);
1217 list_add_tail(&work->entry, head);
1218 get_pwq(pwq);
1221 * Ensure either wq_worker_sleeping() sees the above
1222 * list_add_tail() or we see zero nr_running to avoid workers lying
1223 * around lazily while there are works to be processed.
1225 smp_mb();
1227 if (__need_more_worker(pool))
1228 wake_up_worker(pool);
1232 * Test whether @work is being queued from another work executing on the
1233 * same workqueue.
1235 static bool is_chained_work(struct workqueue_struct *wq)
1237 struct worker *worker;
1239 worker = current_wq_worker();
1241 * Return %true iff I'm a worker execuing a work item on @wq. If
1242 * I'm @worker, it's safe to dereference it without locking.
1244 return worker && worker->current_pwq->wq == wq;
1247 static void __queue_work(int cpu, struct workqueue_struct *wq,
1248 struct work_struct *work)
1250 struct pool_workqueue *pwq;
1251 struct worker_pool *last_pool;
1252 struct list_head *worklist;
1253 unsigned int work_flags;
1254 unsigned int req_cpu = cpu;
1257 * While a work item is PENDING && off queue, a task trying to
1258 * steal the PENDING will busy-loop waiting for it to either get
1259 * queued or lose PENDING. Grabbing PENDING and queueing should
1260 * happen with IRQ disabled.
1262 WARN_ON_ONCE(!irqs_disabled());
1264 debug_work_activate(work);
1266 /* if dying, only works from the same workqueue are allowed */
1267 if (unlikely(wq->flags & __WQ_DRAINING) &&
1268 WARN_ON_ONCE(!is_chained_work(wq)))
1269 return;
1270 retry:
1271 /* pwq which will be used unless @work is executing elsewhere */
1272 if (!(wq->flags & WQ_UNBOUND)) {
1273 if (cpu == WORK_CPU_UNBOUND)
1274 cpu = raw_smp_processor_id();
1275 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1276 } else {
1277 pwq = first_pwq(wq);
1281 * If @work was previously on a different pool, it might still be
1282 * running there, in which case the work needs to be queued on that
1283 * pool to guarantee non-reentrancy.
1285 last_pool = get_work_pool(work);
1286 if (last_pool && last_pool != pwq->pool) {
1287 struct worker *worker;
1289 spin_lock(&last_pool->lock);
1291 worker = find_worker_executing_work(last_pool, work);
1293 if (worker && worker->current_pwq->wq == wq) {
1294 pwq = worker->current_pwq;
1295 } else {
1296 /* meh... not running there, queue here */
1297 spin_unlock(&last_pool->lock);
1298 spin_lock(&pwq->pool->lock);
1300 } else {
1301 spin_lock(&pwq->pool->lock);
1305 * pwq is determined and locked. For unbound pools, we could have
1306 * raced with pwq release and it could already be dead. If its
1307 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1308 * without another pwq replacing it as the first pwq or while a
1309 * work item is executing on it, so the retying is guaranteed to
1310 * make forward-progress.
1312 if (unlikely(!pwq->refcnt)) {
1313 if (wq->flags & WQ_UNBOUND) {
1314 spin_unlock(&pwq->pool->lock);
1315 cpu_relax();
1316 goto retry;
1318 /* oops */
1319 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1320 wq->name, cpu);
1323 /* pwq determined, queue */
1324 trace_workqueue_queue_work(req_cpu, pwq, work);
1326 if (WARN_ON(!list_empty(&work->entry))) {
1327 spin_unlock(&pwq->pool->lock);
1328 return;
1331 pwq->nr_in_flight[pwq->work_color]++;
1332 work_flags = work_color_to_flags(pwq->work_color);
1334 if (likely(pwq->nr_active < pwq->max_active)) {
1335 trace_workqueue_activate_work(work);
1336 pwq->nr_active++;
1337 worklist = &pwq->pool->worklist;
1338 } else {
1339 work_flags |= WORK_STRUCT_DELAYED;
1340 worklist = &pwq->delayed_works;
1343 insert_work(pwq, work, worklist, work_flags);
1345 spin_unlock(&pwq->pool->lock);
1349 * queue_work_on - queue work on specific cpu
1350 * @cpu: CPU number to execute work on
1351 * @wq: workqueue to use
1352 * @work: work to queue
1354 * Returns %false if @work was already on a queue, %true otherwise.
1356 * We queue the work to a specific CPU, the caller must ensure it
1357 * can't go away.
1359 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1360 struct work_struct *work)
1362 bool ret = false;
1363 unsigned long flags;
1365 local_irq_save(flags);
1367 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1368 __queue_work(cpu, wq, work);
1369 ret = true;
1372 local_irq_restore(flags);
1373 return ret;
1375 EXPORT_SYMBOL_GPL(queue_work_on);
1377 void delayed_work_timer_fn(unsigned long __data)
1379 struct delayed_work *dwork = (struct delayed_work *)__data;
1381 /* should have been called from irqsafe timer with irq already off */
1382 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1384 EXPORT_SYMBOL(delayed_work_timer_fn);
1386 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1387 struct delayed_work *dwork, unsigned long delay)
1389 struct timer_list *timer = &dwork->timer;
1390 struct work_struct *work = &dwork->work;
1392 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1393 timer->data != (unsigned long)dwork);
1394 WARN_ON_ONCE(timer_pending(timer));
1395 WARN_ON_ONCE(!list_empty(&work->entry));
1398 * If @delay is 0, queue @dwork->work immediately. This is for
1399 * both optimization and correctness. The earliest @timer can
1400 * expire is on the closest next tick and delayed_work users depend
1401 * on that there's no such delay when @delay is 0.
1403 if (!delay) {
1404 __queue_work(cpu, wq, &dwork->work);
1405 return;
1408 timer_stats_timer_set_start_info(&dwork->timer);
1410 dwork->wq = wq;
1411 dwork->cpu = cpu;
1412 timer->expires = jiffies + delay;
1414 if (unlikely(cpu != WORK_CPU_UNBOUND))
1415 add_timer_on(timer, cpu);
1416 else
1417 add_timer(timer);
1421 * queue_delayed_work_on - queue work on specific CPU after delay
1422 * @cpu: CPU number to execute work on
1423 * @wq: workqueue to use
1424 * @dwork: work to queue
1425 * @delay: number of jiffies to wait before queueing
1427 * Returns %false if @work was already on a queue, %true otherwise. If
1428 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1429 * execution.
1431 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1432 struct delayed_work *dwork, unsigned long delay)
1434 struct work_struct *work = &dwork->work;
1435 bool ret = false;
1436 unsigned long flags;
1438 /* read the comment in __queue_work() */
1439 local_irq_save(flags);
1441 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1442 __queue_delayed_work(cpu, wq, dwork, delay);
1443 ret = true;
1446 local_irq_restore(flags);
1447 return ret;
1449 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1452 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1453 * @cpu: CPU number to execute work on
1454 * @wq: workqueue to use
1455 * @dwork: work to queue
1456 * @delay: number of jiffies to wait before queueing
1458 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1459 * modify @dwork's timer so that it expires after @delay. If @delay is
1460 * zero, @work is guaranteed to be scheduled immediately regardless of its
1461 * current state.
1463 * Returns %false if @dwork was idle and queued, %true if @dwork was
1464 * pending and its timer was modified.
1466 * This function is safe to call from any context including IRQ handler.
1467 * See try_to_grab_pending() for details.
1469 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1470 struct delayed_work *dwork, unsigned long delay)
1472 unsigned long flags;
1473 int ret;
1475 do {
1476 ret = try_to_grab_pending(&dwork->work, true, &flags);
1477 } while (unlikely(ret == -EAGAIN));
1479 if (likely(ret >= 0)) {
1480 __queue_delayed_work(cpu, wq, dwork, delay);
1481 local_irq_restore(flags);
1484 /* -ENOENT from try_to_grab_pending() becomes %true */
1485 return ret;
1487 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1490 * worker_enter_idle - enter idle state
1491 * @worker: worker which is entering idle state
1493 * @worker is entering idle state. Update stats and idle timer if
1494 * necessary.
1496 * LOCKING:
1497 * spin_lock_irq(pool->lock).
1499 static void worker_enter_idle(struct worker *worker)
1501 struct worker_pool *pool = worker->pool;
1503 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1504 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1505 (worker->hentry.next || worker->hentry.pprev)))
1506 return;
1508 /* can't use worker_set_flags(), also called from start_worker() */
1509 worker->flags |= WORKER_IDLE;
1510 pool->nr_idle++;
1511 worker->last_active = jiffies;
1513 /* idle_list is LIFO */
1514 list_add(&worker->entry, &pool->idle_list);
1516 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1517 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1520 * Sanity check nr_running. Because wq_unbind_fn() releases
1521 * pool->lock between setting %WORKER_UNBOUND and zapping
1522 * nr_running, the warning may trigger spuriously. Check iff
1523 * unbind is not in progress.
1525 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1526 pool->nr_workers == pool->nr_idle &&
1527 atomic_read(&pool->nr_running));
1531 * worker_leave_idle - leave idle state
1532 * @worker: worker which is leaving idle state
1534 * @worker is leaving idle state. Update stats.
1536 * LOCKING:
1537 * spin_lock_irq(pool->lock).
1539 static void worker_leave_idle(struct worker *worker)
1541 struct worker_pool *pool = worker->pool;
1543 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1544 return;
1545 worker_clr_flags(worker, WORKER_IDLE);
1546 pool->nr_idle--;
1547 list_del_init(&worker->entry);
1551 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1552 * @pool: target worker_pool
1554 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1556 * Works which are scheduled while the cpu is online must at least be
1557 * scheduled to a worker which is bound to the cpu so that if they are
1558 * flushed from cpu callbacks while cpu is going down, they are
1559 * guaranteed to execute on the cpu.
1561 * This function is to be used by unbound workers and rescuers to bind
1562 * themselves to the target cpu and may race with cpu going down or
1563 * coming online. kthread_bind() can't be used because it may put the
1564 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1565 * verbatim as it's best effort and blocking and pool may be
1566 * [dis]associated in the meantime.
1568 * This function tries set_cpus_allowed() and locks pool and verifies the
1569 * binding against %POOL_DISASSOCIATED which is set during
1570 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1571 * enters idle state or fetches works without dropping lock, it can
1572 * guarantee the scheduling requirement described in the first paragraph.
1574 * CONTEXT:
1575 * Might sleep. Called without any lock but returns with pool->lock
1576 * held.
1578 * RETURNS:
1579 * %true if the associated pool is online (@worker is successfully
1580 * bound), %false if offline.
1582 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1583 __acquires(&pool->lock)
1585 while (true) {
1587 * The following call may fail, succeed or succeed
1588 * without actually migrating the task to the cpu if
1589 * it races with cpu hotunplug operation. Verify
1590 * against POOL_DISASSOCIATED.
1592 if (!(pool->flags & POOL_DISASSOCIATED))
1593 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1595 spin_lock_irq(&pool->lock);
1596 if (pool->flags & POOL_DISASSOCIATED)
1597 return false;
1598 if (task_cpu(current) == pool->cpu &&
1599 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1600 return true;
1601 spin_unlock_irq(&pool->lock);
1604 * We've raced with CPU hot[un]plug. Give it a breather
1605 * and retry migration. cond_resched() is required here;
1606 * otherwise, we might deadlock against cpu_stop trying to
1607 * bring down the CPU on non-preemptive kernel.
1609 cpu_relax();
1610 cond_resched();
1614 static struct worker *alloc_worker(void)
1616 struct worker *worker;
1618 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1619 if (worker) {
1620 INIT_LIST_HEAD(&worker->entry);
1621 INIT_LIST_HEAD(&worker->scheduled);
1622 /* on creation a worker is in !idle && prep state */
1623 worker->flags = WORKER_PREP;
1625 return worker;
1629 * create_worker - create a new workqueue worker
1630 * @pool: pool the new worker will belong to
1632 * Create a new worker which is bound to @pool. The returned worker
1633 * can be started by calling start_worker() or destroyed using
1634 * destroy_worker().
1636 * CONTEXT:
1637 * Might sleep. Does GFP_KERNEL allocations.
1639 * RETURNS:
1640 * Pointer to the newly created worker.
1642 static struct worker *create_worker(struct worker_pool *pool)
1644 const char *pri = pool->attrs->nice < 0 ? "H" : "";
1645 struct worker *worker = NULL;
1646 int id = -1;
1648 lockdep_assert_held(&pool->manager_mutex);
1651 * ID is needed to determine kthread name. Allocate ID first
1652 * without installing the pointer.
1654 idr_preload(GFP_KERNEL);
1655 spin_lock_irq(&pool->lock);
1657 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1659 spin_unlock_irq(&pool->lock);
1660 idr_preload_end();
1661 if (id < 0)
1662 goto fail;
1664 worker = alloc_worker();
1665 if (!worker)
1666 goto fail;
1668 worker->pool = pool;
1669 worker->id = id;
1671 if (pool->cpu >= 0)
1672 worker->task = kthread_create_on_node(worker_thread,
1673 worker, cpu_to_node(pool->cpu),
1674 "kworker/%d:%d%s", pool->cpu, id, pri);
1675 else
1676 worker->task = kthread_create(worker_thread, worker,
1677 "kworker/u%d:%d%s",
1678 pool->id, id, pri);
1679 if (IS_ERR(worker->task))
1680 goto fail;
1683 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1684 * online CPUs. It'll be re-applied when any of the CPUs come up.
1686 set_user_nice(worker->task, pool->attrs->nice);
1687 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1689 /* prevent userland from meddling with cpumask of workqueue workers */
1690 worker->task->flags |= PF_NO_SETAFFINITY;
1693 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1694 * remains stable across this function. See the comments above the
1695 * flag definition for details.
1697 if (pool->flags & POOL_DISASSOCIATED)
1698 worker->flags |= WORKER_UNBOUND;
1700 /* successful, commit the pointer to idr */
1701 spin_lock_irq(&pool->lock);
1702 idr_replace(&pool->worker_idr, worker, worker->id);
1703 spin_unlock_irq(&pool->lock);
1705 return worker;
1707 fail:
1708 if (id >= 0) {
1709 spin_lock_irq(&pool->lock);
1710 idr_remove(&pool->worker_idr, id);
1711 spin_unlock_irq(&pool->lock);
1713 kfree(worker);
1714 return NULL;
1718 * start_worker - start a newly created worker
1719 * @worker: worker to start
1721 * Make the pool aware of @worker and start it.
1723 * CONTEXT:
1724 * spin_lock_irq(pool->lock).
1726 static void start_worker(struct worker *worker)
1728 worker->flags |= WORKER_STARTED;
1729 worker->pool->nr_workers++;
1730 worker_enter_idle(worker);
1731 wake_up_process(worker->task);
1735 * create_and_start_worker - create and start a worker for a pool
1736 * @pool: the target pool
1738 * Grab the managership of @pool and create and start a new worker for it.
1740 static int create_and_start_worker(struct worker_pool *pool)
1742 struct worker *worker;
1744 mutex_lock(&pool->manager_mutex);
1746 worker = create_worker(pool);
1747 if (worker) {
1748 spin_lock_irq(&pool->lock);
1749 start_worker(worker);
1750 spin_unlock_irq(&pool->lock);
1753 mutex_unlock(&pool->manager_mutex);
1755 return worker ? 0 : -ENOMEM;
1759 * destroy_worker - destroy a workqueue worker
1760 * @worker: worker to be destroyed
1762 * Destroy @worker and adjust @pool stats accordingly.
1764 * CONTEXT:
1765 * spin_lock_irq(pool->lock) which is released and regrabbed.
1767 static void destroy_worker(struct worker *worker)
1769 struct worker_pool *pool = worker->pool;
1771 lockdep_assert_held(&pool->manager_mutex);
1772 lockdep_assert_held(&pool->lock);
1774 /* sanity check frenzy */
1775 if (WARN_ON(worker->current_work) ||
1776 WARN_ON(!list_empty(&worker->scheduled)))
1777 return;
1779 if (worker->flags & WORKER_STARTED)
1780 pool->nr_workers--;
1781 if (worker->flags & WORKER_IDLE)
1782 pool->nr_idle--;
1784 list_del_init(&worker->entry);
1785 worker->flags |= WORKER_DIE;
1787 idr_remove(&pool->worker_idr, worker->id);
1789 spin_unlock_irq(&pool->lock);
1791 kthread_stop(worker->task);
1792 kfree(worker);
1794 spin_lock_irq(&pool->lock);
1797 static void idle_worker_timeout(unsigned long __pool)
1799 struct worker_pool *pool = (void *)__pool;
1801 spin_lock_irq(&pool->lock);
1803 if (too_many_workers(pool)) {
1804 struct worker *worker;
1805 unsigned long expires;
1807 /* idle_list is kept in LIFO order, check the last one */
1808 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1809 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1811 if (time_before(jiffies, expires))
1812 mod_timer(&pool->idle_timer, expires);
1813 else {
1814 /* it's been idle for too long, wake up manager */
1815 pool->flags |= POOL_MANAGE_WORKERS;
1816 wake_up_worker(pool);
1820 spin_unlock_irq(&pool->lock);
1823 static void send_mayday(struct work_struct *work)
1825 struct pool_workqueue *pwq = get_work_pwq(work);
1826 struct workqueue_struct *wq = pwq->wq;
1828 lockdep_assert_held(&wq_mayday_lock);
1830 if (!wq->rescuer)
1831 return;
1833 /* mayday mayday mayday */
1834 if (list_empty(&pwq->mayday_node)) {
1835 list_add_tail(&pwq->mayday_node, &wq->maydays);
1836 wake_up_process(wq->rescuer->task);
1840 static void pool_mayday_timeout(unsigned long __pool)
1842 struct worker_pool *pool = (void *)__pool;
1843 struct work_struct *work;
1845 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1846 spin_lock(&pool->lock);
1848 if (need_to_create_worker(pool)) {
1850 * We've been trying to create a new worker but
1851 * haven't been successful. We might be hitting an
1852 * allocation deadlock. Send distress signals to
1853 * rescuers.
1855 list_for_each_entry(work, &pool->worklist, entry)
1856 send_mayday(work);
1859 spin_unlock(&pool->lock);
1860 spin_unlock_irq(&wq_mayday_lock);
1862 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1866 * maybe_create_worker - create a new worker if necessary
1867 * @pool: pool to create a new worker for
1869 * Create a new worker for @pool if necessary. @pool is guaranteed to
1870 * have at least one idle worker on return from this function. If
1871 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1872 * sent to all rescuers with works scheduled on @pool to resolve
1873 * possible allocation deadlock.
1875 * On return, need_to_create_worker() is guaranteed to be %false and
1876 * may_start_working() %true.
1878 * LOCKING:
1879 * spin_lock_irq(pool->lock) which may be released and regrabbed
1880 * multiple times. Does GFP_KERNEL allocations. Called only from
1881 * manager.
1883 * RETURNS:
1884 * %false if no action was taken and pool->lock stayed locked, %true
1885 * otherwise.
1887 static bool maybe_create_worker(struct worker_pool *pool)
1888 __releases(&pool->lock)
1889 __acquires(&pool->lock)
1891 if (!need_to_create_worker(pool))
1892 return false;
1893 restart:
1894 spin_unlock_irq(&pool->lock);
1896 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1897 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1899 while (true) {
1900 struct worker *worker;
1902 worker = create_worker(pool);
1903 if (worker) {
1904 del_timer_sync(&pool->mayday_timer);
1905 spin_lock_irq(&pool->lock);
1906 start_worker(worker);
1907 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1908 goto restart;
1909 return true;
1912 if (!need_to_create_worker(pool))
1913 break;
1915 __set_current_state(TASK_INTERRUPTIBLE);
1916 schedule_timeout(CREATE_COOLDOWN);
1918 if (!need_to_create_worker(pool))
1919 break;
1922 del_timer_sync(&pool->mayday_timer);
1923 spin_lock_irq(&pool->lock);
1924 if (need_to_create_worker(pool))
1925 goto restart;
1926 return true;
1930 * maybe_destroy_worker - destroy workers which have been idle for a while
1931 * @pool: pool to destroy workers for
1933 * Destroy @pool workers which have been idle for longer than
1934 * IDLE_WORKER_TIMEOUT.
1936 * LOCKING:
1937 * spin_lock_irq(pool->lock) which may be released and regrabbed
1938 * multiple times. Called only from manager.
1940 * RETURNS:
1941 * %false if no action was taken and pool->lock stayed locked, %true
1942 * otherwise.
1944 static bool maybe_destroy_workers(struct worker_pool *pool)
1946 bool ret = false;
1948 while (too_many_workers(pool)) {
1949 struct worker *worker;
1950 unsigned long expires;
1952 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1953 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1955 if (time_before(jiffies, expires)) {
1956 mod_timer(&pool->idle_timer, expires);
1957 break;
1960 destroy_worker(worker);
1961 ret = true;
1964 return ret;
1968 * manage_workers - manage worker pool
1969 * @worker: self
1971 * Assume the manager role and manage the worker pool @worker belongs
1972 * to. At any given time, there can be only zero or one manager per
1973 * pool. The exclusion is handled automatically by this function.
1975 * The caller can safely start processing works on false return. On
1976 * true return, it's guaranteed that need_to_create_worker() is false
1977 * and may_start_working() is true.
1979 * CONTEXT:
1980 * spin_lock_irq(pool->lock) which may be released and regrabbed
1981 * multiple times. Does GFP_KERNEL allocations.
1983 * RETURNS:
1984 * spin_lock_irq(pool->lock) which may be released and regrabbed
1985 * multiple times. Does GFP_KERNEL allocations.
1987 static bool manage_workers(struct worker *worker)
1989 struct worker_pool *pool = worker->pool;
1990 bool ret = false;
1993 * Managership is governed by two mutexes - manager_arb and
1994 * manager_mutex. manager_arb handles arbitration of manager role.
1995 * Anyone who successfully grabs manager_arb wins the arbitration
1996 * and becomes the manager. mutex_trylock() on pool->manager_arb
1997 * failure while holding pool->lock reliably indicates that someone
1998 * else is managing the pool and the worker which failed trylock
1999 * can proceed to executing work items. This means that anyone
2000 * grabbing manager_arb is responsible for actually performing
2001 * manager duties. If manager_arb is grabbed and released without
2002 * actual management, the pool may stall indefinitely.
2004 * manager_mutex is used for exclusion of actual management
2005 * operations. The holder of manager_mutex can be sure that none
2006 * of management operations, including creation and destruction of
2007 * workers, won't take place until the mutex is released. Because
2008 * manager_mutex doesn't interfere with manager role arbitration,
2009 * it is guaranteed that the pool's management, while may be
2010 * delayed, won't be disturbed by someone else grabbing
2011 * manager_mutex.
2013 if (!mutex_trylock(&pool->manager_arb))
2014 return ret;
2017 * With manager arbitration won, manager_mutex would be free in
2018 * most cases. trylock first without dropping @pool->lock.
2020 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2021 spin_unlock_irq(&pool->lock);
2022 mutex_lock(&pool->manager_mutex);
2023 ret = true;
2026 pool->flags &= ~POOL_MANAGE_WORKERS;
2029 * Destroy and then create so that may_start_working() is true
2030 * on return.
2032 ret |= maybe_destroy_workers(pool);
2033 ret |= maybe_create_worker(pool);
2035 mutex_unlock(&pool->manager_mutex);
2036 mutex_unlock(&pool->manager_arb);
2037 return ret;
2041 * process_one_work - process single work
2042 * @worker: self
2043 * @work: work to process
2045 * Process @work. This function contains all the logics necessary to
2046 * process a single work including synchronization against and
2047 * interaction with other workers on the same cpu, queueing and
2048 * flushing. As long as context requirement is met, any worker can
2049 * call this function to process a work.
2051 * CONTEXT:
2052 * spin_lock_irq(pool->lock) which is released and regrabbed.
2054 static void process_one_work(struct worker *worker, struct work_struct *work)
2055 __releases(&pool->lock)
2056 __acquires(&pool->lock)
2058 struct pool_workqueue *pwq = get_work_pwq(work);
2059 struct worker_pool *pool = worker->pool;
2060 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2061 int work_color;
2062 struct worker *collision;
2063 #ifdef CONFIG_LOCKDEP
2065 * It is permissible to free the struct work_struct from
2066 * inside the function that is called from it, this we need to
2067 * take into account for lockdep too. To avoid bogus "held
2068 * lock freed" warnings as well as problems when looking into
2069 * work->lockdep_map, make a copy and use that here.
2071 struct lockdep_map lockdep_map;
2073 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2074 #endif
2076 * Ensure we're on the correct CPU. DISASSOCIATED test is
2077 * necessary to avoid spurious warnings from rescuers servicing the
2078 * unbound or a disassociated pool.
2080 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2081 !(pool->flags & POOL_DISASSOCIATED) &&
2082 raw_smp_processor_id() != pool->cpu);
2085 * A single work shouldn't be executed concurrently by
2086 * multiple workers on a single cpu. Check whether anyone is
2087 * already processing the work. If so, defer the work to the
2088 * currently executing one.
2090 collision = find_worker_executing_work(pool, work);
2091 if (unlikely(collision)) {
2092 move_linked_works(work, &collision->scheduled, NULL);
2093 return;
2096 /* claim and dequeue */
2097 debug_work_deactivate(work);
2098 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2099 worker->current_work = work;
2100 worker->current_func = work->func;
2101 worker->current_pwq = pwq;
2102 work_color = get_work_color(work);
2104 list_del_init(&work->entry);
2107 * CPU intensive works don't participate in concurrency
2108 * management. They're the scheduler's responsibility.
2110 if (unlikely(cpu_intensive))
2111 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2114 * Unbound pool isn't concurrency managed and work items should be
2115 * executed ASAP. Wake up another worker if necessary.
2117 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2118 wake_up_worker(pool);
2121 * Record the last pool and clear PENDING which should be the last
2122 * update to @work. Also, do this inside @pool->lock so that
2123 * PENDING and queued state changes happen together while IRQ is
2124 * disabled.
2126 set_work_pool_and_clear_pending(work, pool->id);
2128 spin_unlock_irq(&pool->lock);
2130 lock_map_acquire_read(&pwq->wq->lockdep_map);
2131 lock_map_acquire(&lockdep_map);
2132 trace_workqueue_execute_start(work);
2133 worker->current_func(work);
2135 * While we must be careful to not use "work" after this, the trace
2136 * point will only record its address.
2138 trace_workqueue_execute_end(work);
2139 lock_map_release(&lockdep_map);
2140 lock_map_release(&pwq->wq->lockdep_map);
2142 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2143 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2144 " last function: %pf\n",
2145 current->comm, preempt_count(), task_pid_nr(current),
2146 worker->current_func);
2147 debug_show_held_locks(current);
2148 dump_stack();
2151 spin_lock_irq(&pool->lock);
2153 /* clear cpu intensive status */
2154 if (unlikely(cpu_intensive))
2155 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2157 /* we're done with it, release */
2158 hash_del(&worker->hentry);
2159 worker->current_work = NULL;
2160 worker->current_func = NULL;
2161 worker->current_pwq = NULL;
2162 pwq_dec_nr_in_flight(pwq, work_color);
2166 * process_scheduled_works - process scheduled works
2167 * @worker: self
2169 * Process all scheduled works. Please note that the scheduled list
2170 * may change while processing a work, so this function repeatedly
2171 * fetches a work from the top and executes it.
2173 * CONTEXT:
2174 * spin_lock_irq(pool->lock) which may be released and regrabbed
2175 * multiple times.
2177 static void process_scheduled_works(struct worker *worker)
2179 while (!list_empty(&worker->scheduled)) {
2180 struct work_struct *work = list_first_entry(&worker->scheduled,
2181 struct work_struct, entry);
2182 process_one_work(worker, work);
2187 * worker_thread - the worker thread function
2188 * @__worker: self
2190 * The worker thread function. All workers belong to a worker_pool -
2191 * either a per-cpu one or dynamic unbound one. These workers process all
2192 * work items regardless of their specific target workqueue. The only
2193 * exception is work items which belong to workqueues with a rescuer which
2194 * will be explained in rescuer_thread().
2196 static int worker_thread(void *__worker)
2198 struct worker *worker = __worker;
2199 struct worker_pool *pool = worker->pool;
2201 /* tell the scheduler that this is a workqueue worker */
2202 worker->task->flags |= PF_WQ_WORKER;
2203 woke_up:
2204 spin_lock_irq(&pool->lock);
2206 /* am I supposed to die? */
2207 if (unlikely(worker->flags & WORKER_DIE)) {
2208 spin_unlock_irq(&pool->lock);
2209 WARN_ON_ONCE(!list_empty(&worker->entry));
2210 worker->task->flags &= ~PF_WQ_WORKER;
2211 return 0;
2214 worker_leave_idle(worker);
2215 recheck:
2216 /* no more worker necessary? */
2217 if (!need_more_worker(pool))
2218 goto sleep;
2220 /* do we need to manage? */
2221 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2222 goto recheck;
2225 * ->scheduled list can only be filled while a worker is
2226 * preparing to process a work or actually processing it.
2227 * Make sure nobody diddled with it while I was sleeping.
2229 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2232 * Finish PREP stage. We're guaranteed to have at least one idle
2233 * worker or that someone else has already assumed the manager
2234 * role. This is where @worker starts participating in concurrency
2235 * management if applicable and concurrency management is restored
2236 * after being rebound. See rebind_workers() for details.
2238 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2240 do {
2241 struct work_struct *work =
2242 list_first_entry(&pool->worklist,
2243 struct work_struct, entry);
2245 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2246 /* optimization path, not strictly necessary */
2247 process_one_work(worker, work);
2248 if (unlikely(!list_empty(&worker->scheduled)))
2249 process_scheduled_works(worker);
2250 } else {
2251 move_linked_works(work, &worker->scheduled, NULL);
2252 process_scheduled_works(worker);
2254 } while (keep_working(pool));
2256 worker_set_flags(worker, WORKER_PREP, false);
2257 sleep:
2258 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2259 goto recheck;
2262 * pool->lock is held and there's no work to process and no need to
2263 * manage, sleep. Workers are woken up only while holding
2264 * pool->lock or from local cpu, so setting the current state
2265 * before releasing pool->lock is enough to prevent losing any
2266 * event.
2268 worker_enter_idle(worker);
2269 __set_current_state(TASK_INTERRUPTIBLE);
2270 spin_unlock_irq(&pool->lock);
2271 schedule();
2272 goto woke_up;
2276 * rescuer_thread - the rescuer thread function
2277 * @__rescuer: self
2279 * Workqueue rescuer thread function. There's one rescuer for each
2280 * workqueue which has WQ_MEM_RECLAIM set.
2282 * Regular work processing on a pool may block trying to create a new
2283 * worker which uses GFP_KERNEL allocation which has slight chance of
2284 * developing into deadlock if some works currently on the same queue
2285 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2286 * the problem rescuer solves.
2288 * When such condition is possible, the pool summons rescuers of all
2289 * workqueues which have works queued on the pool and let them process
2290 * those works so that forward progress can be guaranteed.
2292 * This should happen rarely.
2294 static int rescuer_thread(void *__rescuer)
2296 struct worker *rescuer = __rescuer;
2297 struct workqueue_struct *wq = rescuer->rescue_wq;
2298 struct list_head *scheduled = &rescuer->scheduled;
2300 set_user_nice(current, RESCUER_NICE_LEVEL);
2303 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2304 * doesn't participate in concurrency management.
2306 rescuer->task->flags |= PF_WQ_WORKER;
2307 repeat:
2308 set_current_state(TASK_INTERRUPTIBLE);
2310 if (kthread_should_stop()) {
2311 __set_current_state(TASK_RUNNING);
2312 rescuer->task->flags &= ~PF_WQ_WORKER;
2313 return 0;
2316 /* see whether any pwq is asking for help */
2317 spin_lock_irq(&wq_mayday_lock);
2319 while (!list_empty(&wq->maydays)) {
2320 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2321 struct pool_workqueue, mayday_node);
2322 struct worker_pool *pool = pwq->pool;
2323 struct work_struct *work, *n;
2325 __set_current_state(TASK_RUNNING);
2326 list_del_init(&pwq->mayday_node);
2328 spin_unlock_irq(&wq_mayday_lock);
2330 /* migrate to the target cpu if possible */
2331 worker_maybe_bind_and_lock(pool);
2332 rescuer->pool = pool;
2335 * Slurp in all works issued via this workqueue and
2336 * process'em.
2338 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2339 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2340 if (get_work_pwq(work) == pwq)
2341 move_linked_works(work, scheduled, &n);
2343 process_scheduled_works(rescuer);
2346 * Leave this pool. If keep_working() is %true, notify a
2347 * regular worker; otherwise, we end up with 0 concurrency
2348 * and stalling the execution.
2350 if (keep_working(pool))
2351 wake_up_worker(pool);
2353 rescuer->pool = NULL;
2354 spin_unlock(&pool->lock);
2355 spin_lock(&wq_mayday_lock);
2358 spin_unlock_irq(&wq_mayday_lock);
2360 /* rescuers should never participate in concurrency management */
2361 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2362 schedule();
2363 goto repeat;
2366 struct wq_barrier {
2367 struct work_struct work;
2368 struct completion done;
2371 static void wq_barrier_func(struct work_struct *work)
2373 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2374 complete(&barr->done);
2378 * insert_wq_barrier - insert a barrier work
2379 * @pwq: pwq to insert barrier into
2380 * @barr: wq_barrier to insert
2381 * @target: target work to attach @barr to
2382 * @worker: worker currently executing @target, NULL if @target is not executing
2384 * @barr is linked to @target such that @barr is completed only after
2385 * @target finishes execution. Please note that the ordering
2386 * guarantee is observed only with respect to @target and on the local
2387 * cpu.
2389 * Currently, a queued barrier can't be canceled. This is because
2390 * try_to_grab_pending() can't determine whether the work to be
2391 * grabbed is at the head of the queue and thus can't clear LINKED
2392 * flag of the previous work while there must be a valid next work
2393 * after a work with LINKED flag set.
2395 * Note that when @worker is non-NULL, @target may be modified
2396 * underneath us, so we can't reliably determine pwq from @target.
2398 * CONTEXT:
2399 * spin_lock_irq(pool->lock).
2401 static void insert_wq_barrier(struct pool_workqueue *pwq,
2402 struct wq_barrier *barr,
2403 struct work_struct *target, struct worker *worker)
2405 struct list_head *head;
2406 unsigned int linked = 0;
2409 * debugobject calls are safe here even with pool->lock locked
2410 * as we know for sure that this will not trigger any of the
2411 * checks and call back into the fixup functions where we
2412 * might deadlock.
2414 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2415 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2416 init_completion(&barr->done);
2419 * If @target is currently being executed, schedule the
2420 * barrier to the worker; otherwise, put it after @target.
2422 if (worker)
2423 head = worker->scheduled.next;
2424 else {
2425 unsigned long *bits = work_data_bits(target);
2427 head = target->entry.next;
2428 /* there can already be other linked works, inherit and set */
2429 linked = *bits & WORK_STRUCT_LINKED;
2430 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2433 debug_work_activate(&barr->work);
2434 insert_work(pwq, &barr->work, head,
2435 work_color_to_flags(WORK_NO_COLOR) | linked);
2439 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2440 * @wq: workqueue being flushed
2441 * @flush_color: new flush color, < 0 for no-op
2442 * @work_color: new work color, < 0 for no-op
2444 * Prepare pwqs for workqueue flushing.
2446 * If @flush_color is non-negative, flush_color on all pwqs should be
2447 * -1. If no pwq has in-flight commands at the specified color, all
2448 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2449 * has in flight commands, its pwq->flush_color is set to
2450 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2451 * wakeup logic is armed and %true is returned.
2453 * The caller should have initialized @wq->first_flusher prior to
2454 * calling this function with non-negative @flush_color. If
2455 * @flush_color is negative, no flush color update is done and %false
2456 * is returned.
2458 * If @work_color is non-negative, all pwqs should have the same
2459 * work_color which is previous to @work_color and all will be
2460 * advanced to @work_color.
2462 * CONTEXT:
2463 * mutex_lock(wq->flush_mutex).
2465 * RETURNS:
2466 * %true if @flush_color >= 0 and there's something to flush. %false
2467 * otherwise.
2469 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2470 int flush_color, int work_color)
2472 bool wait = false;
2473 struct pool_workqueue *pwq;
2475 if (flush_color >= 0) {
2476 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2477 atomic_set(&wq->nr_pwqs_to_flush, 1);
2480 local_irq_disable();
2482 for_each_pwq(pwq, wq) {
2483 struct worker_pool *pool = pwq->pool;
2485 spin_lock(&pool->lock);
2487 if (flush_color >= 0) {
2488 WARN_ON_ONCE(pwq->flush_color != -1);
2490 if (pwq->nr_in_flight[flush_color]) {
2491 pwq->flush_color = flush_color;
2492 atomic_inc(&wq->nr_pwqs_to_flush);
2493 wait = true;
2497 if (work_color >= 0) {
2498 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2499 pwq->work_color = work_color;
2502 spin_unlock(&pool->lock);
2505 local_irq_enable();
2507 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2508 complete(&wq->first_flusher->done);
2510 return wait;
2514 * flush_workqueue - ensure that any scheduled work has run to completion.
2515 * @wq: workqueue to flush
2517 * This function sleeps until all work items which were queued on entry
2518 * have finished execution, but it is not livelocked by new incoming ones.
2520 void flush_workqueue(struct workqueue_struct *wq)
2522 struct wq_flusher this_flusher = {
2523 .list = LIST_HEAD_INIT(this_flusher.list),
2524 .flush_color = -1,
2525 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2527 int next_color;
2529 lock_map_acquire(&wq->lockdep_map);
2530 lock_map_release(&wq->lockdep_map);
2532 mutex_lock(&wq->flush_mutex);
2535 * Start-to-wait phase
2537 next_color = work_next_color(wq->work_color);
2539 if (next_color != wq->flush_color) {
2541 * Color space is not full. The current work_color
2542 * becomes our flush_color and work_color is advanced
2543 * by one.
2545 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2546 this_flusher.flush_color = wq->work_color;
2547 wq->work_color = next_color;
2549 if (!wq->first_flusher) {
2550 /* no flush in progress, become the first flusher */
2551 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2553 wq->first_flusher = &this_flusher;
2555 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2556 wq->work_color)) {
2557 /* nothing to flush, done */
2558 wq->flush_color = next_color;
2559 wq->first_flusher = NULL;
2560 goto out_unlock;
2562 } else {
2563 /* wait in queue */
2564 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2565 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2566 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2568 } else {
2570 * Oops, color space is full, wait on overflow queue.
2571 * The next flush completion will assign us
2572 * flush_color and transfer to flusher_queue.
2574 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2577 mutex_unlock(&wq->flush_mutex);
2579 wait_for_completion(&this_flusher.done);
2582 * Wake-up-and-cascade phase
2584 * First flushers are responsible for cascading flushes and
2585 * handling overflow. Non-first flushers can simply return.
2587 if (wq->first_flusher != &this_flusher)
2588 return;
2590 mutex_lock(&wq->flush_mutex);
2592 /* we might have raced, check again with mutex held */
2593 if (wq->first_flusher != &this_flusher)
2594 goto out_unlock;
2596 wq->first_flusher = NULL;
2598 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2599 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2601 while (true) {
2602 struct wq_flusher *next, *tmp;
2604 /* complete all the flushers sharing the current flush color */
2605 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2606 if (next->flush_color != wq->flush_color)
2607 break;
2608 list_del_init(&next->list);
2609 complete(&next->done);
2612 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2613 wq->flush_color != work_next_color(wq->work_color));
2615 /* this flush_color is finished, advance by one */
2616 wq->flush_color = work_next_color(wq->flush_color);
2618 /* one color has been freed, handle overflow queue */
2619 if (!list_empty(&wq->flusher_overflow)) {
2621 * Assign the same color to all overflowed
2622 * flushers, advance work_color and append to
2623 * flusher_queue. This is the start-to-wait
2624 * phase for these overflowed flushers.
2626 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2627 tmp->flush_color = wq->work_color;
2629 wq->work_color = work_next_color(wq->work_color);
2631 list_splice_tail_init(&wq->flusher_overflow,
2632 &wq->flusher_queue);
2633 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2636 if (list_empty(&wq->flusher_queue)) {
2637 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2638 break;
2642 * Need to flush more colors. Make the next flusher
2643 * the new first flusher and arm pwqs.
2645 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2646 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2648 list_del_init(&next->list);
2649 wq->first_flusher = next;
2651 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2652 break;
2655 * Meh... this color is already done, clear first
2656 * flusher and repeat cascading.
2658 wq->first_flusher = NULL;
2661 out_unlock:
2662 mutex_unlock(&wq->flush_mutex);
2664 EXPORT_SYMBOL_GPL(flush_workqueue);
2667 * drain_workqueue - drain a workqueue
2668 * @wq: workqueue to drain
2670 * Wait until the workqueue becomes empty. While draining is in progress,
2671 * only chain queueing is allowed. IOW, only currently pending or running
2672 * work items on @wq can queue further work items on it. @wq is flushed
2673 * repeatedly until it becomes empty. The number of flushing is detemined
2674 * by the depth of chaining and should be relatively short. Whine if it
2675 * takes too long.
2677 void drain_workqueue(struct workqueue_struct *wq)
2679 unsigned int flush_cnt = 0;
2680 struct pool_workqueue *pwq;
2683 * __queue_work() needs to test whether there are drainers, is much
2684 * hotter than drain_workqueue() and already looks at @wq->flags.
2685 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2687 mutex_lock(&wq_mutex);
2688 if (!wq->nr_drainers++)
2689 wq->flags |= __WQ_DRAINING;
2690 mutex_unlock(&wq_mutex);
2691 reflush:
2692 flush_workqueue(wq);
2694 local_irq_disable();
2696 for_each_pwq(pwq, wq) {
2697 bool drained;
2699 spin_lock(&pwq->pool->lock);
2700 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2701 spin_unlock(&pwq->pool->lock);
2703 if (drained)
2704 continue;
2706 if (++flush_cnt == 10 ||
2707 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2708 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2709 wq->name, flush_cnt);
2711 local_irq_enable();
2712 goto reflush;
2715 local_irq_enable();
2717 mutex_lock(&wq_mutex);
2718 if (!--wq->nr_drainers)
2719 wq->flags &= ~__WQ_DRAINING;
2720 mutex_unlock(&wq_mutex);
2722 EXPORT_SYMBOL_GPL(drain_workqueue);
2724 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2726 struct worker *worker = NULL;
2727 struct worker_pool *pool;
2728 struct pool_workqueue *pwq;
2730 might_sleep();
2732 local_irq_disable();
2733 pool = get_work_pool(work);
2734 if (!pool) {
2735 local_irq_enable();
2736 return false;
2739 spin_lock(&pool->lock);
2740 /* see the comment in try_to_grab_pending() with the same code */
2741 pwq = get_work_pwq(work);
2742 if (pwq) {
2743 if (unlikely(pwq->pool != pool))
2744 goto already_gone;
2745 } else {
2746 worker = find_worker_executing_work(pool, work);
2747 if (!worker)
2748 goto already_gone;
2749 pwq = worker->current_pwq;
2752 insert_wq_barrier(pwq, barr, work, worker);
2753 spin_unlock_irq(&pool->lock);
2756 * If @max_active is 1 or rescuer is in use, flushing another work
2757 * item on the same workqueue may lead to deadlock. Make sure the
2758 * flusher is not running on the same workqueue by verifying write
2759 * access.
2761 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2762 lock_map_acquire(&pwq->wq->lockdep_map);
2763 else
2764 lock_map_acquire_read(&pwq->wq->lockdep_map);
2765 lock_map_release(&pwq->wq->lockdep_map);
2767 return true;
2768 already_gone:
2769 spin_unlock_irq(&pool->lock);
2770 return false;
2774 * flush_work - wait for a work to finish executing the last queueing instance
2775 * @work: the work to flush
2777 * Wait until @work has finished execution. @work is guaranteed to be idle
2778 * on return if it hasn't been requeued since flush started.
2780 * RETURNS:
2781 * %true if flush_work() waited for the work to finish execution,
2782 * %false if it was already idle.
2784 bool flush_work(struct work_struct *work)
2786 struct wq_barrier barr;
2788 lock_map_acquire(&work->lockdep_map);
2789 lock_map_release(&work->lockdep_map);
2791 if (start_flush_work(work, &barr)) {
2792 wait_for_completion(&barr.done);
2793 destroy_work_on_stack(&barr.work);
2794 return true;
2795 } else {
2796 return false;
2799 EXPORT_SYMBOL_GPL(flush_work);
2801 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2803 unsigned long flags;
2804 int ret;
2806 do {
2807 ret = try_to_grab_pending(work, is_dwork, &flags);
2809 * If someone else is canceling, wait for the same event it
2810 * would be waiting for before retrying.
2812 if (unlikely(ret == -ENOENT))
2813 flush_work(work);
2814 } while (unlikely(ret < 0));
2816 /* tell other tasks trying to grab @work to back off */
2817 mark_work_canceling(work);
2818 local_irq_restore(flags);
2820 flush_work(work);
2821 clear_work_data(work);
2822 return ret;
2826 * cancel_work_sync - cancel a work and wait for it to finish
2827 * @work: the work to cancel
2829 * Cancel @work and wait for its execution to finish. This function
2830 * can be used even if the work re-queues itself or migrates to
2831 * another workqueue. On return from this function, @work is
2832 * guaranteed to be not pending or executing on any CPU.
2834 * cancel_work_sync(&delayed_work->work) must not be used for
2835 * delayed_work's. Use cancel_delayed_work_sync() instead.
2837 * The caller must ensure that the workqueue on which @work was last
2838 * queued can't be destroyed before this function returns.
2840 * RETURNS:
2841 * %true if @work was pending, %false otherwise.
2843 bool cancel_work_sync(struct work_struct *work)
2845 return __cancel_work_timer(work, false);
2847 EXPORT_SYMBOL_GPL(cancel_work_sync);
2850 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2851 * @dwork: the delayed work to flush
2853 * Delayed timer is cancelled and the pending work is queued for
2854 * immediate execution. Like flush_work(), this function only
2855 * considers the last queueing instance of @dwork.
2857 * RETURNS:
2858 * %true if flush_work() waited for the work to finish execution,
2859 * %false if it was already idle.
2861 bool flush_delayed_work(struct delayed_work *dwork)
2863 local_irq_disable();
2864 if (del_timer_sync(&dwork->timer))
2865 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2866 local_irq_enable();
2867 return flush_work(&dwork->work);
2869 EXPORT_SYMBOL(flush_delayed_work);
2872 * cancel_delayed_work - cancel a delayed work
2873 * @dwork: delayed_work to cancel
2875 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2876 * and canceled; %false if wasn't pending. Note that the work callback
2877 * function may still be running on return, unless it returns %true and the
2878 * work doesn't re-arm itself. Explicitly flush or use
2879 * cancel_delayed_work_sync() to wait on it.
2881 * This function is safe to call from any context including IRQ handler.
2883 bool cancel_delayed_work(struct delayed_work *dwork)
2885 unsigned long flags;
2886 int ret;
2888 do {
2889 ret = try_to_grab_pending(&dwork->work, true, &flags);
2890 } while (unlikely(ret == -EAGAIN));
2892 if (unlikely(ret < 0))
2893 return false;
2895 set_work_pool_and_clear_pending(&dwork->work,
2896 get_work_pool_id(&dwork->work));
2897 local_irq_restore(flags);
2898 return ret;
2900 EXPORT_SYMBOL(cancel_delayed_work);
2903 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2904 * @dwork: the delayed work cancel
2906 * This is cancel_work_sync() for delayed works.
2908 * RETURNS:
2909 * %true if @dwork was pending, %false otherwise.
2911 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2913 return __cancel_work_timer(&dwork->work, true);
2915 EXPORT_SYMBOL(cancel_delayed_work_sync);
2918 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2919 * @func: the function to call
2921 * schedule_on_each_cpu() executes @func on each online CPU using the
2922 * system workqueue and blocks until all CPUs have completed.
2923 * schedule_on_each_cpu() is very slow.
2925 * RETURNS:
2926 * 0 on success, -errno on failure.
2928 int schedule_on_each_cpu(work_func_t func)
2930 int cpu;
2931 struct work_struct __percpu *works;
2933 works = alloc_percpu(struct work_struct);
2934 if (!works)
2935 return -ENOMEM;
2937 get_online_cpus();
2939 for_each_online_cpu(cpu) {
2940 struct work_struct *work = per_cpu_ptr(works, cpu);
2942 INIT_WORK(work, func);
2943 schedule_work_on(cpu, work);
2946 for_each_online_cpu(cpu)
2947 flush_work(per_cpu_ptr(works, cpu));
2949 put_online_cpus();
2950 free_percpu(works);
2951 return 0;
2955 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2957 * Forces execution of the kernel-global workqueue and blocks until its
2958 * completion.
2960 * Think twice before calling this function! It's very easy to get into
2961 * trouble if you don't take great care. Either of the following situations
2962 * will lead to deadlock:
2964 * One of the work items currently on the workqueue needs to acquire
2965 * a lock held by your code or its caller.
2967 * Your code is running in the context of a work routine.
2969 * They will be detected by lockdep when they occur, but the first might not
2970 * occur very often. It depends on what work items are on the workqueue and
2971 * what locks they need, which you have no control over.
2973 * In most situations flushing the entire workqueue is overkill; you merely
2974 * need to know that a particular work item isn't queued and isn't running.
2975 * In such cases you should use cancel_delayed_work_sync() or
2976 * cancel_work_sync() instead.
2978 void flush_scheduled_work(void)
2980 flush_workqueue(system_wq);
2982 EXPORT_SYMBOL(flush_scheduled_work);
2985 * execute_in_process_context - reliably execute the routine with user context
2986 * @fn: the function to execute
2987 * @ew: guaranteed storage for the execute work structure (must
2988 * be available when the work executes)
2990 * Executes the function immediately if process context is available,
2991 * otherwise schedules the function for delayed execution.
2993 * Returns: 0 - function was executed
2994 * 1 - function was scheduled for execution
2996 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2998 if (!in_interrupt()) {
2999 fn(&ew->work);
3000 return 0;
3003 INIT_WORK(&ew->work, fn);
3004 schedule_work(&ew->work);
3006 return 1;
3008 EXPORT_SYMBOL_GPL(execute_in_process_context);
3010 #ifdef CONFIG_SYSFS
3012 * Workqueues with WQ_SYSFS flag set is visible to userland via
3013 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3014 * following attributes.
3016 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3017 * max_active RW int : maximum number of in-flight work items
3019 * Unbound workqueues have the following extra attributes.
3021 * id RO int : the associated pool ID
3022 * nice RW int : nice value of the workers
3023 * cpumask RW mask : bitmask of allowed CPUs for the workers
3025 struct wq_device {
3026 struct workqueue_struct *wq;
3027 struct device dev;
3030 static struct workqueue_struct *dev_to_wq(struct device *dev)
3032 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3034 return wq_dev->wq;
3037 static ssize_t wq_per_cpu_show(struct device *dev,
3038 struct device_attribute *attr, char *buf)
3040 struct workqueue_struct *wq = dev_to_wq(dev);
3042 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3045 static ssize_t wq_max_active_show(struct device *dev,
3046 struct device_attribute *attr, char *buf)
3048 struct workqueue_struct *wq = dev_to_wq(dev);
3050 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3053 static ssize_t wq_max_active_store(struct device *dev,
3054 struct device_attribute *attr,
3055 const char *buf, size_t count)
3057 struct workqueue_struct *wq = dev_to_wq(dev);
3058 int val;
3060 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3061 return -EINVAL;
3063 workqueue_set_max_active(wq, val);
3064 return count;
3067 static struct device_attribute wq_sysfs_attrs[] = {
3068 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3069 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3070 __ATTR_NULL,
3073 static ssize_t wq_pool_id_show(struct device *dev,
3074 struct device_attribute *attr, char *buf)
3076 struct workqueue_struct *wq = dev_to_wq(dev);
3077 struct worker_pool *pool;
3078 int written;
3080 rcu_read_lock_sched();
3081 pool = first_pwq(wq)->pool;
3082 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3083 rcu_read_unlock_sched();
3085 return written;
3088 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3089 char *buf)
3091 struct workqueue_struct *wq = dev_to_wq(dev);
3092 int written;
3094 rcu_read_lock_sched();
3095 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3096 first_pwq(wq)->pool->attrs->nice);
3097 rcu_read_unlock_sched();
3099 return written;
3102 /* prepare workqueue_attrs for sysfs store operations */
3103 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3105 struct workqueue_attrs *attrs;
3107 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3108 if (!attrs)
3109 return NULL;
3111 rcu_read_lock_sched();
3112 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3113 rcu_read_unlock_sched();
3114 return attrs;
3117 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3118 const char *buf, size_t count)
3120 struct workqueue_struct *wq = dev_to_wq(dev);
3121 struct workqueue_attrs *attrs;
3122 int ret;
3124 attrs = wq_sysfs_prep_attrs(wq);
3125 if (!attrs)
3126 return -ENOMEM;
3128 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3129 attrs->nice >= -20 && attrs->nice <= 19)
3130 ret = apply_workqueue_attrs(wq, attrs);
3131 else
3132 ret = -EINVAL;
3134 free_workqueue_attrs(attrs);
3135 return ret ?: count;
3138 static ssize_t wq_cpumask_show(struct device *dev,
3139 struct device_attribute *attr, char *buf)
3141 struct workqueue_struct *wq = dev_to_wq(dev);
3142 int written;
3144 rcu_read_lock_sched();
3145 written = cpumask_scnprintf(buf, PAGE_SIZE,
3146 first_pwq(wq)->pool->attrs->cpumask);
3147 rcu_read_unlock_sched();
3149 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3150 return written;
3153 static ssize_t wq_cpumask_store(struct device *dev,
3154 struct device_attribute *attr,
3155 const char *buf, size_t count)
3157 struct workqueue_struct *wq = dev_to_wq(dev);
3158 struct workqueue_attrs *attrs;
3159 int ret;
3161 attrs = wq_sysfs_prep_attrs(wq);
3162 if (!attrs)
3163 return -ENOMEM;
3165 ret = cpumask_parse(buf, attrs->cpumask);
3166 if (!ret)
3167 ret = apply_workqueue_attrs(wq, attrs);
3169 free_workqueue_attrs(attrs);
3170 return ret ?: count;
3173 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3174 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3175 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3176 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3177 __ATTR_NULL,
3180 static struct bus_type wq_subsys = {
3181 .name = "workqueue",
3182 .dev_attrs = wq_sysfs_attrs,
3185 static int __init wq_sysfs_init(void)
3187 return subsys_virtual_register(&wq_subsys, NULL);
3189 core_initcall(wq_sysfs_init);
3191 static void wq_device_release(struct device *dev)
3193 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3195 kfree(wq_dev);
3199 * workqueue_sysfs_register - make a workqueue visible in sysfs
3200 * @wq: the workqueue to register
3202 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3203 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3204 * which is the preferred method.
3206 * Workqueue user should use this function directly iff it wants to apply
3207 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3208 * apply_workqueue_attrs() may race against userland updating the
3209 * attributes.
3211 * Returns 0 on success, -errno on failure.
3213 int workqueue_sysfs_register(struct workqueue_struct *wq)
3215 struct wq_device *wq_dev;
3216 int ret;
3219 * Adjusting max_active or creating new pwqs by applyting
3220 * attributes breaks ordering guarantee. Disallow exposing ordered
3221 * workqueues.
3223 if (WARN_ON(wq->flags & __WQ_ORDERED))
3224 return -EINVAL;
3226 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3227 if (!wq_dev)
3228 return -ENOMEM;
3230 wq_dev->wq = wq;
3231 wq_dev->dev.bus = &wq_subsys;
3232 wq_dev->dev.init_name = wq->name;
3233 wq_dev->dev.release = wq_device_release;
3236 * unbound_attrs are created separately. Suppress uevent until
3237 * everything is ready.
3239 dev_set_uevent_suppress(&wq_dev->dev, true);
3241 ret = device_register(&wq_dev->dev);
3242 if (ret) {
3243 kfree(wq_dev);
3244 wq->wq_dev = NULL;
3245 return ret;
3248 if (wq->flags & WQ_UNBOUND) {
3249 struct device_attribute *attr;
3251 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3252 ret = device_create_file(&wq_dev->dev, attr);
3253 if (ret) {
3254 device_unregister(&wq_dev->dev);
3255 wq->wq_dev = NULL;
3256 return ret;
3261 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3262 return 0;
3266 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3267 * @wq: the workqueue to unregister
3269 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3271 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3273 struct wq_device *wq_dev = wq->wq_dev;
3275 if (!wq->wq_dev)
3276 return;
3278 wq->wq_dev = NULL;
3279 device_unregister(&wq_dev->dev);
3281 #else /* CONFIG_SYSFS */
3282 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3283 #endif /* CONFIG_SYSFS */
3286 * free_workqueue_attrs - free a workqueue_attrs
3287 * @attrs: workqueue_attrs to free
3289 * Undo alloc_workqueue_attrs().
3291 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3293 if (attrs) {
3294 free_cpumask_var(attrs->cpumask);
3295 kfree(attrs);
3300 * alloc_workqueue_attrs - allocate a workqueue_attrs
3301 * @gfp_mask: allocation mask to use
3303 * Allocate a new workqueue_attrs, initialize with default settings and
3304 * return it. Returns NULL on failure.
3306 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3308 struct workqueue_attrs *attrs;
3310 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3311 if (!attrs)
3312 goto fail;
3313 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3314 goto fail;
3316 cpumask_setall(attrs->cpumask);
3317 return attrs;
3318 fail:
3319 free_workqueue_attrs(attrs);
3320 return NULL;
3323 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3324 const struct workqueue_attrs *from)
3326 to->nice = from->nice;
3327 cpumask_copy(to->cpumask, from->cpumask);
3331 * Hacky implementation of jhash of bitmaps which only considers the
3332 * specified number of bits. We probably want a proper implementation in
3333 * include/linux/jhash.h.
3335 static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3337 int nr_longs = bits / BITS_PER_LONG;
3338 int nr_leftover = bits % BITS_PER_LONG;
3339 unsigned long leftover = 0;
3341 if (nr_longs)
3342 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3343 if (nr_leftover) {
3344 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3345 hash = jhash(&leftover, sizeof(long), hash);
3347 return hash;
3350 /* hash value of the content of @attr */
3351 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3353 u32 hash = 0;
3355 hash = jhash_1word(attrs->nice, hash);
3356 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3357 return hash;
3360 /* content equality test */
3361 static bool wqattrs_equal(const struct workqueue_attrs *a,
3362 const struct workqueue_attrs *b)
3364 if (a->nice != b->nice)
3365 return false;
3366 if (!cpumask_equal(a->cpumask, b->cpumask))
3367 return false;
3368 return true;
3372 * init_worker_pool - initialize a newly zalloc'd worker_pool
3373 * @pool: worker_pool to initialize
3375 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3376 * Returns 0 on success, -errno on failure. Even on failure, all fields
3377 * inside @pool proper are initialized and put_unbound_pool() can be called
3378 * on @pool safely to release it.
3380 static int init_worker_pool(struct worker_pool *pool)
3382 spin_lock_init(&pool->lock);
3383 pool->id = -1;
3384 pool->cpu = -1;
3385 pool->flags |= POOL_DISASSOCIATED;
3386 INIT_LIST_HEAD(&pool->worklist);
3387 INIT_LIST_HEAD(&pool->idle_list);
3388 hash_init(pool->busy_hash);
3390 init_timer_deferrable(&pool->idle_timer);
3391 pool->idle_timer.function = idle_worker_timeout;
3392 pool->idle_timer.data = (unsigned long)pool;
3394 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3395 (unsigned long)pool);
3397 mutex_init(&pool->manager_arb);
3398 mutex_init(&pool->manager_mutex);
3399 idr_init(&pool->worker_idr);
3401 INIT_HLIST_NODE(&pool->hash_node);
3402 pool->refcnt = 1;
3404 /* shouldn't fail above this point */
3405 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3406 if (!pool->attrs)
3407 return -ENOMEM;
3408 return 0;
3411 static void rcu_free_pool(struct rcu_head *rcu)
3413 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3415 idr_destroy(&pool->worker_idr);
3416 free_workqueue_attrs(pool->attrs);
3417 kfree(pool);
3421 * put_unbound_pool - put a worker_pool
3422 * @pool: worker_pool to put
3424 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3425 * safe manner. get_unbound_pool() calls this function on its failure path
3426 * and this function should be able to release pools which went through,
3427 * successfully or not, init_worker_pool().
3429 static void put_unbound_pool(struct worker_pool *pool)
3431 struct worker *worker;
3433 mutex_lock(&wq_mutex);
3434 if (--pool->refcnt) {
3435 mutex_unlock(&wq_mutex);
3436 return;
3439 /* sanity checks */
3440 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3441 WARN_ON(!list_empty(&pool->worklist))) {
3442 mutex_unlock(&wq_mutex);
3443 return;
3446 /* release id and unhash */
3447 if (pool->id >= 0)
3448 idr_remove(&worker_pool_idr, pool->id);
3449 hash_del(&pool->hash_node);
3451 mutex_unlock(&wq_mutex);
3454 * Become the manager and destroy all workers. Grabbing
3455 * manager_arb prevents @pool's workers from blocking on
3456 * manager_mutex.
3458 mutex_lock(&pool->manager_arb);
3459 mutex_lock(&pool->manager_mutex);
3460 spin_lock_irq(&pool->lock);
3462 while ((worker = first_worker(pool)))
3463 destroy_worker(worker);
3464 WARN_ON(pool->nr_workers || pool->nr_idle);
3466 spin_unlock_irq(&pool->lock);
3467 mutex_unlock(&pool->manager_mutex);
3468 mutex_unlock(&pool->manager_arb);
3470 /* shut down the timers */
3471 del_timer_sync(&pool->idle_timer);
3472 del_timer_sync(&pool->mayday_timer);
3474 /* sched-RCU protected to allow dereferences from get_work_pool() */
3475 call_rcu_sched(&pool->rcu, rcu_free_pool);
3479 * get_unbound_pool - get a worker_pool with the specified attributes
3480 * @attrs: the attributes of the worker_pool to get
3482 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3483 * reference count and return it. If there already is a matching
3484 * worker_pool, it will be used; otherwise, this function attempts to
3485 * create a new one. On failure, returns NULL.
3487 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3489 u32 hash = wqattrs_hash(attrs);
3490 struct worker_pool *pool;
3492 mutex_lock(&wq_mutex);
3494 /* do we already have a matching pool? */
3495 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3496 if (wqattrs_equal(pool->attrs, attrs)) {
3497 pool->refcnt++;
3498 goto out_unlock;
3502 /* nope, create a new one */
3503 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3504 if (!pool || init_worker_pool(pool) < 0)
3505 goto fail;
3507 if (workqueue_freezing)
3508 pool->flags |= POOL_FREEZING;
3510 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3511 copy_workqueue_attrs(pool->attrs, attrs);
3513 if (worker_pool_assign_id(pool) < 0)
3514 goto fail;
3516 /* create and start the initial worker */
3517 if (create_and_start_worker(pool) < 0)
3518 goto fail;
3520 /* install */
3521 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3522 out_unlock:
3523 mutex_unlock(&wq_mutex);
3524 return pool;
3525 fail:
3526 mutex_unlock(&wq_mutex);
3527 if (pool)
3528 put_unbound_pool(pool);
3529 return NULL;
3532 static void rcu_free_pwq(struct rcu_head *rcu)
3534 kmem_cache_free(pwq_cache,
3535 container_of(rcu, struct pool_workqueue, rcu));
3539 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3540 * and needs to be destroyed.
3542 static void pwq_unbound_release_workfn(struct work_struct *work)
3544 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3545 unbound_release_work);
3546 struct workqueue_struct *wq = pwq->wq;
3547 struct worker_pool *pool = pwq->pool;
3549 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3550 return;
3553 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3554 * necessary on release but do it anyway. It's easier to verify
3555 * and consistent with the linking path.
3557 mutex_lock(&wq->flush_mutex);
3558 spin_lock_irq(&pwq_lock);
3559 list_del_rcu(&pwq->pwqs_node);
3560 spin_unlock_irq(&pwq_lock);
3561 mutex_unlock(&wq->flush_mutex);
3563 put_unbound_pool(pool);
3564 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3567 * If we're the last pwq going away, @wq is already dead and no one
3568 * is gonna access it anymore. Free it.
3570 if (list_empty(&wq->pwqs))
3571 kfree(wq);
3575 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3576 * @pwq: target pool_workqueue
3578 * If @pwq isn't freezing, set @pwq->max_active to the associated
3579 * workqueue's saved_max_active and activate delayed work items
3580 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3582 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3584 struct workqueue_struct *wq = pwq->wq;
3585 bool freezable = wq->flags & WQ_FREEZABLE;
3587 /* for @wq->saved_max_active */
3588 lockdep_assert_held(&pwq_lock);
3590 /* fast exit for non-freezable wqs */
3591 if (!freezable && pwq->max_active == wq->saved_max_active)
3592 return;
3594 spin_lock(&pwq->pool->lock);
3596 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3597 pwq->max_active = wq->saved_max_active;
3599 while (!list_empty(&pwq->delayed_works) &&
3600 pwq->nr_active < pwq->max_active)
3601 pwq_activate_first_delayed(pwq);
3604 * Need to kick a worker after thawed or an unbound wq's
3605 * max_active is bumped. It's a slow path. Do it always.
3607 wake_up_worker(pwq->pool);
3608 } else {
3609 pwq->max_active = 0;
3612 spin_unlock(&pwq->pool->lock);
3615 static void init_and_link_pwq(struct pool_workqueue *pwq,
3616 struct workqueue_struct *wq,
3617 struct worker_pool *pool,
3618 struct pool_workqueue **p_last_pwq)
3620 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3622 pwq->pool = pool;
3623 pwq->wq = wq;
3624 pwq->flush_color = -1;
3625 pwq->refcnt = 1;
3626 INIT_LIST_HEAD(&pwq->delayed_works);
3627 INIT_LIST_HEAD(&pwq->mayday_node);
3628 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3630 mutex_lock(&wq->flush_mutex);
3631 spin_lock_irq(&pwq_lock);
3634 * Set the matching work_color. This is synchronized with
3635 * flush_mutex to avoid confusing flush_workqueue().
3637 if (p_last_pwq)
3638 *p_last_pwq = first_pwq(wq);
3639 pwq->work_color = wq->work_color;
3641 /* sync max_active to the current setting */
3642 pwq_adjust_max_active(pwq);
3644 /* link in @pwq */
3645 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3647 spin_unlock_irq(&pwq_lock);
3648 mutex_unlock(&wq->flush_mutex);
3652 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3653 * @wq: the target workqueue
3654 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3656 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3657 * current attributes, a new pwq is created and made the first pwq which
3658 * will serve all new work items. Older pwqs are released as in-flight
3659 * work items finish. Note that a work item which repeatedly requeues
3660 * itself back-to-back will stay on its current pwq.
3662 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3663 * failure.
3665 int apply_workqueue_attrs(struct workqueue_struct *wq,
3666 const struct workqueue_attrs *attrs)
3668 struct pool_workqueue *pwq, *last_pwq;
3669 struct worker_pool *pool;
3671 /* only unbound workqueues can change attributes */
3672 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3673 return -EINVAL;
3675 /* creating multiple pwqs breaks ordering guarantee */
3676 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3677 return -EINVAL;
3679 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3680 if (!pwq)
3681 return -ENOMEM;
3683 pool = get_unbound_pool(attrs);
3684 if (!pool) {
3685 kmem_cache_free(pwq_cache, pwq);
3686 return -ENOMEM;
3689 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3690 if (last_pwq) {
3691 spin_lock_irq(&last_pwq->pool->lock);
3692 put_pwq(last_pwq);
3693 spin_unlock_irq(&last_pwq->pool->lock);
3696 return 0;
3699 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3701 bool highpri = wq->flags & WQ_HIGHPRI;
3702 int cpu;
3704 if (!(wq->flags & WQ_UNBOUND)) {
3705 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3706 if (!wq->cpu_pwqs)
3707 return -ENOMEM;
3709 for_each_possible_cpu(cpu) {
3710 struct pool_workqueue *pwq =
3711 per_cpu_ptr(wq->cpu_pwqs, cpu);
3712 struct worker_pool *cpu_pools =
3713 per_cpu(cpu_worker_pools, cpu);
3715 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
3717 return 0;
3718 } else {
3719 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3723 static int wq_clamp_max_active(int max_active, unsigned int flags,
3724 const char *name)
3726 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3728 if (max_active < 1 || max_active > lim)
3729 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3730 max_active, name, 1, lim);
3732 return clamp_val(max_active, 1, lim);
3735 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3736 unsigned int flags,
3737 int max_active,
3738 struct lock_class_key *key,
3739 const char *lock_name, ...)
3741 va_list args, args1;
3742 struct workqueue_struct *wq;
3743 struct pool_workqueue *pwq;
3744 size_t namelen;
3746 /* determine namelen, allocate wq and format name */
3747 va_start(args, lock_name);
3748 va_copy(args1, args);
3749 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3751 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3752 if (!wq)
3753 return NULL;
3755 vsnprintf(wq->name, namelen, fmt, args1);
3756 va_end(args);
3757 va_end(args1);
3759 max_active = max_active ?: WQ_DFL_ACTIVE;
3760 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3762 /* init wq */
3763 wq->flags = flags;
3764 wq->saved_max_active = max_active;
3765 mutex_init(&wq->flush_mutex);
3766 atomic_set(&wq->nr_pwqs_to_flush, 0);
3767 INIT_LIST_HEAD(&wq->pwqs);
3768 INIT_LIST_HEAD(&wq->flusher_queue);
3769 INIT_LIST_HEAD(&wq->flusher_overflow);
3770 INIT_LIST_HEAD(&wq->maydays);
3772 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3773 INIT_LIST_HEAD(&wq->list);
3775 if (alloc_and_link_pwqs(wq) < 0)
3776 goto err_free_wq;
3779 * Workqueues which may be used during memory reclaim should
3780 * have a rescuer to guarantee forward progress.
3782 if (flags & WQ_MEM_RECLAIM) {
3783 struct worker *rescuer;
3785 rescuer = alloc_worker();
3786 if (!rescuer)
3787 goto err_destroy;
3789 rescuer->rescue_wq = wq;
3790 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3791 wq->name);
3792 if (IS_ERR(rescuer->task)) {
3793 kfree(rescuer);
3794 goto err_destroy;
3797 wq->rescuer = rescuer;
3798 rescuer->task->flags |= PF_NO_SETAFFINITY;
3799 wake_up_process(rescuer->task);
3802 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3803 goto err_destroy;
3806 * wq_mutex protects global freeze state and workqueues list. Grab
3807 * it, adjust max_active and add the new @wq to workqueues list.
3809 mutex_lock(&wq_mutex);
3811 spin_lock_irq(&pwq_lock);
3812 for_each_pwq(pwq, wq)
3813 pwq_adjust_max_active(pwq);
3814 spin_unlock_irq(&pwq_lock);
3816 list_add(&wq->list, &workqueues);
3818 mutex_unlock(&wq_mutex);
3820 return wq;
3822 err_free_wq:
3823 kfree(wq);
3824 return NULL;
3825 err_destroy:
3826 destroy_workqueue(wq);
3827 return NULL;
3829 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3832 * destroy_workqueue - safely terminate a workqueue
3833 * @wq: target workqueue
3835 * Safely destroy a workqueue. All work currently pending will be done first.
3837 void destroy_workqueue(struct workqueue_struct *wq)
3839 struct pool_workqueue *pwq;
3841 /* drain it before proceeding with destruction */
3842 drain_workqueue(wq);
3844 /* sanity checks */
3845 spin_lock_irq(&pwq_lock);
3846 for_each_pwq(pwq, wq) {
3847 int i;
3849 for (i = 0; i < WORK_NR_COLORS; i++) {
3850 if (WARN_ON(pwq->nr_in_flight[i])) {
3851 spin_unlock_irq(&pwq_lock);
3852 return;
3856 if (WARN_ON(pwq->refcnt > 1) ||
3857 WARN_ON(pwq->nr_active) ||
3858 WARN_ON(!list_empty(&pwq->delayed_works))) {
3859 spin_unlock_irq(&pwq_lock);
3860 return;
3863 spin_unlock_irq(&pwq_lock);
3866 * wq list is used to freeze wq, remove from list after
3867 * flushing is complete in case freeze races us.
3869 mutex_lock(&wq_mutex);
3870 list_del_init(&wq->list);
3871 mutex_unlock(&wq_mutex);
3873 workqueue_sysfs_unregister(wq);
3875 if (wq->rescuer) {
3876 kthread_stop(wq->rescuer->task);
3877 kfree(wq->rescuer);
3878 wq->rescuer = NULL;
3881 if (!(wq->flags & WQ_UNBOUND)) {
3883 * The base ref is never dropped on per-cpu pwqs. Directly
3884 * free the pwqs and wq.
3886 free_percpu(wq->cpu_pwqs);
3887 kfree(wq);
3888 } else {
3890 * We're the sole accessor of @wq at this point. Directly
3891 * access the first pwq and put the base ref. As both pwqs
3892 * and pools are sched-RCU protected, the lock operations
3893 * are safe. @wq will be freed when the last pwq is
3894 * released.
3896 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3897 pwqs_node);
3898 spin_lock_irq(&pwq->pool->lock);
3899 put_pwq(pwq);
3900 spin_unlock_irq(&pwq->pool->lock);
3903 EXPORT_SYMBOL_GPL(destroy_workqueue);
3906 * workqueue_set_max_active - adjust max_active of a workqueue
3907 * @wq: target workqueue
3908 * @max_active: new max_active value.
3910 * Set max_active of @wq to @max_active.
3912 * CONTEXT:
3913 * Don't call from IRQ context.
3915 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3917 struct pool_workqueue *pwq;
3919 /* disallow meddling with max_active for ordered workqueues */
3920 if (WARN_ON(wq->flags & __WQ_ORDERED))
3921 return;
3923 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3925 spin_lock_irq(&pwq_lock);
3927 wq->saved_max_active = max_active;
3929 for_each_pwq(pwq, wq)
3930 pwq_adjust_max_active(pwq);
3932 spin_unlock_irq(&pwq_lock);
3934 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3937 * current_is_workqueue_rescuer - is %current workqueue rescuer?
3939 * Determine whether %current is a workqueue rescuer. Can be used from
3940 * work functions to determine whether it's being run off the rescuer task.
3942 bool current_is_workqueue_rescuer(void)
3944 struct worker *worker = current_wq_worker();
3946 return worker && worker->rescue_wq;
3950 * workqueue_congested - test whether a workqueue is congested
3951 * @cpu: CPU in question
3952 * @wq: target workqueue
3954 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3955 * no synchronization around this function and the test result is
3956 * unreliable and only useful as advisory hints or for debugging.
3958 * RETURNS:
3959 * %true if congested, %false otherwise.
3961 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
3963 struct pool_workqueue *pwq;
3964 bool ret;
3966 rcu_read_lock_sched();
3968 if (!(wq->flags & WQ_UNBOUND))
3969 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3970 else
3971 pwq = first_pwq(wq);
3973 ret = !list_empty(&pwq->delayed_works);
3974 rcu_read_unlock_sched();
3976 return ret;
3978 EXPORT_SYMBOL_GPL(workqueue_congested);
3981 * work_busy - test whether a work is currently pending or running
3982 * @work: the work to be tested
3984 * Test whether @work is currently pending or running. There is no
3985 * synchronization around this function and the test result is
3986 * unreliable and only useful as advisory hints or for debugging.
3988 * RETURNS:
3989 * OR'd bitmask of WORK_BUSY_* bits.
3991 unsigned int work_busy(struct work_struct *work)
3993 struct worker_pool *pool;
3994 unsigned long flags;
3995 unsigned int ret = 0;
3997 if (work_pending(work))
3998 ret |= WORK_BUSY_PENDING;
4000 local_irq_save(flags);
4001 pool = get_work_pool(work);
4002 if (pool) {
4003 spin_lock(&pool->lock);
4004 if (find_worker_executing_work(pool, work))
4005 ret |= WORK_BUSY_RUNNING;
4006 spin_unlock(&pool->lock);
4008 local_irq_restore(flags);
4010 return ret;
4012 EXPORT_SYMBOL_GPL(work_busy);
4015 * CPU hotplug.
4017 * There are two challenges in supporting CPU hotplug. Firstly, there
4018 * are a lot of assumptions on strong associations among work, pwq and
4019 * pool which make migrating pending and scheduled works very
4020 * difficult to implement without impacting hot paths. Secondly,
4021 * worker pools serve mix of short, long and very long running works making
4022 * blocked draining impractical.
4024 * This is solved by allowing the pools to be disassociated from the CPU
4025 * running as an unbound one and allowing it to be reattached later if the
4026 * cpu comes back online.
4029 static void wq_unbind_fn(struct work_struct *work)
4031 int cpu = smp_processor_id();
4032 struct worker_pool *pool;
4033 struct worker *worker;
4034 int wi;
4036 for_each_cpu_worker_pool(pool, cpu) {
4037 WARN_ON_ONCE(cpu != smp_processor_id());
4039 mutex_lock(&pool->manager_mutex);
4040 spin_lock_irq(&pool->lock);
4043 * We've blocked all manager operations. Make all workers
4044 * unbound and set DISASSOCIATED. Before this, all workers
4045 * except for the ones which are still executing works from
4046 * before the last CPU down must be on the cpu. After
4047 * this, they may become diasporas.
4049 for_each_pool_worker(worker, wi, pool)
4050 worker->flags |= WORKER_UNBOUND;
4052 pool->flags |= POOL_DISASSOCIATED;
4054 spin_unlock_irq(&pool->lock);
4055 mutex_unlock(&pool->manager_mutex);
4059 * Call schedule() so that we cross rq->lock and thus can guarantee
4060 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4061 * as scheduler callbacks may be invoked from other cpus.
4063 schedule();
4066 * Sched callbacks are disabled now. Zap nr_running. After this,
4067 * nr_running stays zero and need_more_worker() and keep_working()
4068 * are always true as long as the worklist is not empty. Pools on
4069 * @cpu now behave as unbound (in terms of concurrency management)
4070 * pools which are served by workers tied to the CPU.
4072 * On return from this function, the current worker would trigger
4073 * unbound chain execution of pending work items if other workers
4074 * didn't already.
4076 for_each_cpu_worker_pool(pool, cpu)
4077 atomic_set(&pool->nr_running, 0);
4081 * rebind_workers - rebind all workers of a pool to the associated CPU
4082 * @pool: pool of interest
4084 * @pool->cpu is coming online. Rebind all workers to the CPU.
4086 static void rebind_workers(struct worker_pool *pool)
4088 struct worker *worker;
4089 int wi;
4091 lockdep_assert_held(&pool->manager_mutex);
4094 * Restore CPU affinity of all workers. As all idle workers should
4095 * be on the run-queue of the associated CPU before any local
4096 * wake-ups for concurrency management happen, restore CPU affinty
4097 * of all workers first and then clear UNBOUND. As we're called
4098 * from CPU_ONLINE, the following shouldn't fail.
4100 for_each_pool_worker(worker, wi, pool)
4101 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4102 pool->attrs->cpumask) < 0);
4104 spin_lock_irq(&pool->lock);
4106 for_each_pool_worker(worker, wi, pool) {
4107 unsigned int worker_flags = worker->flags;
4110 * A bound idle worker should actually be on the runqueue
4111 * of the associated CPU for local wake-ups targeting it to
4112 * work. Kick all idle workers so that they migrate to the
4113 * associated CPU. Doing this in the same loop as
4114 * replacing UNBOUND with REBOUND is safe as no worker will
4115 * be bound before @pool->lock is released.
4117 if (worker_flags & WORKER_IDLE)
4118 wake_up_process(worker->task);
4121 * We want to clear UNBOUND but can't directly call
4122 * worker_clr_flags() or adjust nr_running. Atomically
4123 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4124 * @worker will clear REBOUND using worker_clr_flags() when
4125 * it initiates the next execution cycle thus restoring
4126 * concurrency management. Note that when or whether
4127 * @worker clears REBOUND doesn't affect correctness.
4129 * ACCESS_ONCE() is necessary because @worker->flags may be
4130 * tested without holding any lock in
4131 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4132 * fail incorrectly leading to premature concurrency
4133 * management operations.
4135 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4136 worker_flags |= WORKER_REBOUND;
4137 worker_flags &= ~WORKER_UNBOUND;
4138 ACCESS_ONCE(worker->flags) = worker_flags;
4141 spin_unlock_irq(&pool->lock);
4145 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4146 * @pool: unbound pool of interest
4147 * @cpu: the CPU which is coming up
4149 * An unbound pool may end up with a cpumask which doesn't have any online
4150 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4151 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4152 * online CPU before, cpus_allowed of all its workers should be restored.
4154 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4156 static cpumask_t cpumask;
4157 struct worker *worker;
4158 int wi;
4160 lockdep_assert_held(&pool->manager_mutex);
4162 /* is @cpu allowed for @pool? */
4163 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4164 return;
4166 /* is @cpu the only online CPU? */
4167 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4168 if (cpumask_weight(&cpumask) != 1)
4169 return;
4171 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4172 for_each_pool_worker(worker, wi, pool)
4173 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4174 pool->attrs->cpumask) < 0);
4178 * Workqueues should be brought up before normal priority CPU notifiers.
4179 * This will be registered high priority CPU notifier.
4181 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4182 unsigned long action,
4183 void *hcpu)
4185 int cpu = (unsigned long)hcpu;
4186 struct worker_pool *pool;
4187 int pi;
4189 switch (action & ~CPU_TASKS_FROZEN) {
4190 case CPU_UP_PREPARE:
4191 for_each_cpu_worker_pool(pool, cpu) {
4192 if (pool->nr_workers)
4193 continue;
4194 if (create_and_start_worker(pool) < 0)
4195 return NOTIFY_BAD;
4197 break;
4199 case CPU_DOWN_FAILED:
4200 case CPU_ONLINE:
4201 mutex_lock(&wq_mutex);
4203 for_each_pool(pool, pi) {
4204 mutex_lock(&pool->manager_mutex);
4206 if (pool->cpu == cpu) {
4207 spin_lock_irq(&pool->lock);
4208 pool->flags &= ~POOL_DISASSOCIATED;
4209 spin_unlock_irq(&pool->lock);
4211 rebind_workers(pool);
4212 } else if (pool->cpu < 0) {
4213 restore_unbound_workers_cpumask(pool, cpu);
4216 mutex_unlock(&pool->manager_mutex);
4219 mutex_unlock(&wq_mutex);
4220 break;
4222 return NOTIFY_OK;
4226 * Workqueues should be brought down after normal priority CPU notifiers.
4227 * This will be registered as low priority CPU notifier.
4229 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4230 unsigned long action,
4231 void *hcpu)
4233 int cpu = (unsigned long)hcpu;
4234 struct work_struct unbind_work;
4236 switch (action & ~CPU_TASKS_FROZEN) {
4237 case CPU_DOWN_PREPARE:
4238 /* unbinding should happen on the local CPU */
4239 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4240 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4241 flush_work(&unbind_work);
4242 break;
4244 return NOTIFY_OK;
4247 #ifdef CONFIG_SMP
4249 struct work_for_cpu {
4250 struct work_struct work;
4251 long (*fn)(void *);
4252 void *arg;
4253 long ret;
4256 static void work_for_cpu_fn(struct work_struct *work)
4258 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4260 wfc->ret = wfc->fn(wfc->arg);
4264 * work_on_cpu - run a function in user context on a particular cpu
4265 * @cpu: the cpu to run on
4266 * @fn: the function to run
4267 * @arg: the function arg
4269 * This will return the value @fn returns.
4270 * It is up to the caller to ensure that the cpu doesn't go offline.
4271 * The caller must not hold any locks which would prevent @fn from completing.
4273 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4275 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4277 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4278 schedule_work_on(cpu, &wfc.work);
4279 flush_work(&wfc.work);
4280 return wfc.ret;
4282 EXPORT_SYMBOL_GPL(work_on_cpu);
4283 #endif /* CONFIG_SMP */
4285 #ifdef CONFIG_FREEZER
4288 * freeze_workqueues_begin - begin freezing workqueues
4290 * Start freezing workqueues. After this function returns, all freezable
4291 * workqueues will queue new works to their delayed_works list instead of
4292 * pool->worklist.
4294 * CONTEXT:
4295 * Grabs and releases wq_mutex, pwq_lock and pool->lock's.
4297 void freeze_workqueues_begin(void)
4299 struct worker_pool *pool;
4300 struct workqueue_struct *wq;
4301 struct pool_workqueue *pwq;
4302 int pi;
4304 mutex_lock(&wq_mutex);
4306 WARN_ON_ONCE(workqueue_freezing);
4307 workqueue_freezing = true;
4309 /* set FREEZING */
4310 for_each_pool(pool, pi) {
4311 spin_lock_irq(&pool->lock);
4312 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4313 pool->flags |= POOL_FREEZING;
4314 spin_unlock_irq(&pool->lock);
4317 /* suppress further executions by setting max_active to zero */
4318 spin_lock_irq(&pwq_lock);
4319 list_for_each_entry(wq, &workqueues, list) {
4320 for_each_pwq(pwq, wq)
4321 pwq_adjust_max_active(pwq);
4323 spin_unlock_irq(&pwq_lock);
4325 mutex_unlock(&wq_mutex);
4329 * freeze_workqueues_busy - are freezable workqueues still busy?
4331 * Check whether freezing is complete. This function must be called
4332 * between freeze_workqueues_begin() and thaw_workqueues().
4334 * CONTEXT:
4335 * Grabs and releases wq_mutex.
4337 * RETURNS:
4338 * %true if some freezable workqueues are still busy. %false if freezing
4339 * is complete.
4341 bool freeze_workqueues_busy(void)
4343 bool busy = false;
4344 struct workqueue_struct *wq;
4345 struct pool_workqueue *pwq;
4347 mutex_lock(&wq_mutex);
4349 WARN_ON_ONCE(!workqueue_freezing);
4351 list_for_each_entry(wq, &workqueues, list) {
4352 if (!(wq->flags & WQ_FREEZABLE))
4353 continue;
4355 * nr_active is monotonically decreasing. It's safe
4356 * to peek without lock.
4358 rcu_read_lock_sched();
4359 for_each_pwq(pwq, wq) {
4360 WARN_ON_ONCE(pwq->nr_active < 0);
4361 if (pwq->nr_active) {
4362 busy = true;
4363 rcu_read_unlock_sched();
4364 goto out_unlock;
4367 rcu_read_unlock_sched();
4369 out_unlock:
4370 mutex_unlock(&wq_mutex);
4371 return busy;
4375 * thaw_workqueues - thaw workqueues
4377 * Thaw workqueues. Normal queueing is restored and all collected
4378 * frozen works are transferred to their respective pool worklists.
4380 * CONTEXT:
4381 * Grabs and releases wq_mutex, pwq_lock and pool->lock's.
4383 void thaw_workqueues(void)
4385 struct workqueue_struct *wq;
4386 struct pool_workqueue *pwq;
4387 struct worker_pool *pool;
4388 int pi;
4390 mutex_lock(&wq_mutex);
4392 if (!workqueue_freezing)
4393 goto out_unlock;
4395 /* clear FREEZING */
4396 for_each_pool(pool, pi) {
4397 spin_lock_irq(&pool->lock);
4398 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4399 pool->flags &= ~POOL_FREEZING;
4400 spin_unlock_irq(&pool->lock);
4403 /* restore max_active and repopulate worklist */
4404 spin_lock_irq(&pwq_lock);
4405 list_for_each_entry(wq, &workqueues, list) {
4406 for_each_pwq(pwq, wq)
4407 pwq_adjust_max_active(pwq);
4409 spin_unlock_irq(&pwq_lock);
4411 workqueue_freezing = false;
4412 out_unlock:
4413 mutex_unlock(&wq_mutex);
4415 #endif /* CONFIG_FREEZER */
4417 static int __init init_workqueues(void)
4419 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4420 int i, cpu;
4422 /* make sure we have enough bits for OFFQ pool ID */
4423 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4424 WORK_CPU_END * NR_STD_WORKER_POOLS);
4426 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4428 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4430 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4431 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4433 /* initialize CPU pools */
4434 for_each_possible_cpu(cpu) {
4435 struct worker_pool *pool;
4437 i = 0;
4438 for_each_cpu_worker_pool(pool, cpu) {
4439 BUG_ON(init_worker_pool(pool));
4440 pool->cpu = cpu;
4441 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4442 pool->attrs->nice = std_nice[i++];
4444 /* alloc pool ID */
4445 mutex_lock(&wq_mutex);
4446 BUG_ON(worker_pool_assign_id(pool));
4447 mutex_unlock(&wq_mutex);
4451 /* create the initial worker */
4452 for_each_online_cpu(cpu) {
4453 struct worker_pool *pool;
4455 for_each_cpu_worker_pool(pool, cpu) {
4456 pool->flags &= ~POOL_DISASSOCIATED;
4457 BUG_ON(create_and_start_worker(pool) < 0);
4461 /* create default unbound wq attrs */
4462 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4463 struct workqueue_attrs *attrs;
4465 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4467 attrs->nice = std_nice[i];
4468 cpumask_setall(attrs->cpumask);
4470 unbound_std_wq_attrs[i] = attrs;
4473 system_wq = alloc_workqueue("events", 0, 0);
4474 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4475 system_long_wq = alloc_workqueue("events_long", 0, 0);
4476 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4477 WQ_UNBOUND_MAX_ACTIVE);
4478 system_freezable_wq = alloc_workqueue("events_freezable",
4479 WQ_FREEZABLE, 0);
4480 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4481 !system_unbound_wq || !system_freezable_wq);
4482 return 0;
4484 early_initcall(init_workqueues);