mm, page_alloc: shorten the page allocator fast path
[linux-2.6/btrfs-unstable.git] / drivers / scsi / scsi_lib.c
blobb2e332af0f51f6bc0f06ec08888b003c81be9d4f
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
35 #include <trace/events/scsi.h>
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
41 struct kmem_cache *scsi_sdb_cache;
44 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
45 * not change behaviour from the previous unplug mechanism, experimentation
46 * may prove this needs changing.
48 #define SCSI_QUEUE_DELAY 3
50 static void
51 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
53 struct Scsi_Host *host = cmd->device->host;
54 struct scsi_device *device = cmd->device;
55 struct scsi_target *starget = scsi_target(device);
58 * Set the appropriate busy bit for the device/host.
60 * If the host/device isn't busy, assume that something actually
61 * completed, and that we should be able to queue a command now.
63 * Note that the prior mid-layer assumption that any host could
64 * always queue at least one command is now broken. The mid-layer
65 * will implement a user specifiable stall (see
66 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
67 * if a command is requeued with no other commands outstanding
68 * either for the device or for the host.
70 switch (reason) {
71 case SCSI_MLQUEUE_HOST_BUSY:
72 atomic_set(&host->host_blocked, host->max_host_blocked);
73 break;
74 case SCSI_MLQUEUE_DEVICE_BUSY:
75 case SCSI_MLQUEUE_EH_RETRY:
76 atomic_set(&device->device_blocked,
77 device->max_device_blocked);
78 break;
79 case SCSI_MLQUEUE_TARGET_BUSY:
80 atomic_set(&starget->target_blocked,
81 starget->max_target_blocked);
82 break;
86 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
88 struct scsi_device *sdev = cmd->device;
89 struct request_queue *q = cmd->request->q;
91 blk_mq_requeue_request(cmd->request);
92 blk_mq_kick_requeue_list(q);
93 put_device(&sdev->sdev_gendev);
96 /**
97 * __scsi_queue_insert - private queue insertion
98 * @cmd: The SCSI command being requeued
99 * @reason: The reason for the requeue
100 * @unbusy: Whether the queue should be unbusied
102 * This is a private queue insertion. The public interface
103 * scsi_queue_insert() always assumes the queue should be unbusied
104 * because it's always called before the completion. This function is
105 * for a requeue after completion, which should only occur in this
106 * file.
108 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
110 struct scsi_device *device = cmd->device;
111 struct request_queue *q = device->request_queue;
112 unsigned long flags;
114 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
115 "Inserting command %p into mlqueue\n", cmd));
117 scsi_set_blocked(cmd, reason);
120 * Decrement the counters, since these commands are no longer
121 * active on the host/device.
123 if (unbusy)
124 scsi_device_unbusy(device);
127 * Requeue this command. It will go before all other commands
128 * that are already in the queue. Schedule requeue work under
129 * lock such that the kblockd_schedule_work() call happens
130 * before blk_cleanup_queue() finishes.
132 cmd->result = 0;
133 if (q->mq_ops) {
134 scsi_mq_requeue_cmd(cmd);
135 return;
137 spin_lock_irqsave(q->queue_lock, flags);
138 blk_requeue_request(q, cmd->request);
139 kblockd_schedule_work(&device->requeue_work);
140 spin_unlock_irqrestore(q->queue_lock, flags);
144 * Function: scsi_queue_insert()
146 * Purpose: Insert a command in the midlevel queue.
148 * Arguments: cmd - command that we are adding to queue.
149 * reason - why we are inserting command to queue.
151 * Lock status: Assumed that lock is not held upon entry.
153 * Returns: Nothing.
155 * Notes: We do this for one of two cases. Either the host is busy
156 * and it cannot accept any more commands for the time being,
157 * or the device returned QUEUE_FULL and can accept no more
158 * commands.
159 * Notes: This could be called either from an interrupt context or a
160 * normal process context.
162 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
164 __scsi_queue_insert(cmd, reason, 1);
167 * scsi_execute - insert request and wait for the result
168 * @sdev: scsi device
169 * @cmd: scsi command
170 * @data_direction: data direction
171 * @buffer: data buffer
172 * @bufflen: len of buffer
173 * @sense: optional sense buffer
174 * @timeout: request timeout in seconds
175 * @retries: number of times to retry request
176 * @flags: or into request flags;
177 * @resid: optional residual length
179 * returns the req->errors value which is the scsi_cmnd result
180 * field.
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 int data_direction, void *buffer, unsigned bufflen,
184 unsigned char *sense, int timeout, int retries, u64 flags,
185 int *resid)
187 struct request *req;
188 int write = (data_direction == DMA_TO_DEVICE);
189 int ret = DRIVER_ERROR << 24;
191 req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
192 if (IS_ERR(req))
193 return ret;
194 blk_rq_set_block_pc(req);
196 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
197 buffer, bufflen, __GFP_RECLAIM))
198 goto out;
200 req->cmd_len = COMMAND_SIZE(cmd[0]);
201 memcpy(req->cmd, cmd, req->cmd_len);
202 req->sense = sense;
203 req->sense_len = 0;
204 req->retries = retries;
205 req->timeout = timeout;
206 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
209 * head injection *required* here otherwise quiesce won't work
211 blk_execute_rq(req->q, NULL, req, 1);
214 * Some devices (USB mass-storage in particular) may transfer
215 * garbage data together with a residue indicating that the data
216 * is invalid. Prevent the garbage from being misinterpreted
217 * and prevent security leaks by zeroing out the excess data.
219 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
220 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
222 if (resid)
223 *resid = req->resid_len;
224 ret = req->errors;
225 out:
226 blk_put_request(req);
228 return ret;
230 EXPORT_SYMBOL(scsi_execute);
232 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
233 int data_direction, void *buffer, unsigned bufflen,
234 struct scsi_sense_hdr *sshdr, int timeout, int retries,
235 int *resid, u64 flags)
237 char *sense = NULL;
238 int result;
240 if (sshdr) {
241 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
242 if (!sense)
243 return DRIVER_ERROR << 24;
245 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
246 sense, timeout, retries, flags, resid);
247 if (sshdr)
248 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
250 kfree(sense);
251 return result;
253 EXPORT_SYMBOL(scsi_execute_req_flags);
256 * Function: scsi_init_cmd_errh()
258 * Purpose: Initialize cmd fields related to error handling.
260 * Arguments: cmd - command that is ready to be queued.
262 * Notes: This function has the job of initializing a number of
263 * fields related to error handling. Typically this will
264 * be called once for each command, as required.
266 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
268 cmd->serial_number = 0;
269 scsi_set_resid(cmd, 0);
270 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
271 if (cmd->cmd_len == 0)
272 cmd->cmd_len = scsi_command_size(cmd->cmnd);
275 void scsi_device_unbusy(struct scsi_device *sdev)
277 struct Scsi_Host *shost = sdev->host;
278 struct scsi_target *starget = scsi_target(sdev);
279 unsigned long flags;
281 atomic_dec(&shost->host_busy);
282 if (starget->can_queue > 0)
283 atomic_dec(&starget->target_busy);
285 if (unlikely(scsi_host_in_recovery(shost) &&
286 (shost->host_failed || shost->host_eh_scheduled))) {
287 spin_lock_irqsave(shost->host_lock, flags);
288 scsi_eh_wakeup(shost);
289 spin_unlock_irqrestore(shost->host_lock, flags);
292 atomic_dec(&sdev->device_busy);
295 static void scsi_kick_queue(struct request_queue *q)
297 if (q->mq_ops)
298 blk_mq_start_hw_queues(q);
299 else
300 blk_run_queue(q);
304 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
305 * and call blk_run_queue for all the scsi_devices on the target -
306 * including current_sdev first.
308 * Called with *no* scsi locks held.
310 static void scsi_single_lun_run(struct scsi_device *current_sdev)
312 struct Scsi_Host *shost = current_sdev->host;
313 struct scsi_device *sdev, *tmp;
314 struct scsi_target *starget = scsi_target(current_sdev);
315 unsigned long flags;
317 spin_lock_irqsave(shost->host_lock, flags);
318 starget->starget_sdev_user = NULL;
319 spin_unlock_irqrestore(shost->host_lock, flags);
322 * Call blk_run_queue for all LUNs on the target, starting with
323 * current_sdev. We race with others (to set starget_sdev_user),
324 * but in most cases, we will be first. Ideally, each LU on the
325 * target would get some limited time or requests on the target.
327 scsi_kick_queue(current_sdev->request_queue);
329 spin_lock_irqsave(shost->host_lock, flags);
330 if (starget->starget_sdev_user)
331 goto out;
332 list_for_each_entry_safe(sdev, tmp, &starget->devices,
333 same_target_siblings) {
334 if (sdev == current_sdev)
335 continue;
336 if (scsi_device_get(sdev))
337 continue;
339 spin_unlock_irqrestore(shost->host_lock, flags);
340 scsi_kick_queue(sdev->request_queue);
341 spin_lock_irqsave(shost->host_lock, flags);
343 scsi_device_put(sdev);
345 out:
346 spin_unlock_irqrestore(shost->host_lock, flags);
349 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
351 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
352 return true;
353 if (atomic_read(&sdev->device_blocked) > 0)
354 return true;
355 return false;
358 static inline bool scsi_target_is_busy(struct scsi_target *starget)
360 if (starget->can_queue > 0) {
361 if (atomic_read(&starget->target_busy) >= starget->can_queue)
362 return true;
363 if (atomic_read(&starget->target_blocked) > 0)
364 return true;
366 return false;
369 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
371 if (shost->can_queue > 0 &&
372 atomic_read(&shost->host_busy) >= shost->can_queue)
373 return true;
374 if (atomic_read(&shost->host_blocked) > 0)
375 return true;
376 if (shost->host_self_blocked)
377 return true;
378 return false;
381 static void scsi_starved_list_run(struct Scsi_Host *shost)
383 LIST_HEAD(starved_list);
384 struct scsi_device *sdev;
385 unsigned long flags;
387 spin_lock_irqsave(shost->host_lock, flags);
388 list_splice_init(&shost->starved_list, &starved_list);
390 while (!list_empty(&starved_list)) {
391 struct request_queue *slq;
394 * As long as shost is accepting commands and we have
395 * starved queues, call blk_run_queue. scsi_request_fn
396 * drops the queue_lock and can add us back to the
397 * starved_list.
399 * host_lock protects the starved_list and starved_entry.
400 * scsi_request_fn must get the host_lock before checking
401 * or modifying starved_list or starved_entry.
403 if (scsi_host_is_busy(shost))
404 break;
406 sdev = list_entry(starved_list.next,
407 struct scsi_device, starved_entry);
408 list_del_init(&sdev->starved_entry);
409 if (scsi_target_is_busy(scsi_target(sdev))) {
410 list_move_tail(&sdev->starved_entry,
411 &shost->starved_list);
412 continue;
416 * Once we drop the host lock, a racing scsi_remove_device()
417 * call may remove the sdev from the starved list and destroy
418 * it and the queue. Mitigate by taking a reference to the
419 * queue and never touching the sdev again after we drop the
420 * host lock. Note: if __scsi_remove_device() invokes
421 * blk_cleanup_queue() before the queue is run from this
422 * function then blk_run_queue() will return immediately since
423 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
425 slq = sdev->request_queue;
426 if (!blk_get_queue(slq))
427 continue;
428 spin_unlock_irqrestore(shost->host_lock, flags);
430 scsi_kick_queue(slq);
431 blk_put_queue(slq);
433 spin_lock_irqsave(shost->host_lock, flags);
435 /* put any unprocessed entries back */
436 list_splice(&starved_list, &shost->starved_list);
437 spin_unlock_irqrestore(shost->host_lock, flags);
441 * Function: scsi_run_queue()
443 * Purpose: Select a proper request queue to serve next
445 * Arguments: q - last request's queue
447 * Returns: Nothing
449 * Notes: The previous command was completely finished, start
450 * a new one if possible.
452 static void scsi_run_queue(struct request_queue *q)
454 struct scsi_device *sdev = q->queuedata;
456 if (scsi_target(sdev)->single_lun)
457 scsi_single_lun_run(sdev);
458 if (!list_empty(&sdev->host->starved_list))
459 scsi_starved_list_run(sdev->host);
461 if (q->mq_ops)
462 blk_mq_start_stopped_hw_queues(q, false);
463 else
464 blk_run_queue(q);
467 void scsi_requeue_run_queue(struct work_struct *work)
469 struct scsi_device *sdev;
470 struct request_queue *q;
472 sdev = container_of(work, struct scsi_device, requeue_work);
473 q = sdev->request_queue;
474 scsi_run_queue(q);
478 * Function: scsi_requeue_command()
480 * Purpose: Handle post-processing of completed commands.
482 * Arguments: q - queue to operate on
483 * cmd - command that may need to be requeued.
485 * Returns: Nothing
487 * Notes: After command completion, there may be blocks left
488 * over which weren't finished by the previous command
489 * this can be for a number of reasons - the main one is
490 * I/O errors in the middle of the request, in which case
491 * we need to request the blocks that come after the bad
492 * sector.
493 * Notes: Upon return, cmd is a stale pointer.
495 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
497 struct scsi_device *sdev = cmd->device;
498 struct request *req = cmd->request;
499 unsigned long flags;
501 spin_lock_irqsave(q->queue_lock, flags);
502 blk_unprep_request(req);
503 req->special = NULL;
504 scsi_put_command(cmd);
505 blk_requeue_request(q, req);
506 spin_unlock_irqrestore(q->queue_lock, flags);
508 scsi_run_queue(q);
510 put_device(&sdev->sdev_gendev);
513 void scsi_run_host_queues(struct Scsi_Host *shost)
515 struct scsi_device *sdev;
517 shost_for_each_device(sdev, shost)
518 scsi_run_queue(sdev->request_queue);
521 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
523 if (cmd->request->cmd_type == REQ_TYPE_FS) {
524 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
526 if (drv->uninit_command)
527 drv->uninit_command(cmd);
531 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
533 struct scsi_data_buffer *sdb;
535 if (cmd->sdb.table.nents)
536 sg_free_table_chained(&cmd->sdb.table, true);
537 if (cmd->request->next_rq) {
538 sdb = cmd->request->next_rq->special;
539 if (sdb)
540 sg_free_table_chained(&sdb->table, true);
542 if (scsi_prot_sg_count(cmd))
543 sg_free_table_chained(&cmd->prot_sdb->table, true);
546 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
548 struct scsi_device *sdev = cmd->device;
549 struct Scsi_Host *shost = sdev->host;
550 unsigned long flags;
552 scsi_mq_free_sgtables(cmd);
553 scsi_uninit_cmd(cmd);
555 if (shost->use_cmd_list) {
556 BUG_ON(list_empty(&cmd->list));
557 spin_lock_irqsave(&sdev->list_lock, flags);
558 list_del_init(&cmd->list);
559 spin_unlock_irqrestore(&sdev->list_lock, flags);
564 * Function: scsi_release_buffers()
566 * Purpose: Free resources allocate for a scsi_command.
568 * Arguments: cmd - command that we are bailing.
570 * Lock status: Assumed that no lock is held upon entry.
572 * Returns: Nothing
574 * Notes: In the event that an upper level driver rejects a
575 * command, we must release resources allocated during
576 * the __init_io() function. Primarily this would involve
577 * the scatter-gather table.
579 static void scsi_release_buffers(struct scsi_cmnd *cmd)
581 if (cmd->sdb.table.nents)
582 sg_free_table_chained(&cmd->sdb.table, false);
584 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
586 if (scsi_prot_sg_count(cmd))
587 sg_free_table_chained(&cmd->prot_sdb->table, false);
590 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
592 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
594 sg_free_table_chained(&bidi_sdb->table, false);
595 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
596 cmd->request->next_rq->special = NULL;
599 static bool scsi_end_request(struct request *req, int error,
600 unsigned int bytes, unsigned int bidi_bytes)
602 struct scsi_cmnd *cmd = req->special;
603 struct scsi_device *sdev = cmd->device;
604 struct request_queue *q = sdev->request_queue;
606 if (blk_update_request(req, error, bytes))
607 return true;
609 /* Bidi request must be completed as a whole */
610 if (unlikely(bidi_bytes) &&
611 blk_update_request(req->next_rq, error, bidi_bytes))
612 return true;
614 if (blk_queue_add_random(q))
615 add_disk_randomness(req->rq_disk);
617 if (req->mq_ctx) {
619 * In the MQ case the command gets freed by __blk_mq_end_request,
620 * so we have to do all cleanup that depends on it earlier.
622 * We also can't kick the queues from irq context, so we
623 * will have to defer it to a workqueue.
625 scsi_mq_uninit_cmd(cmd);
627 __blk_mq_end_request(req, error);
629 if (scsi_target(sdev)->single_lun ||
630 !list_empty(&sdev->host->starved_list))
631 kblockd_schedule_work(&sdev->requeue_work);
632 else
633 blk_mq_start_stopped_hw_queues(q, true);
634 } else {
635 unsigned long flags;
637 if (bidi_bytes)
638 scsi_release_bidi_buffers(cmd);
640 spin_lock_irqsave(q->queue_lock, flags);
641 blk_finish_request(req, error);
642 spin_unlock_irqrestore(q->queue_lock, flags);
644 scsi_release_buffers(cmd);
646 scsi_put_command(cmd);
647 scsi_run_queue(q);
650 put_device(&sdev->sdev_gendev);
651 return false;
655 * __scsi_error_from_host_byte - translate SCSI error code into errno
656 * @cmd: SCSI command (unused)
657 * @result: scsi error code
659 * Translate SCSI error code into standard UNIX errno.
660 * Return values:
661 * -ENOLINK temporary transport failure
662 * -EREMOTEIO permanent target failure, do not retry
663 * -EBADE permanent nexus failure, retry on other path
664 * -ENOSPC No write space available
665 * -ENODATA Medium error
666 * -EIO unspecified I/O error
668 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
670 int error = 0;
672 switch(host_byte(result)) {
673 case DID_TRANSPORT_FAILFAST:
674 error = -ENOLINK;
675 break;
676 case DID_TARGET_FAILURE:
677 set_host_byte(cmd, DID_OK);
678 error = -EREMOTEIO;
679 break;
680 case DID_NEXUS_FAILURE:
681 set_host_byte(cmd, DID_OK);
682 error = -EBADE;
683 break;
684 case DID_ALLOC_FAILURE:
685 set_host_byte(cmd, DID_OK);
686 error = -ENOSPC;
687 break;
688 case DID_MEDIUM_ERROR:
689 set_host_byte(cmd, DID_OK);
690 error = -ENODATA;
691 break;
692 default:
693 error = -EIO;
694 break;
697 return error;
701 * Function: scsi_io_completion()
703 * Purpose: Completion processing for block device I/O requests.
705 * Arguments: cmd - command that is finished.
707 * Lock status: Assumed that no lock is held upon entry.
709 * Returns: Nothing
711 * Notes: We will finish off the specified number of sectors. If we
712 * are done, the command block will be released and the queue
713 * function will be goosed. If we are not done then we have to
714 * figure out what to do next:
716 * a) We can call scsi_requeue_command(). The request
717 * will be unprepared and put back on the queue. Then
718 * a new command will be created for it. This should
719 * be used if we made forward progress, or if we want
720 * to switch from READ(10) to READ(6) for example.
722 * b) We can call __scsi_queue_insert(). The request will
723 * be put back on the queue and retried using the same
724 * command as before, possibly after a delay.
726 * c) We can call scsi_end_request() with -EIO to fail
727 * the remainder of the request.
729 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
731 int result = cmd->result;
732 struct request_queue *q = cmd->device->request_queue;
733 struct request *req = cmd->request;
734 int error = 0;
735 struct scsi_sense_hdr sshdr;
736 bool sense_valid = false;
737 int sense_deferred = 0, level = 0;
738 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
739 ACTION_DELAYED_RETRY} action;
740 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
742 if (result) {
743 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
744 if (sense_valid)
745 sense_deferred = scsi_sense_is_deferred(&sshdr);
748 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
749 if (result) {
750 if (sense_valid && req->sense) {
752 * SG_IO wants current and deferred errors
754 int len = 8 + cmd->sense_buffer[7];
756 if (len > SCSI_SENSE_BUFFERSIZE)
757 len = SCSI_SENSE_BUFFERSIZE;
758 memcpy(req->sense, cmd->sense_buffer, len);
759 req->sense_len = len;
761 if (!sense_deferred)
762 error = __scsi_error_from_host_byte(cmd, result);
765 * __scsi_error_from_host_byte may have reset the host_byte
767 req->errors = cmd->result;
769 req->resid_len = scsi_get_resid(cmd);
771 if (scsi_bidi_cmnd(cmd)) {
773 * Bidi commands Must be complete as a whole,
774 * both sides at once.
776 req->next_rq->resid_len = scsi_in(cmd)->resid;
777 if (scsi_end_request(req, 0, blk_rq_bytes(req),
778 blk_rq_bytes(req->next_rq)))
779 BUG();
780 return;
782 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
784 * Certain non BLOCK_PC requests are commands that don't
785 * actually transfer anything (FLUSH), so cannot use
786 * good_bytes != blk_rq_bytes(req) as the signal for an error.
787 * This sets the error explicitly for the problem case.
789 error = __scsi_error_from_host_byte(cmd, result);
792 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
793 BUG_ON(blk_bidi_rq(req));
796 * Next deal with any sectors which we were able to correctly
797 * handle.
799 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
800 "%u sectors total, %d bytes done.\n",
801 blk_rq_sectors(req), good_bytes));
804 * Recovered errors need reporting, but they're always treated
805 * as success, so fiddle the result code here. For BLOCK_PC
806 * we already took a copy of the original into rq->errors which
807 * is what gets returned to the user
809 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
810 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
811 * print since caller wants ATA registers. Only occurs on
812 * SCSI ATA PASS_THROUGH commands when CK_COND=1
814 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
816 else if (!(req->cmd_flags & REQ_QUIET))
817 scsi_print_sense(cmd);
818 result = 0;
819 /* BLOCK_PC may have set error */
820 error = 0;
824 * If we finished all bytes in the request we are done now.
826 if (!scsi_end_request(req, error, good_bytes, 0))
827 return;
830 * Kill remainder if no retrys.
832 if (error && scsi_noretry_cmd(cmd)) {
833 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
834 BUG();
835 return;
839 * If there had been no error, but we have leftover bytes in the
840 * requeues just queue the command up again.
842 if (result == 0)
843 goto requeue;
845 error = __scsi_error_from_host_byte(cmd, result);
847 if (host_byte(result) == DID_RESET) {
848 /* Third party bus reset or reset for error recovery
849 * reasons. Just retry the command and see what
850 * happens.
852 action = ACTION_RETRY;
853 } else if (sense_valid && !sense_deferred) {
854 switch (sshdr.sense_key) {
855 case UNIT_ATTENTION:
856 if (cmd->device->removable) {
857 /* Detected disc change. Set a bit
858 * and quietly refuse further access.
860 cmd->device->changed = 1;
861 action = ACTION_FAIL;
862 } else {
863 /* Must have been a power glitch, or a
864 * bus reset. Could not have been a
865 * media change, so we just retry the
866 * command and see what happens.
868 action = ACTION_RETRY;
870 break;
871 case ILLEGAL_REQUEST:
872 /* If we had an ILLEGAL REQUEST returned, then
873 * we may have performed an unsupported
874 * command. The only thing this should be
875 * would be a ten byte read where only a six
876 * byte read was supported. Also, on a system
877 * where READ CAPACITY failed, we may have
878 * read past the end of the disk.
880 if ((cmd->device->use_10_for_rw &&
881 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
882 (cmd->cmnd[0] == READ_10 ||
883 cmd->cmnd[0] == WRITE_10)) {
884 /* This will issue a new 6-byte command. */
885 cmd->device->use_10_for_rw = 0;
886 action = ACTION_REPREP;
887 } else if (sshdr.asc == 0x10) /* DIX */ {
888 action = ACTION_FAIL;
889 error = -EILSEQ;
890 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
891 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
892 action = ACTION_FAIL;
893 error = -EREMOTEIO;
894 } else
895 action = ACTION_FAIL;
896 break;
897 case ABORTED_COMMAND:
898 action = ACTION_FAIL;
899 if (sshdr.asc == 0x10) /* DIF */
900 error = -EILSEQ;
901 break;
902 case NOT_READY:
903 /* If the device is in the process of becoming
904 * ready, or has a temporary blockage, retry.
906 if (sshdr.asc == 0x04) {
907 switch (sshdr.ascq) {
908 case 0x01: /* becoming ready */
909 case 0x04: /* format in progress */
910 case 0x05: /* rebuild in progress */
911 case 0x06: /* recalculation in progress */
912 case 0x07: /* operation in progress */
913 case 0x08: /* Long write in progress */
914 case 0x09: /* self test in progress */
915 case 0x14: /* space allocation in progress */
916 action = ACTION_DELAYED_RETRY;
917 break;
918 default:
919 action = ACTION_FAIL;
920 break;
922 } else
923 action = ACTION_FAIL;
924 break;
925 case VOLUME_OVERFLOW:
926 /* See SSC3rXX or current. */
927 action = ACTION_FAIL;
928 break;
929 default:
930 action = ACTION_FAIL;
931 break;
933 } else
934 action = ACTION_FAIL;
936 if (action != ACTION_FAIL &&
937 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
938 action = ACTION_FAIL;
940 switch (action) {
941 case ACTION_FAIL:
942 /* Give up and fail the remainder of the request */
943 if (!(req->cmd_flags & REQ_QUIET)) {
944 static DEFINE_RATELIMIT_STATE(_rs,
945 DEFAULT_RATELIMIT_INTERVAL,
946 DEFAULT_RATELIMIT_BURST);
948 if (unlikely(scsi_logging_level))
949 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
950 SCSI_LOG_MLCOMPLETE_BITS);
953 * if logging is enabled the failure will be printed
954 * in scsi_log_completion(), so avoid duplicate messages
956 if (!level && __ratelimit(&_rs)) {
957 scsi_print_result(cmd, NULL, FAILED);
958 if (driver_byte(result) & DRIVER_SENSE)
959 scsi_print_sense(cmd);
960 scsi_print_command(cmd);
963 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
964 return;
965 /*FALLTHRU*/
966 case ACTION_REPREP:
967 requeue:
968 /* Unprep the request and put it back at the head of the queue.
969 * A new command will be prepared and issued.
971 if (q->mq_ops) {
972 cmd->request->cmd_flags &= ~REQ_DONTPREP;
973 scsi_mq_uninit_cmd(cmd);
974 scsi_mq_requeue_cmd(cmd);
975 } else {
976 scsi_release_buffers(cmd);
977 scsi_requeue_command(q, cmd);
979 break;
980 case ACTION_RETRY:
981 /* Retry the same command immediately */
982 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
983 break;
984 case ACTION_DELAYED_RETRY:
985 /* Retry the same command after a delay */
986 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
987 break;
991 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
993 int count;
996 * If sg table allocation fails, requeue request later.
998 if (unlikely(sg_alloc_table_chained(&sdb->table, req->nr_phys_segments,
999 sdb->table.sgl)))
1000 return BLKPREP_DEFER;
1003 * Next, walk the list, and fill in the addresses and sizes of
1004 * each segment.
1006 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1007 BUG_ON(count > sdb->table.nents);
1008 sdb->table.nents = count;
1009 sdb->length = blk_rq_bytes(req);
1010 return BLKPREP_OK;
1014 * Function: scsi_init_io()
1016 * Purpose: SCSI I/O initialize function.
1018 * Arguments: cmd - Command descriptor we wish to initialize
1020 * Returns: 0 on success
1021 * BLKPREP_DEFER if the failure is retryable
1022 * BLKPREP_KILL if the failure is fatal
1024 int scsi_init_io(struct scsi_cmnd *cmd)
1026 struct scsi_device *sdev = cmd->device;
1027 struct request *rq = cmd->request;
1028 bool is_mq = (rq->mq_ctx != NULL);
1029 int error;
1031 BUG_ON(!rq->nr_phys_segments);
1033 error = scsi_init_sgtable(rq, &cmd->sdb);
1034 if (error)
1035 goto err_exit;
1037 if (blk_bidi_rq(rq)) {
1038 if (!rq->q->mq_ops) {
1039 struct scsi_data_buffer *bidi_sdb =
1040 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1041 if (!bidi_sdb) {
1042 error = BLKPREP_DEFER;
1043 goto err_exit;
1046 rq->next_rq->special = bidi_sdb;
1049 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1050 if (error)
1051 goto err_exit;
1054 if (blk_integrity_rq(rq)) {
1055 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1056 int ivecs, count;
1058 if (prot_sdb == NULL) {
1060 * This can happen if someone (e.g. multipath)
1061 * queues a command to a device on an adapter
1062 * that does not support DIX.
1064 WARN_ON_ONCE(1);
1065 error = BLKPREP_KILL;
1066 goto err_exit;
1069 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1071 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1072 prot_sdb->table.sgl)) {
1073 error = BLKPREP_DEFER;
1074 goto err_exit;
1077 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1078 prot_sdb->table.sgl);
1079 BUG_ON(unlikely(count > ivecs));
1080 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1082 cmd->prot_sdb = prot_sdb;
1083 cmd->prot_sdb->table.nents = count;
1086 return BLKPREP_OK;
1087 err_exit:
1088 if (is_mq) {
1089 scsi_mq_free_sgtables(cmd);
1090 } else {
1091 scsi_release_buffers(cmd);
1092 cmd->request->special = NULL;
1093 scsi_put_command(cmd);
1094 put_device(&sdev->sdev_gendev);
1096 return error;
1098 EXPORT_SYMBOL(scsi_init_io);
1100 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1101 struct request *req)
1103 struct scsi_cmnd *cmd;
1105 if (!req->special) {
1106 /* Bail if we can't get a reference to the device */
1107 if (!get_device(&sdev->sdev_gendev))
1108 return NULL;
1110 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1111 if (unlikely(!cmd)) {
1112 put_device(&sdev->sdev_gendev);
1113 return NULL;
1115 req->special = cmd;
1116 } else {
1117 cmd = req->special;
1120 /* pull a tag out of the request if we have one */
1121 cmd->tag = req->tag;
1122 cmd->request = req;
1124 cmd->cmnd = req->cmd;
1125 cmd->prot_op = SCSI_PROT_NORMAL;
1127 return cmd;
1130 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1132 struct scsi_cmnd *cmd = req->special;
1135 * BLOCK_PC requests may transfer data, in which case they must
1136 * a bio attached to them. Or they might contain a SCSI command
1137 * that does not transfer data, in which case they may optionally
1138 * submit a request without an attached bio.
1140 if (req->bio) {
1141 int ret = scsi_init_io(cmd);
1142 if (unlikely(ret))
1143 return ret;
1144 } else {
1145 BUG_ON(blk_rq_bytes(req));
1147 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1150 cmd->cmd_len = req->cmd_len;
1151 cmd->transfersize = blk_rq_bytes(req);
1152 cmd->allowed = req->retries;
1153 return BLKPREP_OK;
1157 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1158 * that still need to be translated to SCSI CDBs from the ULD.
1160 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1162 struct scsi_cmnd *cmd = req->special;
1164 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1165 int ret = sdev->handler->prep_fn(sdev, req);
1166 if (ret != BLKPREP_OK)
1167 return ret;
1170 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1171 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1174 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1176 struct scsi_cmnd *cmd = req->special;
1178 if (!blk_rq_bytes(req))
1179 cmd->sc_data_direction = DMA_NONE;
1180 else if (rq_data_dir(req) == WRITE)
1181 cmd->sc_data_direction = DMA_TO_DEVICE;
1182 else
1183 cmd->sc_data_direction = DMA_FROM_DEVICE;
1185 switch (req->cmd_type) {
1186 case REQ_TYPE_FS:
1187 return scsi_setup_fs_cmnd(sdev, req);
1188 case REQ_TYPE_BLOCK_PC:
1189 return scsi_setup_blk_pc_cmnd(sdev, req);
1190 default:
1191 return BLKPREP_KILL;
1195 static int
1196 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1198 int ret = BLKPREP_OK;
1201 * If the device is not in running state we will reject some
1202 * or all commands.
1204 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1205 switch (sdev->sdev_state) {
1206 case SDEV_OFFLINE:
1207 case SDEV_TRANSPORT_OFFLINE:
1209 * If the device is offline we refuse to process any
1210 * commands. The device must be brought online
1211 * before trying any recovery commands.
1213 sdev_printk(KERN_ERR, sdev,
1214 "rejecting I/O to offline device\n");
1215 ret = BLKPREP_KILL;
1216 break;
1217 case SDEV_DEL:
1219 * If the device is fully deleted, we refuse to
1220 * process any commands as well.
1222 sdev_printk(KERN_ERR, sdev,
1223 "rejecting I/O to dead device\n");
1224 ret = BLKPREP_KILL;
1225 break;
1226 case SDEV_BLOCK:
1227 case SDEV_CREATED_BLOCK:
1228 ret = BLKPREP_DEFER;
1229 break;
1230 case SDEV_QUIESCE:
1232 * If the devices is blocked we defer normal commands.
1234 if (!(req->cmd_flags & REQ_PREEMPT))
1235 ret = BLKPREP_DEFER;
1236 break;
1237 default:
1239 * For any other not fully online state we only allow
1240 * special commands. In particular any user initiated
1241 * command is not allowed.
1243 if (!(req->cmd_flags & REQ_PREEMPT))
1244 ret = BLKPREP_KILL;
1245 break;
1248 return ret;
1251 static int
1252 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1254 struct scsi_device *sdev = q->queuedata;
1256 switch (ret) {
1257 case BLKPREP_KILL:
1258 case BLKPREP_INVALID:
1259 req->errors = DID_NO_CONNECT << 16;
1260 /* release the command and kill it */
1261 if (req->special) {
1262 struct scsi_cmnd *cmd = req->special;
1263 scsi_release_buffers(cmd);
1264 scsi_put_command(cmd);
1265 put_device(&sdev->sdev_gendev);
1266 req->special = NULL;
1268 break;
1269 case BLKPREP_DEFER:
1271 * If we defer, the blk_peek_request() returns NULL, but the
1272 * queue must be restarted, so we schedule a callback to happen
1273 * shortly.
1275 if (atomic_read(&sdev->device_busy) == 0)
1276 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1277 break;
1278 default:
1279 req->cmd_flags |= REQ_DONTPREP;
1282 return ret;
1285 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1287 struct scsi_device *sdev = q->queuedata;
1288 struct scsi_cmnd *cmd;
1289 int ret;
1291 ret = scsi_prep_state_check(sdev, req);
1292 if (ret != BLKPREP_OK)
1293 goto out;
1295 cmd = scsi_get_cmd_from_req(sdev, req);
1296 if (unlikely(!cmd)) {
1297 ret = BLKPREP_DEFER;
1298 goto out;
1301 ret = scsi_setup_cmnd(sdev, req);
1302 out:
1303 return scsi_prep_return(q, req, ret);
1306 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1308 scsi_uninit_cmd(req->special);
1312 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1313 * return 0.
1315 * Called with the queue_lock held.
1317 static inline int scsi_dev_queue_ready(struct request_queue *q,
1318 struct scsi_device *sdev)
1320 unsigned int busy;
1322 busy = atomic_inc_return(&sdev->device_busy) - 1;
1323 if (atomic_read(&sdev->device_blocked)) {
1324 if (busy)
1325 goto out_dec;
1328 * unblock after device_blocked iterates to zero
1330 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1332 * For the MQ case we take care of this in the caller.
1334 if (!q->mq_ops)
1335 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1336 goto out_dec;
1338 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1339 "unblocking device at zero depth\n"));
1342 if (busy >= sdev->queue_depth)
1343 goto out_dec;
1345 return 1;
1346 out_dec:
1347 atomic_dec(&sdev->device_busy);
1348 return 0;
1352 * scsi_target_queue_ready: checks if there we can send commands to target
1353 * @sdev: scsi device on starget to check.
1355 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1356 struct scsi_device *sdev)
1358 struct scsi_target *starget = scsi_target(sdev);
1359 unsigned int busy;
1361 if (starget->single_lun) {
1362 spin_lock_irq(shost->host_lock);
1363 if (starget->starget_sdev_user &&
1364 starget->starget_sdev_user != sdev) {
1365 spin_unlock_irq(shost->host_lock);
1366 return 0;
1368 starget->starget_sdev_user = sdev;
1369 spin_unlock_irq(shost->host_lock);
1372 if (starget->can_queue <= 0)
1373 return 1;
1375 busy = atomic_inc_return(&starget->target_busy) - 1;
1376 if (atomic_read(&starget->target_blocked) > 0) {
1377 if (busy)
1378 goto starved;
1381 * unblock after target_blocked iterates to zero
1383 if (atomic_dec_return(&starget->target_blocked) > 0)
1384 goto out_dec;
1386 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1387 "unblocking target at zero depth\n"));
1390 if (busy >= starget->can_queue)
1391 goto starved;
1393 return 1;
1395 starved:
1396 spin_lock_irq(shost->host_lock);
1397 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1398 spin_unlock_irq(shost->host_lock);
1399 out_dec:
1400 if (starget->can_queue > 0)
1401 atomic_dec(&starget->target_busy);
1402 return 0;
1406 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1407 * return 0. We must end up running the queue again whenever 0 is
1408 * returned, else IO can hang.
1410 static inline int scsi_host_queue_ready(struct request_queue *q,
1411 struct Scsi_Host *shost,
1412 struct scsi_device *sdev)
1414 unsigned int busy;
1416 if (scsi_host_in_recovery(shost))
1417 return 0;
1419 busy = atomic_inc_return(&shost->host_busy) - 1;
1420 if (atomic_read(&shost->host_blocked) > 0) {
1421 if (busy)
1422 goto starved;
1425 * unblock after host_blocked iterates to zero
1427 if (atomic_dec_return(&shost->host_blocked) > 0)
1428 goto out_dec;
1430 SCSI_LOG_MLQUEUE(3,
1431 shost_printk(KERN_INFO, shost,
1432 "unblocking host at zero depth\n"));
1435 if (shost->can_queue > 0 && busy >= shost->can_queue)
1436 goto starved;
1437 if (shost->host_self_blocked)
1438 goto starved;
1440 /* We're OK to process the command, so we can't be starved */
1441 if (!list_empty(&sdev->starved_entry)) {
1442 spin_lock_irq(shost->host_lock);
1443 if (!list_empty(&sdev->starved_entry))
1444 list_del_init(&sdev->starved_entry);
1445 spin_unlock_irq(shost->host_lock);
1448 return 1;
1450 starved:
1451 spin_lock_irq(shost->host_lock);
1452 if (list_empty(&sdev->starved_entry))
1453 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1454 spin_unlock_irq(shost->host_lock);
1455 out_dec:
1456 atomic_dec(&shost->host_busy);
1457 return 0;
1461 * Busy state exporting function for request stacking drivers.
1463 * For efficiency, no lock is taken to check the busy state of
1464 * shost/starget/sdev, since the returned value is not guaranteed and
1465 * may be changed after request stacking drivers call the function,
1466 * regardless of taking lock or not.
1468 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1469 * needs to return 'not busy'. Otherwise, request stacking drivers
1470 * may hold requests forever.
1472 static int scsi_lld_busy(struct request_queue *q)
1474 struct scsi_device *sdev = q->queuedata;
1475 struct Scsi_Host *shost;
1477 if (blk_queue_dying(q))
1478 return 0;
1480 shost = sdev->host;
1483 * Ignore host/starget busy state.
1484 * Since block layer does not have a concept of fairness across
1485 * multiple queues, congestion of host/starget needs to be handled
1486 * in SCSI layer.
1488 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1489 return 1;
1491 return 0;
1495 * Kill a request for a dead device
1497 static void scsi_kill_request(struct request *req, struct request_queue *q)
1499 struct scsi_cmnd *cmd = req->special;
1500 struct scsi_device *sdev;
1501 struct scsi_target *starget;
1502 struct Scsi_Host *shost;
1504 blk_start_request(req);
1506 scmd_printk(KERN_INFO, cmd, "killing request\n");
1508 sdev = cmd->device;
1509 starget = scsi_target(sdev);
1510 shost = sdev->host;
1511 scsi_init_cmd_errh(cmd);
1512 cmd->result = DID_NO_CONNECT << 16;
1513 atomic_inc(&cmd->device->iorequest_cnt);
1516 * SCSI request completion path will do scsi_device_unbusy(),
1517 * bump busy counts. To bump the counters, we need to dance
1518 * with the locks as normal issue path does.
1520 atomic_inc(&sdev->device_busy);
1521 atomic_inc(&shost->host_busy);
1522 if (starget->can_queue > 0)
1523 atomic_inc(&starget->target_busy);
1525 blk_complete_request(req);
1528 static void scsi_softirq_done(struct request *rq)
1530 struct scsi_cmnd *cmd = rq->special;
1531 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1532 int disposition;
1534 INIT_LIST_HEAD(&cmd->eh_entry);
1536 atomic_inc(&cmd->device->iodone_cnt);
1537 if (cmd->result)
1538 atomic_inc(&cmd->device->ioerr_cnt);
1540 disposition = scsi_decide_disposition(cmd);
1541 if (disposition != SUCCESS &&
1542 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1543 sdev_printk(KERN_ERR, cmd->device,
1544 "timing out command, waited %lus\n",
1545 wait_for/HZ);
1546 disposition = SUCCESS;
1549 scsi_log_completion(cmd, disposition);
1551 switch (disposition) {
1552 case SUCCESS:
1553 scsi_finish_command(cmd);
1554 break;
1555 case NEEDS_RETRY:
1556 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1557 break;
1558 case ADD_TO_MLQUEUE:
1559 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1560 break;
1561 default:
1562 if (!scsi_eh_scmd_add(cmd, 0))
1563 scsi_finish_command(cmd);
1568 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1569 * @cmd: command block we are dispatching.
1571 * Return: nonzero return request was rejected and device's queue needs to be
1572 * plugged.
1574 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1576 struct Scsi_Host *host = cmd->device->host;
1577 int rtn = 0;
1579 atomic_inc(&cmd->device->iorequest_cnt);
1581 /* check if the device is still usable */
1582 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1583 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1584 * returns an immediate error upwards, and signals
1585 * that the device is no longer present */
1586 cmd->result = DID_NO_CONNECT << 16;
1587 goto done;
1590 /* Check to see if the scsi lld made this device blocked. */
1591 if (unlikely(scsi_device_blocked(cmd->device))) {
1593 * in blocked state, the command is just put back on
1594 * the device queue. The suspend state has already
1595 * blocked the queue so future requests should not
1596 * occur until the device transitions out of the
1597 * suspend state.
1599 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1600 "queuecommand : device blocked\n"));
1601 return SCSI_MLQUEUE_DEVICE_BUSY;
1604 /* Store the LUN value in cmnd, if needed. */
1605 if (cmd->device->lun_in_cdb)
1606 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1607 (cmd->device->lun << 5 & 0xe0);
1609 scsi_log_send(cmd);
1612 * Before we queue this command, check if the command
1613 * length exceeds what the host adapter can handle.
1615 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1616 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1617 "queuecommand : command too long. "
1618 "cdb_size=%d host->max_cmd_len=%d\n",
1619 cmd->cmd_len, cmd->device->host->max_cmd_len));
1620 cmd->result = (DID_ABORT << 16);
1621 goto done;
1624 if (unlikely(host->shost_state == SHOST_DEL)) {
1625 cmd->result = (DID_NO_CONNECT << 16);
1626 goto done;
1630 trace_scsi_dispatch_cmd_start(cmd);
1631 rtn = host->hostt->queuecommand(host, cmd);
1632 if (rtn) {
1633 trace_scsi_dispatch_cmd_error(cmd, rtn);
1634 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1635 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1636 rtn = SCSI_MLQUEUE_HOST_BUSY;
1638 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1639 "queuecommand : request rejected\n"));
1642 return rtn;
1643 done:
1644 cmd->scsi_done(cmd);
1645 return 0;
1649 * scsi_done - Invoke completion on finished SCSI command.
1650 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1651 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1653 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1654 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1655 * calls blk_complete_request() for further processing.
1657 * This function is interrupt context safe.
1659 static void scsi_done(struct scsi_cmnd *cmd)
1661 trace_scsi_dispatch_cmd_done(cmd);
1662 blk_complete_request(cmd->request);
1666 * Function: scsi_request_fn()
1668 * Purpose: Main strategy routine for SCSI.
1670 * Arguments: q - Pointer to actual queue.
1672 * Returns: Nothing
1674 * Lock status: IO request lock assumed to be held when called.
1676 static void scsi_request_fn(struct request_queue *q)
1677 __releases(q->queue_lock)
1678 __acquires(q->queue_lock)
1680 struct scsi_device *sdev = q->queuedata;
1681 struct Scsi_Host *shost;
1682 struct scsi_cmnd *cmd;
1683 struct request *req;
1686 * To start with, we keep looping until the queue is empty, or until
1687 * the host is no longer able to accept any more requests.
1689 shost = sdev->host;
1690 for (;;) {
1691 int rtn;
1693 * get next queueable request. We do this early to make sure
1694 * that the request is fully prepared even if we cannot
1695 * accept it.
1697 req = blk_peek_request(q);
1698 if (!req)
1699 break;
1701 if (unlikely(!scsi_device_online(sdev))) {
1702 sdev_printk(KERN_ERR, sdev,
1703 "rejecting I/O to offline device\n");
1704 scsi_kill_request(req, q);
1705 continue;
1708 if (!scsi_dev_queue_ready(q, sdev))
1709 break;
1712 * Remove the request from the request list.
1714 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1715 blk_start_request(req);
1717 spin_unlock_irq(q->queue_lock);
1718 cmd = req->special;
1719 if (unlikely(cmd == NULL)) {
1720 printk(KERN_CRIT "impossible request in %s.\n"
1721 "please mail a stack trace to "
1722 "linux-scsi@vger.kernel.org\n",
1723 __func__);
1724 blk_dump_rq_flags(req, "foo");
1725 BUG();
1729 * We hit this when the driver is using a host wide
1730 * tag map. For device level tag maps the queue_depth check
1731 * in the device ready fn would prevent us from trying
1732 * to allocate a tag. Since the map is a shared host resource
1733 * we add the dev to the starved list so it eventually gets
1734 * a run when a tag is freed.
1736 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1737 spin_lock_irq(shost->host_lock);
1738 if (list_empty(&sdev->starved_entry))
1739 list_add_tail(&sdev->starved_entry,
1740 &shost->starved_list);
1741 spin_unlock_irq(shost->host_lock);
1742 goto not_ready;
1745 if (!scsi_target_queue_ready(shost, sdev))
1746 goto not_ready;
1748 if (!scsi_host_queue_ready(q, shost, sdev))
1749 goto host_not_ready;
1751 if (sdev->simple_tags)
1752 cmd->flags |= SCMD_TAGGED;
1753 else
1754 cmd->flags &= ~SCMD_TAGGED;
1757 * Finally, initialize any error handling parameters, and set up
1758 * the timers for timeouts.
1760 scsi_init_cmd_errh(cmd);
1763 * Dispatch the command to the low-level driver.
1765 cmd->scsi_done = scsi_done;
1766 rtn = scsi_dispatch_cmd(cmd);
1767 if (rtn) {
1768 scsi_queue_insert(cmd, rtn);
1769 spin_lock_irq(q->queue_lock);
1770 goto out_delay;
1772 spin_lock_irq(q->queue_lock);
1775 return;
1777 host_not_ready:
1778 if (scsi_target(sdev)->can_queue > 0)
1779 atomic_dec(&scsi_target(sdev)->target_busy);
1780 not_ready:
1782 * lock q, handle tag, requeue req, and decrement device_busy. We
1783 * must return with queue_lock held.
1785 * Decrementing device_busy without checking it is OK, as all such
1786 * cases (host limits or settings) should run the queue at some
1787 * later time.
1789 spin_lock_irq(q->queue_lock);
1790 blk_requeue_request(q, req);
1791 atomic_dec(&sdev->device_busy);
1792 out_delay:
1793 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1794 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1797 static inline int prep_to_mq(int ret)
1799 switch (ret) {
1800 case BLKPREP_OK:
1801 return 0;
1802 case BLKPREP_DEFER:
1803 return BLK_MQ_RQ_QUEUE_BUSY;
1804 default:
1805 return BLK_MQ_RQ_QUEUE_ERROR;
1809 static int scsi_mq_prep_fn(struct request *req)
1811 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1812 struct scsi_device *sdev = req->q->queuedata;
1813 struct Scsi_Host *shost = sdev->host;
1814 unsigned char *sense_buf = cmd->sense_buffer;
1815 struct scatterlist *sg;
1817 memset(cmd, 0, sizeof(struct scsi_cmnd));
1819 req->special = cmd;
1821 cmd->request = req;
1822 cmd->device = sdev;
1823 cmd->sense_buffer = sense_buf;
1825 cmd->tag = req->tag;
1827 cmd->cmnd = req->cmd;
1828 cmd->prot_op = SCSI_PROT_NORMAL;
1830 INIT_LIST_HEAD(&cmd->list);
1831 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1832 cmd->jiffies_at_alloc = jiffies;
1834 if (shost->use_cmd_list) {
1835 spin_lock_irq(&sdev->list_lock);
1836 list_add_tail(&cmd->list, &sdev->cmd_list);
1837 spin_unlock_irq(&sdev->list_lock);
1840 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1841 cmd->sdb.table.sgl = sg;
1843 if (scsi_host_get_prot(shost)) {
1844 cmd->prot_sdb = (void *)sg +
1845 min_t(unsigned int,
1846 shost->sg_tablesize, SG_CHUNK_SIZE) *
1847 sizeof(struct scatterlist);
1848 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1850 cmd->prot_sdb->table.sgl =
1851 (struct scatterlist *)(cmd->prot_sdb + 1);
1854 if (blk_bidi_rq(req)) {
1855 struct request *next_rq = req->next_rq;
1856 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1858 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1859 bidi_sdb->table.sgl =
1860 (struct scatterlist *)(bidi_sdb + 1);
1862 next_rq->special = bidi_sdb;
1865 blk_mq_start_request(req);
1867 return scsi_setup_cmnd(sdev, req);
1870 static void scsi_mq_done(struct scsi_cmnd *cmd)
1872 trace_scsi_dispatch_cmd_done(cmd);
1873 blk_mq_complete_request(cmd->request, cmd->request->errors);
1876 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1877 const struct blk_mq_queue_data *bd)
1879 struct request *req = bd->rq;
1880 struct request_queue *q = req->q;
1881 struct scsi_device *sdev = q->queuedata;
1882 struct Scsi_Host *shost = sdev->host;
1883 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1884 int ret;
1885 int reason;
1887 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1888 if (ret)
1889 goto out;
1891 ret = BLK_MQ_RQ_QUEUE_BUSY;
1892 if (!get_device(&sdev->sdev_gendev))
1893 goto out;
1895 if (!scsi_dev_queue_ready(q, sdev))
1896 goto out_put_device;
1897 if (!scsi_target_queue_ready(shost, sdev))
1898 goto out_dec_device_busy;
1899 if (!scsi_host_queue_ready(q, shost, sdev))
1900 goto out_dec_target_busy;
1903 if (!(req->cmd_flags & REQ_DONTPREP)) {
1904 ret = prep_to_mq(scsi_mq_prep_fn(req));
1905 if (ret)
1906 goto out_dec_host_busy;
1907 req->cmd_flags |= REQ_DONTPREP;
1908 } else {
1909 blk_mq_start_request(req);
1912 if (sdev->simple_tags)
1913 cmd->flags |= SCMD_TAGGED;
1914 else
1915 cmd->flags &= ~SCMD_TAGGED;
1917 scsi_init_cmd_errh(cmd);
1918 cmd->scsi_done = scsi_mq_done;
1920 reason = scsi_dispatch_cmd(cmd);
1921 if (reason) {
1922 scsi_set_blocked(cmd, reason);
1923 ret = BLK_MQ_RQ_QUEUE_BUSY;
1924 goto out_dec_host_busy;
1927 return BLK_MQ_RQ_QUEUE_OK;
1929 out_dec_host_busy:
1930 atomic_dec(&shost->host_busy);
1931 out_dec_target_busy:
1932 if (scsi_target(sdev)->can_queue > 0)
1933 atomic_dec(&scsi_target(sdev)->target_busy);
1934 out_dec_device_busy:
1935 atomic_dec(&sdev->device_busy);
1936 out_put_device:
1937 put_device(&sdev->sdev_gendev);
1938 out:
1939 switch (ret) {
1940 case BLK_MQ_RQ_QUEUE_BUSY:
1941 blk_mq_stop_hw_queue(hctx);
1942 if (atomic_read(&sdev->device_busy) == 0 &&
1943 !scsi_device_blocked(sdev))
1944 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1945 break;
1946 case BLK_MQ_RQ_QUEUE_ERROR:
1948 * Make sure to release all allocated ressources when
1949 * we hit an error, as we will never see this command
1950 * again.
1952 if (req->cmd_flags & REQ_DONTPREP)
1953 scsi_mq_uninit_cmd(cmd);
1954 break;
1955 default:
1956 break;
1958 return ret;
1961 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1962 bool reserved)
1964 if (reserved)
1965 return BLK_EH_RESET_TIMER;
1966 return scsi_times_out(req);
1969 static int scsi_init_request(void *data, struct request *rq,
1970 unsigned int hctx_idx, unsigned int request_idx,
1971 unsigned int numa_node)
1973 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1975 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1976 numa_node);
1977 if (!cmd->sense_buffer)
1978 return -ENOMEM;
1979 return 0;
1982 static void scsi_exit_request(void *data, struct request *rq,
1983 unsigned int hctx_idx, unsigned int request_idx)
1985 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1987 kfree(cmd->sense_buffer);
1990 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1992 struct device *host_dev;
1993 u64 bounce_limit = 0xffffffff;
1995 if (shost->unchecked_isa_dma)
1996 return BLK_BOUNCE_ISA;
1998 * Platforms with virtual-DMA translation
1999 * hardware have no practical limit.
2001 if (!PCI_DMA_BUS_IS_PHYS)
2002 return BLK_BOUNCE_ANY;
2004 host_dev = scsi_get_device(shost);
2005 if (host_dev && host_dev->dma_mask)
2006 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2008 return bounce_limit;
2011 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2013 struct device *dev = shost->dma_dev;
2016 * this limit is imposed by hardware restrictions
2018 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2019 SG_MAX_SEGMENTS));
2021 if (scsi_host_prot_dma(shost)) {
2022 shost->sg_prot_tablesize =
2023 min_not_zero(shost->sg_prot_tablesize,
2024 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2025 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2026 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2029 blk_queue_max_hw_sectors(q, shost->max_sectors);
2030 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2031 blk_queue_segment_boundary(q, shost->dma_boundary);
2032 dma_set_seg_boundary(dev, shost->dma_boundary);
2034 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2036 if (!shost->use_clustering)
2037 q->limits.cluster = 0;
2040 * set a reasonable default alignment on word boundaries: the
2041 * host and device may alter it using
2042 * blk_queue_update_dma_alignment() later.
2044 blk_queue_dma_alignment(q, 0x03);
2047 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2048 request_fn_proc *request_fn)
2050 struct request_queue *q;
2052 q = blk_init_queue(request_fn, NULL);
2053 if (!q)
2054 return NULL;
2055 __scsi_init_queue(shost, q);
2056 return q;
2058 EXPORT_SYMBOL(__scsi_alloc_queue);
2060 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2062 struct request_queue *q;
2064 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2065 if (!q)
2066 return NULL;
2068 blk_queue_prep_rq(q, scsi_prep_fn);
2069 blk_queue_unprep_rq(q, scsi_unprep_fn);
2070 blk_queue_softirq_done(q, scsi_softirq_done);
2071 blk_queue_rq_timed_out(q, scsi_times_out);
2072 blk_queue_lld_busy(q, scsi_lld_busy);
2073 return q;
2076 static struct blk_mq_ops scsi_mq_ops = {
2077 .map_queue = blk_mq_map_queue,
2078 .queue_rq = scsi_queue_rq,
2079 .complete = scsi_softirq_done,
2080 .timeout = scsi_timeout,
2081 .init_request = scsi_init_request,
2082 .exit_request = scsi_exit_request,
2085 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2087 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2088 if (IS_ERR(sdev->request_queue))
2089 return NULL;
2091 sdev->request_queue->queuedata = sdev;
2092 __scsi_init_queue(sdev->host, sdev->request_queue);
2093 return sdev->request_queue;
2096 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2098 unsigned int cmd_size, sgl_size, tbl_size;
2100 tbl_size = shost->sg_tablesize;
2101 if (tbl_size > SG_CHUNK_SIZE)
2102 tbl_size = SG_CHUNK_SIZE;
2103 sgl_size = tbl_size * sizeof(struct scatterlist);
2104 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2105 if (scsi_host_get_prot(shost))
2106 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2108 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2109 shost->tag_set.ops = &scsi_mq_ops;
2110 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2111 shost->tag_set.queue_depth = shost->can_queue;
2112 shost->tag_set.cmd_size = cmd_size;
2113 shost->tag_set.numa_node = NUMA_NO_NODE;
2114 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2115 shost->tag_set.flags |=
2116 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2117 shost->tag_set.driver_data = shost;
2119 return blk_mq_alloc_tag_set(&shost->tag_set);
2122 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2124 blk_mq_free_tag_set(&shost->tag_set);
2128 * Function: scsi_block_requests()
2130 * Purpose: Utility function used by low-level drivers to prevent further
2131 * commands from being queued to the device.
2133 * Arguments: shost - Host in question
2135 * Returns: Nothing
2137 * Lock status: No locks are assumed held.
2139 * Notes: There is no timer nor any other means by which the requests
2140 * get unblocked other than the low-level driver calling
2141 * scsi_unblock_requests().
2143 void scsi_block_requests(struct Scsi_Host *shost)
2145 shost->host_self_blocked = 1;
2147 EXPORT_SYMBOL(scsi_block_requests);
2150 * Function: scsi_unblock_requests()
2152 * Purpose: Utility function used by low-level drivers to allow further
2153 * commands from being queued to the device.
2155 * Arguments: shost - Host in question
2157 * Returns: Nothing
2159 * Lock status: No locks are assumed held.
2161 * Notes: There is no timer nor any other means by which the requests
2162 * get unblocked other than the low-level driver calling
2163 * scsi_unblock_requests().
2165 * This is done as an API function so that changes to the
2166 * internals of the scsi mid-layer won't require wholesale
2167 * changes to drivers that use this feature.
2169 void scsi_unblock_requests(struct Scsi_Host *shost)
2171 shost->host_self_blocked = 0;
2172 scsi_run_host_queues(shost);
2174 EXPORT_SYMBOL(scsi_unblock_requests);
2176 int __init scsi_init_queue(void)
2178 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2179 sizeof(struct scsi_data_buffer),
2180 0, 0, NULL);
2181 if (!scsi_sdb_cache) {
2182 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2183 return -ENOMEM;
2186 return 0;
2189 void scsi_exit_queue(void)
2191 kmem_cache_destroy(scsi_sdb_cache);
2195 * scsi_mode_select - issue a mode select
2196 * @sdev: SCSI device to be queried
2197 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2198 * @sp: Save page bit (0 == don't save, 1 == save)
2199 * @modepage: mode page being requested
2200 * @buffer: request buffer (may not be smaller than eight bytes)
2201 * @len: length of request buffer.
2202 * @timeout: command timeout
2203 * @retries: number of retries before failing
2204 * @data: returns a structure abstracting the mode header data
2205 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2206 * must be SCSI_SENSE_BUFFERSIZE big.
2208 * Returns zero if successful; negative error number or scsi
2209 * status on error
2213 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2214 unsigned char *buffer, int len, int timeout, int retries,
2215 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2217 unsigned char cmd[10];
2218 unsigned char *real_buffer;
2219 int ret;
2221 memset(cmd, 0, sizeof(cmd));
2222 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2224 if (sdev->use_10_for_ms) {
2225 if (len > 65535)
2226 return -EINVAL;
2227 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2228 if (!real_buffer)
2229 return -ENOMEM;
2230 memcpy(real_buffer + 8, buffer, len);
2231 len += 8;
2232 real_buffer[0] = 0;
2233 real_buffer[1] = 0;
2234 real_buffer[2] = data->medium_type;
2235 real_buffer[3] = data->device_specific;
2236 real_buffer[4] = data->longlba ? 0x01 : 0;
2237 real_buffer[5] = 0;
2238 real_buffer[6] = data->block_descriptor_length >> 8;
2239 real_buffer[7] = data->block_descriptor_length;
2241 cmd[0] = MODE_SELECT_10;
2242 cmd[7] = len >> 8;
2243 cmd[8] = len;
2244 } else {
2245 if (len > 255 || data->block_descriptor_length > 255 ||
2246 data->longlba)
2247 return -EINVAL;
2249 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2250 if (!real_buffer)
2251 return -ENOMEM;
2252 memcpy(real_buffer + 4, buffer, len);
2253 len += 4;
2254 real_buffer[0] = 0;
2255 real_buffer[1] = data->medium_type;
2256 real_buffer[2] = data->device_specific;
2257 real_buffer[3] = data->block_descriptor_length;
2260 cmd[0] = MODE_SELECT;
2261 cmd[4] = len;
2264 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2265 sshdr, timeout, retries, NULL);
2266 kfree(real_buffer);
2267 return ret;
2269 EXPORT_SYMBOL_GPL(scsi_mode_select);
2272 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2273 * @sdev: SCSI device to be queried
2274 * @dbd: set if mode sense will allow block descriptors to be returned
2275 * @modepage: mode page being requested
2276 * @buffer: request buffer (may not be smaller than eight bytes)
2277 * @len: length of request buffer.
2278 * @timeout: command timeout
2279 * @retries: number of retries before failing
2280 * @data: returns a structure abstracting the mode header data
2281 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2282 * must be SCSI_SENSE_BUFFERSIZE big.
2284 * Returns zero if unsuccessful, or the header offset (either 4
2285 * or 8 depending on whether a six or ten byte command was
2286 * issued) if successful.
2289 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2290 unsigned char *buffer, int len, int timeout, int retries,
2291 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2293 unsigned char cmd[12];
2294 int use_10_for_ms;
2295 int header_length;
2296 int result, retry_count = retries;
2297 struct scsi_sense_hdr my_sshdr;
2299 memset(data, 0, sizeof(*data));
2300 memset(&cmd[0], 0, 12);
2301 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2302 cmd[2] = modepage;
2304 /* caller might not be interested in sense, but we need it */
2305 if (!sshdr)
2306 sshdr = &my_sshdr;
2308 retry:
2309 use_10_for_ms = sdev->use_10_for_ms;
2311 if (use_10_for_ms) {
2312 if (len < 8)
2313 len = 8;
2315 cmd[0] = MODE_SENSE_10;
2316 cmd[8] = len;
2317 header_length = 8;
2318 } else {
2319 if (len < 4)
2320 len = 4;
2322 cmd[0] = MODE_SENSE;
2323 cmd[4] = len;
2324 header_length = 4;
2327 memset(buffer, 0, len);
2329 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2330 sshdr, timeout, retries, NULL);
2332 /* This code looks awful: what it's doing is making sure an
2333 * ILLEGAL REQUEST sense return identifies the actual command
2334 * byte as the problem. MODE_SENSE commands can return
2335 * ILLEGAL REQUEST if the code page isn't supported */
2337 if (use_10_for_ms && !scsi_status_is_good(result) &&
2338 (driver_byte(result) & DRIVER_SENSE)) {
2339 if (scsi_sense_valid(sshdr)) {
2340 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2341 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2343 * Invalid command operation code
2345 sdev->use_10_for_ms = 0;
2346 goto retry;
2351 if(scsi_status_is_good(result)) {
2352 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2353 (modepage == 6 || modepage == 8))) {
2354 /* Initio breakage? */
2355 header_length = 0;
2356 data->length = 13;
2357 data->medium_type = 0;
2358 data->device_specific = 0;
2359 data->longlba = 0;
2360 data->block_descriptor_length = 0;
2361 } else if(use_10_for_ms) {
2362 data->length = buffer[0]*256 + buffer[1] + 2;
2363 data->medium_type = buffer[2];
2364 data->device_specific = buffer[3];
2365 data->longlba = buffer[4] & 0x01;
2366 data->block_descriptor_length = buffer[6]*256
2367 + buffer[7];
2368 } else {
2369 data->length = buffer[0] + 1;
2370 data->medium_type = buffer[1];
2371 data->device_specific = buffer[2];
2372 data->block_descriptor_length = buffer[3];
2374 data->header_length = header_length;
2375 } else if ((status_byte(result) == CHECK_CONDITION) &&
2376 scsi_sense_valid(sshdr) &&
2377 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2378 retry_count--;
2379 goto retry;
2382 return result;
2384 EXPORT_SYMBOL(scsi_mode_sense);
2387 * scsi_test_unit_ready - test if unit is ready
2388 * @sdev: scsi device to change the state of.
2389 * @timeout: command timeout
2390 * @retries: number of retries before failing
2391 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2392 * returning sense. Make sure that this is cleared before passing
2393 * in.
2395 * Returns zero if unsuccessful or an error if TUR failed. For
2396 * removable media, UNIT_ATTENTION sets ->changed flag.
2399 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2400 struct scsi_sense_hdr *sshdr_external)
2402 char cmd[] = {
2403 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2405 struct scsi_sense_hdr *sshdr;
2406 int result;
2408 if (!sshdr_external)
2409 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2410 else
2411 sshdr = sshdr_external;
2413 /* try to eat the UNIT_ATTENTION if there are enough retries */
2414 do {
2415 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2416 timeout, retries, NULL);
2417 if (sdev->removable && scsi_sense_valid(sshdr) &&
2418 sshdr->sense_key == UNIT_ATTENTION)
2419 sdev->changed = 1;
2420 } while (scsi_sense_valid(sshdr) &&
2421 sshdr->sense_key == UNIT_ATTENTION && --retries);
2423 if (!sshdr_external)
2424 kfree(sshdr);
2425 return result;
2427 EXPORT_SYMBOL(scsi_test_unit_ready);
2430 * scsi_device_set_state - Take the given device through the device state model.
2431 * @sdev: scsi device to change the state of.
2432 * @state: state to change to.
2434 * Returns zero if unsuccessful or an error if the requested
2435 * transition is illegal.
2438 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2440 enum scsi_device_state oldstate = sdev->sdev_state;
2442 if (state == oldstate)
2443 return 0;
2445 switch (state) {
2446 case SDEV_CREATED:
2447 switch (oldstate) {
2448 case SDEV_CREATED_BLOCK:
2449 break;
2450 default:
2451 goto illegal;
2453 break;
2455 case SDEV_RUNNING:
2456 switch (oldstate) {
2457 case SDEV_CREATED:
2458 case SDEV_OFFLINE:
2459 case SDEV_TRANSPORT_OFFLINE:
2460 case SDEV_QUIESCE:
2461 case SDEV_BLOCK:
2462 break;
2463 default:
2464 goto illegal;
2466 break;
2468 case SDEV_QUIESCE:
2469 switch (oldstate) {
2470 case SDEV_RUNNING:
2471 case SDEV_OFFLINE:
2472 case SDEV_TRANSPORT_OFFLINE:
2473 break;
2474 default:
2475 goto illegal;
2477 break;
2479 case SDEV_OFFLINE:
2480 case SDEV_TRANSPORT_OFFLINE:
2481 switch (oldstate) {
2482 case SDEV_CREATED:
2483 case SDEV_RUNNING:
2484 case SDEV_QUIESCE:
2485 case SDEV_BLOCK:
2486 break;
2487 default:
2488 goto illegal;
2490 break;
2492 case SDEV_BLOCK:
2493 switch (oldstate) {
2494 case SDEV_RUNNING:
2495 case SDEV_CREATED_BLOCK:
2496 break;
2497 default:
2498 goto illegal;
2500 break;
2502 case SDEV_CREATED_BLOCK:
2503 switch (oldstate) {
2504 case SDEV_CREATED:
2505 break;
2506 default:
2507 goto illegal;
2509 break;
2511 case SDEV_CANCEL:
2512 switch (oldstate) {
2513 case SDEV_CREATED:
2514 case SDEV_RUNNING:
2515 case SDEV_QUIESCE:
2516 case SDEV_OFFLINE:
2517 case SDEV_TRANSPORT_OFFLINE:
2518 case SDEV_BLOCK:
2519 break;
2520 default:
2521 goto illegal;
2523 break;
2525 case SDEV_DEL:
2526 switch (oldstate) {
2527 case SDEV_CREATED:
2528 case SDEV_RUNNING:
2529 case SDEV_OFFLINE:
2530 case SDEV_TRANSPORT_OFFLINE:
2531 case SDEV_CANCEL:
2532 case SDEV_CREATED_BLOCK:
2533 break;
2534 default:
2535 goto illegal;
2537 break;
2540 sdev->sdev_state = state;
2541 return 0;
2543 illegal:
2544 SCSI_LOG_ERROR_RECOVERY(1,
2545 sdev_printk(KERN_ERR, sdev,
2546 "Illegal state transition %s->%s",
2547 scsi_device_state_name(oldstate),
2548 scsi_device_state_name(state))
2550 return -EINVAL;
2552 EXPORT_SYMBOL(scsi_device_set_state);
2555 * sdev_evt_emit - emit a single SCSI device uevent
2556 * @sdev: associated SCSI device
2557 * @evt: event to emit
2559 * Send a single uevent (scsi_event) to the associated scsi_device.
2561 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2563 int idx = 0;
2564 char *envp[3];
2566 switch (evt->evt_type) {
2567 case SDEV_EVT_MEDIA_CHANGE:
2568 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2569 break;
2570 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2571 scsi_rescan_device(&sdev->sdev_gendev);
2572 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2573 break;
2574 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2575 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2576 break;
2577 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2578 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2579 break;
2580 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2581 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2582 break;
2583 case SDEV_EVT_LUN_CHANGE_REPORTED:
2584 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2585 break;
2586 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2587 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2588 break;
2589 default:
2590 /* do nothing */
2591 break;
2594 envp[idx++] = NULL;
2596 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2600 * sdev_evt_thread - send a uevent for each scsi event
2601 * @work: work struct for scsi_device
2603 * Dispatch queued events to their associated scsi_device kobjects
2604 * as uevents.
2606 void scsi_evt_thread(struct work_struct *work)
2608 struct scsi_device *sdev;
2609 enum scsi_device_event evt_type;
2610 LIST_HEAD(event_list);
2612 sdev = container_of(work, struct scsi_device, event_work);
2614 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2615 if (test_and_clear_bit(evt_type, sdev->pending_events))
2616 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2618 while (1) {
2619 struct scsi_event *evt;
2620 struct list_head *this, *tmp;
2621 unsigned long flags;
2623 spin_lock_irqsave(&sdev->list_lock, flags);
2624 list_splice_init(&sdev->event_list, &event_list);
2625 spin_unlock_irqrestore(&sdev->list_lock, flags);
2627 if (list_empty(&event_list))
2628 break;
2630 list_for_each_safe(this, tmp, &event_list) {
2631 evt = list_entry(this, struct scsi_event, node);
2632 list_del(&evt->node);
2633 scsi_evt_emit(sdev, evt);
2634 kfree(evt);
2640 * sdev_evt_send - send asserted event to uevent thread
2641 * @sdev: scsi_device event occurred on
2642 * @evt: event to send
2644 * Assert scsi device event asynchronously.
2646 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2648 unsigned long flags;
2650 #if 0
2651 /* FIXME: currently this check eliminates all media change events
2652 * for polled devices. Need to update to discriminate between AN
2653 * and polled events */
2654 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2655 kfree(evt);
2656 return;
2658 #endif
2660 spin_lock_irqsave(&sdev->list_lock, flags);
2661 list_add_tail(&evt->node, &sdev->event_list);
2662 schedule_work(&sdev->event_work);
2663 spin_unlock_irqrestore(&sdev->list_lock, flags);
2665 EXPORT_SYMBOL_GPL(sdev_evt_send);
2668 * sdev_evt_alloc - allocate a new scsi event
2669 * @evt_type: type of event to allocate
2670 * @gfpflags: GFP flags for allocation
2672 * Allocates and returns a new scsi_event.
2674 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2675 gfp_t gfpflags)
2677 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2678 if (!evt)
2679 return NULL;
2681 evt->evt_type = evt_type;
2682 INIT_LIST_HEAD(&evt->node);
2684 /* evt_type-specific initialization, if any */
2685 switch (evt_type) {
2686 case SDEV_EVT_MEDIA_CHANGE:
2687 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2688 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2689 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2690 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2691 case SDEV_EVT_LUN_CHANGE_REPORTED:
2692 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2693 default:
2694 /* do nothing */
2695 break;
2698 return evt;
2700 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2703 * sdev_evt_send_simple - send asserted event to uevent thread
2704 * @sdev: scsi_device event occurred on
2705 * @evt_type: type of event to send
2706 * @gfpflags: GFP flags for allocation
2708 * Assert scsi device event asynchronously, given an event type.
2710 void sdev_evt_send_simple(struct scsi_device *sdev,
2711 enum scsi_device_event evt_type, gfp_t gfpflags)
2713 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2714 if (!evt) {
2715 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2716 evt_type);
2717 return;
2720 sdev_evt_send(sdev, evt);
2722 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2725 * scsi_device_quiesce - Block user issued commands.
2726 * @sdev: scsi device to quiesce.
2728 * This works by trying to transition to the SDEV_QUIESCE state
2729 * (which must be a legal transition). When the device is in this
2730 * state, only special requests will be accepted, all others will
2731 * be deferred. Since special requests may also be requeued requests,
2732 * a successful return doesn't guarantee the device will be
2733 * totally quiescent.
2735 * Must be called with user context, may sleep.
2737 * Returns zero if unsuccessful or an error if not.
2740 scsi_device_quiesce(struct scsi_device *sdev)
2742 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2743 if (err)
2744 return err;
2746 scsi_run_queue(sdev->request_queue);
2747 while (atomic_read(&sdev->device_busy)) {
2748 msleep_interruptible(200);
2749 scsi_run_queue(sdev->request_queue);
2751 return 0;
2753 EXPORT_SYMBOL(scsi_device_quiesce);
2756 * scsi_device_resume - Restart user issued commands to a quiesced device.
2757 * @sdev: scsi device to resume.
2759 * Moves the device from quiesced back to running and restarts the
2760 * queues.
2762 * Must be called with user context, may sleep.
2764 void scsi_device_resume(struct scsi_device *sdev)
2766 /* check if the device state was mutated prior to resume, and if
2767 * so assume the state is being managed elsewhere (for example
2768 * device deleted during suspend)
2770 if (sdev->sdev_state != SDEV_QUIESCE ||
2771 scsi_device_set_state(sdev, SDEV_RUNNING))
2772 return;
2773 scsi_run_queue(sdev->request_queue);
2775 EXPORT_SYMBOL(scsi_device_resume);
2777 static void
2778 device_quiesce_fn(struct scsi_device *sdev, void *data)
2780 scsi_device_quiesce(sdev);
2783 void
2784 scsi_target_quiesce(struct scsi_target *starget)
2786 starget_for_each_device(starget, NULL, device_quiesce_fn);
2788 EXPORT_SYMBOL(scsi_target_quiesce);
2790 static void
2791 device_resume_fn(struct scsi_device *sdev, void *data)
2793 scsi_device_resume(sdev);
2796 void
2797 scsi_target_resume(struct scsi_target *starget)
2799 starget_for_each_device(starget, NULL, device_resume_fn);
2801 EXPORT_SYMBOL(scsi_target_resume);
2804 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2805 * @sdev: device to block
2807 * Block request made by scsi lld's to temporarily stop all
2808 * scsi commands on the specified device. Called from interrupt
2809 * or normal process context.
2811 * Returns zero if successful or error if not
2813 * Notes:
2814 * This routine transitions the device to the SDEV_BLOCK state
2815 * (which must be a legal transition). When the device is in this
2816 * state, all commands are deferred until the scsi lld reenables
2817 * the device with scsi_device_unblock or device_block_tmo fires.
2820 scsi_internal_device_block(struct scsi_device *sdev)
2822 struct request_queue *q = sdev->request_queue;
2823 unsigned long flags;
2824 int err = 0;
2826 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2827 if (err) {
2828 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2830 if (err)
2831 return err;
2835 * The device has transitioned to SDEV_BLOCK. Stop the
2836 * block layer from calling the midlayer with this device's
2837 * request queue.
2839 if (q->mq_ops) {
2840 blk_mq_stop_hw_queues(q);
2841 } else {
2842 spin_lock_irqsave(q->queue_lock, flags);
2843 blk_stop_queue(q);
2844 spin_unlock_irqrestore(q->queue_lock, flags);
2847 return 0;
2849 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2852 * scsi_internal_device_unblock - resume a device after a block request
2853 * @sdev: device to resume
2854 * @new_state: state to set devices to after unblocking
2856 * Called by scsi lld's or the midlayer to restart the device queue
2857 * for the previously suspended scsi device. Called from interrupt or
2858 * normal process context.
2860 * Returns zero if successful or error if not.
2862 * Notes:
2863 * This routine transitions the device to the SDEV_RUNNING state
2864 * or to one of the offline states (which must be a legal transition)
2865 * allowing the midlayer to goose the queue for this device.
2868 scsi_internal_device_unblock(struct scsi_device *sdev,
2869 enum scsi_device_state new_state)
2871 struct request_queue *q = sdev->request_queue;
2872 unsigned long flags;
2875 * Try to transition the scsi device to SDEV_RUNNING or one of the
2876 * offlined states and goose the device queue if successful.
2878 if ((sdev->sdev_state == SDEV_BLOCK) ||
2879 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2880 sdev->sdev_state = new_state;
2881 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2882 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2883 new_state == SDEV_OFFLINE)
2884 sdev->sdev_state = new_state;
2885 else
2886 sdev->sdev_state = SDEV_CREATED;
2887 } else if (sdev->sdev_state != SDEV_CANCEL &&
2888 sdev->sdev_state != SDEV_OFFLINE)
2889 return -EINVAL;
2891 if (q->mq_ops) {
2892 blk_mq_start_stopped_hw_queues(q, false);
2893 } else {
2894 spin_lock_irqsave(q->queue_lock, flags);
2895 blk_start_queue(q);
2896 spin_unlock_irqrestore(q->queue_lock, flags);
2899 return 0;
2901 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2903 static void
2904 device_block(struct scsi_device *sdev, void *data)
2906 scsi_internal_device_block(sdev);
2909 static int
2910 target_block(struct device *dev, void *data)
2912 if (scsi_is_target_device(dev))
2913 starget_for_each_device(to_scsi_target(dev), NULL,
2914 device_block);
2915 return 0;
2918 void
2919 scsi_target_block(struct device *dev)
2921 if (scsi_is_target_device(dev))
2922 starget_for_each_device(to_scsi_target(dev), NULL,
2923 device_block);
2924 else
2925 device_for_each_child(dev, NULL, target_block);
2927 EXPORT_SYMBOL_GPL(scsi_target_block);
2929 static void
2930 device_unblock(struct scsi_device *sdev, void *data)
2932 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2935 static int
2936 target_unblock(struct device *dev, void *data)
2938 if (scsi_is_target_device(dev))
2939 starget_for_each_device(to_scsi_target(dev), data,
2940 device_unblock);
2941 return 0;
2944 void
2945 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2947 if (scsi_is_target_device(dev))
2948 starget_for_each_device(to_scsi_target(dev), &new_state,
2949 device_unblock);
2950 else
2951 device_for_each_child(dev, &new_state, target_unblock);
2953 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2956 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2957 * @sgl: scatter-gather list
2958 * @sg_count: number of segments in sg
2959 * @offset: offset in bytes into sg, on return offset into the mapped area
2960 * @len: bytes to map, on return number of bytes mapped
2962 * Returns virtual address of the start of the mapped page
2964 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2965 size_t *offset, size_t *len)
2967 int i;
2968 size_t sg_len = 0, len_complete = 0;
2969 struct scatterlist *sg;
2970 struct page *page;
2972 WARN_ON(!irqs_disabled());
2974 for_each_sg(sgl, sg, sg_count, i) {
2975 len_complete = sg_len; /* Complete sg-entries */
2976 sg_len += sg->length;
2977 if (sg_len > *offset)
2978 break;
2981 if (unlikely(i == sg_count)) {
2982 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2983 "elements %d\n",
2984 __func__, sg_len, *offset, sg_count);
2985 WARN_ON(1);
2986 return NULL;
2989 /* Offset starting from the beginning of first page in this sg-entry */
2990 *offset = *offset - len_complete + sg->offset;
2992 /* Assumption: contiguous pages can be accessed as "page + i" */
2993 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2994 *offset &= ~PAGE_MASK;
2996 /* Bytes in this sg-entry from *offset to the end of the page */
2997 sg_len = PAGE_SIZE - *offset;
2998 if (*len > sg_len)
2999 *len = sg_len;
3001 return kmap_atomic(page);
3003 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3006 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3007 * @virt: virtual address to be unmapped
3009 void scsi_kunmap_atomic_sg(void *virt)
3011 kunmap_atomic(virt);
3013 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3015 void sdev_disable_disk_events(struct scsi_device *sdev)
3017 atomic_inc(&sdev->disk_events_disable_depth);
3019 EXPORT_SYMBOL(sdev_disable_disk_events);
3021 void sdev_enable_disk_events(struct scsi_device *sdev)
3023 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3024 return;
3025 atomic_dec(&sdev->disk_events_disable_depth);
3027 EXPORT_SYMBOL(sdev_enable_disk_events);
3030 * scsi_vpd_lun_id - return a unique device identification
3031 * @sdev: SCSI device
3032 * @id: buffer for the identification
3033 * @id_len: length of the buffer
3035 * Copies a unique device identification into @id based
3036 * on the information in the VPD page 0x83 of the device.
3037 * The string will be formatted as a SCSI name string.
3039 * Returns the length of the identification or error on failure.
3040 * If the identifier is longer than the supplied buffer the actual
3041 * identifier length is returned and the buffer is not zero-padded.
3043 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3045 u8 cur_id_type = 0xff;
3046 u8 cur_id_size = 0;
3047 unsigned char *d, *cur_id_str;
3048 unsigned char __rcu *vpd_pg83;
3049 int id_size = -EINVAL;
3051 rcu_read_lock();
3052 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3053 if (!vpd_pg83) {
3054 rcu_read_unlock();
3055 return -ENXIO;
3059 * Look for the correct descriptor.
3060 * Order of preference for lun descriptor:
3061 * - SCSI name string
3062 * - NAA IEEE Registered Extended
3063 * - EUI-64 based 16-byte
3064 * - EUI-64 based 12-byte
3065 * - NAA IEEE Registered
3066 * - NAA IEEE Extended
3067 * - T10 Vendor ID
3068 * as longer descriptors reduce the likelyhood
3069 * of identification clashes.
3072 /* The id string must be at least 20 bytes + terminating NULL byte */
3073 if (id_len < 21) {
3074 rcu_read_unlock();
3075 return -EINVAL;
3078 memset(id, 0, id_len);
3079 d = vpd_pg83 + 4;
3080 while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3081 /* Skip designators not referring to the LUN */
3082 if ((d[1] & 0x30) != 0x00)
3083 goto next_desig;
3085 switch (d[1] & 0xf) {
3086 case 0x1:
3087 /* T10 Vendor ID */
3088 if (cur_id_size > d[3])
3089 break;
3090 /* Prefer anything */
3091 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3092 break;
3093 cur_id_size = d[3];
3094 if (cur_id_size + 4 > id_len)
3095 cur_id_size = id_len - 4;
3096 cur_id_str = d + 4;
3097 cur_id_type = d[1] & 0xf;
3098 id_size = snprintf(id, id_len, "t10.%*pE",
3099 cur_id_size, cur_id_str);
3100 break;
3101 case 0x2:
3102 /* EUI-64 */
3103 if (cur_id_size > d[3])
3104 break;
3105 /* Prefer NAA IEEE Registered Extended */
3106 if (cur_id_type == 0x3 &&
3107 cur_id_size == d[3])
3108 break;
3109 cur_id_size = d[3];
3110 cur_id_str = d + 4;
3111 cur_id_type = d[1] & 0xf;
3112 switch (cur_id_size) {
3113 case 8:
3114 id_size = snprintf(id, id_len,
3115 "eui.%8phN",
3116 cur_id_str);
3117 break;
3118 case 12:
3119 id_size = snprintf(id, id_len,
3120 "eui.%12phN",
3121 cur_id_str);
3122 break;
3123 case 16:
3124 id_size = snprintf(id, id_len,
3125 "eui.%16phN",
3126 cur_id_str);
3127 break;
3128 default:
3129 cur_id_size = 0;
3130 break;
3132 break;
3133 case 0x3:
3134 /* NAA */
3135 if (cur_id_size > d[3])
3136 break;
3137 cur_id_size = d[3];
3138 cur_id_str = d + 4;
3139 cur_id_type = d[1] & 0xf;
3140 switch (cur_id_size) {
3141 case 8:
3142 id_size = snprintf(id, id_len,
3143 "naa.%8phN",
3144 cur_id_str);
3145 break;
3146 case 16:
3147 id_size = snprintf(id, id_len,
3148 "naa.%16phN",
3149 cur_id_str);
3150 break;
3151 default:
3152 cur_id_size = 0;
3153 break;
3155 break;
3156 case 0x8:
3157 /* SCSI name string */
3158 if (cur_id_size + 4 > d[3])
3159 break;
3160 /* Prefer others for truncated descriptor */
3161 if (cur_id_size && d[3] > id_len)
3162 break;
3163 cur_id_size = id_size = d[3];
3164 cur_id_str = d + 4;
3165 cur_id_type = d[1] & 0xf;
3166 if (cur_id_size >= id_len)
3167 cur_id_size = id_len - 1;
3168 memcpy(id, cur_id_str, cur_id_size);
3169 /* Decrease priority for truncated descriptor */
3170 if (cur_id_size != id_size)
3171 cur_id_size = 6;
3172 break;
3173 default:
3174 break;
3176 next_desig:
3177 d += d[3] + 4;
3179 rcu_read_unlock();
3181 return id_size;
3183 EXPORT_SYMBOL(scsi_vpd_lun_id);
3186 * scsi_vpd_tpg_id - return a target port group identifier
3187 * @sdev: SCSI device
3189 * Returns the Target Port Group identifier from the information
3190 * froom VPD page 0x83 of the device.
3192 * Returns the identifier or error on failure.
3194 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3196 unsigned char *d;
3197 unsigned char __rcu *vpd_pg83;
3198 int group_id = -EAGAIN, rel_port = -1;
3200 rcu_read_lock();
3201 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3202 if (!vpd_pg83) {
3203 rcu_read_unlock();
3204 return -ENXIO;
3207 d = sdev->vpd_pg83 + 4;
3208 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3209 switch (d[1] & 0xf) {
3210 case 0x4:
3211 /* Relative target port */
3212 rel_port = get_unaligned_be16(&d[6]);
3213 break;
3214 case 0x5:
3215 /* Target port group */
3216 group_id = get_unaligned_be16(&d[6]);
3217 break;
3218 default:
3219 break;
3221 d += d[3] + 4;
3223 rcu_read_unlock();
3225 if (group_id >= 0 && rel_id && rel_port != -1)
3226 *rel_id = rel_port;
3228 return group_id;
3230 EXPORT_SYMBOL(scsi_vpd_tpg_id);