arch: tile: kernel: unaligned.c: Cleaning up uninitialized variables
[linux-2.6/btrfs-unstable.git] / kernel / futex.c
blob5f589279e4626c47b75b8a1d193d089f24a2f7b9
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
68 #include <asm/futex.h>
70 #include "locking/rtmutex_common.h"
73 * READ this before attempting to hack on futexes!
75 * Basic futex operation and ordering guarantees
76 * =============================================
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
85 * The waker side modifies the user space value of the futex and calls
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
120 * CPU 0 CPU 1
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
125 * waiters++; (a)
126 * mb(); (A) <-- paired with -.
128 * lock(hash_bucket(futex)); |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
135 * `-------> mb(); (B)
136 * if (uval == val)
137 * queue();
138 * unlock(hash_bucket(futex));
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
150 * This yields the following case (where X:=waiters, Y:=futex):
152 * X = Y = 0
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
187 * Priority Inheritance state:
189 struct futex_pi_state {
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
194 struct list_head list;
197 * The PI object:
199 struct rt_mutex pi_mutex;
201 struct task_struct *owner;
202 atomic_t refcount;
204 union futex_key key;
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
229 struct futex_q {
230 struct plist_node list;
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
258 static unsigned long __read_mostly futex_hashsize;
260 static struct futex_hash_bucket *futex_queues;
262 static inline void futex_get_mm(union futex_key *key)
264 atomic_inc(&key->private.mm->mm_count);
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
270 smp_mb__after_atomic_inc();
274 * Reflects a new waiter being added to the waitqueue.
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
278 #ifdef CONFIG_SMP
279 atomic_inc(&hb->waiters);
281 * Full barrier (A), see the ordering comment above.
283 smp_mb__after_atomic_inc();
284 #endif
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
293 #ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295 #endif
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
300 #ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
302 #else
303 return 1;
304 #endif
308 * We hash on the keys returned from get_futex_key (see below).
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
315 return &futex_queues[hash & (futex_hashsize - 1)];
319 * Return 1 if two futex_keys are equal, 0 otherwise.
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
323 return (key1 && key2
324 && key1->both.word == key2->both.word
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
334 static void get_futex_key_refs(union futex_key *key)
336 if (!key->both.ptr)
337 return;
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
341 ihold(key->shared.inode); /* implies MB (B) */
342 break;
343 case FUT_OFF_MMSHARED:
344 futex_get_mm(key); /* implies MB (B) */
345 break;
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
353 static void drop_futex_key_refs(union futex_key *key)
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
358 return;
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
379 * Return: a negative error code or 0
381 * The key words are stored in *key on success.
383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
387 * lock_page() might sleep, the caller should not hold a spinlock.
389 static int
390 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
392 unsigned long address = (unsigned long)uaddr;
393 struct mm_struct *mm = current->mm;
394 struct page *page, *page_head;
395 int err, ro = 0;
398 * The futex address must be "naturally" aligned.
400 key->both.offset = address % PAGE_SIZE;
401 if (unlikely((address % sizeof(u32)) != 0))
402 return -EINVAL;
403 address -= key->both.offset;
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
415 if (!fshared) {
416 key->private.mm = mm;
417 key->private.address = address;
418 get_futex_key_refs(key); /* implies MB (B) */
419 return 0;
422 again:
423 err = get_user_pages_fast(address, 1, 1, &page);
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
432 if (err < 0)
433 return err;
434 else
435 err = 0;
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
440 put_page(page);
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444 page_head = compound_head(page);
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
465 #else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
471 #endif
473 lock_page(page_head);
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
490 if (!page_head->mapping) {
491 int shmem_swizzled = PageSwapCache(page_head);
492 unlock_page(page_head);
493 put_page(page_head);
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
500 * Private mappings are handled in a simple way.
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
504 * the object not the particular process.
506 if (PageAnon(page_head)) {
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
511 if (ro) {
512 err = -EFAULT;
513 goto out;
516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
517 key->private.mm = mm;
518 key->private.address = address;
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521 key->shared.inode = page_head->mapping->host;
522 key->shared.pgoff = basepage_index(page);
525 get_futex_key_refs(key); /* implies MB (B) */
527 out:
528 unlock_page(page_head);
529 put_page(page_head);
530 return err;
533 static inline void put_futex_key(union futex_key *key)
535 drop_futex_key_refs(key);
539 * fault_in_user_writeable() - Fault in user address and verify RW access
540 * @uaddr: pointer to faulting user space address
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
545 * We have no generic implementation of a non-destructive write to the
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
550 static int fault_in_user_writeable(u32 __user *uaddr)
552 struct mm_struct *mm = current->mm;
553 int ret;
555 down_read(&mm->mmap_sem);
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
558 up_read(&mm->mmap_sem);
560 return ret < 0 ? ret : 0;
564 * futex_top_waiter() - Return the highest priority waiter on a futex
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
568 * Must be called with the hb lock held.
570 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
573 struct futex_q *this;
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
579 return NULL;
582 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
585 int ret;
587 pagefault_disable();
588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
589 pagefault_enable();
591 return ret;
594 static int get_futex_value_locked(u32 *dest, u32 __user *from)
596 int ret;
598 pagefault_disable();
599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600 pagefault_enable();
602 return ret ? -EFAULT : 0;
607 * PI code:
609 static int refill_pi_state_cache(void)
611 struct futex_pi_state *pi_state;
613 if (likely(current->pi_state_cache))
614 return 0;
616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
618 if (!pi_state)
619 return -ENOMEM;
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
625 pi_state->key = FUTEX_KEY_INIT;
627 current->pi_state_cache = pi_state;
629 return 0;
632 static struct futex_pi_state * alloc_pi_state(void)
634 struct futex_pi_state *pi_state = current->pi_state_cache;
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
639 return pi_state;
642 static void free_pi_state(struct futex_pi_state *pi_state)
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
651 if (pi_state->owner) {
652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
653 list_del_init(&pi_state->list);
654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
677 static struct task_struct * futex_find_get_task(pid_t pid)
679 struct task_struct *p;
681 rcu_read_lock();
682 p = find_task_by_vpid(pid);
683 if (p)
684 get_task_struct(p);
686 rcu_read_unlock();
688 return p;
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
696 void exit_pi_state_list(struct task_struct *curr)
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
700 struct futex_hash_bucket *hb;
701 union futex_key key = FUTEX_KEY_INIT;
703 if (!futex_cmpxchg_enabled)
704 return;
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
708 * versus waiters unqueueing themselves:
710 raw_spin_lock_irq(&curr->pi_lock);
711 while (!list_empty(head)) {
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
716 hb = hash_futex(&key);
717 raw_spin_unlock_irq(&curr->pi_lock);
719 spin_lock(&hb->lock);
721 raw_spin_lock_irq(&curr->pi_lock);
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
731 WARN_ON(pi_state->owner != curr);
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
734 pi_state->owner = NULL;
735 raw_spin_unlock_irq(&curr->pi_lock);
737 rt_mutex_unlock(&pi_state->pi_mutex);
739 spin_unlock(&hb->lock);
741 raw_spin_lock_irq(&curr->pi_lock);
743 raw_spin_unlock_irq(&curr->pi_lock);
746 static int
747 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
748 union futex_key *key, struct futex_pi_state **ps)
750 struct futex_pi_state *pi_state = NULL;
751 struct futex_q *this, *next;
752 struct task_struct *p;
753 pid_t pid = uval & FUTEX_TID_MASK;
755 plist_for_each_entry_safe(this, next, &hb->chain, list) {
756 if (match_futex(&this->key, key)) {
758 * Another waiter already exists - bump up
759 * the refcount and return its pi_state:
761 pi_state = this->pi_state;
763 * Userspace might have messed up non-PI and PI futexes
765 if (unlikely(!pi_state))
766 return -EINVAL;
768 WARN_ON(!atomic_read(&pi_state->refcount));
771 * When pi_state->owner is NULL then the owner died
772 * and another waiter is on the fly. pi_state->owner
773 * is fixed up by the task which acquires
774 * pi_state->rt_mutex.
776 * We do not check for pid == 0 which can happen when
777 * the owner died and robust_list_exit() cleared the
778 * TID.
780 if (pid && pi_state->owner) {
782 * Bail out if user space manipulated the
783 * futex value.
785 if (pid != task_pid_vnr(pi_state->owner))
786 return -EINVAL;
789 atomic_inc(&pi_state->refcount);
790 *ps = pi_state;
792 return 0;
797 * We are the first waiter - try to look up the real owner and attach
798 * the new pi_state to it, but bail out when TID = 0
800 if (!pid)
801 return -ESRCH;
802 p = futex_find_get_task(pid);
803 if (!p)
804 return -ESRCH;
807 * We need to look at the task state flags to figure out,
808 * whether the task is exiting. To protect against the do_exit
809 * change of the task flags, we do this protected by
810 * p->pi_lock:
812 raw_spin_lock_irq(&p->pi_lock);
813 if (unlikely(p->flags & PF_EXITING)) {
815 * The task is on the way out. When PF_EXITPIDONE is
816 * set, we know that the task has finished the
817 * cleanup:
819 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
821 raw_spin_unlock_irq(&p->pi_lock);
822 put_task_struct(p);
823 return ret;
826 pi_state = alloc_pi_state();
829 * Initialize the pi_mutex in locked state and make 'p'
830 * the owner of it:
832 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
834 /* Store the key for possible exit cleanups: */
835 pi_state->key = *key;
837 WARN_ON(!list_empty(&pi_state->list));
838 list_add(&pi_state->list, &p->pi_state_list);
839 pi_state->owner = p;
840 raw_spin_unlock_irq(&p->pi_lock);
842 put_task_struct(p);
844 *ps = pi_state;
846 return 0;
850 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
851 * @uaddr: the pi futex user address
852 * @hb: the pi futex hash bucket
853 * @key: the futex key associated with uaddr and hb
854 * @ps: the pi_state pointer where we store the result of the
855 * lookup
856 * @task: the task to perform the atomic lock work for. This will
857 * be "current" except in the case of requeue pi.
858 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
860 * Return:
861 * 0 - ready to wait;
862 * 1 - acquired the lock;
863 * <0 - error
865 * The hb->lock and futex_key refs shall be held by the caller.
867 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
868 union futex_key *key,
869 struct futex_pi_state **ps,
870 struct task_struct *task, int set_waiters)
872 int lock_taken, ret, force_take = 0;
873 u32 uval, newval, curval, vpid = task_pid_vnr(task);
875 retry:
876 ret = lock_taken = 0;
879 * To avoid races, we attempt to take the lock here again
880 * (by doing a 0 -> TID atomic cmpxchg), while holding all
881 * the locks. It will most likely not succeed.
883 newval = vpid;
884 if (set_waiters)
885 newval |= FUTEX_WAITERS;
887 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
888 return -EFAULT;
891 * Detect deadlocks.
893 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
894 return -EDEADLK;
897 * Surprise - we got the lock. Just return to userspace:
899 if (unlikely(!curval))
900 return 1;
902 uval = curval;
905 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
906 * to wake at the next unlock.
908 newval = curval | FUTEX_WAITERS;
911 * Should we force take the futex? See below.
913 if (unlikely(force_take)) {
915 * Keep the OWNER_DIED and the WAITERS bit and set the
916 * new TID value.
918 newval = (curval & ~FUTEX_TID_MASK) | vpid;
919 force_take = 0;
920 lock_taken = 1;
923 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
924 return -EFAULT;
925 if (unlikely(curval != uval))
926 goto retry;
929 * We took the lock due to forced take over.
931 if (unlikely(lock_taken))
932 return 1;
935 * We dont have the lock. Look up the PI state (or create it if
936 * we are the first waiter):
938 ret = lookup_pi_state(uval, hb, key, ps);
940 if (unlikely(ret)) {
941 switch (ret) {
942 case -ESRCH:
944 * We failed to find an owner for this
945 * futex. So we have no pi_state to block
946 * on. This can happen in two cases:
948 * 1) The owner died
949 * 2) A stale FUTEX_WAITERS bit
951 * Re-read the futex value.
953 if (get_futex_value_locked(&curval, uaddr))
954 return -EFAULT;
957 * If the owner died or we have a stale
958 * WAITERS bit the owner TID in the user space
959 * futex is 0.
961 if (!(curval & FUTEX_TID_MASK)) {
962 force_take = 1;
963 goto retry;
965 default:
966 break;
970 return ret;
974 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
975 * @q: The futex_q to unqueue
977 * The q->lock_ptr must not be NULL and must be held by the caller.
979 static void __unqueue_futex(struct futex_q *q)
981 struct futex_hash_bucket *hb;
983 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
984 || WARN_ON(plist_node_empty(&q->list)))
985 return;
987 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
988 plist_del(&q->list, &hb->chain);
989 hb_waiters_dec(hb);
993 * The hash bucket lock must be held when this is called.
994 * Afterwards, the futex_q must not be accessed.
996 static void wake_futex(struct futex_q *q)
998 struct task_struct *p = q->task;
1000 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1001 return;
1004 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1005 * a non-futex wake up happens on another CPU then the task
1006 * might exit and p would dereference a non-existing task
1007 * struct. Prevent this by holding a reference on p across the
1008 * wake up.
1010 get_task_struct(p);
1012 __unqueue_futex(q);
1014 * The waiting task can free the futex_q as soon as
1015 * q->lock_ptr = NULL is written, without taking any locks. A
1016 * memory barrier is required here to prevent the following
1017 * store to lock_ptr from getting ahead of the plist_del.
1019 smp_wmb();
1020 q->lock_ptr = NULL;
1022 wake_up_state(p, TASK_NORMAL);
1023 put_task_struct(p);
1026 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1028 struct task_struct *new_owner;
1029 struct futex_pi_state *pi_state = this->pi_state;
1030 u32 uninitialized_var(curval), newval;
1032 if (!pi_state)
1033 return -EINVAL;
1036 * If current does not own the pi_state then the futex is
1037 * inconsistent and user space fiddled with the futex value.
1039 if (pi_state->owner != current)
1040 return -EINVAL;
1042 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1043 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1046 * It is possible that the next waiter (the one that brought
1047 * this owner to the kernel) timed out and is no longer
1048 * waiting on the lock.
1050 if (!new_owner)
1051 new_owner = this->task;
1054 * We pass it to the next owner. (The WAITERS bit is always
1055 * kept enabled while there is PI state around. We must also
1056 * preserve the owner died bit.)
1058 if (!(uval & FUTEX_OWNER_DIED)) {
1059 int ret = 0;
1061 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1063 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1064 ret = -EFAULT;
1065 else if (curval != uval)
1066 ret = -EINVAL;
1067 if (ret) {
1068 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1069 return ret;
1073 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1074 WARN_ON(list_empty(&pi_state->list));
1075 list_del_init(&pi_state->list);
1076 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1078 raw_spin_lock_irq(&new_owner->pi_lock);
1079 WARN_ON(!list_empty(&pi_state->list));
1080 list_add(&pi_state->list, &new_owner->pi_state_list);
1081 pi_state->owner = new_owner;
1082 raw_spin_unlock_irq(&new_owner->pi_lock);
1084 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1085 rt_mutex_unlock(&pi_state->pi_mutex);
1087 return 0;
1090 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1092 u32 uninitialized_var(oldval);
1095 * There is no waiter, so we unlock the futex. The owner died
1096 * bit has not to be preserved here. We are the owner:
1098 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1099 return -EFAULT;
1100 if (oldval != uval)
1101 return -EAGAIN;
1103 return 0;
1107 * Express the locking dependencies for lockdep:
1109 static inline void
1110 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1112 if (hb1 <= hb2) {
1113 spin_lock(&hb1->lock);
1114 if (hb1 < hb2)
1115 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1116 } else { /* hb1 > hb2 */
1117 spin_lock(&hb2->lock);
1118 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1122 static inline void
1123 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1125 spin_unlock(&hb1->lock);
1126 if (hb1 != hb2)
1127 spin_unlock(&hb2->lock);
1131 * Wake up waiters matching bitset queued on this futex (uaddr).
1133 static int
1134 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1136 struct futex_hash_bucket *hb;
1137 struct futex_q *this, *next;
1138 union futex_key key = FUTEX_KEY_INIT;
1139 int ret;
1141 if (!bitset)
1142 return -EINVAL;
1144 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1145 if (unlikely(ret != 0))
1146 goto out;
1148 hb = hash_futex(&key);
1150 /* Make sure we really have tasks to wakeup */
1151 if (!hb_waiters_pending(hb))
1152 goto out_put_key;
1154 spin_lock(&hb->lock);
1156 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1157 if (match_futex (&this->key, &key)) {
1158 if (this->pi_state || this->rt_waiter) {
1159 ret = -EINVAL;
1160 break;
1163 /* Check if one of the bits is set in both bitsets */
1164 if (!(this->bitset & bitset))
1165 continue;
1167 wake_futex(this);
1168 if (++ret >= nr_wake)
1169 break;
1173 spin_unlock(&hb->lock);
1174 out_put_key:
1175 put_futex_key(&key);
1176 out:
1177 return ret;
1181 * Wake up all waiters hashed on the physical page that is mapped
1182 * to this virtual address:
1184 static int
1185 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1186 int nr_wake, int nr_wake2, int op)
1188 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1189 struct futex_hash_bucket *hb1, *hb2;
1190 struct futex_q *this, *next;
1191 int ret, op_ret;
1193 retry:
1194 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1195 if (unlikely(ret != 0))
1196 goto out;
1197 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1198 if (unlikely(ret != 0))
1199 goto out_put_key1;
1201 hb1 = hash_futex(&key1);
1202 hb2 = hash_futex(&key2);
1204 retry_private:
1205 double_lock_hb(hb1, hb2);
1206 op_ret = futex_atomic_op_inuser(op, uaddr2);
1207 if (unlikely(op_ret < 0)) {
1209 double_unlock_hb(hb1, hb2);
1211 #ifndef CONFIG_MMU
1213 * we don't get EFAULT from MMU faults if we don't have an MMU,
1214 * but we might get them from range checking
1216 ret = op_ret;
1217 goto out_put_keys;
1218 #endif
1220 if (unlikely(op_ret != -EFAULT)) {
1221 ret = op_ret;
1222 goto out_put_keys;
1225 ret = fault_in_user_writeable(uaddr2);
1226 if (ret)
1227 goto out_put_keys;
1229 if (!(flags & FLAGS_SHARED))
1230 goto retry_private;
1232 put_futex_key(&key2);
1233 put_futex_key(&key1);
1234 goto retry;
1237 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1238 if (match_futex (&this->key, &key1)) {
1239 if (this->pi_state || this->rt_waiter) {
1240 ret = -EINVAL;
1241 goto out_unlock;
1243 wake_futex(this);
1244 if (++ret >= nr_wake)
1245 break;
1249 if (op_ret > 0) {
1250 op_ret = 0;
1251 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1252 if (match_futex (&this->key, &key2)) {
1253 if (this->pi_state || this->rt_waiter) {
1254 ret = -EINVAL;
1255 goto out_unlock;
1257 wake_futex(this);
1258 if (++op_ret >= nr_wake2)
1259 break;
1262 ret += op_ret;
1265 out_unlock:
1266 double_unlock_hb(hb1, hb2);
1267 out_put_keys:
1268 put_futex_key(&key2);
1269 out_put_key1:
1270 put_futex_key(&key1);
1271 out:
1272 return ret;
1276 * requeue_futex() - Requeue a futex_q from one hb to another
1277 * @q: the futex_q to requeue
1278 * @hb1: the source hash_bucket
1279 * @hb2: the target hash_bucket
1280 * @key2: the new key for the requeued futex_q
1282 static inline
1283 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1284 struct futex_hash_bucket *hb2, union futex_key *key2)
1288 * If key1 and key2 hash to the same bucket, no need to
1289 * requeue.
1291 if (likely(&hb1->chain != &hb2->chain)) {
1292 plist_del(&q->list, &hb1->chain);
1293 hb_waiters_dec(hb1);
1294 plist_add(&q->list, &hb2->chain);
1295 hb_waiters_inc(hb2);
1296 q->lock_ptr = &hb2->lock;
1298 get_futex_key_refs(key2);
1299 q->key = *key2;
1303 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1304 * @q: the futex_q
1305 * @key: the key of the requeue target futex
1306 * @hb: the hash_bucket of the requeue target futex
1308 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1309 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1310 * to the requeue target futex so the waiter can detect the wakeup on the right
1311 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1312 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1313 * to protect access to the pi_state to fixup the owner later. Must be called
1314 * with both q->lock_ptr and hb->lock held.
1316 static inline
1317 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1318 struct futex_hash_bucket *hb)
1320 get_futex_key_refs(key);
1321 q->key = *key;
1323 __unqueue_futex(q);
1325 WARN_ON(!q->rt_waiter);
1326 q->rt_waiter = NULL;
1328 q->lock_ptr = &hb->lock;
1330 wake_up_state(q->task, TASK_NORMAL);
1334 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1335 * @pifutex: the user address of the to futex
1336 * @hb1: the from futex hash bucket, must be locked by the caller
1337 * @hb2: the to futex hash bucket, must be locked by the caller
1338 * @key1: the from futex key
1339 * @key2: the to futex key
1340 * @ps: address to store the pi_state pointer
1341 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1343 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1344 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1345 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1346 * hb1 and hb2 must be held by the caller.
1348 * Return:
1349 * 0 - failed to acquire the lock atomically;
1350 * 1 - acquired the lock;
1351 * <0 - error
1353 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1354 struct futex_hash_bucket *hb1,
1355 struct futex_hash_bucket *hb2,
1356 union futex_key *key1, union futex_key *key2,
1357 struct futex_pi_state **ps, int set_waiters)
1359 struct futex_q *top_waiter = NULL;
1360 u32 curval;
1361 int ret;
1363 if (get_futex_value_locked(&curval, pifutex))
1364 return -EFAULT;
1367 * Find the top_waiter and determine if there are additional waiters.
1368 * If the caller intends to requeue more than 1 waiter to pifutex,
1369 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1370 * as we have means to handle the possible fault. If not, don't set
1371 * the bit unecessarily as it will force the subsequent unlock to enter
1372 * the kernel.
1374 top_waiter = futex_top_waiter(hb1, key1);
1376 /* There are no waiters, nothing for us to do. */
1377 if (!top_waiter)
1378 return 0;
1380 /* Ensure we requeue to the expected futex. */
1381 if (!match_futex(top_waiter->requeue_pi_key, key2))
1382 return -EINVAL;
1385 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1386 * the contended case or if set_waiters is 1. The pi_state is returned
1387 * in ps in contended cases.
1389 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1390 set_waiters);
1391 if (ret == 1)
1392 requeue_pi_wake_futex(top_waiter, key2, hb2);
1394 return ret;
1398 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1399 * @uaddr1: source futex user address
1400 * @flags: futex flags (FLAGS_SHARED, etc.)
1401 * @uaddr2: target futex user address
1402 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1403 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1404 * @cmpval: @uaddr1 expected value (or %NULL)
1405 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1406 * pi futex (pi to pi requeue is not supported)
1408 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1409 * uaddr2 atomically on behalf of the top waiter.
1411 * Return:
1412 * >=0 - on success, the number of tasks requeued or woken;
1413 * <0 - on error
1415 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1416 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1417 u32 *cmpval, int requeue_pi)
1419 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1420 int drop_count = 0, task_count = 0, ret;
1421 struct futex_pi_state *pi_state = NULL;
1422 struct futex_hash_bucket *hb1, *hb2;
1423 struct futex_q *this, *next;
1424 u32 curval2;
1426 if (requeue_pi) {
1428 * requeue_pi requires a pi_state, try to allocate it now
1429 * without any locks in case it fails.
1431 if (refill_pi_state_cache())
1432 return -ENOMEM;
1434 * requeue_pi must wake as many tasks as it can, up to nr_wake
1435 * + nr_requeue, since it acquires the rt_mutex prior to
1436 * returning to userspace, so as to not leave the rt_mutex with
1437 * waiters and no owner. However, second and third wake-ups
1438 * cannot be predicted as they involve race conditions with the
1439 * first wake and a fault while looking up the pi_state. Both
1440 * pthread_cond_signal() and pthread_cond_broadcast() should
1441 * use nr_wake=1.
1443 if (nr_wake != 1)
1444 return -EINVAL;
1447 retry:
1448 if (pi_state != NULL) {
1450 * We will have to lookup the pi_state again, so free this one
1451 * to keep the accounting correct.
1453 free_pi_state(pi_state);
1454 pi_state = NULL;
1457 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1458 if (unlikely(ret != 0))
1459 goto out;
1460 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1461 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1462 if (unlikely(ret != 0))
1463 goto out_put_key1;
1465 hb1 = hash_futex(&key1);
1466 hb2 = hash_futex(&key2);
1468 retry_private:
1469 hb_waiters_inc(hb2);
1470 double_lock_hb(hb1, hb2);
1472 if (likely(cmpval != NULL)) {
1473 u32 curval;
1475 ret = get_futex_value_locked(&curval, uaddr1);
1477 if (unlikely(ret)) {
1478 double_unlock_hb(hb1, hb2);
1479 hb_waiters_dec(hb2);
1481 ret = get_user(curval, uaddr1);
1482 if (ret)
1483 goto out_put_keys;
1485 if (!(flags & FLAGS_SHARED))
1486 goto retry_private;
1488 put_futex_key(&key2);
1489 put_futex_key(&key1);
1490 goto retry;
1492 if (curval != *cmpval) {
1493 ret = -EAGAIN;
1494 goto out_unlock;
1498 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1500 * Attempt to acquire uaddr2 and wake the top waiter. If we
1501 * intend to requeue waiters, force setting the FUTEX_WAITERS
1502 * bit. We force this here where we are able to easily handle
1503 * faults rather in the requeue loop below.
1505 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1506 &key2, &pi_state, nr_requeue);
1509 * At this point the top_waiter has either taken uaddr2 or is
1510 * waiting on it. If the former, then the pi_state will not
1511 * exist yet, look it up one more time to ensure we have a
1512 * reference to it.
1514 if (ret == 1) {
1515 WARN_ON(pi_state);
1516 drop_count++;
1517 task_count++;
1518 ret = get_futex_value_locked(&curval2, uaddr2);
1519 if (!ret)
1520 ret = lookup_pi_state(curval2, hb2, &key2,
1521 &pi_state);
1524 switch (ret) {
1525 case 0:
1526 break;
1527 case -EFAULT:
1528 double_unlock_hb(hb1, hb2);
1529 hb_waiters_dec(hb2);
1530 put_futex_key(&key2);
1531 put_futex_key(&key1);
1532 ret = fault_in_user_writeable(uaddr2);
1533 if (!ret)
1534 goto retry;
1535 goto out;
1536 case -EAGAIN:
1537 /* The owner was exiting, try again. */
1538 double_unlock_hb(hb1, hb2);
1539 hb_waiters_dec(hb2);
1540 put_futex_key(&key2);
1541 put_futex_key(&key1);
1542 cond_resched();
1543 goto retry;
1544 default:
1545 goto out_unlock;
1549 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1550 if (task_count - nr_wake >= nr_requeue)
1551 break;
1553 if (!match_futex(&this->key, &key1))
1554 continue;
1557 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1558 * be paired with each other and no other futex ops.
1560 * We should never be requeueing a futex_q with a pi_state,
1561 * which is awaiting a futex_unlock_pi().
1563 if ((requeue_pi && !this->rt_waiter) ||
1564 (!requeue_pi && this->rt_waiter) ||
1565 this->pi_state) {
1566 ret = -EINVAL;
1567 break;
1571 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1572 * lock, we already woke the top_waiter. If not, it will be
1573 * woken by futex_unlock_pi().
1575 if (++task_count <= nr_wake && !requeue_pi) {
1576 wake_futex(this);
1577 continue;
1580 /* Ensure we requeue to the expected futex for requeue_pi. */
1581 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1582 ret = -EINVAL;
1583 break;
1587 * Requeue nr_requeue waiters and possibly one more in the case
1588 * of requeue_pi if we couldn't acquire the lock atomically.
1590 if (requeue_pi) {
1591 /* Prepare the waiter to take the rt_mutex. */
1592 atomic_inc(&pi_state->refcount);
1593 this->pi_state = pi_state;
1594 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1595 this->rt_waiter,
1596 this->task, 1);
1597 if (ret == 1) {
1598 /* We got the lock. */
1599 requeue_pi_wake_futex(this, &key2, hb2);
1600 drop_count++;
1601 continue;
1602 } else if (ret) {
1603 /* -EDEADLK */
1604 this->pi_state = NULL;
1605 free_pi_state(pi_state);
1606 goto out_unlock;
1609 requeue_futex(this, hb1, hb2, &key2);
1610 drop_count++;
1613 out_unlock:
1614 double_unlock_hb(hb1, hb2);
1615 hb_waiters_dec(hb2);
1618 * drop_futex_key_refs() must be called outside the spinlocks. During
1619 * the requeue we moved futex_q's from the hash bucket at key1 to the
1620 * one at key2 and updated their key pointer. We no longer need to
1621 * hold the references to key1.
1623 while (--drop_count >= 0)
1624 drop_futex_key_refs(&key1);
1626 out_put_keys:
1627 put_futex_key(&key2);
1628 out_put_key1:
1629 put_futex_key(&key1);
1630 out:
1631 if (pi_state != NULL)
1632 free_pi_state(pi_state);
1633 return ret ? ret : task_count;
1636 /* The key must be already stored in q->key. */
1637 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1638 __acquires(&hb->lock)
1640 struct futex_hash_bucket *hb;
1642 hb = hash_futex(&q->key);
1645 * Increment the counter before taking the lock so that
1646 * a potential waker won't miss a to-be-slept task that is
1647 * waiting for the spinlock. This is safe as all queue_lock()
1648 * users end up calling queue_me(). Similarly, for housekeeping,
1649 * decrement the counter at queue_unlock() when some error has
1650 * occurred and we don't end up adding the task to the list.
1652 hb_waiters_inc(hb);
1654 q->lock_ptr = &hb->lock;
1656 spin_lock(&hb->lock); /* implies MB (A) */
1657 return hb;
1660 static inline void
1661 queue_unlock(struct futex_hash_bucket *hb)
1662 __releases(&hb->lock)
1664 spin_unlock(&hb->lock);
1665 hb_waiters_dec(hb);
1669 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1670 * @q: The futex_q to enqueue
1671 * @hb: The destination hash bucket
1673 * The hb->lock must be held by the caller, and is released here. A call to
1674 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1675 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1676 * or nothing if the unqueue is done as part of the wake process and the unqueue
1677 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1678 * an example).
1680 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1681 __releases(&hb->lock)
1683 int prio;
1686 * The priority used to register this element is
1687 * - either the real thread-priority for the real-time threads
1688 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1689 * - or MAX_RT_PRIO for non-RT threads.
1690 * Thus, all RT-threads are woken first in priority order, and
1691 * the others are woken last, in FIFO order.
1693 prio = min(current->normal_prio, MAX_RT_PRIO);
1695 plist_node_init(&q->list, prio);
1696 plist_add(&q->list, &hb->chain);
1697 q->task = current;
1698 spin_unlock(&hb->lock);
1702 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1703 * @q: The futex_q to unqueue
1705 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1706 * be paired with exactly one earlier call to queue_me().
1708 * Return:
1709 * 1 - if the futex_q was still queued (and we removed unqueued it);
1710 * 0 - if the futex_q was already removed by the waking thread
1712 static int unqueue_me(struct futex_q *q)
1714 spinlock_t *lock_ptr;
1715 int ret = 0;
1717 /* In the common case we don't take the spinlock, which is nice. */
1718 retry:
1719 lock_ptr = q->lock_ptr;
1720 barrier();
1721 if (lock_ptr != NULL) {
1722 spin_lock(lock_ptr);
1724 * q->lock_ptr can change between reading it and
1725 * spin_lock(), causing us to take the wrong lock. This
1726 * corrects the race condition.
1728 * Reasoning goes like this: if we have the wrong lock,
1729 * q->lock_ptr must have changed (maybe several times)
1730 * between reading it and the spin_lock(). It can
1731 * change again after the spin_lock() but only if it was
1732 * already changed before the spin_lock(). It cannot,
1733 * however, change back to the original value. Therefore
1734 * we can detect whether we acquired the correct lock.
1736 if (unlikely(lock_ptr != q->lock_ptr)) {
1737 spin_unlock(lock_ptr);
1738 goto retry;
1740 __unqueue_futex(q);
1742 BUG_ON(q->pi_state);
1744 spin_unlock(lock_ptr);
1745 ret = 1;
1748 drop_futex_key_refs(&q->key);
1749 return ret;
1753 * PI futexes can not be requeued and must remove themself from the
1754 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1755 * and dropped here.
1757 static void unqueue_me_pi(struct futex_q *q)
1758 __releases(q->lock_ptr)
1760 __unqueue_futex(q);
1762 BUG_ON(!q->pi_state);
1763 free_pi_state(q->pi_state);
1764 q->pi_state = NULL;
1766 spin_unlock(q->lock_ptr);
1770 * Fixup the pi_state owner with the new owner.
1772 * Must be called with hash bucket lock held and mm->sem held for non
1773 * private futexes.
1775 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1776 struct task_struct *newowner)
1778 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1779 struct futex_pi_state *pi_state = q->pi_state;
1780 struct task_struct *oldowner = pi_state->owner;
1781 u32 uval, uninitialized_var(curval), newval;
1782 int ret;
1784 /* Owner died? */
1785 if (!pi_state->owner)
1786 newtid |= FUTEX_OWNER_DIED;
1789 * We are here either because we stole the rtmutex from the
1790 * previous highest priority waiter or we are the highest priority
1791 * waiter but failed to get the rtmutex the first time.
1792 * We have to replace the newowner TID in the user space variable.
1793 * This must be atomic as we have to preserve the owner died bit here.
1795 * Note: We write the user space value _before_ changing the pi_state
1796 * because we can fault here. Imagine swapped out pages or a fork
1797 * that marked all the anonymous memory readonly for cow.
1799 * Modifying pi_state _before_ the user space value would
1800 * leave the pi_state in an inconsistent state when we fault
1801 * here, because we need to drop the hash bucket lock to
1802 * handle the fault. This might be observed in the PID check
1803 * in lookup_pi_state.
1805 retry:
1806 if (get_futex_value_locked(&uval, uaddr))
1807 goto handle_fault;
1809 while (1) {
1810 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1812 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1813 goto handle_fault;
1814 if (curval == uval)
1815 break;
1816 uval = curval;
1820 * We fixed up user space. Now we need to fix the pi_state
1821 * itself.
1823 if (pi_state->owner != NULL) {
1824 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1825 WARN_ON(list_empty(&pi_state->list));
1826 list_del_init(&pi_state->list);
1827 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1830 pi_state->owner = newowner;
1832 raw_spin_lock_irq(&newowner->pi_lock);
1833 WARN_ON(!list_empty(&pi_state->list));
1834 list_add(&pi_state->list, &newowner->pi_state_list);
1835 raw_spin_unlock_irq(&newowner->pi_lock);
1836 return 0;
1839 * To handle the page fault we need to drop the hash bucket
1840 * lock here. That gives the other task (either the highest priority
1841 * waiter itself or the task which stole the rtmutex) the
1842 * chance to try the fixup of the pi_state. So once we are
1843 * back from handling the fault we need to check the pi_state
1844 * after reacquiring the hash bucket lock and before trying to
1845 * do another fixup. When the fixup has been done already we
1846 * simply return.
1848 handle_fault:
1849 spin_unlock(q->lock_ptr);
1851 ret = fault_in_user_writeable(uaddr);
1853 spin_lock(q->lock_ptr);
1856 * Check if someone else fixed it for us:
1858 if (pi_state->owner != oldowner)
1859 return 0;
1861 if (ret)
1862 return ret;
1864 goto retry;
1867 static long futex_wait_restart(struct restart_block *restart);
1870 * fixup_owner() - Post lock pi_state and corner case management
1871 * @uaddr: user address of the futex
1872 * @q: futex_q (contains pi_state and access to the rt_mutex)
1873 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1875 * After attempting to lock an rt_mutex, this function is called to cleanup
1876 * the pi_state owner as well as handle race conditions that may allow us to
1877 * acquire the lock. Must be called with the hb lock held.
1879 * Return:
1880 * 1 - success, lock taken;
1881 * 0 - success, lock not taken;
1882 * <0 - on error (-EFAULT)
1884 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1886 struct task_struct *owner;
1887 int ret = 0;
1889 if (locked) {
1891 * Got the lock. We might not be the anticipated owner if we
1892 * did a lock-steal - fix up the PI-state in that case:
1894 if (q->pi_state->owner != current)
1895 ret = fixup_pi_state_owner(uaddr, q, current);
1896 goto out;
1900 * Catch the rare case, where the lock was released when we were on the
1901 * way back before we locked the hash bucket.
1903 if (q->pi_state->owner == current) {
1905 * Try to get the rt_mutex now. This might fail as some other
1906 * task acquired the rt_mutex after we removed ourself from the
1907 * rt_mutex waiters list.
1909 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1910 locked = 1;
1911 goto out;
1915 * pi_state is incorrect, some other task did a lock steal and
1916 * we returned due to timeout or signal without taking the
1917 * rt_mutex. Too late.
1919 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1920 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1921 if (!owner)
1922 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1923 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1924 ret = fixup_pi_state_owner(uaddr, q, owner);
1925 goto out;
1929 * Paranoia check. If we did not take the lock, then we should not be
1930 * the owner of the rt_mutex.
1932 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1933 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1934 "pi-state %p\n", ret,
1935 q->pi_state->pi_mutex.owner,
1936 q->pi_state->owner);
1938 out:
1939 return ret ? ret : locked;
1943 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1944 * @hb: the futex hash bucket, must be locked by the caller
1945 * @q: the futex_q to queue up on
1946 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1948 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1949 struct hrtimer_sleeper *timeout)
1952 * The task state is guaranteed to be set before another task can
1953 * wake it. set_current_state() is implemented using set_mb() and
1954 * queue_me() calls spin_unlock() upon completion, both serializing
1955 * access to the hash list and forcing another memory barrier.
1957 set_current_state(TASK_INTERRUPTIBLE);
1958 queue_me(q, hb);
1960 /* Arm the timer */
1961 if (timeout) {
1962 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1963 if (!hrtimer_active(&timeout->timer))
1964 timeout->task = NULL;
1968 * If we have been removed from the hash list, then another task
1969 * has tried to wake us, and we can skip the call to schedule().
1971 if (likely(!plist_node_empty(&q->list))) {
1973 * If the timer has already expired, current will already be
1974 * flagged for rescheduling. Only call schedule if there
1975 * is no timeout, or if it has yet to expire.
1977 if (!timeout || timeout->task)
1978 freezable_schedule();
1980 __set_current_state(TASK_RUNNING);
1984 * futex_wait_setup() - Prepare to wait on a futex
1985 * @uaddr: the futex userspace address
1986 * @val: the expected value
1987 * @flags: futex flags (FLAGS_SHARED, etc.)
1988 * @q: the associated futex_q
1989 * @hb: storage for hash_bucket pointer to be returned to caller
1991 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1992 * compare it with the expected value. Handle atomic faults internally.
1993 * Return with the hb lock held and a q.key reference on success, and unlocked
1994 * with no q.key reference on failure.
1996 * Return:
1997 * 0 - uaddr contains val and hb has been locked;
1998 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2000 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2001 struct futex_q *q, struct futex_hash_bucket **hb)
2003 u32 uval;
2004 int ret;
2007 * Access the page AFTER the hash-bucket is locked.
2008 * Order is important:
2010 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2011 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2013 * The basic logical guarantee of a futex is that it blocks ONLY
2014 * if cond(var) is known to be true at the time of blocking, for
2015 * any cond. If we locked the hash-bucket after testing *uaddr, that
2016 * would open a race condition where we could block indefinitely with
2017 * cond(var) false, which would violate the guarantee.
2019 * On the other hand, we insert q and release the hash-bucket only
2020 * after testing *uaddr. This guarantees that futex_wait() will NOT
2021 * absorb a wakeup if *uaddr does not match the desired values
2022 * while the syscall executes.
2024 retry:
2025 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2026 if (unlikely(ret != 0))
2027 return ret;
2029 retry_private:
2030 *hb = queue_lock(q);
2032 ret = get_futex_value_locked(&uval, uaddr);
2034 if (ret) {
2035 queue_unlock(*hb);
2037 ret = get_user(uval, uaddr);
2038 if (ret)
2039 goto out;
2041 if (!(flags & FLAGS_SHARED))
2042 goto retry_private;
2044 put_futex_key(&q->key);
2045 goto retry;
2048 if (uval != val) {
2049 queue_unlock(*hb);
2050 ret = -EWOULDBLOCK;
2053 out:
2054 if (ret)
2055 put_futex_key(&q->key);
2056 return ret;
2059 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2060 ktime_t *abs_time, u32 bitset)
2062 struct hrtimer_sleeper timeout, *to = NULL;
2063 struct restart_block *restart;
2064 struct futex_hash_bucket *hb;
2065 struct futex_q q = futex_q_init;
2066 int ret;
2068 if (!bitset)
2069 return -EINVAL;
2070 q.bitset = bitset;
2072 if (abs_time) {
2073 to = &timeout;
2075 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2076 CLOCK_REALTIME : CLOCK_MONOTONIC,
2077 HRTIMER_MODE_ABS);
2078 hrtimer_init_sleeper(to, current);
2079 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2080 current->timer_slack_ns);
2083 retry:
2085 * Prepare to wait on uaddr. On success, holds hb lock and increments
2086 * q.key refs.
2088 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2089 if (ret)
2090 goto out;
2092 /* queue_me and wait for wakeup, timeout, or a signal. */
2093 futex_wait_queue_me(hb, &q, to);
2095 /* If we were woken (and unqueued), we succeeded, whatever. */
2096 ret = 0;
2097 /* unqueue_me() drops q.key ref */
2098 if (!unqueue_me(&q))
2099 goto out;
2100 ret = -ETIMEDOUT;
2101 if (to && !to->task)
2102 goto out;
2105 * We expect signal_pending(current), but we might be the
2106 * victim of a spurious wakeup as well.
2108 if (!signal_pending(current))
2109 goto retry;
2111 ret = -ERESTARTSYS;
2112 if (!abs_time)
2113 goto out;
2115 restart = &current_thread_info()->restart_block;
2116 restart->fn = futex_wait_restart;
2117 restart->futex.uaddr = uaddr;
2118 restart->futex.val = val;
2119 restart->futex.time = abs_time->tv64;
2120 restart->futex.bitset = bitset;
2121 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2123 ret = -ERESTART_RESTARTBLOCK;
2125 out:
2126 if (to) {
2127 hrtimer_cancel(&to->timer);
2128 destroy_hrtimer_on_stack(&to->timer);
2130 return ret;
2134 static long futex_wait_restart(struct restart_block *restart)
2136 u32 __user *uaddr = restart->futex.uaddr;
2137 ktime_t t, *tp = NULL;
2139 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2140 t.tv64 = restart->futex.time;
2141 tp = &t;
2143 restart->fn = do_no_restart_syscall;
2145 return (long)futex_wait(uaddr, restart->futex.flags,
2146 restart->futex.val, tp, restart->futex.bitset);
2151 * Userspace tried a 0 -> TID atomic transition of the futex value
2152 * and failed. The kernel side here does the whole locking operation:
2153 * if there are waiters then it will block, it does PI, etc. (Due to
2154 * races the kernel might see a 0 value of the futex too.)
2156 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2157 ktime_t *time, int trylock)
2159 struct hrtimer_sleeper timeout, *to = NULL;
2160 struct futex_hash_bucket *hb;
2161 struct futex_q q = futex_q_init;
2162 int res, ret;
2164 if (refill_pi_state_cache())
2165 return -ENOMEM;
2167 if (time) {
2168 to = &timeout;
2169 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2170 HRTIMER_MODE_ABS);
2171 hrtimer_init_sleeper(to, current);
2172 hrtimer_set_expires(&to->timer, *time);
2175 retry:
2176 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2177 if (unlikely(ret != 0))
2178 goto out;
2180 retry_private:
2181 hb = queue_lock(&q);
2183 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2184 if (unlikely(ret)) {
2185 switch (ret) {
2186 case 1:
2187 /* We got the lock. */
2188 ret = 0;
2189 goto out_unlock_put_key;
2190 case -EFAULT:
2191 goto uaddr_faulted;
2192 case -EAGAIN:
2194 * Task is exiting and we just wait for the
2195 * exit to complete.
2197 queue_unlock(hb);
2198 put_futex_key(&q.key);
2199 cond_resched();
2200 goto retry;
2201 default:
2202 goto out_unlock_put_key;
2207 * Only actually queue now that the atomic ops are done:
2209 queue_me(&q, hb);
2211 WARN_ON(!q.pi_state);
2213 * Block on the PI mutex:
2215 if (!trylock)
2216 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2217 else {
2218 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2219 /* Fixup the trylock return value: */
2220 ret = ret ? 0 : -EWOULDBLOCK;
2223 spin_lock(q.lock_ptr);
2225 * Fixup the pi_state owner and possibly acquire the lock if we
2226 * haven't already.
2228 res = fixup_owner(uaddr, &q, !ret);
2230 * If fixup_owner() returned an error, proprogate that. If it acquired
2231 * the lock, clear our -ETIMEDOUT or -EINTR.
2233 if (res)
2234 ret = (res < 0) ? res : 0;
2237 * If fixup_owner() faulted and was unable to handle the fault, unlock
2238 * it and return the fault to userspace.
2240 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2241 rt_mutex_unlock(&q.pi_state->pi_mutex);
2243 /* Unqueue and drop the lock */
2244 unqueue_me_pi(&q);
2246 goto out_put_key;
2248 out_unlock_put_key:
2249 queue_unlock(hb);
2251 out_put_key:
2252 put_futex_key(&q.key);
2253 out:
2254 if (to)
2255 destroy_hrtimer_on_stack(&to->timer);
2256 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2258 uaddr_faulted:
2259 queue_unlock(hb);
2261 ret = fault_in_user_writeable(uaddr);
2262 if (ret)
2263 goto out_put_key;
2265 if (!(flags & FLAGS_SHARED))
2266 goto retry_private;
2268 put_futex_key(&q.key);
2269 goto retry;
2273 * Userspace attempted a TID -> 0 atomic transition, and failed.
2274 * This is the in-kernel slowpath: we look up the PI state (if any),
2275 * and do the rt-mutex unlock.
2277 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2279 struct futex_hash_bucket *hb;
2280 struct futex_q *this, *next;
2281 union futex_key key = FUTEX_KEY_INIT;
2282 u32 uval, vpid = task_pid_vnr(current);
2283 int ret;
2285 retry:
2286 if (get_user(uval, uaddr))
2287 return -EFAULT;
2289 * We release only a lock we actually own:
2291 if ((uval & FUTEX_TID_MASK) != vpid)
2292 return -EPERM;
2294 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2295 if (unlikely(ret != 0))
2296 goto out;
2298 hb = hash_futex(&key);
2299 spin_lock(&hb->lock);
2302 * To avoid races, try to do the TID -> 0 atomic transition
2303 * again. If it succeeds then we can return without waking
2304 * anyone else up:
2306 if (!(uval & FUTEX_OWNER_DIED) &&
2307 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2308 goto pi_faulted;
2310 * Rare case: we managed to release the lock atomically,
2311 * no need to wake anyone else up:
2313 if (unlikely(uval == vpid))
2314 goto out_unlock;
2317 * Ok, other tasks may need to be woken up - check waiters
2318 * and do the wakeup if necessary:
2320 plist_for_each_entry_safe(this, next, &hb->chain, list) {
2321 if (!match_futex (&this->key, &key))
2322 continue;
2323 ret = wake_futex_pi(uaddr, uval, this);
2325 * The atomic access to the futex value
2326 * generated a pagefault, so retry the
2327 * user-access and the wakeup:
2329 if (ret == -EFAULT)
2330 goto pi_faulted;
2331 goto out_unlock;
2334 * No waiters - kernel unlocks the futex:
2336 if (!(uval & FUTEX_OWNER_DIED)) {
2337 ret = unlock_futex_pi(uaddr, uval);
2338 if (ret == -EFAULT)
2339 goto pi_faulted;
2342 out_unlock:
2343 spin_unlock(&hb->lock);
2344 put_futex_key(&key);
2346 out:
2347 return ret;
2349 pi_faulted:
2350 spin_unlock(&hb->lock);
2351 put_futex_key(&key);
2353 ret = fault_in_user_writeable(uaddr);
2354 if (!ret)
2355 goto retry;
2357 return ret;
2361 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2362 * @hb: the hash_bucket futex_q was original enqueued on
2363 * @q: the futex_q woken while waiting to be requeued
2364 * @key2: the futex_key of the requeue target futex
2365 * @timeout: the timeout associated with the wait (NULL if none)
2367 * Detect if the task was woken on the initial futex as opposed to the requeue
2368 * target futex. If so, determine if it was a timeout or a signal that caused
2369 * the wakeup and return the appropriate error code to the caller. Must be
2370 * called with the hb lock held.
2372 * Return:
2373 * 0 = no early wakeup detected;
2374 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2376 static inline
2377 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2378 struct futex_q *q, union futex_key *key2,
2379 struct hrtimer_sleeper *timeout)
2381 int ret = 0;
2384 * With the hb lock held, we avoid races while we process the wakeup.
2385 * We only need to hold hb (and not hb2) to ensure atomicity as the
2386 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2387 * It can't be requeued from uaddr2 to something else since we don't
2388 * support a PI aware source futex for requeue.
2390 if (!match_futex(&q->key, key2)) {
2391 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2393 * We were woken prior to requeue by a timeout or a signal.
2394 * Unqueue the futex_q and determine which it was.
2396 plist_del(&q->list, &hb->chain);
2397 hb_waiters_dec(hb);
2399 /* Handle spurious wakeups gracefully */
2400 ret = -EWOULDBLOCK;
2401 if (timeout && !timeout->task)
2402 ret = -ETIMEDOUT;
2403 else if (signal_pending(current))
2404 ret = -ERESTARTNOINTR;
2406 return ret;
2410 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2411 * @uaddr: the futex we initially wait on (non-pi)
2412 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2413 * the same type, no requeueing from private to shared, etc.
2414 * @val: the expected value of uaddr
2415 * @abs_time: absolute timeout
2416 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2417 * @uaddr2: the pi futex we will take prior to returning to user-space
2419 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2420 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2421 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2422 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2423 * without one, the pi logic would not know which task to boost/deboost, if
2424 * there was a need to.
2426 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2427 * via the following--
2428 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2429 * 2) wakeup on uaddr2 after a requeue
2430 * 3) signal
2431 * 4) timeout
2433 * If 3, cleanup and return -ERESTARTNOINTR.
2435 * If 2, we may then block on trying to take the rt_mutex and return via:
2436 * 5) successful lock
2437 * 6) signal
2438 * 7) timeout
2439 * 8) other lock acquisition failure
2441 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2443 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2445 * Return:
2446 * 0 - On success;
2447 * <0 - On error
2449 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2450 u32 val, ktime_t *abs_time, u32 bitset,
2451 u32 __user *uaddr2)
2453 struct hrtimer_sleeper timeout, *to = NULL;
2454 struct rt_mutex_waiter rt_waiter;
2455 struct rt_mutex *pi_mutex = NULL;
2456 struct futex_hash_bucket *hb;
2457 union futex_key key2 = FUTEX_KEY_INIT;
2458 struct futex_q q = futex_q_init;
2459 int res, ret;
2461 if (uaddr == uaddr2)
2462 return -EINVAL;
2464 if (!bitset)
2465 return -EINVAL;
2467 if (abs_time) {
2468 to = &timeout;
2469 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2470 CLOCK_REALTIME : CLOCK_MONOTONIC,
2471 HRTIMER_MODE_ABS);
2472 hrtimer_init_sleeper(to, current);
2473 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2474 current->timer_slack_ns);
2478 * The waiter is allocated on our stack, manipulated by the requeue
2479 * code while we sleep on uaddr.
2481 debug_rt_mutex_init_waiter(&rt_waiter);
2482 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2483 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2484 rt_waiter.task = NULL;
2486 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2487 if (unlikely(ret != 0))
2488 goto out;
2490 q.bitset = bitset;
2491 q.rt_waiter = &rt_waiter;
2492 q.requeue_pi_key = &key2;
2495 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2496 * count.
2498 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2499 if (ret)
2500 goto out_key2;
2502 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2503 futex_wait_queue_me(hb, &q, to);
2505 spin_lock(&hb->lock);
2506 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2507 spin_unlock(&hb->lock);
2508 if (ret)
2509 goto out_put_keys;
2512 * In order for us to be here, we know our q.key == key2, and since
2513 * we took the hb->lock above, we also know that futex_requeue() has
2514 * completed and we no longer have to concern ourselves with a wakeup
2515 * race with the atomic proxy lock acquisition by the requeue code. The
2516 * futex_requeue dropped our key1 reference and incremented our key2
2517 * reference count.
2520 /* Check if the requeue code acquired the second futex for us. */
2521 if (!q.rt_waiter) {
2523 * Got the lock. We might not be the anticipated owner if we
2524 * did a lock-steal - fix up the PI-state in that case.
2526 if (q.pi_state && (q.pi_state->owner != current)) {
2527 spin_lock(q.lock_ptr);
2528 ret = fixup_pi_state_owner(uaddr2, &q, current);
2529 spin_unlock(q.lock_ptr);
2531 } else {
2533 * We have been woken up by futex_unlock_pi(), a timeout, or a
2534 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2535 * the pi_state.
2537 WARN_ON(!q.pi_state);
2538 pi_mutex = &q.pi_state->pi_mutex;
2539 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2540 debug_rt_mutex_free_waiter(&rt_waiter);
2542 spin_lock(q.lock_ptr);
2544 * Fixup the pi_state owner and possibly acquire the lock if we
2545 * haven't already.
2547 res = fixup_owner(uaddr2, &q, !ret);
2549 * If fixup_owner() returned an error, proprogate that. If it
2550 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2552 if (res)
2553 ret = (res < 0) ? res : 0;
2555 /* Unqueue and drop the lock. */
2556 unqueue_me_pi(&q);
2560 * If fixup_pi_state_owner() faulted and was unable to handle the
2561 * fault, unlock the rt_mutex and return the fault to userspace.
2563 if (ret == -EFAULT) {
2564 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2565 rt_mutex_unlock(pi_mutex);
2566 } else if (ret == -EINTR) {
2568 * We've already been requeued, but cannot restart by calling
2569 * futex_lock_pi() directly. We could restart this syscall, but
2570 * it would detect that the user space "val" changed and return
2571 * -EWOULDBLOCK. Save the overhead of the restart and return
2572 * -EWOULDBLOCK directly.
2574 ret = -EWOULDBLOCK;
2577 out_put_keys:
2578 put_futex_key(&q.key);
2579 out_key2:
2580 put_futex_key(&key2);
2582 out:
2583 if (to) {
2584 hrtimer_cancel(&to->timer);
2585 destroy_hrtimer_on_stack(&to->timer);
2587 return ret;
2591 * Support for robust futexes: the kernel cleans up held futexes at
2592 * thread exit time.
2594 * Implementation: user-space maintains a per-thread list of locks it
2595 * is holding. Upon do_exit(), the kernel carefully walks this list,
2596 * and marks all locks that are owned by this thread with the
2597 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2598 * always manipulated with the lock held, so the list is private and
2599 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2600 * field, to allow the kernel to clean up if the thread dies after
2601 * acquiring the lock, but just before it could have added itself to
2602 * the list. There can only be one such pending lock.
2606 * sys_set_robust_list() - Set the robust-futex list head of a task
2607 * @head: pointer to the list-head
2608 * @len: length of the list-head, as userspace expects
2610 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2611 size_t, len)
2613 if (!futex_cmpxchg_enabled)
2614 return -ENOSYS;
2616 * The kernel knows only one size for now:
2618 if (unlikely(len != sizeof(*head)))
2619 return -EINVAL;
2621 current->robust_list = head;
2623 return 0;
2627 * sys_get_robust_list() - Get the robust-futex list head of a task
2628 * @pid: pid of the process [zero for current task]
2629 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2630 * @len_ptr: pointer to a length field, the kernel fills in the header size
2632 SYSCALL_DEFINE3(get_robust_list, int, pid,
2633 struct robust_list_head __user * __user *, head_ptr,
2634 size_t __user *, len_ptr)
2636 struct robust_list_head __user *head;
2637 unsigned long ret;
2638 struct task_struct *p;
2640 if (!futex_cmpxchg_enabled)
2641 return -ENOSYS;
2643 rcu_read_lock();
2645 ret = -ESRCH;
2646 if (!pid)
2647 p = current;
2648 else {
2649 p = find_task_by_vpid(pid);
2650 if (!p)
2651 goto err_unlock;
2654 ret = -EPERM;
2655 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2656 goto err_unlock;
2658 head = p->robust_list;
2659 rcu_read_unlock();
2661 if (put_user(sizeof(*head), len_ptr))
2662 return -EFAULT;
2663 return put_user(head, head_ptr);
2665 err_unlock:
2666 rcu_read_unlock();
2668 return ret;
2672 * Process a futex-list entry, check whether it's owned by the
2673 * dying task, and do notification if so:
2675 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2677 u32 uval, uninitialized_var(nval), mval;
2679 retry:
2680 if (get_user(uval, uaddr))
2681 return -1;
2683 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2685 * Ok, this dying thread is truly holding a futex
2686 * of interest. Set the OWNER_DIED bit atomically
2687 * via cmpxchg, and if the value had FUTEX_WAITERS
2688 * set, wake up a waiter (if any). (We have to do a
2689 * futex_wake() even if OWNER_DIED is already set -
2690 * to handle the rare but possible case of recursive
2691 * thread-death.) The rest of the cleanup is done in
2692 * userspace.
2694 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2696 * We are not holding a lock here, but we want to have
2697 * the pagefault_disable/enable() protection because
2698 * we want to handle the fault gracefully. If the
2699 * access fails we try to fault in the futex with R/W
2700 * verification via get_user_pages. get_user() above
2701 * does not guarantee R/W access. If that fails we
2702 * give up and leave the futex locked.
2704 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2705 if (fault_in_user_writeable(uaddr))
2706 return -1;
2707 goto retry;
2709 if (nval != uval)
2710 goto retry;
2713 * Wake robust non-PI futexes here. The wakeup of
2714 * PI futexes happens in exit_pi_state():
2716 if (!pi && (uval & FUTEX_WAITERS))
2717 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2719 return 0;
2723 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2725 static inline int fetch_robust_entry(struct robust_list __user **entry,
2726 struct robust_list __user * __user *head,
2727 unsigned int *pi)
2729 unsigned long uentry;
2731 if (get_user(uentry, (unsigned long __user *)head))
2732 return -EFAULT;
2734 *entry = (void __user *)(uentry & ~1UL);
2735 *pi = uentry & 1;
2737 return 0;
2741 * Walk curr->robust_list (very carefully, it's a userspace list!)
2742 * and mark any locks found there dead, and notify any waiters.
2744 * We silently return on any sign of list-walking problem.
2746 void exit_robust_list(struct task_struct *curr)
2748 struct robust_list_head __user *head = curr->robust_list;
2749 struct robust_list __user *entry, *next_entry, *pending;
2750 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2751 unsigned int uninitialized_var(next_pi);
2752 unsigned long futex_offset;
2753 int rc;
2755 if (!futex_cmpxchg_enabled)
2756 return;
2759 * Fetch the list head (which was registered earlier, via
2760 * sys_set_robust_list()):
2762 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2763 return;
2765 * Fetch the relative futex offset:
2767 if (get_user(futex_offset, &head->futex_offset))
2768 return;
2770 * Fetch any possibly pending lock-add first, and handle it
2771 * if it exists:
2773 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2774 return;
2776 next_entry = NULL; /* avoid warning with gcc */
2777 while (entry != &head->list) {
2779 * Fetch the next entry in the list before calling
2780 * handle_futex_death:
2782 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2784 * A pending lock might already be on the list, so
2785 * don't process it twice:
2787 if (entry != pending)
2788 if (handle_futex_death((void __user *)entry + futex_offset,
2789 curr, pi))
2790 return;
2791 if (rc)
2792 return;
2793 entry = next_entry;
2794 pi = next_pi;
2796 * Avoid excessively long or circular lists:
2798 if (!--limit)
2799 break;
2801 cond_resched();
2804 if (pending)
2805 handle_futex_death((void __user *)pending + futex_offset,
2806 curr, pip);
2809 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2810 u32 __user *uaddr2, u32 val2, u32 val3)
2812 int cmd = op & FUTEX_CMD_MASK;
2813 unsigned int flags = 0;
2815 if (!(op & FUTEX_PRIVATE_FLAG))
2816 flags |= FLAGS_SHARED;
2818 if (op & FUTEX_CLOCK_REALTIME) {
2819 flags |= FLAGS_CLOCKRT;
2820 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2821 return -ENOSYS;
2824 switch (cmd) {
2825 case FUTEX_LOCK_PI:
2826 case FUTEX_UNLOCK_PI:
2827 case FUTEX_TRYLOCK_PI:
2828 case FUTEX_WAIT_REQUEUE_PI:
2829 case FUTEX_CMP_REQUEUE_PI:
2830 if (!futex_cmpxchg_enabled)
2831 return -ENOSYS;
2834 switch (cmd) {
2835 case FUTEX_WAIT:
2836 val3 = FUTEX_BITSET_MATCH_ANY;
2837 case FUTEX_WAIT_BITSET:
2838 return futex_wait(uaddr, flags, val, timeout, val3);
2839 case FUTEX_WAKE:
2840 val3 = FUTEX_BITSET_MATCH_ANY;
2841 case FUTEX_WAKE_BITSET:
2842 return futex_wake(uaddr, flags, val, val3);
2843 case FUTEX_REQUEUE:
2844 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2845 case FUTEX_CMP_REQUEUE:
2846 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2847 case FUTEX_WAKE_OP:
2848 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2849 case FUTEX_LOCK_PI:
2850 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2851 case FUTEX_UNLOCK_PI:
2852 return futex_unlock_pi(uaddr, flags);
2853 case FUTEX_TRYLOCK_PI:
2854 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2855 case FUTEX_WAIT_REQUEUE_PI:
2856 val3 = FUTEX_BITSET_MATCH_ANY;
2857 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2858 uaddr2);
2859 case FUTEX_CMP_REQUEUE_PI:
2860 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2862 return -ENOSYS;
2866 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2867 struct timespec __user *, utime, u32 __user *, uaddr2,
2868 u32, val3)
2870 struct timespec ts;
2871 ktime_t t, *tp = NULL;
2872 u32 val2 = 0;
2873 int cmd = op & FUTEX_CMD_MASK;
2875 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2876 cmd == FUTEX_WAIT_BITSET ||
2877 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2878 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2879 return -EFAULT;
2880 if (!timespec_valid(&ts))
2881 return -EINVAL;
2883 t = timespec_to_ktime(ts);
2884 if (cmd == FUTEX_WAIT)
2885 t = ktime_add_safe(ktime_get(), t);
2886 tp = &t;
2889 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2890 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2892 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2893 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2894 val2 = (u32) (unsigned long) utime;
2896 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2899 static void __init futex_detect_cmpxchg(void)
2901 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2902 u32 curval;
2905 * This will fail and we want it. Some arch implementations do
2906 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2907 * functionality. We want to know that before we call in any
2908 * of the complex code paths. Also we want to prevent
2909 * registration of robust lists in that case. NULL is
2910 * guaranteed to fault and we get -EFAULT on functional
2911 * implementation, the non-functional ones will return
2912 * -ENOSYS.
2914 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2915 futex_cmpxchg_enabled = 1;
2916 #endif
2919 static int __init futex_init(void)
2921 unsigned int futex_shift;
2922 unsigned long i;
2924 #if CONFIG_BASE_SMALL
2925 futex_hashsize = 16;
2926 #else
2927 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2928 #endif
2930 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2931 futex_hashsize, 0,
2932 futex_hashsize < 256 ? HASH_SMALL : 0,
2933 &futex_shift, NULL,
2934 futex_hashsize, futex_hashsize);
2935 futex_hashsize = 1UL << futex_shift;
2937 futex_detect_cmpxchg();
2939 for (i = 0; i < futex_hashsize; i++) {
2940 atomic_set(&futex_queues[i].waiters, 0);
2941 plist_head_init(&futex_queues[i].chain);
2942 spin_lock_init(&futex_queues[i].lock);
2945 return 0;
2947 __initcall(futex_init);