ext4: teach ext4_ext_map_blocks() about the bigalloc feature
[linux-2.6/btrfs-unstable.git] / fs / ext4 / extents.c
blobbd42ab29efec829a03d299e77606674990d5b613
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 static int ext4_split_extent(handle_t *handle,
50 struct inode *inode,
51 struct ext4_ext_path *path,
52 struct ext4_map_blocks *map,
53 int split_flag,
54 int flags);
56 static int ext4_ext_truncate_extend_restart(handle_t *handle,
57 struct inode *inode,
58 int needed)
60 int err;
62 if (!ext4_handle_valid(handle))
63 return 0;
64 if (handle->h_buffer_credits > needed)
65 return 0;
66 err = ext4_journal_extend(handle, needed);
67 if (err <= 0)
68 return err;
69 err = ext4_truncate_restart_trans(handle, inode, needed);
70 if (err == 0)
71 err = -EAGAIN;
73 return err;
77 * could return:
78 * - EROFS
79 * - ENOMEM
81 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
82 struct ext4_ext_path *path)
84 if (path->p_bh) {
85 /* path points to block */
86 return ext4_journal_get_write_access(handle, path->p_bh);
88 /* path points to leaf/index in inode body */
89 /* we use in-core data, no need to protect them */
90 return 0;
94 * could return:
95 * - EROFS
96 * - ENOMEM
97 * - EIO
99 #define ext4_ext_dirty(handle, inode, path) \
100 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
101 static int __ext4_ext_dirty(const char *where, unsigned int line,
102 handle_t *handle, struct inode *inode,
103 struct ext4_ext_path *path)
105 int err;
106 if (path->p_bh) {
107 /* path points to block */
108 err = __ext4_handle_dirty_metadata(where, line, handle,
109 inode, path->p_bh);
110 } else {
111 /* path points to leaf/index in inode body */
112 err = ext4_mark_inode_dirty(handle, inode);
114 return err;
117 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
118 struct ext4_ext_path *path,
119 ext4_lblk_t block)
121 int depth;
123 if (path) {
124 struct ext4_extent *ex;
125 depth = path->p_depth;
128 * Try to predict block placement assuming that we are
129 * filling in a file which will eventually be
130 * non-sparse --- i.e., in the case of libbfd writing
131 * an ELF object sections out-of-order but in a way
132 * the eventually results in a contiguous object or
133 * executable file, or some database extending a table
134 * space file. However, this is actually somewhat
135 * non-ideal if we are writing a sparse file such as
136 * qemu or KVM writing a raw image file that is going
137 * to stay fairly sparse, since it will end up
138 * fragmenting the file system's free space. Maybe we
139 * should have some hueristics or some way to allow
140 * userspace to pass a hint to file system,
141 * especially if the latter case turns out to be
142 * common.
144 ex = path[depth].p_ext;
145 if (ex) {
146 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
147 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
149 if (block > ext_block)
150 return ext_pblk + (block - ext_block);
151 else
152 return ext_pblk - (ext_block - block);
155 /* it looks like index is empty;
156 * try to find starting block from index itself */
157 if (path[depth].p_bh)
158 return path[depth].p_bh->b_blocknr;
161 /* OK. use inode's group */
162 return ext4_inode_to_goal_block(inode);
166 * Allocation for a meta data block
168 static ext4_fsblk_t
169 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
170 struct ext4_ext_path *path,
171 struct ext4_extent *ex, int *err, unsigned int flags)
173 ext4_fsblk_t goal, newblock;
175 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
176 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
177 NULL, err);
178 return newblock;
181 static inline int ext4_ext_space_block(struct inode *inode, int check)
183 int size;
185 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
186 / sizeof(struct ext4_extent);
187 if (!check) {
188 #ifdef AGGRESSIVE_TEST
189 if (size > 6)
190 size = 6;
191 #endif
193 return size;
196 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
198 int size;
200 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
201 / sizeof(struct ext4_extent_idx);
202 if (!check) {
203 #ifdef AGGRESSIVE_TEST
204 if (size > 5)
205 size = 5;
206 #endif
208 return size;
211 static inline int ext4_ext_space_root(struct inode *inode, int check)
213 int size;
215 size = sizeof(EXT4_I(inode)->i_data);
216 size -= sizeof(struct ext4_extent_header);
217 size /= sizeof(struct ext4_extent);
218 if (!check) {
219 #ifdef AGGRESSIVE_TEST
220 if (size > 3)
221 size = 3;
222 #endif
224 return size;
227 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
229 int size;
231 size = sizeof(EXT4_I(inode)->i_data);
232 size -= sizeof(struct ext4_extent_header);
233 size /= sizeof(struct ext4_extent_idx);
234 if (!check) {
235 #ifdef AGGRESSIVE_TEST
236 if (size > 4)
237 size = 4;
238 #endif
240 return size;
244 * Calculate the number of metadata blocks needed
245 * to allocate @blocks
246 * Worse case is one block per extent
248 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
250 struct ext4_inode_info *ei = EXT4_I(inode);
251 int idxs, num = 0;
253 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
254 / sizeof(struct ext4_extent_idx));
257 * If the new delayed allocation block is contiguous with the
258 * previous da block, it can share index blocks with the
259 * previous block, so we only need to allocate a new index
260 * block every idxs leaf blocks. At ldxs**2 blocks, we need
261 * an additional index block, and at ldxs**3 blocks, yet
262 * another index blocks.
264 if (ei->i_da_metadata_calc_len &&
265 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
266 if ((ei->i_da_metadata_calc_len % idxs) == 0)
267 num++;
268 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
269 num++;
270 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
271 num++;
272 ei->i_da_metadata_calc_len = 0;
273 } else
274 ei->i_da_metadata_calc_len++;
275 ei->i_da_metadata_calc_last_lblock++;
276 return num;
280 * In the worst case we need a new set of index blocks at
281 * every level of the inode's extent tree.
283 ei->i_da_metadata_calc_len = 1;
284 ei->i_da_metadata_calc_last_lblock = lblock;
285 return ext_depth(inode) + 1;
288 static int
289 ext4_ext_max_entries(struct inode *inode, int depth)
291 int max;
293 if (depth == ext_depth(inode)) {
294 if (depth == 0)
295 max = ext4_ext_space_root(inode, 1);
296 else
297 max = ext4_ext_space_root_idx(inode, 1);
298 } else {
299 if (depth == 0)
300 max = ext4_ext_space_block(inode, 1);
301 else
302 max = ext4_ext_space_block_idx(inode, 1);
305 return max;
308 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
310 ext4_fsblk_t block = ext4_ext_pblock(ext);
311 int len = ext4_ext_get_actual_len(ext);
313 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
316 static int ext4_valid_extent_idx(struct inode *inode,
317 struct ext4_extent_idx *ext_idx)
319 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
321 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
324 static int ext4_valid_extent_entries(struct inode *inode,
325 struct ext4_extent_header *eh,
326 int depth)
328 struct ext4_extent *ext;
329 struct ext4_extent_idx *ext_idx;
330 unsigned short entries;
331 if (eh->eh_entries == 0)
332 return 1;
334 entries = le16_to_cpu(eh->eh_entries);
336 if (depth == 0) {
337 /* leaf entries */
338 ext = EXT_FIRST_EXTENT(eh);
339 while (entries) {
340 if (!ext4_valid_extent(inode, ext))
341 return 0;
342 ext++;
343 entries--;
345 } else {
346 ext_idx = EXT_FIRST_INDEX(eh);
347 while (entries) {
348 if (!ext4_valid_extent_idx(inode, ext_idx))
349 return 0;
350 ext_idx++;
351 entries--;
354 return 1;
357 static int __ext4_ext_check(const char *function, unsigned int line,
358 struct inode *inode, struct ext4_extent_header *eh,
359 int depth)
361 const char *error_msg;
362 int max = 0;
364 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
365 error_msg = "invalid magic";
366 goto corrupted;
368 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
369 error_msg = "unexpected eh_depth";
370 goto corrupted;
372 if (unlikely(eh->eh_max == 0)) {
373 error_msg = "invalid eh_max";
374 goto corrupted;
376 max = ext4_ext_max_entries(inode, depth);
377 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
378 error_msg = "too large eh_max";
379 goto corrupted;
381 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
382 error_msg = "invalid eh_entries";
383 goto corrupted;
385 if (!ext4_valid_extent_entries(inode, eh, depth)) {
386 error_msg = "invalid extent entries";
387 goto corrupted;
389 return 0;
391 corrupted:
392 ext4_error_inode(inode, function, line, 0,
393 "bad header/extent: %s - magic %x, "
394 "entries %u, max %u(%u), depth %u(%u)",
395 error_msg, le16_to_cpu(eh->eh_magic),
396 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
397 max, le16_to_cpu(eh->eh_depth), depth);
399 return -EIO;
402 #define ext4_ext_check(inode, eh, depth) \
403 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
405 int ext4_ext_check_inode(struct inode *inode)
407 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
410 #ifdef EXT_DEBUG
411 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
413 int k, l = path->p_depth;
415 ext_debug("path:");
416 for (k = 0; k <= l; k++, path++) {
417 if (path->p_idx) {
418 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
419 ext4_idx_pblock(path->p_idx));
420 } else if (path->p_ext) {
421 ext_debug(" %d:[%d]%d:%llu ",
422 le32_to_cpu(path->p_ext->ee_block),
423 ext4_ext_is_uninitialized(path->p_ext),
424 ext4_ext_get_actual_len(path->p_ext),
425 ext4_ext_pblock(path->p_ext));
426 } else
427 ext_debug(" []");
429 ext_debug("\n");
432 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
434 int depth = ext_depth(inode);
435 struct ext4_extent_header *eh;
436 struct ext4_extent *ex;
437 int i;
439 if (!path)
440 return;
442 eh = path[depth].p_hdr;
443 ex = EXT_FIRST_EXTENT(eh);
445 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
447 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
448 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
449 ext4_ext_is_uninitialized(ex),
450 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
452 ext_debug("\n");
455 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
456 ext4_fsblk_t newblock, int level)
458 int depth = ext_depth(inode);
459 struct ext4_extent *ex;
461 if (depth != level) {
462 struct ext4_extent_idx *idx;
463 idx = path[level].p_idx;
464 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
465 ext_debug("%d: move %d:%llu in new index %llu\n", level,
466 le32_to_cpu(idx->ei_block),
467 ext4_idx_pblock(idx),
468 newblock);
469 idx++;
472 return;
475 ex = path[depth].p_ext;
476 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
477 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
478 le32_to_cpu(ex->ee_block),
479 ext4_ext_pblock(ex),
480 ext4_ext_is_uninitialized(ex),
481 ext4_ext_get_actual_len(ex),
482 newblock);
483 ex++;
487 #else
488 #define ext4_ext_show_path(inode, path)
489 #define ext4_ext_show_leaf(inode, path)
490 #define ext4_ext_show_move(inode, path, newblock, level)
491 #endif
493 void ext4_ext_drop_refs(struct ext4_ext_path *path)
495 int depth = path->p_depth;
496 int i;
498 for (i = 0; i <= depth; i++, path++)
499 if (path->p_bh) {
500 brelse(path->p_bh);
501 path->p_bh = NULL;
506 * ext4_ext_binsearch_idx:
507 * binary search for the closest index of the given block
508 * the header must be checked before calling this
510 static void
511 ext4_ext_binsearch_idx(struct inode *inode,
512 struct ext4_ext_path *path, ext4_lblk_t block)
514 struct ext4_extent_header *eh = path->p_hdr;
515 struct ext4_extent_idx *r, *l, *m;
518 ext_debug("binsearch for %u(idx): ", block);
520 l = EXT_FIRST_INDEX(eh) + 1;
521 r = EXT_LAST_INDEX(eh);
522 while (l <= r) {
523 m = l + (r - l) / 2;
524 if (block < le32_to_cpu(m->ei_block))
525 r = m - 1;
526 else
527 l = m + 1;
528 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
529 m, le32_to_cpu(m->ei_block),
530 r, le32_to_cpu(r->ei_block));
533 path->p_idx = l - 1;
534 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
535 ext4_idx_pblock(path->p_idx));
537 #ifdef CHECK_BINSEARCH
539 struct ext4_extent_idx *chix, *ix;
540 int k;
542 chix = ix = EXT_FIRST_INDEX(eh);
543 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
544 if (k != 0 &&
545 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
546 printk(KERN_DEBUG "k=%d, ix=0x%p, "
547 "first=0x%p\n", k,
548 ix, EXT_FIRST_INDEX(eh));
549 printk(KERN_DEBUG "%u <= %u\n",
550 le32_to_cpu(ix->ei_block),
551 le32_to_cpu(ix[-1].ei_block));
553 BUG_ON(k && le32_to_cpu(ix->ei_block)
554 <= le32_to_cpu(ix[-1].ei_block));
555 if (block < le32_to_cpu(ix->ei_block))
556 break;
557 chix = ix;
559 BUG_ON(chix != path->p_idx);
561 #endif
566 * ext4_ext_binsearch:
567 * binary search for closest extent of the given block
568 * the header must be checked before calling this
570 static void
571 ext4_ext_binsearch(struct inode *inode,
572 struct ext4_ext_path *path, ext4_lblk_t block)
574 struct ext4_extent_header *eh = path->p_hdr;
575 struct ext4_extent *r, *l, *m;
577 if (eh->eh_entries == 0) {
579 * this leaf is empty:
580 * we get such a leaf in split/add case
582 return;
585 ext_debug("binsearch for %u: ", block);
587 l = EXT_FIRST_EXTENT(eh) + 1;
588 r = EXT_LAST_EXTENT(eh);
590 while (l <= r) {
591 m = l + (r - l) / 2;
592 if (block < le32_to_cpu(m->ee_block))
593 r = m - 1;
594 else
595 l = m + 1;
596 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
597 m, le32_to_cpu(m->ee_block),
598 r, le32_to_cpu(r->ee_block));
601 path->p_ext = l - 1;
602 ext_debug(" -> %d:%llu:[%d]%d ",
603 le32_to_cpu(path->p_ext->ee_block),
604 ext4_ext_pblock(path->p_ext),
605 ext4_ext_is_uninitialized(path->p_ext),
606 ext4_ext_get_actual_len(path->p_ext));
608 #ifdef CHECK_BINSEARCH
610 struct ext4_extent *chex, *ex;
611 int k;
613 chex = ex = EXT_FIRST_EXTENT(eh);
614 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
615 BUG_ON(k && le32_to_cpu(ex->ee_block)
616 <= le32_to_cpu(ex[-1].ee_block));
617 if (block < le32_to_cpu(ex->ee_block))
618 break;
619 chex = ex;
621 BUG_ON(chex != path->p_ext);
623 #endif
627 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
629 struct ext4_extent_header *eh;
631 eh = ext_inode_hdr(inode);
632 eh->eh_depth = 0;
633 eh->eh_entries = 0;
634 eh->eh_magic = EXT4_EXT_MAGIC;
635 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
636 ext4_mark_inode_dirty(handle, inode);
637 ext4_ext_invalidate_cache(inode);
638 return 0;
641 struct ext4_ext_path *
642 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
643 struct ext4_ext_path *path)
645 struct ext4_extent_header *eh;
646 struct buffer_head *bh;
647 short int depth, i, ppos = 0, alloc = 0;
649 eh = ext_inode_hdr(inode);
650 depth = ext_depth(inode);
652 /* account possible depth increase */
653 if (!path) {
654 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
655 GFP_NOFS);
656 if (!path)
657 return ERR_PTR(-ENOMEM);
658 alloc = 1;
660 path[0].p_hdr = eh;
661 path[0].p_bh = NULL;
663 i = depth;
664 /* walk through the tree */
665 while (i) {
666 int need_to_validate = 0;
668 ext_debug("depth %d: num %d, max %d\n",
669 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
671 ext4_ext_binsearch_idx(inode, path + ppos, block);
672 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
673 path[ppos].p_depth = i;
674 path[ppos].p_ext = NULL;
676 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
677 if (unlikely(!bh))
678 goto err;
679 if (!bh_uptodate_or_lock(bh)) {
680 trace_ext4_ext_load_extent(inode, block,
681 path[ppos].p_block);
682 if (bh_submit_read(bh) < 0) {
683 put_bh(bh);
684 goto err;
686 /* validate the extent entries */
687 need_to_validate = 1;
689 eh = ext_block_hdr(bh);
690 ppos++;
691 if (unlikely(ppos > depth)) {
692 put_bh(bh);
693 EXT4_ERROR_INODE(inode,
694 "ppos %d > depth %d", ppos, depth);
695 goto err;
697 path[ppos].p_bh = bh;
698 path[ppos].p_hdr = eh;
699 i--;
701 if (need_to_validate && ext4_ext_check(inode, eh, i))
702 goto err;
705 path[ppos].p_depth = i;
706 path[ppos].p_ext = NULL;
707 path[ppos].p_idx = NULL;
709 /* find extent */
710 ext4_ext_binsearch(inode, path + ppos, block);
711 /* if not an empty leaf */
712 if (path[ppos].p_ext)
713 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
715 ext4_ext_show_path(inode, path);
717 return path;
719 err:
720 ext4_ext_drop_refs(path);
721 if (alloc)
722 kfree(path);
723 return ERR_PTR(-EIO);
727 * ext4_ext_insert_index:
728 * insert new index [@logical;@ptr] into the block at @curp;
729 * check where to insert: before @curp or after @curp
731 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
732 struct ext4_ext_path *curp,
733 int logical, ext4_fsblk_t ptr)
735 struct ext4_extent_idx *ix;
736 int len, err;
738 err = ext4_ext_get_access(handle, inode, curp);
739 if (err)
740 return err;
742 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
743 EXT4_ERROR_INODE(inode,
744 "logical %d == ei_block %d!",
745 logical, le32_to_cpu(curp->p_idx->ei_block));
746 return -EIO;
749 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
750 >= le16_to_cpu(curp->p_hdr->eh_max))) {
751 EXT4_ERROR_INODE(inode,
752 "eh_entries %d >= eh_max %d!",
753 le16_to_cpu(curp->p_hdr->eh_entries),
754 le16_to_cpu(curp->p_hdr->eh_max));
755 return -EIO;
758 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
759 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
760 /* insert after */
761 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
762 len = (len - 1) * sizeof(struct ext4_extent_idx);
763 len = len < 0 ? 0 : len;
764 ext_debug("insert new index %d after: %llu. "
765 "move %d from 0x%p to 0x%p\n",
766 logical, ptr, len,
767 (curp->p_idx + 1), (curp->p_idx + 2));
768 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
770 ix = curp->p_idx + 1;
771 } else {
772 /* insert before */
773 len = len * sizeof(struct ext4_extent_idx);
774 len = len < 0 ? 0 : len;
775 ext_debug("insert new index %d before: %llu. "
776 "move %d from 0x%p to 0x%p\n",
777 logical, ptr, len,
778 curp->p_idx, (curp->p_idx + 1));
779 memmove(curp->p_idx + 1, curp->p_idx, len);
780 ix = curp->p_idx;
783 ix->ei_block = cpu_to_le32(logical);
784 ext4_idx_store_pblock(ix, ptr);
785 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
787 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
788 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
789 return -EIO;
792 err = ext4_ext_dirty(handle, inode, curp);
793 ext4_std_error(inode->i_sb, err);
795 return err;
799 * ext4_ext_split:
800 * inserts new subtree into the path, using free index entry
801 * at depth @at:
802 * - allocates all needed blocks (new leaf and all intermediate index blocks)
803 * - makes decision where to split
804 * - moves remaining extents and index entries (right to the split point)
805 * into the newly allocated blocks
806 * - initializes subtree
808 static int ext4_ext_split(handle_t *handle, struct inode *inode,
809 unsigned int flags,
810 struct ext4_ext_path *path,
811 struct ext4_extent *newext, int at)
813 struct buffer_head *bh = NULL;
814 int depth = ext_depth(inode);
815 struct ext4_extent_header *neh;
816 struct ext4_extent_idx *fidx;
817 int i = at, k, m, a;
818 ext4_fsblk_t newblock, oldblock;
819 __le32 border;
820 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
821 int err = 0;
823 /* make decision: where to split? */
824 /* FIXME: now decision is simplest: at current extent */
826 /* if current leaf will be split, then we should use
827 * border from split point */
828 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
829 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
830 return -EIO;
832 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
833 border = path[depth].p_ext[1].ee_block;
834 ext_debug("leaf will be split."
835 " next leaf starts at %d\n",
836 le32_to_cpu(border));
837 } else {
838 border = newext->ee_block;
839 ext_debug("leaf will be added."
840 " next leaf starts at %d\n",
841 le32_to_cpu(border));
845 * If error occurs, then we break processing
846 * and mark filesystem read-only. index won't
847 * be inserted and tree will be in consistent
848 * state. Next mount will repair buffers too.
852 * Get array to track all allocated blocks.
853 * We need this to handle errors and free blocks
854 * upon them.
856 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
857 if (!ablocks)
858 return -ENOMEM;
860 /* allocate all needed blocks */
861 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
862 for (a = 0; a < depth - at; a++) {
863 newblock = ext4_ext_new_meta_block(handle, inode, path,
864 newext, &err, flags);
865 if (newblock == 0)
866 goto cleanup;
867 ablocks[a] = newblock;
870 /* initialize new leaf */
871 newblock = ablocks[--a];
872 if (unlikely(newblock == 0)) {
873 EXT4_ERROR_INODE(inode, "newblock == 0!");
874 err = -EIO;
875 goto cleanup;
877 bh = sb_getblk(inode->i_sb, newblock);
878 if (!bh) {
879 err = -EIO;
880 goto cleanup;
882 lock_buffer(bh);
884 err = ext4_journal_get_create_access(handle, bh);
885 if (err)
886 goto cleanup;
888 neh = ext_block_hdr(bh);
889 neh->eh_entries = 0;
890 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
891 neh->eh_magic = EXT4_EXT_MAGIC;
892 neh->eh_depth = 0;
894 /* move remainder of path[depth] to the new leaf */
895 if (unlikely(path[depth].p_hdr->eh_entries !=
896 path[depth].p_hdr->eh_max)) {
897 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
898 path[depth].p_hdr->eh_entries,
899 path[depth].p_hdr->eh_max);
900 err = -EIO;
901 goto cleanup;
903 /* start copy from next extent */
904 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
905 ext4_ext_show_move(inode, path, newblock, depth);
906 if (m) {
907 struct ext4_extent *ex;
908 ex = EXT_FIRST_EXTENT(neh);
909 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
910 le16_add_cpu(&neh->eh_entries, m);
913 set_buffer_uptodate(bh);
914 unlock_buffer(bh);
916 err = ext4_handle_dirty_metadata(handle, inode, bh);
917 if (err)
918 goto cleanup;
919 brelse(bh);
920 bh = NULL;
922 /* correct old leaf */
923 if (m) {
924 err = ext4_ext_get_access(handle, inode, path + depth);
925 if (err)
926 goto cleanup;
927 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
928 err = ext4_ext_dirty(handle, inode, path + depth);
929 if (err)
930 goto cleanup;
934 /* create intermediate indexes */
935 k = depth - at - 1;
936 if (unlikely(k < 0)) {
937 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
938 err = -EIO;
939 goto cleanup;
941 if (k)
942 ext_debug("create %d intermediate indices\n", k);
943 /* insert new index into current index block */
944 /* current depth stored in i var */
945 i = depth - 1;
946 while (k--) {
947 oldblock = newblock;
948 newblock = ablocks[--a];
949 bh = sb_getblk(inode->i_sb, newblock);
950 if (!bh) {
951 err = -EIO;
952 goto cleanup;
954 lock_buffer(bh);
956 err = ext4_journal_get_create_access(handle, bh);
957 if (err)
958 goto cleanup;
960 neh = ext_block_hdr(bh);
961 neh->eh_entries = cpu_to_le16(1);
962 neh->eh_magic = EXT4_EXT_MAGIC;
963 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
964 neh->eh_depth = cpu_to_le16(depth - i);
965 fidx = EXT_FIRST_INDEX(neh);
966 fidx->ei_block = border;
967 ext4_idx_store_pblock(fidx, oldblock);
969 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
970 i, newblock, le32_to_cpu(border), oldblock);
972 /* move remainder of path[i] to the new index block */
973 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
974 EXT_LAST_INDEX(path[i].p_hdr))) {
975 EXT4_ERROR_INODE(inode,
976 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
977 le32_to_cpu(path[i].p_ext->ee_block));
978 err = -EIO;
979 goto cleanup;
981 /* start copy indexes */
982 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
983 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
984 EXT_MAX_INDEX(path[i].p_hdr));
985 ext4_ext_show_move(inode, path, newblock, i);
986 if (m) {
987 memmove(++fidx, path[i].p_idx,
988 sizeof(struct ext4_extent_idx) * m);
989 le16_add_cpu(&neh->eh_entries, m);
991 set_buffer_uptodate(bh);
992 unlock_buffer(bh);
994 err = ext4_handle_dirty_metadata(handle, inode, bh);
995 if (err)
996 goto cleanup;
997 brelse(bh);
998 bh = NULL;
1000 /* correct old index */
1001 if (m) {
1002 err = ext4_ext_get_access(handle, inode, path + i);
1003 if (err)
1004 goto cleanup;
1005 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1006 err = ext4_ext_dirty(handle, inode, path + i);
1007 if (err)
1008 goto cleanup;
1011 i--;
1014 /* insert new index */
1015 err = ext4_ext_insert_index(handle, inode, path + at,
1016 le32_to_cpu(border), newblock);
1018 cleanup:
1019 if (bh) {
1020 if (buffer_locked(bh))
1021 unlock_buffer(bh);
1022 brelse(bh);
1025 if (err) {
1026 /* free all allocated blocks in error case */
1027 for (i = 0; i < depth; i++) {
1028 if (!ablocks[i])
1029 continue;
1030 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1031 EXT4_FREE_BLOCKS_METADATA);
1034 kfree(ablocks);
1036 return err;
1040 * ext4_ext_grow_indepth:
1041 * implements tree growing procedure:
1042 * - allocates new block
1043 * - moves top-level data (index block or leaf) into the new block
1044 * - initializes new top-level, creating index that points to the
1045 * just created block
1047 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1048 unsigned int flags,
1049 struct ext4_ext_path *path,
1050 struct ext4_extent *newext)
1052 struct ext4_ext_path *curp = path;
1053 struct ext4_extent_header *neh;
1054 struct buffer_head *bh;
1055 ext4_fsblk_t newblock;
1056 int err = 0;
1058 newblock = ext4_ext_new_meta_block(handle, inode, path,
1059 newext, &err, flags);
1060 if (newblock == 0)
1061 return err;
1063 bh = sb_getblk(inode->i_sb, newblock);
1064 if (!bh) {
1065 err = -EIO;
1066 ext4_std_error(inode->i_sb, err);
1067 return err;
1069 lock_buffer(bh);
1071 err = ext4_journal_get_create_access(handle, bh);
1072 if (err) {
1073 unlock_buffer(bh);
1074 goto out;
1077 /* move top-level index/leaf into new block */
1078 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1080 /* set size of new block */
1081 neh = ext_block_hdr(bh);
1082 /* old root could have indexes or leaves
1083 * so calculate e_max right way */
1084 if (ext_depth(inode))
1085 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1086 else
1087 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1088 neh->eh_magic = EXT4_EXT_MAGIC;
1089 set_buffer_uptodate(bh);
1090 unlock_buffer(bh);
1092 err = ext4_handle_dirty_metadata(handle, inode, bh);
1093 if (err)
1094 goto out;
1096 /* create index in new top-level index: num,max,pointer */
1097 err = ext4_ext_get_access(handle, inode, curp);
1098 if (err)
1099 goto out;
1101 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1102 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1103 curp->p_hdr->eh_entries = cpu_to_le16(1);
1104 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1106 if (path[0].p_hdr->eh_depth)
1107 curp->p_idx->ei_block =
1108 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1109 else
1110 curp->p_idx->ei_block =
1111 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1112 ext4_idx_store_pblock(curp->p_idx, newblock);
1114 neh = ext_inode_hdr(inode);
1115 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1116 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1117 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1118 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1120 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1121 err = ext4_ext_dirty(handle, inode, curp);
1122 out:
1123 brelse(bh);
1125 return err;
1129 * ext4_ext_create_new_leaf:
1130 * finds empty index and adds new leaf.
1131 * if no free index is found, then it requests in-depth growing.
1133 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1134 unsigned int flags,
1135 struct ext4_ext_path *path,
1136 struct ext4_extent *newext)
1138 struct ext4_ext_path *curp;
1139 int depth, i, err = 0;
1141 repeat:
1142 i = depth = ext_depth(inode);
1144 /* walk up to the tree and look for free index entry */
1145 curp = path + depth;
1146 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1147 i--;
1148 curp--;
1151 /* we use already allocated block for index block,
1152 * so subsequent data blocks should be contiguous */
1153 if (EXT_HAS_FREE_INDEX(curp)) {
1154 /* if we found index with free entry, then use that
1155 * entry: create all needed subtree and add new leaf */
1156 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1157 if (err)
1158 goto out;
1160 /* refill path */
1161 ext4_ext_drop_refs(path);
1162 path = ext4_ext_find_extent(inode,
1163 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1164 path);
1165 if (IS_ERR(path))
1166 err = PTR_ERR(path);
1167 } else {
1168 /* tree is full, time to grow in depth */
1169 err = ext4_ext_grow_indepth(handle, inode, flags,
1170 path, newext);
1171 if (err)
1172 goto out;
1174 /* refill path */
1175 ext4_ext_drop_refs(path);
1176 path = ext4_ext_find_extent(inode,
1177 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1178 path);
1179 if (IS_ERR(path)) {
1180 err = PTR_ERR(path);
1181 goto out;
1185 * only first (depth 0 -> 1) produces free space;
1186 * in all other cases we have to split the grown tree
1188 depth = ext_depth(inode);
1189 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1190 /* now we need to split */
1191 goto repeat;
1195 out:
1196 return err;
1200 * search the closest allocated block to the left for *logical
1201 * and returns it at @logical + it's physical address at @phys
1202 * if *logical is the smallest allocated block, the function
1203 * returns 0 at @phys
1204 * return value contains 0 (success) or error code
1206 static int ext4_ext_search_left(struct inode *inode,
1207 struct ext4_ext_path *path,
1208 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1210 struct ext4_extent_idx *ix;
1211 struct ext4_extent *ex;
1212 int depth, ee_len;
1214 if (unlikely(path == NULL)) {
1215 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1216 return -EIO;
1218 depth = path->p_depth;
1219 *phys = 0;
1221 if (depth == 0 && path->p_ext == NULL)
1222 return 0;
1224 /* usually extent in the path covers blocks smaller
1225 * then *logical, but it can be that extent is the
1226 * first one in the file */
1228 ex = path[depth].p_ext;
1229 ee_len = ext4_ext_get_actual_len(ex);
1230 if (*logical < le32_to_cpu(ex->ee_block)) {
1231 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1232 EXT4_ERROR_INODE(inode,
1233 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1234 *logical, le32_to_cpu(ex->ee_block));
1235 return -EIO;
1237 while (--depth >= 0) {
1238 ix = path[depth].p_idx;
1239 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1240 EXT4_ERROR_INODE(inode,
1241 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1242 ix != NULL ? ix->ei_block : 0,
1243 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1244 EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1245 depth);
1246 return -EIO;
1249 return 0;
1252 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1253 EXT4_ERROR_INODE(inode,
1254 "logical %d < ee_block %d + ee_len %d!",
1255 *logical, le32_to_cpu(ex->ee_block), ee_len);
1256 return -EIO;
1259 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1260 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1261 return 0;
1265 * search the closest allocated block to the right for *logical
1266 * and returns it at @logical + it's physical address at @phys
1267 * if *logical is the smallest allocated block, the function
1268 * returns 0 at @phys
1269 * return value contains 0 (success) or error code
1271 static int ext4_ext_search_right(struct inode *inode,
1272 struct ext4_ext_path *path,
1273 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1274 struct ext4_extent **ret_ex)
1276 struct buffer_head *bh = NULL;
1277 struct ext4_extent_header *eh;
1278 struct ext4_extent_idx *ix;
1279 struct ext4_extent *ex;
1280 ext4_fsblk_t block;
1281 int depth; /* Note, NOT eh_depth; depth from top of tree */
1282 int ee_len;
1284 if (unlikely(path == NULL)) {
1285 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1286 return -EIO;
1288 depth = path->p_depth;
1289 *phys = 0;
1291 if (depth == 0 && path->p_ext == NULL)
1292 return 0;
1294 /* usually extent in the path covers blocks smaller
1295 * then *logical, but it can be that extent is the
1296 * first one in the file */
1298 ex = path[depth].p_ext;
1299 ee_len = ext4_ext_get_actual_len(ex);
1300 if (*logical < le32_to_cpu(ex->ee_block)) {
1301 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1302 EXT4_ERROR_INODE(inode,
1303 "first_extent(path[%d].p_hdr) != ex",
1304 depth);
1305 return -EIO;
1307 while (--depth >= 0) {
1308 ix = path[depth].p_idx;
1309 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1310 EXT4_ERROR_INODE(inode,
1311 "ix != EXT_FIRST_INDEX *logical %d!",
1312 *logical);
1313 return -EIO;
1316 goto found_extent;
1319 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1320 EXT4_ERROR_INODE(inode,
1321 "logical %d < ee_block %d + ee_len %d!",
1322 *logical, le32_to_cpu(ex->ee_block), ee_len);
1323 return -EIO;
1326 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1327 /* next allocated block in this leaf */
1328 ex++;
1329 goto found_extent;
1332 /* go up and search for index to the right */
1333 while (--depth >= 0) {
1334 ix = path[depth].p_idx;
1335 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1336 goto got_index;
1339 /* we've gone up to the root and found no index to the right */
1340 return 0;
1342 got_index:
1343 /* we've found index to the right, let's
1344 * follow it and find the closest allocated
1345 * block to the right */
1346 ix++;
1347 block = ext4_idx_pblock(ix);
1348 while (++depth < path->p_depth) {
1349 bh = sb_bread(inode->i_sb, block);
1350 if (bh == NULL)
1351 return -EIO;
1352 eh = ext_block_hdr(bh);
1353 /* subtract from p_depth to get proper eh_depth */
1354 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1355 put_bh(bh);
1356 return -EIO;
1358 ix = EXT_FIRST_INDEX(eh);
1359 block = ext4_idx_pblock(ix);
1360 put_bh(bh);
1363 bh = sb_bread(inode->i_sb, block);
1364 if (bh == NULL)
1365 return -EIO;
1366 eh = ext_block_hdr(bh);
1367 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1368 put_bh(bh);
1369 return -EIO;
1371 ex = EXT_FIRST_EXTENT(eh);
1372 found_extent:
1373 *logical = le32_to_cpu(ex->ee_block);
1374 *phys = ext4_ext_pblock(ex);
1375 *ret_ex = ex;
1376 if (bh)
1377 put_bh(bh);
1378 return 0;
1382 * ext4_ext_next_allocated_block:
1383 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1384 * NOTE: it considers block number from index entry as
1385 * allocated block. Thus, index entries have to be consistent
1386 * with leaves.
1388 static ext4_lblk_t
1389 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1391 int depth;
1393 BUG_ON(path == NULL);
1394 depth = path->p_depth;
1396 if (depth == 0 && path->p_ext == NULL)
1397 return EXT_MAX_BLOCKS;
1399 while (depth >= 0) {
1400 if (depth == path->p_depth) {
1401 /* leaf */
1402 if (path[depth].p_ext !=
1403 EXT_LAST_EXTENT(path[depth].p_hdr))
1404 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1405 } else {
1406 /* index */
1407 if (path[depth].p_idx !=
1408 EXT_LAST_INDEX(path[depth].p_hdr))
1409 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1411 depth--;
1414 return EXT_MAX_BLOCKS;
1418 * ext4_ext_next_leaf_block:
1419 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1421 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1423 int depth;
1425 BUG_ON(path == NULL);
1426 depth = path->p_depth;
1428 /* zero-tree has no leaf blocks at all */
1429 if (depth == 0)
1430 return EXT_MAX_BLOCKS;
1432 /* go to index block */
1433 depth--;
1435 while (depth >= 0) {
1436 if (path[depth].p_idx !=
1437 EXT_LAST_INDEX(path[depth].p_hdr))
1438 return (ext4_lblk_t)
1439 le32_to_cpu(path[depth].p_idx[1].ei_block);
1440 depth--;
1443 return EXT_MAX_BLOCKS;
1447 * ext4_ext_correct_indexes:
1448 * if leaf gets modified and modified extent is first in the leaf,
1449 * then we have to correct all indexes above.
1450 * TODO: do we need to correct tree in all cases?
1452 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1453 struct ext4_ext_path *path)
1455 struct ext4_extent_header *eh;
1456 int depth = ext_depth(inode);
1457 struct ext4_extent *ex;
1458 __le32 border;
1459 int k, err = 0;
1461 eh = path[depth].p_hdr;
1462 ex = path[depth].p_ext;
1464 if (unlikely(ex == NULL || eh == NULL)) {
1465 EXT4_ERROR_INODE(inode,
1466 "ex %p == NULL or eh %p == NULL", ex, eh);
1467 return -EIO;
1470 if (depth == 0) {
1471 /* there is no tree at all */
1472 return 0;
1475 if (ex != EXT_FIRST_EXTENT(eh)) {
1476 /* we correct tree if first leaf got modified only */
1477 return 0;
1481 * TODO: we need correction if border is smaller than current one
1483 k = depth - 1;
1484 border = path[depth].p_ext->ee_block;
1485 err = ext4_ext_get_access(handle, inode, path + k);
1486 if (err)
1487 return err;
1488 path[k].p_idx->ei_block = border;
1489 err = ext4_ext_dirty(handle, inode, path + k);
1490 if (err)
1491 return err;
1493 while (k--) {
1494 /* change all left-side indexes */
1495 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1496 break;
1497 err = ext4_ext_get_access(handle, inode, path + k);
1498 if (err)
1499 break;
1500 path[k].p_idx->ei_block = border;
1501 err = ext4_ext_dirty(handle, inode, path + k);
1502 if (err)
1503 break;
1506 return err;
1510 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1511 struct ext4_extent *ex2)
1513 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1516 * Make sure that either both extents are uninitialized, or
1517 * both are _not_.
1519 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1520 return 0;
1522 if (ext4_ext_is_uninitialized(ex1))
1523 max_len = EXT_UNINIT_MAX_LEN;
1524 else
1525 max_len = EXT_INIT_MAX_LEN;
1527 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1528 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1530 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1531 le32_to_cpu(ex2->ee_block))
1532 return 0;
1535 * To allow future support for preallocated extents to be added
1536 * as an RO_COMPAT feature, refuse to merge to extents if
1537 * this can result in the top bit of ee_len being set.
1539 if (ext1_ee_len + ext2_ee_len > max_len)
1540 return 0;
1541 #ifdef AGGRESSIVE_TEST
1542 if (ext1_ee_len >= 4)
1543 return 0;
1544 #endif
1546 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1547 return 1;
1548 return 0;
1552 * This function tries to merge the "ex" extent to the next extent in the tree.
1553 * It always tries to merge towards right. If you want to merge towards
1554 * left, pass "ex - 1" as argument instead of "ex".
1555 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1556 * 1 if they got merged.
1558 static int ext4_ext_try_to_merge_right(struct inode *inode,
1559 struct ext4_ext_path *path,
1560 struct ext4_extent *ex)
1562 struct ext4_extent_header *eh;
1563 unsigned int depth, len;
1564 int merge_done = 0;
1565 int uninitialized = 0;
1567 depth = ext_depth(inode);
1568 BUG_ON(path[depth].p_hdr == NULL);
1569 eh = path[depth].p_hdr;
1571 while (ex < EXT_LAST_EXTENT(eh)) {
1572 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1573 break;
1574 /* merge with next extent! */
1575 if (ext4_ext_is_uninitialized(ex))
1576 uninitialized = 1;
1577 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1578 + ext4_ext_get_actual_len(ex + 1));
1579 if (uninitialized)
1580 ext4_ext_mark_uninitialized(ex);
1582 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1583 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1584 * sizeof(struct ext4_extent);
1585 memmove(ex + 1, ex + 2, len);
1587 le16_add_cpu(&eh->eh_entries, -1);
1588 merge_done = 1;
1589 WARN_ON(eh->eh_entries == 0);
1590 if (!eh->eh_entries)
1591 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1594 return merge_done;
1598 * This function tries to merge the @ex extent to neighbours in the tree.
1599 * return 1 if merge left else 0.
1601 static int ext4_ext_try_to_merge(struct inode *inode,
1602 struct ext4_ext_path *path,
1603 struct ext4_extent *ex) {
1604 struct ext4_extent_header *eh;
1605 unsigned int depth;
1606 int merge_done = 0;
1607 int ret = 0;
1609 depth = ext_depth(inode);
1610 BUG_ON(path[depth].p_hdr == NULL);
1611 eh = path[depth].p_hdr;
1613 if (ex > EXT_FIRST_EXTENT(eh))
1614 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1616 if (!merge_done)
1617 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1619 return ret;
1623 * check if a portion of the "newext" extent overlaps with an
1624 * existing extent.
1626 * If there is an overlap discovered, it updates the length of the newext
1627 * such that there will be no overlap, and then returns 1.
1628 * If there is no overlap found, it returns 0.
1630 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1631 struct inode *inode,
1632 struct ext4_extent *newext,
1633 struct ext4_ext_path *path)
1635 ext4_lblk_t b1, b2;
1636 unsigned int depth, len1;
1637 unsigned int ret = 0;
1639 b1 = le32_to_cpu(newext->ee_block);
1640 len1 = ext4_ext_get_actual_len(newext);
1641 depth = ext_depth(inode);
1642 if (!path[depth].p_ext)
1643 goto out;
1644 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1645 b2 &= ~(sbi->s_cluster_ratio - 1);
1648 * get the next allocated block if the extent in the path
1649 * is before the requested block(s)
1651 if (b2 < b1) {
1652 b2 = ext4_ext_next_allocated_block(path);
1653 if (b2 == EXT_MAX_BLOCKS)
1654 goto out;
1655 b2 &= ~(sbi->s_cluster_ratio - 1);
1658 /* check for wrap through zero on extent logical start block*/
1659 if (b1 + len1 < b1) {
1660 len1 = EXT_MAX_BLOCKS - b1;
1661 newext->ee_len = cpu_to_le16(len1);
1662 ret = 1;
1665 /* check for overlap */
1666 if (b1 + len1 > b2) {
1667 newext->ee_len = cpu_to_le16(b2 - b1);
1668 ret = 1;
1670 out:
1671 return ret;
1675 * ext4_ext_insert_extent:
1676 * tries to merge requsted extent into the existing extent or
1677 * inserts requested extent as new one into the tree,
1678 * creating new leaf in the no-space case.
1680 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1681 struct ext4_ext_path *path,
1682 struct ext4_extent *newext, int flag)
1684 struct ext4_extent_header *eh;
1685 struct ext4_extent *ex, *fex;
1686 struct ext4_extent *nearex; /* nearest extent */
1687 struct ext4_ext_path *npath = NULL;
1688 int depth, len, err;
1689 ext4_lblk_t next;
1690 unsigned uninitialized = 0;
1691 int flags = 0;
1693 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1694 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1695 return -EIO;
1697 depth = ext_depth(inode);
1698 ex = path[depth].p_ext;
1699 if (unlikely(path[depth].p_hdr == NULL)) {
1700 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1701 return -EIO;
1704 /* try to insert block into found extent and return */
1705 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1706 && ext4_can_extents_be_merged(inode, ex, newext)) {
1707 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1708 ext4_ext_is_uninitialized(newext),
1709 ext4_ext_get_actual_len(newext),
1710 le32_to_cpu(ex->ee_block),
1711 ext4_ext_is_uninitialized(ex),
1712 ext4_ext_get_actual_len(ex),
1713 ext4_ext_pblock(ex));
1714 err = ext4_ext_get_access(handle, inode, path + depth);
1715 if (err)
1716 return err;
1719 * ext4_can_extents_be_merged should have checked that either
1720 * both extents are uninitialized, or both aren't. Thus we
1721 * need to check only one of them here.
1723 if (ext4_ext_is_uninitialized(ex))
1724 uninitialized = 1;
1725 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1726 + ext4_ext_get_actual_len(newext));
1727 if (uninitialized)
1728 ext4_ext_mark_uninitialized(ex);
1729 eh = path[depth].p_hdr;
1730 nearex = ex;
1731 goto merge;
1734 depth = ext_depth(inode);
1735 eh = path[depth].p_hdr;
1736 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1737 goto has_space;
1739 /* probably next leaf has space for us? */
1740 fex = EXT_LAST_EXTENT(eh);
1741 next = EXT_MAX_BLOCKS;
1742 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1743 next = ext4_ext_next_leaf_block(path);
1744 if (next != EXT_MAX_BLOCKS) {
1745 ext_debug("next leaf block - %d\n", next);
1746 BUG_ON(npath != NULL);
1747 npath = ext4_ext_find_extent(inode, next, NULL);
1748 if (IS_ERR(npath))
1749 return PTR_ERR(npath);
1750 BUG_ON(npath->p_depth != path->p_depth);
1751 eh = npath[depth].p_hdr;
1752 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1753 ext_debug("next leaf isn't full(%d)\n",
1754 le16_to_cpu(eh->eh_entries));
1755 path = npath;
1756 goto has_space;
1758 ext_debug("next leaf has no free space(%d,%d)\n",
1759 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1763 * There is no free space in the found leaf.
1764 * We're gonna add a new leaf in the tree.
1766 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1767 flags = EXT4_MB_USE_ROOT_BLOCKS;
1768 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1769 if (err)
1770 goto cleanup;
1771 depth = ext_depth(inode);
1772 eh = path[depth].p_hdr;
1774 has_space:
1775 nearex = path[depth].p_ext;
1777 err = ext4_ext_get_access(handle, inode, path + depth);
1778 if (err)
1779 goto cleanup;
1781 if (!nearex) {
1782 /* there is no extent in this leaf, create first one */
1783 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1784 le32_to_cpu(newext->ee_block),
1785 ext4_ext_pblock(newext),
1786 ext4_ext_is_uninitialized(newext),
1787 ext4_ext_get_actual_len(newext));
1788 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1789 } else if (le32_to_cpu(newext->ee_block)
1790 > le32_to_cpu(nearex->ee_block)) {
1791 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1792 if (nearex != EXT_LAST_EXTENT(eh)) {
1793 len = EXT_MAX_EXTENT(eh) - nearex;
1794 len = (len - 1) * sizeof(struct ext4_extent);
1795 len = len < 0 ? 0 : len;
1796 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1797 "move %d from 0x%p to 0x%p\n",
1798 le32_to_cpu(newext->ee_block),
1799 ext4_ext_pblock(newext),
1800 ext4_ext_is_uninitialized(newext),
1801 ext4_ext_get_actual_len(newext),
1802 nearex, len, nearex + 1, nearex + 2);
1803 memmove(nearex + 2, nearex + 1, len);
1805 path[depth].p_ext = nearex + 1;
1806 } else {
1807 BUG_ON(newext->ee_block == nearex->ee_block);
1808 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1809 len = len < 0 ? 0 : len;
1810 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1811 "move %d from 0x%p to 0x%p\n",
1812 le32_to_cpu(newext->ee_block),
1813 ext4_ext_pblock(newext),
1814 ext4_ext_is_uninitialized(newext),
1815 ext4_ext_get_actual_len(newext),
1816 nearex, len, nearex, nearex + 1);
1817 memmove(nearex + 1, nearex, len);
1818 path[depth].p_ext = nearex;
1821 le16_add_cpu(&eh->eh_entries, 1);
1822 nearex = path[depth].p_ext;
1823 nearex->ee_block = newext->ee_block;
1824 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1825 nearex->ee_len = newext->ee_len;
1827 merge:
1828 /* try to merge extents to the right */
1829 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1830 ext4_ext_try_to_merge(inode, path, nearex);
1832 /* try to merge extents to the left */
1834 /* time to correct all indexes above */
1835 err = ext4_ext_correct_indexes(handle, inode, path);
1836 if (err)
1837 goto cleanup;
1839 err = ext4_ext_dirty(handle, inode, path + depth);
1841 cleanup:
1842 if (npath) {
1843 ext4_ext_drop_refs(npath);
1844 kfree(npath);
1846 ext4_ext_invalidate_cache(inode);
1847 return err;
1850 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1851 ext4_lblk_t num, ext_prepare_callback func,
1852 void *cbdata)
1854 struct ext4_ext_path *path = NULL;
1855 struct ext4_ext_cache cbex;
1856 struct ext4_extent *ex;
1857 ext4_lblk_t next, start = 0, end = 0;
1858 ext4_lblk_t last = block + num;
1859 int depth, exists, err = 0;
1861 BUG_ON(func == NULL);
1862 BUG_ON(inode == NULL);
1864 while (block < last && block != EXT_MAX_BLOCKS) {
1865 num = last - block;
1866 /* find extent for this block */
1867 down_read(&EXT4_I(inode)->i_data_sem);
1868 path = ext4_ext_find_extent(inode, block, path);
1869 up_read(&EXT4_I(inode)->i_data_sem);
1870 if (IS_ERR(path)) {
1871 err = PTR_ERR(path);
1872 path = NULL;
1873 break;
1876 depth = ext_depth(inode);
1877 if (unlikely(path[depth].p_hdr == NULL)) {
1878 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1879 err = -EIO;
1880 break;
1882 ex = path[depth].p_ext;
1883 next = ext4_ext_next_allocated_block(path);
1885 exists = 0;
1886 if (!ex) {
1887 /* there is no extent yet, so try to allocate
1888 * all requested space */
1889 start = block;
1890 end = block + num;
1891 } else if (le32_to_cpu(ex->ee_block) > block) {
1892 /* need to allocate space before found extent */
1893 start = block;
1894 end = le32_to_cpu(ex->ee_block);
1895 if (block + num < end)
1896 end = block + num;
1897 } else if (block >= le32_to_cpu(ex->ee_block)
1898 + ext4_ext_get_actual_len(ex)) {
1899 /* need to allocate space after found extent */
1900 start = block;
1901 end = block + num;
1902 if (end >= next)
1903 end = next;
1904 } else if (block >= le32_to_cpu(ex->ee_block)) {
1906 * some part of requested space is covered
1907 * by found extent
1909 start = block;
1910 end = le32_to_cpu(ex->ee_block)
1911 + ext4_ext_get_actual_len(ex);
1912 if (block + num < end)
1913 end = block + num;
1914 exists = 1;
1915 } else {
1916 BUG();
1918 BUG_ON(end <= start);
1920 if (!exists) {
1921 cbex.ec_block = start;
1922 cbex.ec_len = end - start;
1923 cbex.ec_start = 0;
1924 } else {
1925 cbex.ec_block = le32_to_cpu(ex->ee_block);
1926 cbex.ec_len = ext4_ext_get_actual_len(ex);
1927 cbex.ec_start = ext4_ext_pblock(ex);
1930 if (unlikely(cbex.ec_len == 0)) {
1931 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1932 err = -EIO;
1933 break;
1935 err = func(inode, next, &cbex, ex, cbdata);
1936 ext4_ext_drop_refs(path);
1938 if (err < 0)
1939 break;
1941 if (err == EXT_REPEAT)
1942 continue;
1943 else if (err == EXT_BREAK) {
1944 err = 0;
1945 break;
1948 if (ext_depth(inode) != depth) {
1949 /* depth was changed. we have to realloc path */
1950 kfree(path);
1951 path = NULL;
1954 block = cbex.ec_block + cbex.ec_len;
1957 if (path) {
1958 ext4_ext_drop_refs(path);
1959 kfree(path);
1962 return err;
1965 static void
1966 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1967 __u32 len, ext4_fsblk_t start)
1969 struct ext4_ext_cache *cex;
1970 BUG_ON(len == 0);
1971 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1972 cex = &EXT4_I(inode)->i_cached_extent;
1973 cex->ec_block = block;
1974 cex->ec_len = len;
1975 cex->ec_start = start;
1976 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1980 * ext4_ext_put_gap_in_cache:
1981 * calculate boundaries of the gap that the requested block fits into
1982 * and cache this gap
1984 static void
1985 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1986 ext4_lblk_t block)
1988 int depth = ext_depth(inode);
1989 unsigned long len;
1990 ext4_lblk_t lblock;
1991 struct ext4_extent *ex;
1993 ex = path[depth].p_ext;
1994 if (ex == NULL) {
1995 /* there is no extent yet, so gap is [0;-] */
1996 lblock = 0;
1997 len = EXT_MAX_BLOCKS;
1998 ext_debug("cache gap(whole file):");
1999 } else if (block < le32_to_cpu(ex->ee_block)) {
2000 lblock = block;
2001 len = le32_to_cpu(ex->ee_block) - block;
2002 ext_debug("cache gap(before): %u [%u:%u]",
2003 block,
2004 le32_to_cpu(ex->ee_block),
2005 ext4_ext_get_actual_len(ex));
2006 } else if (block >= le32_to_cpu(ex->ee_block)
2007 + ext4_ext_get_actual_len(ex)) {
2008 ext4_lblk_t next;
2009 lblock = le32_to_cpu(ex->ee_block)
2010 + ext4_ext_get_actual_len(ex);
2012 next = ext4_ext_next_allocated_block(path);
2013 ext_debug("cache gap(after): [%u:%u] %u",
2014 le32_to_cpu(ex->ee_block),
2015 ext4_ext_get_actual_len(ex),
2016 block);
2017 BUG_ON(next == lblock);
2018 len = next - lblock;
2019 } else {
2020 lblock = len = 0;
2021 BUG();
2024 ext_debug(" -> %u:%lu\n", lblock, len);
2025 ext4_ext_put_in_cache(inode, lblock, len, 0);
2029 * ext4_ext_check_cache()
2030 * Checks to see if the given block is in the cache.
2031 * If it is, the cached extent is stored in the given
2032 * cache extent pointer. If the cached extent is a hole,
2033 * this routine should be used instead of
2034 * ext4_ext_in_cache if the calling function needs to
2035 * know the size of the hole.
2037 * @inode: The files inode
2038 * @block: The block to look for in the cache
2039 * @ex: Pointer where the cached extent will be stored
2040 * if it contains block
2042 * Return 0 if cache is invalid; 1 if the cache is valid
2044 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2045 struct ext4_ext_cache *ex){
2046 struct ext4_ext_cache *cex;
2047 struct ext4_sb_info *sbi;
2048 int ret = 0;
2051 * We borrow i_block_reservation_lock to protect i_cached_extent
2053 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2054 cex = &EXT4_I(inode)->i_cached_extent;
2055 sbi = EXT4_SB(inode->i_sb);
2057 /* has cache valid data? */
2058 if (cex->ec_len == 0)
2059 goto errout;
2061 if (in_range(block, cex->ec_block, cex->ec_len)) {
2062 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2063 ext_debug("%u cached by %u:%u:%llu\n",
2064 block,
2065 cex->ec_block, cex->ec_len, cex->ec_start);
2066 ret = 1;
2068 errout:
2069 if (!ret)
2070 sbi->extent_cache_misses++;
2071 else
2072 sbi->extent_cache_hits++;
2073 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2074 return ret;
2078 * ext4_ext_in_cache()
2079 * Checks to see if the given block is in the cache.
2080 * If it is, the cached extent is stored in the given
2081 * extent pointer.
2083 * @inode: The files inode
2084 * @block: The block to look for in the cache
2085 * @ex: Pointer where the cached extent will be stored
2086 * if it contains block
2088 * Return 0 if cache is invalid; 1 if the cache is valid
2090 static int
2091 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2092 struct ext4_extent *ex)
2094 struct ext4_ext_cache cex;
2095 int ret = 0;
2097 if (ext4_ext_check_cache(inode, block, &cex)) {
2098 ex->ee_block = cpu_to_le32(cex.ec_block);
2099 ext4_ext_store_pblock(ex, cex.ec_start);
2100 ex->ee_len = cpu_to_le16(cex.ec_len);
2101 ret = 1;
2104 return ret;
2109 * ext4_ext_rm_idx:
2110 * removes index from the index block.
2112 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2113 struct ext4_ext_path *path)
2115 int err;
2116 ext4_fsblk_t leaf;
2118 /* free index block */
2119 path--;
2120 leaf = ext4_idx_pblock(path->p_idx);
2121 if (unlikely(path->p_hdr->eh_entries == 0)) {
2122 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2123 return -EIO;
2125 err = ext4_ext_get_access(handle, inode, path);
2126 if (err)
2127 return err;
2129 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2130 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2131 len *= sizeof(struct ext4_extent_idx);
2132 memmove(path->p_idx, path->p_idx + 1, len);
2135 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2136 err = ext4_ext_dirty(handle, inode, path);
2137 if (err)
2138 return err;
2139 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2140 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2141 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2142 return err;
2146 * ext4_ext_calc_credits_for_single_extent:
2147 * This routine returns max. credits that needed to insert an extent
2148 * to the extent tree.
2149 * When pass the actual path, the caller should calculate credits
2150 * under i_data_sem.
2152 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2153 struct ext4_ext_path *path)
2155 if (path) {
2156 int depth = ext_depth(inode);
2157 int ret = 0;
2159 /* probably there is space in leaf? */
2160 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2161 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2164 * There are some space in the leaf tree, no
2165 * need to account for leaf block credit
2167 * bitmaps and block group descriptor blocks
2168 * and other metadat blocks still need to be
2169 * accounted.
2171 /* 1 bitmap, 1 block group descriptor */
2172 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2173 return ret;
2177 return ext4_chunk_trans_blocks(inode, nrblocks);
2181 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2183 * if nrblocks are fit in a single extent (chunk flag is 1), then
2184 * in the worse case, each tree level index/leaf need to be changed
2185 * if the tree split due to insert a new extent, then the old tree
2186 * index/leaf need to be updated too
2188 * If the nrblocks are discontiguous, they could cause
2189 * the whole tree split more than once, but this is really rare.
2191 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2193 int index;
2194 int depth = ext_depth(inode);
2196 if (chunk)
2197 index = depth * 2;
2198 else
2199 index = depth * 3;
2201 return index;
2204 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2205 struct ext4_extent *ex,
2206 ext4_lblk_t from, ext4_lblk_t to)
2208 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2209 int flags = EXT4_FREE_BLOCKS_FORGET;
2211 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2212 flags |= EXT4_FREE_BLOCKS_METADATA;
2213 #ifdef EXTENTS_STATS
2215 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2216 spin_lock(&sbi->s_ext_stats_lock);
2217 sbi->s_ext_blocks += ee_len;
2218 sbi->s_ext_extents++;
2219 if (ee_len < sbi->s_ext_min)
2220 sbi->s_ext_min = ee_len;
2221 if (ee_len > sbi->s_ext_max)
2222 sbi->s_ext_max = ee_len;
2223 if (ext_depth(inode) > sbi->s_depth_max)
2224 sbi->s_depth_max = ext_depth(inode);
2225 spin_unlock(&sbi->s_ext_stats_lock);
2227 #endif
2228 if (from >= le32_to_cpu(ex->ee_block)
2229 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2230 /* tail removal */
2231 ext4_lblk_t num;
2232 ext4_fsblk_t start;
2234 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2235 start = ext4_ext_pblock(ex) + ee_len - num;
2236 ext_debug("free last %u blocks starting %llu\n", num, start);
2237 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2238 } else if (from == le32_to_cpu(ex->ee_block)
2239 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2240 /* head removal */
2241 ext4_lblk_t num;
2242 ext4_fsblk_t start;
2244 num = to - from;
2245 start = ext4_ext_pblock(ex);
2247 ext_debug("free first %u blocks starting %llu\n", num, start);
2248 ext4_free_blocks(handle, inode, 0, start, num, flags);
2250 } else {
2251 printk(KERN_INFO "strange request: removal(2) "
2252 "%u-%u from %u:%u\n",
2253 from, to, le32_to_cpu(ex->ee_block), ee_len);
2255 return 0;
2260 * ext4_ext_rm_leaf() Removes the extents associated with the
2261 * blocks appearing between "start" and "end", and splits the extents
2262 * if "start" and "end" appear in the same extent
2264 * @handle: The journal handle
2265 * @inode: The files inode
2266 * @path: The path to the leaf
2267 * @start: The first block to remove
2268 * @end: The last block to remove
2270 static int
2271 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2272 struct ext4_ext_path *path, ext4_lblk_t start,
2273 ext4_lblk_t end)
2275 int err = 0, correct_index = 0;
2276 int depth = ext_depth(inode), credits;
2277 struct ext4_extent_header *eh;
2278 ext4_lblk_t a, b, block;
2279 unsigned num;
2280 ext4_lblk_t ex_ee_block;
2281 unsigned short ex_ee_len;
2282 unsigned uninitialized = 0;
2283 struct ext4_extent *ex;
2284 struct ext4_map_blocks map;
2286 /* the header must be checked already in ext4_ext_remove_space() */
2287 ext_debug("truncate since %u in leaf\n", start);
2288 if (!path[depth].p_hdr)
2289 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2290 eh = path[depth].p_hdr;
2291 if (unlikely(path[depth].p_hdr == NULL)) {
2292 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2293 return -EIO;
2295 /* find where to start removing */
2296 ex = EXT_LAST_EXTENT(eh);
2298 ex_ee_block = le32_to_cpu(ex->ee_block);
2299 ex_ee_len = ext4_ext_get_actual_len(ex);
2301 while (ex >= EXT_FIRST_EXTENT(eh) &&
2302 ex_ee_block + ex_ee_len > start) {
2304 if (ext4_ext_is_uninitialized(ex))
2305 uninitialized = 1;
2306 else
2307 uninitialized = 0;
2309 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2310 uninitialized, ex_ee_len);
2311 path[depth].p_ext = ex;
2313 a = ex_ee_block > start ? ex_ee_block : start;
2314 b = ex_ee_block+ex_ee_len - 1 < end ?
2315 ex_ee_block+ex_ee_len - 1 : end;
2317 ext_debug(" border %u:%u\n", a, b);
2319 /* If this extent is beyond the end of the hole, skip it */
2320 if (end <= ex_ee_block) {
2321 ex--;
2322 ex_ee_block = le32_to_cpu(ex->ee_block);
2323 ex_ee_len = ext4_ext_get_actual_len(ex);
2324 continue;
2325 } else if (a != ex_ee_block &&
2326 b != ex_ee_block + ex_ee_len - 1) {
2328 * If this is a truncate, then this condition should
2329 * never happen because at least one of the end points
2330 * needs to be on the edge of the extent.
2332 if (end == EXT_MAX_BLOCKS - 1) {
2333 ext_debug(" bad truncate %u:%u\n",
2334 start, end);
2335 block = 0;
2336 num = 0;
2337 err = -EIO;
2338 goto out;
2341 * else this is a hole punch, so the extent needs to
2342 * be split since neither edge of the hole is on the
2343 * extent edge
2345 else{
2346 map.m_pblk = ext4_ext_pblock(ex);
2347 map.m_lblk = ex_ee_block;
2348 map.m_len = b - ex_ee_block;
2350 err = ext4_split_extent(handle,
2351 inode, path, &map, 0,
2352 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2353 EXT4_GET_BLOCKS_PRE_IO);
2355 if (err < 0)
2356 goto out;
2358 ex_ee_len = ext4_ext_get_actual_len(ex);
2360 b = ex_ee_block+ex_ee_len - 1 < end ?
2361 ex_ee_block+ex_ee_len - 1 : end;
2363 /* Then remove tail of this extent */
2364 block = ex_ee_block;
2365 num = a - block;
2367 } else if (a != ex_ee_block) {
2368 /* remove tail of the extent */
2369 block = ex_ee_block;
2370 num = a - block;
2371 } else if (b != ex_ee_block + ex_ee_len - 1) {
2372 /* remove head of the extent */
2373 block = b;
2374 num = ex_ee_block + ex_ee_len - b;
2377 * If this is a truncate, this condition
2378 * should never happen
2380 if (end == EXT_MAX_BLOCKS - 1) {
2381 ext_debug(" bad truncate %u:%u\n",
2382 start, end);
2383 err = -EIO;
2384 goto out;
2386 } else {
2387 /* remove whole extent: excellent! */
2388 block = ex_ee_block;
2389 num = 0;
2390 if (a != ex_ee_block) {
2391 ext_debug(" bad truncate %u:%u\n",
2392 start, end);
2393 err = -EIO;
2394 goto out;
2397 if (b != ex_ee_block + ex_ee_len - 1) {
2398 ext_debug(" bad truncate %u:%u\n",
2399 start, end);
2400 err = -EIO;
2401 goto out;
2406 * 3 for leaf, sb, and inode plus 2 (bmap and group
2407 * descriptor) for each block group; assume two block
2408 * groups plus ex_ee_len/blocks_per_block_group for
2409 * the worst case
2411 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2412 if (ex == EXT_FIRST_EXTENT(eh)) {
2413 correct_index = 1;
2414 credits += (ext_depth(inode)) + 1;
2416 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2418 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2419 if (err)
2420 goto out;
2422 err = ext4_ext_get_access(handle, inode, path + depth);
2423 if (err)
2424 goto out;
2426 err = ext4_remove_blocks(handle, inode, ex, a, b);
2427 if (err)
2428 goto out;
2430 if (num == 0) {
2431 /* this extent is removed; mark slot entirely unused */
2432 ext4_ext_store_pblock(ex, 0);
2433 } else if (block != ex_ee_block) {
2435 * If this was a head removal, then we need to update
2436 * the physical block since it is now at a different
2437 * location
2439 ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2442 ex->ee_block = cpu_to_le32(block);
2443 ex->ee_len = cpu_to_le16(num);
2445 * Do not mark uninitialized if all the blocks in the
2446 * extent have been removed.
2448 if (uninitialized && num)
2449 ext4_ext_mark_uninitialized(ex);
2451 err = ext4_ext_dirty(handle, inode, path + depth);
2452 if (err)
2453 goto out;
2456 * If the extent was completely released,
2457 * we need to remove it from the leaf
2459 if (num == 0) {
2460 if (end != EXT_MAX_BLOCKS - 1) {
2462 * For hole punching, we need to scoot all the
2463 * extents up when an extent is removed so that
2464 * we dont have blank extents in the middle
2466 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2467 sizeof(struct ext4_extent));
2469 /* Now get rid of the one at the end */
2470 memset(EXT_LAST_EXTENT(eh), 0,
2471 sizeof(struct ext4_extent));
2473 le16_add_cpu(&eh->eh_entries, -1);
2476 ext_debug("new extent: %u:%u:%llu\n", block, num,
2477 ext4_ext_pblock(ex));
2478 ex--;
2479 ex_ee_block = le32_to_cpu(ex->ee_block);
2480 ex_ee_len = ext4_ext_get_actual_len(ex);
2483 if (correct_index && eh->eh_entries)
2484 err = ext4_ext_correct_indexes(handle, inode, path);
2486 /* if this leaf is free, then we should
2487 * remove it from index block above */
2488 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2489 err = ext4_ext_rm_idx(handle, inode, path + depth);
2491 out:
2492 return err;
2496 * ext4_ext_more_to_rm:
2497 * returns 1 if current index has to be freed (even partial)
2499 static int
2500 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2502 BUG_ON(path->p_idx == NULL);
2504 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2505 return 0;
2508 * if truncate on deeper level happened, it wasn't partial,
2509 * so we have to consider current index for truncation
2511 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2512 return 0;
2513 return 1;
2516 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2518 struct super_block *sb = inode->i_sb;
2519 int depth = ext_depth(inode);
2520 struct ext4_ext_path *path;
2521 handle_t *handle;
2522 int i, err;
2524 ext_debug("truncate since %u\n", start);
2526 /* probably first extent we're gonna free will be last in block */
2527 handle = ext4_journal_start(inode, depth + 1);
2528 if (IS_ERR(handle))
2529 return PTR_ERR(handle);
2531 again:
2532 ext4_ext_invalidate_cache(inode);
2535 * We start scanning from right side, freeing all the blocks
2536 * after i_size and walking into the tree depth-wise.
2538 depth = ext_depth(inode);
2539 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2540 if (path == NULL) {
2541 ext4_journal_stop(handle);
2542 return -ENOMEM;
2544 path[0].p_depth = depth;
2545 path[0].p_hdr = ext_inode_hdr(inode);
2546 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2547 err = -EIO;
2548 goto out;
2550 i = err = 0;
2552 while (i >= 0 && err == 0) {
2553 if (i == depth) {
2554 /* this is leaf block */
2555 err = ext4_ext_rm_leaf(handle, inode, path,
2556 start, EXT_MAX_BLOCKS - 1);
2557 /* root level has p_bh == NULL, brelse() eats this */
2558 brelse(path[i].p_bh);
2559 path[i].p_bh = NULL;
2560 i--;
2561 continue;
2564 /* this is index block */
2565 if (!path[i].p_hdr) {
2566 ext_debug("initialize header\n");
2567 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2570 if (!path[i].p_idx) {
2571 /* this level hasn't been touched yet */
2572 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2573 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2574 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2575 path[i].p_hdr,
2576 le16_to_cpu(path[i].p_hdr->eh_entries));
2577 } else {
2578 /* we were already here, see at next index */
2579 path[i].p_idx--;
2582 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2583 i, EXT_FIRST_INDEX(path[i].p_hdr),
2584 path[i].p_idx);
2585 if (ext4_ext_more_to_rm(path + i)) {
2586 struct buffer_head *bh;
2587 /* go to the next level */
2588 ext_debug("move to level %d (block %llu)\n",
2589 i + 1, ext4_idx_pblock(path[i].p_idx));
2590 memset(path + i + 1, 0, sizeof(*path));
2591 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2592 if (!bh) {
2593 /* should we reset i_size? */
2594 err = -EIO;
2595 break;
2597 if (WARN_ON(i + 1 > depth)) {
2598 err = -EIO;
2599 break;
2601 if (ext4_ext_check(inode, ext_block_hdr(bh),
2602 depth - i - 1)) {
2603 err = -EIO;
2604 break;
2606 path[i + 1].p_bh = bh;
2608 /* save actual number of indexes since this
2609 * number is changed at the next iteration */
2610 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2611 i++;
2612 } else {
2613 /* we finished processing this index, go up */
2614 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2615 /* index is empty, remove it;
2616 * handle must be already prepared by the
2617 * truncatei_leaf() */
2618 err = ext4_ext_rm_idx(handle, inode, path + i);
2620 /* root level has p_bh == NULL, brelse() eats this */
2621 brelse(path[i].p_bh);
2622 path[i].p_bh = NULL;
2623 i--;
2624 ext_debug("return to level %d\n", i);
2628 /* TODO: flexible tree reduction should be here */
2629 if (path->p_hdr->eh_entries == 0) {
2631 * truncate to zero freed all the tree,
2632 * so we need to correct eh_depth
2634 err = ext4_ext_get_access(handle, inode, path);
2635 if (err == 0) {
2636 ext_inode_hdr(inode)->eh_depth = 0;
2637 ext_inode_hdr(inode)->eh_max =
2638 cpu_to_le16(ext4_ext_space_root(inode, 0));
2639 err = ext4_ext_dirty(handle, inode, path);
2642 out:
2643 ext4_ext_drop_refs(path);
2644 kfree(path);
2645 if (err == -EAGAIN)
2646 goto again;
2647 ext4_journal_stop(handle);
2649 return err;
2653 * called at mount time
2655 void ext4_ext_init(struct super_block *sb)
2658 * possible initialization would be here
2661 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2662 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2663 printk(KERN_INFO "EXT4-fs: file extents enabled");
2664 #ifdef AGGRESSIVE_TEST
2665 printk(", aggressive tests");
2666 #endif
2667 #ifdef CHECK_BINSEARCH
2668 printk(", check binsearch");
2669 #endif
2670 #ifdef EXTENTS_STATS
2671 printk(", stats");
2672 #endif
2673 printk("\n");
2674 #endif
2675 #ifdef EXTENTS_STATS
2676 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2677 EXT4_SB(sb)->s_ext_min = 1 << 30;
2678 EXT4_SB(sb)->s_ext_max = 0;
2679 #endif
2684 * called at umount time
2686 void ext4_ext_release(struct super_block *sb)
2688 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2689 return;
2691 #ifdef EXTENTS_STATS
2692 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2693 struct ext4_sb_info *sbi = EXT4_SB(sb);
2694 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2695 sbi->s_ext_blocks, sbi->s_ext_extents,
2696 sbi->s_ext_blocks / sbi->s_ext_extents);
2697 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2698 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2700 #endif
2703 /* FIXME!! we need to try to merge to left or right after zero-out */
2704 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2706 ext4_fsblk_t ee_pblock;
2707 unsigned int ee_len;
2708 int ret;
2710 ee_len = ext4_ext_get_actual_len(ex);
2711 ee_pblock = ext4_ext_pblock(ex);
2713 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2714 if (ret > 0)
2715 ret = 0;
2717 return ret;
2721 * used by extent splitting.
2723 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2724 due to ENOSPC */
2725 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2726 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2729 * ext4_split_extent_at() splits an extent at given block.
2731 * @handle: the journal handle
2732 * @inode: the file inode
2733 * @path: the path to the extent
2734 * @split: the logical block where the extent is splitted.
2735 * @split_flags: indicates if the extent could be zeroout if split fails, and
2736 * the states(init or uninit) of new extents.
2737 * @flags: flags used to insert new extent to extent tree.
2740 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2741 * of which are deterimined by split_flag.
2743 * There are two cases:
2744 * a> the extent are splitted into two extent.
2745 * b> split is not needed, and just mark the extent.
2747 * return 0 on success.
2749 static int ext4_split_extent_at(handle_t *handle,
2750 struct inode *inode,
2751 struct ext4_ext_path *path,
2752 ext4_lblk_t split,
2753 int split_flag,
2754 int flags)
2756 ext4_fsblk_t newblock;
2757 ext4_lblk_t ee_block;
2758 struct ext4_extent *ex, newex, orig_ex;
2759 struct ext4_extent *ex2 = NULL;
2760 unsigned int ee_len, depth;
2761 int err = 0;
2763 ext_debug("ext4_split_extents_at: inode %lu, logical"
2764 "block %llu\n", inode->i_ino, (unsigned long long)split);
2766 ext4_ext_show_leaf(inode, path);
2768 depth = ext_depth(inode);
2769 ex = path[depth].p_ext;
2770 ee_block = le32_to_cpu(ex->ee_block);
2771 ee_len = ext4_ext_get_actual_len(ex);
2772 newblock = split - ee_block + ext4_ext_pblock(ex);
2774 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2776 err = ext4_ext_get_access(handle, inode, path + depth);
2777 if (err)
2778 goto out;
2780 if (split == ee_block) {
2782 * case b: block @split is the block that the extent begins with
2783 * then we just change the state of the extent, and splitting
2784 * is not needed.
2786 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2787 ext4_ext_mark_uninitialized(ex);
2788 else
2789 ext4_ext_mark_initialized(ex);
2791 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2792 ext4_ext_try_to_merge(inode, path, ex);
2794 err = ext4_ext_dirty(handle, inode, path + depth);
2795 goto out;
2798 /* case a */
2799 memcpy(&orig_ex, ex, sizeof(orig_ex));
2800 ex->ee_len = cpu_to_le16(split - ee_block);
2801 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2802 ext4_ext_mark_uninitialized(ex);
2805 * path may lead to new leaf, not to original leaf any more
2806 * after ext4_ext_insert_extent() returns,
2808 err = ext4_ext_dirty(handle, inode, path + depth);
2809 if (err)
2810 goto fix_extent_len;
2812 ex2 = &newex;
2813 ex2->ee_block = cpu_to_le32(split);
2814 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2815 ext4_ext_store_pblock(ex2, newblock);
2816 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2817 ext4_ext_mark_uninitialized(ex2);
2819 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2820 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2821 err = ext4_ext_zeroout(inode, &orig_ex);
2822 if (err)
2823 goto fix_extent_len;
2824 /* update the extent length and mark as initialized */
2825 ex->ee_len = cpu_to_le32(ee_len);
2826 ext4_ext_try_to_merge(inode, path, ex);
2827 err = ext4_ext_dirty(handle, inode, path + depth);
2828 goto out;
2829 } else if (err)
2830 goto fix_extent_len;
2832 out:
2833 ext4_ext_show_leaf(inode, path);
2834 return err;
2836 fix_extent_len:
2837 ex->ee_len = orig_ex.ee_len;
2838 ext4_ext_dirty(handle, inode, path + depth);
2839 return err;
2843 * ext4_split_extents() splits an extent and mark extent which is covered
2844 * by @map as split_flags indicates
2846 * It may result in splitting the extent into multiple extents (upto three)
2847 * There are three possibilities:
2848 * a> There is no split required
2849 * b> Splits in two extents: Split is happening at either end of the extent
2850 * c> Splits in three extents: Somone is splitting in middle of the extent
2853 static int ext4_split_extent(handle_t *handle,
2854 struct inode *inode,
2855 struct ext4_ext_path *path,
2856 struct ext4_map_blocks *map,
2857 int split_flag,
2858 int flags)
2860 ext4_lblk_t ee_block;
2861 struct ext4_extent *ex;
2862 unsigned int ee_len, depth;
2863 int err = 0;
2864 int uninitialized;
2865 int split_flag1, flags1;
2867 depth = ext_depth(inode);
2868 ex = path[depth].p_ext;
2869 ee_block = le32_to_cpu(ex->ee_block);
2870 ee_len = ext4_ext_get_actual_len(ex);
2871 uninitialized = ext4_ext_is_uninitialized(ex);
2873 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2874 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2875 EXT4_EXT_MAY_ZEROOUT : 0;
2876 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2877 if (uninitialized)
2878 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2879 EXT4_EXT_MARK_UNINIT2;
2880 err = ext4_split_extent_at(handle, inode, path,
2881 map->m_lblk + map->m_len, split_flag1, flags1);
2882 if (err)
2883 goto out;
2886 ext4_ext_drop_refs(path);
2887 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2888 if (IS_ERR(path))
2889 return PTR_ERR(path);
2891 if (map->m_lblk >= ee_block) {
2892 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2893 EXT4_EXT_MAY_ZEROOUT : 0;
2894 if (uninitialized)
2895 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2896 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2897 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2898 err = ext4_split_extent_at(handle, inode, path,
2899 map->m_lblk, split_flag1, flags);
2900 if (err)
2901 goto out;
2904 ext4_ext_show_leaf(inode, path);
2905 out:
2906 return err ? err : map->m_len;
2909 #define EXT4_EXT_ZERO_LEN 7
2911 * This function is called by ext4_ext_map_blocks() if someone tries to write
2912 * to an uninitialized extent. It may result in splitting the uninitialized
2913 * extent into multiple extents (up to three - one initialized and two
2914 * uninitialized).
2915 * There are three possibilities:
2916 * a> There is no split required: Entire extent should be initialized
2917 * b> Splits in two extents: Write is happening at either end of the extent
2918 * c> Splits in three extents: Somone is writing in middle of the extent
2920 static int ext4_ext_convert_to_initialized(handle_t *handle,
2921 struct inode *inode,
2922 struct ext4_map_blocks *map,
2923 struct ext4_ext_path *path)
2925 struct ext4_map_blocks split_map;
2926 struct ext4_extent zero_ex;
2927 struct ext4_extent *ex;
2928 ext4_lblk_t ee_block, eof_block;
2929 unsigned int allocated, ee_len, depth;
2930 int err = 0;
2931 int split_flag = 0;
2933 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2934 "block %llu, max_blocks %u\n", inode->i_ino,
2935 (unsigned long long)map->m_lblk, map->m_len);
2937 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2938 inode->i_sb->s_blocksize_bits;
2939 if (eof_block < map->m_lblk + map->m_len)
2940 eof_block = map->m_lblk + map->m_len;
2942 depth = ext_depth(inode);
2943 ex = path[depth].p_ext;
2944 ee_block = le32_to_cpu(ex->ee_block);
2945 ee_len = ext4_ext_get_actual_len(ex);
2946 allocated = ee_len - (map->m_lblk - ee_block);
2948 WARN_ON(map->m_lblk < ee_block);
2950 * It is safe to convert extent to initialized via explicit
2951 * zeroout only if extent is fully insde i_size or new_size.
2953 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2955 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2956 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2957 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2958 err = ext4_ext_zeroout(inode, ex);
2959 if (err)
2960 goto out;
2962 err = ext4_ext_get_access(handle, inode, path + depth);
2963 if (err)
2964 goto out;
2965 ext4_ext_mark_initialized(ex);
2966 ext4_ext_try_to_merge(inode, path, ex);
2967 err = ext4_ext_dirty(handle, inode, path + depth);
2968 goto out;
2972 * four cases:
2973 * 1. split the extent into three extents.
2974 * 2. split the extent into two extents, zeroout the first half.
2975 * 3. split the extent into two extents, zeroout the second half.
2976 * 4. split the extent into two extents with out zeroout.
2978 split_map.m_lblk = map->m_lblk;
2979 split_map.m_len = map->m_len;
2981 if (allocated > map->m_len) {
2982 if (allocated <= EXT4_EXT_ZERO_LEN &&
2983 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2984 /* case 3 */
2985 zero_ex.ee_block =
2986 cpu_to_le32(map->m_lblk);
2987 zero_ex.ee_len = cpu_to_le16(allocated);
2988 ext4_ext_store_pblock(&zero_ex,
2989 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
2990 err = ext4_ext_zeroout(inode, &zero_ex);
2991 if (err)
2992 goto out;
2993 split_map.m_lblk = map->m_lblk;
2994 split_map.m_len = allocated;
2995 } else if ((map->m_lblk - ee_block + map->m_len <
2996 EXT4_EXT_ZERO_LEN) &&
2997 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2998 /* case 2 */
2999 if (map->m_lblk != ee_block) {
3000 zero_ex.ee_block = ex->ee_block;
3001 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3002 ee_block);
3003 ext4_ext_store_pblock(&zero_ex,
3004 ext4_ext_pblock(ex));
3005 err = ext4_ext_zeroout(inode, &zero_ex);
3006 if (err)
3007 goto out;
3010 split_map.m_lblk = ee_block;
3011 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3012 allocated = map->m_len;
3016 allocated = ext4_split_extent(handle, inode, path,
3017 &split_map, split_flag, 0);
3018 if (allocated < 0)
3019 err = allocated;
3021 out:
3022 return err ? err : allocated;
3026 * This function is called by ext4_ext_map_blocks() from
3027 * ext4_get_blocks_dio_write() when DIO to write
3028 * to an uninitialized extent.
3030 * Writing to an uninitialized extent may result in splitting the uninitialized
3031 * extent into multiple /initialized uninitialized extents (up to three)
3032 * There are three possibilities:
3033 * a> There is no split required: Entire extent should be uninitialized
3034 * b> Splits in two extents: Write is happening at either end of the extent
3035 * c> Splits in three extents: Somone is writing in middle of the extent
3037 * One of more index blocks maybe needed if the extent tree grow after
3038 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3039 * complete, we need to split the uninitialized extent before DIO submit
3040 * the IO. The uninitialized extent called at this time will be split
3041 * into three uninitialized extent(at most). After IO complete, the part
3042 * being filled will be convert to initialized by the end_io callback function
3043 * via ext4_convert_unwritten_extents().
3045 * Returns the size of uninitialized extent to be written on success.
3047 static int ext4_split_unwritten_extents(handle_t *handle,
3048 struct inode *inode,
3049 struct ext4_map_blocks *map,
3050 struct ext4_ext_path *path,
3051 int flags)
3053 ext4_lblk_t eof_block;
3054 ext4_lblk_t ee_block;
3055 struct ext4_extent *ex;
3056 unsigned int ee_len;
3057 int split_flag = 0, depth;
3059 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3060 "block %llu, max_blocks %u\n", inode->i_ino,
3061 (unsigned long long)map->m_lblk, map->m_len);
3063 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3064 inode->i_sb->s_blocksize_bits;
3065 if (eof_block < map->m_lblk + map->m_len)
3066 eof_block = map->m_lblk + map->m_len;
3068 * It is safe to convert extent to initialized via explicit
3069 * zeroout only if extent is fully insde i_size or new_size.
3071 depth = ext_depth(inode);
3072 ex = path[depth].p_ext;
3073 ee_block = le32_to_cpu(ex->ee_block);
3074 ee_len = ext4_ext_get_actual_len(ex);
3076 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3077 split_flag |= EXT4_EXT_MARK_UNINIT2;
3079 flags |= EXT4_GET_BLOCKS_PRE_IO;
3080 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3083 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3084 struct inode *inode,
3085 struct ext4_ext_path *path)
3087 struct ext4_extent *ex;
3088 int depth;
3089 int err = 0;
3091 depth = ext_depth(inode);
3092 ex = path[depth].p_ext;
3094 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3095 "block %llu, max_blocks %u\n", inode->i_ino,
3096 (unsigned long long)le32_to_cpu(ex->ee_block),
3097 ext4_ext_get_actual_len(ex));
3099 err = ext4_ext_get_access(handle, inode, path + depth);
3100 if (err)
3101 goto out;
3102 /* first mark the extent as initialized */
3103 ext4_ext_mark_initialized(ex);
3105 /* note: ext4_ext_correct_indexes() isn't needed here because
3106 * borders are not changed
3108 ext4_ext_try_to_merge(inode, path, ex);
3110 /* Mark modified extent as dirty */
3111 err = ext4_ext_dirty(handle, inode, path + depth);
3112 out:
3113 ext4_ext_show_leaf(inode, path);
3114 return err;
3117 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3118 sector_t block, int count)
3120 int i;
3121 for (i = 0; i < count; i++)
3122 unmap_underlying_metadata(bdev, block + i);
3126 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3128 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3129 ext4_lblk_t lblk,
3130 struct ext4_ext_path *path,
3131 unsigned int len)
3133 int i, depth;
3134 struct ext4_extent_header *eh;
3135 struct ext4_extent *last_ex;
3137 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3138 return 0;
3140 depth = ext_depth(inode);
3141 eh = path[depth].p_hdr;
3143 if (unlikely(!eh->eh_entries)) {
3144 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3145 "EOFBLOCKS_FL set");
3146 return -EIO;
3148 last_ex = EXT_LAST_EXTENT(eh);
3150 * We should clear the EOFBLOCKS_FL flag if we are writing the
3151 * last block in the last extent in the file. We test this by
3152 * first checking to see if the caller to
3153 * ext4_ext_get_blocks() was interested in the last block (or
3154 * a block beyond the last block) in the current extent. If
3155 * this turns out to be false, we can bail out from this
3156 * function immediately.
3158 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3159 ext4_ext_get_actual_len(last_ex))
3160 return 0;
3162 * If the caller does appear to be planning to write at or
3163 * beyond the end of the current extent, we then test to see
3164 * if the current extent is the last extent in the file, by
3165 * checking to make sure it was reached via the rightmost node
3166 * at each level of the tree.
3168 for (i = depth-1; i >= 0; i--)
3169 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3170 return 0;
3171 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3172 return ext4_mark_inode_dirty(handle, inode);
3175 static int
3176 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3177 struct ext4_map_blocks *map,
3178 struct ext4_ext_path *path, int flags,
3179 unsigned int allocated, ext4_fsblk_t newblock)
3181 int ret = 0;
3182 int err = 0;
3183 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3185 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3186 "block %llu, max_blocks %u, flags %d, allocated %u",
3187 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3188 flags, allocated);
3189 ext4_ext_show_leaf(inode, path);
3191 /* get_block() before submit the IO, split the extent */
3192 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3193 ret = ext4_split_unwritten_extents(handle, inode, map,
3194 path, flags);
3196 * Flag the inode(non aio case) or end_io struct (aio case)
3197 * that this IO needs to conversion to written when IO is
3198 * completed
3200 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3201 io->flag = EXT4_IO_END_UNWRITTEN;
3202 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3203 } else
3204 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3205 if (ext4_should_dioread_nolock(inode))
3206 map->m_flags |= EXT4_MAP_UNINIT;
3207 goto out;
3209 /* IO end_io complete, convert the filled extent to written */
3210 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3211 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3212 path);
3213 if (ret >= 0) {
3214 ext4_update_inode_fsync_trans(handle, inode, 1);
3215 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3216 path, map->m_len);
3217 } else
3218 err = ret;
3219 goto out2;
3221 /* buffered IO case */
3223 * repeat fallocate creation request
3224 * we already have an unwritten extent
3226 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3227 goto map_out;
3229 /* buffered READ or buffered write_begin() lookup */
3230 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3232 * We have blocks reserved already. We
3233 * return allocated blocks so that delalloc
3234 * won't do block reservation for us. But
3235 * the buffer head will be unmapped so that
3236 * a read from the block returns 0s.
3238 map->m_flags |= EXT4_MAP_UNWRITTEN;
3239 goto out1;
3242 /* buffered write, writepage time, convert*/
3243 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3244 if (ret >= 0) {
3245 ext4_update_inode_fsync_trans(handle, inode, 1);
3246 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3247 map->m_len);
3248 if (err < 0)
3249 goto out2;
3252 out:
3253 if (ret <= 0) {
3254 err = ret;
3255 goto out2;
3256 } else
3257 allocated = ret;
3258 map->m_flags |= EXT4_MAP_NEW;
3260 * if we allocated more blocks than requested
3261 * we need to make sure we unmap the extra block
3262 * allocated. The actual needed block will get
3263 * unmapped later when we find the buffer_head marked
3264 * new.
3266 if (allocated > map->m_len) {
3267 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3268 newblock + map->m_len,
3269 allocated - map->m_len);
3270 allocated = map->m_len;
3274 * If we have done fallocate with the offset that is already
3275 * delayed allocated, we would have block reservation
3276 * and quota reservation done in the delayed write path.
3277 * But fallocate would have already updated quota and block
3278 * count for this offset. So cancel these reservation
3280 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3281 ext4_da_update_reserve_space(inode, allocated, 0);
3283 map_out:
3284 map->m_flags |= EXT4_MAP_MAPPED;
3285 out1:
3286 if (allocated > map->m_len)
3287 allocated = map->m_len;
3288 ext4_ext_show_leaf(inode, path);
3289 map->m_pblk = newblock;
3290 map->m_len = allocated;
3291 out2:
3292 if (path) {
3293 ext4_ext_drop_refs(path);
3294 kfree(path);
3296 return err ? err : allocated;
3300 * get_implied_cluster_alloc - check to see if the requested
3301 * allocation (in the map structure) overlaps with a cluster already
3302 * allocated in an extent.
3303 * @sbi The ext4-specific superblock structure
3304 * @map The requested lblk->pblk mapping
3305 * @ex The extent structure which might contain an implied
3306 * cluster allocation
3308 * This function is called by ext4_ext_map_blocks() after we failed to
3309 * find blocks that were already in the inode's extent tree. Hence,
3310 * we know that the beginning of the requested region cannot overlap
3311 * the extent from the inode's extent tree. There are three cases we
3312 * want to catch. The first is this case:
3314 * |--- cluster # N--|
3315 * |--- extent ---| |---- requested region ---|
3316 * |==========|
3318 * The second case that we need to test for is this one:
3320 * |--------- cluster # N ----------------|
3321 * |--- requested region --| |------- extent ----|
3322 * |=======================|
3324 * The third case is when the requested region lies between two extents
3325 * within the same cluster:
3326 * |------------- cluster # N-------------|
3327 * |----- ex -----| |---- ex_right ----|
3328 * |------ requested region ------|
3329 * |================|
3331 * In each of the above cases, we need to set the map->m_pblk and
3332 * map->m_len so it corresponds to the return the extent labelled as
3333 * "|====|" from cluster #N, since it is already in use for data in
3334 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3335 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3336 * as a new "allocated" block region. Otherwise, we will return 0 and
3337 * ext4_ext_map_blocks() will then allocate one or more new clusters
3338 * by calling ext4_mb_new_blocks().
3340 static int get_implied_cluster_alloc(struct ext4_sb_info *sbi,
3341 struct ext4_map_blocks *map,
3342 struct ext4_extent *ex,
3343 struct ext4_ext_path *path)
3345 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3346 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3347 ext4_lblk_t rr_cluster_start, rr_cluster_end;
3348 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3349 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3350 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3352 /* The extent passed in that we are trying to match */
3353 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3354 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3356 /* The requested region passed into ext4_map_blocks() */
3357 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3358 rr_cluster_end = EXT4_B2C(sbi, map->m_lblk + map->m_len - 1);
3360 if ((rr_cluster_start == ex_cluster_end) ||
3361 (rr_cluster_start == ex_cluster_start)) {
3362 if (rr_cluster_start == ex_cluster_end)
3363 ee_start += ee_len - 1;
3364 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3365 c_offset;
3366 map->m_len = min(map->m_len,
3367 (unsigned) sbi->s_cluster_ratio - c_offset);
3369 * Check for and handle this case:
3371 * |--------- cluster # N-------------|
3372 * |------- extent ----|
3373 * |--- requested region ---|
3374 * |===========|
3377 if (map->m_lblk < ee_block)
3378 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3381 * Check for the case where there is already another allocated
3382 * block to the right of 'ex' but before the end of the cluster.
3384 * |------------- cluster # N-------------|
3385 * |----- ex -----| |---- ex_right ----|
3386 * |------ requested region ------|
3387 * |================|
3389 if (map->m_lblk > ee_block) {
3390 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3391 map->m_len = min(map->m_len, next - map->m_lblk);
3393 return 1;
3395 return 0;
3400 * Block allocation/map/preallocation routine for extents based files
3403 * Need to be called with
3404 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3405 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3407 * return > 0, number of of blocks already mapped/allocated
3408 * if create == 0 and these are pre-allocated blocks
3409 * buffer head is unmapped
3410 * otherwise blocks are mapped
3412 * return = 0, if plain look up failed (blocks have not been allocated)
3413 * buffer head is unmapped
3415 * return < 0, error case.
3417 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3418 struct ext4_map_blocks *map, int flags)
3420 struct ext4_ext_path *path = NULL;
3421 struct ext4_extent newex, *ex, *ex2;
3422 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3423 ext4_fsblk_t newblock = 0;
3424 int free_on_err = 0, err = 0, depth, ret;
3425 unsigned int allocated = 0, offset = 0;
3426 unsigned int punched_out = 0;
3427 unsigned int result = 0;
3428 struct ext4_allocation_request ar;
3429 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3430 ext4_lblk_t cluster_offset;
3431 struct ext4_map_blocks punch_map;
3433 ext_debug("blocks %u/%u requested for inode %lu\n",
3434 map->m_lblk, map->m_len, inode->i_ino);
3435 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3437 /* check in cache */
3438 if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3439 ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3440 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3441 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3443 * block isn't allocated yet and
3444 * user doesn't want to allocate it
3446 goto out2;
3448 /* we should allocate requested block */
3449 } else {
3450 /* block is already allocated */
3451 newblock = map->m_lblk
3452 - le32_to_cpu(newex.ee_block)
3453 + ext4_ext_pblock(&newex);
3454 /* number of remaining blocks in the extent */
3455 allocated = ext4_ext_get_actual_len(&newex) -
3456 (map->m_lblk - le32_to_cpu(newex.ee_block));
3457 goto out;
3461 /* find extent for this block */
3462 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3463 if (IS_ERR(path)) {
3464 err = PTR_ERR(path);
3465 path = NULL;
3466 goto out2;
3469 depth = ext_depth(inode);
3472 * consistent leaf must not be empty;
3473 * this situation is possible, though, _during_ tree modification;
3474 * this is why assert can't be put in ext4_ext_find_extent()
3476 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3477 EXT4_ERROR_INODE(inode, "bad extent address "
3478 "lblock: %lu, depth: %d pblock %lld",
3479 (unsigned long) map->m_lblk, depth,
3480 path[depth].p_block);
3481 err = -EIO;
3482 goto out2;
3485 ex = path[depth].p_ext;
3486 if (ex) {
3487 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3488 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3489 unsigned short ee_len;
3492 * Uninitialized extents are treated as holes, except that
3493 * we split out initialized portions during a write.
3495 ee_len = ext4_ext_get_actual_len(ex);
3496 /* if found extent covers block, simply return it */
3497 if (in_range(map->m_lblk, ee_block, ee_len)) {
3498 newblock = map->m_lblk - ee_block + ee_start;
3499 /* number of remaining blocks in the extent */
3500 allocated = ee_len - (map->m_lblk - ee_block);
3501 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3502 ee_block, ee_len, newblock);
3504 if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3506 * Do not put uninitialized extent
3507 * in the cache
3509 if (!ext4_ext_is_uninitialized(ex)) {
3510 ext4_ext_put_in_cache(inode, ee_block,
3511 ee_len, ee_start);
3512 goto out;
3514 ret = ext4_ext_handle_uninitialized_extents(
3515 handle, inode, map, path, flags,
3516 allocated, newblock);
3517 return ret;
3521 * Punch out the map length, but only to the
3522 * end of the extent
3524 punched_out = allocated < map->m_len ?
3525 allocated : map->m_len;
3528 * Sense extents need to be converted to
3529 * uninitialized, they must fit in an
3530 * uninitialized extent
3532 if (punched_out > EXT_UNINIT_MAX_LEN)
3533 punched_out = EXT_UNINIT_MAX_LEN;
3535 punch_map.m_lblk = map->m_lblk;
3536 punch_map.m_pblk = newblock;
3537 punch_map.m_len = punched_out;
3538 punch_map.m_flags = 0;
3540 /* Check to see if the extent needs to be split */
3541 if (punch_map.m_len != ee_len ||
3542 punch_map.m_lblk != ee_block) {
3544 ret = ext4_split_extent(handle, inode,
3545 path, &punch_map, 0,
3546 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3547 EXT4_GET_BLOCKS_PRE_IO);
3549 if (ret < 0) {
3550 err = ret;
3551 goto out2;
3554 * find extent for the block at
3555 * the start of the hole
3557 ext4_ext_drop_refs(path);
3558 kfree(path);
3560 path = ext4_ext_find_extent(inode,
3561 map->m_lblk, NULL);
3562 if (IS_ERR(path)) {
3563 err = PTR_ERR(path);
3564 path = NULL;
3565 goto out2;
3568 depth = ext_depth(inode);
3569 ex = path[depth].p_ext;
3570 ee_len = ext4_ext_get_actual_len(ex);
3571 ee_block = le32_to_cpu(ex->ee_block);
3572 ee_start = ext4_ext_pblock(ex);
3576 ext4_ext_mark_uninitialized(ex);
3578 ext4_ext_invalidate_cache(inode);
3580 err = ext4_ext_rm_leaf(handle, inode, path,
3581 map->m_lblk, map->m_lblk + punched_out);
3583 if (!err && path->p_hdr->eh_entries == 0) {
3585 * Punch hole freed all of this sub tree,
3586 * so we need to correct eh_depth
3588 err = ext4_ext_get_access(handle, inode, path);
3589 if (err == 0) {
3590 ext_inode_hdr(inode)->eh_depth = 0;
3591 ext_inode_hdr(inode)->eh_max =
3592 cpu_to_le16(ext4_ext_space_root(
3593 inode, 0));
3595 err = ext4_ext_dirty(
3596 handle, inode, path);
3600 goto out2;
3605 * requested block isn't allocated yet;
3606 * we couldn't try to create block if create flag is zero
3608 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3610 * put just found gap into cache to speed up
3611 * subsequent requests
3613 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3614 goto out2;
3618 * Okay, we need to do block allocation.
3620 newex.ee_block = cpu_to_le32(map->m_lblk);
3621 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3624 * If we are doing bigalloc, check to see if the extent returned
3625 * by ext4_ext_find_extent() implies a cluster we can use.
3627 if (cluster_offset && ex &&
3628 get_implied_cluster_alloc(sbi, map, ex, path)) {
3629 ar.len = allocated = map->m_len;
3630 newblock = map->m_pblk;
3631 goto got_allocated_blocks;
3634 /* find neighbour allocated blocks */
3635 ar.lleft = map->m_lblk;
3636 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3637 if (err)
3638 goto out2;
3639 ar.lright = map->m_lblk;
3640 ex2 = NULL;
3641 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3642 if (err)
3643 goto out2;
3645 /* Check if the extent after searching to the right implies a
3646 * cluster we can use. */
3647 if ((sbi->s_cluster_ratio > 1) && ex2 &&
3648 get_implied_cluster_alloc(sbi, map, ex2, path)) {
3649 ar.len = allocated = map->m_len;
3650 newblock = map->m_pblk;
3651 goto got_allocated_blocks;
3655 * See if request is beyond maximum number of blocks we can have in
3656 * a single extent. For an initialized extent this limit is
3657 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3658 * EXT_UNINIT_MAX_LEN.
3660 if (map->m_len > EXT_INIT_MAX_LEN &&
3661 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3662 map->m_len = EXT_INIT_MAX_LEN;
3663 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3664 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3665 map->m_len = EXT_UNINIT_MAX_LEN;
3667 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3668 newex.ee_len = cpu_to_le16(map->m_len);
3669 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3670 if (err)
3671 allocated = ext4_ext_get_actual_len(&newex);
3672 else
3673 allocated = map->m_len;
3675 /* allocate new block */
3676 ar.inode = inode;
3677 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3678 ar.logical = map->m_lblk;
3680 * We calculate the offset from the beginning of the cluster
3681 * for the logical block number, since when we allocate a
3682 * physical cluster, the physical block should start at the
3683 * same offset from the beginning of the cluster. This is
3684 * needed so that future calls to get_implied_cluster_alloc()
3685 * work correctly.
3687 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3688 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3689 ar.goal -= offset;
3690 ar.logical -= offset;
3691 if (S_ISREG(inode->i_mode))
3692 ar.flags = EXT4_MB_HINT_DATA;
3693 else
3694 /* disable in-core preallocation for non-regular files */
3695 ar.flags = 0;
3696 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3697 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3698 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3699 if (!newblock)
3700 goto out2;
3701 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3702 ar.goal, newblock, allocated);
3703 free_on_err = 1;
3704 ar.len = EXT4_C2B(sbi, ar.len) - offset;
3705 if (ar.len > allocated)
3706 ar.len = allocated;
3708 got_allocated_blocks:
3709 /* try to insert new extent into found leaf and return */
3710 ext4_ext_store_pblock(&newex, newblock + offset);
3711 newex.ee_len = cpu_to_le16(ar.len);
3712 /* Mark uninitialized */
3713 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3714 ext4_ext_mark_uninitialized(&newex);
3716 * io_end structure was created for every IO write to an
3717 * uninitialized extent. To avoid unnecessary conversion,
3718 * here we flag the IO that really needs the conversion.
3719 * For non asycn direct IO case, flag the inode state
3720 * that we need to perform conversion when IO is done.
3722 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3723 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3724 io->flag = EXT4_IO_END_UNWRITTEN;
3725 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3726 } else
3727 ext4_set_inode_state(inode,
3728 EXT4_STATE_DIO_UNWRITTEN);
3730 if (ext4_should_dioread_nolock(inode))
3731 map->m_flags |= EXT4_MAP_UNINIT;
3734 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3735 if (!err)
3736 err = ext4_ext_insert_extent(handle, inode, path,
3737 &newex, flags);
3738 if (err && free_on_err) {
3739 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
3740 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
3741 /* free data blocks we just allocated */
3742 /* not a good idea to call discard here directly,
3743 * but otherwise we'd need to call it every free() */
3744 ext4_discard_preallocations(inode);
3745 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3746 ext4_ext_get_actual_len(&newex), fb_flags);
3747 goto out2;
3750 /* previous routine could use block we allocated */
3751 newblock = ext4_ext_pblock(&newex);
3752 allocated = ext4_ext_get_actual_len(&newex);
3753 if (allocated > map->m_len)
3754 allocated = map->m_len;
3755 map->m_flags |= EXT4_MAP_NEW;
3758 * Update reserved blocks/metadata blocks after successful
3759 * block allocation which had been deferred till now.
3761 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3762 ext4_da_update_reserve_space(inode, allocated, 1);
3765 * Cache the extent and update transaction to commit on fdatasync only
3766 * when it is _not_ an uninitialized extent.
3768 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3769 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3770 ext4_update_inode_fsync_trans(handle, inode, 1);
3771 } else
3772 ext4_update_inode_fsync_trans(handle, inode, 0);
3773 out:
3774 if (allocated > map->m_len)
3775 allocated = map->m_len;
3776 ext4_ext_show_leaf(inode, path);
3777 map->m_flags |= EXT4_MAP_MAPPED;
3778 map->m_pblk = newblock;
3779 map->m_len = allocated;
3780 out2:
3781 if (path) {
3782 ext4_ext_drop_refs(path);
3783 kfree(path);
3785 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3786 newblock, map->m_len, err ? err : allocated);
3788 result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
3789 punched_out : allocated;
3791 return err ? err : result;
3794 void ext4_ext_truncate(struct inode *inode)
3796 struct address_space *mapping = inode->i_mapping;
3797 struct super_block *sb = inode->i_sb;
3798 ext4_lblk_t last_block;
3799 handle_t *handle;
3800 loff_t page_len;
3801 int err = 0;
3804 * finish any pending end_io work so we won't run the risk of
3805 * converting any truncated blocks to initialized later
3807 ext4_flush_completed_IO(inode);
3810 * probably first extent we're gonna free will be last in block
3812 err = ext4_writepage_trans_blocks(inode);
3813 handle = ext4_journal_start(inode, err);
3814 if (IS_ERR(handle))
3815 return;
3817 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3818 page_len = PAGE_CACHE_SIZE -
3819 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3821 err = ext4_discard_partial_page_buffers(handle,
3822 mapping, inode->i_size, page_len, 0);
3824 if (err)
3825 goto out_stop;
3828 if (ext4_orphan_add(handle, inode))
3829 goto out_stop;
3831 down_write(&EXT4_I(inode)->i_data_sem);
3832 ext4_ext_invalidate_cache(inode);
3834 ext4_discard_preallocations(inode);
3837 * TODO: optimization is possible here.
3838 * Probably we need not scan at all,
3839 * because page truncation is enough.
3842 /* we have to know where to truncate from in crash case */
3843 EXT4_I(inode)->i_disksize = inode->i_size;
3844 ext4_mark_inode_dirty(handle, inode);
3846 last_block = (inode->i_size + sb->s_blocksize - 1)
3847 >> EXT4_BLOCK_SIZE_BITS(sb);
3848 err = ext4_ext_remove_space(inode, last_block);
3850 /* In a multi-transaction truncate, we only make the final
3851 * transaction synchronous.
3853 if (IS_SYNC(inode))
3854 ext4_handle_sync(handle);
3856 up_write(&EXT4_I(inode)->i_data_sem);
3858 out_stop:
3860 * If this was a simple ftruncate() and the file will remain alive,
3861 * then we need to clear up the orphan record which we created above.
3862 * However, if this was a real unlink then we were called by
3863 * ext4_delete_inode(), and we allow that function to clean up the
3864 * orphan info for us.
3866 if (inode->i_nlink)
3867 ext4_orphan_del(handle, inode);
3869 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3870 ext4_mark_inode_dirty(handle, inode);
3871 ext4_journal_stop(handle);
3874 static void ext4_falloc_update_inode(struct inode *inode,
3875 int mode, loff_t new_size, int update_ctime)
3877 struct timespec now;
3879 if (update_ctime) {
3880 now = current_fs_time(inode->i_sb);
3881 if (!timespec_equal(&inode->i_ctime, &now))
3882 inode->i_ctime = now;
3885 * Update only when preallocation was requested beyond
3886 * the file size.
3888 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3889 if (new_size > i_size_read(inode))
3890 i_size_write(inode, new_size);
3891 if (new_size > EXT4_I(inode)->i_disksize)
3892 ext4_update_i_disksize(inode, new_size);
3893 } else {
3895 * Mark that we allocate beyond EOF so the subsequent truncate
3896 * can proceed even if the new size is the same as i_size.
3898 if (new_size > i_size_read(inode))
3899 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3905 * preallocate space for a file. This implements ext4's fallocate file
3906 * operation, which gets called from sys_fallocate system call.
3907 * For block-mapped files, posix_fallocate should fall back to the method
3908 * of writing zeroes to the required new blocks (the same behavior which is
3909 * expected for file systems which do not support fallocate() system call).
3911 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3913 struct inode *inode = file->f_path.dentry->d_inode;
3914 handle_t *handle;
3915 loff_t new_size;
3916 unsigned int max_blocks;
3917 int ret = 0;
3918 int ret2 = 0;
3919 int retries = 0;
3920 struct ext4_map_blocks map;
3921 unsigned int credits, blkbits = inode->i_blkbits;
3924 * currently supporting (pre)allocate mode for extent-based
3925 * files _only_
3927 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3928 return -EOPNOTSUPP;
3930 /* Return error if mode is not supported */
3931 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3932 return -EOPNOTSUPP;
3934 if (mode & FALLOC_FL_PUNCH_HOLE)
3935 return ext4_punch_hole(file, offset, len);
3937 trace_ext4_fallocate_enter(inode, offset, len, mode);
3938 map.m_lblk = offset >> blkbits;
3940 * We can't just convert len to max_blocks because
3941 * If blocksize = 4096 offset = 3072 and len = 2048
3943 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3944 - map.m_lblk;
3946 * credits to insert 1 extent into extent tree
3948 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3949 mutex_lock(&inode->i_mutex);
3950 ret = inode_newsize_ok(inode, (len + offset));
3951 if (ret) {
3952 mutex_unlock(&inode->i_mutex);
3953 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3954 return ret;
3956 retry:
3957 while (ret >= 0 && ret < max_blocks) {
3958 map.m_lblk = map.m_lblk + ret;
3959 map.m_len = max_blocks = max_blocks - ret;
3960 handle = ext4_journal_start(inode, credits);
3961 if (IS_ERR(handle)) {
3962 ret = PTR_ERR(handle);
3963 break;
3965 ret = ext4_map_blocks(handle, inode, &map,
3966 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
3967 EXT4_GET_BLOCKS_NO_NORMALIZE);
3968 if (ret <= 0) {
3969 #ifdef EXT4FS_DEBUG
3970 WARN_ON(ret <= 0);
3971 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3972 "returned error inode#%lu, block=%u, "
3973 "max_blocks=%u", __func__,
3974 inode->i_ino, map.m_lblk, max_blocks);
3975 #endif
3976 ext4_mark_inode_dirty(handle, inode);
3977 ret2 = ext4_journal_stop(handle);
3978 break;
3980 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3981 blkbits) >> blkbits))
3982 new_size = offset + len;
3983 else
3984 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
3986 ext4_falloc_update_inode(inode, mode, new_size,
3987 (map.m_flags & EXT4_MAP_NEW));
3988 ext4_mark_inode_dirty(handle, inode);
3989 ret2 = ext4_journal_stop(handle);
3990 if (ret2)
3991 break;
3993 if (ret == -ENOSPC &&
3994 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3995 ret = 0;
3996 goto retry;
3998 mutex_unlock(&inode->i_mutex);
3999 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4000 ret > 0 ? ret2 : ret);
4001 return ret > 0 ? ret2 : ret;
4005 * This function convert a range of blocks to written extents
4006 * The caller of this function will pass the start offset and the size.
4007 * all unwritten extents within this range will be converted to
4008 * written extents.
4010 * This function is called from the direct IO end io call back
4011 * function, to convert the fallocated extents after IO is completed.
4012 * Returns 0 on success.
4014 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4015 ssize_t len)
4017 handle_t *handle;
4018 unsigned int max_blocks;
4019 int ret = 0;
4020 int ret2 = 0;
4021 struct ext4_map_blocks map;
4022 unsigned int credits, blkbits = inode->i_blkbits;
4024 map.m_lblk = offset >> blkbits;
4026 * We can't just convert len to max_blocks because
4027 * If blocksize = 4096 offset = 3072 and len = 2048
4029 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4030 map.m_lblk);
4032 * credits to insert 1 extent into extent tree
4034 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4035 while (ret >= 0 && ret < max_blocks) {
4036 map.m_lblk += ret;
4037 map.m_len = (max_blocks -= ret);
4038 handle = ext4_journal_start(inode, credits);
4039 if (IS_ERR(handle)) {
4040 ret = PTR_ERR(handle);
4041 break;
4043 ret = ext4_map_blocks(handle, inode, &map,
4044 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4045 if (ret <= 0) {
4046 WARN_ON(ret <= 0);
4047 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4048 "returned error inode#%lu, block=%u, "
4049 "max_blocks=%u", __func__,
4050 inode->i_ino, map.m_lblk, map.m_len);
4052 ext4_mark_inode_dirty(handle, inode);
4053 ret2 = ext4_journal_stop(handle);
4054 if (ret <= 0 || ret2 )
4055 break;
4057 return ret > 0 ? ret2 : ret;
4061 * Callback function called for each extent to gather FIEMAP information.
4063 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4064 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4065 void *data)
4067 __u64 logical;
4068 __u64 physical;
4069 __u64 length;
4070 __u32 flags = 0;
4071 int ret = 0;
4072 struct fiemap_extent_info *fieinfo = data;
4073 unsigned char blksize_bits;
4075 blksize_bits = inode->i_sb->s_blocksize_bits;
4076 logical = (__u64)newex->ec_block << blksize_bits;
4078 if (newex->ec_start == 0) {
4080 * No extent in extent-tree contains block @newex->ec_start,
4081 * then the block may stay in 1)a hole or 2)delayed-extent.
4083 * Holes or delayed-extents are processed as follows.
4084 * 1. lookup dirty pages with specified range in pagecache.
4085 * If no page is got, then there is no delayed-extent and
4086 * return with EXT_CONTINUE.
4087 * 2. find the 1st mapped buffer,
4088 * 3. check if the mapped buffer is both in the request range
4089 * and a delayed buffer. If not, there is no delayed-extent,
4090 * then return.
4091 * 4. a delayed-extent is found, the extent will be collected.
4093 ext4_lblk_t end = 0;
4094 pgoff_t last_offset;
4095 pgoff_t offset;
4096 pgoff_t index;
4097 pgoff_t start_index = 0;
4098 struct page **pages = NULL;
4099 struct buffer_head *bh = NULL;
4100 struct buffer_head *head = NULL;
4101 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4103 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4104 if (pages == NULL)
4105 return -ENOMEM;
4107 offset = logical >> PAGE_SHIFT;
4108 repeat:
4109 last_offset = offset;
4110 head = NULL;
4111 ret = find_get_pages_tag(inode->i_mapping, &offset,
4112 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4114 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4115 /* First time, try to find a mapped buffer. */
4116 if (ret == 0) {
4117 out:
4118 for (index = 0; index < ret; index++)
4119 page_cache_release(pages[index]);
4120 /* just a hole. */
4121 kfree(pages);
4122 return EXT_CONTINUE;
4124 index = 0;
4126 next_page:
4127 /* Try to find the 1st mapped buffer. */
4128 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4129 blksize_bits;
4130 if (!page_has_buffers(pages[index]))
4131 goto out;
4132 head = page_buffers(pages[index]);
4133 if (!head)
4134 goto out;
4136 index++;
4137 bh = head;
4138 do {
4139 if (end >= newex->ec_block +
4140 newex->ec_len)
4141 /* The buffer is out of
4142 * the request range.
4144 goto out;
4146 if (buffer_mapped(bh) &&
4147 end >= newex->ec_block) {
4148 start_index = index - 1;
4149 /* get the 1st mapped buffer. */
4150 goto found_mapped_buffer;
4153 bh = bh->b_this_page;
4154 end++;
4155 } while (bh != head);
4157 /* No mapped buffer in the range found in this page,
4158 * We need to look up next page.
4160 if (index >= ret) {
4161 /* There is no page left, but we need to limit
4162 * newex->ec_len.
4164 newex->ec_len = end - newex->ec_block;
4165 goto out;
4167 goto next_page;
4168 } else {
4169 /*Find contiguous delayed buffers. */
4170 if (ret > 0 && pages[0]->index == last_offset)
4171 head = page_buffers(pages[0]);
4172 bh = head;
4173 index = 1;
4174 start_index = 0;
4177 found_mapped_buffer:
4178 if (bh != NULL && buffer_delay(bh)) {
4179 /* 1st or contiguous delayed buffer found. */
4180 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4182 * 1st delayed buffer found, record
4183 * the start of extent.
4185 flags |= FIEMAP_EXTENT_DELALLOC;
4186 newex->ec_block = end;
4187 logical = (__u64)end << blksize_bits;
4189 /* Find contiguous delayed buffers. */
4190 do {
4191 if (!buffer_delay(bh))
4192 goto found_delayed_extent;
4193 bh = bh->b_this_page;
4194 end++;
4195 } while (bh != head);
4197 for (; index < ret; index++) {
4198 if (!page_has_buffers(pages[index])) {
4199 bh = NULL;
4200 break;
4202 head = page_buffers(pages[index]);
4203 if (!head) {
4204 bh = NULL;
4205 break;
4208 if (pages[index]->index !=
4209 pages[start_index]->index + index
4210 - start_index) {
4211 /* Blocks are not contiguous. */
4212 bh = NULL;
4213 break;
4215 bh = head;
4216 do {
4217 if (!buffer_delay(bh))
4218 /* Delayed-extent ends. */
4219 goto found_delayed_extent;
4220 bh = bh->b_this_page;
4221 end++;
4222 } while (bh != head);
4224 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4225 /* a hole found. */
4226 goto out;
4228 found_delayed_extent:
4229 newex->ec_len = min(end - newex->ec_block,
4230 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4231 if (ret == nr_pages && bh != NULL &&
4232 newex->ec_len < EXT_INIT_MAX_LEN &&
4233 buffer_delay(bh)) {
4234 /* Have not collected an extent and continue. */
4235 for (index = 0; index < ret; index++)
4236 page_cache_release(pages[index]);
4237 goto repeat;
4240 for (index = 0; index < ret; index++)
4241 page_cache_release(pages[index]);
4242 kfree(pages);
4245 physical = (__u64)newex->ec_start << blksize_bits;
4246 length = (__u64)newex->ec_len << blksize_bits;
4248 if (ex && ext4_ext_is_uninitialized(ex))
4249 flags |= FIEMAP_EXTENT_UNWRITTEN;
4251 if (next == EXT_MAX_BLOCKS)
4252 flags |= FIEMAP_EXTENT_LAST;
4254 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4255 length, flags);
4256 if (ret < 0)
4257 return ret;
4258 if (ret == 1)
4259 return EXT_BREAK;
4260 return EXT_CONTINUE;
4262 /* fiemap flags we can handle specified here */
4263 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4265 static int ext4_xattr_fiemap(struct inode *inode,
4266 struct fiemap_extent_info *fieinfo)
4268 __u64 physical = 0;
4269 __u64 length;
4270 __u32 flags = FIEMAP_EXTENT_LAST;
4271 int blockbits = inode->i_sb->s_blocksize_bits;
4272 int error = 0;
4274 /* in-inode? */
4275 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4276 struct ext4_iloc iloc;
4277 int offset; /* offset of xattr in inode */
4279 error = ext4_get_inode_loc(inode, &iloc);
4280 if (error)
4281 return error;
4282 physical = iloc.bh->b_blocknr << blockbits;
4283 offset = EXT4_GOOD_OLD_INODE_SIZE +
4284 EXT4_I(inode)->i_extra_isize;
4285 physical += offset;
4286 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4287 flags |= FIEMAP_EXTENT_DATA_INLINE;
4288 brelse(iloc.bh);
4289 } else { /* external block */
4290 physical = EXT4_I(inode)->i_file_acl << blockbits;
4291 length = inode->i_sb->s_blocksize;
4294 if (physical)
4295 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4296 length, flags);
4297 return (error < 0 ? error : 0);
4301 * ext4_ext_punch_hole
4303 * Punches a hole of "length" bytes in a file starting
4304 * at byte "offset"
4306 * @inode: The inode of the file to punch a hole in
4307 * @offset: The starting byte offset of the hole
4308 * @length: The length of the hole
4310 * Returns the number of blocks removed or negative on err
4312 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4314 struct inode *inode = file->f_path.dentry->d_inode;
4315 struct super_block *sb = inode->i_sb;
4316 struct ext4_ext_cache cache_ex;
4317 ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4318 struct address_space *mapping = inode->i_mapping;
4319 struct ext4_map_blocks map;
4320 handle_t *handle;
4321 loff_t first_page, last_page, page_len;
4322 loff_t first_page_offset, last_page_offset;
4323 int ret, credits, blocks_released, err = 0;
4325 /* No need to punch hole beyond i_size */
4326 if (offset >= inode->i_size)
4327 return 0;
4330 * If the hole extends beyond i_size, set the hole
4331 * to end after the page that contains i_size
4333 if (offset + length > inode->i_size) {
4334 length = inode->i_size +
4335 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4336 offset;
4339 first_block = (offset + sb->s_blocksize - 1) >>
4340 EXT4_BLOCK_SIZE_BITS(sb);
4341 last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4343 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4344 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4346 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4347 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4350 * Write out all dirty pages to avoid race conditions
4351 * Then release them.
4353 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4354 err = filemap_write_and_wait_range(mapping,
4355 offset, offset + length - 1);
4357 if (err)
4358 return err;
4361 /* Now release the pages */
4362 if (last_page_offset > first_page_offset) {
4363 truncate_inode_pages_range(mapping, first_page_offset,
4364 last_page_offset-1);
4367 /* finish any pending end_io work */
4368 ext4_flush_completed_IO(inode);
4370 credits = ext4_writepage_trans_blocks(inode);
4371 handle = ext4_journal_start(inode, credits);
4372 if (IS_ERR(handle))
4373 return PTR_ERR(handle);
4375 err = ext4_orphan_add(handle, inode);
4376 if (err)
4377 goto out;
4380 * Now we need to zero out the non-page-aligned data in the
4381 * pages at the start and tail of the hole, and unmap the buffer
4382 * heads for the block aligned regions of the page that were
4383 * completely zeroed.
4385 if (first_page > last_page) {
4387 * If the file space being truncated is contained within a page
4388 * just zero out and unmap the middle of that page
4390 err = ext4_discard_partial_page_buffers(handle,
4391 mapping, offset, length, 0);
4393 if (err)
4394 goto out;
4395 } else {
4397 * zero out and unmap the partial page that contains
4398 * the start of the hole
4400 page_len = first_page_offset - offset;
4401 if (page_len > 0) {
4402 err = ext4_discard_partial_page_buffers(handle, mapping,
4403 offset, page_len, 0);
4404 if (err)
4405 goto out;
4409 * zero out and unmap the partial page that contains
4410 * the end of the hole
4412 page_len = offset + length - last_page_offset;
4413 if (page_len > 0) {
4414 err = ext4_discard_partial_page_buffers(handle, mapping,
4415 last_page_offset, page_len, 0);
4416 if (err)
4417 goto out;
4423 * If i_size is contained in the last page, we need to
4424 * unmap and zero the partial page after i_size
4426 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4427 inode->i_size % PAGE_CACHE_SIZE != 0) {
4429 page_len = PAGE_CACHE_SIZE -
4430 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4432 if (page_len > 0) {
4433 err = ext4_discard_partial_page_buffers(handle,
4434 mapping, inode->i_size, page_len, 0);
4436 if (err)
4437 goto out;
4441 /* If there are no blocks to remove, return now */
4442 if (first_block >= last_block)
4443 goto out;
4445 down_write(&EXT4_I(inode)->i_data_sem);
4446 ext4_ext_invalidate_cache(inode);
4447 ext4_discard_preallocations(inode);
4450 * Loop over all the blocks and identify blocks
4451 * that need to be punched out
4453 iblock = first_block;
4454 blocks_released = 0;
4455 while (iblock < last_block) {
4456 max_blocks = last_block - iblock;
4457 num_blocks = 1;
4458 memset(&map, 0, sizeof(map));
4459 map.m_lblk = iblock;
4460 map.m_len = max_blocks;
4461 ret = ext4_ext_map_blocks(handle, inode, &map,
4462 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4464 if (ret > 0) {
4465 blocks_released += ret;
4466 num_blocks = ret;
4467 } else if (ret == 0) {
4469 * If map blocks could not find the block,
4470 * then it is in a hole. If the hole was
4471 * not already cached, then map blocks should
4472 * put it in the cache. So we can get the hole
4473 * out of the cache
4475 memset(&cache_ex, 0, sizeof(cache_ex));
4476 if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4477 !cache_ex.ec_start) {
4479 /* The hole is cached */
4480 num_blocks = cache_ex.ec_block +
4481 cache_ex.ec_len - iblock;
4483 } else {
4484 /* The block could not be identified */
4485 err = -EIO;
4486 break;
4488 } else {
4489 /* Map blocks error */
4490 err = ret;
4491 break;
4494 if (num_blocks == 0) {
4495 /* This condition should never happen */
4496 ext_debug("Block lookup failed");
4497 err = -EIO;
4498 break;
4501 iblock += num_blocks;
4504 if (blocks_released > 0) {
4505 ext4_ext_invalidate_cache(inode);
4506 ext4_discard_preallocations(inode);
4509 if (IS_SYNC(inode))
4510 ext4_handle_sync(handle);
4512 up_write(&EXT4_I(inode)->i_data_sem);
4514 out:
4515 ext4_orphan_del(handle, inode);
4516 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4517 ext4_mark_inode_dirty(handle, inode);
4518 ext4_journal_stop(handle);
4519 return err;
4521 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4522 __u64 start, __u64 len)
4524 ext4_lblk_t start_blk;
4525 int error = 0;
4527 /* fallback to generic here if not in extents fmt */
4528 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4529 return generic_block_fiemap(inode, fieinfo, start, len,
4530 ext4_get_block);
4532 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4533 return -EBADR;
4535 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4536 error = ext4_xattr_fiemap(inode, fieinfo);
4537 } else {
4538 ext4_lblk_t len_blks;
4539 __u64 last_blk;
4541 start_blk = start >> inode->i_sb->s_blocksize_bits;
4542 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4543 if (last_blk >= EXT_MAX_BLOCKS)
4544 last_blk = EXT_MAX_BLOCKS-1;
4545 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4548 * Walk the extent tree gathering extent information.
4549 * ext4_ext_fiemap_cb will push extents back to user.
4551 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4552 ext4_ext_fiemap_cb, fieinfo);
4555 return error;