sctp: apply rhashtable api to send/recv path
[linux-2.6/btrfs-unstable.git] / kernel / time / ntp.c
blob149cc8086aea16bbd811d3af37e187fd08bb366f
1 /*
2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
20 #include "ntp_internal.h"
23 * NTP timekeeping variables:
25 * Note: All of the NTP state is protected by the timekeeping locks.
29 /* USER_HZ period (usecs): */
30 unsigned long tick_usec = TICK_USEC;
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long tick_nsec;
35 static u64 tick_length;
36 static u64 tick_length_base;
38 #define SECS_PER_DAY 86400
39 #define MAX_TICKADJ 500LL /* usecs */
40 #define MAX_TICKADJ_SCALED \
41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
44 * phase-lock loop variables
48 * clock synchronization status
50 * (TIME_ERROR prevents overwriting the CMOS clock)
52 static int time_state = TIME_OK;
54 /* clock status bits: */
55 static int time_status = STA_UNSYNC;
57 /* time adjustment (nsecs): */
58 static s64 time_offset;
60 /* pll time constant: */
61 static long time_constant = 2;
63 /* maximum error (usecs): */
64 static long time_maxerror = NTP_PHASE_LIMIT;
66 /* estimated error (usecs): */
67 static long time_esterror = NTP_PHASE_LIMIT;
69 /* frequency offset (scaled nsecs/secs): */
70 static s64 time_freq;
72 /* time at last adjustment (secs): */
73 static long time_reftime;
75 static long time_adjust;
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78 static s64 ntp_tick_adj;
80 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
81 static time64_t ntp_next_leap_sec = TIME64_MAX;
83 #ifdef CONFIG_NTP_PPS
86 * The following variables are used when a pulse-per-second (PPS) signal
87 * is available. They establish the engineering parameters of the clock
88 * discipline loop when controlled by the PPS signal.
90 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
91 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
92 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
93 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
94 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
95 increase pps_shift or consecutive bad
96 intervals to decrease it */
97 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
99 static int pps_valid; /* signal watchdog counter */
100 static long pps_tf[3]; /* phase median filter */
101 static long pps_jitter; /* current jitter (ns) */
102 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
103 static int pps_shift; /* current interval duration (s) (shift) */
104 static int pps_intcnt; /* interval counter */
105 static s64 pps_freq; /* frequency offset (scaled ns/s) */
106 static long pps_stabil; /* current stability (scaled ns/s) */
109 * PPS signal quality monitors
111 static long pps_calcnt; /* calibration intervals */
112 static long pps_jitcnt; /* jitter limit exceeded */
113 static long pps_stbcnt; /* stability limit exceeded */
114 static long pps_errcnt; /* calibration errors */
117 /* PPS kernel consumer compensates the whole phase error immediately.
118 * Otherwise, reduce the offset by a fixed factor times the time constant.
120 static inline s64 ntp_offset_chunk(s64 offset)
122 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
123 return offset;
124 else
125 return shift_right(offset, SHIFT_PLL + time_constant);
128 static inline void pps_reset_freq_interval(void)
130 /* the PPS calibration interval may end
131 surprisingly early */
132 pps_shift = PPS_INTMIN;
133 pps_intcnt = 0;
137 * pps_clear - Clears the PPS state variables
139 static inline void pps_clear(void)
141 pps_reset_freq_interval();
142 pps_tf[0] = 0;
143 pps_tf[1] = 0;
144 pps_tf[2] = 0;
145 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 pps_freq = 0;
149 /* Decrease pps_valid to indicate that another second has passed since
150 * the last PPS signal. When it reaches 0, indicate that PPS signal is
151 * missing.
153 static inline void pps_dec_valid(void)
155 if (pps_valid > 0)
156 pps_valid--;
157 else {
158 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
159 STA_PPSWANDER | STA_PPSERROR);
160 pps_clear();
164 static inline void pps_set_freq(s64 freq)
166 pps_freq = freq;
169 static inline int is_error_status(int status)
171 return (status & (STA_UNSYNC|STA_CLOCKERR))
172 /* PPS signal lost when either PPS time or
173 * PPS frequency synchronization requested
175 || ((status & (STA_PPSFREQ|STA_PPSTIME))
176 && !(status & STA_PPSSIGNAL))
177 /* PPS jitter exceeded when
178 * PPS time synchronization requested */
179 || ((status & (STA_PPSTIME|STA_PPSJITTER))
180 == (STA_PPSTIME|STA_PPSJITTER))
181 /* PPS wander exceeded or calibration error when
182 * PPS frequency synchronization requested
184 || ((status & STA_PPSFREQ)
185 && (status & (STA_PPSWANDER|STA_PPSERROR)));
188 static inline void pps_fill_timex(struct timex *txc)
190 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
191 PPM_SCALE_INV, NTP_SCALE_SHIFT);
192 txc->jitter = pps_jitter;
193 if (!(time_status & STA_NANO))
194 txc->jitter /= NSEC_PER_USEC;
195 txc->shift = pps_shift;
196 txc->stabil = pps_stabil;
197 txc->jitcnt = pps_jitcnt;
198 txc->calcnt = pps_calcnt;
199 txc->errcnt = pps_errcnt;
200 txc->stbcnt = pps_stbcnt;
203 #else /* !CONFIG_NTP_PPS */
205 static inline s64 ntp_offset_chunk(s64 offset)
207 return shift_right(offset, SHIFT_PLL + time_constant);
210 static inline void pps_reset_freq_interval(void) {}
211 static inline void pps_clear(void) {}
212 static inline void pps_dec_valid(void) {}
213 static inline void pps_set_freq(s64 freq) {}
215 static inline int is_error_status(int status)
217 return status & (STA_UNSYNC|STA_CLOCKERR);
220 static inline void pps_fill_timex(struct timex *txc)
222 /* PPS is not implemented, so these are zero */
223 txc->ppsfreq = 0;
224 txc->jitter = 0;
225 txc->shift = 0;
226 txc->stabil = 0;
227 txc->jitcnt = 0;
228 txc->calcnt = 0;
229 txc->errcnt = 0;
230 txc->stbcnt = 0;
233 #endif /* CONFIG_NTP_PPS */
237 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
240 static inline int ntp_synced(void)
242 return !(time_status & STA_UNSYNC);
247 * NTP methods:
251 * Update (tick_length, tick_length_base, tick_nsec), based
252 * on (tick_usec, ntp_tick_adj, time_freq):
254 static void ntp_update_frequency(void)
256 u64 second_length;
257 u64 new_base;
259 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
260 << NTP_SCALE_SHIFT;
262 second_length += ntp_tick_adj;
263 second_length += time_freq;
265 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
266 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
269 * Don't wait for the next second_overflow, apply
270 * the change to the tick length immediately:
272 tick_length += new_base - tick_length_base;
273 tick_length_base = new_base;
276 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
278 time_status &= ~STA_MODE;
280 if (secs < MINSEC)
281 return 0;
283 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
284 return 0;
286 time_status |= STA_MODE;
288 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
291 static void ntp_update_offset(long offset)
293 s64 freq_adj;
294 s64 offset64;
295 long secs;
297 if (!(time_status & STA_PLL))
298 return;
300 if (!(time_status & STA_NANO))
301 offset *= NSEC_PER_USEC;
304 * Scale the phase adjustment and
305 * clamp to the operating range.
307 offset = min(offset, MAXPHASE);
308 offset = max(offset, -MAXPHASE);
311 * Select how the frequency is to be controlled
312 * and in which mode (PLL or FLL).
314 secs = get_seconds() - time_reftime;
315 if (unlikely(time_status & STA_FREQHOLD))
316 secs = 0;
318 time_reftime = get_seconds();
320 offset64 = offset;
321 freq_adj = ntp_update_offset_fll(offset64, secs);
324 * Clamp update interval to reduce PLL gain with low
325 * sampling rate (e.g. intermittent network connection)
326 * to avoid instability.
328 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
329 secs = 1 << (SHIFT_PLL + 1 + time_constant);
331 freq_adj += (offset64 * secs) <<
332 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
334 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
336 time_freq = max(freq_adj, -MAXFREQ_SCALED);
338 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
342 * ntp_clear - Clears the NTP state variables
344 void ntp_clear(void)
346 time_adjust = 0; /* stop active adjtime() */
347 time_status |= STA_UNSYNC;
348 time_maxerror = NTP_PHASE_LIMIT;
349 time_esterror = NTP_PHASE_LIMIT;
351 ntp_update_frequency();
353 tick_length = tick_length_base;
354 time_offset = 0;
356 ntp_next_leap_sec = TIME64_MAX;
357 /* Clear PPS state variables */
358 pps_clear();
362 u64 ntp_tick_length(void)
364 return tick_length;
368 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
370 * Provides the time of the next leapsecond against CLOCK_REALTIME in
371 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
373 ktime_t ntp_get_next_leap(void)
375 ktime_t ret;
377 if ((time_state == TIME_INS) && (time_status & STA_INS))
378 return ktime_set(ntp_next_leap_sec, 0);
379 ret.tv64 = KTIME_MAX;
380 return ret;
384 * this routine handles the overflow of the microsecond field
386 * The tricky bits of code to handle the accurate clock support
387 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
388 * They were originally developed for SUN and DEC kernels.
389 * All the kudos should go to Dave for this stuff.
391 * Also handles leap second processing, and returns leap offset
393 int second_overflow(unsigned long secs)
395 s64 delta;
396 int leap = 0;
399 * Leap second processing. If in leap-insert state at the end of the
400 * day, the system clock is set back one second; if in leap-delete
401 * state, the system clock is set ahead one second.
403 switch (time_state) {
404 case TIME_OK:
405 if (time_status & STA_INS) {
406 time_state = TIME_INS;
407 ntp_next_leap_sec = secs + SECS_PER_DAY -
408 (secs % SECS_PER_DAY);
409 } else if (time_status & STA_DEL) {
410 time_state = TIME_DEL;
411 ntp_next_leap_sec = secs + SECS_PER_DAY -
412 ((secs+1) % SECS_PER_DAY);
414 break;
415 case TIME_INS:
416 if (!(time_status & STA_INS)) {
417 ntp_next_leap_sec = TIME64_MAX;
418 time_state = TIME_OK;
419 } else if (secs % SECS_PER_DAY == 0) {
420 leap = -1;
421 time_state = TIME_OOP;
422 printk(KERN_NOTICE
423 "Clock: inserting leap second 23:59:60 UTC\n");
425 break;
426 case TIME_DEL:
427 if (!(time_status & STA_DEL)) {
428 ntp_next_leap_sec = TIME64_MAX;
429 time_state = TIME_OK;
430 } else if ((secs + 1) % SECS_PER_DAY == 0) {
431 leap = 1;
432 ntp_next_leap_sec = TIME64_MAX;
433 time_state = TIME_WAIT;
434 printk(KERN_NOTICE
435 "Clock: deleting leap second 23:59:59 UTC\n");
437 break;
438 case TIME_OOP:
439 ntp_next_leap_sec = TIME64_MAX;
440 time_state = TIME_WAIT;
441 break;
442 case TIME_WAIT:
443 if (!(time_status & (STA_INS | STA_DEL)))
444 time_state = TIME_OK;
445 break;
449 /* Bump the maxerror field */
450 time_maxerror += MAXFREQ / NSEC_PER_USEC;
451 if (time_maxerror > NTP_PHASE_LIMIT) {
452 time_maxerror = NTP_PHASE_LIMIT;
453 time_status |= STA_UNSYNC;
456 /* Compute the phase adjustment for the next second */
457 tick_length = tick_length_base;
459 delta = ntp_offset_chunk(time_offset);
460 time_offset -= delta;
461 tick_length += delta;
463 /* Check PPS signal */
464 pps_dec_valid();
466 if (!time_adjust)
467 goto out;
469 if (time_adjust > MAX_TICKADJ) {
470 time_adjust -= MAX_TICKADJ;
471 tick_length += MAX_TICKADJ_SCALED;
472 goto out;
475 if (time_adjust < -MAX_TICKADJ) {
476 time_adjust += MAX_TICKADJ;
477 tick_length -= MAX_TICKADJ_SCALED;
478 goto out;
481 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
482 << NTP_SCALE_SHIFT;
483 time_adjust = 0;
485 out:
486 return leap;
489 #ifdef CONFIG_GENERIC_CMOS_UPDATE
490 int __weak update_persistent_clock(struct timespec now)
492 return -ENODEV;
495 int __weak update_persistent_clock64(struct timespec64 now64)
497 struct timespec now;
499 now = timespec64_to_timespec(now64);
500 return update_persistent_clock(now);
502 #endif
504 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
505 static void sync_cmos_clock(struct work_struct *work);
507 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
509 static void sync_cmos_clock(struct work_struct *work)
511 struct timespec64 now;
512 struct timespec64 next;
513 int fail = 1;
516 * If we have an externally synchronized Linux clock, then update
517 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
518 * called as close as possible to 500 ms before the new second starts.
519 * This code is run on a timer. If the clock is set, that timer
520 * may not expire at the correct time. Thus, we adjust...
521 * We want the clock to be within a couple of ticks from the target.
523 if (!ntp_synced()) {
525 * Not synced, exit, do not restart a timer (if one is
526 * running, let it run out).
528 return;
531 getnstimeofday64(&now);
532 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
533 struct timespec64 adjust = now;
535 fail = -ENODEV;
536 if (persistent_clock_is_local)
537 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
538 #ifdef CONFIG_GENERIC_CMOS_UPDATE
539 fail = update_persistent_clock64(adjust);
540 #endif
542 #ifdef CONFIG_RTC_SYSTOHC
543 if (fail == -ENODEV)
544 fail = rtc_set_ntp_time(adjust);
545 #endif
548 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
549 if (next.tv_nsec <= 0)
550 next.tv_nsec += NSEC_PER_SEC;
552 if (!fail || fail == -ENODEV)
553 next.tv_sec = 659;
554 else
555 next.tv_sec = 0;
557 if (next.tv_nsec >= NSEC_PER_SEC) {
558 next.tv_sec++;
559 next.tv_nsec -= NSEC_PER_SEC;
561 queue_delayed_work(system_power_efficient_wq,
562 &sync_cmos_work, timespec64_to_jiffies(&next));
565 void ntp_notify_cmos_timer(void)
567 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
570 #else
571 void ntp_notify_cmos_timer(void) { }
572 #endif
576 * Propagate a new txc->status value into the NTP state:
578 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
580 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
581 time_state = TIME_OK;
582 time_status = STA_UNSYNC;
583 ntp_next_leap_sec = TIME64_MAX;
584 /* restart PPS frequency calibration */
585 pps_reset_freq_interval();
589 * If we turn on PLL adjustments then reset the
590 * reference time to current time.
592 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
593 time_reftime = get_seconds();
595 /* only set allowed bits */
596 time_status &= STA_RONLY;
597 time_status |= txc->status & ~STA_RONLY;
601 static inline void process_adjtimex_modes(struct timex *txc,
602 struct timespec64 *ts,
603 s32 *time_tai)
605 if (txc->modes & ADJ_STATUS)
606 process_adj_status(txc, ts);
608 if (txc->modes & ADJ_NANO)
609 time_status |= STA_NANO;
611 if (txc->modes & ADJ_MICRO)
612 time_status &= ~STA_NANO;
614 if (txc->modes & ADJ_FREQUENCY) {
615 time_freq = txc->freq * PPM_SCALE;
616 time_freq = min(time_freq, MAXFREQ_SCALED);
617 time_freq = max(time_freq, -MAXFREQ_SCALED);
618 /* update pps_freq */
619 pps_set_freq(time_freq);
622 if (txc->modes & ADJ_MAXERROR)
623 time_maxerror = txc->maxerror;
625 if (txc->modes & ADJ_ESTERROR)
626 time_esterror = txc->esterror;
628 if (txc->modes & ADJ_TIMECONST) {
629 time_constant = txc->constant;
630 if (!(time_status & STA_NANO))
631 time_constant += 4;
632 time_constant = min(time_constant, (long)MAXTC);
633 time_constant = max(time_constant, 0l);
636 if (txc->modes & ADJ_TAI && txc->constant > 0)
637 *time_tai = txc->constant;
639 if (txc->modes & ADJ_OFFSET)
640 ntp_update_offset(txc->offset);
642 if (txc->modes & ADJ_TICK)
643 tick_usec = txc->tick;
645 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
646 ntp_update_frequency();
652 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
654 int ntp_validate_timex(struct timex *txc)
656 if (txc->modes & ADJ_ADJTIME) {
657 /* singleshot must not be used with any other mode bits */
658 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
659 return -EINVAL;
660 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
661 !capable(CAP_SYS_TIME))
662 return -EPERM;
663 } else {
664 /* In order to modify anything, you gotta be super-user! */
665 if (txc->modes && !capable(CAP_SYS_TIME))
666 return -EPERM;
668 * if the quartz is off by more than 10% then
669 * something is VERY wrong!
671 if (txc->modes & ADJ_TICK &&
672 (txc->tick < 900000/USER_HZ ||
673 txc->tick > 1100000/USER_HZ))
674 return -EINVAL;
677 if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
678 return -EPERM;
681 * Check for potential multiplication overflows that can
682 * only happen on 64-bit systems:
684 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
685 if (LLONG_MIN / PPM_SCALE > txc->freq)
686 return -EINVAL;
687 if (LLONG_MAX / PPM_SCALE < txc->freq)
688 return -EINVAL;
691 return 0;
696 * adjtimex mainly allows reading (and writing, if superuser) of
697 * kernel time-keeping variables. used by xntpd.
699 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
701 int result;
703 if (txc->modes & ADJ_ADJTIME) {
704 long save_adjust = time_adjust;
706 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
707 /* adjtime() is independent from ntp_adjtime() */
708 time_adjust = txc->offset;
709 ntp_update_frequency();
711 txc->offset = save_adjust;
712 } else {
714 /* If there are input parameters, then process them: */
715 if (txc->modes)
716 process_adjtimex_modes(txc, ts, time_tai);
718 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
719 NTP_SCALE_SHIFT);
720 if (!(time_status & STA_NANO))
721 txc->offset /= NSEC_PER_USEC;
724 result = time_state; /* mostly `TIME_OK' */
725 /* check for errors */
726 if (is_error_status(time_status))
727 result = TIME_ERROR;
729 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
730 PPM_SCALE_INV, NTP_SCALE_SHIFT);
731 txc->maxerror = time_maxerror;
732 txc->esterror = time_esterror;
733 txc->status = time_status;
734 txc->constant = time_constant;
735 txc->precision = 1;
736 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
737 txc->tick = tick_usec;
738 txc->tai = *time_tai;
740 /* fill PPS status fields */
741 pps_fill_timex(txc);
743 txc->time.tv_sec = (time_t)ts->tv_sec;
744 txc->time.tv_usec = ts->tv_nsec;
745 if (!(time_status & STA_NANO))
746 txc->time.tv_usec /= NSEC_PER_USEC;
748 /* Handle leapsec adjustments */
749 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
750 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
751 result = TIME_OOP;
752 txc->tai++;
753 txc->time.tv_sec--;
755 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
756 result = TIME_WAIT;
757 txc->tai--;
758 txc->time.tv_sec++;
760 if ((time_state == TIME_OOP) &&
761 (ts->tv_sec == ntp_next_leap_sec)) {
762 result = TIME_WAIT;
766 return result;
769 #ifdef CONFIG_NTP_PPS
771 /* actually struct pps_normtime is good old struct timespec, but it is
772 * semantically different (and it is the reason why it was invented):
773 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
774 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
775 struct pps_normtime {
776 s64 sec; /* seconds */
777 long nsec; /* nanoseconds */
780 /* normalize the timestamp so that nsec is in the
781 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
782 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
784 struct pps_normtime norm = {
785 .sec = ts.tv_sec,
786 .nsec = ts.tv_nsec
789 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
790 norm.nsec -= NSEC_PER_SEC;
791 norm.sec++;
794 return norm;
797 /* get current phase correction and jitter */
798 static inline long pps_phase_filter_get(long *jitter)
800 *jitter = pps_tf[0] - pps_tf[1];
801 if (*jitter < 0)
802 *jitter = -*jitter;
804 /* TODO: test various filters */
805 return pps_tf[0];
808 /* add the sample to the phase filter */
809 static inline void pps_phase_filter_add(long err)
811 pps_tf[2] = pps_tf[1];
812 pps_tf[1] = pps_tf[0];
813 pps_tf[0] = err;
816 /* decrease frequency calibration interval length.
817 * It is halved after four consecutive unstable intervals.
819 static inline void pps_dec_freq_interval(void)
821 if (--pps_intcnt <= -PPS_INTCOUNT) {
822 pps_intcnt = -PPS_INTCOUNT;
823 if (pps_shift > PPS_INTMIN) {
824 pps_shift--;
825 pps_intcnt = 0;
830 /* increase frequency calibration interval length.
831 * It is doubled after four consecutive stable intervals.
833 static inline void pps_inc_freq_interval(void)
835 if (++pps_intcnt >= PPS_INTCOUNT) {
836 pps_intcnt = PPS_INTCOUNT;
837 if (pps_shift < PPS_INTMAX) {
838 pps_shift++;
839 pps_intcnt = 0;
844 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
845 * timestamps
847 * At the end of the calibration interval the difference between the
848 * first and last MONOTONIC_RAW clock timestamps divided by the length
849 * of the interval becomes the frequency update. If the interval was
850 * too long, the data are discarded.
851 * Returns the difference between old and new frequency values.
853 static long hardpps_update_freq(struct pps_normtime freq_norm)
855 long delta, delta_mod;
856 s64 ftemp;
858 /* check if the frequency interval was too long */
859 if (freq_norm.sec > (2 << pps_shift)) {
860 time_status |= STA_PPSERROR;
861 pps_errcnt++;
862 pps_dec_freq_interval();
863 printk_deferred(KERN_ERR
864 "hardpps: PPSERROR: interval too long - %lld s\n",
865 freq_norm.sec);
866 return 0;
869 /* here the raw frequency offset and wander (stability) is
870 * calculated. If the wander is less than the wander threshold
871 * the interval is increased; otherwise it is decreased.
873 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
874 freq_norm.sec);
875 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
876 pps_freq = ftemp;
877 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
878 printk_deferred(KERN_WARNING
879 "hardpps: PPSWANDER: change=%ld\n", delta);
880 time_status |= STA_PPSWANDER;
881 pps_stbcnt++;
882 pps_dec_freq_interval();
883 } else { /* good sample */
884 pps_inc_freq_interval();
887 /* the stability metric is calculated as the average of recent
888 * frequency changes, but is used only for performance
889 * monitoring
891 delta_mod = delta;
892 if (delta_mod < 0)
893 delta_mod = -delta_mod;
894 pps_stabil += (div_s64(((s64)delta_mod) <<
895 (NTP_SCALE_SHIFT - SHIFT_USEC),
896 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
898 /* if enabled, the system clock frequency is updated */
899 if ((time_status & STA_PPSFREQ) != 0 &&
900 (time_status & STA_FREQHOLD) == 0) {
901 time_freq = pps_freq;
902 ntp_update_frequency();
905 return delta;
908 /* correct REALTIME clock phase error against PPS signal */
909 static void hardpps_update_phase(long error)
911 long correction = -error;
912 long jitter;
914 /* add the sample to the median filter */
915 pps_phase_filter_add(correction);
916 correction = pps_phase_filter_get(&jitter);
918 /* Nominal jitter is due to PPS signal noise. If it exceeds the
919 * threshold, the sample is discarded; otherwise, if so enabled,
920 * the time offset is updated.
922 if (jitter > (pps_jitter << PPS_POPCORN)) {
923 printk_deferred(KERN_WARNING
924 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
925 jitter, (pps_jitter << PPS_POPCORN));
926 time_status |= STA_PPSJITTER;
927 pps_jitcnt++;
928 } else if (time_status & STA_PPSTIME) {
929 /* correct the time using the phase offset */
930 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
931 NTP_INTERVAL_FREQ);
932 /* cancel running adjtime() */
933 time_adjust = 0;
935 /* update jitter */
936 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
940 * __hardpps() - discipline CPU clock oscillator to external PPS signal
942 * This routine is called at each PPS signal arrival in order to
943 * discipline the CPU clock oscillator to the PPS signal. It takes two
944 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
945 * is used to correct clock phase error and the latter is used to
946 * correct the frequency.
948 * This code is based on David Mills's reference nanokernel
949 * implementation. It was mostly rewritten but keeps the same idea.
951 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
953 struct pps_normtime pts_norm, freq_norm;
955 pts_norm = pps_normalize_ts(*phase_ts);
957 /* clear the error bits, they will be set again if needed */
958 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
960 /* indicate signal presence */
961 time_status |= STA_PPSSIGNAL;
962 pps_valid = PPS_VALID;
964 /* when called for the first time,
965 * just start the frequency interval */
966 if (unlikely(pps_fbase.tv_sec == 0)) {
967 pps_fbase = *raw_ts;
968 return;
971 /* ok, now we have a base for frequency calculation */
972 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
974 /* check that the signal is in the range
975 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
976 if ((freq_norm.sec == 0) ||
977 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
978 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
979 time_status |= STA_PPSJITTER;
980 /* restart the frequency calibration interval */
981 pps_fbase = *raw_ts;
982 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
983 return;
986 /* signal is ok */
988 /* check if the current frequency interval is finished */
989 if (freq_norm.sec >= (1 << pps_shift)) {
990 pps_calcnt++;
991 /* restart the frequency calibration interval */
992 pps_fbase = *raw_ts;
993 hardpps_update_freq(freq_norm);
996 hardpps_update_phase(pts_norm.nsec);
999 #endif /* CONFIG_NTP_PPS */
1001 static int __init ntp_tick_adj_setup(char *str)
1003 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1005 if (rc)
1006 return rc;
1007 ntp_tick_adj <<= NTP_SCALE_SHIFT;
1009 return 1;
1012 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1014 void __init ntp_init(void)
1016 ntp_clear();