dm writecache: use 2-factor allocator arguments
[linux-2.6/btrfs-unstable.git] / lib / btree.c
blob590facba2c5083b36b54b0809408ccedb97d43b5
1 /*
2 * lib/btree.c - Simple In-memory B+Tree
4 * As should be obvious for Linux kernel code, license is GPLv2
6 * Copyright (c) 2007-2008 Joern Engel <joern@purestorage.com>
7 * Bits and pieces stolen from Peter Zijlstra's code, which is
8 * Copyright 2007, Red Hat Inc. Peter Zijlstra
9 * GPLv2
11 * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
13 * A relatively simple B+Tree implementation. I have written it as a learning
14 * exercise to understand how B+Trees work. Turned out to be useful as well.
16 * B+Trees can be used similar to Linux radix trees (which don't have anything
17 * in common with textbook radix trees, beware). Prerequisite for them working
18 * well is that access to a random tree node is much faster than a large number
19 * of operations within each node.
21 * Disks have fulfilled the prerequisite for a long time. More recently DRAM
22 * has gained similar properties, as memory access times, when measured in cpu
23 * cycles, have increased. Cacheline sizes have increased as well, which also
24 * helps B+Trees.
26 * Compared to radix trees, B+Trees are more efficient when dealing with a
27 * sparsely populated address space. Between 25% and 50% of the memory is
28 * occupied with valid pointers. When densely populated, radix trees contain
29 * ~98% pointers - hard to beat. Very sparse radix trees contain only ~2%
30 * pointers.
32 * This particular implementation stores pointers identified by a long value.
33 * Storing NULL pointers is illegal, lookup will return NULL when no entry
34 * was found.
36 * A tricks was used that is not commonly found in textbooks. The lowest
37 * values are to the right, not to the left. All used slots within a node
38 * are on the left, all unused slots contain NUL values. Most operations
39 * simply loop once over all slots and terminate on the first NUL.
42 #include <linux/btree.h>
43 #include <linux/cache.h>
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/module.h>
48 #define MAX(a, b) ((a) > (b) ? (a) : (b))
49 #define NODESIZE MAX(L1_CACHE_BYTES, 128)
51 struct btree_geo {
52 int keylen;
53 int no_pairs;
54 int no_longs;
57 struct btree_geo btree_geo32 = {
58 .keylen = 1,
59 .no_pairs = NODESIZE / sizeof(long) / 2,
60 .no_longs = NODESIZE / sizeof(long) / 2,
62 EXPORT_SYMBOL_GPL(btree_geo32);
64 #define LONG_PER_U64 (64 / BITS_PER_LONG)
65 struct btree_geo btree_geo64 = {
66 .keylen = LONG_PER_U64,
67 .no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
68 .no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
70 EXPORT_SYMBOL_GPL(btree_geo64);
72 struct btree_geo btree_geo128 = {
73 .keylen = 2 * LONG_PER_U64,
74 .no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
75 .no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
77 EXPORT_SYMBOL_GPL(btree_geo128);
79 #define MAX_KEYLEN (2 * LONG_PER_U64)
81 static struct kmem_cache *btree_cachep;
83 void *btree_alloc(gfp_t gfp_mask, void *pool_data)
85 return kmem_cache_alloc(btree_cachep, gfp_mask);
87 EXPORT_SYMBOL_GPL(btree_alloc);
89 void btree_free(void *element, void *pool_data)
91 kmem_cache_free(btree_cachep, element);
93 EXPORT_SYMBOL_GPL(btree_free);
95 static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
97 unsigned long *node;
99 node = mempool_alloc(head->mempool, gfp);
100 if (likely(node))
101 memset(node, 0, NODESIZE);
102 return node;
105 static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
107 size_t i;
109 for (i = 0; i < n; i++) {
110 if (l1[i] < l2[i])
111 return -1;
112 if (l1[i] > l2[i])
113 return 1;
115 return 0;
118 static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
119 size_t n)
121 size_t i;
123 for (i = 0; i < n; i++)
124 dest[i] = src[i];
125 return dest;
128 static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
130 size_t i;
132 for (i = 0; i < n; i++)
133 s[i] = c;
134 return s;
137 static void dec_key(struct btree_geo *geo, unsigned long *key)
139 unsigned long val;
140 int i;
142 for (i = geo->keylen - 1; i >= 0; i--) {
143 val = key[i];
144 key[i] = val - 1;
145 if (val)
146 break;
150 static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
152 return &node[n * geo->keylen];
155 static void *bval(struct btree_geo *geo, unsigned long *node, int n)
157 return (void *)node[geo->no_longs + n];
160 static void setkey(struct btree_geo *geo, unsigned long *node, int n,
161 unsigned long *key)
163 longcpy(bkey(geo, node, n), key, geo->keylen);
166 static void setval(struct btree_geo *geo, unsigned long *node, int n,
167 void *val)
169 node[geo->no_longs + n] = (unsigned long) val;
172 static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
174 longset(bkey(geo, node, n), 0, geo->keylen);
175 node[geo->no_longs + n] = 0;
178 static inline void __btree_init(struct btree_head *head)
180 head->node = NULL;
181 head->height = 0;
184 void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
186 __btree_init(head);
187 head->mempool = mempool;
189 EXPORT_SYMBOL_GPL(btree_init_mempool);
191 int btree_init(struct btree_head *head)
193 __btree_init(head);
194 head->mempool = mempool_create(0, btree_alloc, btree_free, NULL);
195 if (!head->mempool)
196 return -ENOMEM;
197 return 0;
199 EXPORT_SYMBOL_GPL(btree_init);
201 void btree_destroy(struct btree_head *head)
203 mempool_free(head->node, head->mempool);
204 mempool_destroy(head->mempool);
205 head->mempool = NULL;
207 EXPORT_SYMBOL_GPL(btree_destroy);
209 void *btree_last(struct btree_head *head, struct btree_geo *geo,
210 unsigned long *key)
212 int height = head->height;
213 unsigned long *node = head->node;
215 if (height == 0)
216 return NULL;
218 for ( ; height > 1; height--)
219 node = bval(geo, node, 0);
221 longcpy(key, bkey(geo, node, 0), geo->keylen);
222 return bval(geo, node, 0);
224 EXPORT_SYMBOL_GPL(btree_last);
226 static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
227 unsigned long *key)
229 return longcmp(bkey(geo, node, pos), key, geo->keylen);
232 static int keyzero(struct btree_geo *geo, unsigned long *key)
234 int i;
236 for (i = 0; i < geo->keylen; i++)
237 if (key[i])
238 return 0;
240 return 1;
243 void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
244 unsigned long *key)
246 int i, height = head->height;
247 unsigned long *node = head->node;
249 if (height == 0)
250 return NULL;
252 for ( ; height > 1; height--) {
253 for (i = 0; i < geo->no_pairs; i++)
254 if (keycmp(geo, node, i, key) <= 0)
255 break;
256 if (i == geo->no_pairs)
257 return NULL;
258 node = bval(geo, node, i);
259 if (!node)
260 return NULL;
263 if (!node)
264 return NULL;
266 for (i = 0; i < geo->no_pairs; i++)
267 if (keycmp(geo, node, i, key) == 0)
268 return bval(geo, node, i);
269 return NULL;
271 EXPORT_SYMBOL_GPL(btree_lookup);
273 int btree_update(struct btree_head *head, struct btree_geo *geo,
274 unsigned long *key, void *val)
276 int i, height = head->height;
277 unsigned long *node = head->node;
279 if (height == 0)
280 return -ENOENT;
282 for ( ; height > 1; height--) {
283 for (i = 0; i < geo->no_pairs; i++)
284 if (keycmp(geo, node, i, key) <= 0)
285 break;
286 if (i == geo->no_pairs)
287 return -ENOENT;
288 node = bval(geo, node, i);
289 if (!node)
290 return -ENOENT;
293 if (!node)
294 return -ENOENT;
296 for (i = 0; i < geo->no_pairs; i++)
297 if (keycmp(geo, node, i, key) == 0) {
298 setval(geo, node, i, val);
299 return 0;
301 return -ENOENT;
303 EXPORT_SYMBOL_GPL(btree_update);
306 * Usually this function is quite similar to normal lookup. But the key of
307 * a parent node may be smaller than the smallest key of all its siblings.
308 * In such a case we cannot just return NULL, as we have only proven that no
309 * key smaller than __key, but larger than this parent key exists.
310 * So we set __key to the parent key and retry. We have to use the smallest
311 * such parent key, which is the last parent key we encountered.
313 void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
314 unsigned long *__key)
316 int i, height;
317 unsigned long *node, *oldnode;
318 unsigned long *retry_key = NULL, key[MAX_KEYLEN];
320 if (keyzero(geo, __key))
321 return NULL;
323 if (head->height == 0)
324 return NULL;
325 longcpy(key, __key, geo->keylen);
326 retry:
327 dec_key(geo, key);
329 node = head->node;
330 for (height = head->height ; height > 1; height--) {
331 for (i = 0; i < geo->no_pairs; i++)
332 if (keycmp(geo, node, i, key) <= 0)
333 break;
334 if (i == geo->no_pairs)
335 goto miss;
336 oldnode = node;
337 node = bval(geo, node, i);
338 if (!node)
339 goto miss;
340 retry_key = bkey(geo, oldnode, i);
343 if (!node)
344 goto miss;
346 for (i = 0; i < geo->no_pairs; i++) {
347 if (keycmp(geo, node, i, key) <= 0) {
348 if (bval(geo, node, i)) {
349 longcpy(__key, bkey(geo, node, i), geo->keylen);
350 return bval(geo, node, i);
351 } else
352 goto miss;
355 miss:
356 if (retry_key) {
357 longcpy(key, retry_key, geo->keylen);
358 retry_key = NULL;
359 goto retry;
361 return NULL;
363 EXPORT_SYMBOL_GPL(btree_get_prev);
365 static int getpos(struct btree_geo *geo, unsigned long *node,
366 unsigned long *key)
368 int i;
370 for (i = 0; i < geo->no_pairs; i++) {
371 if (keycmp(geo, node, i, key) <= 0)
372 break;
374 return i;
377 static int getfill(struct btree_geo *geo, unsigned long *node, int start)
379 int i;
381 for (i = start; i < geo->no_pairs; i++)
382 if (!bval(geo, node, i))
383 break;
384 return i;
388 * locate the correct leaf node in the btree
390 static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
391 unsigned long *key, int level)
393 unsigned long *node = head->node;
394 int i, height;
396 for (height = head->height; height > level; height--) {
397 for (i = 0; i < geo->no_pairs; i++)
398 if (keycmp(geo, node, i, key) <= 0)
399 break;
401 if ((i == geo->no_pairs) || !bval(geo, node, i)) {
402 /* right-most key is too large, update it */
403 /* FIXME: If the right-most key on higher levels is
404 * always zero, this wouldn't be necessary. */
405 i--;
406 setkey(geo, node, i, key);
408 BUG_ON(i < 0);
409 node = bval(geo, node, i);
411 BUG_ON(!node);
412 return node;
415 static int btree_grow(struct btree_head *head, struct btree_geo *geo,
416 gfp_t gfp)
418 unsigned long *node;
419 int fill;
421 node = btree_node_alloc(head, gfp);
422 if (!node)
423 return -ENOMEM;
424 if (head->node) {
425 fill = getfill(geo, head->node, 0);
426 setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
427 setval(geo, node, 0, head->node);
429 head->node = node;
430 head->height++;
431 return 0;
434 static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
436 unsigned long *node;
437 int fill;
439 if (head->height <= 1)
440 return;
442 node = head->node;
443 fill = getfill(geo, node, 0);
444 BUG_ON(fill > 1);
445 head->node = bval(geo, node, 0);
446 head->height--;
447 mempool_free(node, head->mempool);
450 static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
451 unsigned long *key, void *val, int level,
452 gfp_t gfp)
454 unsigned long *node;
455 int i, pos, fill, err;
457 BUG_ON(!val);
458 if (head->height < level) {
459 err = btree_grow(head, geo, gfp);
460 if (err)
461 return err;
464 retry:
465 node = find_level(head, geo, key, level);
466 pos = getpos(geo, node, key);
467 fill = getfill(geo, node, pos);
468 /* two identical keys are not allowed */
469 BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
471 if (fill == geo->no_pairs) {
472 /* need to split node */
473 unsigned long *new;
475 new = btree_node_alloc(head, gfp);
476 if (!new)
477 return -ENOMEM;
478 err = btree_insert_level(head, geo,
479 bkey(geo, node, fill / 2 - 1),
480 new, level + 1, gfp);
481 if (err) {
482 mempool_free(new, head->mempool);
483 return err;
485 for (i = 0; i < fill / 2; i++) {
486 setkey(geo, new, i, bkey(geo, node, i));
487 setval(geo, new, i, bval(geo, node, i));
488 setkey(geo, node, i, bkey(geo, node, i + fill / 2));
489 setval(geo, node, i, bval(geo, node, i + fill / 2));
490 clearpair(geo, node, i + fill / 2);
492 if (fill & 1) {
493 setkey(geo, node, i, bkey(geo, node, fill - 1));
494 setval(geo, node, i, bval(geo, node, fill - 1));
495 clearpair(geo, node, fill - 1);
497 goto retry;
499 BUG_ON(fill >= geo->no_pairs);
501 /* shift and insert */
502 for (i = fill; i > pos; i--) {
503 setkey(geo, node, i, bkey(geo, node, i - 1));
504 setval(geo, node, i, bval(geo, node, i - 1));
506 setkey(geo, node, pos, key);
507 setval(geo, node, pos, val);
509 return 0;
512 int btree_insert(struct btree_head *head, struct btree_geo *geo,
513 unsigned long *key, void *val, gfp_t gfp)
515 BUG_ON(!val);
516 return btree_insert_level(head, geo, key, val, 1, gfp);
518 EXPORT_SYMBOL_GPL(btree_insert);
520 static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
521 unsigned long *key, int level);
522 static void merge(struct btree_head *head, struct btree_geo *geo, int level,
523 unsigned long *left, int lfill,
524 unsigned long *right, int rfill,
525 unsigned long *parent, int lpos)
527 int i;
529 for (i = 0; i < rfill; i++) {
530 /* Move all keys to the left */
531 setkey(geo, left, lfill + i, bkey(geo, right, i));
532 setval(geo, left, lfill + i, bval(geo, right, i));
534 /* Exchange left and right child in parent */
535 setval(geo, parent, lpos, right);
536 setval(geo, parent, lpos + 1, left);
537 /* Remove left (formerly right) child from parent */
538 btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
539 mempool_free(right, head->mempool);
542 static void rebalance(struct btree_head *head, struct btree_geo *geo,
543 unsigned long *key, int level, unsigned long *child, int fill)
545 unsigned long *parent, *left = NULL, *right = NULL;
546 int i, no_left, no_right;
548 if (fill == 0) {
549 /* Because we don't steal entries from a neighbour, this case
550 * can happen. Parent node contains a single child, this
551 * node, so merging with a sibling never happens.
553 btree_remove_level(head, geo, key, level + 1);
554 mempool_free(child, head->mempool);
555 return;
558 parent = find_level(head, geo, key, level + 1);
559 i = getpos(geo, parent, key);
560 BUG_ON(bval(geo, parent, i) != child);
562 if (i > 0) {
563 left = bval(geo, parent, i - 1);
564 no_left = getfill(geo, left, 0);
565 if (fill + no_left <= geo->no_pairs) {
566 merge(head, geo, level,
567 left, no_left,
568 child, fill,
569 parent, i - 1);
570 return;
573 if (i + 1 < getfill(geo, parent, i)) {
574 right = bval(geo, parent, i + 1);
575 no_right = getfill(geo, right, 0);
576 if (fill + no_right <= geo->no_pairs) {
577 merge(head, geo, level,
578 child, fill,
579 right, no_right,
580 parent, i);
581 return;
585 * We could also try to steal one entry from the left or right
586 * neighbor. By not doing so we changed the invariant from
587 * "all nodes are at least half full" to "no two neighboring
588 * nodes can be merged". Which means that the average fill of
589 * all nodes is still half or better.
593 static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
594 unsigned long *key, int level)
596 unsigned long *node;
597 int i, pos, fill;
598 void *ret;
600 if (level > head->height) {
601 /* we recursed all the way up */
602 head->height = 0;
603 head->node = NULL;
604 return NULL;
607 node = find_level(head, geo, key, level);
608 pos = getpos(geo, node, key);
609 fill = getfill(geo, node, pos);
610 if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
611 return NULL;
612 ret = bval(geo, node, pos);
614 /* remove and shift */
615 for (i = pos; i < fill - 1; i++) {
616 setkey(geo, node, i, bkey(geo, node, i + 1));
617 setval(geo, node, i, bval(geo, node, i + 1));
619 clearpair(geo, node, fill - 1);
621 if (fill - 1 < geo->no_pairs / 2) {
622 if (level < head->height)
623 rebalance(head, geo, key, level, node, fill - 1);
624 else if (fill - 1 == 1)
625 btree_shrink(head, geo);
628 return ret;
631 void *btree_remove(struct btree_head *head, struct btree_geo *geo,
632 unsigned long *key)
634 if (head->height == 0)
635 return NULL;
637 return btree_remove_level(head, geo, key, 1);
639 EXPORT_SYMBOL_GPL(btree_remove);
641 int btree_merge(struct btree_head *target, struct btree_head *victim,
642 struct btree_geo *geo, gfp_t gfp)
644 unsigned long key[MAX_KEYLEN];
645 unsigned long dup[MAX_KEYLEN];
646 void *val;
647 int err;
649 BUG_ON(target == victim);
651 if (!(target->node)) {
652 /* target is empty, just copy fields over */
653 target->node = victim->node;
654 target->height = victim->height;
655 __btree_init(victim);
656 return 0;
659 /* TODO: This needs some optimizations. Currently we do three tree
660 * walks to remove a single object from the victim.
662 for (;;) {
663 if (!btree_last(victim, geo, key))
664 break;
665 val = btree_lookup(victim, geo, key);
666 err = btree_insert(target, geo, key, val, gfp);
667 if (err)
668 return err;
669 /* We must make a copy of the key, as the original will get
670 * mangled inside btree_remove. */
671 longcpy(dup, key, geo->keylen);
672 btree_remove(victim, geo, dup);
674 return 0;
676 EXPORT_SYMBOL_GPL(btree_merge);
678 static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
679 unsigned long *node, unsigned long opaque,
680 void (*func)(void *elem, unsigned long opaque,
681 unsigned long *key, size_t index,
682 void *func2),
683 void *func2, int reap, int height, size_t count)
685 int i;
686 unsigned long *child;
688 for (i = 0; i < geo->no_pairs; i++) {
689 child = bval(geo, node, i);
690 if (!child)
691 break;
692 if (height > 1)
693 count = __btree_for_each(head, geo, child, opaque,
694 func, func2, reap, height - 1, count);
695 else
696 func(child, opaque, bkey(geo, node, i), count++,
697 func2);
699 if (reap)
700 mempool_free(node, head->mempool);
701 return count;
704 static void empty(void *elem, unsigned long opaque, unsigned long *key,
705 size_t index, void *func2)
709 void visitorl(void *elem, unsigned long opaque, unsigned long *key,
710 size_t index, void *__func)
712 visitorl_t func = __func;
714 func(elem, opaque, *key, index);
716 EXPORT_SYMBOL_GPL(visitorl);
718 void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
719 size_t index, void *__func)
721 visitor32_t func = __func;
722 u32 *key = (void *)__key;
724 func(elem, opaque, *key, index);
726 EXPORT_SYMBOL_GPL(visitor32);
728 void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
729 size_t index, void *__func)
731 visitor64_t func = __func;
732 u64 *key = (void *)__key;
734 func(elem, opaque, *key, index);
736 EXPORT_SYMBOL_GPL(visitor64);
738 void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
739 size_t index, void *__func)
741 visitor128_t func = __func;
742 u64 *key = (void *)__key;
744 func(elem, opaque, key[0], key[1], index);
746 EXPORT_SYMBOL_GPL(visitor128);
748 size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
749 unsigned long opaque,
750 void (*func)(void *elem, unsigned long opaque,
751 unsigned long *key,
752 size_t index, void *func2),
753 void *func2)
755 size_t count = 0;
757 if (!func2)
758 func = empty;
759 if (head->node)
760 count = __btree_for_each(head, geo, head->node, opaque, func,
761 func2, 0, head->height, 0);
762 return count;
764 EXPORT_SYMBOL_GPL(btree_visitor);
766 size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
767 unsigned long opaque,
768 void (*func)(void *elem, unsigned long opaque,
769 unsigned long *key,
770 size_t index, void *func2),
771 void *func2)
773 size_t count = 0;
775 if (!func2)
776 func = empty;
777 if (head->node)
778 count = __btree_for_each(head, geo, head->node, opaque, func,
779 func2, 1, head->height, 0);
780 __btree_init(head);
781 return count;
783 EXPORT_SYMBOL_GPL(btree_grim_visitor);
785 static int __init btree_module_init(void)
787 btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
788 SLAB_HWCACHE_ALIGN, NULL);
789 return 0;
792 static void __exit btree_module_exit(void)
794 kmem_cache_destroy(btree_cachep);
797 /* If core code starts using btree, initialization should happen even earlier */
798 module_init(btree_module_init);
799 module_exit(btree_module_exit);
801 MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
802 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
803 MODULE_LICENSE("GPL");