mm: vmscan: only write dirty pages that the scanner has seen twice
[linux-2.6/btrfs-unstable.git] / mm / vmscan.c
blob92e56cadceae32cc185780794f2f9ceb45f24a1a
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
57 #include "internal.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
69 /* Allocation order */
70 int order;
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
76 nodemask_t *nodemask;
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
82 struct mem_cgroup *target_mem_cgroup;
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
90 /* Writepage batching in laptop mode; RECLAIM_WRITE */
91 unsigned int may_writepage:1;
93 /* Can mapped pages be reclaimed? */
94 unsigned int may_unmap:1;
96 /* Can pages be swapped as part of reclaim? */
97 unsigned int may_swap:1;
99 /* Can cgroups be reclaimed below their normal consumption range? */
100 unsigned int may_thrash:1;
102 unsigned int hibernation_mode:1;
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
107 /* Incremented by the number of inactive pages that were scanned */
108 unsigned long nr_scanned;
110 /* Number of pages freed so far during a call to shrink_zones() */
111 unsigned long nr_reclaimed;
114 #ifdef ARCH_HAS_PREFETCH
115 #define prefetch_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetch(&prev->_field); \
123 } while (0)
124 #else
125 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
128 #ifdef ARCH_HAS_PREFETCHW
129 #define prefetchw_prev_lru_page(_page, _base, _field) \
130 do { \
131 if ((_page)->lru.prev != _base) { \
132 struct page *prev; \
134 prev = lru_to_page(&(_page->lru)); \
135 prefetchw(&prev->_field); \
137 } while (0)
138 #else
139 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
140 #endif
143 * From 0 .. 100. Higher means more swappy.
145 int vm_swappiness = 60;
147 * The total number of pages which are beyond the high watermark within all
148 * zones.
150 unsigned long vm_total_pages;
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
155 #ifdef CONFIG_MEMCG
156 static bool global_reclaim(struct scan_control *sc)
158 return !sc->target_mem_cgroup;
162 * sane_reclaim - is the usual dirty throttling mechanism operational?
163 * @sc: scan_control in question
165 * The normal page dirty throttling mechanism in balance_dirty_pages() is
166 * completely broken with the legacy memcg and direct stalling in
167 * shrink_page_list() is used for throttling instead, which lacks all the
168 * niceties such as fairness, adaptive pausing, bandwidth proportional
169 * allocation and configurability.
171 * This function tests whether the vmscan currently in progress can assume
172 * that the normal dirty throttling mechanism is operational.
174 static bool sane_reclaim(struct scan_control *sc)
176 struct mem_cgroup *memcg = sc->target_mem_cgroup;
178 if (!memcg)
179 return true;
180 #ifdef CONFIG_CGROUP_WRITEBACK
181 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
182 return true;
183 #endif
184 return false;
186 #else
187 static bool global_reclaim(struct scan_control *sc)
189 return true;
192 static bool sane_reclaim(struct scan_control *sc)
194 return true;
196 #endif
199 * This misses isolated pages which are not accounted for to save counters.
200 * As the data only determines if reclaim or compaction continues, it is
201 * not expected that isolated pages will be a dominating factor.
203 unsigned long zone_reclaimable_pages(struct zone *zone)
205 unsigned long nr;
207 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
208 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
209 if (get_nr_swap_pages() > 0)
210 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
211 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
213 return nr;
216 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
218 unsigned long nr;
220 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
222 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
224 if (get_nr_swap_pages() > 0)
225 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
227 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
229 return nr;
232 bool pgdat_reclaimable(struct pglist_data *pgdat)
234 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
235 pgdat_reclaimable_pages(pgdat) * 6;
239 * lruvec_lru_size - Returns the number of pages on the given LRU list.
240 * @lruvec: lru vector
241 * @lru: lru to use
242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246 unsigned long lru_size;
247 int zid;
249 if (!mem_cgroup_disabled())
250 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 else
252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 unsigned long size;
258 if (!managed_zone(zone))
259 continue;
261 if (!mem_cgroup_disabled())
262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 else
264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 NR_ZONE_LRU_BASE + lru);
266 lru_size -= min(size, lru_size);
269 return lru_size;
274 * Add a shrinker callback to be called from the vm.
276 int register_shrinker(struct shrinker *shrinker)
278 size_t size = sizeof(*shrinker->nr_deferred);
280 if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 size *= nr_node_ids;
283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 if (!shrinker->nr_deferred)
285 return -ENOMEM;
287 down_write(&shrinker_rwsem);
288 list_add_tail(&shrinker->list, &shrinker_list);
289 up_write(&shrinker_rwsem);
290 return 0;
292 EXPORT_SYMBOL(register_shrinker);
295 * Remove one
297 void unregister_shrinker(struct shrinker *shrinker)
299 down_write(&shrinker_rwsem);
300 list_del(&shrinker->list);
301 up_write(&shrinker_rwsem);
302 kfree(shrinker->nr_deferred);
304 EXPORT_SYMBOL(unregister_shrinker);
306 #define SHRINK_BATCH 128
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 struct shrinker *shrinker,
310 unsigned long nr_scanned,
311 unsigned long nr_eligible)
313 unsigned long freed = 0;
314 unsigned long long delta;
315 long total_scan;
316 long freeable;
317 long nr;
318 long new_nr;
319 int nid = shrinkctl->nid;
320 long batch_size = shrinker->batch ? shrinker->batch
321 : SHRINK_BATCH;
322 long scanned = 0, next_deferred;
324 freeable = shrinker->count_objects(shrinker, shrinkctl);
325 if (freeable == 0)
326 return 0;
329 * copy the current shrinker scan count into a local variable
330 * and zero it so that other concurrent shrinker invocations
331 * don't also do this scanning work.
333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
335 total_scan = nr;
336 delta = (4 * nr_scanned) / shrinker->seeks;
337 delta *= freeable;
338 do_div(delta, nr_eligible + 1);
339 total_scan += delta;
340 if (total_scan < 0) {
341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 shrinker->scan_objects, total_scan);
343 total_scan = freeable;
344 next_deferred = nr;
345 } else
346 next_deferred = total_scan;
349 * We need to avoid excessive windup on filesystem shrinkers
350 * due to large numbers of GFP_NOFS allocations causing the
351 * shrinkers to return -1 all the time. This results in a large
352 * nr being built up so when a shrink that can do some work
353 * comes along it empties the entire cache due to nr >>>
354 * freeable. This is bad for sustaining a working set in
355 * memory.
357 * Hence only allow the shrinker to scan the entire cache when
358 * a large delta change is calculated directly.
360 if (delta < freeable / 4)
361 total_scan = min(total_scan, freeable / 2);
364 * Avoid risking looping forever due to too large nr value:
365 * never try to free more than twice the estimate number of
366 * freeable entries.
368 if (total_scan > freeable * 2)
369 total_scan = freeable * 2;
371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 nr_scanned, nr_eligible,
373 freeable, delta, total_scan);
376 * Normally, we should not scan less than batch_size objects in one
377 * pass to avoid too frequent shrinker calls, but if the slab has less
378 * than batch_size objects in total and we are really tight on memory,
379 * we will try to reclaim all available objects, otherwise we can end
380 * up failing allocations although there are plenty of reclaimable
381 * objects spread over several slabs with usage less than the
382 * batch_size.
384 * We detect the "tight on memory" situations by looking at the total
385 * number of objects we want to scan (total_scan). If it is greater
386 * than the total number of objects on slab (freeable), we must be
387 * scanning at high prio and therefore should try to reclaim as much as
388 * possible.
390 while (total_scan >= batch_size ||
391 total_scan >= freeable) {
392 unsigned long ret;
393 unsigned long nr_to_scan = min(batch_size, total_scan);
395 shrinkctl->nr_to_scan = nr_to_scan;
396 ret = shrinker->scan_objects(shrinker, shrinkctl);
397 if (ret == SHRINK_STOP)
398 break;
399 freed += ret;
401 count_vm_events(SLABS_SCANNED, nr_to_scan);
402 total_scan -= nr_to_scan;
403 scanned += nr_to_scan;
405 cond_resched();
408 if (next_deferred >= scanned)
409 next_deferred -= scanned;
410 else
411 next_deferred = 0;
413 * move the unused scan count back into the shrinker in a
414 * manner that handles concurrent updates. If we exhausted the
415 * scan, there is no need to do an update.
417 if (next_deferred > 0)
418 new_nr = atomic_long_add_return(next_deferred,
419 &shrinker->nr_deferred[nid]);
420 else
421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
424 return freed;
428 * shrink_slab - shrink slab caches
429 * @gfp_mask: allocation context
430 * @nid: node whose slab caches to target
431 * @memcg: memory cgroup whose slab caches to target
432 * @nr_scanned: pressure numerator
433 * @nr_eligible: pressure denominator
435 * Call the shrink functions to age shrinkable caches.
437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438 * unaware shrinkers will receive a node id of 0 instead.
440 * @memcg specifies the memory cgroup to target. If it is not NULL,
441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
442 * objects from the memory cgroup specified. Otherwise, only unaware
443 * shrinkers are called.
445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446 * the available objects should be scanned. Page reclaim for example
447 * passes the number of pages scanned and the number of pages on the
448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449 * when it encountered mapped pages. The ratio is further biased by
450 * the ->seeks setting of the shrink function, which indicates the
451 * cost to recreate an object relative to that of an LRU page.
453 * Returns the number of reclaimed slab objects.
455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 struct mem_cgroup *memcg,
457 unsigned long nr_scanned,
458 unsigned long nr_eligible)
460 struct shrinker *shrinker;
461 unsigned long freed = 0;
463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
464 return 0;
466 if (nr_scanned == 0)
467 nr_scanned = SWAP_CLUSTER_MAX;
469 if (!down_read_trylock(&shrinker_rwsem)) {
471 * If we would return 0, our callers would understand that we
472 * have nothing else to shrink and give up trying. By returning
473 * 1 we keep it going and assume we'll be able to shrink next
474 * time.
476 freed = 1;
477 goto out;
480 list_for_each_entry(shrinker, &shrinker_list, list) {
481 struct shrink_control sc = {
482 .gfp_mask = gfp_mask,
483 .nid = nid,
484 .memcg = memcg,
488 * If kernel memory accounting is disabled, we ignore
489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 * passing NULL for memcg.
492 if (memcg_kmem_enabled() &&
493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
494 continue;
496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 sc.nid = 0;
499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
502 up_read(&shrinker_rwsem);
503 out:
504 cond_resched();
505 return freed;
508 void drop_slab_node(int nid)
510 unsigned long freed;
512 do {
513 struct mem_cgroup *memcg = NULL;
515 freed = 0;
516 do {
517 freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 1000, 1000);
519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 } while (freed > 10);
523 void drop_slab(void)
525 int nid;
527 for_each_online_node(nid)
528 drop_slab_node(nid);
531 static inline int is_page_cache_freeable(struct page *page)
534 * A freeable page cache page is referenced only by the caller
535 * that isolated the page, the page cache radix tree and
536 * optional buffer heads at page->private.
538 return page_count(page) - page_has_private(page) == 2;
541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
543 if (current->flags & PF_SWAPWRITE)
544 return 1;
545 if (!inode_write_congested(inode))
546 return 1;
547 if (inode_to_bdi(inode) == current->backing_dev_info)
548 return 1;
549 return 0;
553 * We detected a synchronous write error writing a page out. Probably
554 * -ENOSPC. We need to propagate that into the address_space for a subsequent
555 * fsync(), msync() or close().
557 * The tricky part is that after writepage we cannot touch the mapping: nothing
558 * prevents it from being freed up. But we have a ref on the page and once
559 * that page is locked, the mapping is pinned.
561 * We're allowed to run sleeping lock_page() here because we know the caller has
562 * __GFP_FS.
564 static void handle_write_error(struct address_space *mapping,
565 struct page *page, int error)
567 lock_page(page);
568 if (page_mapping(page) == mapping)
569 mapping_set_error(mapping, error);
570 unlock_page(page);
573 /* possible outcome of pageout() */
574 typedef enum {
575 /* failed to write page out, page is locked */
576 PAGE_KEEP,
577 /* move page to the active list, page is locked */
578 PAGE_ACTIVATE,
579 /* page has been sent to the disk successfully, page is unlocked */
580 PAGE_SUCCESS,
581 /* page is clean and locked */
582 PAGE_CLEAN,
583 } pageout_t;
586 * pageout is called by shrink_page_list() for each dirty page.
587 * Calls ->writepage().
589 static pageout_t pageout(struct page *page, struct address_space *mapping,
590 struct scan_control *sc)
593 * If the page is dirty, only perform writeback if that write
594 * will be non-blocking. To prevent this allocation from being
595 * stalled by pagecache activity. But note that there may be
596 * stalls if we need to run get_block(). We could test
597 * PagePrivate for that.
599 * If this process is currently in __generic_file_write_iter() against
600 * this page's queue, we can perform writeback even if that
601 * will block.
603 * If the page is swapcache, write it back even if that would
604 * block, for some throttling. This happens by accident, because
605 * swap_backing_dev_info is bust: it doesn't reflect the
606 * congestion state of the swapdevs. Easy to fix, if needed.
608 if (!is_page_cache_freeable(page))
609 return PAGE_KEEP;
610 if (!mapping) {
612 * Some data journaling orphaned pages can have
613 * page->mapping == NULL while being dirty with clean buffers.
615 if (page_has_private(page)) {
616 if (try_to_free_buffers(page)) {
617 ClearPageDirty(page);
618 pr_info("%s: orphaned page\n", __func__);
619 return PAGE_CLEAN;
622 return PAGE_KEEP;
624 if (mapping->a_ops->writepage == NULL)
625 return PAGE_ACTIVATE;
626 if (!may_write_to_inode(mapping->host, sc))
627 return PAGE_KEEP;
629 if (clear_page_dirty_for_io(page)) {
630 int res;
631 struct writeback_control wbc = {
632 .sync_mode = WB_SYNC_NONE,
633 .nr_to_write = SWAP_CLUSTER_MAX,
634 .range_start = 0,
635 .range_end = LLONG_MAX,
636 .for_reclaim = 1,
639 SetPageReclaim(page);
640 res = mapping->a_ops->writepage(page, &wbc);
641 if (res < 0)
642 handle_write_error(mapping, page, res);
643 if (res == AOP_WRITEPAGE_ACTIVATE) {
644 ClearPageReclaim(page);
645 return PAGE_ACTIVATE;
648 if (!PageWriteback(page)) {
649 /* synchronous write or broken a_ops? */
650 ClearPageReclaim(page);
652 trace_mm_vmscan_writepage(page);
653 inc_node_page_state(page, NR_VMSCAN_WRITE);
654 return PAGE_SUCCESS;
657 return PAGE_CLEAN;
661 * Same as remove_mapping, but if the page is removed from the mapping, it
662 * gets returned with a refcount of 0.
664 static int __remove_mapping(struct address_space *mapping, struct page *page,
665 bool reclaimed)
667 unsigned long flags;
669 BUG_ON(!PageLocked(page));
670 BUG_ON(mapping != page_mapping(page));
672 spin_lock_irqsave(&mapping->tree_lock, flags);
674 * The non racy check for a busy page.
676 * Must be careful with the order of the tests. When someone has
677 * a ref to the page, it may be possible that they dirty it then
678 * drop the reference. So if PageDirty is tested before page_count
679 * here, then the following race may occur:
681 * get_user_pages(&page);
682 * [user mapping goes away]
683 * write_to(page);
684 * !PageDirty(page) [good]
685 * SetPageDirty(page);
686 * put_page(page);
687 * !page_count(page) [good, discard it]
689 * [oops, our write_to data is lost]
691 * Reversing the order of the tests ensures such a situation cannot
692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
693 * load is not satisfied before that of page->_refcount.
695 * Note that if SetPageDirty is always performed via set_page_dirty,
696 * and thus under tree_lock, then this ordering is not required.
698 if (!page_ref_freeze(page, 2))
699 goto cannot_free;
700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 if (unlikely(PageDirty(page))) {
702 page_ref_unfreeze(page, 2);
703 goto cannot_free;
706 if (PageSwapCache(page)) {
707 swp_entry_t swap = { .val = page_private(page) };
708 mem_cgroup_swapout(page, swap);
709 __delete_from_swap_cache(page);
710 spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 swapcache_free(swap);
712 } else {
713 void (*freepage)(struct page *);
714 void *shadow = NULL;
716 freepage = mapping->a_ops->freepage;
718 * Remember a shadow entry for reclaimed file cache in
719 * order to detect refaults, thus thrashing, later on.
721 * But don't store shadows in an address space that is
722 * already exiting. This is not just an optizimation,
723 * inode reclaim needs to empty out the radix tree or
724 * the nodes are lost. Don't plant shadows behind its
725 * back.
727 * We also don't store shadows for DAX mappings because the
728 * only page cache pages found in these are zero pages
729 * covering holes, and because we don't want to mix DAX
730 * exceptional entries and shadow exceptional entries in the
731 * same page_tree.
733 if (reclaimed && page_is_file_cache(page) &&
734 !mapping_exiting(mapping) && !dax_mapping(mapping))
735 shadow = workingset_eviction(mapping, page);
736 __delete_from_page_cache(page, shadow);
737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
739 if (freepage != NULL)
740 freepage(page);
743 return 1;
745 cannot_free:
746 spin_unlock_irqrestore(&mapping->tree_lock, flags);
747 return 0;
751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
752 * someone else has a ref on the page, abort and return 0. If it was
753 * successfully detached, return 1. Assumes the caller has a single ref on
754 * this page.
756 int remove_mapping(struct address_space *mapping, struct page *page)
758 if (__remove_mapping(mapping, page, false)) {
760 * Unfreezing the refcount with 1 rather than 2 effectively
761 * drops the pagecache ref for us without requiring another
762 * atomic operation.
764 page_ref_unfreeze(page, 1);
765 return 1;
767 return 0;
771 * putback_lru_page - put previously isolated page onto appropriate LRU list
772 * @page: page to be put back to appropriate lru list
774 * Add previously isolated @page to appropriate LRU list.
775 * Page may still be unevictable for other reasons.
777 * lru_lock must not be held, interrupts must be enabled.
779 void putback_lru_page(struct page *page)
781 bool is_unevictable;
782 int was_unevictable = PageUnevictable(page);
784 VM_BUG_ON_PAGE(PageLRU(page), page);
786 redo:
787 ClearPageUnevictable(page);
789 if (page_evictable(page)) {
791 * For evictable pages, we can use the cache.
792 * In event of a race, worst case is we end up with an
793 * unevictable page on [in]active list.
794 * We know how to handle that.
796 is_unevictable = false;
797 lru_cache_add(page);
798 } else {
800 * Put unevictable pages directly on zone's unevictable
801 * list.
803 is_unevictable = true;
804 add_page_to_unevictable_list(page);
806 * When racing with an mlock or AS_UNEVICTABLE clearing
807 * (page is unlocked) make sure that if the other thread
808 * does not observe our setting of PG_lru and fails
809 * isolation/check_move_unevictable_pages,
810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
811 * the page back to the evictable list.
813 * The other side is TestClearPageMlocked() or shmem_lock().
815 smp_mb();
819 * page's status can change while we move it among lru. If an evictable
820 * page is on unevictable list, it never be freed. To avoid that,
821 * check after we added it to the list, again.
823 if (is_unevictable && page_evictable(page)) {
824 if (!isolate_lru_page(page)) {
825 put_page(page);
826 goto redo;
828 /* This means someone else dropped this page from LRU
829 * So, it will be freed or putback to LRU again. There is
830 * nothing to do here.
834 if (was_unevictable && !is_unevictable)
835 count_vm_event(UNEVICTABLE_PGRESCUED);
836 else if (!was_unevictable && is_unevictable)
837 count_vm_event(UNEVICTABLE_PGCULLED);
839 put_page(page); /* drop ref from isolate */
842 enum page_references {
843 PAGEREF_RECLAIM,
844 PAGEREF_RECLAIM_CLEAN,
845 PAGEREF_KEEP,
846 PAGEREF_ACTIVATE,
849 static enum page_references page_check_references(struct page *page,
850 struct scan_control *sc)
852 int referenced_ptes, referenced_page;
853 unsigned long vm_flags;
855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 &vm_flags);
857 referenced_page = TestClearPageReferenced(page);
860 * Mlock lost the isolation race with us. Let try_to_unmap()
861 * move the page to the unevictable list.
863 if (vm_flags & VM_LOCKED)
864 return PAGEREF_RECLAIM;
866 if (referenced_ptes) {
867 if (PageSwapBacked(page))
868 return PAGEREF_ACTIVATE;
870 * All mapped pages start out with page table
871 * references from the instantiating fault, so we need
872 * to look twice if a mapped file page is used more
873 * than once.
875 * Mark it and spare it for another trip around the
876 * inactive list. Another page table reference will
877 * lead to its activation.
879 * Note: the mark is set for activated pages as well
880 * so that recently deactivated but used pages are
881 * quickly recovered.
883 SetPageReferenced(page);
885 if (referenced_page || referenced_ptes > 1)
886 return PAGEREF_ACTIVATE;
889 * Activate file-backed executable pages after first usage.
891 if (vm_flags & VM_EXEC)
892 return PAGEREF_ACTIVATE;
894 return PAGEREF_KEEP;
897 /* Reclaim if clean, defer dirty pages to writeback */
898 if (referenced_page && !PageSwapBacked(page))
899 return PAGEREF_RECLAIM_CLEAN;
901 return PAGEREF_RECLAIM;
904 /* Check if a page is dirty or under writeback */
905 static void page_check_dirty_writeback(struct page *page,
906 bool *dirty, bool *writeback)
908 struct address_space *mapping;
911 * Anonymous pages are not handled by flushers and must be written
912 * from reclaim context. Do not stall reclaim based on them
914 if (!page_is_file_cache(page)) {
915 *dirty = false;
916 *writeback = false;
917 return;
920 /* By default assume that the page flags are accurate */
921 *dirty = PageDirty(page);
922 *writeback = PageWriteback(page);
924 /* Verify dirty/writeback state if the filesystem supports it */
925 if (!page_has_private(page))
926 return;
928 mapping = page_mapping(page);
929 if (mapping && mapping->a_ops->is_dirty_writeback)
930 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
933 struct reclaim_stat {
934 unsigned nr_dirty;
935 unsigned nr_unqueued_dirty;
936 unsigned nr_congested;
937 unsigned nr_writeback;
938 unsigned nr_immediate;
939 unsigned nr_activate;
940 unsigned nr_ref_keep;
941 unsigned nr_unmap_fail;
945 * shrink_page_list() returns the number of reclaimed pages
947 static unsigned long shrink_page_list(struct list_head *page_list,
948 struct pglist_data *pgdat,
949 struct scan_control *sc,
950 enum ttu_flags ttu_flags,
951 struct reclaim_stat *stat,
952 bool force_reclaim)
954 LIST_HEAD(ret_pages);
955 LIST_HEAD(free_pages);
956 int pgactivate = 0;
957 unsigned nr_unqueued_dirty = 0;
958 unsigned nr_dirty = 0;
959 unsigned nr_congested = 0;
960 unsigned nr_reclaimed = 0;
961 unsigned nr_writeback = 0;
962 unsigned nr_immediate = 0;
963 unsigned nr_ref_keep = 0;
964 unsigned nr_unmap_fail = 0;
966 cond_resched();
968 while (!list_empty(page_list)) {
969 struct address_space *mapping;
970 struct page *page;
971 int may_enter_fs;
972 enum page_references references = PAGEREF_RECLAIM_CLEAN;
973 bool dirty, writeback;
974 bool lazyfree = false;
975 int ret = SWAP_SUCCESS;
977 cond_resched();
979 page = lru_to_page(page_list);
980 list_del(&page->lru);
982 if (!trylock_page(page))
983 goto keep;
985 VM_BUG_ON_PAGE(PageActive(page), page);
987 sc->nr_scanned++;
989 if (unlikely(!page_evictable(page)))
990 goto cull_mlocked;
992 if (!sc->may_unmap && page_mapped(page))
993 goto keep_locked;
995 /* Double the slab pressure for mapped and swapcache pages */
996 if (page_mapped(page) || PageSwapCache(page))
997 sc->nr_scanned++;
999 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1000 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1003 * The number of dirty pages determines if a zone is marked
1004 * reclaim_congested which affects wait_iff_congested. kswapd
1005 * will stall and start writing pages if the tail of the LRU
1006 * is all dirty unqueued pages.
1008 page_check_dirty_writeback(page, &dirty, &writeback);
1009 if (dirty || writeback)
1010 nr_dirty++;
1012 if (dirty && !writeback)
1013 nr_unqueued_dirty++;
1016 * Treat this page as congested if the underlying BDI is or if
1017 * pages are cycling through the LRU so quickly that the
1018 * pages marked for immediate reclaim are making it to the
1019 * end of the LRU a second time.
1021 mapping = page_mapping(page);
1022 if (((dirty || writeback) && mapping &&
1023 inode_write_congested(mapping->host)) ||
1024 (writeback && PageReclaim(page)))
1025 nr_congested++;
1028 * If a page at the tail of the LRU is under writeback, there
1029 * are three cases to consider.
1031 * 1) If reclaim is encountering an excessive number of pages
1032 * under writeback and this page is both under writeback and
1033 * PageReclaim then it indicates that pages are being queued
1034 * for IO but are being recycled through the LRU before the
1035 * IO can complete. Waiting on the page itself risks an
1036 * indefinite stall if it is impossible to writeback the
1037 * page due to IO error or disconnected storage so instead
1038 * note that the LRU is being scanned too quickly and the
1039 * caller can stall after page list has been processed.
1041 * 2) Global or new memcg reclaim encounters a page that is
1042 * not marked for immediate reclaim, or the caller does not
1043 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1044 * not to fs). In this case mark the page for immediate
1045 * reclaim and continue scanning.
1047 * Require may_enter_fs because we would wait on fs, which
1048 * may not have submitted IO yet. And the loop driver might
1049 * enter reclaim, and deadlock if it waits on a page for
1050 * which it is needed to do the write (loop masks off
1051 * __GFP_IO|__GFP_FS for this reason); but more thought
1052 * would probably show more reasons.
1054 * 3) Legacy memcg encounters a page that is already marked
1055 * PageReclaim. memcg does not have any dirty pages
1056 * throttling so we could easily OOM just because too many
1057 * pages are in writeback and there is nothing else to
1058 * reclaim. Wait for the writeback to complete.
1060 if (PageWriteback(page)) {
1061 /* Case 1 above */
1062 if (current_is_kswapd() &&
1063 PageReclaim(page) &&
1064 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1065 nr_immediate++;
1066 goto keep_locked;
1068 /* Case 2 above */
1069 } else if (sane_reclaim(sc) ||
1070 !PageReclaim(page) || !may_enter_fs) {
1072 * This is slightly racy - end_page_writeback()
1073 * might have just cleared PageReclaim, then
1074 * setting PageReclaim here end up interpreted
1075 * as PageReadahead - but that does not matter
1076 * enough to care. What we do want is for this
1077 * page to have PageReclaim set next time memcg
1078 * reclaim reaches the tests above, so it will
1079 * then wait_on_page_writeback() to avoid OOM;
1080 * and it's also appropriate in global reclaim.
1082 SetPageReclaim(page);
1083 nr_writeback++;
1084 goto keep_locked;
1086 /* Case 3 above */
1087 } else {
1088 unlock_page(page);
1089 wait_on_page_writeback(page);
1090 /* then go back and try same page again */
1091 list_add_tail(&page->lru, page_list);
1092 continue;
1096 if (!force_reclaim)
1097 references = page_check_references(page, sc);
1099 switch (references) {
1100 case PAGEREF_ACTIVATE:
1101 goto activate_locked;
1102 case PAGEREF_KEEP:
1103 nr_ref_keep++;
1104 goto keep_locked;
1105 case PAGEREF_RECLAIM:
1106 case PAGEREF_RECLAIM_CLEAN:
1107 ; /* try to reclaim the page below */
1111 * Anonymous process memory has backing store?
1112 * Try to allocate it some swap space here.
1114 if (PageAnon(page) && !PageSwapCache(page)) {
1115 if (!(sc->gfp_mask & __GFP_IO))
1116 goto keep_locked;
1117 if (!add_to_swap(page, page_list))
1118 goto activate_locked;
1119 lazyfree = true;
1120 may_enter_fs = 1;
1122 /* Adding to swap updated mapping */
1123 mapping = page_mapping(page);
1124 } else if (unlikely(PageTransHuge(page))) {
1125 /* Split file THP */
1126 if (split_huge_page_to_list(page, page_list))
1127 goto keep_locked;
1130 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1133 * The page is mapped into the page tables of one or more
1134 * processes. Try to unmap it here.
1136 if (page_mapped(page) && mapping) {
1137 switch (ret = try_to_unmap(page, lazyfree ?
1138 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1139 (ttu_flags | TTU_BATCH_FLUSH))) {
1140 case SWAP_FAIL:
1141 nr_unmap_fail++;
1142 goto activate_locked;
1143 case SWAP_AGAIN:
1144 goto keep_locked;
1145 case SWAP_MLOCK:
1146 goto cull_mlocked;
1147 case SWAP_LZFREE:
1148 goto lazyfree;
1149 case SWAP_SUCCESS:
1150 ; /* try to free the page below */
1154 if (PageDirty(page)) {
1156 * Only kswapd can writeback filesystem pages
1157 * to avoid risk of stack overflow. But avoid
1158 * injecting inefficient single-page IO into
1159 * flusher writeback as much as possible: only
1160 * write pages when we've encountered many
1161 * dirty pages, and when we've already scanned
1162 * the rest of the LRU for clean pages and see
1163 * the same dirty pages again (PageReclaim).
1165 if (page_is_file_cache(page) &&
1166 (!current_is_kswapd() || !PageReclaim(page) ||
1167 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1169 * Immediately reclaim when written back.
1170 * Similar in principal to deactivate_page()
1171 * except we already have the page isolated
1172 * and know it's dirty
1174 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1175 SetPageReclaim(page);
1177 goto keep_locked;
1180 if (references == PAGEREF_RECLAIM_CLEAN)
1181 goto keep_locked;
1182 if (!may_enter_fs)
1183 goto keep_locked;
1184 if (!sc->may_writepage)
1185 goto keep_locked;
1188 * Page is dirty. Flush the TLB if a writable entry
1189 * potentially exists to avoid CPU writes after IO
1190 * starts and then write it out here.
1192 try_to_unmap_flush_dirty();
1193 switch (pageout(page, mapping, sc)) {
1194 case PAGE_KEEP:
1195 goto keep_locked;
1196 case PAGE_ACTIVATE:
1197 goto activate_locked;
1198 case PAGE_SUCCESS:
1199 if (PageWriteback(page))
1200 goto keep;
1201 if (PageDirty(page))
1202 goto keep;
1205 * A synchronous write - probably a ramdisk. Go
1206 * ahead and try to reclaim the page.
1208 if (!trylock_page(page))
1209 goto keep;
1210 if (PageDirty(page) || PageWriteback(page))
1211 goto keep_locked;
1212 mapping = page_mapping(page);
1213 case PAGE_CLEAN:
1214 ; /* try to free the page below */
1219 * If the page has buffers, try to free the buffer mappings
1220 * associated with this page. If we succeed we try to free
1221 * the page as well.
1223 * We do this even if the page is PageDirty().
1224 * try_to_release_page() does not perform I/O, but it is
1225 * possible for a page to have PageDirty set, but it is actually
1226 * clean (all its buffers are clean). This happens if the
1227 * buffers were written out directly, with submit_bh(). ext3
1228 * will do this, as well as the blockdev mapping.
1229 * try_to_release_page() will discover that cleanness and will
1230 * drop the buffers and mark the page clean - it can be freed.
1232 * Rarely, pages can have buffers and no ->mapping. These are
1233 * the pages which were not successfully invalidated in
1234 * truncate_complete_page(). We try to drop those buffers here
1235 * and if that worked, and the page is no longer mapped into
1236 * process address space (page_count == 1) it can be freed.
1237 * Otherwise, leave the page on the LRU so it is swappable.
1239 if (page_has_private(page)) {
1240 if (!try_to_release_page(page, sc->gfp_mask))
1241 goto activate_locked;
1242 if (!mapping && page_count(page) == 1) {
1243 unlock_page(page);
1244 if (put_page_testzero(page))
1245 goto free_it;
1246 else {
1248 * rare race with speculative reference.
1249 * the speculative reference will free
1250 * this page shortly, so we may
1251 * increment nr_reclaimed here (and
1252 * leave it off the LRU).
1254 nr_reclaimed++;
1255 continue;
1260 lazyfree:
1261 if (!mapping || !__remove_mapping(mapping, page, true))
1262 goto keep_locked;
1265 * At this point, we have no other references and there is
1266 * no way to pick any more up (removed from LRU, removed
1267 * from pagecache). Can use non-atomic bitops now (and
1268 * we obviously don't have to worry about waking up a process
1269 * waiting on the page lock, because there are no references.
1271 __ClearPageLocked(page);
1272 free_it:
1273 if (ret == SWAP_LZFREE)
1274 count_vm_event(PGLAZYFREED);
1276 nr_reclaimed++;
1279 * Is there need to periodically free_page_list? It would
1280 * appear not as the counts should be low
1282 list_add(&page->lru, &free_pages);
1283 continue;
1285 cull_mlocked:
1286 if (PageSwapCache(page))
1287 try_to_free_swap(page);
1288 unlock_page(page);
1289 list_add(&page->lru, &ret_pages);
1290 continue;
1292 activate_locked:
1293 /* Not a candidate for swapping, so reclaim swap space. */
1294 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1295 try_to_free_swap(page);
1296 VM_BUG_ON_PAGE(PageActive(page), page);
1297 SetPageActive(page);
1298 pgactivate++;
1299 keep_locked:
1300 unlock_page(page);
1301 keep:
1302 list_add(&page->lru, &ret_pages);
1303 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1306 mem_cgroup_uncharge_list(&free_pages);
1307 try_to_unmap_flush();
1308 free_hot_cold_page_list(&free_pages, true);
1310 list_splice(&ret_pages, page_list);
1311 count_vm_events(PGACTIVATE, pgactivate);
1313 if (stat) {
1314 stat->nr_dirty = nr_dirty;
1315 stat->nr_congested = nr_congested;
1316 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1317 stat->nr_writeback = nr_writeback;
1318 stat->nr_immediate = nr_immediate;
1319 stat->nr_activate = pgactivate;
1320 stat->nr_ref_keep = nr_ref_keep;
1321 stat->nr_unmap_fail = nr_unmap_fail;
1323 return nr_reclaimed;
1326 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1327 struct list_head *page_list)
1329 struct scan_control sc = {
1330 .gfp_mask = GFP_KERNEL,
1331 .priority = DEF_PRIORITY,
1332 .may_unmap = 1,
1334 unsigned long ret;
1335 struct page *page, *next;
1336 LIST_HEAD(clean_pages);
1338 list_for_each_entry_safe(page, next, page_list, lru) {
1339 if (page_is_file_cache(page) && !PageDirty(page) &&
1340 !__PageMovable(page)) {
1341 ClearPageActive(page);
1342 list_move(&page->lru, &clean_pages);
1346 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1347 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1348 list_splice(&clean_pages, page_list);
1349 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1350 return ret;
1354 * Attempt to remove the specified page from its LRU. Only take this page
1355 * if it is of the appropriate PageActive status. Pages which are being
1356 * freed elsewhere are also ignored.
1358 * page: page to consider
1359 * mode: one of the LRU isolation modes defined above
1361 * returns 0 on success, -ve errno on failure.
1363 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1365 int ret = -EINVAL;
1367 /* Only take pages on the LRU. */
1368 if (!PageLRU(page))
1369 return ret;
1371 /* Compaction should not handle unevictable pages but CMA can do so */
1372 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1373 return ret;
1375 ret = -EBUSY;
1378 * To minimise LRU disruption, the caller can indicate that it only
1379 * wants to isolate pages it will be able to operate on without
1380 * blocking - clean pages for the most part.
1382 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1383 * that it is possible to migrate without blocking
1385 if (mode & ISOLATE_ASYNC_MIGRATE) {
1386 /* All the caller can do on PageWriteback is block */
1387 if (PageWriteback(page))
1388 return ret;
1390 if (PageDirty(page)) {
1391 struct address_space *mapping;
1394 * Only pages without mappings or that have a
1395 * ->migratepage callback are possible to migrate
1396 * without blocking
1398 mapping = page_mapping(page);
1399 if (mapping && !mapping->a_ops->migratepage)
1400 return ret;
1404 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1405 return ret;
1407 if (likely(get_page_unless_zero(page))) {
1409 * Be careful not to clear PageLRU until after we're
1410 * sure the page is not being freed elsewhere -- the
1411 * page release code relies on it.
1413 ClearPageLRU(page);
1414 ret = 0;
1417 return ret;
1422 * Update LRU sizes after isolating pages. The LRU size updates must
1423 * be complete before mem_cgroup_update_lru_size due to a santity check.
1425 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1426 enum lru_list lru, unsigned long *nr_zone_taken)
1428 int zid;
1430 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1431 if (!nr_zone_taken[zid])
1432 continue;
1434 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1435 #ifdef CONFIG_MEMCG
1436 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1437 #endif
1443 * zone_lru_lock is heavily contended. Some of the functions that
1444 * shrink the lists perform better by taking out a batch of pages
1445 * and working on them outside the LRU lock.
1447 * For pagecache intensive workloads, this function is the hottest
1448 * spot in the kernel (apart from copy_*_user functions).
1450 * Appropriate locks must be held before calling this function.
1452 * @nr_to_scan: The number of pages to look through on the list.
1453 * @lruvec: The LRU vector to pull pages from.
1454 * @dst: The temp list to put pages on to.
1455 * @nr_scanned: The number of pages that were scanned.
1456 * @sc: The scan_control struct for this reclaim session
1457 * @mode: One of the LRU isolation modes
1458 * @lru: LRU list id for isolating
1460 * returns how many pages were moved onto *@dst.
1462 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1463 struct lruvec *lruvec, struct list_head *dst,
1464 unsigned long *nr_scanned, struct scan_control *sc,
1465 isolate_mode_t mode, enum lru_list lru)
1467 struct list_head *src = &lruvec->lists[lru];
1468 unsigned long nr_taken = 0;
1469 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1470 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1471 unsigned long skipped = 0, total_skipped = 0;
1472 unsigned long scan, nr_pages;
1473 LIST_HEAD(pages_skipped);
1475 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1476 !list_empty(src);) {
1477 struct page *page;
1479 page = lru_to_page(src);
1480 prefetchw_prev_lru_page(page, src, flags);
1482 VM_BUG_ON_PAGE(!PageLRU(page), page);
1484 if (page_zonenum(page) > sc->reclaim_idx) {
1485 list_move(&page->lru, &pages_skipped);
1486 nr_skipped[page_zonenum(page)]++;
1487 continue;
1491 * Account for scanned and skipped separetly to avoid the pgdat
1492 * being prematurely marked unreclaimable by pgdat_reclaimable.
1494 scan++;
1496 switch (__isolate_lru_page(page, mode)) {
1497 case 0:
1498 nr_pages = hpage_nr_pages(page);
1499 nr_taken += nr_pages;
1500 nr_zone_taken[page_zonenum(page)] += nr_pages;
1501 list_move(&page->lru, dst);
1502 break;
1504 case -EBUSY:
1505 /* else it is being freed elsewhere */
1506 list_move(&page->lru, src);
1507 continue;
1509 default:
1510 BUG();
1515 * Splice any skipped pages to the start of the LRU list. Note that
1516 * this disrupts the LRU order when reclaiming for lower zones but
1517 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1518 * scanning would soon rescan the same pages to skip and put the
1519 * system at risk of premature OOM.
1521 if (!list_empty(&pages_skipped)) {
1522 int zid;
1524 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1525 if (!nr_skipped[zid])
1526 continue;
1528 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1529 skipped += nr_skipped[zid];
1533 * Account skipped pages as a partial scan as the pgdat may be
1534 * close to unreclaimable. If the LRU list is empty, account
1535 * skipped pages as a full scan.
1537 total_skipped = list_empty(src) ? skipped : skipped >> 2;
1539 list_splice(&pages_skipped, src);
1541 *nr_scanned = scan + total_skipped;
1542 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1543 scan, skipped, nr_taken, mode, lru);
1544 update_lru_sizes(lruvec, lru, nr_zone_taken);
1545 return nr_taken;
1549 * isolate_lru_page - tries to isolate a page from its LRU list
1550 * @page: page to isolate from its LRU list
1552 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1553 * vmstat statistic corresponding to whatever LRU list the page was on.
1555 * Returns 0 if the page was removed from an LRU list.
1556 * Returns -EBUSY if the page was not on an LRU list.
1558 * The returned page will have PageLRU() cleared. If it was found on
1559 * the active list, it will have PageActive set. If it was found on
1560 * the unevictable list, it will have the PageUnevictable bit set. That flag
1561 * may need to be cleared by the caller before letting the page go.
1563 * The vmstat statistic corresponding to the list on which the page was
1564 * found will be decremented.
1566 * Restrictions:
1567 * (1) Must be called with an elevated refcount on the page. This is a
1568 * fundamentnal difference from isolate_lru_pages (which is called
1569 * without a stable reference).
1570 * (2) the lru_lock must not be held.
1571 * (3) interrupts must be enabled.
1573 int isolate_lru_page(struct page *page)
1575 int ret = -EBUSY;
1577 VM_BUG_ON_PAGE(!page_count(page), page);
1578 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1580 if (PageLRU(page)) {
1581 struct zone *zone = page_zone(page);
1582 struct lruvec *lruvec;
1584 spin_lock_irq(zone_lru_lock(zone));
1585 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1586 if (PageLRU(page)) {
1587 int lru = page_lru(page);
1588 get_page(page);
1589 ClearPageLRU(page);
1590 del_page_from_lru_list(page, lruvec, lru);
1591 ret = 0;
1593 spin_unlock_irq(zone_lru_lock(zone));
1595 return ret;
1599 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1600 * then get resheduled. When there are massive number of tasks doing page
1601 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1602 * the LRU list will go small and be scanned faster than necessary, leading to
1603 * unnecessary swapping, thrashing and OOM.
1605 static int too_many_isolated(struct pglist_data *pgdat, int file,
1606 struct scan_control *sc)
1608 unsigned long inactive, isolated;
1610 if (current_is_kswapd())
1611 return 0;
1613 if (!sane_reclaim(sc))
1614 return 0;
1616 if (file) {
1617 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1618 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1619 } else {
1620 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1621 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1625 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1626 * won't get blocked by normal direct-reclaimers, forming a circular
1627 * deadlock.
1629 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1630 inactive >>= 3;
1632 return isolated > inactive;
1635 static noinline_for_stack void
1636 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1638 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1639 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1640 LIST_HEAD(pages_to_free);
1643 * Put back any unfreeable pages.
1645 while (!list_empty(page_list)) {
1646 struct page *page = lru_to_page(page_list);
1647 int lru;
1649 VM_BUG_ON_PAGE(PageLRU(page), page);
1650 list_del(&page->lru);
1651 if (unlikely(!page_evictable(page))) {
1652 spin_unlock_irq(&pgdat->lru_lock);
1653 putback_lru_page(page);
1654 spin_lock_irq(&pgdat->lru_lock);
1655 continue;
1658 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1660 SetPageLRU(page);
1661 lru = page_lru(page);
1662 add_page_to_lru_list(page, lruvec, lru);
1664 if (is_active_lru(lru)) {
1665 int file = is_file_lru(lru);
1666 int numpages = hpage_nr_pages(page);
1667 reclaim_stat->recent_rotated[file] += numpages;
1669 if (put_page_testzero(page)) {
1670 __ClearPageLRU(page);
1671 __ClearPageActive(page);
1672 del_page_from_lru_list(page, lruvec, lru);
1674 if (unlikely(PageCompound(page))) {
1675 spin_unlock_irq(&pgdat->lru_lock);
1676 mem_cgroup_uncharge(page);
1677 (*get_compound_page_dtor(page))(page);
1678 spin_lock_irq(&pgdat->lru_lock);
1679 } else
1680 list_add(&page->lru, &pages_to_free);
1685 * To save our caller's stack, now use input list for pages to free.
1687 list_splice(&pages_to_free, page_list);
1691 * If a kernel thread (such as nfsd for loop-back mounts) services
1692 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1693 * In that case we should only throttle if the backing device it is
1694 * writing to is congested. In other cases it is safe to throttle.
1696 static int current_may_throttle(void)
1698 return !(current->flags & PF_LESS_THROTTLE) ||
1699 current->backing_dev_info == NULL ||
1700 bdi_write_congested(current->backing_dev_info);
1704 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1705 * of reclaimed pages
1707 static noinline_for_stack unsigned long
1708 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1709 struct scan_control *sc, enum lru_list lru)
1711 LIST_HEAD(page_list);
1712 unsigned long nr_scanned;
1713 unsigned long nr_reclaimed = 0;
1714 unsigned long nr_taken;
1715 struct reclaim_stat stat = {};
1716 isolate_mode_t isolate_mode = 0;
1717 int file = is_file_lru(lru);
1718 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1719 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1721 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1722 congestion_wait(BLK_RW_ASYNC, HZ/10);
1724 /* We are about to die and free our memory. Return now. */
1725 if (fatal_signal_pending(current))
1726 return SWAP_CLUSTER_MAX;
1729 lru_add_drain();
1731 if (!sc->may_unmap)
1732 isolate_mode |= ISOLATE_UNMAPPED;
1734 spin_lock_irq(&pgdat->lru_lock);
1736 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1737 &nr_scanned, sc, isolate_mode, lru);
1739 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1740 reclaim_stat->recent_scanned[file] += nr_taken;
1742 if (global_reclaim(sc)) {
1743 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1744 if (current_is_kswapd())
1745 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1746 else
1747 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1749 spin_unlock_irq(&pgdat->lru_lock);
1751 if (nr_taken == 0)
1752 return 0;
1754 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1755 &stat, false);
1757 spin_lock_irq(&pgdat->lru_lock);
1759 if (global_reclaim(sc)) {
1760 if (current_is_kswapd())
1761 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1762 else
1763 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1766 putback_inactive_pages(lruvec, &page_list);
1768 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1770 spin_unlock_irq(&pgdat->lru_lock);
1772 mem_cgroup_uncharge_list(&page_list);
1773 free_hot_cold_page_list(&page_list, true);
1776 * If reclaim is isolating dirty pages under writeback, it implies
1777 * that the long-lived page allocation rate is exceeding the page
1778 * laundering rate. Either the global limits are not being effective
1779 * at throttling processes due to the page distribution throughout
1780 * zones or there is heavy usage of a slow backing device. The
1781 * only option is to throttle from reclaim context which is not ideal
1782 * as there is no guarantee the dirtying process is throttled in the
1783 * same way balance_dirty_pages() manages.
1785 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1786 * of pages under pages flagged for immediate reclaim and stall if any
1787 * are encountered in the nr_immediate check below.
1789 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1790 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1793 * Legacy memcg will stall in page writeback so avoid forcibly
1794 * stalling here.
1796 if (sane_reclaim(sc)) {
1798 * Tag a zone as congested if all the dirty pages scanned were
1799 * backed by a congested BDI and wait_iff_congested will stall.
1801 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1802 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1805 * If dirty pages are scanned that are not queued for IO, it
1806 * implies that flushers are not doing their job. This can
1807 * happen when memory pressure pushes dirty pages to the end of
1808 * the LRU before the dirty limits are breached and the dirty
1809 * data has expired. It can also happen when the proportion of
1810 * dirty pages grows not through writes but through memory
1811 * pressure reclaiming all the clean cache. And in some cases,
1812 * the flushers simply cannot keep up with the allocation
1813 * rate. Nudge the flusher threads in case they are asleep, but
1814 * also allow kswapd to start writing pages during reclaim.
1816 if (stat.nr_unqueued_dirty == nr_taken) {
1817 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1818 set_bit(PGDAT_DIRTY, &pgdat->flags);
1822 * If kswapd scans pages marked marked for immediate
1823 * reclaim and under writeback (nr_immediate), it implies
1824 * that pages are cycling through the LRU faster than
1825 * they are written so also forcibly stall.
1827 if (stat.nr_immediate && current_may_throttle())
1828 congestion_wait(BLK_RW_ASYNC, HZ/10);
1832 * Stall direct reclaim for IO completions if underlying BDIs or zone
1833 * is congested. Allow kswapd to continue until it starts encountering
1834 * unqueued dirty pages or cycling through the LRU too quickly.
1836 if (!sc->hibernation_mode && !current_is_kswapd() &&
1837 current_may_throttle())
1838 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1840 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1841 nr_scanned, nr_reclaimed,
1842 stat.nr_dirty, stat.nr_writeback,
1843 stat.nr_congested, stat.nr_immediate,
1844 stat.nr_activate, stat.nr_ref_keep,
1845 stat.nr_unmap_fail,
1846 sc->priority, file);
1847 return nr_reclaimed;
1851 * This moves pages from the active list to the inactive list.
1853 * We move them the other way if the page is referenced by one or more
1854 * processes, from rmap.
1856 * If the pages are mostly unmapped, the processing is fast and it is
1857 * appropriate to hold zone_lru_lock across the whole operation. But if
1858 * the pages are mapped, the processing is slow (page_referenced()) so we
1859 * should drop zone_lru_lock around each page. It's impossible to balance
1860 * this, so instead we remove the pages from the LRU while processing them.
1861 * It is safe to rely on PG_active against the non-LRU pages in here because
1862 * nobody will play with that bit on a non-LRU page.
1864 * The downside is that we have to touch page->_refcount against each page.
1865 * But we had to alter page->flags anyway.
1867 * Returns the number of pages moved to the given lru.
1870 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1871 struct list_head *list,
1872 struct list_head *pages_to_free,
1873 enum lru_list lru)
1875 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1876 struct page *page;
1877 int nr_pages;
1878 int nr_moved = 0;
1880 while (!list_empty(list)) {
1881 page = lru_to_page(list);
1882 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1884 VM_BUG_ON_PAGE(PageLRU(page), page);
1885 SetPageLRU(page);
1887 nr_pages = hpage_nr_pages(page);
1888 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1889 list_move(&page->lru, &lruvec->lists[lru]);
1891 if (put_page_testzero(page)) {
1892 __ClearPageLRU(page);
1893 __ClearPageActive(page);
1894 del_page_from_lru_list(page, lruvec, lru);
1896 if (unlikely(PageCompound(page))) {
1897 spin_unlock_irq(&pgdat->lru_lock);
1898 mem_cgroup_uncharge(page);
1899 (*get_compound_page_dtor(page))(page);
1900 spin_lock_irq(&pgdat->lru_lock);
1901 } else
1902 list_add(&page->lru, pages_to_free);
1903 } else {
1904 nr_moved += nr_pages;
1908 if (!is_active_lru(lru))
1909 __count_vm_events(PGDEACTIVATE, nr_moved);
1911 return nr_moved;
1914 static void shrink_active_list(unsigned long nr_to_scan,
1915 struct lruvec *lruvec,
1916 struct scan_control *sc,
1917 enum lru_list lru)
1919 unsigned long nr_taken;
1920 unsigned long nr_scanned;
1921 unsigned long vm_flags;
1922 LIST_HEAD(l_hold); /* The pages which were snipped off */
1923 LIST_HEAD(l_active);
1924 LIST_HEAD(l_inactive);
1925 struct page *page;
1926 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1927 unsigned nr_deactivate, nr_activate;
1928 unsigned nr_rotated = 0;
1929 isolate_mode_t isolate_mode = 0;
1930 int file = is_file_lru(lru);
1931 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1933 lru_add_drain();
1935 if (!sc->may_unmap)
1936 isolate_mode |= ISOLATE_UNMAPPED;
1938 spin_lock_irq(&pgdat->lru_lock);
1940 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1941 &nr_scanned, sc, isolate_mode, lru);
1943 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1944 reclaim_stat->recent_scanned[file] += nr_taken;
1946 if (global_reclaim(sc))
1947 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1948 __count_vm_events(PGREFILL, nr_scanned);
1950 spin_unlock_irq(&pgdat->lru_lock);
1952 while (!list_empty(&l_hold)) {
1953 cond_resched();
1954 page = lru_to_page(&l_hold);
1955 list_del(&page->lru);
1957 if (unlikely(!page_evictable(page))) {
1958 putback_lru_page(page);
1959 continue;
1962 if (unlikely(buffer_heads_over_limit)) {
1963 if (page_has_private(page) && trylock_page(page)) {
1964 if (page_has_private(page))
1965 try_to_release_page(page, 0);
1966 unlock_page(page);
1970 if (page_referenced(page, 0, sc->target_mem_cgroup,
1971 &vm_flags)) {
1972 nr_rotated += hpage_nr_pages(page);
1974 * Identify referenced, file-backed active pages and
1975 * give them one more trip around the active list. So
1976 * that executable code get better chances to stay in
1977 * memory under moderate memory pressure. Anon pages
1978 * are not likely to be evicted by use-once streaming
1979 * IO, plus JVM can create lots of anon VM_EXEC pages,
1980 * so we ignore them here.
1982 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1983 list_add(&page->lru, &l_active);
1984 continue;
1988 ClearPageActive(page); /* we are de-activating */
1989 list_add(&page->lru, &l_inactive);
1993 * Move pages back to the lru list.
1995 spin_lock_irq(&pgdat->lru_lock);
1997 * Count referenced pages from currently used mappings as rotated,
1998 * even though only some of them are actually re-activated. This
1999 * helps balance scan pressure between file and anonymous pages in
2000 * get_scan_count.
2002 reclaim_stat->recent_rotated[file] += nr_rotated;
2004 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2005 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2006 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2007 spin_unlock_irq(&pgdat->lru_lock);
2009 mem_cgroup_uncharge_list(&l_hold);
2010 free_hot_cold_page_list(&l_hold, true);
2011 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2012 nr_deactivate, nr_rotated, sc->priority, file);
2016 * The inactive anon list should be small enough that the VM never has
2017 * to do too much work.
2019 * The inactive file list should be small enough to leave most memory
2020 * to the established workingset on the scan-resistant active list,
2021 * but large enough to avoid thrashing the aggregate readahead window.
2023 * Both inactive lists should also be large enough that each inactive
2024 * page has a chance to be referenced again before it is reclaimed.
2026 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2027 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2028 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2030 * total target max
2031 * memory ratio inactive
2032 * -------------------------------------
2033 * 10MB 1 5MB
2034 * 100MB 1 50MB
2035 * 1GB 3 250MB
2036 * 10GB 10 0.9GB
2037 * 100GB 31 3GB
2038 * 1TB 101 10GB
2039 * 10TB 320 32GB
2041 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2042 struct scan_control *sc, bool trace)
2044 unsigned long inactive_ratio;
2045 unsigned long inactive, active;
2046 enum lru_list inactive_lru = file * LRU_FILE;
2047 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2048 unsigned long gb;
2051 * If we don't have swap space, anonymous page deactivation
2052 * is pointless.
2054 if (!file && !total_swap_pages)
2055 return false;
2057 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2058 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2060 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2061 if (gb)
2062 inactive_ratio = int_sqrt(10 * gb);
2063 else
2064 inactive_ratio = 1;
2066 if (trace)
2067 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2068 sc->reclaim_idx,
2069 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2070 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2071 inactive_ratio, file);
2073 return inactive * inactive_ratio < active;
2076 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2077 struct lruvec *lruvec, struct scan_control *sc)
2079 if (is_active_lru(lru)) {
2080 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2081 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2082 return 0;
2085 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2088 enum scan_balance {
2089 SCAN_EQUAL,
2090 SCAN_FRACT,
2091 SCAN_ANON,
2092 SCAN_FILE,
2096 * Determine how aggressively the anon and file LRU lists should be
2097 * scanned. The relative value of each set of LRU lists is determined
2098 * by looking at the fraction of the pages scanned we did rotate back
2099 * onto the active list instead of evict.
2101 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2102 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2104 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2105 struct scan_control *sc, unsigned long *nr,
2106 unsigned long *lru_pages)
2108 int swappiness = mem_cgroup_swappiness(memcg);
2109 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2110 u64 fraction[2];
2111 u64 denominator = 0; /* gcc */
2112 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2113 unsigned long anon_prio, file_prio;
2114 enum scan_balance scan_balance;
2115 unsigned long anon, file;
2116 bool force_scan = false;
2117 unsigned long ap, fp;
2118 enum lru_list lru;
2119 bool some_scanned;
2120 int pass;
2123 * If the zone or memcg is small, nr[l] can be 0. This
2124 * results in no scanning on this priority and a potential
2125 * priority drop. Global direct reclaim can go to the next
2126 * zone and tends to have no problems. Global kswapd is for
2127 * zone balancing and it needs to scan a minimum amount. When
2128 * reclaiming for a memcg, a priority drop can cause high
2129 * latencies, so it's better to scan a minimum amount there as
2130 * well.
2132 if (current_is_kswapd()) {
2133 if (!pgdat_reclaimable(pgdat))
2134 force_scan = true;
2135 if (!mem_cgroup_online(memcg))
2136 force_scan = true;
2138 if (!global_reclaim(sc))
2139 force_scan = true;
2141 /* If we have no swap space, do not bother scanning anon pages. */
2142 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2143 scan_balance = SCAN_FILE;
2144 goto out;
2148 * Global reclaim will swap to prevent OOM even with no
2149 * swappiness, but memcg users want to use this knob to
2150 * disable swapping for individual groups completely when
2151 * using the memory controller's swap limit feature would be
2152 * too expensive.
2154 if (!global_reclaim(sc) && !swappiness) {
2155 scan_balance = SCAN_FILE;
2156 goto out;
2160 * Do not apply any pressure balancing cleverness when the
2161 * system is close to OOM, scan both anon and file equally
2162 * (unless the swappiness setting disagrees with swapping).
2164 if (!sc->priority && swappiness) {
2165 scan_balance = SCAN_EQUAL;
2166 goto out;
2170 * Prevent the reclaimer from falling into the cache trap: as
2171 * cache pages start out inactive, every cache fault will tip
2172 * the scan balance towards the file LRU. And as the file LRU
2173 * shrinks, so does the window for rotation from references.
2174 * This means we have a runaway feedback loop where a tiny
2175 * thrashing file LRU becomes infinitely more attractive than
2176 * anon pages. Try to detect this based on file LRU size.
2178 if (global_reclaim(sc)) {
2179 unsigned long pgdatfile;
2180 unsigned long pgdatfree;
2181 int z;
2182 unsigned long total_high_wmark = 0;
2184 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2185 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2186 node_page_state(pgdat, NR_INACTIVE_FILE);
2188 for (z = 0; z < MAX_NR_ZONES; z++) {
2189 struct zone *zone = &pgdat->node_zones[z];
2190 if (!managed_zone(zone))
2191 continue;
2193 total_high_wmark += high_wmark_pages(zone);
2196 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2197 scan_balance = SCAN_ANON;
2198 goto out;
2203 * If there is enough inactive page cache, i.e. if the size of the
2204 * inactive list is greater than that of the active list *and* the
2205 * inactive list actually has some pages to scan on this priority, we
2206 * do not reclaim anything from the anonymous working set right now.
2207 * Without the second condition we could end up never scanning an
2208 * lruvec even if it has plenty of old anonymous pages unless the
2209 * system is under heavy pressure.
2211 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2212 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2213 scan_balance = SCAN_FILE;
2214 goto out;
2217 scan_balance = SCAN_FRACT;
2220 * With swappiness at 100, anonymous and file have the same priority.
2221 * This scanning priority is essentially the inverse of IO cost.
2223 anon_prio = swappiness;
2224 file_prio = 200 - anon_prio;
2227 * OK, so we have swap space and a fair amount of page cache
2228 * pages. We use the recently rotated / recently scanned
2229 * ratios to determine how valuable each cache is.
2231 * Because workloads change over time (and to avoid overflow)
2232 * we keep these statistics as a floating average, which ends
2233 * up weighing recent references more than old ones.
2235 * anon in [0], file in [1]
2238 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2239 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2240 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2241 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2243 spin_lock_irq(&pgdat->lru_lock);
2244 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2245 reclaim_stat->recent_scanned[0] /= 2;
2246 reclaim_stat->recent_rotated[0] /= 2;
2249 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2250 reclaim_stat->recent_scanned[1] /= 2;
2251 reclaim_stat->recent_rotated[1] /= 2;
2255 * The amount of pressure on anon vs file pages is inversely
2256 * proportional to the fraction of recently scanned pages on
2257 * each list that were recently referenced and in active use.
2259 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2260 ap /= reclaim_stat->recent_rotated[0] + 1;
2262 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2263 fp /= reclaim_stat->recent_rotated[1] + 1;
2264 spin_unlock_irq(&pgdat->lru_lock);
2266 fraction[0] = ap;
2267 fraction[1] = fp;
2268 denominator = ap + fp + 1;
2269 out:
2270 some_scanned = false;
2271 /* Only use force_scan on second pass. */
2272 for (pass = 0; !some_scanned && pass < 2; pass++) {
2273 *lru_pages = 0;
2274 for_each_evictable_lru(lru) {
2275 int file = is_file_lru(lru);
2276 unsigned long size;
2277 unsigned long scan;
2279 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2280 scan = size >> sc->priority;
2282 if (!scan && pass && force_scan)
2283 scan = min(size, SWAP_CLUSTER_MAX);
2285 switch (scan_balance) {
2286 case SCAN_EQUAL:
2287 /* Scan lists relative to size */
2288 break;
2289 case SCAN_FRACT:
2291 * Scan types proportional to swappiness and
2292 * their relative recent reclaim efficiency.
2294 scan = div64_u64(scan * fraction[file],
2295 denominator);
2296 break;
2297 case SCAN_FILE:
2298 case SCAN_ANON:
2299 /* Scan one type exclusively */
2300 if ((scan_balance == SCAN_FILE) != file) {
2301 size = 0;
2302 scan = 0;
2304 break;
2305 default:
2306 /* Look ma, no brain */
2307 BUG();
2310 *lru_pages += size;
2311 nr[lru] = scan;
2314 * Skip the second pass and don't force_scan,
2315 * if we found something to scan.
2317 some_scanned |= !!scan;
2323 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2325 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2326 struct scan_control *sc, unsigned long *lru_pages)
2328 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2329 unsigned long nr[NR_LRU_LISTS];
2330 unsigned long targets[NR_LRU_LISTS];
2331 unsigned long nr_to_scan;
2332 enum lru_list lru;
2333 unsigned long nr_reclaimed = 0;
2334 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2335 struct blk_plug plug;
2336 bool scan_adjusted;
2338 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2340 /* Record the original scan target for proportional adjustments later */
2341 memcpy(targets, nr, sizeof(nr));
2344 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2345 * event that can occur when there is little memory pressure e.g.
2346 * multiple streaming readers/writers. Hence, we do not abort scanning
2347 * when the requested number of pages are reclaimed when scanning at
2348 * DEF_PRIORITY on the assumption that the fact we are direct
2349 * reclaiming implies that kswapd is not keeping up and it is best to
2350 * do a batch of work at once. For memcg reclaim one check is made to
2351 * abort proportional reclaim if either the file or anon lru has already
2352 * dropped to zero at the first pass.
2354 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2355 sc->priority == DEF_PRIORITY);
2357 blk_start_plug(&plug);
2358 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2359 nr[LRU_INACTIVE_FILE]) {
2360 unsigned long nr_anon, nr_file, percentage;
2361 unsigned long nr_scanned;
2363 for_each_evictable_lru(lru) {
2364 if (nr[lru]) {
2365 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2366 nr[lru] -= nr_to_scan;
2368 nr_reclaimed += shrink_list(lru, nr_to_scan,
2369 lruvec, sc);
2373 cond_resched();
2375 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2376 continue;
2379 * For kswapd and memcg, reclaim at least the number of pages
2380 * requested. Ensure that the anon and file LRUs are scanned
2381 * proportionally what was requested by get_scan_count(). We
2382 * stop reclaiming one LRU and reduce the amount scanning
2383 * proportional to the original scan target.
2385 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2386 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2389 * It's just vindictive to attack the larger once the smaller
2390 * has gone to zero. And given the way we stop scanning the
2391 * smaller below, this makes sure that we only make one nudge
2392 * towards proportionality once we've got nr_to_reclaim.
2394 if (!nr_file || !nr_anon)
2395 break;
2397 if (nr_file > nr_anon) {
2398 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2399 targets[LRU_ACTIVE_ANON] + 1;
2400 lru = LRU_BASE;
2401 percentage = nr_anon * 100 / scan_target;
2402 } else {
2403 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2404 targets[LRU_ACTIVE_FILE] + 1;
2405 lru = LRU_FILE;
2406 percentage = nr_file * 100 / scan_target;
2409 /* Stop scanning the smaller of the LRU */
2410 nr[lru] = 0;
2411 nr[lru + LRU_ACTIVE] = 0;
2414 * Recalculate the other LRU scan count based on its original
2415 * scan target and the percentage scanning already complete
2417 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2418 nr_scanned = targets[lru] - nr[lru];
2419 nr[lru] = targets[lru] * (100 - percentage) / 100;
2420 nr[lru] -= min(nr[lru], nr_scanned);
2422 lru += LRU_ACTIVE;
2423 nr_scanned = targets[lru] - nr[lru];
2424 nr[lru] = targets[lru] * (100 - percentage) / 100;
2425 nr[lru] -= min(nr[lru], nr_scanned);
2427 scan_adjusted = true;
2429 blk_finish_plug(&plug);
2430 sc->nr_reclaimed += nr_reclaimed;
2433 * Even if we did not try to evict anon pages at all, we want to
2434 * rebalance the anon lru active/inactive ratio.
2436 if (inactive_list_is_low(lruvec, false, sc, true))
2437 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2438 sc, LRU_ACTIVE_ANON);
2441 /* Use reclaim/compaction for costly allocs or under memory pressure */
2442 static bool in_reclaim_compaction(struct scan_control *sc)
2444 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2445 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2446 sc->priority < DEF_PRIORITY - 2))
2447 return true;
2449 return false;
2453 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2454 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2455 * true if more pages should be reclaimed such that when the page allocator
2456 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2457 * It will give up earlier than that if there is difficulty reclaiming pages.
2459 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2460 unsigned long nr_reclaimed,
2461 unsigned long nr_scanned,
2462 struct scan_control *sc)
2464 unsigned long pages_for_compaction;
2465 unsigned long inactive_lru_pages;
2466 int z;
2468 /* If not in reclaim/compaction mode, stop */
2469 if (!in_reclaim_compaction(sc))
2470 return false;
2472 /* Consider stopping depending on scan and reclaim activity */
2473 if (sc->gfp_mask & __GFP_REPEAT) {
2475 * For __GFP_REPEAT allocations, stop reclaiming if the
2476 * full LRU list has been scanned and we are still failing
2477 * to reclaim pages. This full LRU scan is potentially
2478 * expensive but a __GFP_REPEAT caller really wants to succeed
2480 if (!nr_reclaimed && !nr_scanned)
2481 return false;
2482 } else {
2484 * For non-__GFP_REPEAT allocations which can presumably
2485 * fail without consequence, stop if we failed to reclaim
2486 * any pages from the last SWAP_CLUSTER_MAX number of
2487 * pages that were scanned. This will return to the
2488 * caller faster at the risk reclaim/compaction and
2489 * the resulting allocation attempt fails
2491 if (!nr_reclaimed)
2492 return false;
2496 * If we have not reclaimed enough pages for compaction and the
2497 * inactive lists are large enough, continue reclaiming
2499 pages_for_compaction = compact_gap(sc->order);
2500 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2501 if (get_nr_swap_pages() > 0)
2502 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2503 if (sc->nr_reclaimed < pages_for_compaction &&
2504 inactive_lru_pages > pages_for_compaction)
2505 return true;
2507 /* If compaction would go ahead or the allocation would succeed, stop */
2508 for (z = 0; z <= sc->reclaim_idx; z++) {
2509 struct zone *zone = &pgdat->node_zones[z];
2510 if (!managed_zone(zone))
2511 continue;
2513 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2514 case COMPACT_SUCCESS:
2515 case COMPACT_CONTINUE:
2516 return false;
2517 default:
2518 /* check next zone */
2522 return true;
2525 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2527 struct reclaim_state *reclaim_state = current->reclaim_state;
2528 unsigned long nr_reclaimed, nr_scanned;
2529 bool reclaimable = false;
2531 do {
2532 struct mem_cgroup *root = sc->target_mem_cgroup;
2533 struct mem_cgroup_reclaim_cookie reclaim = {
2534 .pgdat = pgdat,
2535 .priority = sc->priority,
2537 unsigned long node_lru_pages = 0;
2538 struct mem_cgroup *memcg;
2540 nr_reclaimed = sc->nr_reclaimed;
2541 nr_scanned = sc->nr_scanned;
2543 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2544 do {
2545 unsigned long lru_pages;
2546 unsigned long reclaimed;
2547 unsigned long scanned;
2549 if (mem_cgroup_low(root, memcg)) {
2550 if (!sc->may_thrash)
2551 continue;
2552 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2555 reclaimed = sc->nr_reclaimed;
2556 scanned = sc->nr_scanned;
2558 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2559 node_lru_pages += lru_pages;
2561 if (memcg)
2562 shrink_slab(sc->gfp_mask, pgdat->node_id,
2563 memcg, sc->nr_scanned - scanned,
2564 lru_pages);
2566 /* Record the group's reclaim efficiency */
2567 vmpressure(sc->gfp_mask, memcg, false,
2568 sc->nr_scanned - scanned,
2569 sc->nr_reclaimed - reclaimed);
2572 * Direct reclaim and kswapd have to scan all memory
2573 * cgroups to fulfill the overall scan target for the
2574 * node.
2576 * Limit reclaim, on the other hand, only cares about
2577 * nr_to_reclaim pages to be reclaimed and it will
2578 * retry with decreasing priority if one round over the
2579 * whole hierarchy is not sufficient.
2581 if (!global_reclaim(sc) &&
2582 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2583 mem_cgroup_iter_break(root, memcg);
2584 break;
2586 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2589 * Shrink the slab caches in the same proportion that
2590 * the eligible LRU pages were scanned.
2592 if (global_reclaim(sc))
2593 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2594 sc->nr_scanned - nr_scanned,
2595 node_lru_pages);
2597 if (reclaim_state) {
2598 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2599 reclaim_state->reclaimed_slab = 0;
2602 /* Record the subtree's reclaim efficiency */
2603 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2604 sc->nr_scanned - nr_scanned,
2605 sc->nr_reclaimed - nr_reclaimed);
2607 if (sc->nr_reclaimed - nr_reclaimed)
2608 reclaimable = true;
2610 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2611 sc->nr_scanned - nr_scanned, sc));
2613 return reclaimable;
2617 * Returns true if compaction should go ahead for a costly-order request, or
2618 * the allocation would already succeed without compaction. Return false if we
2619 * should reclaim first.
2621 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2623 unsigned long watermark;
2624 enum compact_result suitable;
2626 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2627 if (suitable == COMPACT_SUCCESS)
2628 /* Allocation should succeed already. Don't reclaim. */
2629 return true;
2630 if (suitable == COMPACT_SKIPPED)
2631 /* Compaction cannot yet proceed. Do reclaim. */
2632 return false;
2635 * Compaction is already possible, but it takes time to run and there
2636 * are potentially other callers using the pages just freed. So proceed
2637 * with reclaim to make a buffer of free pages available to give
2638 * compaction a reasonable chance of completing and allocating the page.
2639 * Note that we won't actually reclaim the whole buffer in one attempt
2640 * as the target watermark in should_continue_reclaim() is lower. But if
2641 * we are already above the high+gap watermark, don't reclaim at all.
2643 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2645 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2649 * This is the direct reclaim path, for page-allocating processes. We only
2650 * try to reclaim pages from zones which will satisfy the caller's allocation
2651 * request.
2653 * If a zone is deemed to be full of pinned pages then just give it a light
2654 * scan then give up on it.
2656 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2658 struct zoneref *z;
2659 struct zone *zone;
2660 unsigned long nr_soft_reclaimed;
2661 unsigned long nr_soft_scanned;
2662 gfp_t orig_mask;
2663 pg_data_t *last_pgdat = NULL;
2666 * If the number of buffer_heads in the machine exceeds the maximum
2667 * allowed level, force direct reclaim to scan the highmem zone as
2668 * highmem pages could be pinning lowmem pages storing buffer_heads
2670 orig_mask = sc->gfp_mask;
2671 if (buffer_heads_over_limit) {
2672 sc->gfp_mask |= __GFP_HIGHMEM;
2673 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2676 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2677 sc->reclaim_idx, sc->nodemask) {
2679 * Take care memory controller reclaiming has small influence
2680 * to global LRU.
2682 if (global_reclaim(sc)) {
2683 if (!cpuset_zone_allowed(zone,
2684 GFP_KERNEL | __GFP_HARDWALL))
2685 continue;
2687 if (sc->priority != DEF_PRIORITY &&
2688 !pgdat_reclaimable(zone->zone_pgdat))
2689 continue; /* Let kswapd poll it */
2692 * If we already have plenty of memory free for
2693 * compaction in this zone, don't free any more.
2694 * Even though compaction is invoked for any
2695 * non-zero order, only frequent costly order
2696 * reclamation is disruptive enough to become a
2697 * noticeable problem, like transparent huge
2698 * page allocations.
2700 if (IS_ENABLED(CONFIG_COMPACTION) &&
2701 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2702 compaction_ready(zone, sc)) {
2703 sc->compaction_ready = true;
2704 continue;
2708 * Shrink each node in the zonelist once. If the
2709 * zonelist is ordered by zone (not the default) then a
2710 * node may be shrunk multiple times but in that case
2711 * the user prefers lower zones being preserved.
2713 if (zone->zone_pgdat == last_pgdat)
2714 continue;
2717 * This steals pages from memory cgroups over softlimit
2718 * and returns the number of reclaimed pages and
2719 * scanned pages. This works for global memory pressure
2720 * and balancing, not for a memcg's limit.
2722 nr_soft_scanned = 0;
2723 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2724 sc->order, sc->gfp_mask,
2725 &nr_soft_scanned);
2726 sc->nr_reclaimed += nr_soft_reclaimed;
2727 sc->nr_scanned += nr_soft_scanned;
2728 /* need some check for avoid more shrink_zone() */
2731 /* See comment about same check for global reclaim above */
2732 if (zone->zone_pgdat == last_pgdat)
2733 continue;
2734 last_pgdat = zone->zone_pgdat;
2735 shrink_node(zone->zone_pgdat, sc);
2739 * Restore to original mask to avoid the impact on the caller if we
2740 * promoted it to __GFP_HIGHMEM.
2742 sc->gfp_mask = orig_mask;
2746 * This is the main entry point to direct page reclaim.
2748 * If a full scan of the inactive list fails to free enough memory then we
2749 * are "out of memory" and something needs to be killed.
2751 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2752 * high - the zone may be full of dirty or under-writeback pages, which this
2753 * caller can't do much about. We kick the writeback threads and take explicit
2754 * naps in the hope that some of these pages can be written. But if the
2755 * allocating task holds filesystem locks which prevent writeout this might not
2756 * work, and the allocation attempt will fail.
2758 * returns: 0, if no pages reclaimed
2759 * else, the number of pages reclaimed
2761 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2762 struct scan_control *sc)
2764 int initial_priority = sc->priority;
2765 retry:
2766 delayacct_freepages_start();
2768 if (global_reclaim(sc))
2769 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2771 do {
2772 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2773 sc->priority);
2774 sc->nr_scanned = 0;
2775 shrink_zones(zonelist, sc);
2777 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2778 break;
2780 if (sc->compaction_ready)
2781 break;
2784 * If we're getting trouble reclaiming, start doing
2785 * writepage even in laptop mode.
2787 if (sc->priority < DEF_PRIORITY - 2)
2788 sc->may_writepage = 1;
2789 } while (--sc->priority >= 0);
2791 delayacct_freepages_end();
2793 if (sc->nr_reclaimed)
2794 return sc->nr_reclaimed;
2796 /* Aborted reclaim to try compaction? don't OOM, then */
2797 if (sc->compaction_ready)
2798 return 1;
2800 /* Untapped cgroup reserves? Don't OOM, retry. */
2801 if (!sc->may_thrash) {
2802 sc->priority = initial_priority;
2803 sc->may_thrash = 1;
2804 goto retry;
2807 return 0;
2810 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2812 struct zone *zone;
2813 unsigned long pfmemalloc_reserve = 0;
2814 unsigned long free_pages = 0;
2815 int i;
2816 bool wmark_ok;
2818 for (i = 0; i <= ZONE_NORMAL; i++) {
2819 zone = &pgdat->node_zones[i];
2820 if (!managed_zone(zone) ||
2821 pgdat_reclaimable_pages(pgdat) == 0)
2822 continue;
2824 pfmemalloc_reserve += min_wmark_pages(zone);
2825 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2828 /* If there are no reserves (unexpected config) then do not throttle */
2829 if (!pfmemalloc_reserve)
2830 return true;
2832 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2834 /* kswapd must be awake if processes are being throttled */
2835 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2836 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2837 (enum zone_type)ZONE_NORMAL);
2838 wake_up_interruptible(&pgdat->kswapd_wait);
2841 return wmark_ok;
2845 * Throttle direct reclaimers if backing storage is backed by the network
2846 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2847 * depleted. kswapd will continue to make progress and wake the processes
2848 * when the low watermark is reached.
2850 * Returns true if a fatal signal was delivered during throttling. If this
2851 * happens, the page allocator should not consider triggering the OOM killer.
2853 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2854 nodemask_t *nodemask)
2856 struct zoneref *z;
2857 struct zone *zone;
2858 pg_data_t *pgdat = NULL;
2861 * Kernel threads should not be throttled as they may be indirectly
2862 * responsible for cleaning pages necessary for reclaim to make forward
2863 * progress. kjournald for example may enter direct reclaim while
2864 * committing a transaction where throttling it could forcing other
2865 * processes to block on log_wait_commit().
2867 if (current->flags & PF_KTHREAD)
2868 goto out;
2871 * If a fatal signal is pending, this process should not throttle.
2872 * It should return quickly so it can exit and free its memory
2874 if (fatal_signal_pending(current))
2875 goto out;
2878 * Check if the pfmemalloc reserves are ok by finding the first node
2879 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2880 * GFP_KERNEL will be required for allocating network buffers when
2881 * swapping over the network so ZONE_HIGHMEM is unusable.
2883 * Throttling is based on the first usable node and throttled processes
2884 * wait on a queue until kswapd makes progress and wakes them. There
2885 * is an affinity then between processes waking up and where reclaim
2886 * progress has been made assuming the process wakes on the same node.
2887 * More importantly, processes running on remote nodes will not compete
2888 * for remote pfmemalloc reserves and processes on different nodes
2889 * should make reasonable progress.
2891 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2892 gfp_zone(gfp_mask), nodemask) {
2893 if (zone_idx(zone) > ZONE_NORMAL)
2894 continue;
2896 /* Throttle based on the first usable node */
2897 pgdat = zone->zone_pgdat;
2898 if (pfmemalloc_watermark_ok(pgdat))
2899 goto out;
2900 break;
2903 /* If no zone was usable by the allocation flags then do not throttle */
2904 if (!pgdat)
2905 goto out;
2907 /* Account for the throttling */
2908 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2911 * If the caller cannot enter the filesystem, it's possible that it
2912 * is due to the caller holding an FS lock or performing a journal
2913 * transaction in the case of a filesystem like ext[3|4]. In this case,
2914 * it is not safe to block on pfmemalloc_wait as kswapd could be
2915 * blocked waiting on the same lock. Instead, throttle for up to a
2916 * second before continuing.
2918 if (!(gfp_mask & __GFP_FS)) {
2919 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2920 pfmemalloc_watermark_ok(pgdat), HZ);
2922 goto check_pending;
2925 /* Throttle until kswapd wakes the process */
2926 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2927 pfmemalloc_watermark_ok(pgdat));
2929 check_pending:
2930 if (fatal_signal_pending(current))
2931 return true;
2933 out:
2934 return false;
2937 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2938 gfp_t gfp_mask, nodemask_t *nodemask)
2940 unsigned long nr_reclaimed;
2941 struct scan_control sc = {
2942 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2943 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2944 .reclaim_idx = gfp_zone(gfp_mask),
2945 .order = order,
2946 .nodemask = nodemask,
2947 .priority = DEF_PRIORITY,
2948 .may_writepage = !laptop_mode,
2949 .may_unmap = 1,
2950 .may_swap = 1,
2954 * Do not enter reclaim if fatal signal was delivered while throttled.
2955 * 1 is returned so that the page allocator does not OOM kill at this
2956 * point.
2958 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2959 return 1;
2961 trace_mm_vmscan_direct_reclaim_begin(order,
2962 sc.may_writepage,
2963 gfp_mask,
2964 sc.reclaim_idx);
2966 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2968 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2970 return nr_reclaimed;
2973 #ifdef CONFIG_MEMCG
2975 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2976 gfp_t gfp_mask, bool noswap,
2977 pg_data_t *pgdat,
2978 unsigned long *nr_scanned)
2980 struct scan_control sc = {
2981 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2982 .target_mem_cgroup = memcg,
2983 .may_writepage = !laptop_mode,
2984 .may_unmap = 1,
2985 .reclaim_idx = MAX_NR_ZONES - 1,
2986 .may_swap = !noswap,
2988 unsigned long lru_pages;
2990 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2991 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2993 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2994 sc.may_writepage,
2995 sc.gfp_mask,
2996 sc.reclaim_idx);
2999 * NOTE: Although we can get the priority field, using it
3000 * here is not a good idea, since it limits the pages we can scan.
3001 * if we don't reclaim here, the shrink_node from balance_pgdat
3002 * will pick up pages from other mem cgroup's as well. We hack
3003 * the priority and make it zero.
3005 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3007 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3009 *nr_scanned = sc.nr_scanned;
3010 return sc.nr_reclaimed;
3013 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3014 unsigned long nr_pages,
3015 gfp_t gfp_mask,
3016 bool may_swap)
3018 struct zonelist *zonelist;
3019 unsigned long nr_reclaimed;
3020 int nid;
3021 struct scan_control sc = {
3022 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3023 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3024 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3025 .reclaim_idx = MAX_NR_ZONES - 1,
3026 .target_mem_cgroup = memcg,
3027 .priority = DEF_PRIORITY,
3028 .may_writepage = !laptop_mode,
3029 .may_unmap = 1,
3030 .may_swap = may_swap,
3034 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3035 * take care of from where we get pages. So the node where we start the
3036 * scan does not need to be the current node.
3038 nid = mem_cgroup_select_victim_node(memcg);
3040 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3042 trace_mm_vmscan_memcg_reclaim_begin(0,
3043 sc.may_writepage,
3044 sc.gfp_mask,
3045 sc.reclaim_idx);
3047 current->flags |= PF_MEMALLOC;
3048 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3049 current->flags &= ~PF_MEMALLOC;
3051 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3053 return nr_reclaimed;
3055 #endif
3057 static void age_active_anon(struct pglist_data *pgdat,
3058 struct scan_control *sc)
3060 struct mem_cgroup *memcg;
3062 if (!total_swap_pages)
3063 return;
3065 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3066 do {
3067 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3069 if (inactive_list_is_low(lruvec, false, sc, true))
3070 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3071 sc, LRU_ACTIVE_ANON);
3073 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3074 } while (memcg);
3077 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3079 unsigned long mark = high_wmark_pages(zone);
3081 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3082 return false;
3085 * If any eligible zone is balanced then the node is not considered
3086 * to be congested or dirty
3088 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3089 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3091 return true;
3095 * Prepare kswapd for sleeping. This verifies that there are no processes
3096 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3098 * Returns true if kswapd is ready to sleep
3100 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3102 int i;
3105 * The throttled processes are normally woken up in balance_pgdat() as
3106 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3107 * race between when kswapd checks the watermarks and a process gets
3108 * throttled. There is also a potential race if processes get
3109 * throttled, kswapd wakes, a large process exits thereby balancing the
3110 * zones, which causes kswapd to exit balance_pgdat() before reaching
3111 * the wake up checks. If kswapd is going to sleep, no process should
3112 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3113 * the wake up is premature, processes will wake kswapd and get
3114 * throttled again. The difference from wake ups in balance_pgdat() is
3115 * that here we are under prepare_to_wait().
3117 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3118 wake_up_all(&pgdat->pfmemalloc_wait);
3120 for (i = 0; i <= classzone_idx; i++) {
3121 struct zone *zone = pgdat->node_zones + i;
3123 if (!managed_zone(zone))
3124 continue;
3126 if (!zone_balanced(zone, order, classzone_idx))
3127 return false;
3130 return true;
3134 * kswapd shrinks a node of pages that are at or below the highest usable
3135 * zone that is currently unbalanced.
3137 * Returns true if kswapd scanned at least the requested number of pages to
3138 * reclaim or if the lack of progress was due to pages under writeback.
3139 * This is used to determine if the scanning priority needs to be raised.
3141 static bool kswapd_shrink_node(pg_data_t *pgdat,
3142 struct scan_control *sc)
3144 struct zone *zone;
3145 int z;
3147 /* Reclaim a number of pages proportional to the number of zones */
3148 sc->nr_to_reclaim = 0;
3149 for (z = 0; z <= sc->reclaim_idx; z++) {
3150 zone = pgdat->node_zones + z;
3151 if (!managed_zone(zone))
3152 continue;
3154 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3158 * Historically care was taken to put equal pressure on all zones but
3159 * now pressure is applied based on node LRU order.
3161 shrink_node(pgdat, sc);
3164 * Fragmentation may mean that the system cannot be rebalanced for
3165 * high-order allocations. If twice the allocation size has been
3166 * reclaimed then recheck watermarks only at order-0 to prevent
3167 * excessive reclaim. Assume that a process requested a high-order
3168 * can direct reclaim/compact.
3170 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3171 sc->order = 0;
3173 return sc->nr_scanned >= sc->nr_to_reclaim;
3177 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3178 * that are eligible for use by the caller until at least one zone is
3179 * balanced.
3181 * Returns the order kswapd finished reclaiming at.
3183 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3184 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3185 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3186 * or lower is eligible for reclaim until at least one usable zone is
3187 * balanced.
3189 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3191 int i;
3192 unsigned long nr_soft_reclaimed;
3193 unsigned long nr_soft_scanned;
3194 struct zone *zone;
3195 struct scan_control sc = {
3196 .gfp_mask = GFP_KERNEL,
3197 .order = order,
3198 .priority = DEF_PRIORITY,
3199 .may_writepage = !laptop_mode,
3200 .may_unmap = 1,
3201 .may_swap = 1,
3203 count_vm_event(PAGEOUTRUN);
3205 do {
3206 bool raise_priority = true;
3208 sc.nr_reclaimed = 0;
3209 sc.reclaim_idx = classzone_idx;
3212 * If the number of buffer_heads exceeds the maximum allowed
3213 * then consider reclaiming from all zones. This has a dual
3214 * purpose -- on 64-bit systems it is expected that
3215 * buffer_heads are stripped during active rotation. On 32-bit
3216 * systems, highmem pages can pin lowmem memory and shrinking
3217 * buffers can relieve lowmem pressure. Reclaim may still not
3218 * go ahead if all eligible zones for the original allocation
3219 * request are balanced to avoid excessive reclaim from kswapd.
3221 if (buffer_heads_over_limit) {
3222 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3223 zone = pgdat->node_zones + i;
3224 if (!managed_zone(zone))
3225 continue;
3227 sc.reclaim_idx = i;
3228 break;
3233 * Only reclaim if there are no eligible zones. Check from
3234 * high to low zone as allocations prefer higher zones.
3235 * Scanning from low to high zone would allow congestion to be
3236 * cleared during a very small window when a small low
3237 * zone was balanced even under extreme pressure when the
3238 * overall node may be congested. Note that sc.reclaim_idx
3239 * is not used as buffer_heads_over_limit may have adjusted
3240 * it.
3242 for (i = classzone_idx; i >= 0; i--) {
3243 zone = pgdat->node_zones + i;
3244 if (!managed_zone(zone))
3245 continue;
3247 if (zone_balanced(zone, sc.order, classzone_idx))
3248 goto out;
3252 * Do some background aging of the anon list, to give
3253 * pages a chance to be referenced before reclaiming. All
3254 * pages are rotated regardless of classzone as this is
3255 * about consistent aging.
3257 age_active_anon(pgdat, &sc);
3260 * If we're getting trouble reclaiming, start doing writepage
3261 * even in laptop mode.
3263 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3264 sc.may_writepage = 1;
3266 /* Call soft limit reclaim before calling shrink_node. */
3267 sc.nr_scanned = 0;
3268 nr_soft_scanned = 0;
3269 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3270 sc.gfp_mask, &nr_soft_scanned);
3271 sc.nr_reclaimed += nr_soft_reclaimed;
3274 * There should be no need to raise the scanning priority if
3275 * enough pages are already being scanned that that high
3276 * watermark would be met at 100% efficiency.
3278 if (kswapd_shrink_node(pgdat, &sc))
3279 raise_priority = false;
3282 * If the low watermark is met there is no need for processes
3283 * to be throttled on pfmemalloc_wait as they should not be
3284 * able to safely make forward progress. Wake them
3286 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3287 pfmemalloc_watermark_ok(pgdat))
3288 wake_up_all(&pgdat->pfmemalloc_wait);
3290 /* Check if kswapd should be suspending */
3291 if (try_to_freeze() || kthread_should_stop())
3292 break;
3295 * Raise priority if scanning rate is too low or there was no
3296 * progress in reclaiming pages
3298 if (raise_priority || !sc.nr_reclaimed)
3299 sc.priority--;
3300 } while (sc.priority >= 1);
3302 out:
3304 * Return the order kswapd stopped reclaiming at as
3305 * prepare_kswapd_sleep() takes it into account. If another caller
3306 * entered the allocator slow path while kswapd was awake, order will
3307 * remain at the higher level.
3309 return sc.order;
3312 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3313 unsigned int classzone_idx)
3315 long remaining = 0;
3316 DEFINE_WAIT(wait);
3318 if (freezing(current) || kthread_should_stop())
3319 return;
3321 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3323 /* Try to sleep for a short interval */
3324 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3326 * Compaction records what page blocks it recently failed to
3327 * isolate pages from and skips them in the future scanning.
3328 * When kswapd is going to sleep, it is reasonable to assume
3329 * that pages and compaction may succeed so reset the cache.
3331 reset_isolation_suitable(pgdat);
3334 * We have freed the memory, now we should compact it to make
3335 * allocation of the requested order possible.
3337 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3339 remaining = schedule_timeout(HZ/10);
3342 * If woken prematurely then reset kswapd_classzone_idx and
3343 * order. The values will either be from a wakeup request or
3344 * the previous request that slept prematurely.
3346 if (remaining) {
3347 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3348 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3351 finish_wait(&pgdat->kswapd_wait, &wait);
3352 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3356 * After a short sleep, check if it was a premature sleep. If not, then
3357 * go fully to sleep until explicitly woken up.
3359 if (!remaining &&
3360 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3361 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3364 * vmstat counters are not perfectly accurate and the estimated
3365 * value for counters such as NR_FREE_PAGES can deviate from the
3366 * true value by nr_online_cpus * threshold. To avoid the zone
3367 * watermarks being breached while under pressure, we reduce the
3368 * per-cpu vmstat threshold while kswapd is awake and restore
3369 * them before going back to sleep.
3371 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3373 if (!kthread_should_stop())
3374 schedule();
3376 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3377 } else {
3378 if (remaining)
3379 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3380 else
3381 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3383 finish_wait(&pgdat->kswapd_wait, &wait);
3387 * The background pageout daemon, started as a kernel thread
3388 * from the init process.
3390 * This basically trickles out pages so that we have _some_
3391 * free memory available even if there is no other activity
3392 * that frees anything up. This is needed for things like routing
3393 * etc, where we otherwise might have all activity going on in
3394 * asynchronous contexts that cannot page things out.
3396 * If there are applications that are active memory-allocators
3397 * (most normal use), this basically shouldn't matter.
3399 static int kswapd(void *p)
3401 unsigned int alloc_order, reclaim_order, classzone_idx;
3402 pg_data_t *pgdat = (pg_data_t*)p;
3403 struct task_struct *tsk = current;
3405 struct reclaim_state reclaim_state = {
3406 .reclaimed_slab = 0,
3408 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3410 lockdep_set_current_reclaim_state(GFP_KERNEL);
3412 if (!cpumask_empty(cpumask))
3413 set_cpus_allowed_ptr(tsk, cpumask);
3414 current->reclaim_state = &reclaim_state;
3417 * Tell the memory management that we're a "memory allocator",
3418 * and that if we need more memory we should get access to it
3419 * regardless (see "__alloc_pages()"). "kswapd" should
3420 * never get caught in the normal page freeing logic.
3422 * (Kswapd normally doesn't need memory anyway, but sometimes
3423 * you need a small amount of memory in order to be able to
3424 * page out something else, and this flag essentially protects
3425 * us from recursively trying to free more memory as we're
3426 * trying to free the first piece of memory in the first place).
3428 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3429 set_freezable();
3431 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3432 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3433 for ( ; ; ) {
3434 bool ret;
3436 kswapd_try_sleep:
3437 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3438 classzone_idx);
3440 /* Read the new order and classzone_idx */
3441 alloc_order = reclaim_order = pgdat->kswapd_order;
3442 classzone_idx = pgdat->kswapd_classzone_idx;
3443 pgdat->kswapd_order = 0;
3444 pgdat->kswapd_classzone_idx = 0;
3446 ret = try_to_freeze();
3447 if (kthread_should_stop())
3448 break;
3451 * We can speed up thawing tasks if we don't call balance_pgdat
3452 * after returning from the refrigerator
3454 if (ret)
3455 continue;
3458 * Reclaim begins at the requested order but if a high-order
3459 * reclaim fails then kswapd falls back to reclaiming for
3460 * order-0. If that happens, kswapd will consider sleeping
3461 * for the order it finished reclaiming at (reclaim_order)
3462 * but kcompactd is woken to compact for the original
3463 * request (alloc_order).
3465 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3466 alloc_order);
3467 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3468 if (reclaim_order < alloc_order)
3469 goto kswapd_try_sleep;
3471 alloc_order = reclaim_order = pgdat->kswapd_order;
3472 classzone_idx = pgdat->kswapd_classzone_idx;
3475 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3476 current->reclaim_state = NULL;
3477 lockdep_clear_current_reclaim_state();
3479 return 0;
3483 * A zone is low on free memory, so wake its kswapd task to service it.
3485 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3487 pg_data_t *pgdat;
3488 int z;
3490 if (!managed_zone(zone))
3491 return;
3493 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3494 return;
3495 pgdat = zone->zone_pgdat;
3496 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3497 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3498 if (!waitqueue_active(&pgdat->kswapd_wait))
3499 return;
3501 /* Only wake kswapd if all zones are unbalanced */
3502 for (z = 0; z <= classzone_idx; z++) {
3503 zone = pgdat->node_zones + z;
3504 if (!managed_zone(zone))
3505 continue;
3507 if (zone_balanced(zone, order, classzone_idx))
3508 return;
3511 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3512 wake_up_interruptible(&pgdat->kswapd_wait);
3515 #ifdef CONFIG_HIBERNATION
3517 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3518 * freed pages.
3520 * Rather than trying to age LRUs the aim is to preserve the overall
3521 * LRU order by reclaiming preferentially
3522 * inactive > active > active referenced > active mapped
3524 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3526 struct reclaim_state reclaim_state;
3527 struct scan_control sc = {
3528 .nr_to_reclaim = nr_to_reclaim,
3529 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3530 .reclaim_idx = MAX_NR_ZONES - 1,
3531 .priority = DEF_PRIORITY,
3532 .may_writepage = 1,
3533 .may_unmap = 1,
3534 .may_swap = 1,
3535 .hibernation_mode = 1,
3537 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3538 struct task_struct *p = current;
3539 unsigned long nr_reclaimed;
3541 p->flags |= PF_MEMALLOC;
3542 lockdep_set_current_reclaim_state(sc.gfp_mask);
3543 reclaim_state.reclaimed_slab = 0;
3544 p->reclaim_state = &reclaim_state;
3546 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3548 p->reclaim_state = NULL;
3549 lockdep_clear_current_reclaim_state();
3550 p->flags &= ~PF_MEMALLOC;
3552 return nr_reclaimed;
3554 #endif /* CONFIG_HIBERNATION */
3556 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3557 not required for correctness. So if the last cpu in a node goes
3558 away, we get changed to run anywhere: as the first one comes back,
3559 restore their cpu bindings. */
3560 static int kswapd_cpu_online(unsigned int cpu)
3562 int nid;
3564 for_each_node_state(nid, N_MEMORY) {
3565 pg_data_t *pgdat = NODE_DATA(nid);
3566 const struct cpumask *mask;
3568 mask = cpumask_of_node(pgdat->node_id);
3570 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3571 /* One of our CPUs online: restore mask */
3572 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3574 return 0;
3578 * This kswapd start function will be called by init and node-hot-add.
3579 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3581 int kswapd_run(int nid)
3583 pg_data_t *pgdat = NODE_DATA(nid);
3584 int ret = 0;
3586 if (pgdat->kswapd)
3587 return 0;
3589 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3590 if (IS_ERR(pgdat->kswapd)) {
3591 /* failure at boot is fatal */
3592 BUG_ON(system_state == SYSTEM_BOOTING);
3593 pr_err("Failed to start kswapd on node %d\n", nid);
3594 ret = PTR_ERR(pgdat->kswapd);
3595 pgdat->kswapd = NULL;
3597 return ret;
3601 * Called by memory hotplug when all memory in a node is offlined. Caller must
3602 * hold mem_hotplug_begin/end().
3604 void kswapd_stop(int nid)
3606 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3608 if (kswapd) {
3609 kthread_stop(kswapd);
3610 NODE_DATA(nid)->kswapd = NULL;
3614 static int __init kswapd_init(void)
3616 int nid, ret;
3618 swap_setup();
3619 for_each_node_state(nid, N_MEMORY)
3620 kswapd_run(nid);
3621 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3622 "mm/vmscan:online", kswapd_cpu_online,
3623 NULL);
3624 WARN_ON(ret < 0);
3625 return 0;
3628 module_init(kswapd_init)
3630 #ifdef CONFIG_NUMA
3632 * Node reclaim mode
3634 * If non-zero call node_reclaim when the number of free pages falls below
3635 * the watermarks.
3637 int node_reclaim_mode __read_mostly;
3639 #define RECLAIM_OFF 0
3640 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3641 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3642 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3645 * Priority for NODE_RECLAIM. This determines the fraction of pages
3646 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3647 * a zone.
3649 #define NODE_RECLAIM_PRIORITY 4
3652 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3653 * occur.
3655 int sysctl_min_unmapped_ratio = 1;
3658 * If the number of slab pages in a zone grows beyond this percentage then
3659 * slab reclaim needs to occur.
3661 int sysctl_min_slab_ratio = 5;
3663 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3665 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3666 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3667 node_page_state(pgdat, NR_ACTIVE_FILE);
3670 * It's possible for there to be more file mapped pages than
3671 * accounted for by the pages on the file LRU lists because
3672 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3674 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3677 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3678 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3680 unsigned long nr_pagecache_reclaimable;
3681 unsigned long delta = 0;
3684 * If RECLAIM_UNMAP is set, then all file pages are considered
3685 * potentially reclaimable. Otherwise, we have to worry about
3686 * pages like swapcache and node_unmapped_file_pages() provides
3687 * a better estimate
3689 if (node_reclaim_mode & RECLAIM_UNMAP)
3690 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3691 else
3692 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3694 /* If we can't clean pages, remove dirty pages from consideration */
3695 if (!(node_reclaim_mode & RECLAIM_WRITE))
3696 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3698 /* Watch for any possible underflows due to delta */
3699 if (unlikely(delta > nr_pagecache_reclaimable))
3700 delta = nr_pagecache_reclaimable;
3702 return nr_pagecache_reclaimable - delta;
3706 * Try to free up some pages from this node through reclaim.
3708 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3710 /* Minimum pages needed in order to stay on node */
3711 const unsigned long nr_pages = 1 << order;
3712 struct task_struct *p = current;
3713 struct reclaim_state reclaim_state;
3714 int classzone_idx = gfp_zone(gfp_mask);
3715 struct scan_control sc = {
3716 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3717 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3718 .order = order,
3719 .priority = NODE_RECLAIM_PRIORITY,
3720 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3721 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3722 .may_swap = 1,
3723 .reclaim_idx = classzone_idx,
3726 cond_resched();
3728 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3729 * and we also need to be able to write out pages for RECLAIM_WRITE
3730 * and RECLAIM_UNMAP.
3732 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3733 lockdep_set_current_reclaim_state(gfp_mask);
3734 reclaim_state.reclaimed_slab = 0;
3735 p->reclaim_state = &reclaim_state;
3737 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3739 * Free memory by calling shrink zone with increasing
3740 * priorities until we have enough memory freed.
3742 do {
3743 shrink_node(pgdat, &sc);
3744 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3747 p->reclaim_state = NULL;
3748 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3749 lockdep_clear_current_reclaim_state();
3750 return sc.nr_reclaimed >= nr_pages;
3753 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3755 int ret;
3758 * Node reclaim reclaims unmapped file backed pages and
3759 * slab pages if we are over the defined limits.
3761 * A small portion of unmapped file backed pages is needed for
3762 * file I/O otherwise pages read by file I/O will be immediately
3763 * thrown out if the node is overallocated. So we do not reclaim
3764 * if less than a specified percentage of the node is used by
3765 * unmapped file backed pages.
3767 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3768 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3769 return NODE_RECLAIM_FULL;
3771 if (!pgdat_reclaimable(pgdat))
3772 return NODE_RECLAIM_FULL;
3775 * Do not scan if the allocation should not be delayed.
3777 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3778 return NODE_RECLAIM_NOSCAN;
3781 * Only run node reclaim on the local node or on nodes that do not
3782 * have associated processors. This will favor the local processor
3783 * over remote processors and spread off node memory allocations
3784 * as wide as possible.
3786 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3787 return NODE_RECLAIM_NOSCAN;
3789 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3790 return NODE_RECLAIM_NOSCAN;
3792 ret = __node_reclaim(pgdat, gfp_mask, order);
3793 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3795 if (!ret)
3796 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3798 return ret;
3800 #endif
3803 * page_evictable - test whether a page is evictable
3804 * @page: the page to test
3806 * Test whether page is evictable--i.e., should be placed on active/inactive
3807 * lists vs unevictable list.
3809 * Reasons page might not be evictable:
3810 * (1) page's mapping marked unevictable
3811 * (2) page is part of an mlocked VMA
3814 int page_evictable(struct page *page)
3816 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3819 #ifdef CONFIG_SHMEM
3821 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3822 * @pages: array of pages to check
3823 * @nr_pages: number of pages to check
3825 * Checks pages for evictability and moves them to the appropriate lru list.
3827 * This function is only used for SysV IPC SHM_UNLOCK.
3829 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3831 struct lruvec *lruvec;
3832 struct pglist_data *pgdat = NULL;
3833 int pgscanned = 0;
3834 int pgrescued = 0;
3835 int i;
3837 for (i = 0; i < nr_pages; i++) {
3838 struct page *page = pages[i];
3839 struct pglist_data *pagepgdat = page_pgdat(page);
3841 pgscanned++;
3842 if (pagepgdat != pgdat) {
3843 if (pgdat)
3844 spin_unlock_irq(&pgdat->lru_lock);
3845 pgdat = pagepgdat;
3846 spin_lock_irq(&pgdat->lru_lock);
3848 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3850 if (!PageLRU(page) || !PageUnevictable(page))
3851 continue;
3853 if (page_evictable(page)) {
3854 enum lru_list lru = page_lru_base_type(page);
3856 VM_BUG_ON_PAGE(PageActive(page), page);
3857 ClearPageUnevictable(page);
3858 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3859 add_page_to_lru_list(page, lruvec, lru);
3860 pgrescued++;
3864 if (pgdat) {
3865 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3866 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3867 spin_unlock_irq(&pgdat->lru_lock);
3870 #endif /* CONFIG_SHMEM */