1 /* Generic associative array implementation.
3 * See Documentation/core-api/assoc_array.rst for information.
5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6 * Written by David Howells (dhowells@redhat.com)
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public Licence
10 * as published by the Free Software Foundation; either version
11 * 2 of the Licence, or (at your option) any later version.
14 #include <linux/rcupdate.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/assoc_array_priv.h>
20 * Iterate over an associative array. The caller must hold the RCU read lock
23 static int assoc_array_subtree_iterate(const struct assoc_array_ptr
*root
,
24 const struct assoc_array_ptr
*stop
,
25 int (*iterator
)(const void *leaf
,
29 const struct assoc_array_shortcut
*shortcut
;
30 const struct assoc_array_node
*node
;
31 const struct assoc_array_ptr
*cursor
, *ptr
, *parent
;
32 unsigned long has_meta
;
38 if (assoc_array_ptr_is_shortcut(cursor
)) {
39 /* Descend through a shortcut */
40 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
41 cursor
= READ_ONCE(shortcut
->next_node
); /* Address dependency. */
44 node
= assoc_array_ptr_to_node(cursor
);
47 /* We perform two passes of each node.
49 * The first pass does all the leaves in this node. This means we
50 * don't miss any leaves if the node is split up by insertion whilst
51 * we're iterating over the branches rooted here (we may, however, see
55 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
56 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
57 has_meta
|= (unsigned long)ptr
;
58 if (ptr
&& assoc_array_ptr_is_leaf(ptr
)) {
59 /* We need a barrier between the read of the pointer,
60 * which is supplied by the above READ_ONCE().
62 /* Invoke the callback */
63 ret
= iterator(assoc_array_ptr_to_leaf(ptr
),
70 /* The second pass attends to all the metadata pointers. If we follow
71 * one of these we may find that we don't come back here, but rather go
72 * back to a replacement node with the leaves in a different layout.
74 * We are guaranteed to make progress, however, as the slot number for
75 * a particular portion of the key space cannot change - and we
76 * continue at the back pointer + 1.
78 if (!(has_meta
& ASSOC_ARRAY_PTR_META_TYPE
))
83 node
= assoc_array_ptr_to_node(cursor
);
84 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
85 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
86 if (assoc_array_ptr_is_meta(ptr
)) {
93 /* Move up to the parent (may need to skip back over a shortcut) */
94 parent
= READ_ONCE(node
->back_pointer
); /* Address dependency. */
95 slot
= node
->parent_slot
;
99 if (assoc_array_ptr_is_shortcut(parent
)) {
100 shortcut
= assoc_array_ptr_to_shortcut(parent
);
102 parent
= READ_ONCE(shortcut
->back_pointer
); /* Address dependency. */
103 slot
= shortcut
->parent_slot
;
108 /* Ascend to next slot in parent node */
115 * assoc_array_iterate - Pass all objects in the array to a callback
116 * @array: The array to iterate over.
117 * @iterator: The callback function.
118 * @iterator_data: Private data for the callback function.
120 * Iterate over all the objects in an associative array. Each one will be
121 * presented to the iterator function.
123 * If the array is being modified concurrently with the iteration then it is
124 * possible that some objects in the array will be passed to the iterator
125 * callback more than once - though every object should be passed at least
126 * once. If this is undesirable then the caller must lock against modification
127 * for the duration of this function.
129 * The function will return 0 if no objects were in the array or else it will
130 * return the result of the last iterator function called. Iteration stops
131 * immediately if any call to the iteration function results in a non-zero
134 * The caller should hold the RCU read lock or better if concurrent
135 * modification is possible.
137 int assoc_array_iterate(const struct assoc_array
*array
,
138 int (*iterator
)(const void *object
,
139 void *iterator_data
),
142 struct assoc_array_ptr
*root
= READ_ONCE(array
->root
); /* Address dependency. */
146 return assoc_array_subtree_iterate(root
, NULL
, iterator
, iterator_data
);
149 enum assoc_array_walk_status
{
150 assoc_array_walk_tree_empty
,
151 assoc_array_walk_found_terminal_node
,
152 assoc_array_walk_found_wrong_shortcut
,
155 struct assoc_array_walk_result
{
157 struct assoc_array_node
*node
; /* Node in which leaf might be found */
162 struct assoc_array_shortcut
*shortcut
;
165 unsigned long sc_segments
;
166 unsigned long dissimilarity
;
171 * Navigate through the internal tree looking for the closest node to the key.
173 static enum assoc_array_walk_status
174 assoc_array_walk(const struct assoc_array
*array
,
175 const struct assoc_array_ops
*ops
,
176 const void *index_key
,
177 struct assoc_array_walk_result
*result
)
179 struct assoc_array_shortcut
*shortcut
;
180 struct assoc_array_node
*node
;
181 struct assoc_array_ptr
*cursor
, *ptr
;
182 unsigned long sc_segments
, dissimilarity
;
183 unsigned long segments
;
184 int level
, sc_level
, next_sc_level
;
187 pr_devel("-->%s()\n", __func__
);
189 cursor
= READ_ONCE(array
->root
); /* Address dependency. */
191 return assoc_array_walk_tree_empty
;
195 /* Use segments from the key for the new leaf to navigate through the
196 * internal tree, skipping through nodes and shortcuts that are on
197 * route to the destination. Eventually we'll come to a slot that is
198 * either empty or contains a leaf at which point we've found a node in
199 * which the leaf we're looking for might be found or into which it
200 * should be inserted.
203 segments
= ops
->get_key_chunk(index_key
, level
);
204 pr_devel("segments[%d]: %lx\n", level
, segments
);
206 if (assoc_array_ptr_is_shortcut(cursor
))
207 goto follow_shortcut
;
210 node
= assoc_array_ptr_to_node(cursor
);
211 slot
= segments
>> (level
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
212 slot
&= ASSOC_ARRAY_FAN_MASK
;
213 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
215 pr_devel("consider slot %x [ix=%d type=%lu]\n",
216 slot
, level
, (unsigned long)ptr
& 3);
218 if (!assoc_array_ptr_is_meta(ptr
)) {
219 /* The node doesn't have a node/shortcut pointer in the slot
220 * corresponding to the index key that we have to follow.
222 result
->terminal_node
.node
= node
;
223 result
->terminal_node
.level
= level
;
224 result
->terminal_node
.slot
= slot
;
225 pr_devel("<--%s() = terminal_node\n", __func__
);
226 return assoc_array_walk_found_terminal_node
;
229 if (assoc_array_ptr_is_node(ptr
)) {
230 /* There is a pointer to a node in the slot corresponding to
231 * this index key segment, so we need to follow it.
234 level
+= ASSOC_ARRAY_LEVEL_STEP
;
235 if ((level
& ASSOC_ARRAY_KEY_CHUNK_MASK
) != 0)
240 /* There is a shortcut in the slot corresponding to the index key
241 * segment. We follow the shortcut if its partial index key matches
242 * this leaf's. Otherwise we need to split the shortcut.
246 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
247 pr_devel("shortcut to %d\n", shortcut
->skip_to_level
);
248 sc_level
= level
+ ASSOC_ARRAY_LEVEL_STEP
;
249 BUG_ON(sc_level
> shortcut
->skip_to_level
);
252 /* Check the leaf against the shortcut's index key a word at a
253 * time, trimming the final word (the shortcut stores the index
254 * key completely from the root to the shortcut's target).
256 if ((sc_level
& ASSOC_ARRAY_KEY_CHUNK_MASK
) == 0)
257 segments
= ops
->get_key_chunk(index_key
, sc_level
);
259 sc_segments
= shortcut
->index_key
[sc_level
>> ASSOC_ARRAY_KEY_CHUNK_SHIFT
];
260 dissimilarity
= segments
^ sc_segments
;
262 if (round_up(sc_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
) > shortcut
->skip_to_level
) {
263 /* Trim segments that are beyond the shortcut */
264 int shift
= shortcut
->skip_to_level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
265 dissimilarity
&= ~(ULONG_MAX
<< shift
);
266 next_sc_level
= shortcut
->skip_to_level
;
268 next_sc_level
= sc_level
+ ASSOC_ARRAY_KEY_CHUNK_SIZE
;
269 next_sc_level
= round_down(next_sc_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
272 if (dissimilarity
!= 0) {
273 /* This shortcut points elsewhere */
274 result
->wrong_shortcut
.shortcut
= shortcut
;
275 result
->wrong_shortcut
.level
= level
;
276 result
->wrong_shortcut
.sc_level
= sc_level
;
277 result
->wrong_shortcut
.sc_segments
= sc_segments
;
278 result
->wrong_shortcut
.dissimilarity
= dissimilarity
;
279 return assoc_array_walk_found_wrong_shortcut
;
282 sc_level
= next_sc_level
;
283 } while (sc_level
< shortcut
->skip_to_level
);
285 /* The shortcut matches the leaf's index to this point. */
286 cursor
= READ_ONCE(shortcut
->next_node
); /* Address dependency. */
287 if (((level
^ sc_level
) & ~ASSOC_ARRAY_KEY_CHUNK_MASK
) != 0) {
297 * assoc_array_find - Find an object by index key
298 * @array: The associative array to search.
299 * @ops: The operations to use.
300 * @index_key: The key to the object.
302 * Find an object in an associative array by walking through the internal tree
303 * to the node that should contain the object and then searching the leaves
304 * there. NULL is returned if the requested object was not found in the array.
306 * The caller must hold the RCU read lock or better.
308 void *assoc_array_find(const struct assoc_array
*array
,
309 const struct assoc_array_ops
*ops
,
310 const void *index_key
)
312 struct assoc_array_walk_result result
;
313 const struct assoc_array_node
*node
;
314 const struct assoc_array_ptr
*ptr
;
318 if (assoc_array_walk(array
, ops
, index_key
, &result
) !=
319 assoc_array_walk_found_terminal_node
)
322 node
= result
.terminal_node
.node
;
324 /* If the target key is available to us, it's has to be pointed to by
327 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
328 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
329 if (ptr
&& assoc_array_ptr_is_leaf(ptr
)) {
330 /* We need a barrier between the read of the pointer
331 * and dereferencing the pointer - but only if we are
332 * actually going to dereference it.
334 leaf
= assoc_array_ptr_to_leaf(ptr
);
335 if (ops
->compare_object(leaf
, index_key
))
344 * Destructively iterate over an associative array. The caller must prevent
345 * other simultaneous accesses.
347 static void assoc_array_destroy_subtree(struct assoc_array_ptr
*root
,
348 const struct assoc_array_ops
*ops
)
350 struct assoc_array_shortcut
*shortcut
;
351 struct assoc_array_node
*node
;
352 struct assoc_array_ptr
*cursor
, *parent
= NULL
;
355 pr_devel("-->%s()\n", __func__
);
364 if (assoc_array_ptr_is_shortcut(cursor
)) {
365 /* Descend through a shortcut */
366 pr_devel("[%d] shortcut\n", slot
);
367 BUG_ON(!assoc_array_ptr_is_shortcut(cursor
));
368 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
369 BUG_ON(shortcut
->back_pointer
!= parent
);
370 BUG_ON(slot
!= -1 && shortcut
->parent_slot
!= slot
);
372 cursor
= shortcut
->next_node
;
374 BUG_ON(!assoc_array_ptr_is_node(cursor
));
377 pr_devel("[%d] node\n", slot
);
378 node
= assoc_array_ptr_to_node(cursor
);
379 BUG_ON(node
->back_pointer
!= parent
);
380 BUG_ON(slot
!= -1 && node
->parent_slot
!= slot
);
384 pr_devel("Node %p [back=%p]\n", node
, node
->back_pointer
);
385 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
386 struct assoc_array_ptr
*ptr
= node
->slots
[slot
];
389 if (assoc_array_ptr_is_meta(ptr
)) {
396 pr_devel("[%d] free leaf\n", slot
);
397 ops
->free_object(assoc_array_ptr_to_leaf(ptr
));
401 parent
= node
->back_pointer
;
402 slot
= node
->parent_slot
;
403 pr_devel("free node\n");
408 /* Move back up to the parent (may need to free a shortcut on
410 if (assoc_array_ptr_is_shortcut(parent
)) {
411 shortcut
= assoc_array_ptr_to_shortcut(parent
);
412 BUG_ON(shortcut
->next_node
!= cursor
);
414 parent
= shortcut
->back_pointer
;
415 slot
= shortcut
->parent_slot
;
416 pr_devel("free shortcut\n");
421 BUG_ON(!assoc_array_ptr_is_node(parent
));
424 /* Ascend to next slot in parent node */
425 pr_devel("ascend to %p[%d]\n", parent
, slot
);
427 node
= assoc_array_ptr_to_node(cursor
);
433 * assoc_array_destroy - Destroy an associative array
434 * @array: The array to destroy.
435 * @ops: The operations to use.
437 * Discard all metadata and free all objects in an associative array. The
438 * array will be empty and ready to use again upon completion. This function
441 * The caller must prevent all other accesses whilst this takes place as no
442 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
443 * accesses to continue. On the other hand, no memory allocation is required.
445 void assoc_array_destroy(struct assoc_array
*array
,
446 const struct assoc_array_ops
*ops
)
448 assoc_array_destroy_subtree(array
->root
, ops
);
453 * Handle insertion into an empty tree.
455 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit
*edit
)
457 struct assoc_array_node
*new_n0
;
459 pr_devel("-->%s()\n", __func__
);
461 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
465 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
466 edit
->leaf_p
= &new_n0
->slots
[0];
467 edit
->adjust_count_on
= new_n0
;
468 edit
->set
[0].ptr
= &edit
->array
->root
;
469 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
471 pr_devel("<--%s() = ok [no root]\n", __func__
);
476 * Handle insertion into a terminal node.
478 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit
*edit
,
479 const struct assoc_array_ops
*ops
,
480 const void *index_key
,
481 struct assoc_array_walk_result
*result
)
483 struct assoc_array_shortcut
*shortcut
, *new_s0
;
484 struct assoc_array_node
*node
, *new_n0
, *new_n1
, *side
;
485 struct assoc_array_ptr
*ptr
;
486 unsigned long dissimilarity
, base_seg
, blank
;
490 int slot
, next_slot
, free_slot
, i
, j
;
492 node
= result
->terminal_node
.node
;
493 level
= result
->terminal_node
.level
;
494 edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] = result
->terminal_node
.slot
;
496 pr_devel("-->%s()\n", __func__
);
498 /* We arrived at a node which doesn't have an onward node or shortcut
499 * pointer that we have to follow. This means that (a) the leaf we
500 * want must go here (either by insertion or replacement) or (b) we
501 * need to split this node and insert in one of the fragments.
505 /* Firstly, we have to check the leaves in this node to see if there's
506 * a matching one we should replace in place.
508 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
509 ptr
= node
->slots
[i
];
514 if (assoc_array_ptr_is_leaf(ptr
) &&
515 ops
->compare_object(assoc_array_ptr_to_leaf(ptr
),
517 pr_devel("replace in slot %d\n", i
);
518 edit
->leaf_p
= &node
->slots
[i
];
519 edit
->dead_leaf
= node
->slots
[i
];
520 pr_devel("<--%s() = ok [replace]\n", __func__
);
525 /* If there is a free slot in this node then we can just insert the
528 if (free_slot
>= 0) {
529 pr_devel("insert in free slot %d\n", free_slot
);
530 edit
->leaf_p
= &node
->slots
[free_slot
];
531 edit
->adjust_count_on
= node
;
532 pr_devel("<--%s() = ok [insert]\n", __func__
);
536 /* The node has no spare slots - so we're either going to have to split
537 * it or insert another node before it.
539 * Whatever, we're going to need at least two new nodes - so allocate
540 * those now. We may also need a new shortcut, but we deal with that
543 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
546 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
547 new_n1
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
550 edit
->new_meta
[1] = assoc_array_node_to_ptr(new_n1
);
552 /* We need to find out how similar the leaves are. */
553 pr_devel("no spare slots\n");
555 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
556 ptr
= node
->slots
[i
];
557 if (assoc_array_ptr_is_meta(ptr
)) {
558 edit
->segment_cache
[i
] = 0xff;
562 base_seg
= ops
->get_object_key_chunk(
563 assoc_array_ptr_to_leaf(ptr
), level
);
564 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
565 edit
->segment_cache
[i
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
569 pr_devel("have meta\n");
573 /* The node contains only leaves */
575 base_seg
= edit
->segment_cache
[0];
576 for (i
= 1; i
< ASSOC_ARRAY_FAN_OUT
; i
++)
577 dissimilarity
|= edit
->segment_cache
[i
] ^ base_seg
;
579 pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity
);
581 if ((dissimilarity
& ASSOC_ARRAY_FAN_MASK
) == 0) {
582 /* The old leaves all cluster in the same slot. We will need
583 * to insert a shortcut if the new node wants to cluster with them.
585 if ((edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] ^ base_seg
) == 0)
586 goto all_leaves_cluster_together
;
588 /* Otherwise all the old leaves cluster in the same slot, but
589 * the new leaf wants to go into a different slot - so we
590 * create a new node (n0) to hold the new leaf and a pointer to
591 * a new node (n1) holding all the old leaves.
593 * This can be done by falling through to the node splitting
596 pr_devel("present leaves cluster but not new leaf\n");
600 pr_devel("split node\n");
602 /* We need to split the current node. The node must contain anything
603 * from a single leaf (in the one leaf case, this leaf will cluster
604 * with the new leaf) and the rest meta-pointers, to all leaves, some
605 * of which may cluster.
607 * It won't contain the case in which all the current leaves plus the
608 * new leaves want to cluster in the same slot.
610 * We need to expel at least two leaves out of a set consisting of the
611 * leaves in the node and the new leaf. The current meta pointers can
612 * just be copied as they shouldn't cluster with any of the leaves.
614 * We need a new node (n0) to replace the current one and a new node to
615 * take the expelled nodes (n1).
617 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
618 new_n0
->back_pointer
= node
->back_pointer
;
619 new_n0
->parent_slot
= node
->parent_slot
;
620 new_n1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
621 new_n1
->parent_slot
= -1; /* Need to calculate this */
624 pr_devel("do_split_node\n");
626 new_n0
->nr_leaves_on_branch
= node
->nr_leaves_on_branch
;
627 new_n1
->nr_leaves_on_branch
= 0;
629 /* Begin by finding two matching leaves. There have to be at least two
630 * that match - even if there are meta pointers - because any leaf that
631 * would match a slot with a meta pointer in it must be somewhere
632 * behind that meta pointer and cannot be here. Further, given N
633 * remaining leaf slots, we now have N+1 leaves to go in them.
635 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
636 slot
= edit
->segment_cache
[i
];
638 for (j
= i
+ 1; j
< ASSOC_ARRAY_FAN_OUT
+ 1; j
++)
639 if (edit
->segment_cache
[j
] == slot
)
640 goto found_slot_for_multiple_occupancy
;
642 found_slot_for_multiple_occupancy
:
643 pr_devel("same slot: %x %x [%02x]\n", i
, j
, slot
);
644 BUG_ON(i
>= ASSOC_ARRAY_FAN_OUT
);
645 BUG_ON(j
>= ASSOC_ARRAY_FAN_OUT
+ 1);
646 BUG_ON(slot
>= ASSOC_ARRAY_FAN_OUT
);
648 new_n1
->parent_slot
= slot
;
650 /* Metadata pointers cannot change slot */
651 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++)
652 if (assoc_array_ptr_is_meta(node
->slots
[i
]))
653 new_n0
->slots
[i
] = node
->slots
[i
];
655 new_n0
->slots
[i
] = NULL
;
656 BUG_ON(new_n0
->slots
[slot
] != NULL
);
657 new_n0
->slots
[slot
] = assoc_array_node_to_ptr(new_n1
);
659 /* Filter the leaf pointers between the new nodes */
662 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
663 if (assoc_array_ptr_is_meta(node
->slots
[i
]))
665 if (edit
->segment_cache
[i
] == slot
) {
666 new_n1
->slots
[next_slot
++] = node
->slots
[i
];
667 new_n1
->nr_leaves_on_branch
++;
671 } while (new_n0
->slots
[free_slot
] != NULL
);
672 new_n0
->slots
[free_slot
] = node
->slots
[i
];
676 pr_devel("filtered: f=%x n=%x\n", free_slot
, next_slot
);
678 if (edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] != slot
) {
681 } while (new_n0
->slots
[free_slot
] != NULL
);
682 edit
->leaf_p
= &new_n0
->slots
[free_slot
];
683 edit
->adjust_count_on
= new_n0
;
685 edit
->leaf_p
= &new_n1
->slots
[next_slot
++];
686 edit
->adjust_count_on
= new_n1
;
689 BUG_ON(next_slot
<= 1);
691 edit
->set_backpointers_to
= assoc_array_node_to_ptr(new_n0
);
692 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
693 if (edit
->segment_cache
[i
] == 0xff) {
694 ptr
= node
->slots
[i
];
695 BUG_ON(assoc_array_ptr_is_leaf(ptr
));
696 if (assoc_array_ptr_is_node(ptr
)) {
697 side
= assoc_array_ptr_to_node(ptr
);
698 edit
->set_backpointers
[i
] = &side
->back_pointer
;
700 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
701 edit
->set_backpointers
[i
] = &shortcut
->back_pointer
;
706 ptr
= node
->back_pointer
;
708 edit
->set
[0].ptr
= &edit
->array
->root
;
709 else if (assoc_array_ptr_is_node(ptr
))
710 edit
->set
[0].ptr
= &assoc_array_ptr_to_node(ptr
)->slots
[node
->parent_slot
];
712 edit
->set
[0].ptr
= &assoc_array_ptr_to_shortcut(ptr
)->next_node
;
713 edit
->excised_meta
[0] = assoc_array_node_to_ptr(node
);
714 pr_devel("<--%s() = ok [split node]\n", __func__
);
717 all_leaves_cluster_together
:
718 /* All the leaves, new and old, want to cluster together in this node
719 * in the same slot, so we have to replace this node with a shortcut to
720 * skip over the identical parts of the key and then place a pair of
721 * nodes, one inside the other, at the end of the shortcut and
722 * distribute the keys between them.
724 * Firstly we need to work out where the leaves start diverging as a
725 * bit position into their keys so that we know how big the shortcut
728 * We only need to make a single pass of N of the N+1 leaves because if
729 * any keys differ between themselves at bit X then at least one of
730 * them must also differ with the base key at bit X or before.
732 pr_devel("all leaves cluster together\n");
734 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
735 int x
= ops
->diff_objects(assoc_array_ptr_to_leaf(node
->slots
[i
]),
742 BUG_ON(diff
== INT_MAX
);
743 BUG_ON(diff
< level
+ ASSOC_ARRAY_LEVEL_STEP
);
745 keylen
= round_up(diff
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
746 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
748 new_s0
= kzalloc(sizeof(struct assoc_array_shortcut
) +
749 keylen
* sizeof(unsigned long), GFP_KERNEL
);
752 edit
->new_meta
[2] = assoc_array_shortcut_to_ptr(new_s0
);
754 edit
->set
[0].to
= assoc_array_shortcut_to_ptr(new_s0
);
755 new_s0
->back_pointer
= node
->back_pointer
;
756 new_s0
->parent_slot
= node
->parent_slot
;
757 new_s0
->next_node
= assoc_array_node_to_ptr(new_n0
);
758 new_n0
->back_pointer
= assoc_array_shortcut_to_ptr(new_s0
);
759 new_n0
->parent_slot
= 0;
760 new_n1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
761 new_n1
->parent_slot
= -1; /* Need to calculate this */
763 new_s0
->skip_to_level
= level
= diff
& ~ASSOC_ARRAY_LEVEL_STEP_MASK
;
764 pr_devel("skip_to_level = %d [diff %d]\n", level
, diff
);
767 for (i
= 0; i
< keylen
; i
++)
768 new_s0
->index_key
[i
] =
769 ops
->get_key_chunk(index_key
, i
* ASSOC_ARRAY_KEY_CHUNK_SIZE
);
771 blank
= ULONG_MAX
<< (level
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
772 pr_devel("blank off [%zu] %d: %lx\n", keylen
- 1, level
, blank
);
773 new_s0
->index_key
[keylen
- 1] &= ~blank
;
775 /* This now reduces to a node splitting exercise for which we'll need
776 * to regenerate the disparity table.
778 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
779 ptr
= node
->slots
[i
];
780 base_seg
= ops
->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr
),
782 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
783 edit
->segment_cache
[i
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
786 base_seg
= ops
->get_key_chunk(index_key
, level
);
787 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
788 edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
793 * Handle insertion into the middle of a shortcut.
795 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit
*edit
,
796 const struct assoc_array_ops
*ops
,
797 struct assoc_array_walk_result
*result
)
799 struct assoc_array_shortcut
*shortcut
, *new_s0
, *new_s1
;
800 struct assoc_array_node
*node
, *new_n0
, *side
;
801 unsigned long sc_segments
, dissimilarity
, blank
;
803 int level
, sc_level
, diff
;
806 shortcut
= result
->wrong_shortcut
.shortcut
;
807 level
= result
->wrong_shortcut
.level
;
808 sc_level
= result
->wrong_shortcut
.sc_level
;
809 sc_segments
= result
->wrong_shortcut
.sc_segments
;
810 dissimilarity
= result
->wrong_shortcut
.dissimilarity
;
812 pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
813 __func__
, level
, dissimilarity
, sc_level
);
815 /* We need to split a shortcut and insert a node between the two
816 * pieces. Zero-length pieces will be dispensed with entirely.
818 * First of all, we need to find out in which level the first
821 diff
= __ffs(dissimilarity
);
822 diff
&= ~ASSOC_ARRAY_LEVEL_STEP_MASK
;
823 diff
+= sc_level
& ~ASSOC_ARRAY_KEY_CHUNK_MASK
;
824 pr_devel("diff=%d\n", diff
);
826 if (!shortcut
->back_pointer
) {
827 edit
->set
[0].ptr
= &edit
->array
->root
;
828 } else if (assoc_array_ptr_is_node(shortcut
->back_pointer
)) {
829 node
= assoc_array_ptr_to_node(shortcut
->back_pointer
);
830 edit
->set
[0].ptr
= &node
->slots
[shortcut
->parent_slot
];
835 edit
->excised_meta
[0] = assoc_array_shortcut_to_ptr(shortcut
);
837 /* Create a new node now since we're going to need it anyway */
838 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
841 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
842 edit
->adjust_count_on
= new_n0
;
844 /* Insert a new shortcut before the new node if this segment isn't of
845 * zero length - otherwise we just connect the new node directly to the
848 level
+= ASSOC_ARRAY_LEVEL_STEP
;
850 pr_devel("pre-shortcut %d...%d\n", level
, diff
);
851 keylen
= round_up(diff
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
852 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
854 new_s0
= kzalloc(sizeof(struct assoc_array_shortcut
) +
855 keylen
* sizeof(unsigned long), GFP_KERNEL
);
858 edit
->new_meta
[1] = assoc_array_shortcut_to_ptr(new_s0
);
859 edit
->set
[0].to
= assoc_array_shortcut_to_ptr(new_s0
);
860 new_s0
->back_pointer
= shortcut
->back_pointer
;
861 new_s0
->parent_slot
= shortcut
->parent_slot
;
862 new_s0
->next_node
= assoc_array_node_to_ptr(new_n0
);
863 new_s0
->skip_to_level
= diff
;
865 new_n0
->back_pointer
= assoc_array_shortcut_to_ptr(new_s0
);
866 new_n0
->parent_slot
= 0;
868 memcpy(new_s0
->index_key
, shortcut
->index_key
,
869 keylen
* sizeof(unsigned long));
871 blank
= ULONG_MAX
<< (diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
872 pr_devel("blank off [%zu] %d: %lx\n", keylen
- 1, diff
, blank
);
873 new_s0
->index_key
[keylen
- 1] &= ~blank
;
875 pr_devel("no pre-shortcut\n");
876 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
877 new_n0
->back_pointer
= shortcut
->back_pointer
;
878 new_n0
->parent_slot
= shortcut
->parent_slot
;
881 side
= assoc_array_ptr_to_node(shortcut
->next_node
);
882 new_n0
->nr_leaves_on_branch
= side
->nr_leaves_on_branch
;
884 /* We need to know which slot in the new node is going to take a
887 sc_slot
= sc_segments
>> (diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
888 sc_slot
&= ASSOC_ARRAY_FAN_MASK
;
890 pr_devel("new slot %lx >> %d -> %d\n",
891 sc_segments
, diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
, sc_slot
);
893 /* Determine whether we need to follow the new node with a replacement
894 * for the current shortcut. We could in theory reuse the current
895 * shortcut if its parent slot number doesn't change - but that's a
896 * 1-in-16 chance so not worth expending the code upon.
898 level
= diff
+ ASSOC_ARRAY_LEVEL_STEP
;
899 if (level
< shortcut
->skip_to_level
) {
900 pr_devel("post-shortcut %d...%d\n", level
, shortcut
->skip_to_level
);
901 keylen
= round_up(shortcut
->skip_to_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
902 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
904 new_s1
= kzalloc(sizeof(struct assoc_array_shortcut
) +
905 keylen
* sizeof(unsigned long), GFP_KERNEL
);
908 edit
->new_meta
[2] = assoc_array_shortcut_to_ptr(new_s1
);
910 new_s1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
911 new_s1
->parent_slot
= sc_slot
;
912 new_s1
->next_node
= shortcut
->next_node
;
913 new_s1
->skip_to_level
= shortcut
->skip_to_level
;
915 new_n0
->slots
[sc_slot
] = assoc_array_shortcut_to_ptr(new_s1
);
917 memcpy(new_s1
->index_key
, shortcut
->index_key
,
918 keylen
* sizeof(unsigned long));
920 edit
->set
[1].ptr
= &side
->back_pointer
;
921 edit
->set
[1].to
= assoc_array_shortcut_to_ptr(new_s1
);
923 pr_devel("no post-shortcut\n");
925 /* We don't have to replace the pointed-to node as long as we
926 * use memory barriers to make sure the parent slot number is
927 * changed before the back pointer (the parent slot number is
928 * irrelevant to the old parent shortcut).
930 new_n0
->slots
[sc_slot
] = shortcut
->next_node
;
931 edit
->set_parent_slot
[0].p
= &side
->parent_slot
;
932 edit
->set_parent_slot
[0].to
= sc_slot
;
933 edit
->set
[1].ptr
= &side
->back_pointer
;
934 edit
->set
[1].to
= assoc_array_node_to_ptr(new_n0
);
937 /* Install the new leaf in a spare slot in the new node. */
939 edit
->leaf_p
= &new_n0
->slots
[1];
941 edit
->leaf_p
= &new_n0
->slots
[0];
943 pr_devel("<--%s() = ok [split shortcut]\n", __func__
);
948 * assoc_array_insert - Script insertion of an object into an associative array
949 * @array: The array to insert into.
950 * @ops: The operations to use.
951 * @index_key: The key to insert at.
952 * @object: The object to insert.
954 * Precalculate and preallocate a script for the insertion or replacement of an
955 * object in an associative array. This results in an edit script that can
956 * either be applied or cancelled.
958 * The function returns a pointer to an edit script or -ENOMEM.
960 * The caller should lock against other modifications and must continue to hold
961 * the lock until assoc_array_apply_edit() has been called.
963 * Accesses to the tree may take place concurrently with this function,
964 * provided they hold the RCU read lock.
966 struct assoc_array_edit
*assoc_array_insert(struct assoc_array
*array
,
967 const struct assoc_array_ops
*ops
,
968 const void *index_key
,
971 struct assoc_array_walk_result result
;
972 struct assoc_array_edit
*edit
;
974 pr_devel("-->%s()\n", __func__
);
976 /* The leaf pointer we're given must not have the bottom bit set as we
977 * use those for type-marking the pointer. NULL pointers are also not
978 * allowed as they indicate an empty slot but we have to allow them
979 * here as they can be updated later.
981 BUG_ON(assoc_array_ptr_is_meta(object
));
983 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
985 return ERR_PTR(-ENOMEM
);
988 edit
->leaf
= assoc_array_leaf_to_ptr(object
);
989 edit
->adjust_count_by
= 1;
991 switch (assoc_array_walk(array
, ops
, index_key
, &result
)) {
992 case assoc_array_walk_tree_empty
:
993 /* Allocate a root node if there isn't one yet */
994 if (!assoc_array_insert_in_empty_tree(edit
))
998 case assoc_array_walk_found_terminal_node
:
999 /* We found a node that doesn't have a node/shortcut pointer in
1000 * the slot corresponding to the index key that we have to
1003 if (!assoc_array_insert_into_terminal_node(edit
, ops
, index_key
,
1008 case assoc_array_walk_found_wrong_shortcut
:
1009 /* We found a shortcut that didn't match our key in a slot we
1012 if (!assoc_array_insert_mid_shortcut(edit
, ops
, &result
))
1018 /* Clean up after an out of memory error */
1019 pr_devel("enomem\n");
1020 assoc_array_cancel_edit(edit
);
1021 return ERR_PTR(-ENOMEM
);
1025 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1026 * @edit: The edit script to modify.
1027 * @object: The object pointer to set.
1029 * Change the object to be inserted in an edit script. The object pointed to
1030 * by the old object is not freed. This must be done prior to applying the
1033 void assoc_array_insert_set_object(struct assoc_array_edit
*edit
, void *object
)
1036 edit
->leaf
= assoc_array_leaf_to_ptr(object
);
1039 struct assoc_array_delete_collapse_context
{
1040 struct assoc_array_node
*node
;
1041 const void *skip_leaf
;
1046 * Subtree collapse to node iterator.
1048 static int assoc_array_delete_collapse_iterator(const void *leaf
,
1049 void *iterator_data
)
1051 struct assoc_array_delete_collapse_context
*collapse
= iterator_data
;
1053 if (leaf
== collapse
->skip_leaf
)
1056 BUG_ON(collapse
->slot
>= ASSOC_ARRAY_FAN_OUT
);
1058 collapse
->node
->slots
[collapse
->slot
++] = assoc_array_leaf_to_ptr(leaf
);
1063 * assoc_array_delete - Script deletion of an object from an associative array
1064 * @array: The array to search.
1065 * @ops: The operations to use.
1066 * @index_key: The key to the object.
1068 * Precalculate and preallocate a script for the deletion of an object from an
1069 * associative array. This results in an edit script that can either be
1070 * applied or cancelled.
1072 * The function returns a pointer to an edit script if the object was found,
1073 * NULL if the object was not found or -ENOMEM.
1075 * The caller should lock against other modifications and must continue to hold
1076 * the lock until assoc_array_apply_edit() has been called.
1078 * Accesses to the tree may take place concurrently with this function,
1079 * provided they hold the RCU read lock.
1081 struct assoc_array_edit
*assoc_array_delete(struct assoc_array
*array
,
1082 const struct assoc_array_ops
*ops
,
1083 const void *index_key
)
1085 struct assoc_array_delete_collapse_context collapse
;
1086 struct assoc_array_walk_result result
;
1087 struct assoc_array_node
*node
, *new_n0
;
1088 struct assoc_array_edit
*edit
;
1089 struct assoc_array_ptr
*ptr
;
1093 pr_devel("-->%s()\n", __func__
);
1095 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1097 return ERR_PTR(-ENOMEM
);
1098 edit
->array
= array
;
1100 edit
->adjust_count_by
= -1;
1102 switch (assoc_array_walk(array
, ops
, index_key
, &result
)) {
1103 case assoc_array_walk_found_terminal_node
:
1104 /* We found a node that should contain the leaf we've been
1105 * asked to remove - *if* it's in the tree.
1107 pr_devel("terminal_node\n");
1108 node
= result
.terminal_node
.node
;
1110 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1111 ptr
= node
->slots
[slot
];
1113 assoc_array_ptr_is_leaf(ptr
) &&
1114 ops
->compare_object(assoc_array_ptr_to_leaf(ptr
),
1118 case assoc_array_walk_tree_empty
:
1119 case assoc_array_walk_found_wrong_shortcut
:
1121 assoc_array_cancel_edit(edit
);
1122 pr_devel("not found\n");
1127 BUG_ON(array
->nr_leaves_on_tree
<= 0);
1129 /* In the simplest form of deletion we just clear the slot and release
1130 * the leaf after a suitable interval.
1132 edit
->dead_leaf
= node
->slots
[slot
];
1133 edit
->set
[0].ptr
= &node
->slots
[slot
];
1134 edit
->set
[0].to
= NULL
;
1135 edit
->adjust_count_on
= node
;
1137 /* If that concludes erasure of the last leaf, then delete the entire
1140 if (array
->nr_leaves_on_tree
== 1) {
1141 edit
->set
[1].ptr
= &array
->root
;
1142 edit
->set
[1].to
= NULL
;
1143 edit
->adjust_count_on
= NULL
;
1144 edit
->excised_subtree
= array
->root
;
1145 pr_devel("all gone\n");
1149 /* However, we'd also like to clear up some metadata blocks if we
1152 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1153 * leaves in it, then attempt to collapse it - and attempt to
1154 * recursively collapse up the tree.
1156 * We could also try and collapse in partially filled subtrees to take
1157 * up space in this node.
1159 if (node
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
+ 1) {
1160 struct assoc_array_node
*parent
, *grandparent
;
1161 struct assoc_array_ptr
*ptr
;
1163 /* First of all, we need to know if this node has metadata so
1164 * that we don't try collapsing if all the leaves are already
1168 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
1169 ptr
= node
->slots
[i
];
1170 if (assoc_array_ptr_is_meta(ptr
)) {
1176 pr_devel("leaves: %ld [m=%d]\n",
1177 node
->nr_leaves_on_branch
- 1, has_meta
);
1179 /* Look further up the tree to see if we can collapse this node
1180 * into a more proximal node too.
1184 pr_devel("collapse subtree: %ld\n", parent
->nr_leaves_on_branch
);
1186 ptr
= parent
->back_pointer
;
1189 if (assoc_array_ptr_is_shortcut(ptr
)) {
1190 struct assoc_array_shortcut
*s
= assoc_array_ptr_to_shortcut(ptr
);
1191 ptr
= s
->back_pointer
;
1196 grandparent
= assoc_array_ptr_to_node(ptr
);
1197 if (grandparent
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
+ 1) {
1198 parent
= grandparent
;
1203 /* There's no point collapsing if the original node has no meta
1204 * pointers to discard and if we didn't merge into one of that
1207 if (has_meta
|| parent
!= node
) {
1210 /* Create a new node to collapse into */
1211 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
1214 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
1216 new_n0
->back_pointer
= node
->back_pointer
;
1217 new_n0
->parent_slot
= node
->parent_slot
;
1218 new_n0
->nr_leaves_on_branch
= node
->nr_leaves_on_branch
;
1219 edit
->adjust_count_on
= new_n0
;
1221 collapse
.node
= new_n0
;
1222 collapse
.skip_leaf
= assoc_array_ptr_to_leaf(edit
->dead_leaf
);
1224 assoc_array_subtree_iterate(assoc_array_node_to_ptr(node
),
1226 assoc_array_delete_collapse_iterator
,
1228 pr_devel("collapsed %d,%lu\n", collapse
.slot
, new_n0
->nr_leaves_on_branch
);
1229 BUG_ON(collapse
.slot
!= new_n0
->nr_leaves_on_branch
- 1);
1231 if (!node
->back_pointer
) {
1232 edit
->set
[1].ptr
= &array
->root
;
1233 } else if (assoc_array_ptr_is_leaf(node
->back_pointer
)) {
1235 } else if (assoc_array_ptr_is_node(node
->back_pointer
)) {
1236 struct assoc_array_node
*p
=
1237 assoc_array_ptr_to_node(node
->back_pointer
);
1238 edit
->set
[1].ptr
= &p
->slots
[node
->parent_slot
];
1239 } else if (assoc_array_ptr_is_shortcut(node
->back_pointer
)) {
1240 struct assoc_array_shortcut
*s
=
1241 assoc_array_ptr_to_shortcut(node
->back_pointer
);
1242 edit
->set
[1].ptr
= &s
->next_node
;
1244 edit
->set
[1].to
= assoc_array_node_to_ptr(new_n0
);
1245 edit
->excised_subtree
= assoc_array_node_to_ptr(node
);
1252 /* Clean up after an out of memory error */
1253 pr_devel("enomem\n");
1254 assoc_array_cancel_edit(edit
);
1255 return ERR_PTR(-ENOMEM
);
1259 * assoc_array_clear - Script deletion of all objects from an associative array
1260 * @array: The array to clear.
1261 * @ops: The operations to use.
1263 * Precalculate and preallocate a script for the deletion of all the objects
1264 * from an associative array. This results in an edit script that can either
1265 * be applied or cancelled.
1267 * The function returns a pointer to an edit script if there are objects to be
1268 * deleted, NULL if there are no objects in the array or -ENOMEM.
1270 * The caller should lock against other modifications and must continue to hold
1271 * the lock until assoc_array_apply_edit() has been called.
1273 * Accesses to the tree may take place concurrently with this function,
1274 * provided they hold the RCU read lock.
1276 struct assoc_array_edit
*assoc_array_clear(struct assoc_array
*array
,
1277 const struct assoc_array_ops
*ops
)
1279 struct assoc_array_edit
*edit
;
1281 pr_devel("-->%s()\n", __func__
);
1286 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1288 return ERR_PTR(-ENOMEM
);
1289 edit
->array
= array
;
1291 edit
->set
[1].ptr
= &array
->root
;
1292 edit
->set
[1].to
= NULL
;
1293 edit
->excised_subtree
= array
->root
;
1294 edit
->ops_for_excised_subtree
= ops
;
1295 pr_devel("all gone\n");
1300 * Handle the deferred destruction after an applied edit.
1302 static void assoc_array_rcu_cleanup(struct rcu_head
*head
)
1304 struct assoc_array_edit
*edit
=
1305 container_of(head
, struct assoc_array_edit
, rcu
);
1308 pr_devel("-->%s()\n", __func__
);
1310 if (edit
->dead_leaf
)
1311 edit
->ops
->free_object(assoc_array_ptr_to_leaf(edit
->dead_leaf
));
1312 for (i
= 0; i
< ARRAY_SIZE(edit
->excised_meta
); i
++)
1313 if (edit
->excised_meta
[i
])
1314 kfree(assoc_array_ptr_to_node(edit
->excised_meta
[i
]));
1316 if (edit
->excised_subtree
) {
1317 BUG_ON(assoc_array_ptr_is_leaf(edit
->excised_subtree
));
1318 if (assoc_array_ptr_is_node(edit
->excised_subtree
)) {
1319 struct assoc_array_node
*n
=
1320 assoc_array_ptr_to_node(edit
->excised_subtree
);
1321 n
->back_pointer
= NULL
;
1323 struct assoc_array_shortcut
*s
=
1324 assoc_array_ptr_to_shortcut(edit
->excised_subtree
);
1325 s
->back_pointer
= NULL
;
1327 assoc_array_destroy_subtree(edit
->excised_subtree
,
1328 edit
->ops_for_excised_subtree
);
1335 * assoc_array_apply_edit - Apply an edit script to an associative array
1336 * @edit: The script to apply.
1338 * Apply an edit script to an associative array to effect an insertion,
1339 * deletion or clearance. As the edit script includes preallocated memory,
1340 * this is guaranteed not to fail.
1342 * The edit script, dead objects and dead metadata will be scheduled for
1343 * destruction after an RCU grace period to permit those doing read-only
1344 * accesses on the array to continue to do so under the RCU read lock whilst
1345 * the edit is taking place.
1347 void assoc_array_apply_edit(struct assoc_array_edit
*edit
)
1349 struct assoc_array_shortcut
*shortcut
;
1350 struct assoc_array_node
*node
;
1351 struct assoc_array_ptr
*ptr
;
1354 pr_devel("-->%s()\n", __func__
);
1358 *edit
->leaf_p
= edit
->leaf
;
1361 for (i
= 0; i
< ARRAY_SIZE(edit
->set_parent_slot
); i
++)
1362 if (edit
->set_parent_slot
[i
].p
)
1363 *edit
->set_parent_slot
[i
].p
= edit
->set_parent_slot
[i
].to
;
1366 for (i
= 0; i
< ARRAY_SIZE(edit
->set_backpointers
); i
++)
1367 if (edit
->set_backpointers
[i
])
1368 *edit
->set_backpointers
[i
] = edit
->set_backpointers_to
;
1371 for (i
= 0; i
< ARRAY_SIZE(edit
->set
); i
++)
1372 if (edit
->set
[i
].ptr
)
1373 *edit
->set
[i
].ptr
= edit
->set
[i
].to
;
1375 if (edit
->array
->root
== NULL
) {
1376 edit
->array
->nr_leaves_on_tree
= 0;
1377 } else if (edit
->adjust_count_on
) {
1378 node
= edit
->adjust_count_on
;
1380 node
->nr_leaves_on_branch
+= edit
->adjust_count_by
;
1382 ptr
= node
->back_pointer
;
1385 if (assoc_array_ptr_is_shortcut(ptr
)) {
1386 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
1387 ptr
= shortcut
->back_pointer
;
1391 BUG_ON(!assoc_array_ptr_is_node(ptr
));
1392 node
= assoc_array_ptr_to_node(ptr
);
1395 edit
->array
->nr_leaves_on_tree
+= edit
->adjust_count_by
;
1398 call_rcu(&edit
->rcu
, assoc_array_rcu_cleanup
);
1402 * assoc_array_cancel_edit - Discard an edit script.
1403 * @edit: The script to discard.
1405 * Free an edit script and all the preallocated data it holds without making
1406 * any changes to the associative array it was intended for.
1408 * NOTE! In the case of an insertion script, this does _not_ release the leaf
1409 * that was to be inserted. That is left to the caller.
1411 void assoc_array_cancel_edit(struct assoc_array_edit
*edit
)
1413 struct assoc_array_ptr
*ptr
;
1416 pr_devel("-->%s()\n", __func__
);
1418 /* Clean up after an out of memory error */
1419 for (i
= 0; i
< ARRAY_SIZE(edit
->new_meta
); i
++) {
1420 ptr
= edit
->new_meta
[i
];
1422 if (assoc_array_ptr_is_node(ptr
))
1423 kfree(assoc_array_ptr_to_node(ptr
));
1425 kfree(assoc_array_ptr_to_shortcut(ptr
));
1432 * assoc_array_gc - Garbage collect an associative array.
1433 * @array: The array to clean.
1434 * @ops: The operations to use.
1435 * @iterator: A callback function to pass judgement on each object.
1436 * @iterator_data: Private data for the callback function.
1438 * Collect garbage from an associative array and pack down the internal tree to
1441 * The iterator function is asked to pass judgement upon each object in the
1442 * array. If it returns false, the object is discard and if it returns true,
1443 * the object is kept. If it returns true, it must increment the object's
1444 * usage count (or whatever it needs to do to retain it) before returning.
1446 * This function returns 0 if successful or -ENOMEM if out of memory. In the
1447 * latter case, the array is not changed.
1449 * The caller should lock against other modifications and must continue to hold
1450 * the lock until assoc_array_apply_edit() has been called.
1452 * Accesses to the tree may take place concurrently with this function,
1453 * provided they hold the RCU read lock.
1455 int assoc_array_gc(struct assoc_array
*array
,
1456 const struct assoc_array_ops
*ops
,
1457 bool (*iterator
)(void *object
, void *iterator_data
),
1458 void *iterator_data
)
1460 struct assoc_array_shortcut
*shortcut
, *new_s
;
1461 struct assoc_array_node
*node
, *new_n
;
1462 struct assoc_array_edit
*edit
;
1463 struct assoc_array_ptr
*cursor
, *ptr
;
1464 struct assoc_array_ptr
*new_root
, *new_parent
, **new_ptr_pp
;
1465 unsigned long nr_leaves_on_tree
;
1466 int keylen
, slot
, nr_free
, next_slot
, i
;
1468 pr_devel("-->%s()\n", __func__
);
1473 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1476 edit
->array
= array
;
1478 edit
->ops_for_excised_subtree
= ops
;
1479 edit
->set
[0].ptr
= &array
->root
;
1480 edit
->excised_subtree
= array
->root
;
1482 new_root
= new_parent
= NULL
;
1483 new_ptr_pp
= &new_root
;
1484 cursor
= array
->root
;
1487 /* If this point is a shortcut, then we need to duplicate it and
1488 * advance the target cursor.
1490 if (assoc_array_ptr_is_shortcut(cursor
)) {
1491 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
1492 keylen
= round_up(shortcut
->skip_to_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
1493 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
1494 new_s
= kmalloc(sizeof(struct assoc_array_shortcut
) +
1495 keylen
* sizeof(unsigned long), GFP_KERNEL
);
1498 pr_devel("dup shortcut %p -> %p\n", shortcut
, new_s
);
1499 memcpy(new_s
, shortcut
, (sizeof(struct assoc_array_shortcut
) +
1500 keylen
* sizeof(unsigned long)));
1501 new_s
->back_pointer
= new_parent
;
1502 new_s
->parent_slot
= shortcut
->parent_slot
;
1503 *new_ptr_pp
= new_parent
= assoc_array_shortcut_to_ptr(new_s
);
1504 new_ptr_pp
= &new_s
->next_node
;
1505 cursor
= shortcut
->next_node
;
1508 /* Duplicate the node at this position */
1509 node
= assoc_array_ptr_to_node(cursor
);
1510 new_n
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
1513 pr_devel("dup node %p -> %p\n", node
, new_n
);
1514 new_n
->back_pointer
= new_parent
;
1515 new_n
->parent_slot
= node
->parent_slot
;
1516 *new_ptr_pp
= new_parent
= assoc_array_node_to_ptr(new_n
);
1521 /* Filter across any leaves and gc any subtrees */
1522 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1523 ptr
= node
->slots
[slot
];
1527 if (assoc_array_ptr_is_leaf(ptr
)) {
1528 if (iterator(assoc_array_ptr_to_leaf(ptr
),
1530 /* The iterator will have done any reference
1531 * counting on the object for us.
1533 new_n
->slots
[slot
] = ptr
;
1537 new_ptr_pp
= &new_n
->slots
[slot
];
1542 pr_devel("-- compress node %p --\n", new_n
);
1544 /* Count up the number of empty slots in this node and work out the
1545 * subtree leaf count.
1547 new_n
->nr_leaves_on_branch
= 0;
1549 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1550 ptr
= new_n
->slots
[slot
];
1553 else if (assoc_array_ptr_is_leaf(ptr
))
1554 new_n
->nr_leaves_on_branch
++;
1556 pr_devel("free=%d, leaves=%lu\n", nr_free
, new_n
->nr_leaves_on_branch
);
1558 /* See what we can fold in */
1560 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1561 struct assoc_array_shortcut
*s
;
1562 struct assoc_array_node
*child
;
1564 ptr
= new_n
->slots
[slot
];
1565 if (!ptr
|| assoc_array_ptr_is_leaf(ptr
))
1569 if (assoc_array_ptr_is_shortcut(ptr
)) {
1570 s
= assoc_array_ptr_to_shortcut(ptr
);
1574 child
= assoc_array_ptr_to_node(ptr
);
1575 new_n
->nr_leaves_on_branch
+= child
->nr_leaves_on_branch
;
1577 if (child
->nr_leaves_on_branch
<= nr_free
+ 1) {
1578 /* Fold the child node into this one */
1579 pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1580 slot
, child
->nr_leaves_on_branch
, nr_free
+ 1,
1583 /* We would already have reaped an intervening shortcut
1584 * on the way back up the tree.
1588 new_n
->slots
[slot
] = NULL
;
1590 if (slot
< next_slot
)
1592 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
1593 struct assoc_array_ptr
*p
= child
->slots
[i
];
1596 BUG_ON(assoc_array_ptr_is_meta(p
));
1597 while (new_n
->slots
[next_slot
])
1599 BUG_ON(next_slot
>= ASSOC_ARRAY_FAN_OUT
);
1600 new_n
->slots
[next_slot
++] = p
;
1605 pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1606 slot
, child
->nr_leaves_on_branch
, nr_free
+ 1,
1611 pr_devel("after: %lu\n", new_n
->nr_leaves_on_branch
);
1613 nr_leaves_on_tree
= new_n
->nr_leaves_on_branch
;
1615 /* Excise this node if it is singly occupied by a shortcut */
1616 if (nr_free
== ASSOC_ARRAY_FAN_OUT
- 1) {
1617 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++)
1618 if ((ptr
= new_n
->slots
[slot
]))
1621 if (assoc_array_ptr_is_meta(ptr
) &&
1622 assoc_array_ptr_is_shortcut(ptr
)) {
1623 pr_devel("excise node %p with 1 shortcut\n", new_n
);
1624 new_s
= assoc_array_ptr_to_shortcut(ptr
);
1625 new_parent
= new_n
->back_pointer
;
1626 slot
= new_n
->parent_slot
;
1629 new_s
->back_pointer
= NULL
;
1630 new_s
->parent_slot
= 0;
1635 if (assoc_array_ptr_is_shortcut(new_parent
)) {
1636 /* We can discard any preceding shortcut also */
1637 struct assoc_array_shortcut
*s
=
1638 assoc_array_ptr_to_shortcut(new_parent
);
1640 pr_devel("excise preceding shortcut\n");
1642 new_parent
= new_s
->back_pointer
= s
->back_pointer
;
1643 slot
= new_s
->parent_slot
= s
->parent_slot
;
1646 new_s
->back_pointer
= NULL
;
1647 new_s
->parent_slot
= 0;
1653 new_s
->back_pointer
= new_parent
;
1654 new_s
->parent_slot
= slot
;
1655 new_n
= assoc_array_ptr_to_node(new_parent
);
1656 new_n
->slots
[slot
] = ptr
;
1657 goto ascend_old_tree
;
1661 /* Excise any shortcuts we might encounter that point to nodes that
1662 * only contain leaves.
1664 ptr
= new_n
->back_pointer
;
1668 if (assoc_array_ptr_is_shortcut(ptr
)) {
1669 new_s
= assoc_array_ptr_to_shortcut(ptr
);
1670 new_parent
= new_s
->back_pointer
;
1671 slot
= new_s
->parent_slot
;
1673 if (new_n
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
) {
1674 struct assoc_array_node
*n
;
1676 pr_devel("excise shortcut\n");
1677 new_n
->back_pointer
= new_parent
;
1678 new_n
->parent_slot
= slot
;
1681 new_root
= assoc_array_node_to_ptr(new_n
);
1685 n
= assoc_array_ptr_to_node(new_parent
);
1686 n
->slots
[slot
] = assoc_array_node_to_ptr(new_n
);
1691 new_n
= assoc_array_ptr_to_node(new_parent
);
1694 ptr
= node
->back_pointer
;
1695 if (assoc_array_ptr_is_shortcut(ptr
)) {
1696 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
1697 slot
= shortcut
->parent_slot
;
1698 cursor
= shortcut
->back_pointer
;
1702 slot
= node
->parent_slot
;
1706 node
= assoc_array_ptr_to_node(cursor
);
1711 edit
->set
[0].to
= new_root
;
1712 assoc_array_apply_edit(edit
);
1713 array
->nr_leaves_on_tree
= nr_leaves_on_tree
;
1717 pr_devel("enomem\n");
1718 assoc_array_destroy_subtree(new_root
, edit
->ops
);