m68k/sun3x: Modernize printing of kernel messages
[linux-2.6/btrfs-unstable.git] / fs / block_dev.c
blob6254cee8f8f382bf8aa881426453bae189973d34
1 /*
2 * linux/fs/block_dev.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include "internal.h"
38 struct bdev_inode {
39 struct block_device bdev;
40 struct inode vfs_inode;
43 static const struct address_space_operations def_blk_aops;
45 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 return container_of(inode, struct bdev_inode, vfs_inode);
50 struct block_device *I_BDEV(struct inode *inode)
52 return &BDEV_I(inode)->bdev;
54 EXPORT_SYMBOL(I_BDEV);
56 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
58 struct va_format vaf;
59 va_list args;
61 va_start(args, fmt);
62 vaf.fmt = fmt;
63 vaf.va = &args;
64 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
65 va_end(args);
68 static void bdev_write_inode(struct block_device *bdev)
70 struct inode *inode = bdev->bd_inode;
71 int ret;
73 spin_lock(&inode->i_lock);
74 while (inode->i_state & I_DIRTY) {
75 spin_unlock(&inode->i_lock);
76 ret = write_inode_now(inode, true);
77 if (ret) {
78 char name[BDEVNAME_SIZE];
79 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
80 "for block device %s (err=%d).\n",
81 bdevname(bdev, name), ret);
83 spin_lock(&inode->i_lock);
85 spin_unlock(&inode->i_lock);
88 /* Kill _all_ buffers and pagecache , dirty or not.. */
89 void kill_bdev(struct block_device *bdev)
91 struct address_space *mapping = bdev->bd_inode->i_mapping;
93 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
94 return;
96 invalidate_bh_lrus();
97 truncate_inode_pages(mapping, 0);
99 EXPORT_SYMBOL(kill_bdev);
101 /* Invalidate clean unused buffers and pagecache. */
102 void invalidate_bdev(struct block_device *bdev)
104 struct address_space *mapping = bdev->bd_inode->i_mapping;
106 if (mapping->nrpages == 0)
107 return;
109 invalidate_bh_lrus();
110 lru_add_drain_all(); /* make sure all lru add caches are flushed */
111 invalidate_mapping_pages(mapping, 0, -1);
112 /* 99% of the time, we don't need to flush the cleancache on the bdev.
113 * But, for the strange corners, lets be cautious
115 cleancache_invalidate_inode(mapping);
117 EXPORT_SYMBOL(invalidate_bdev);
119 int set_blocksize(struct block_device *bdev, int size)
121 /* Size must be a power of two, and between 512 and PAGE_SIZE */
122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
123 return -EINVAL;
125 /* Size cannot be smaller than the size supported by the device */
126 if (size < bdev_logical_block_size(bdev))
127 return -EINVAL;
129 /* Don't change the size if it is same as current */
130 if (bdev->bd_block_size != size) {
131 sync_blockdev(bdev);
132 bdev->bd_block_size = size;
133 bdev->bd_inode->i_blkbits = blksize_bits(size);
134 kill_bdev(bdev);
136 return 0;
139 EXPORT_SYMBOL(set_blocksize);
141 int sb_set_blocksize(struct super_block *sb, int size)
143 if (set_blocksize(sb->s_bdev, size))
144 return 0;
145 /* If we get here, we know size is power of two
146 * and it's value is between 512 and PAGE_SIZE */
147 sb->s_blocksize = size;
148 sb->s_blocksize_bits = blksize_bits(size);
149 return sb->s_blocksize;
152 EXPORT_SYMBOL(sb_set_blocksize);
154 int sb_min_blocksize(struct super_block *sb, int size)
156 int minsize = bdev_logical_block_size(sb->s_bdev);
157 if (size < minsize)
158 size = minsize;
159 return sb_set_blocksize(sb, size);
162 EXPORT_SYMBOL(sb_min_blocksize);
164 static int
165 blkdev_get_block(struct inode *inode, sector_t iblock,
166 struct buffer_head *bh, int create)
168 bh->b_bdev = I_BDEV(inode);
169 bh->b_blocknr = iblock;
170 set_buffer_mapped(bh);
171 return 0;
174 static struct inode *bdev_file_inode(struct file *file)
176 return file->f_mapping->host;
179 static unsigned int dio_bio_write_op(struct kiocb *iocb)
181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
183 /* avoid the need for a I/O completion work item */
184 if (iocb->ki_flags & IOCB_DSYNC)
185 op |= REQ_FUA;
186 return op;
189 #define DIO_INLINE_BIO_VECS 4
191 static void blkdev_bio_end_io_simple(struct bio *bio)
193 struct task_struct *waiter = bio->bi_private;
195 WRITE_ONCE(bio->bi_private, NULL);
196 wake_up_process(waiter);
199 static ssize_t
200 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
201 int nr_pages)
203 struct file *file = iocb->ki_filp;
204 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
206 loff_t pos = iocb->ki_pos;
207 bool should_dirty = false;
208 struct bio bio;
209 ssize_t ret;
210 blk_qc_t qc;
211 int i;
213 if ((pos | iov_iter_alignment(iter)) &
214 (bdev_logical_block_size(bdev) - 1))
215 return -EINVAL;
217 if (nr_pages <= DIO_INLINE_BIO_VECS)
218 vecs = inline_vecs;
219 else {
220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
221 if (!vecs)
222 return -ENOMEM;
225 bio_init(&bio, vecs, nr_pages);
226 bio.bi_bdev = bdev;
227 bio.bi_iter.bi_sector = pos >> 9;
228 bio.bi_private = current;
229 bio.bi_end_io = blkdev_bio_end_io_simple;
231 ret = bio_iov_iter_get_pages(&bio, iter);
232 if (unlikely(ret))
233 return ret;
234 ret = bio.bi_iter.bi_size;
236 if (iov_iter_rw(iter) == READ) {
237 bio.bi_opf = REQ_OP_READ;
238 if (iter_is_iovec(iter))
239 should_dirty = true;
240 } else {
241 bio.bi_opf = dio_bio_write_op(iocb);
242 task_io_account_write(ret);
245 qc = submit_bio(&bio);
246 for (;;) {
247 set_current_state(TASK_UNINTERRUPTIBLE);
248 if (!READ_ONCE(bio.bi_private))
249 break;
250 if (!(iocb->ki_flags & IOCB_HIPRI) ||
251 !blk_mq_poll(bdev_get_queue(bdev), qc))
252 io_schedule();
254 __set_current_state(TASK_RUNNING);
256 bio_for_each_segment_all(bvec, &bio, i) {
257 if (should_dirty && !PageCompound(bvec->bv_page))
258 set_page_dirty_lock(bvec->bv_page);
259 put_page(bvec->bv_page);
262 if (vecs != inline_vecs)
263 kfree(vecs);
265 if (unlikely(bio.bi_error))
266 return bio.bi_error;
267 return ret;
270 struct blkdev_dio {
271 union {
272 struct kiocb *iocb;
273 struct task_struct *waiter;
275 size_t size;
276 atomic_t ref;
277 bool multi_bio : 1;
278 bool should_dirty : 1;
279 bool is_sync : 1;
280 struct bio bio;
283 static struct bio_set *blkdev_dio_pool __read_mostly;
285 static void blkdev_bio_end_io(struct bio *bio)
287 struct blkdev_dio *dio = bio->bi_private;
288 bool should_dirty = dio->should_dirty;
290 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
291 if (bio->bi_error && !dio->bio.bi_error)
292 dio->bio.bi_error = bio->bi_error;
293 } else {
294 if (!dio->is_sync) {
295 struct kiocb *iocb = dio->iocb;
296 ssize_t ret = dio->bio.bi_error;
298 if (likely(!ret)) {
299 ret = dio->size;
300 iocb->ki_pos += ret;
303 dio->iocb->ki_complete(iocb, ret, 0);
304 bio_put(&dio->bio);
305 } else {
306 struct task_struct *waiter = dio->waiter;
308 WRITE_ONCE(dio->waiter, NULL);
309 wake_up_process(waiter);
313 if (should_dirty) {
314 bio_check_pages_dirty(bio);
315 } else {
316 struct bio_vec *bvec;
317 int i;
319 bio_for_each_segment_all(bvec, bio, i)
320 put_page(bvec->bv_page);
321 bio_put(bio);
325 static ssize_t
326 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
328 struct file *file = iocb->ki_filp;
329 struct inode *inode = bdev_file_inode(file);
330 struct block_device *bdev = I_BDEV(inode);
331 struct blkdev_dio *dio;
332 struct bio *bio;
333 bool is_read = (iov_iter_rw(iter) == READ);
334 loff_t pos = iocb->ki_pos;
335 blk_qc_t qc = BLK_QC_T_NONE;
336 int ret;
338 if ((pos | iov_iter_alignment(iter)) &
339 (bdev_logical_block_size(bdev) - 1))
340 return -EINVAL;
342 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
343 bio_get(bio); /* extra ref for the completion handler */
345 dio = container_of(bio, struct blkdev_dio, bio);
346 dio->is_sync = is_sync_kiocb(iocb);
347 if (dio->is_sync)
348 dio->waiter = current;
349 else
350 dio->iocb = iocb;
352 dio->size = 0;
353 dio->multi_bio = false;
354 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
356 for (;;) {
357 bio->bi_bdev = bdev;
358 bio->bi_iter.bi_sector = pos >> 9;
359 bio->bi_private = dio;
360 bio->bi_end_io = blkdev_bio_end_io;
362 ret = bio_iov_iter_get_pages(bio, iter);
363 if (unlikely(ret)) {
364 bio->bi_error = ret;
365 bio_endio(bio);
366 break;
369 if (is_read) {
370 bio->bi_opf = REQ_OP_READ;
371 if (dio->should_dirty)
372 bio_set_pages_dirty(bio);
373 } else {
374 bio->bi_opf = dio_bio_write_op(iocb);
375 task_io_account_write(bio->bi_iter.bi_size);
378 dio->size += bio->bi_iter.bi_size;
379 pos += bio->bi_iter.bi_size;
381 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
382 if (!nr_pages) {
383 qc = submit_bio(bio);
384 break;
387 if (!dio->multi_bio) {
388 dio->multi_bio = true;
389 atomic_set(&dio->ref, 2);
390 } else {
391 atomic_inc(&dio->ref);
394 submit_bio(bio);
395 bio = bio_alloc(GFP_KERNEL, nr_pages);
398 if (!dio->is_sync)
399 return -EIOCBQUEUED;
401 for (;;) {
402 set_current_state(TASK_UNINTERRUPTIBLE);
403 if (!READ_ONCE(dio->waiter))
404 break;
406 if (!(iocb->ki_flags & IOCB_HIPRI) ||
407 !blk_mq_poll(bdev_get_queue(bdev), qc))
408 io_schedule();
410 __set_current_state(TASK_RUNNING);
412 ret = dio->bio.bi_error;
413 if (likely(!ret))
414 ret = dio->size;
416 bio_put(&dio->bio);
417 return ret;
420 static ssize_t
421 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
423 int nr_pages;
425 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
426 if (!nr_pages)
427 return 0;
428 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
429 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
431 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
434 static __init int blkdev_init(void)
436 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio));
437 if (!blkdev_dio_pool)
438 return -ENOMEM;
439 return 0;
441 module_init(blkdev_init);
443 int __sync_blockdev(struct block_device *bdev, int wait)
445 if (!bdev)
446 return 0;
447 if (!wait)
448 return filemap_flush(bdev->bd_inode->i_mapping);
449 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
453 * Write out and wait upon all the dirty data associated with a block
454 * device via its mapping. Does not take the superblock lock.
456 int sync_blockdev(struct block_device *bdev)
458 return __sync_blockdev(bdev, 1);
460 EXPORT_SYMBOL(sync_blockdev);
463 * Write out and wait upon all dirty data associated with this
464 * device. Filesystem data as well as the underlying block
465 * device. Takes the superblock lock.
467 int fsync_bdev(struct block_device *bdev)
469 struct super_block *sb = get_super(bdev);
470 if (sb) {
471 int res = sync_filesystem(sb);
472 drop_super(sb);
473 return res;
475 return sync_blockdev(bdev);
477 EXPORT_SYMBOL(fsync_bdev);
480 * freeze_bdev -- lock a filesystem and force it into a consistent state
481 * @bdev: blockdevice to lock
483 * If a superblock is found on this device, we take the s_umount semaphore
484 * on it to make sure nobody unmounts until the snapshot creation is done.
485 * The reference counter (bd_fsfreeze_count) guarantees that only the last
486 * unfreeze process can unfreeze the frozen filesystem actually when multiple
487 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
488 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
489 * actually.
491 struct super_block *freeze_bdev(struct block_device *bdev)
493 struct super_block *sb;
494 int error = 0;
496 mutex_lock(&bdev->bd_fsfreeze_mutex);
497 if (++bdev->bd_fsfreeze_count > 1) {
499 * We don't even need to grab a reference - the first call
500 * to freeze_bdev grab an active reference and only the last
501 * thaw_bdev drops it.
503 sb = get_super(bdev);
504 if (sb)
505 drop_super(sb);
506 mutex_unlock(&bdev->bd_fsfreeze_mutex);
507 return sb;
510 sb = get_active_super(bdev);
511 if (!sb)
512 goto out;
513 if (sb->s_op->freeze_super)
514 error = sb->s_op->freeze_super(sb);
515 else
516 error = freeze_super(sb);
517 if (error) {
518 deactivate_super(sb);
519 bdev->bd_fsfreeze_count--;
520 mutex_unlock(&bdev->bd_fsfreeze_mutex);
521 return ERR_PTR(error);
523 deactivate_super(sb);
524 out:
525 sync_blockdev(bdev);
526 mutex_unlock(&bdev->bd_fsfreeze_mutex);
527 return sb; /* thaw_bdev releases s->s_umount */
529 EXPORT_SYMBOL(freeze_bdev);
532 * thaw_bdev -- unlock filesystem
533 * @bdev: blockdevice to unlock
534 * @sb: associated superblock
536 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
538 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
540 int error = -EINVAL;
542 mutex_lock(&bdev->bd_fsfreeze_mutex);
543 if (!bdev->bd_fsfreeze_count)
544 goto out;
546 error = 0;
547 if (--bdev->bd_fsfreeze_count > 0)
548 goto out;
550 if (!sb)
551 goto out;
553 if (sb->s_op->thaw_super)
554 error = sb->s_op->thaw_super(sb);
555 else
556 error = thaw_super(sb);
557 if (error)
558 bdev->bd_fsfreeze_count++;
559 out:
560 mutex_unlock(&bdev->bd_fsfreeze_mutex);
561 return error;
563 EXPORT_SYMBOL(thaw_bdev);
565 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
567 return block_write_full_page(page, blkdev_get_block, wbc);
570 static int blkdev_readpage(struct file * file, struct page * page)
572 return block_read_full_page(page, blkdev_get_block);
575 static int blkdev_readpages(struct file *file, struct address_space *mapping,
576 struct list_head *pages, unsigned nr_pages)
578 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
581 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
582 loff_t pos, unsigned len, unsigned flags,
583 struct page **pagep, void **fsdata)
585 return block_write_begin(mapping, pos, len, flags, pagep,
586 blkdev_get_block);
589 static int blkdev_write_end(struct file *file, struct address_space *mapping,
590 loff_t pos, unsigned len, unsigned copied,
591 struct page *page, void *fsdata)
593 int ret;
594 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
596 unlock_page(page);
597 put_page(page);
599 return ret;
603 * private llseek:
604 * for a block special file file_inode(file)->i_size is zero
605 * so we compute the size by hand (just as in block_read/write above)
607 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
609 struct inode *bd_inode = bdev_file_inode(file);
610 loff_t retval;
612 inode_lock(bd_inode);
613 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
614 inode_unlock(bd_inode);
615 return retval;
618 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
620 struct inode *bd_inode = bdev_file_inode(filp);
621 struct block_device *bdev = I_BDEV(bd_inode);
622 int error;
624 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
625 if (error)
626 return error;
629 * There is no need to serialise calls to blkdev_issue_flush with
630 * i_mutex and doing so causes performance issues with concurrent
631 * O_SYNC writers to a block device.
633 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
634 if (error == -EOPNOTSUPP)
635 error = 0;
637 return error;
639 EXPORT_SYMBOL(blkdev_fsync);
642 * bdev_read_page() - Start reading a page from a block device
643 * @bdev: The device to read the page from
644 * @sector: The offset on the device to read the page to (need not be aligned)
645 * @page: The page to read
647 * On entry, the page should be locked. It will be unlocked when the page
648 * has been read. If the block driver implements rw_page synchronously,
649 * that will be true on exit from this function, but it need not be.
651 * Errors returned by this function are usually "soft", eg out of memory, or
652 * queue full; callers should try a different route to read this page rather
653 * than propagate an error back up the stack.
655 * Return: negative errno if an error occurs, 0 if submission was successful.
657 int bdev_read_page(struct block_device *bdev, sector_t sector,
658 struct page *page)
660 const struct block_device_operations *ops = bdev->bd_disk->fops;
661 int result = -EOPNOTSUPP;
663 if (!ops->rw_page || bdev_get_integrity(bdev))
664 return result;
666 result = blk_queue_enter(bdev->bd_queue, false);
667 if (result)
668 return result;
669 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
670 blk_queue_exit(bdev->bd_queue);
671 return result;
673 EXPORT_SYMBOL_GPL(bdev_read_page);
676 * bdev_write_page() - Start writing a page to a block device
677 * @bdev: The device to write the page to
678 * @sector: The offset on the device to write the page to (need not be aligned)
679 * @page: The page to write
680 * @wbc: The writeback_control for the write
682 * On entry, the page should be locked and not currently under writeback.
683 * On exit, if the write started successfully, the page will be unlocked and
684 * under writeback. If the write failed already (eg the driver failed to
685 * queue the page to the device), the page will still be locked. If the
686 * caller is a ->writepage implementation, it will need to unlock the page.
688 * Errors returned by this function are usually "soft", eg out of memory, or
689 * queue full; callers should try a different route to write this page rather
690 * than propagate an error back up the stack.
692 * Return: negative errno if an error occurs, 0 if submission was successful.
694 int bdev_write_page(struct block_device *bdev, sector_t sector,
695 struct page *page, struct writeback_control *wbc)
697 int result;
698 const struct block_device_operations *ops = bdev->bd_disk->fops;
700 if (!ops->rw_page || bdev_get_integrity(bdev))
701 return -EOPNOTSUPP;
702 result = blk_queue_enter(bdev->bd_queue, false);
703 if (result)
704 return result;
706 set_page_writeback(page);
707 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
708 if (result)
709 end_page_writeback(page);
710 else
711 unlock_page(page);
712 blk_queue_exit(bdev->bd_queue);
713 return result;
715 EXPORT_SYMBOL_GPL(bdev_write_page);
718 * bdev_direct_access() - Get the address for directly-accessibly memory
719 * @bdev: The device containing the memory
720 * @dax: control and output parameters for ->direct_access
722 * If a block device is made up of directly addressable memory, this function
723 * will tell the caller the PFN and the address of the memory. The address
724 * may be directly dereferenced within the kernel without the need to call
725 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
726 * page tables.
728 * Return: negative errno if an error occurs, otherwise the number of bytes
729 * accessible at this address.
731 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
733 sector_t sector = dax->sector;
734 long avail, size = dax->size;
735 const struct block_device_operations *ops = bdev->bd_disk->fops;
738 * The device driver is allowed to sleep, in order to make the
739 * memory directly accessible.
741 might_sleep();
743 if (size < 0)
744 return size;
745 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
746 return -EOPNOTSUPP;
747 if ((sector + DIV_ROUND_UP(size, 512)) >
748 part_nr_sects_read(bdev->bd_part))
749 return -ERANGE;
750 sector += get_start_sect(bdev);
751 if (sector % (PAGE_SIZE / 512))
752 return -EINVAL;
753 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
754 if (!avail)
755 return -ERANGE;
756 if (avail > 0 && avail & ~PAGE_MASK)
757 return -ENXIO;
758 return min(avail, size);
760 EXPORT_SYMBOL_GPL(bdev_direct_access);
763 * bdev_dax_supported() - Check if the device supports dax for filesystem
764 * @sb: The superblock of the device
765 * @blocksize: The block size of the device
767 * This is a library function for filesystems to check if the block device
768 * can be mounted with dax option.
770 * Return: negative errno if unsupported, 0 if supported.
772 int bdev_dax_supported(struct super_block *sb, int blocksize)
774 struct blk_dax_ctl dax = {
775 .sector = 0,
776 .size = PAGE_SIZE,
778 int err;
780 if (blocksize != PAGE_SIZE) {
781 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
782 return -EINVAL;
785 err = bdev_direct_access(sb->s_bdev, &dax);
786 if (err < 0) {
787 switch (err) {
788 case -EOPNOTSUPP:
789 vfs_msg(sb, KERN_ERR,
790 "error: device does not support dax");
791 break;
792 case -EINVAL:
793 vfs_msg(sb, KERN_ERR,
794 "error: unaligned partition for dax");
795 break;
796 default:
797 vfs_msg(sb, KERN_ERR,
798 "error: dax access failed (%d)", err);
800 return err;
803 return 0;
805 EXPORT_SYMBOL_GPL(bdev_dax_supported);
808 * bdev_dax_capable() - Return if the raw device is capable for dax
809 * @bdev: The device for raw block device access
811 bool bdev_dax_capable(struct block_device *bdev)
813 struct blk_dax_ctl dax = {
814 .size = PAGE_SIZE,
817 if (!IS_ENABLED(CONFIG_FS_DAX))
818 return false;
820 dax.sector = 0;
821 if (bdev_direct_access(bdev, &dax) < 0)
822 return false;
824 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
825 if (bdev_direct_access(bdev, &dax) < 0)
826 return false;
828 return true;
832 * pseudo-fs
835 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
836 static struct kmem_cache * bdev_cachep __read_mostly;
838 static struct inode *bdev_alloc_inode(struct super_block *sb)
840 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
841 if (!ei)
842 return NULL;
843 return &ei->vfs_inode;
846 static void bdev_i_callback(struct rcu_head *head)
848 struct inode *inode = container_of(head, struct inode, i_rcu);
849 struct bdev_inode *bdi = BDEV_I(inode);
851 kmem_cache_free(bdev_cachep, bdi);
854 static void bdev_destroy_inode(struct inode *inode)
856 call_rcu(&inode->i_rcu, bdev_i_callback);
859 static void init_once(void *foo)
861 struct bdev_inode *ei = (struct bdev_inode *) foo;
862 struct block_device *bdev = &ei->bdev;
864 memset(bdev, 0, sizeof(*bdev));
865 mutex_init(&bdev->bd_mutex);
866 INIT_LIST_HEAD(&bdev->bd_list);
867 #ifdef CONFIG_SYSFS
868 INIT_LIST_HEAD(&bdev->bd_holder_disks);
869 #endif
870 inode_init_once(&ei->vfs_inode);
871 /* Initialize mutex for freeze. */
872 mutex_init(&bdev->bd_fsfreeze_mutex);
875 static void bdev_evict_inode(struct inode *inode)
877 struct block_device *bdev = &BDEV_I(inode)->bdev;
878 truncate_inode_pages_final(&inode->i_data);
879 invalidate_inode_buffers(inode); /* is it needed here? */
880 clear_inode(inode);
881 spin_lock(&bdev_lock);
882 list_del_init(&bdev->bd_list);
883 spin_unlock(&bdev_lock);
886 static const struct super_operations bdev_sops = {
887 .statfs = simple_statfs,
888 .alloc_inode = bdev_alloc_inode,
889 .destroy_inode = bdev_destroy_inode,
890 .drop_inode = generic_delete_inode,
891 .evict_inode = bdev_evict_inode,
894 static struct dentry *bd_mount(struct file_system_type *fs_type,
895 int flags, const char *dev_name, void *data)
897 struct dentry *dent;
898 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
899 if (!IS_ERR(dent))
900 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
901 return dent;
904 static struct file_system_type bd_type = {
905 .name = "bdev",
906 .mount = bd_mount,
907 .kill_sb = kill_anon_super,
910 struct super_block *blockdev_superblock __read_mostly;
911 EXPORT_SYMBOL_GPL(blockdev_superblock);
913 void __init bdev_cache_init(void)
915 int err;
916 static struct vfsmount *bd_mnt;
918 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
919 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
920 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
921 init_once);
922 err = register_filesystem(&bd_type);
923 if (err)
924 panic("Cannot register bdev pseudo-fs");
925 bd_mnt = kern_mount(&bd_type);
926 if (IS_ERR(bd_mnt))
927 panic("Cannot create bdev pseudo-fs");
928 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
932 * Most likely _very_ bad one - but then it's hardly critical for small
933 * /dev and can be fixed when somebody will need really large one.
934 * Keep in mind that it will be fed through icache hash function too.
936 static inline unsigned long hash(dev_t dev)
938 return MAJOR(dev)+MINOR(dev);
941 static int bdev_test(struct inode *inode, void *data)
943 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
946 static int bdev_set(struct inode *inode, void *data)
948 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
949 return 0;
952 static LIST_HEAD(all_bdevs);
954 struct block_device *bdget(dev_t dev)
956 struct block_device *bdev;
957 struct inode *inode;
959 inode = iget5_locked(blockdev_superblock, hash(dev),
960 bdev_test, bdev_set, &dev);
962 if (!inode)
963 return NULL;
965 bdev = &BDEV_I(inode)->bdev;
967 if (inode->i_state & I_NEW) {
968 bdev->bd_contains = NULL;
969 bdev->bd_super = NULL;
970 bdev->bd_inode = inode;
971 bdev->bd_block_size = (1 << inode->i_blkbits);
972 bdev->bd_part_count = 0;
973 bdev->bd_invalidated = 0;
974 inode->i_mode = S_IFBLK;
975 inode->i_rdev = dev;
976 inode->i_bdev = bdev;
977 inode->i_data.a_ops = &def_blk_aops;
978 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
979 spin_lock(&bdev_lock);
980 list_add(&bdev->bd_list, &all_bdevs);
981 spin_unlock(&bdev_lock);
982 unlock_new_inode(inode);
984 return bdev;
987 EXPORT_SYMBOL(bdget);
990 * bdgrab -- Grab a reference to an already referenced block device
991 * @bdev: Block device to grab a reference to.
993 struct block_device *bdgrab(struct block_device *bdev)
995 ihold(bdev->bd_inode);
996 return bdev;
998 EXPORT_SYMBOL(bdgrab);
1000 long nr_blockdev_pages(void)
1002 struct block_device *bdev;
1003 long ret = 0;
1004 spin_lock(&bdev_lock);
1005 list_for_each_entry(bdev, &all_bdevs, bd_list) {
1006 ret += bdev->bd_inode->i_mapping->nrpages;
1008 spin_unlock(&bdev_lock);
1009 return ret;
1012 void bdput(struct block_device *bdev)
1014 iput(bdev->bd_inode);
1017 EXPORT_SYMBOL(bdput);
1019 static struct block_device *bd_acquire(struct inode *inode)
1021 struct block_device *bdev;
1023 spin_lock(&bdev_lock);
1024 bdev = inode->i_bdev;
1025 if (bdev) {
1026 bdgrab(bdev);
1027 spin_unlock(&bdev_lock);
1028 return bdev;
1030 spin_unlock(&bdev_lock);
1032 bdev = bdget(inode->i_rdev);
1033 if (bdev) {
1034 spin_lock(&bdev_lock);
1035 if (!inode->i_bdev) {
1037 * We take an additional reference to bd_inode,
1038 * and it's released in clear_inode() of inode.
1039 * So, we can access it via ->i_mapping always
1040 * without igrab().
1042 bdgrab(bdev);
1043 inode->i_bdev = bdev;
1044 inode->i_mapping = bdev->bd_inode->i_mapping;
1046 spin_unlock(&bdev_lock);
1048 return bdev;
1051 /* Call when you free inode */
1053 void bd_forget(struct inode *inode)
1055 struct block_device *bdev = NULL;
1057 spin_lock(&bdev_lock);
1058 if (!sb_is_blkdev_sb(inode->i_sb))
1059 bdev = inode->i_bdev;
1060 inode->i_bdev = NULL;
1061 inode->i_mapping = &inode->i_data;
1062 spin_unlock(&bdev_lock);
1064 if (bdev)
1065 bdput(bdev);
1069 * bd_may_claim - test whether a block device can be claimed
1070 * @bdev: block device of interest
1071 * @whole: whole block device containing @bdev, may equal @bdev
1072 * @holder: holder trying to claim @bdev
1074 * Test whether @bdev can be claimed by @holder.
1076 * CONTEXT:
1077 * spin_lock(&bdev_lock).
1079 * RETURNS:
1080 * %true if @bdev can be claimed, %false otherwise.
1082 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1083 void *holder)
1085 if (bdev->bd_holder == holder)
1086 return true; /* already a holder */
1087 else if (bdev->bd_holder != NULL)
1088 return false; /* held by someone else */
1089 else if (whole == bdev)
1090 return true; /* is a whole device which isn't held */
1092 else if (whole->bd_holder == bd_may_claim)
1093 return true; /* is a partition of a device that is being partitioned */
1094 else if (whole->bd_holder != NULL)
1095 return false; /* is a partition of a held device */
1096 else
1097 return true; /* is a partition of an un-held device */
1101 * bd_prepare_to_claim - prepare to claim a block device
1102 * @bdev: block device of interest
1103 * @whole: the whole device containing @bdev, may equal @bdev
1104 * @holder: holder trying to claim @bdev
1106 * Prepare to claim @bdev. This function fails if @bdev is already
1107 * claimed by another holder and waits if another claiming is in
1108 * progress. This function doesn't actually claim. On successful
1109 * return, the caller has ownership of bd_claiming and bd_holder[s].
1111 * CONTEXT:
1112 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1113 * it multiple times.
1115 * RETURNS:
1116 * 0 if @bdev can be claimed, -EBUSY otherwise.
1118 static int bd_prepare_to_claim(struct block_device *bdev,
1119 struct block_device *whole, void *holder)
1121 retry:
1122 /* if someone else claimed, fail */
1123 if (!bd_may_claim(bdev, whole, holder))
1124 return -EBUSY;
1126 /* if claiming is already in progress, wait for it to finish */
1127 if (whole->bd_claiming) {
1128 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1129 DEFINE_WAIT(wait);
1131 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1132 spin_unlock(&bdev_lock);
1133 schedule();
1134 finish_wait(wq, &wait);
1135 spin_lock(&bdev_lock);
1136 goto retry;
1139 /* yay, all mine */
1140 return 0;
1144 * bd_start_claiming - start claiming a block device
1145 * @bdev: block device of interest
1146 * @holder: holder trying to claim @bdev
1148 * @bdev is about to be opened exclusively. Check @bdev can be opened
1149 * exclusively and mark that an exclusive open is in progress. Each
1150 * successful call to this function must be matched with a call to
1151 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1152 * fail).
1154 * This function is used to gain exclusive access to the block device
1155 * without actually causing other exclusive open attempts to fail. It
1156 * should be used when the open sequence itself requires exclusive
1157 * access but may subsequently fail.
1159 * CONTEXT:
1160 * Might sleep.
1162 * RETURNS:
1163 * Pointer to the block device containing @bdev on success, ERR_PTR()
1164 * value on failure.
1166 static struct block_device *bd_start_claiming(struct block_device *bdev,
1167 void *holder)
1169 struct gendisk *disk;
1170 struct block_device *whole;
1171 int partno, err;
1173 might_sleep();
1176 * @bdev might not have been initialized properly yet, look up
1177 * and grab the outer block device the hard way.
1179 disk = get_gendisk(bdev->bd_dev, &partno);
1180 if (!disk)
1181 return ERR_PTR(-ENXIO);
1184 * Normally, @bdev should equal what's returned from bdget_disk()
1185 * if partno is 0; however, some drivers (floppy) use multiple
1186 * bdev's for the same physical device and @bdev may be one of the
1187 * aliases. Keep @bdev if partno is 0. This means claimer
1188 * tracking is broken for those devices but it has always been that
1189 * way.
1191 if (partno)
1192 whole = bdget_disk(disk, 0);
1193 else
1194 whole = bdgrab(bdev);
1196 module_put(disk->fops->owner);
1197 put_disk(disk);
1198 if (!whole)
1199 return ERR_PTR(-ENOMEM);
1201 /* prepare to claim, if successful, mark claiming in progress */
1202 spin_lock(&bdev_lock);
1204 err = bd_prepare_to_claim(bdev, whole, holder);
1205 if (err == 0) {
1206 whole->bd_claiming = holder;
1207 spin_unlock(&bdev_lock);
1208 return whole;
1209 } else {
1210 spin_unlock(&bdev_lock);
1211 bdput(whole);
1212 return ERR_PTR(err);
1216 #ifdef CONFIG_SYSFS
1217 struct bd_holder_disk {
1218 struct list_head list;
1219 struct gendisk *disk;
1220 int refcnt;
1223 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1224 struct gendisk *disk)
1226 struct bd_holder_disk *holder;
1228 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1229 if (holder->disk == disk)
1230 return holder;
1231 return NULL;
1234 static int add_symlink(struct kobject *from, struct kobject *to)
1236 return sysfs_create_link(from, to, kobject_name(to));
1239 static void del_symlink(struct kobject *from, struct kobject *to)
1241 sysfs_remove_link(from, kobject_name(to));
1245 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1246 * @bdev: the claimed slave bdev
1247 * @disk: the holding disk
1249 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1251 * This functions creates the following sysfs symlinks.
1253 * - from "slaves" directory of the holder @disk to the claimed @bdev
1254 * - from "holders" directory of the @bdev to the holder @disk
1256 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1257 * passed to bd_link_disk_holder(), then:
1259 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1260 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1262 * The caller must have claimed @bdev before calling this function and
1263 * ensure that both @bdev and @disk are valid during the creation and
1264 * lifetime of these symlinks.
1266 * CONTEXT:
1267 * Might sleep.
1269 * RETURNS:
1270 * 0 on success, -errno on failure.
1272 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1274 struct bd_holder_disk *holder;
1275 int ret = 0;
1277 mutex_lock(&bdev->bd_mutex);
1279 WARN_ON_ONCE(!bdev->bd_holder);
1281 /* FIXME: remove the following once add_disk() handles errors */
1282 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1283 goto out_unlock;
1285 holder = bd_find_holder_disk(bdev, disk);
1286 if (holder) {
1287 holder->refcnt++;
1288 goto out_unlock;
1291 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1292 if (!holder) {
1293 ret = -ENOMEM;
1294 goto out_unlock;
1297 INIT_LIST_HEAD(&holder->list);
1298 holder->disk = disk;
1299 holder->refcnt = 1;
1301 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1302 if (ret)
1303 goto out_free;
1305 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1306 if (ret)
1307 goto out_del;
1309 * bdev could be deleted beneath us which would implicitly destroy
1310 * the holder directory. Hold on to it.
1312 kobject_get(bdev->bd_part->holder_dir);
1314 list_add(&holder->list, &bdev->bd_holder_disks);
1315 goto out_unlock;
1317 out_del:
1318 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1319 out_free:
1320 kfree(holder);
1321 out_unlock:
1322 mutex_unlock(&bdev->bd_mutex);
1323 return ret;
1325 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1328 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1329 * @bdev: the calimed slave bdev
1330 * @disk: the holding disk
1332 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1334 * CONTEXT:
1335 * Might sleep.
1337 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1339 struct bd_holder_disk *holder;
1341 mutex_lock(&bdev->bd_mutex);
1343 holder = bd_find_holder_disk(bdev, disk);
1345 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1346 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1347 del_symlink(bdev->bd_part->holder_dir,
1348 &disk_to_dev(disk)->kobj);
1349 kobject_put(bdev->bd_part->holder_dir);
1350 list_del_init(&holder->list);
1351 kfree(holder);
1354 mutex_unlock(&bdev->bd_mutex);
1356 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1357 #endif
1360 * flush_disk - invalidates all buffer-cache entries on a disk
1362 * @bdev: struct block device to be flushed
1363 * @kill_dirty: flag to guide handling of dirty inodes
1365 * Invalidates all buffer-cache entries on a disk. It should be called
1366 * when a disk has been changed -- either by a media change or online
1367 * resize.
1369 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1371 if (__invalidate_device(bdev, kill_dirty)) {
1372 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1373 "resized disk %s\n",
1374 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1377 if (!bdev->bd_disk)
1378 return;
1379 if (disk_part_scan_enabled(bdev->bd_disk))
1380 bdev->bd_invalidated = 1;
1384 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1385 * @disk: struct gendisk to check
1386 * @bdev: struct bdev to adjust.
1388 * This routine checks to see if the bdev size does not match the disk size
1389 * and adjusts it if it differs.
1391 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1393 loff_t disk_size, bdev_size;
1395 disk_size = (loff_t)get_capacity(disk) << 9;
1396 bdev_size = i_size_read(bdev->bd_inode);
1397 if (disk_size != bdev_size) {
1398 printk(KERN_INFO
1399 "%s: detected capacity change from %lld to %lld\n",
1400 disk->disk_name, bdev_size, disk_size);
1401 i_size_write(bdev->bd_inode, disk_size);
1402 flush_disk(bdev, false);
1405 EXPORT_SYMBOL(check_disk_size_change);
1408 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1409 * @disk: struct gendisk to be revalidated
1411 * This routine is a wrapper for lower-level driver's revalidate_disk
1412 * call-backs. It is used to do common pre and post operations needed
1413 * for all revalidate_disk operations.
1415 int revalidate_disk(struct gendisk *disk)
1417 struct block_device *bdev;
1418 int ret = 0;
1420 if (disk->fops->revalidate_disk)
1421 ret = disk->fops->revalidate_disk(disk);
1422 blk_integrity_revalidate(disk);
1423 bdev = bdget_disk(disk, 0);
1424 if (!bdev)
1425 return ret;
1427 mutex_lock(&bdev->bd_mutex);
1428 check_disk_size_change(disk, bdev);
1429 bdev->bd_invalidated = 0;
1430 mutex_unlock(&bdev->bd_mutex);
1431 bdput(bdev);
1432 return ret;
1434 EXPORT_SYMBOL(revalidate_disk);
1437 * This routine checks whether a removable media has been changed,
1438 * and invalidates all buffer-cache-entries in that case. This
1439 * is a relatively slow routine, so we have to try to minimize using
1440 * it. Thus it is called only upon a 'mount' or 'open'. This
1441 * is the best way of combining speed and utility, I think.
1442 * People changing diskettes in the middle of an operation deserve
1443 * to lose :-)
1445 int check_disk_change(struct block_device *bdev)
1447 struct gendisk *disk = bdev->bd_disk;
1448 const struct block_device_operations *bdops = disk->fops;
1449 unsigned int events;
1451 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1452 DISK_EVENT_EJECT_REQUEST);
1453 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1454 return 0;
1456 flush_disk(bdev, true);
1457 if (bdops->revalidate_disk)
1458 bdops->revalidate_disk(bdev->bd_disk);
1459 return 1;
1462 EXPORT_SYMBOL(check_disk_change);
1464 void bd_set_size(struct block_device *bdev, loff_t size)
1466 unsigned bsize = bdev_logical_block_size(bdev);
1468 inode_lock(bdev->bd_inode);
1469 i_size_write(bdev->bd_inode, size);
1470 inode_unlock(bdev->bd_inode);
1471 while (bsize < PAGE_SIZE) {
1472 if (size & bsize)
1473 break;
1474 bsize <<= 1;
1476 bdev->bd_block_size = bsize;
1477 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1479 EXPORT_SYMBOL(bd_set_size);
1481 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1484 * bd_mutex locking:
1486 * mutex_lock(part->bd_mutex)
1487 * mutex_lock_nested(whole->bd_mutex, 1)
1490 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1492 struct gendisk *disk;
1493 struct module *owner;
1494 int ret;
1495 int partno;
1496 int perm = 0;
1498 if (mode & FMODE_READ)
1499 perm |= MAY_READ;
1500 if (mode & FMODE_WRITE)
1501 perm |= MAY_WRITE;
1503 * hooks: /n/, see "layering violations".
1505 if (!for_part) {
1506 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1507 if (ret != 0) {
1508 bdput(bdev);
1509 return ret;
1513 restart:
1515 ret = -ENXIO;
1516 disk = get_gendisk(bdev->bd_dev, &partno);
1517 if (!disk)
1518 goto out;
1519 owner = disk->fops->owner;
1521 disk_block_events(disk);
1522 mutex_lock_nested(&bdev->bd_mutex, for_part);
1523 if (!bdev->bd_openers) {
1524 bdev->bd_disk = disk;
1525 bdev->bd_queue = disk->queue;
1526 bdev->bd_contains = bdev;
1528 if (!partno) {
1529 ret = -ENXIO;
1530 bdev->bd_part = disk_get_part(disk, partno);
1531 if (!bdev->bd_part)
1532 goto out_clear;
1534 ret = 0;
1535 if (disk->fops->open) {
1536 ret = disk->fops->open(bdev, mode);
1537 if (ret == -ERESTARTSYS) {
1538 /* Lost a race with 'disk' being
1539 * deleted, try again.
1540 * See md.c
1542 disk_put_part(bdev->bd_part);
1543 bdev->bd_part = NULL;
1544 bdev->bd_disk = NULL;
1545 bdev->bd_queue = NULL;
1546 mutex_unlock(&bdev->bd_mutex);
1547 disk_unblock_events(disk);
1548 put_disk(disk);
1549 module_put(owner);
1550 goto restart;
1554 if (!ret)
1555 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1558 * If the device is invalidated, rescan partition
1559 * if open succeeded or failed with -ENOMEDIUM.
1560 * The latter is necessary to prevent ghost
1561 * partitions on a removed medium.
1563 if (bdev->bd_invalidated) {
1564 if (!ret)
1565 rescan_partitions(disk, bdev);
1566 else if (ret == -ENOMEDIUM)
1567 invalidate_partitions(disk, bdev);
1570 if (ret)
1571 goto out_clear;
1572 } else {
1573 struct block_device *whole;
1574 whole = bdget_disk(disk, 0);
1575 ret = -ENOMEM;
1576 if (!whole)
1577 goto out_clear;
1578 BUG_ON(for_part);
1579 ret = __blkdev_get(whole, mode, 1);
1580 if (ret)
1581 goto out_clear;
1582 bdev->bd_contains = whole;
1583 bdev->bd_part = disk_get_part(disk, partno);
1584 if (!(disk->flags & GENHD_FL_UP) ||
1585 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1586 ret = -ENXIO;
1587 goto out_clear;
1589 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1591 } else {
1592 if (bdev->bd_contains == bdev) {
1593 ret = 0;
1594 if (bdev->bd_disk->fops->open)
1595 ret = bdev->bd_disk->fops->open(bdev, mode);
1596 /* the same as first opener case, read comment there */
1597 if (bdev->bd_invalidated) {
1598 if (!ret)
1599 rescan_partitions(bdev->bd_disk, bdev);
1600 else if (ret == -ENOMEDIUM)
1601 invalidate_partitions(bdev->bd_disk, bdev);
1603 if (ret)
1604 goto out_unlock_bdev;
1606 /* only one opener holds refs to the module and disk */
1607 put_disk(disk);
1608 module_put(owner);
1610 bdev->bd_openers++;
1611 if (for_part)
1612 bdev->bd_part_count++;
1613 mutex_unlock(&bdev->bd_mutex);
1614 disk_unblock_events(disk);
1615 return 0;
1617 out_clear:
1618 disk_put_part(bdev->bd_part);
1619 bdev->bd_disk = NULL;
1620 bdev->bd_part = NULL;
1621 bdev->bd_queue = NULL;
1622 if (bdev != bdev->bd_contains)
1623 __blkdev_put(bdev->bd_contains, mode, 1);
1624 bdev->bd_contains = NULL;
1625 out_unlock_bdev:
1626 mutex_unlock(&bdev->bd_mutex);
1627 disk_unblock_events(disk);
1628 put_disk(disk);
1629 module_put(owner);
1630 out:
1631 bdput(bdev);
1633 return ret;
1637 * blkdev_get - open a block device
1638 * @bdev: block_device to open
1639 * @mode: FMODE_* mask
1640 * @holder: exclusive holder identifier
1642 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1643 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1644 * @holder is invalid. Exclusive opens may nest for the same @holder.
1646 * On success, the reference count of @bdev is unchanged. On failure,
1647 * @bdev is put.
1649 * CONTEXT:
1650 * Might sleep.
1652 * RETURNS:
1653 * 0 on success, -errno on failure.
1655 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1657 struct block_device *whole = NULL;
1658 int res;
1660 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1662 if ((mode & FMODE_EXCL) && holder) {
1663 whole = bd_start_claiming(bdev, holder);
1664 if (IS_ERR(whole)) {
1665 bdput(bdev);
1666 return PTR_ERR(whole);
1670 res = __blkdev_get(bdev, mode, 0);
1672 if (whole) {
1673 struct gendisk *disk = whole->bd_disk;
1675 /* finish claiming */
1676 mutex_lock(&bdev->bd_mutex);
1677 spin_lock(&bdev_lock);
1679 if (!res) {
1680 BUG_ON(!bd_may_claim(bdev, whole, holder));
1682 * Note that for a whole device bd_holders
1683 * will be incremented twice, and bd_holder
1684 * will be set to bd_may_claim before being
1685 * set to holder
1687 whole->bd_holders++;
1688 whole->bd_holder = bd_may_claim;
1689 bdev->bd_holders++;
1690 bdev->bd_holder = holder;
1693 /* tell others that we're done */
1694 BUG_ON(whole->bd_claiming != holder);
1695 whole->bd_claiming = NULL;
1696 wake_up_bit(&whole->bd_claiming, 0);
1698 spin_unlock(&bdev_lock);
1701 * Block event polling for write claims if requested. Any
1702 * write holder makes the write_holder state stick until
1703 * all are released. This is good enough and tracking
1704 * individual writeable reference is too fragile given the
1705 * way @mode is used in blkdev_get/put().
1707 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1708 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1709 bdev->bd_write_holder = true;
1710 disk_block_events(disk);
1713 mutex_unlock(&bdev->bd_mutex);
1714 bdput(whole);
1717 return res;
1719 EXPORT_SYMBOL(blkdev_get);
1722 * blkdev_get_by_path - open a block device by name
1723 * @path: path to the block device to open
1724 * @mode: FMODE_* mask
1725 * @holder: exclusive holder identifier
1727 * Open the blockdevice described by the device file at @path. @mode
1728 * and @holder are identical to blkdev_get().
1730 * On success, the returned block_device has reference count of one.
1732 * CONTEXT:
1733 * Might sleep.
1735 * RETURNS:
1736 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1738 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1739 void *holder)
1741 struct block_device *bdev;
1742 int err;
1744 bdev = lookup_bdev(path);
1745 if (IS_ERR(bdev))
1746 return bdev;
1748 err = blkdev_get(bdev, mode, holder);
1749 if (err)
1750 return ERR_PTR(err);
1752 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1753 blkdev_put(bdev, mode);
1754 return ERR_PTR(-EACCES);
1757 return bdev;
1759 EXPORT_SYMBOL(blkdev_get_by_path);
1762 * blkdev_get_by_dev - open a block device by device number
1763 * @dev: device number of block device to open
1764 * @mode: FMODE_* mask
1765 * @holder: exclusive holder identifier
1767 * Open the blockdevice described by device number @dev. @mode and
1768 * @holder are identical to blkdev_get().
1770 * Use it ONLY if you really do not have anything better - i.e. when
1771 * you are behind a truly sucky interface and all you are given is a
1772 * device number. _Never_ to be used for internal purposes. If you
1773 * ever need it - reconsider your API.
1775 * On success, the returned block_device has reference count of one.
1777 * CONTEXT:
1778 * Might sleep.
1780 * RETURNS:
1781 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1783 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1785 struct block_device *bdev;
1786 int err;
1788 bdev = bdget(dev);
1789 if (!bdev)
1790 return ERR_PTR(-ENOMEM);
1792 err = blkdev_get(bdev, mode, holder);
1793 if (err)
1794 return ERR_PTR(err);
1796 return bdev;
1798 EXPORT_SYMBOL(blkdev_get_by_dev);
1800 static int blkdev_open(struct inode * inode, struct file * filp)
1802 struct block_device *bdev;
1805 * Preserve backwards compatibility and allow large file access
1806 * even if userspace doesn't ask for it explicitly. Some mkfs
1807 * binary needs it. We might want to drop this workaround
1808 * during an unstable branch.
1810 filp->f_flags |= O_LARGEFILE;
1812 if (filp->f_flags & O_NDELAY)
1813 filp->f_mode |= FMODE_NDELAY;
1814 if (filp->f_flags & O_EXCL)
1815 filp->f_mode |= FMODE_EXCL;
1816 if ((filp->f_flags & O_ACCMODE) == 3)
1817 filp->f_mode |= FMODE_WRITE_IOCTL;
1819 bdev = bd_acquire(inode);
1820 if (bdev == NULL)
1821 return -ENOMEM;
1823 filp->f_mapping = bdev->bd_inode->i_mapping;
1825 return blkdev_get(bdev, filp->f_mode, filp);
1828 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1830 struct gendisk *disk = bdev->bd_disk;
1831 struct block_device *victim = NULL;
1833 mutex_lock_nested(&bdev->bd_mutex, for_part);
1834 if (for_part)
1835 bdev->bd_part_count--;
1837 if (!--bdev->bd_openers) {
1838 WARN_ON_ONCE(bdev->bd_holders);
1839 sync_blockdev(bdev);
1840 kill_bdev(bdev);
1842 bdev_write_inode(bdev);
1844 * Detaching bdev inode from its wb in __destroy_inode()
1845 * is too late: the queue which embeds its bdi (along with
1846 * root wb) can be gone as soon as we put_disk() below.
1848 inode_detach_wb(bdev->bd_inode);
1850 if (bdev->bd_contains == bdev) {
1851 if (disk->fops->release)
1852 disk->fops->release(disk, mode);
1854 if (!bdev->bd_openers) {
1855 struct module *owner = disk->fops->owner;
1857 disk_put_part(bdev->bd_part);
1858 bdev->bd_part = NULL;
1859 bdev->bd_disk = NULL;
1860 if (bdev != bdev->bd_contains)
1861 victim = bdev->bd_contains;
1862 bdev->bd_contains = NULL;
1864 put_disk(disk);
1865 module_put(owner);
1867 mutex_unlock(&bdev->bd_mutex);
1868 bdput(bdev);
1869 if (victim)
1870 __blkdev_put(victim, mode, 1);
1873 void blkdev_put(struct block_device *bdev, fmode_t mode)
1875 mutex_lock(&bdev->bd_mutex);
1877 if (mode & FMODE_EXCL) {
1878 bool bdev_free;
1881 * Release a claim on the device. The holder fields
1882 * are protected with bdev_lock. bd_mutex is to
1883 * synchronize disk_holder unlinking.
1885 spin_lock(&bdev_lock);
1887 WARN_ON_ONCE(--bdev->bd_holders < 0);
1888 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1890 /* bd_contains might point to self, check in a separate step */
1891 if ((bdev_free = !bdev->bd_holders))
1892 bdev->bd_holder = NULL;
1893 if (!bdev->bd_contains->bd_holders)
1894 bdev->bd_contains->bd_holder = NULL;
1896 spin_unlock(&bdev_lock);
1899 * If this was the last claim, remove holder link and
1900 * unblock evpoll if it was a write holder.
1902 if (bdev_free && bdev->bd_write_holder) {
1903 disk_unblock_events(bdev->bd_disk);
1904 bdev->bd_write_holder = false;
1909 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1910 * event. This is to ensure detection of media removal commanded
1911 * from userland - e.g. eject(1).
1913 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1915 mutex_unlock(&bdev->bd_mutex);
1917 __blkdev_put(bdev, mode, 0);
1919 EXPORT_SYMBOL(blkdev_put);
1921 static int blkdev_close(struct inode * inode, struct file * filp)
1923 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1924 blkdev_put(bdev, filp->f_mode);
1925 return 0;
1928 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1930 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1931 fmode_t mode = file->f_mode;
1934 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1935 * to updated it before every ioctl.
1937 if (file->f_flags & O_NDELAY)
1938 mode |= FMODE_NDELAY;
1939 else
1940 mode &= ~FMODE_NDELAY;
1942 return blkdev_ioctl(bdev, mode, cmd, arg);
1946 * Write data to the block device. Only intended for the block device itself
1947 * and the raw driver which basically is a fake block device.
1949 * Does not take i_mutex for the write and thus is not for general purpose
1950 * use.
1952 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1954 struct file *file = iocb->ki_filp;
1955 struct inode *bd_inode = bdev_file_inode(file);
1956 loff_t size = i_size_read(bd_inode);
1957 struct blk_plug plug;
1958 ssize_t ret;
1960 if (bdev_read_only(I_BDEV(bd_inode)))
1961 return -EPERM;
1963 if (!iov_iter_count(from))
1964 return 0;
1966 if (iocb->ki_pos >= size)
1967 return -ENOSPC;
1969 iov_iter_truncate(from, size - iocb->ki_pos);
1971 blk_start_plug(&plug);
1972 ret = __generic_file_write_iter(iocb, from);
1973 if (ret > 0)
1974 ret = generic_write_sync(iocb, ret);
1975 blk_finish_plug(&plug);
1976 return ret;
1978 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1980 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1982 struct file *file = iocb->ki_filp;
1983 struct inode *bd_inode = bdev_file_inode(file);
1984 loff_t size = i_size_read(bd_inode);
1985 loff_t pos = iocb->ki_pos;
1987 if (pos >= size)
1988 return 0;
1990 size -= pos;
1991 iov_iter_truncate(to, size);
1992 return generic_file_read_iter(iocb, to);
1994 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1997 * Try to release a page associated with block device when the system
1998 * is under memory pressure.
2000 static int blkdev_releasepage(struct page *page, gfp_t wait)
2002 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2004 if (super && super->s_op->bdev_try_to_free_page)
2005 return super->s_op->bdev_try_to_free_page(super, page, wait);
2007 return try_to_free_buffers(page);
2010 static int blkdev_writepages(struct address_space *mapping,
2011 struct writeback_control *wbc)
2013 if (dax_mapping(mapping)) {
2014 struct block_device *bdev = I_BDEV(mapping->host);
2016 return dax_writeback_mapping_range(mapping, bdev, wbc);
2018 return generic_writepages(mapping, wbc);
2021 static const struct address_space_operations def_blk_aops = {
2022 .readpage = blkdev_readpage,
2023 .readpages = blkdev_readpages,
2024 .writepage = blkdev_writepage,
2025 .write_begin = blkdev_write_begin,
2026 .write_end = blkdev_write_end,
2027 .writepages = blkdev_writepages,
2028 .releasepage = blkdev_releasepage,
2029 .direct_IO = blkdev_direct_IO,
2030 .is_dirty_writeback = buffer_check_dirty_writeback,
2033 #define BLKDEV_FALLOC_FL_SUPPORTED \
2034 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2035 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2037 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2038 loff_t len)
2040 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2041 struct request_queue *q = bdev_get_queue(bdev);
2042 struct address_space *mapping;
2043 loff_t end = start + len - 1;
2044 loff_t isize;
2045 int error;
2047 /* Fail if we don't recognize the flags. */
2048 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2049 return -EOPNOTSUPP;
2051 /* Don't go off the end of the device. */
2052 isize = i_size_read(bdev->bd_inode);
2053 if (start >= isize)
2054 return -EINVAL;
2055 if (end >= isize) {
2056 if (mode & FALLOC_FL_KEEP_SIZE) {
2057 len = isize - start;
2058 end = start + len - 1;
2059 } else
2060 return -EINVAL;
2064 * Don't allow IO that isn't aligned to logical block size.
2066 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2067 return -EINVAL;
2069 /* Invalidate the page cache, including dirty pages. */
2070 mapping = bdev->bd_inode->i_mapping;
2071 truncate_inode_pages_range(mapping, start, end);
2073 switch (mode) {
2074 case FALLOC_FL_ZERO_RANGE:
2075 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2076 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2077 GFP_KERNEL, false);
2078 break;
2079 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2080 /* Only punch if the device can do zeroing discard. */
2081 if (!blk_queue_discard(q) || !q->limits.discard_zeroes_data)
2082 return -EOPNOTSUPP;
2083 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2084 GFP_KERNEL, 0);
2085 break;
2086 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2087 if (!blk_queue_discard(q))
2088 return -EOPNOTSUPP;
2089 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2090 GFP_KERNEL, 0);
2091 break;
2092 default:
2093 return -EOPNOTSUPP;
2095 if (error)
2096 return error;
2099 * Invalidate again; if someone wandered in and dirtied a page,
2100 * the caller will be given -EBUSY. The third argument is
2101 * inclusive, so the rounding here is safe.
2103 return invalidate_inode_pages2_range(mapping,
2104 start >> PAGE_SHIFT,
2105 end >> PAGE_SHIFT);
2108 const struct file_operations def_blk_fops = {
2109 .open = blkdev_open,
2110 .release = blkdev_close,
2111 .llseek = block_llseek,
2112 .read_iter = blkdev_read_iter,
2113 .write_iter = blkdev_write_iter,
2114 .mmap = generic_file_mmap,
2115 .fsync = blkdev_fsync,
2116 .unlocked_ioctl = block_ioctl,
2117 #ifdef CONFIG_COMPAT
2118 .compat_ioctl = compat_blkdev_ioctl,
2119 #endif
2120 .splice_read = generic_file_splice_read,
2121 .splice_write = iter_file_splice_write,
2122 .fallocate = blkdev_fallocate,
2125 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2127 int res;
2128 mm_segment_t old_fs = get_fs();
2129 set_fs(KERNEL_DS);
2130 res = blkdev_ioctl(bdev, 0, cmd, arg);
2131 set_fs(old_fs);
2132 return res;
2135 EXPORT_SYMBOL(ioctl_by_bdev);
2138 * lookup_bdev - lookup a struct block_device by name
2139 * @pathname: special file representing the block device
2141 * Get a reference to the blockdevice at @pathname in the current
2142 * namespace if possible and return it. Return ERR_PTR(error)
2143 * otherwise.
2145 struct block_device *lookup_bdev(const char *pathname)
2147 struct block_device *bdev;
2148 struct inode *inode;
2149 struct path path;
2150 int error;
2152 if (!pathname || !*pathname)
2153 return ERR_PTR(-EINVAL);
2155 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2156 if (error)
2157 return ERR_PTR(error);
2159 inode = d_backing_inode(path.dentry);
2160 error = -ENOTBLK;
2161 if (!S_ISBLK(inode->i_mode))
2162 goto fail;
2163 error = -EACCES;
2164 if (!may_open_dev(&path))
2165 goto fail;
2166 error = -ENOMEM;
2167 bdev = bd_acquire(inode);
2168 if (!bdev)
2169 goto fail;
2170 out:
2171 path_put(&path);
2172 return bdev;
2173 fail:
2174 bdev = ERR_PTR(error);
2175 goto out;
2177 EXPORT_SYMBOL(lookup_bdev);
2179 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2181 struct super_block *sb = get_super(bdev);
2182 int res = 0;
2184 if (sb) {
2186 * no need to lock the super, get_super holds the
2187 * read mutex so the filesystem cannot go away
2188 * under us (->put_super runs with the write lock
2189 * hold).
2191 shrink_dcache_sb(sb);
2192 res = invalidate_inodes(sb, kill_dirty);
2193 drop_super(sb);
2195 invalidate_bdev(bdev);
2196 return res;
2198 EXPORT_SYMBOL(__invalidate_device);
2200 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2202 struct inode *inode, *old_inode = NULL;
2204 spin_lock(&blockdev_superblock->s_inode_list_lock);
2205 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2206 struct address_space *mapping = inode->i_mapping;
2207 struct block_device *bdev;
2209 spin_lock(&inode->i_lock);
2210 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2211 mapping->nrpages == 0) {
2212 spin_unlock(&inode->i_lock);
2213 continue;
2215 __iget(inode);
2216 spin_unlock(&inode->i_lock);
2217 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2219 * We hold a reference to 'inode' so it couldn't have been
2220 * removed from s_inodes list while we dropped the
2221 * s_inode_list_lock We cannot iput the inode now as we can
2222 * be holding the last reference and we cannot iput it under
2223 * s_inode_list_lock. So we keep the reference and iput it
2224 * later.
2226 iput(old_inode);
2227 old_inode = inode;
2228 bdev = I_BDEV(inode);
2230 mutex_lock(&bdev->bd_mutex);
2231 if (bdev->bd_openers)
2232 func(bdev, arg);
2233 mutex_unlock(&bdev->bd_mutex);
2235 spin_lock(&blockdev_superblock->s_inode_list_lock);
2237 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2238 iput(old_inode);