USB: xhci: Re-purpose xhci_quiesce().
[linux-2.6/btrfs-unstable.git] / drivers / net / e1000e / ich8lan.c
blob7b33be98a2cadc7a6a51efc8491232d3e7bb8500
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
57 #include "e1000.h"
59 #define ICH_FLASH_GFPREG 0x0000
60 #define ICH_FLASH_HSFSTS 0x0004
61 #define ICH_FLASH_HSFCTL 0x0006
62 #define ICH_FLASH_FADDR 0x0008
63 #define ICH_FLASH_FDATA0 0x0010
64 #define ICH_FLASH_PR0 0x0074
66 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
70 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
72 #define ICH_CYCLE_READ 0
73 #define ICH_CYCLE_WRITE 2
74 #define ICH_CYCLE_ERASE 3
76 #define FLASH_GFPREG_BASE_MASK 0x1FFF
77 #define FLASH_SECTOR_ADDR_SHIFT 12
79 #define ICH_FLASH_SEG_SIZE_256 256
80 #define ICH_FLASH_SEG_SIZE_4K 4096
81 #define ICH_FLASH_SEG_SIZE_8K 8192
82 #define ICH_FLASH_SEG_SIZE_64K 65536
85 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
87 #define E1000_ICH_MNG_IAMT_MODE 0x2
89 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
90 (ID_LED_DEF1_OFF2 << 8) | \
91 (ID_LED_DEF1_ON2 << 4) | \
92 (ID_LED_DEF1_DEF2))
94 #define E1000_ICH_NVM_SIG_WORD 0x13
95 #define E1000_ICH_NVM_SIG_MASK 0xC000
96 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
97 #define E1000_ICH_NVM_SIG_VALUE 0x80
99 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
101 #define E1000_FEXTNVM_SW_CONFIG 1
102 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
104 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
106 #define E1000_ICH_RAR_ENTRIES 7
108 #define PHY_PAGE_SHIFT 5
109 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
110 ((reg) & MAX_PHY_REG_ADDRESS))
111 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
112 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
114 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
115 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
116 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
118 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
120 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
122 /* SMBus Address Phy Register */
123 #define HV_SMB_ADDR PHY_REG(768, 26)
124 #define HV_SMB_ADDR_PEC_EN 0x0200
125 #define HV_SMB_ADDR_VALID 0x0080
127 /* Strapping Option Register - RO */
128 #define E1000_STRAP 0x0000C
129 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
130 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
132 /* OEM Bits Phy Register */
133 #define HV_OEM_BITS PHY_REG(768, 25)
134 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
135 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
136 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
138 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
139 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
141 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
142 /* Offset 04h HSFSTS */
143 union ich8_hws_flash_status {
144 struct ich8_hsfsts {
145 u16 flcdone :1; /* bit 0 Flash Cycle Done */
146 u16 flcerr :1; /* bit 1 Flash Cycle Error */
147 u16 dael :1; /* bit 2 Direct Access error Log */
148 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
149 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
150 u16 reserved1 :2; /* bit 13:6 Reserved */
151 u16 reserved2 :6; /* bit 13:6 Reserved */
152 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
153 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
154 } hsf_status;
155 u16 regval;
158 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
159 /* Offset 06h FLCTL */
160 union ich8_hws_flash_ctrl {
161 struct ich8_hsflctl {
162 u16 flcgo :1; /* 0 Flash Cycle Go */
163 u16 flcycle :2; /* 2:1 Flash Cycle */
164 u16 reserved :5; /* 7:3 Reserved */
165 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
166 u16 flockdn :6; /* 15:10 Reserved */
167 } hsf_ctrl;
168 u16 regval;
171 /* ICH Flash Region Access Permissions */
172 union ich8_hws_flash_regacc {
173 struct ich8_flracc {
174 u32 grra :8; /* 0:7 GbE region Read Access */
175 u32 grwa :8; /* 8:15 GbE region Write Access */
176 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
177 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
178 } hsf_flregacc;
179 u16 regval;
182 /* ICH Flash Protected Region */
183 union ich8_flash_protected_range {
184 struct ich8_pr {
185 u32 base:13; /* 0:12 Protected Range Base */
186 u32 reserved1:2; /* 13:14 Reserved */
187 u32 rpe:1; /* 15 Read Protection Enable */
188 u32 limit:13; /* 16:28 Protected Range Limit */
189 u32 reserved2:2; /* 29:30 Reserved */
190 u32 wpe:1; /* 31 Write Protection Enable */
191 } range;
192 u32 regval;
195 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
196 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
197 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
198 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
199 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
200 u32 offset, u8 byte);
201 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
202 u8 *data);
203 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
204 u16 *data);
205 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
206 u8 size, u16 *data);
207 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
208 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
209 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
210 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
211 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
212 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
213 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
214 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
215 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
216 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
217 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
218 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
219 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
220 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
221 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
223 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
225 return readw(hw->flash_address + reg);
228 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
230 return readl(hw->flash_address + reg);
233 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
235 writew(val, hw->flash_address + reg);
238 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
240 writel(val, hw->flash_address + reg);
243 #define er16flash(reg) __er16flash(hw, (reg))
244 #define er32flash(reg) __er32flash(hw, (reg))
245 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
246 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
249 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
250 * @hw: pointer to the HW structure
252 * Initialize family-specific PHY parameters and function pointers.
254 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
256 struct e1000_phy_info *phy = &hw->phy;
257 s32 ret_val = 0;
259 phy->addr = 1;
260 phy->reset_delay_us = 100;
262 phy->ops.read_reg = e1000_read_phy_reg_hv;
263 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
264 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
265 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
266 phy->ops.write_reg = e1000_write_phy_reg_hv;
267 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
268 phy->ops.power_up = e1000_power_up_phy_copper;
269 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
270 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
272 phy->id = e1000_phy_unknown;
273 e1000e_get_phy_id(hw);
274 phy->type = e1000e_get_phy_type_from_id(phy->id);
276 switch (phy->type) {
277 case e1000_phy_82577:
278 phy->ops.check_polarity = e1000_check_polarity_82577;
279 phy->ops.force_speed_duplex =
280 e1000_phy_force_speed_duplex_82577;
281 phy->ops.get_cable_length = e1000_get_cable_length_82577;
282 phy->ops.get_info = e1000_get_phy_info_82577;
283 phy->ops.commit = e1000e_phy_sw_reset;
284 case e1000_phy_82578:
285 phy->ops.check_polarity = e1000_check_polarity_m88;
286 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
287 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
288 phy->ops.get_info = e1000e_get_phy_info_m88;
289 break;
290 default:
291 ret_val = -E1000_ERR_PHY;
292 break;
295 return ret_val;
299 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
300 * @hw: pointer to the HW structure
302 * Initialize family-specific PHY parameters and function pointers.
304 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
306 struct e1000_phy_info *phy = &hw->phy;
307 s32 ret_val;
308 u16 i = 0;
310 phy->addr = 1;
311 phy->reset_delay_us = 100;
313 phy->ops.power_up = e1000_power_up_phy_copper;
314 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
317 * We may need to do this twice - once for IGP and if that fails,
318 * we'll set BM func pointers and try again
320 ret_val = e1000e_determine_phy_address(hw);
321 if (ret_val) {
322 phy->ops.write_reg = e1000e_write_phy_reg_bm;
323 phy->ops.read_reg = e1000e_read_phy_reg_bm;
324 ret_val = e1000e_determine_phy_address(hw);
325 if (ret_val) {
326 e_dbg("Cannot determine PHY addr. Erroring out\n");
327 return ret_val;
331 phy->id = 0;
332 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
333 (i++ < 100)) {
334 msleep(1);
335 ret_val = e1000e_get_phy_id(hw);
336 if (ret_val)
337 return ret_val;
340 /* Verify phy id */
341 switch (phy->id) {
342 case IGP03E1000_E_PHY_ID:
343 phy->type = e1000_phy_igp_3;
344 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
345 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
346 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
347 phy->ops.get_info = e1000e_get_phy_info_igp;
348 phy->ops.check_polarity = e1000_check_polarity_igp;
349 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
350 break;
351 case IFE_E_PHY_ID:
352 case IFE_PLUS_E_PHY_ID:
353 case IFE_C_E_PHY_ID:
354 phy->type = e1000_phy_ife;
355 phy->autoneg_mask = E1000_ALL_NOT_GIG;
356 phy->ops.get_info = e1000_get_phy_info_ife;
357 phy->ops.check_polarity = e1000_check_polarity_ife;
358 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
359 break;
360 case BME1000_E_PHY_ID:
361 phy->type = e1000_phy_bm;
362 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
363 phy->ops.read_reg = e1000e_read_phy_reg_bm;
364 phy->ops.write_reg = e1000e_write_phy_reg_bm;
365 phy->ops.commit = e1000e_phy_sw_reset;
366 phy->ops.get_info = e1000e_get_phy_info_m88;
367 phy->ops.check_polarity = e1000_check_polarity_m88;
368 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
369 break;
370 default:
371 return -E1000_ERR_PHY;
372 break;
375 return 0;
379 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
380 * @hw: pointer to the HW structure
382 * Initialize family-specific NVM parameters and function
383 * pointers.
385 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
387 struct e1000_nvm_info *nvm = &hw->nvm;
388 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
389 u32 gfpreg, sector_base_addr, sector_end_addr;
390 u16 i;
392 /* Can't read flash registers if the register set isn't mapped. */
393 if (!hw->flash_address) {
394 e_dbg("ERROR: Flash registers not mapped\n");
395 return -E1000_ERR_CONFIG;
398 nvm->type = e1000_nvm_flash_sw;
400 gfpreg = er32flash(ICH_FLASH_GFPREG);
403 * sector_X_addr is a "sector"-aligned address (4096 bytes)
404 * Add 1 to sector_end_addr since this sector is included in
405 * the overall size.
407 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
408 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
410 /* flash_base_addr is byte-aligned */
411 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
414 * find total size of the NVM, then cut in half since the total
415 * size represents two separate NVM banks.
417 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
418 << FLASH_SECTOR_ADDR_SHIFT;
419 nvm->flash_bank_size /= 2;
420 /* Adjust to word count */
421 nvm->flash_bank_size /= sizeof(u16);
423 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
425 /* Clear shadow ram */
426 for (i = 0; i < nvm->word_size; i++) {
427 dev_spec->shadow_ram[i].modified = false;
428 dev_spec->shadow_ram[i].value = 0xFFFF;
431 return 0;
435 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
436 * @hw: pointer to the HW structure
438 * Initialize family-specific MAC parameters and function
439 * pointers.
441 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
443 struct e1000_hw *hw = &adapter->hw;
444 struct e1000_mac_info *mac = &hw->mac;
446 /* Set media type function pointer */
447 hw->phy.media_type = e1000_media_type_copper;
449 /* Set mta register count */
450 mac->mta_reg_count = 32;
451 /* Set rar entry count */
452 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
453 if (mac->type == e1000_ich8lan)
454 mac->rar_entry_count--;
455 /* Set if manageability features are enabled. */
456 mac->arc_subsystem_valid = true;
458 /* LED operations */
459 switch (mac->type) {
460 case e1000_ich8lan:
461 case e1000_ich9lan:
462 case e1000_ich10lan:
463 /* ID LED init */
464 mac->ops.id_led_init = e1000e_id_led_init;
465 /* setup LED */
466 mac->ops.setup_led = e1000e_setup_led_generic;
467 /* cleanup LED */
468 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
469 /* turn on/off LED */
470 mac->ops.led_on = e1000_led_on_ich8lan;
471 mac->ops.led_off = e1000_led_off_ich8lan;
472 break;
473 case e1000_pchlan:
474 /* ID LED init */
475 mac->ops.id_led_init = e1000_id_led_init_pchlan;
476 /* setup LED */
477 mac->ops.setup_led = e1000_setup_led_pchlan;
478 /* cleanup LED */
479 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
480 /* turn on/off LED */
481 mac->ops.led_on = e1000_led_on_pchlan;
482 mac->ops.led_off = e1000_led_off_pchlan;
483 break;
484 default:
485 break;
488 /* Enable PCS Lock-loss workaround for ICH8 */
489 if (mac->type == e1000_ich8lan)
490 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
492 return 0;
496 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
497 * @hw: pointer to the HW structure
499 * Checks to see of the link status of the hardware has changed. If a
500 * change in link status has been detected, then we read the PHY registers
501 * to get the current speed/duplex if link exists.
503 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
505 struct e1000_mac_info *mac = &hw->mac;
506 s32 ret_val;
507 bool link;
510 * We only want to go out to the PHY registers to see if Auto-Neg
511 * has completed and/or if our link status has changed. The
512 * get_link_status flag is set upon receiving a Link Status
513 * Change or Rx Sequence Error interrupt.
515 if (!mac->get_link_status) {
516 ret_val = 0;
517 goto out;
521 * First we want to see if the MII Status Register reports
522 * link. If so, then we want to get the current speed/duplex
523 * of the PHY.
525 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
526 if (ret_val)
527 goto out;
529 if (hw->mac.type == e1000_pchlan) {
530 ret_val = e1000_k1_gig_workaround_hv(hw, link);
531 if (ret_val)
532 goto out;
535 if (!link)
536 goto out; /* No link detected */
538 mac->get_link_status = false;
540 if (hw->phy.type == e1000_phy_82578) {
541 ret_val = e1000_link_stall_workaround_hv(hw);
542 if (ret_val)
543 goto out;
547 * Check if there was DownShift, must be checked
548 * immediately after link-up
550 e1000e_check_downshift(hw);
553 * If we are forcing speed/duplex, then we simply return since
554 * we have already determined whether we have link or not.
556 if (!mac->autoneg) {
557 ret_val = -E1000_ERR_CONFIG;
558 goto out;
562 * Auto-Neg is enabled. Auto Speed Detection takes care
563 * of MAC speed/duplex configuration. So we only need to
564 * configure Collision Distance in the MAC.
566 e1000e_config_collision_dist(hw);
569 * Configure Flow Control now that Auto-Neg has completed.
570 * First, we need to restore the desired flow control
571 * settings because we may have had to re-autoneg with a
572 * different link partner.
574 ret_val = e1000e_config_fc_after_link_up(hw);
575 if (ret_val)
576 e_dbg("Error configuring flow control\n");
578 out:
579 return ret_val;
582 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
584 struct e1000_hw *hw = &adapter->hw;
585 s32 rc;
587 rc = e1000_init_mac_params_ich8lan(adapter);
588 if (rc)
589 return rc;
591 rc = e1000_init_nvm_params_ich8lan(hw);
592 if (rc)
593 return rc;
595 if (hw->mac.type == e1000_pchlan)
596 rc = e1000_init_phy_params_pchlan(hw);
597 else
598 rc = e1000_init_phy_params_ich8lan(hw);
599 if (rc)
600 return rc;
602 if (adapter->hw.phy.type == e1000_phy_ife) {
603 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
604 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
607 if ((adapter->hw.mac.type == e1000_ich8lan) &&
608 (adapter->hw.phy.type == e1000_phy_igp_3))
609 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
611 return 0;
614 static DEFINE_MUTEX(nvm_mutex);
617 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
618 * @hw: pointer to the HW structure
620 * Acquires the mutex for performing NVM operations.
622 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
624 mutex_lock(&nvm_mutex);
626 return 0;
630 * e1000_release_nvm_ich8lan - Release NVM mutex
631 * @hw: pointer to the HW structure
633 * Releases the mutex used while performing NVM operations.
635 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
637 mutex_unlock(&nvm_mutex);
639 return;
642 static DEFINE_MUTEX(swflag_mutex);
645 * e1000_acquire_swflag_ich8lan - Acquire software control flag
646 * @hw: pointer to the HW structure
648 * Acquires the software control flag for performing PHY and select
649 * MAC CSR accesses.
651 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
653 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
654 s32 ret_val = 0;
656 mutex_lock(&swflag_mutex);
658 while (timeout) {
659 extcnf_ctrl = er32(EXTCNF_CTRL);
660 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
661 break;
663 mdelay(1);
664 timeout--;
667 if (!timeout) {
668 e_dbg("SW/FW/HW has locked the resource for too long.\n");
669 ret_val = -E1000_ERR_CONFIG;
670 goto out;
673 timeout = SW_FLAG_TIMEOUT;
675 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
676 ew32(EXTCNF_CTRL, extcnf_ctrl);
678 while (timeout) {
679 extcnf_ctrl = er32(EXTCNF_CTRL);
680 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
681 break;
683 mdelay(1);
684 timeout--;
687 if (!timeout) {
688 e_dbg("Failed to acquire the semaphore.\n");
689 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
690 ew32(EXTCNF_CTRL, extcnf_ctrl);
691 ret_val = -E1000_ERR_CONFIG;
692 goto out;
695 out:
696 if (ret_val)
697 mutex_unlock(&swflag_mutex);
699 return ret_val;
703 * e1000_release_swflag_ich8lan - Release software control flag
704 * @hw: pointer to the HW structure
706 * Releases the software control flag for performing PHY and select
707 * MAC CSR accesses.
709 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
711 u32 extcnf_ctrl;
713 extcnf_ctrl = er32(EXTCNF_CTRL);
714 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
715 ew32(EXTCNF_CTRL, extcnf_ctrl);
717 mutex_unlock(&swflag_mutex);
719 return;
723 * e1000_check_mng_mode_ich8lan - Checks management mode
724 * @hw: pointer to the HW structure
726 * This checks if the adapter has manageability enabled.
727 * This is a function pointer entry point only called by read/write
728 * routines for the PHY and NVM parts.
730 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
732 u32 fwsm;
734 fwsm = er32(FWSM);
736 return (fwsm & E1000_FWSM_MODE_MASK) ==
737 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
741 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
742 * @hw: pointer to the HW structure
744 * Checks if firmware is blocking the reset of the PHY.
745 * This is a function pointer entry point only called by
746 * reset routines.
748 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
750 u32 fwsm;
752 fwsm = er32(FWSM);
754 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
758 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
759 * @hw: pointer to the HW structure
761 * SW should configure the LCD from the NVM extended configuration region
762 * as a workaround for certain parts.
764 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
766 struct e1000_phy_info *phy = &hw->phy;
767 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
768 s32 ret_val;
769 u16 word_addr, reg_data, reg_addr, phy_page = 0;
771 ret_val = hw->phy.ops.acquire(hw);
772 if (ret_val)
773 return ret_val;
776 * Initialize the PHY from the NVM on ICH platforms. This
777 * is needed due to an issue where the NVM configuration is
778 * not properly autoloaded after power transitions.
779 * Therefore, after each PHY reset, we will load the
780 * configuration data out of the NVM manually.
782 if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
783 (hw->mac.type == e1000_pchlan)) {
784 struct e1000_adapter *adapter = hw->adapter;
786 /* Check if SW needs to configure the PHY */
787 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
788 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
789 (hw->mac.type == e1000_pchlan))
790 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
791 else
792 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
794 data = er32(FEXTNVM);
795 if (!(data & sw_cfg_mask))
796 goto out;
798 /* Wait for basic configuration completes before proceeding */
799 e1000_lan_init_done_ich8lan(hw);
802 * Make sure HW does not configure LCD from PHY
803 * extended configuration before SW configuration
805 data = er32(EXTCNF_CTRL);
806 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
807 goto out;
809 cnf_size = er32(EXTCNF_SIZE);
810 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
811 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
812 if (!cnf_size)
813 goto out;
815 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
816 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
818 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
819 (hw->mac.type == e1000_pchlan)) {
821 * HW configures the SMBus address and LEDs when the
822 * OEM and LCD Write Enable bits are set in the NVM.
823 * When both NVM bits are cleared, SW will configure
824 * them instead.
826 data = er32(STRAP);
827 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
828 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
829 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
830 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
831 reg_data);
832 if (ret_val)
833 goto out;
835 data = er32(LEDCTL);
836 ret_val = e1000_write_phy_reg_hv_locked(hw,
837 HV_LED_CONFIG,
838 (u16)data);
839 if (ret_val)
840 goto out;
842 /* Configure LCD from extended configuration region. */
844 /* cnf_base_addr is in DWORD */
845 word_addr = (u16)(cnf_base_addr << 1);
847 for (i = 0; i < cnf_size; i++) {
848 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
849 &reg_data);
850 if (ret_val)
851 goto out;
853 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
854 1, &reg_addr);
855 if (ret_val)
856 goto out;
858 /* Save off the PHY page for future writes. */
859 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
860 phy_page = reg_data;
861 continue;
864 reg_addr &= PHY_REG_MASK;
865 reg_addr |= phy_page;
867 ret_val = phy->ops.write_reg_locked(hw,
868 (u32)reg_addr,
869 reg_data);
870 if (ret_val)
871 goto out;
875 out:
876 hw->phy.ops.release(hw);
877 return ret_val;
881 * e1000_k1_gig_workaround_hv - K1 Si workaround
882 * @hw: pointer to the HW structure
883 * @link: link up bool flag
885 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
886 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
887 * If link is down, the function will restore the default K1 setting located
888 * in the NVM.
890 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
892 s32 ret_val = 0;
893 u16 status_reg = 0;
894 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
896 if (hw->mac.type != e1000_pchlan)
897 goto out;
899 /* Wrap the whole flow with the sw flag */
900 ret_val = hw->phy.ops.acquire(hw);
901 if (ret_val)
902 goto out;
904 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
905 if (link) {
906 if (hw->phy.type == e1000_phy_82578) {
907 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
908 &status_reg);
909 if (ret_val)
910 goto release;
912 status_reg &= BM_CS_STATUS_LINK_UP |
913 BM_CS_STATUS_RESOLVED |
914 BM_CS_STATUS_SPEED_MASK;
916 if (status_reg == (BM_CS_STATUS_LINK_UP |
917 BM_CS_STATUS_RESOLVED |
918 BM_CS_STATUS_SPEED_1000))
919 k1_enable = false;
922 if (hw->phy.type == e1000_phy_82577) {
923 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
924 &status_reg);
925 if (ret_val)
926 goto release;
928 status_reg &= HV_M_STATUS_LINK_UP |
929 HV_M_STATUS_AUTONEG_COMPLETE |
930 HV_M_STATUS_SPEED_MASK;
932 if (status_reg == (HV_M_STATUS_LINK_UP |
933 HV_M_STATUS_AUTONEG_COMPLETE |
934 HV_M_STATUS_SPEED_1000))
935 k1_enable = false;
938 /* Link stall fix for link up */
939 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
940 0x0100);
941 if (ret_val)
942 goto release;
944 } else {
945 /* Link stall fix for link down */
946 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
947 0x4100);
948 if (ret_val)
949 goto release;
952 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
954 release:
955 hw->phy.ops.release(hw);
956 out:
957 return ret_val;
961 * e1000_configure_k1_ich8lan - Configure K1 power state
962 * @hw: pointer to the HW structure
963 * @enable: K1 state to configure
965 * Configure the K1 power state based on the provided parameter.
966 * Assumes semaphore already acquired.
968 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
970 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
972 s32 ret_val = 0;
973 u32 ctrl_reg = 0;
974 u32 ctrl_ext = 0;
975 u32 reg = 0;
976 u16 kmrn_reg = 0;
978 ret_val = e1000e_read_kmrn_reg_locked(hw,
979 E1000_KMRNCTRLSTA_K1_CONFIG,
980 &kmrn_reg);
981 if (ret_val)
982 goto out;
984 if (k1_enable)
985 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
986 else
987 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
989 ret_val = e1000e_write_kmrn_reg_locked(hw,
990 E1000_KMRNCTRLSTA_K1_CONFIG,
991 kmrn_reg);
992 if (ret_val)
993 goto out;
995 udelay(20);
996 ctrl_ext = er32(CTRL_EXT);
997 ctrl_reg = er32(CTRL);
999 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1000 reg |= E1000_CTRL_FRCSPD;
1001 ew32(CTRL, reg);
1003 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1004 udelay(20);
1005 ew32(CTRL, ctrl_reg);
1006 ew32(CTRL_EXT, ctrl_ext);
1007 udelay(20);
1009 out:
1010 return ret_val;
1014 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1015 * @hw: pointer to the HW structure
1016 * @d0_state: boolean if entering d0 or d3 device state
1018 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1019 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1020 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1022 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1024 s32 ret_val = 0;
1025 u32 mac_reg;
1026 u16 oem_reg;
1028 if (hw->mac.type != e1000_pchlan)
1029 return ret_val;
1031 ret_val = hw->phy.ops.acquire(hw);
1032 if (ret_val)
1033 return ret_val;
1035 mac_reg = er32(EXTCNF_CTRL);
1036 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1037 goto out;
1039 mac_reg = er32(FEXTNVM);
1040 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1041 goto out;
1043 mac_reg = er32(PHY_CTRL);
1045 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1046 if (ret_val)
1047 goto out;
1049 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1051 if (d0_state) {
1052 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1053 oem_reg |= HV_OEM_BITS_GBE_DIS;
1055 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1056 oem_reg |= HV_OEM_BITS_LPLU;
1057 } else {
1058 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1059 oem_reg |= HV_OEM_BITS_GBE_DIS;
1061 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1062 oem_reg |= HV_OEM_BITS_LPLU;
1064 /* Restart auto-neg to activate the bits */
1065 if (!e1000_check_reset_block(hw))
1066 oem_reg |= HV_OEM_BITS_RESTART_AN;
1067 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1069 out:
1070 hw->phy.ops.release(hw);
1072 return ret_val;
1077 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1078 * done after every PHY reset.
1080 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1082 s32 ret_val = 0;
1084 if (hw->mac.type != e1000_pchlan)
1085 return ret_val;
1087 if (((hw->phy.type == e1000_phy_82577) &&
1088 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1089 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1090 /* Disable generation of early preamble */
1091 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1092 if (ret_val)
1093 return ret_val;
1095 /* Preamble tuning for SSC */
1096 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1097 if (ret_val)
1098 return ret_val;
1101 if (hw->phy.type == e1000_phy_82578) {
1103 * Return registers to default by doing a soft reset then
1104 * writing 0x3140 to the control register.
1106 if (hw->phy.revision < 2) {
1107 e1000e_phy_sw_reset(hw);
1108 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1112 /* Select page 0 */
1113 ret_val = hw->phy.ops.acquire(hw);
1114 if (ret_val)
1115 return ret_val;
1117 hw->phy.addr = 1;
1118 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1119 if (ret_val)
1120 goto out;
1121 hw->phy.ops.release(hw);
1124 * Configure the K1 Si workaround during phy reset assuming there is
1125 * link so that it disables K1 if link is in 1Gbps.
1127 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1129 out:
1130 return ret_val;
1134 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1135 * @hw: pointer to the HW structure
1137 * Check the appropriate indication the MAC has finished configuring the
1138 * PHY after a software reset.
1140 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1142 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1144 /* Wait for basic configuration completes before proceeding */
1145 do {
1146 data = er32(STATUS);
1147 data &= E1000_STATUS_LAN_INIT_DONE;
1148 udelay(100);
1149 } while ((!data) && --loop);
1152 * If basic configuration is incomplete before the above loop
1153 * count reaches 0, loading the configuration from NVM will
1154 * leave the PHY in a bad state possibly resulting in no link.
1156 if (loop == 0)
1157 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1159 /* Clear the Init Done bit for the next init event */
1160 data = er32(STATUS);
1161 data &= ~E1000_STATUS_LAN_INIT_DONE;
1162 ew32(STATUS, data);
1166 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1167 * @hw: pointer to the HW structure
1169 * Resets the PHY
1170 * This is a function pointer entry point called by drivers
1171 * or other shared routines.
1173 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1175 s32 ret_val = 0;
1176 u16 reg;
1178 ret_val = e1000e_phy_hw_reset_generic(hw);
1179 if (ret_val)
1180 return ret_val;
1182 /* Allow time for h/w to get to a quiescent state after reset */
1183 mdelay(10);
1185 if (hw->mac.type == e1000_pchlan) {
1186 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1187 if (ret_val)
1188 return ret_val;
1191 /* Dummy read to clear the phy wakeup bit after lcd reset */
1192 if (hw->mac.type == e1000_pchlan)
1193 e1e_rphy(hw, BM_WUC, &reg);
1195 /* Configure the LCD with the extended configuration region in NVM */
1196 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1197 if (ret_val)
1198 goto out;
1200 /* Configure the LCD with the OEM bits in NVM */
1201 if (hw->mac.type == e1000_pchlan)
1202 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1204 out:
1205 return 0;
1209 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1210 * @hw: pointer to the HW structure
1211 * @active: true to enable LPLU, false to disable
1213 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1214 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1215 * the phy speed. This function will manually set the LPLU bit and restart
1216 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1217 * since it configures the same bit.
1219 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1221 s32 ret_val = 0;
1222 u16 oem_reg;
1224 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1225 if (ret_val)
1226 goto out;
1228 if (active)
1229 oem_reg |= HV_OEM_BITS_LPLU;
1230 else
1231 oem_reg &= ~HV_OEM_BITS_LPLU;
1233 oem_reg |= HV_OEM_BITS_RESTART_AN;
1234 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1236 out:
1237 return ret_val;
1241 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1242 * @hw: pointer to the HW structure
1243 * @active: true to enable LPLU, false to disable
1245 * Sets the LPLU D0 state according to the active flag. When
1246 * activating LPLU this function also disables smart speed
1247 * and vice versa. LPLU will not be activated unless the
1248 * device autonegotiation advertisement meets standards of
1249 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1250 * This is a function pointer entry point only called by
1251 * PHY setup routines.
1253 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1255 struct e1000_phy_info *phy = &hw->phy;
1256 u32 phy_ctrl;
1257 s32 ret_val = 0;
1258 u16 data;
1260 if (phy->type == e1000_phy_ife)
1261 return ret_val;
1263 phy_ctrl = er32(PHY_CTRL);
1265 if (active) {
1266 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1267 ew32(PHY_CTRL, phy_ctrl);
1269 if (phy->type != e1000_phy_igp_3)
1270 return 0;
1273 * Call gig speed drop workaround on LPLU before accessing
1274 * any PHY registers
1276 if (hw->mac.type == e1000_ich8lan)
1277 e1000e_gig_downshift_workaround_ich8lan(hw);
1279 /* When LPLU is enabled, we should disable SmartSpeed */
1280 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1281 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1282 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1283 if (ret_val)
1284 return ret_val;
1285 } else {
1286 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1287 ew32(PHY_CTRL, phy_ctrl);
1289 if (phy->type != e1000_phy_igp_3)
1290 return 0;
1293 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1294 * during Dx states where the power conservation is most
1295 * important. During driver activity we should enable
1296 * SmartSpeed, so performance is maintained.
1298 if (phy->smart_speed == e1000_smart_speed_on) {
1299 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1300 &data);
1301 if (ret_val)
1302 return ret_val;
1304 data |= IGP01E1000_PSCFR_SMART_SPEED;
1305 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1306 data);
1307 if (ret_val)
1308 return ret_val;
1309 } else if (phy->smart_speed == e1000_smart_speed_off) {
1310 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1311 &data);
1312 if (ret_val)
1313 return ret_val;
1315 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1316 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1317 data);
1318 if (ret_val)
1319 return ret_val;
1323 return 0;
1327 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1328 * @hw: pointer to the HW structure
1329 * @active: true to enable LPLU, false to disable
1331 * Sets the LPLU D3 state according to the active flag. When
1332 * activating LPLU this function also disables smart speed
1333 * and vice versa. LPLU will not be activated unless the
1334 * device autonegotiation advertisement meets standards of
1335 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1336 * This is a function pointer entry point only called by
1337 * PHY setup routines.
1339 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1341 struct e1000_phy_info *phy = &hw->phy;
1342 u32 phy_ctrl;
1343 s32 ret_val;
1344 u16 data;
1346 phy_ctrl = er32(PHY_CTRL);
1348 if (!active) {
1349 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1350 ew32(PHY_CTRL, phy_ctrl);
1352 if (phy->type != e1000_phy_igp_3)
1353 return 0;
1356 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1357 * during Dx states where the power conservation is most
1358 * important. During driver activity we should enable
1359 * SmartSpeed, so performance is maintained.
1361 if (phy->smart_speed == e1000_smart_speed_on) {
1362 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1363 &data);
1364 if (ret_val)
1365 return ret_val;
1367 data |= IGP01E1000_PSCFR_SMART_SPEED;
1368 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1369 data);
1370 if (ret_val)
1371 return ret_val;
1372 } else if (phy->smart_speed == e1000_smart_speed_off) {
1373 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1374 &data);
1375 if (ret_val)
1376 return ret_val;
1378 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1379 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1380 data);
1381 if (ret_val)
1382 return ret_val;
1384 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1385 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1386 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1387 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1388 ew32(PHY_CTRL, phy_ctrl);
1390 if (phy->type != e1000_phy_igp_3)
1391 return 0;
1394 * Call gig speed drop workaround on LPLU before accessing
1395 * any PHY registers
1397 if (hw->mac.type == e1000_ich8lan)
1398 e1000e_gig_downshift_workaround_ich8lan(hw);
1400 /* When LPLU is enabled, we should disable SmartSpeed */
1401 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1402 if (ret_val)
1403 return ret_val;
1405 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1406 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1409 return 0;
1413 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1414 * @hw: pointer to the HW structure
1415 * @bank: pointer to the variable that returns the active bank
1417 * Reads signature byte from the NVM using the flash access registers.
1418 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1420 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1422 u32 eecd;
1423 struct e1000_nvm_info *nvm = &hw->nvm;
1424 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1425 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1426 u8 sig_byte = 0;
1427 s32 ret_val = 0;
1429 switch (hw->mac.type) {
1430 case e1000_ich8lan:
1431 case e1000_ich9lan:
1432 eecd = er32(EECD);
1433 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1434 E1000_EECD_SEC1VAL_VALID_MASK) {
1435 if (eecd & E1000_EECD_SEC1VAL)
1436 *bank = 1;
1437 else
1438 *bank = 0;
1440 return 0;
1442 e_dbg("Unable to determine valid NVM bank via EEC - "
1443 "reading flash signature\n");
1444 /* fall-thru */
1445 default:
1446 /* set bank to 0 in case flash read fails */
1447 *bank = 0;
1449 /* Check bank 0 */
1450 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1451 &sig_byte);
1452 if (ret_val)
1453 return ret_val;
1454 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1455 E1000_ICH_NVM_SIG_VALUE) {
1456 *bank = 0;
1457 return 0;
1460 /* Check bank 1 */
1461 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1462 bank1_offset,
1463 &sig_byte);
1464 if (ret_val)
1465 return ret_val;
1466 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1467 E1000_ICH_NVM_SIG_VALUE) {
1468 *bank = 1;
1469 return 0;
1472 e_dbg("ERROR: No valid NVM bank present\n");
1473 return -E1000_ERR_NVM;
1476 return 0;
1480 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1481 * @hw: pointer to the HW structure
1482 * @offset: The offset (in bytes) of the word(s) to read.
1483 * @words: Size of data to read in words
1484 * @data: Pointer to the word(s) to read at offset.
1486 * Reads a word(s) from the NVM using the flash access registers.
1488 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1489 u16 *data)
1491 struct e1000_nvm_info *nvm = &hw->nvm;
1492 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1493 u32 act_offset;
1494 s32 ret_val = 0;
1495 u32 bank = 0;
1496 u16 i, word;
1498 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1499 (words == 0)) {
1500 e_dbg("nvm parameter(s) out of bounds\n");
1501 ret_val = -E1000_ERR_NVM;
1502 goto out;
1505 nvm->ops.acquire(hw);
1507 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1508 if (ret_val) {
1509 e_dbg("Could not detect valid bank, assuming bank 0\n");
1510 bank = 0;
1513 act_offset = (bank) ? nvm->flash_bank_size : 0;
1514 act_offset += offset;
1516 ret_val = 0;
1517 for (i = 0; i < words; i++) {
1518 if ((dev_spec->shadow_ram) &&
1519 (dev_spec->shadow_ram[offset+i].modified)) {
1520 data[i] = dev_spec->shadow_ram[offset+i].value;
1521 } else {
1522 ret_val = e1000_read_flash_word_ich8lan(hw,
1523 act_offset + i,
1524 &word);
1525 if (ret_val)
1526 break;
1527 data[i] = word;
1531 nvm->ops.release(hw);
1533 out:
1534 if (ret_val)
1535 e_dbg("NVM read error: %d\n", ret_val);
1537 return ret_val;
1541 * e1000_flash_cycle_init_ich8lan - Initialize flash
1542 * @hw: pointer to the HW structure
1544 * This function does initial flash setup so that a new read/write/erase cycle
1545 * can be started.
1547 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1549 union ich8_hws_flash_status hsfsts;
1550 s32 ret_val = -E1000_ERR_NVM;
1551 s32 i = 0;
1553 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1555 /* Check if the flash descriptor is valid */
1556 if (hsfsts.hsf_status.fldesvalid == 0) {
1557 e_dbg("Flash descriptor invalid. "
1558 "SW Sequencing must be used.");
1559 return -E1000_ERR_NVM;
1562 /* Clear FCERR and DAEL in hw status by writing 1 */
1563 hsfsts.hsf_status.flcerr = 1;
1564 hsfsts.hsf_status.dael = 1;
1566 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1569 * Either we should have a hardware SPI cycle in progress
1570 * bit to check against, in order to start a new cycle or
1571 * FDONE bit should be changed in the hardware so that it
1572 * is 1 after hardware reset, which can then be used as an
1573 * indication whether a cycle is in progress or has been
1574 * completed.
1577 if (hsfsts.hsf_status.flcinprog == 0) {
1579 * There is no cycle running at present,
1580 * so we can start a cycle.
1581 * Begin by setting Flash Cycle Done.
1583 hsfsts.hsf_status.flcdone = 1;
1584 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1585 ret_val = 0;
1586 } else {
1588 * Otherwise poll for sometime so the current
1589 * cycle has a chance to end before giving up.
1591 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1592 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1593 if (hsfsts.hsf_status.flcinprog == 0) {
1594 ret_val = 0;
1595 break;
1597 udelay(1);
1599 if (ret_val == 0) {
1601 * Successful in waiting for previous cycle to timeout,
1602 * now set the Flash Cycle Done.
1604 hsfsts.hsf_status.flcdone = 1;
1605 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1606 } else {
1607 e_dbg("Flash controller busy, cannot get access");
1611 return ret_val;
1615 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1616 * @hw: pointer to the HW structure
1617 * @timeout: maximum time to wait for completion
1619 * This function starts a flash cycle and waits for its completion.
1621 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1623 union ich8_hws_flash_ctrl hsflctl;
1624 union ich8_hws_flash_status hsfsts;
1625 s32 ret_val = -E1000_ERR_NVM;
1626 u32 i = 0;
1628 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1629 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1630 hsflctl.hsf_ctrl.flcgo = 1;
1631 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1633 /* wait till FDONE bit is set to 1 */
1634 do {
1635 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1636 if (hsfsts.hsf_status.flcdone == 1)
1637 break;
1638 udelay(1);
1639 } while (i++ < timeout);
1641 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1642 return 0;
1644 return ret_val;
1648 * e1000_read_flash_word_ich8lan - Read word from flash
1649 * @hw: pointer to the HW structure
1650 * @offset: offset to data location
1651 * @data: pointer to the location for storing the data
1653 * Reads the flash word at offset into data. Offset is converted
1654 * to bytes before read.
1656 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1657 u16 *data)
1659 /* Must convert offset into bytes. */
1660 offset <<= 1;
1662 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1666 * e1000_read_flash_byte_ich8lan - Read byte from flash
1667 * @hw: pointer to the HW structure
1668 * @offset: The offset of the byte to read.
1669 * @data: Pointer to a byte to store the value read.
1671 * Reads a single byte from the NVM using the flash access registers.
1673 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1674 u8 *data)
1676 s32 ret_val;
1677 u16 word = 0;
1679 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1680 if (ret_val)
1681 return ret_val;
1683 *data = (u8)word;
1685 return 0;
1689 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1690 * @hw: pointer to the HW structure
1691 * @offset: The offset (in bytes) of the byte or word to read.
1692 * @size: Size of data to read, 1=byte 2=word
1693 * @data: Pointer to the word to store the value read.
1695 * Reads a byte or word from the NVM using the flash access registers.
1697 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1698 u8 size, u16 *data)
1700 union ich8_hws_flash_status hsfsts;
1701 union ich8_hws_flash_ctrl hsflctl;
1702 u32 flash_linear_addr;
1703 u32 flash_data = 0;
1704 s32 ret_val = -E1000_ERR_NVM;
1705 u8 count = 0;
1707 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1708 return -E1000_ERR_NVM;
1710 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1711 hw->nvm.flash_base_addr;
1713 do {
1714 udelay(1);
1715 /* Steps */
1716 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1717 if (ret_val != 0)
1718 break;
1720 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1721 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1722 hsflctl.hsf_ctrl.fldbcount = size - 1;
1723 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1724 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1726 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1728 ret_val = e1000_flash_cycle_ich8lan(hw,
1729 ICH_FLASH_READ_COMMAND_TIMEOUT);
1732 * Check if FCERR is set to 1, if set to 1, clear it
1733 * and try the whole sequence a few more times, else
1734 * read in (shift in) the Flash Data0, the order is
1735 * least significant byte first msb to lsb
1737 if (ret_val == 0) {
1738 flash_data = er32flash(ICH_FLASH_FDATA0);
1739 if (size == 1) {
1740 *data = (u8)(flash_data & 0x000000FF);
1741 } else if (size == 2) {
1742 *data = (u16)(flash_data & 0x0000FFFF);
1744 break;
1745 } else {
1747 * If we've gotten here, then things are probably
1748 * completely hosed, but if the error condition is
1749 * detected, it won't hurt to give it another try...
1750 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1752 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1753 if (hsfsts.hsf_status.flcerr == 1) {
1754 /* Repeat for some time before giving up. */
1755 continue;
1756 } else if (hsfsts.hsf_status.flcdone == 0) {
1757 e_dbg("Timeout error - flash cycle "
1758 "did not complete.");
1759 break;
1762 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1764 return ret_val;
1768 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1769 * @hw: pointer to the HW structure
1770 * @offset: The offset (in bytes) of the word(s) to write.
1771 * @words: Size of data to write in words
1772 * @data: Pointer to the word(s) to write at offset.
1774 * Writes a byte or word to the NVM using the flash access registers.
1776 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1777 u16 *data)
1779 struct e1000_nvm_info *nvm = &hw->nvm;
1780 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1781 u16 i;
1783 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1784 (words == 0)) {
1785 e_dbg("nvm parameter(s) out of bounds\n");
1786 return -E1000_ERR_NVM;
1789 nvm->ops.acquire(hw);
1791 for (i = 0; i < words; i++) {
1792 dev_spec->shadow_ram[offset+i].modified = true;
1793 dev_spec->shadow_ram[offset+i].value = data[i];
1796 nvm->ops.release(hw);
1798 return 0;
1802 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1803 * @hw: pointer to the HW structure
1805 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1806 * which writes the checksum to the shadow ram. The changes in the shadow
1807 * ram are then committed to the EEPROM by processing each bank at a time
1808 * checking for the modified bit and writing only the pending changes.
1809 * After a successful commit, the shadow ram is cleared and is ready for
1810 * future writes.
1812 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1814 struct e1000_nvm_info *nvm = &hw->nvm;
1815 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1816 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1817 s32 ret_val;
1818 u16 data;
1820 ret_val = e1000e_update_nvm_checksum_generic(hw);
1821 if (ret_val)
1822 goto out;
1824 if (nvm->type != e1000_nvm_flash_sw)
1825 goto out;
1827 nvm->ops.acquire(hw);
1830 * We're writing to the opposite bank so if we're on bank 1,
1831 * write to bank 0 etc. We also need to erase the segment that
1832 * is going to be written
1834 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1835 if (ret_val) {
1836 e_dbg("Could not detect valid bank, assuming bank 0\n");
1837 bank = 0;
1840 if (bank == 0) {
1841 new_bank_offset = nvm->flash_bank_size;
1842 old_bank_offset = 0;
1843 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1844 if (ret_val) {
1845 nvm->ops.release(hw);
1846 goto out;
1848 } else {
1849 old_bank_offset = nvm->flash_bank_size;
1850 new_bank_offset = 0;
1851 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1852 if (ret_val) {
1853 nvm->ops.release(hw);
1854 goto out;
1858 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1860 * Determine whether to write the value stored
1861 * in the other NVM bank or a modified value stored
1862 * in the shadow RAM
1864 if (dev_spec->shadow_ram[i].modified) {
1865 data = dev_spec->shadow_ram[i].value;
1866 } else {
1867 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1868 old_bank_offset,
1869 &data);
1870 if (ret_val)
1871 break;
1875 * If the word is 0x13, then make sure the signature bits
1876 * (15:14) are 11b until the commit has completed.
1877 * This will allow us to write 10b which indicates the
1878 * signature is valid. We want to do this after the write
1879 * has completed so that we don't mark the segment valid
1880 * while the write is still in progress
1882 if (i == E1000_ICH_NVM_SIG_WORD)
1883 data |= E1000_ICH_NVM_SIG_MASK;
1885 /* Convert offset to bytes. */
1886 act_offset = (i + new_bank_offset) << 1;
1888 udelay(100);
1889 /* Write the bytes to the new bank. */
1890 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1891 act_offset,
1892 (u8)data);
1893 if (ret_val)
1894 break;
1896 udelay(100);
1897 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1898 act_offset + 1,
1899 (u8)(data >> 8));
1900 if (ret_val)
1901 break;
1905 * Don't bother writing the segment valid bits if sector
1906 * programming failed.
1908 if (ret_val) {
1909 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1910 e_dbg("Flash commit failed.\n");
1911 nvm->ops.release(hw);
1912 goto out;
1916 * Finally validate the new segment by setting bit 15:14
1917 * to 10b in word 0x13 , this can be done without an
1918 * erase as well since these bits are 11 to start with
1919 * and we need to change bit 14 to 0b
1921 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1922 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1923 if (ret_val) {
1924 nvm->ops.release(hw);
1925 goto out;
1927 data &= 0xBFFF;
1928 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1929 act_offset * 2 + 1,
1930 (u8)(data >> 8));
1931 if (ret_val) {
1932 nvm->ops.release(hw);
1933 goto out;
1937 * And invalidate the previously valid segment by setting
1938 * its signature word (0x13) high_byte to 0b. This can be
1939 * done without an erase because flash erase sets all bits
1940 * to 1's. We can write 1's to 0's without an erase
1942 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1943 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1944 if (ret_val) {
1945 nvm->ops.release(hw);
1946 goto out;
1949 /* Great! Everything worked, we can now clear the cached entries. */
1950 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1951 dev_spec->shadow_ram[i].modified = false;
1952 dev_spec->shadow_ram[i].value = 0xFFFF;
1955 nvm->ops.release(hw);
1958 * Reload the EEPROM, or else modifications will not appear
1959 * until after the next adapter reset.
1961 e1000e_reload_nvm(hw);
1962 msleep(10);
1964 out:
1965 if (ret_val)
1966 e_dbg("NVM update error: %d\n", ret_val);
1968 return ret_val;
1972 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1973 * @hw: pointer to the HW structure
1975 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1976 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1977 * calculated, in which case we need to calculate the checksum and set bit 6.
1979 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1981 s32 ret_val;
1982 u16 data;
1985 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1986 * needs to be fixed. This bit is an indication that the NVM
1987 * was prepared by OEM software and did not calculate the
1988 * checksum...a likely scenario.
1990 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1991 if (ret_val)
1992 return ret_val;
1994 if ((data & 0x40) == 0) {
1995 data |= 0x40;
1996 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1997 if (ret_val)
1998 return ret_val;
1999 ret_val = e1000e_update_nvm_checksum(hw);
2000 if (ret_val)
2001 return ret_val;
2004 return e1000e_validate_nvm_checksum_generic(hw);
2008 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2009 * @hw: pointer to the HW structure
2011 * To prevent malicious write/erase of the NVM, set it to be read-only
2012 * so that the hardware ignores all write/erase cycles of the NVM via
2013 * the flash control registers. The shadow-ram copy of the NVM will
2014 * still be updated, however any updates to this copy will not stick
2015 * across driver reloads.
2017 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2019 struct e1000_nvm_info *nvm = &hw->nvm;
2020 union ich8_flash_protected_range pr0;
2021 union ich8_hws_flash_status hsfsts;
2022 u32 gfpreg;
2024 nvm->ops.acquire(hw);
2026 gfpreg = er32flash(ICH_FLASH_GFPREG);
2028 /* Write-protect GbE Sector of NVM */
2029 pr0.regval = er32flash(ICH_FLASH_PR0);
2030 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2031 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2032 pr0.range.wpe = true;
2033 ew32flash(ICH_FLASH_PR0, pr0.regval);
2036 * Lock down a subset of GbE Flash Control Registers, e.g.
2037 * PR0 to prevent the write-protection from being lifted.
2038 * Once FLOCKDN is set, the registers protected by it cannot
2039 * be written until FLOCKDN is cleared by a hardware reset.
2041 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2042 hsfsts.hsf_status.flockdn = true;
2043 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2045 nvm->ops.release(hw);
2049 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2050 * @hw: pointer to the HW structure
2051 * @offset: The offset (in bytes) of the byte/word to read.
2052 * @size: Size of data to read, 1=byte 2=word
2053 * @data: The byte(s) to write to the NVM.
2055 * Writes one/two bytes to the NVM using the flash access registers.
2057 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2058 u8 size, u16 data)
2060 union ich8_hws_flash_status hsfsts;
2061 union ich8_hws_flash_ctrl hsflctl;
2062 u32 flash_linear_addr;
2063 u32 flash_data = 0;
2064 s32 ret_val;
2065 u8 count = 0;
2067 if (size < 1 || size > 2 || data > size * 0xff ||
2068 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2069 return -E1000_ERR_NVM;
2071 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2072 hw->nvm.flash_base_addr;
2074 do {
2075 udelay(1);
2076 /* Steps */
2077 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2078 if (ret_val)
2079 break;
2081 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2082 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2083 hsflctl.hsf_ctrl.fldbcount = size -1;
2084 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2085 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2087 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2089 if (size == 1)
2090 flash_data = (u32)data & 0x00FF;
2091 else
2092 flash_data = (u32)data;
2094 ew32flash(ICH_FLASH_FDATA0, flash_data);
2097 * check if FCERR is set to 1 , if set to 1, clear it
2098 * and try the whole sequence a few more times else done
2100 ret_val = e1000_flash_cycle_ich8lan(hw,
2101 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2102 if (!ret_val)
2103 break;
2106 * If we're here, then things are most likely
2107 * completely hosed, but if the error condition
2108 * is detected, it won't hurt to give it another
2109 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2111 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2112 if (hsfsts.hsf_status.flcerr == 1)
2113 /* Repeat for some time before giving up. */
2114 continue;
2115 if (hsfsts.hsf_status.flcdone == 0) {
2116 e_dbg("Timeout error - flash cycle "
2117 "did not complete.");
2118 break;
2120 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2122 return ret_val;
2126 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2127 * @hw: pointer to the HW structure
2128 * @offset: The index of the byte to read.
2129 * @data: The byte to write to the NVM.
2131 * Writes a single byte to the NVM using the flash access registers.
2133 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2134 u8 data)
2136 u16 word = (u16)data;
2138 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2142 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2143 * @hw: pointer to the HW structure
2144 * @offset: The offset of the byte to write.
2145 * @byte: The byte to write to the NVM.
2147 * Writes a single byte to the NVM using the flash access registers.
2148 * Goes through a retry algorithm before giving up.
2150 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2151 u32 offset, u8 byte)
2153 s32 ret_val;
2154 u16 program_retries;
2156 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2157 if (!ret_val)
2158 return ret_val;
2160 for (program_retries = 0; program_retries < 100; program_retries++) {
2161 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2162 udelay(100);
2163 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2164 if (!ret_val)
2165 break;
2167 if (program_retries == 100)
2168 return -E1000_ERR_NVM;
2170 return 0;
2174 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2175 * @hw: pointer to the HW structure
2176 * @bank: 0 for first bank, 1 for second bank, etc.
2178 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2179 * bank N is 4096 * N + flash_reg_addr.
2181 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2183 struct e1000_nvm_info *nvm = &hw->nvm;
2184 union ich8_hws_flash_status hsfsts;
2185 union ich8_hws_flash_ctrl hsflctl;
2186 u32 flash_linear_addr;
2187 /* bank size is in 16bit words - adjust to bytes */
2188 u32 flash_bank_size = nvm->flash_bank_size * 2;
2189 s32 ret_val;
2190 s32 count = 0;
2191 s32 j, iteration, sector_size;
2193 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2196 * Determine HW Sector size: Read BERASE bits of hw flash status
2197 * register
2198 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2199 * consecutive sectors. The start index for the nth Hw sector
2200 * can be calculated as = bank * 4096 + n * 256
2201 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2202 * The start index for the nth Hw sector can be calculated
2203 * as = bank * 4096
2204 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2205 * (ich9 only, otherwise error condition)
2206 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2208 switch (hsfsts.hsf_status.berasesz) {
2209 case 0:
2210 /* Hw sector size 256 */
2211 sector_size = ICH_FLASH_SEG_SIZE_256;
2212 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2213 break;
2214 case 1:
2215 sector_size = ICH_FLASH_SEG_SIZE_4K;
2216 iteration = 1;
2217 break;
2218 case 2:
2219 sector_size = ICH_FLASH_SEG_SIZE_8K;
2220 iteration = 1;
2221 break;
2222 case 3:
2223 sector_size = ICH_FLASH_SEG_SIZE_64K;
2224 iteration = 1;
2225 break;
2226 default:
2227 return -E1000_ERR_NVM;
2230 /* Start with the base address, then add the sector offset. */
2231 flash_linear_addr = hw->nvm.flash_base_addr;
2232 flash_linear_addr += (bank) ? flash_bank_size : 0;
2234 for (j = 0; j < iteration ; j++) {
2235 do {
2236 /* Steps */
2237 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2238 if (ret_val)
2239 return ret_val;
2242 * Write a value 11 (block Erase) in Flash
2243 * Cycle field in hw flash control
2245 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2246 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2247 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2250 * Write the last 24 bits of an index within the
2251 * block into Flash Linear address field in Flash
2252 * Address.
2254 flash_linear_addr += (j * sector_size);
2255 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2257 ret_val = e1000_flash_cycle_ich8lan(hw,
2258 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2259 if (ret_val == 0)
2260 break;
2263 * Check if FCERR is set to 1. If 1,
2264 * clear it and try the whole sequence
2265 * a few more times else Done
2267 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2268 if (hsfsts.hsf_status.flcerr == 1)
2269 /* repeat for some time before giving up */
2270 continue;
2271 else if (hsfsts.hsf_status.flcdone == 0)
2272 return ret_val;
2273 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2276 return 0;
2280 * e1000_valid_led_default_ich8lan - Set the default LED settings
2281 * @hw: pointer to the HW structure
2282 * @data: Pointer to the LED settings
2284 * Reads the LED default settings from the NVM to data. If the NVM LED
2285 * settings is all 0's or F's, set the LED default to a valid LED default
2286 * setting.
2288 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2290 s32 ret_val;
2292 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2293 if (ret_val) {
2294 e_dbg("NVM Read Error\n");
2295 return ret_val;
2298 if (*data == ID_LED_RESERVED_0000 ||
2299 *data == ID_LED_RESERVED_FFFF)
2300 *data = ID_LED_DEFAULT_ICH8LAN;
2302 return 0;
2306 * e1000_id_led_init_pchlan - store LED configurations
2307 * @hw: pointer to the HW structure
2309 * PCH does not control LEDs via the LEDCTL register, rather it uses
2310 * the PHY LED configuration register.
2312 * PCH also does not have an "always on" or "always off" mode which
2313 * complicates the ID feature. Instead of using the "on" mode to indicate
2314 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2315 * use "link_up" mode. The LEDs will still ID on request if there is no
2316 * link based on logic in e1000_led_[on|off]_pchlan().
2318 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2320 struct e1000_mac_info *mac = &hw->mac;
2321 s32 ret_val;
2322 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2323 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2324 u16 data, i, temp, shift;
2326 /* Get default ID LED modes */
2327 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2328 if (ret_val)
2329 goto out;
2331 mac->ledctl_default = er32(LEDCTL);
2332 mac->ledctl_mode1 = mac->ledctl_default;
2333 mac->ledctl_mode2 = mac->ledctl_default;
2335 for (i = 0; i < 4; i++) {
2336 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2337 shift = (i * 5);
2338 switch (temp) {
2339 case ID_LED_ON1_DEF2:
2340 case ID_LED_ON1_ON2:
2341 case ID_LED_ON1_OFF2:
2342 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2343 mac->ledctl_mode1 |= (ledctl_on << shift);
2344 break;
2345 case ID_LED_OFF1_DEF2:
2346 case ID_LED_OFF1_ON2:
2347 case ID_LED_OFF1_OFF2:
2348 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2349 mac->ledctl_mode1 |= (ledctl_off << shift);
2350 break;
2351 default:
2352 /* Do nothing */
2353 break;
2355 switch (temp) {
2356 case ID_LED_DEF1_ON2:
2357 case ID_LED_ON1_ON2:
2358 case ID_LED_OFF1_ON2:
2359 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2360 mac->ledctl_mode2 |= (ledctl_on << shift);
2361 break;
2362 case ID_LED_DEF1_OFF2:
2363 case ID_LED_ON1_OFF2:
2364 case ID_LED_OFF1_OFF2:
2365 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2366 mac->ledctl_mode2 |= (ledctl_off << shift);
2367 break;
2368 default:
2369 /* Do nothing */
2370 break;
2374 out:
2375 return ret_val;
2379 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2380 * @hw: pointer to the HW structure
2382 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2383 * register, so the the bus width is hard coded.
2385 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2387 struct e1000_bus_info *bus = &hw->bus;
2388 s32 ret_val;
2390 ret_val = e1000e_get_bus_info_pcie(hw);
2393 * ICH devices are "PCI Express"-ish. They have
2394 * a configuration space, but do not contain
2395 * PCI Express Capability registers, so bus width
2396 * must be hardcoded.
2398 if (bus->width == e1000_bus_width_unknown)
2399 bus->width = e1000_bus_width_pcie_x1;
2401 return ret_val;
2405 * e1000_reset_hw_ich8lan - Reset the hardware
2406 * @hw: pointer to the HW structure
2408 * Does a full reset of the hardware which includes a reset of the PHY and
2409 * MAC.
2411 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2413 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2414 u16 reg;
2415 u32 ctrl, icr, kab;
2416 s32 ret_val;
2419 * Prevent the PCI-E bus from sticking if there is no TLP connection
2420 * on the last TLP read/write transaction when MAC is reset.
2422 ret_val = e1000e_disable_pcie_master(hw);
2423 if (ret_val) {
2424 e_dbg("PCI-E Master disable polling has failed.\n");
2427 e_dbg("Masking off all interrupts\n");
2428 ew32(IMC, 0xffffffff);
2431 * Disable the Transmit and Receive units. Then delay to allow
2432 * any pending transactions to complete before we hit the MAC
2433 * with the global reset.
2435 ew32(RCTL, 0);
2436 ew32(TCTL, E1000_TCTL_PSP);
2437 e1e_flush();
2439 msleep(10);
2441 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2442 if (hw->mac.type == e1000_ich8lan) {
2443 /* Set Tx and Rx buffer allocation to 8k apiece. */
2444 ew32(PBA, E1000_PBA_8K);
2445 /* Set Packet Buffer Size to 16k. */
2446 ew32(PBS, E1000_PBS_16K);
2449 if (hw->mac.type == e1000_pchlan) {
2450 /* Save the NVM K1 bit setting*/
2451 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2452 if (ret_val)
2453 return ret_val;
2455 if (reg & E1000_NVM_K1_ENABLE)
2456 dev_spec->nvm_k1_enabled = true;
2457 else
2458 dev_spec->nvm_k1_enabled = false;
2461 ctrl = er32(CTRL);
2463 if (!e1000_check_reset_block(hw)) {
2464 /* Clear PHY Reset Asserted bit */
2465 if (hw->mac.type >= e1000_pchlan) {
2466 u32 status = er32(STATUS);
2467 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2471 * PHY HW reset requires MAC CORE reset at the same
2472 * time to make sure the interface between MAC and the
2473 * external PHY is reset.
2475 ctrl |= E1000_CTRL_PHY_RST;
2477 ret_val = e1000_acquire_swflag_ich8lan(hw);
2478 e_dbg("Issuing a global reset to ich8lan\n");
2479 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2480 msleep(20);
2482 if (!ret_val)
2483 e1000_release_swflag_ich8lan(hw);
2485 if (ctrl & E1000_CTRL_PHY_RST)
2486 ret_val = hw->phy.ops.get_cfg_done(hw);
2488 if (hw->mac.type >= e1000_ich10lan) {
2489 e1000_lan_init_done_ich8lan(hw);
2490 } else {
2491 ret_val = e1000e_get_auto_rd_done(hw);
2492 if (ret_val) {
2494 * When auto config read does not complete, do not
2495 * return with an error. This can happen in situations
2496 * where there is no eeprom and prevents getting link.
2498 e_dbg("Auto Read Done did not complete\n");
2501 /* Dummy read to clear the phy wakeup bit after lcd reset */
2502 if (hw->mac.type == e1000_pchlan)
2503 e1e_rphy(hw, BM_WUC, &reg);
2505 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2506 if (ret_val)
2507 goto out;
2509 if (hw->mac.type == e1000_pchlan) {
2510 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2511 if (ret_val)
2512 goto out;
2515 * For PCH, this write will make sure that any noise
2516 * will be detected as a CRC error and be dropped rather than show up
2517 * as a bad packet to the DMA engine.
2519 if (hw->mac.type == e1000_pchlan)
2520 ew32(CRC_OFFSET, 0x65656565);
2522 ew32(IMC, 0xffffffff);
2523 icr = er32(ICR);
2525 kab = er32(KABGTXD);
2526 kab |= E1000_KABGTXD_BGSQLBIAS;
2527 ew32(KABGTXD, kab);
2529 if (hw->mac.type == e1000_pchlan)
2530 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2532 out:
2533 return ret_val;
2537 * e1000_init_hw_ich8lan - Initialize the hardware
2538 * @hw: pointer to the HW structure
2540 * Prepares the hardware for transmit and receive by doing the following:
2541 * - initialize hardware bits
2542 * - initialize LED identification
2543 * - setup receive address registers
2544 * - setup flow control
2545 * - setup transmit descriptors
2546 * - clear statistics
2548 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2550 struct e1000_mac_info *mac = &hw->mac;
2551 u32 ctrl_ext, txdctl, snoop;
2552 s32 ret_val;
2553 u16 i;
2555 e1000_initialize_hw_bits_ich8lan(hw);
2557 /* Initialize identification LED */
2558 ret_val = mac->ops.id_led_init(hw);
2559 if (ret_val)
2560 e_dbg("Error initializing identification LED\n");
2561 /* This is not fatal and we should not stop init due to this */
2563 /* Setup the receive address. */
2564 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2566 /* Zero out the Multicast HASH table */
2567 e_dbg("Zeroing the MTA\n");
2568 for (i = 0; i < mac->mta_reg_count; i++)
2569 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2572 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2573 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2574 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2576 if (hw->phy.type == e1000_phy_82578) {
2577 hw->phy.ops.read_reg(hw, BM_WUC, &i);
2578 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2579 if (ret_val)
2580 return ret_val;
2583 /* Setup link and flow control */
2584 ret_val = e1000_setup_link_ich8lan(hw);
2586 /* Set the transmit descriptor write-back policy for both queues */
2587 txdctl = er32(TXDCTL(0));
2588 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2589 E1000_TXDCTL_FULL_TX_DESC_WB;
2590 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2591 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2592 ew32(TXDCTL(0), txdctl);
2593 txdctl = er32(TXDCTL(1));
2594 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2595 E1000_TXDCTL_FULL_TX_DESC_WB;
2596 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2597 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2598 ew32(TXDCTL(1), txdctl);
2601 * ICH8 has opposite polarity of no_snoop bits.
2602 * By default, we should use snoop behavior.
2604 if (mac->type == e1000_ich8lan)
2605 snoop = PCIE_ICH8_SNOOP_ALL;
2606 else
2607 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2608 e1000e_set_pcie_no_snoop(hw, snoop);
2610 ctrl_ext = er32(CTRL_EXT);
2611 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2612 ew32(CTRL_EXT, ctrl_ext);
2615 * Clear all of the statistics registers (clear on read). It is
2616 * important that we do this after we have tried to establish link
2617 * because the symbol error count will increment wildly if there
2618 * is no link.
2620 e1000_clear_hw_cntrs_ich8lan(hw);
2622 return 0;
2625 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2626 * @hw: pointer to the HW structure
2628 * Sets/Clears required hardware bits necessary for correctly setting up the
2629 * hardware for transmit and receive.
2631 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2633 u32 reg;
2635 /* Extended Device Control */
2636 reg = er32(CTRL_EXT);
2637 reg |= (1 << 22);
2638 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2639 if (hw->mac.type >= e1000_pchlan)
2640 reg |= E1000_CTRL_EXT_PHYPDEN;
2641 ew32(CTRL_EXT, reg);
2643 /* Transmit Descriptor Control 0 */
2644 reg = er32(TXDCTL(0));
2645 reg |= (1 << 22);
2646 ew32(TXDCTL(0), reg);
2648 /* Transmit Descriptor Control 1 */
2649 reg = er32(TXDCTL(1));
2650 reg |= (1 << 22);
2651 ew32(TXDCTL(1), reg);
2653 /* Transmit Arbitration Control 0 */
2654 reg = er32(TARC(0));
2655 if (hw->mac.type == e1000_ich8lan)
2656 reg |= (1 << 28) | (1 << 29);
2657 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2658 ew32(TARC(0), reg);
2660 /* Transmit Arbitration Control 1 */
2661 reg = er32(TARC(1));
2662 if (er32(TCTL) & E1000_TCTL_MULR)
2663 reg &= ~(1 << 28);
2664 else
2665 reg |= (1 << 28);
2666 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2667 ew32(TARC(1), reg);
2669 /* Device Status */
2670 if (hw->mac.type == e1000_ich8lan) {
2671 reg = er32(STATUS);
2672 reg &= ~(1 << 31);
2673 ew32(STATUS, reg);
2678 * e1000_setup_link_ich8lan - Setup flow control and link settings
2679 * @hw: pointer to the HW structure
2681 * Determines which flow control settings to use, then configures flow
2682 * control. Calls the appropriate media-specific link configuration
2683 * function. Assuming the adapter has a valid link partner, a valid link
2684 * should be established. Assumes the hardware has previously been reset
2685 * and the transmitter and receiver are not enabled.
2687 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2689 s32 ret_val;
2691 if (e1000_check_reset_block(hw))
2692 return 0;
2695 * ICH parts do not have a word in the NVM to determine
2696 * the default flow control setting, so we explicitly
2697 * set it to full.
2699 if (hw->fc.requested_mode == e1000_fc_default) {
2700 /* Workaround h/w hang when Tx flow control enabled */
2701 if (hw->mac.type == e1000_pchlan)
2702 hw->fc.requested_mode = e1000_fc_rx_pause;
2703 else
2704 hw->fc.requested_mode = e1000_fc_full;
2708 * Save off the requested flow control mode for use later. Depending
2709 * on the link partner's capabilities, we may or may not use this mode.
2711 hw->fc.current_mode = hw->fc.requested_mode;
2713 e_dbg("After fix-ups FlowControl is now = %x\n",
2714 hw->fc.current_mode);
2716 /* Continue to configure the copper link. */
2717 ret_val = e1000_setup_copper_link_ich8lan(hw);
2718 if (ret_val)
2719 return ret_val;
2721 ew32(FCTTV, hw->fc.pause_time);
2722 if ((hw->phy.type == e1000_phy_82578) ||
2723 (hw->phy.type == e1000_phy_82577)) {
2724 ret_val = hw->phy.ops.write_reg(hw,
2725 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2726 hw->fc.pause_time);
2727 if (ret_val)
2728 return ret_val;
2731 return e1000e_set_fc_watermarks(hw);
2735 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2736 * @hw: pointer to the HW structure
2738 * Configures the kumeran interface to the PHY to wait the appropriate time
2739 * when polling the PHY, then call the generic setup_copper_link to finish
2740 * configuring the copper link.
2742 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2744 u32 ctrl;
2745 s32 ret_val;
2746 u16 reg_data;
2748 ctrl = er32(CTRL);
2749 ctrl |= E1000_CTRL_SLU;
2750 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2751 ew32(CTRL, ctrl);
2754 * Set the mac to wait the maximum time between each iteration
2755 * and increase the max iterations when polling the phy;
2756 * this fixes erroneous timeouts at 10Mbps.
2758 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2759 if (ret_val)
2760 return ret_val;
2761 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2762 if (ret_val)
2763 return ret_val;
2764 reg_data |= 0x3F;
2765 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2766 if (ret_val)
2767 return ret_val;
2769 switch (hw->phy.type) {
2770 case e1000_phy_igp_3:
2771 ret_val = e1000e_copper_link_setup_igp(hw);
2772 if (ret_val)
2773 return ret_val;
2774 break;
2775 case e1000_phy_bm:
2776 case e1000_phy_82578:
2777 ret_val = e1000e_copper_link_setup_m88(hw);
2778 if (ret_val)
2779 return ret_val;
2780 break;
2781 case e1000_phy_82577:
2782 ret_val = e1000_copper_link_setup_82577(hw);
2783 if (ret_val)
2784 return ret_val;
2785 break;
2786 case e1000_phy_ife:
2787 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
2788 &reg_data);
2789 if (ret_val)
2790 return ret_val;
2792 reg_data &= ~IFE_PMC_AUTO_MDIX;
2794 switch (hw->phy.mdix) {
2795 case 1:
2796 reg_data &= ~IFE_PMC_FORCE_MDIX;
2797 break;
2798 case 2:
2799 reg_data |= IFE_PMC_FORCE_MDIX;
2800 break;
2801 case 0:
2802 default:
2803 reg_data |= IFE_PMC_AUTO_MDIX;
2804 break;
2806 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
2807 reg_data);
2808 if (ret_val)
2809 return ret_val;
2810 break;
2811 default:
2812 break;
2814 return e1000e_setup_copper_link(hw);
2818 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2819 * @hw: pointer to the HW structure
2820 * @speed: pointer to store current link speed
2821 * @duplex: pointer to store the current link duplex
2823 * Calls the generic get_speed_and_duplex to retrieve the current link
2824 * information and then calls the Kumeran lock loss workaround for links at
2825 * gigabit speeds.
2827 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2828 u16 *duplex)
2830 s32 ret_val;
2832 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2833 if (ret_val)
2834 return ret_val;
2836 if ((hw->mac.type == e1000_ich8lan) &&
2837 (hw->phy.type == e1000_phy_igp_3) &&
2838 (*speed == SPEED_1000)) {
2839 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2842 return ret_val;
2846 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2847 * @hw: pointer to the HW structure
2849 * Work-around for 82566 Kumeran PCS lock loss:
2850 * On link status change (i.e. PCI reset, speed change) and link is up and
2851 * speed is gigabit-
2852 * 0) if workaround is optionally disabled do nothing
2853 * 1) wait 1ms for Kumeran link to come up
2854 * 2) check Kumeran Diagnostic register PCS lock loss bit
2855 * 3) if not set the link is locked (all is good), otherwise...
2856 * 4) reset the PHY
2857 * 5) repeat up to 10 times
2858 * Note: this is only called for IGP3 copper when speed is 1gb.
2860 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2862 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2863 u32 phy_ctrl;
2864 s32 ret_val;
2865 u16 i, data;
2866 bool link;
2868 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2869 return 0;
2872 * Make sure link is up before proceeding. If not just return.
2873 * Attempting this while link is negotiating fouled up link
2874 * stability
2876 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2877 if (!link)
2878 return 0;
2880 for (i = 0; i < 10; i++) {
2881 /* read once to clear */
2882 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2883 if (ret_val)
2884 return ret_val;
2885 /* and again to get new status */
2886 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2887 if (ret_val)
2888 return ret_val;
2890 /* check for PCS lock */
2891 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2892 return 0;
2894 /* Issue PHY reset */
2895 e1000_phy_hw_reset(hw);
2896 mdelay(5);
2898 /* Disable GigE link negotiation */
2899 phy_ctrl = er32(PHY_CTRL);
2900 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2901 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2902 ew32(PHY_CTRL, phy_ctrl);
2905 * Call gig speed drop workaround on Gig disable before accessing
2906 * any PHY registers
2908 e1000e_gig_downshift_workaround_ich8lan(hw);
2910 /* unable to acquire PCS lock */
2911 return -E1000_ERR_PHY;
2915 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2916 * @hw: pointer to the HW structure
2917 * @state: boolean value used to set the current Kumeran workaround state
2919 * If ICH8, set the current Kumeran workaround state (enabled - true
2920 * /disabled - false).
2922 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2923 bool state)
2925 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2927 if (hw->mac.type != e1000_ich8lan) {
2928 e_dbg("Workaround applies to ICH8 only.\n");
2929 return;
2932 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2936 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2937 * @hw: pointer to the HW structure
2939 * Workaround for 82566 power-down on D3 entry:
2940 * 1) disable gigabit link
2941 * 2) write VR power-down enable
2942 * 3) read it back
2943 * Continue if successful, else issue LCD reset and repeat
2945 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2947 u32 reg;
2948 u16 data;
2949 u8 retry = 0;
2951 if (hw->phy.type != e1000_phy_igp_3)
2952 return;
2954 /* Try the workaround twice (if needed) */
2955 do {
2956 /* Disable link */
2957 reg = er32(PHY_CTRL);
2958 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2959 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2960 ew32(PHY_CTRL, reg);
2963 * Call gig speed drop workaround on Gig disable before
2964 * accessing any PHY registers
2966 if (hw->mac.type == e1000_ich8lan)
2967 e1000e_gig_downshift_workaround_ich8lan(hw);
2969 /* Write VR power-down enable */
2970 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2971 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2972 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2974 /* Read it back and test */
2975 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2976 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2977 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2978 break;
2980 /* Issue PHY reset and repeat at most one more time */
2981 reg = er32(CTRL);
2982 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2983 retry++;
2984 } while (retry);
2988 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2989 * @hw: pointer to the HW structure
2991 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2992 * LPLU, Gig disable, MDIC PHY reset):
2993 * 1) Set Kumeran Near-end loopback
2994 * 2) Clear Kumeran Near-end loopback
2995 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2997 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2999 s32 ret_val;
3000 u16 reg_data;
3002 if ((hw->mac.type != e1000_ich8lan) ||
3003 (hw->phy.type != e1000_phy_igp_3))
3004 return;
3006 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3007 &reg_data);
3008 if (ret_val)
3009 return;
3010 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3011 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3012 reg_data);
3013 if (ret_val)
3014 return;
3015 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3016 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3017 reg_data);
3021 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3022 * @hw: pointer to the HW structure
3024 * During S0 to Sx transition, it is possible the link remains at gig
3025 * instead of negotiating to a lower speed. Before going to Sx, set
3026 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3027 * to a lower speed.
3029 * Should only be called for applicable parts.
3031 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3033 u32 phy_ctrl;
3035 switch (hw->mac.type) {
3036 case e1000_ich8lan:
3037 case e1000_ich9lan:
3038 case e1000_ich10lan:
3039 case e1000_pchlan:
3040 phy_ctrl = er32(PHY_CTRL);
3041 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3042 E1000_PHY_CTRL_GBE_DISABLE;
3043 ew32(PHY_CTRL, phy_ctrl);
3045 if (hw->mac.type == e1000_pchlan)
3046 e1000_phy_hw_reset_ich8lan(hw);
3047 default:
3048 break;
3051 return;
3055 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3056 * @hw: pointer to the HW structure
3058 * Return the LED back to the default configuration.
3060 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3062 if (hw->phy.type == e1000_phy_ife)
3063 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3065 ew32(LEDCTL, hw->mac.ledctl_default);
3066 return 0;
3070 * e1000_led_on_ich8lan - Turn LEDs on
3071 * @hw: pointer to the HW structure
3073 * Turn on the LEDs.
3075 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3077 if (hw->phy.type == e1000_phy_ife)
3078 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3079 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3081 ew32(LEDCTL, hw->mac.ledctl_mode2);
3082 return 0;
3086 * e1000_led_off_ich8lan - Turn LEDs off
3087 * @hw: pointer to the HW structure
3089 * Turn off the LEDs.
3091 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3093 if (hw->phy.type == e1000_phy_ife)
3094 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3095 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3097 ew32(LEDCTL, hw->mac.ledctl_mode1);
3098 return 0;
3102 * e1000_setup_led_pchlan - Configures SW controllable LED
3103 * @hw: pointer to the HW structure
3105 * This prepares the SW controllable LED for use.
3107 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3109 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3110 (u16)hw->mac.ledctl_mode1);
3114 * e1000_cleanup_led_pchlan - Restore the default LED operation
3115 * @hw: pointer to the HW structure
3117 * Return the LED back to the default configuration.
3119 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3121 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3122 (u16)hw->mac.ledctl_default);
3126 * e1000_led_on_pchlan - Turn LEDs on
3127 * @hw: pointer to the HW structure
3129 * Turn on the LEDs.
3131 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3133 u16 data = (u16)hw->mac.ledctl_mode2;
3134 u32 i, led;
3137 * If no link, then turn LED on by setting the invert bit
3138 * for each LED that's mode is "link_up" in ledctl_mode2.
3140 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3141 for (i = 0; i < 3; i++) {
3142 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3143 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3144 E1000_LEDCTL_MODE_LINK_UP)
3145 continue;
3146 if (led & E1000_PHY_LED0_IVRT)
3147 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3148 else
3149 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3153 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3157 * e1000_led_off_pchlan - Turn LEDs off
3158 * @hw: pointer to the HW structure
3160 * Turn off the LEDs.
3162 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3164 u16 data = (u16)hw->mac.ledctl_mode1;
3165 u32 i, led;
3168 * If no link, then turn LED off by clearing the invert bit
3169 * for each LED that's mode is "link_up" in ledctl_mode1.
3171 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3172 for (i = 0; i < 3; i++) {
3173 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3174 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3175 E1000_LEDCTL_MODE_LINK_UP)
3176 continue;
3177 if (led & E1000_PHY_LED0_IVRT)
3178 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3179 else
3180 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3184 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3188 * e1000_get_cfg_done_ich8lan - Read config done bit
3189 * @hw: pointer to the HW structure
3191 * Read the management control register for the config done bit for
3192 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3193 * to read the config done bit, so an error is *ONLY* logged and returns
3194 * 0. If we were to return with error, EEPROM-less silicon
3195 * would not be able to be reset or change link.
3197 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3199 u32 bank = 0;
3201 if (hw->mac.type >= e1000_pchlan) {
3202 u32 status = er32(STATUS);
3204 if (status & E1000_STATUS_PHYRA)
3205 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3206 else
3207 e_dbg("PHY Reset Asserted not set - needs delay\n");
3210 e1000e_get_cfg_done(hw);
3212 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3213 if ((hw->mac.type != e1000_ich10lan) &&
3214 (hw->mac.type != e1000_pchlan)) {
3215 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3216 (hw->phy.type == e1000_phy_igp_3)) {
3217 e1000e_phy_init_script_igp3(hw);
3219 } else {
3220 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3221 /* Maybe we should do a basic PHY config */
3222 e_dbg("EEPROM not present\n");
3223 return -E1000_ERR_CONFIG;
3227 return 0;
3231 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3232 * @hw: pointer to the HW structure
3234 * In the case of a PHY power down to save power, or to turn off link during a
3235 * driver unload, or wake on lan is not enabled, remove the link.
3237 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3239 /* If the management interface is not enabled, then power down */
3240 if (!(hw->mac.ops.check_mng_mode(hw) ||
3241 hw->phy.ops.check_reset_block(hw)))
3242 e1000_power_down_phy_copper(hw);
3244 return;
3248 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3249 * @hw: pointer to the HW structure
3251 * Clears hardware counters specific to the silicon family and calls
3252 * clear_hw_cntrs_generic to clear all general purpose counters.
3254 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3256 u16 phy_data;
3258 e1000e_clear_hw_cntrs_base(hw);
3260 er32(ALGNERRC);
3261 er32(RXERRC);
3262 er32(TNCRS);
3263 er32(CEXTERR);
3264 er32(TSCTC);
3265 er32(TSCTFC);
3267 er32(MGTPRC);
3268 er32(MGTPDC);
3269 er32(MGTPTC);
3271 er32(IAC);
3272 er32(ICRXOC);
3274 /* Clear PHY statistics registers */
3275 if ((hw->phy.type == e1000_phy_82578) ||
3276 (hw->phy.type == e1000_phy_82577)) {
3277 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3278 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3279 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3280 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3281 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3282 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3283 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3284 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3285 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3286 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3287 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3288 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3289 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3290 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3294 static struct e1000_mac_operations ich8_mac_ops = {
3295 .id_led_init = e1000e_id_led_init,
3296 .check_mng_mode = e1000_check_mng_mode_ich8lan,
3297 .check_for_link = e1000_check_for_copper_link_ich8lan,
3298 /* cleanup_led dependent on mac type */
3299 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3300 .get_bus_info = e1000_get_bus_info_ich8lan,
3301 .get_link_up_info = e1000_get_link_up_info_ich8lan,
3302 /* led_on dependent on mac type */
3303 /* led_off dependent on mac type */
3304 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
3305 .reset_hw = e1000_reset_hw_ich8lan,
3306 .init_hw = e1000_init_hw_ich8lan,
3307 .setup_link = e1000_setup_link_ich8lan,
3308 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3309 /* id_led_init dependent on mac type */
3312 static struct e1000_phy_operations ich8_phy_ops = {
3313 .acquire = e1000_acquire_swflag_ich8lan,
3314 .check_reset_block = e1000_check_reset_block_ich8lan,
3315 .commit = NULL,
3316 .get_cfg_done = e1000_get_cfg_done_ich8lan,
3317 .get_cable_length = e1000e_get_cable_length_igp_2,
3318 .read_reg = e1000e_read_phy_reg_igp,
3319 .release = e1000_release_swflag_ich8lan,
3320 .reset = e1000_phy_hw_reset_ich8lan,
3321 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3322 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3323 .write_reg = e1000e_write_phy_reg_igp,
3326 static struct e1000_nvm_operations ich8_nvm_ops = {
3327 .acquire = e1000_acquire_nvm_ich8lan,
3328 .read = e1000_read_nvm_ich8lan,
3329 .release = e1000_release_nvm_ich8lan,
3330 .update = e1000_update_nvm_checksum_ich8lan,
3331 .valid_led_default = e1000_valid_led_default_ich8lan,
3332 .validate = e1000_validate_nvm_checksum_ich8lan,
3333 .write = e1000_write_nvm_ich8lan,
3336 struct e1000_info e1000_ich8_info = {
3337 .mac = e1000_ich8lan,
3338 .flags = FLAG_HAS_WOL
3339 | FLAG_IS_ICH
3340 | FLAG_RX_CSUM_ENABLED
3341 | FLAG_HAS_CTRLEXT_ON_LOAD
3342 | FLAG_HAS_AMT
3343 | FLAG_HAS_FLASH
3344 | FLAG_APME_IN_WUC,
3345 .pba = 8,
3346 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
3347 .get_variants = e1000_get_variants_ich8lan,
3348 .mac_ops = &ich8_mac_ops,
3349 .phy_ops = &ich8_phy_ops,
3350 .nvm_ops = &ich8_nvm_ops,
3353 struct e1000_info e1000_ich9_info = {
3354 .mac = e1000_ich9lan,
3355 .flags = FLAG_HAS_JUMBO_FRAMES
3356 | FLAG_IS_ICH
3357 | FLAG_HAS_WOL
3358 | FLAG_RX_CSUM_ENABLED
3359 | FLAG_HAS_CTRLEXT_ON_LOAD
3360 | FLAG_HAS_AMT
3361 | FLAG_HAS_ERT
3362 | FLAG_HAS_FLASH
3363 | FLAG_APME_IN_WUC,
3364 .pba = 10,
3365 .max_hw_frame_size = DEFAULT_JUMBO,
3366 .get_variants = e1000_get_variants_ich8lan,
3367 .mac_ops = &ich8_mac_ops,
3368 .phy_ops = &ich8_phy_ops,
3369 .nvm_ops = &ich8_nvm_ops,
3372 struct e1000_info e1000_ich10_info = {
3373 .mac = e1000_ich10lan,
3374 .flags = FLAG_HAS_JUMBO_FRAMES
3375 | FLAG_IS_ICH
3376 | FLAG_HAS_WOL
3377 | FLAG_RX_CSUM_ENABLED
3378 | FLAG_HAS_CTRLEXT_ON_LOAD
3379 | FLAG_HAS_AMT
3380 | FLAG_HAS_ERT
3381 | FLAG_HAS_FLASH
3382 | FLAG_APME_IN_WUC,
3383 .pba = 10,
3384 .max_hw_frame_size = DEFAULT_JUMBO,
3385 .get_variants = e1000_get_variants_ich8lan,
3386 .mac_ops = &ich8_mac_ops,
3387 .phy_ops = &ich8_phy_ops,
3388 .nvm_ops = &ich8_nvm_ops,
3391 struct e1000_info e1000_pch_info = {
3392 .mac = e1000_pchlan,
3393 .flags = FLAG_IS_ICH
3394 | FLAG_HAS_WOL
3395 | FLAG_RX_CSUM_ENABLED
3396 | FLAG_HAS_CTRLEXT_ON_LOAD
3397 | FLAG_HAS_AMT
3398 | FLAG_HAS_FLASH
3399 | FLAG_HAS_JUMBO_FRAMES
3400 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3401 | FLAG_APME_IN_WUC,
3402 .pba = 26,
3403 .max_hw_frame_size = 4096,
3404 .get_variants = e1000_get_variants_ich8lan,
3405 .mac_ops = &ich8_mac_ops,
3406 .phy_ops = &ich8_phy_ops,
3407 .nvm_ops = &ich8_nvm_ops,