arm64: dts: r8a7796: Add reset control properties for audio
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp_output.c
blob4858e190f6ac130c9441f58cb8944cc82bf67270
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 const struct tcp_sock *tp = tcp_sk(sk);
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
119 static __u16 tcp_advertise_mss(struct sock *sk)
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
134 return (__u16)mss;
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_time_stamp;
155 tp->snd_cwnd_used = 0;
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_time_stamp;
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
168 tp->lsndtime = now;
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
185 u32 tcp_default_init_rwnd(u32 mss)
187 /* Initial receive window should be twice of TCP_INIT_CWND to
188 * enable proper sending of new unsent data during fast recovery
189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 * limit when mss is larger than 1460.
192 u32 init_rwnd = TCP_INIT_CWND * 2;
194 if (mss > 1460)
195 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 return init_rwnd;
199 /* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
206 void tcp_select_initial_window(int __space, __u32 mss,
207 __u32 *rcv_wnd, __u32 *window_clamp,
208 int wscale_ok, __u8 *rcv_wscale,
209 __u32 init_rcv_wnd)
211 unsigned int space = (__space < 0 ? 0 : __space);
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp == 0)
215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 space = min(*window_clamp, space);
218 /* Quantize space offering to a multiple of mss if possible. */
219 if (space > mss)
220 space = rounddown(space, mss);
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
230 if (sysctl_tcp_workaround_signed_windows)
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 else
233 (*rcv_wnd) = space;
235 (*rcv_wscale) = 0;
236 if (wscale_ok) {
237 /* Set window scaling on max possible window */
238 space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 space = max_t(u32, space, sysctl_rmem_max);
240 space = min_t(u32, space, *window_clamp);
241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 space >>= 1;
243 (*rcv_wscale)++;
247 if (mss > (1 << *rcv_wscale)) {
248 if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 init_rcv_wnd = tcp_default_init_rwnd(mss);
250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
253 /* Set the clamp no higher than max representable value */
254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
256 EXPORT_SYMBOL(tcp_select_initial_window);
258 /* Chose a new window to advertise, update state in tcp_sock for the
259 * socket, and return result with RFC1323 scaling applied. The return
260 * value can be stuffed directly into th->window for an outgoing
261 * frame.
263 static u16 tcp_select_window(struct sock *sk)
265 struct tcp_sock *tp = tcp_sk(sk);
266 u32 old_win = tp->rcv_wnd;
267 u32 cur_win = tcp_receive_window(tp);
268 u32 new_win = __tcp_select_window(sk);
270 /* Never shrink the offered window */
271 if (new_win < cur_win) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
277 * Relax Will Robinson.
279 if (new_win == 0)
280 NET_INC_STATS(sock_net(sk),
281 LINUX_MIB_TCPWANTZEROWINDOWADV);
282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
284 tp->rcv_wnd = new_win;
285 tp->rcv_wup = tp->rcv_nxt;
287 /* Make sure we do not exceed the maximum possible
288 * scaled window.
290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 new_win = min(new_win, MAX_TCP_WINDOW);
292 else
293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
295 /* RFC1323 scaling applied */
296 new_win >>= tp->rx_opt.rcv_wscale;
298 /* If we advertise zero window, disable fast path. */
299 if (new_win == 0) {
300 tp->pred_flags = 0;
301 if (old_win)
302 NET_INC_STATS(sock_net(sk),
303 LINUX_MIB_TCPTOZEROWINDOWADV);
304 } else if (old_win == 0) {
305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
308 return new_win;
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
314 const struct tcp_sock *tp = tcp_sk(sk);
316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 if (!(tp->ecn_flags & TCP_ECN_OK))
318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 else if (tcp_ca_needs_ecn(sk))
320 INET_ECN_xmit(sk);
323 /* Packet ECN state for a SYN. */
324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 struct tcp_sock *tp = tcp_sk(sk);
327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 tcp_ca_needs_ecn(sk);
330 if (!use_ecn) {
331 const struct dst_entry *dst = __sk_dst_get(sk);
333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 use_ecn = true;
337 tp->ecn_flags = 0;
339 if (use_ecn) {
340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 tp->ecn_flags = TCP_ECN_OK;
342 if (tcp_ca_needs_ecn(sk))
343 INET_ECN_xmit(sk);
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 /* tp->ecn_flags are cleared at a later point in time when
351 * SYN ACK is ultimatively being received.
353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 if (inet_rsk(req)->ecn_ok)
360 th->ece = 1;
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364 * be sent.
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 struct tcphdr *th, int tcp_header_len)
369 struct tcp_sock *tp = tcp_sk(sk);
371 if (tp->ecn_flags & TCP_ECN_OK) {
372 /* Not-retransmitted data segment: set ECT and inject CWR. */
373 if (skb->len != tcp_header_len &&
374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 INET_ECN_xmit(sk);
376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 th->cwr = 1;
379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 } else if (!tcp_ca_needs_ecn(sk)) {
382 /* ACK or retransmitted segment: clear ECT|CE */
383 INET_ECN_dontxmit(sk);
385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 th->ece = 1;
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391 * auto increment end seqno.
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 skb->ip_summed = CHECKSUM_PARTIAL;
396 skb->csum = 0;
398 TCP_SKB_CB(skb)->tcp_flags = flags;
399 TCP_SKB_CB(skb)->sacked = 0;
401 tcp_skb_pcount_set(skb, 1);
403 TCP_SKB_CB(skb)->seq = seq;
404 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 seq++;
406 TCP_SKB_CB(skb)->end_seq = seq;
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
411 return tp->snd_una != tp->snd_up;
414 #define OPTION_SACK_ADVERTISE (1 << 0)
415 #define OPTION_TS (1 << 1)
416 #define OPTION_MD5 (1 << 2)
417 #define OPTION_WSCALE (1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
420 struct tcp_out_options {
421 u16 options; /* bit field of OPTION_* */
422 u16 mss; /* 0 to disable */
423 u8 ws; /* window scale, 0 to disable */
424 u8 num_sack_blocks; /* number of SACK blocks to include */
425 u8 hash_size; /* bytes in hash_location */
426 __u8 *hash_location; /* temporary pointer, overloaded */
427 __u32 tsval, tsecr; /* need to include OPTION_TS */
428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
431 /* Write previously computed TCP options to the packet.
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operability perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 struct tcp_out_options *opts)
447 u16 options = opts->options; /* mungable copy */
449 if (unlikely(OPTION_MD5 & options)) {
450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 /* overload cookie hash location */
453 opts->hash_location = (__u8 *)ptr;
454 ptr += 4;
457 if (unlikely(opts->mss)) {
458 *ptr++ = htonl((TCPOPT_MSS << 24) |
459 (TCPOLEN_MSS << 16) |
460 opts->mss);
463 if (likely(OPTION_TS & options)) {
464 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 (TCPOLEN_SACK_PERM << 16) |
467 (TCPOPT_TIMESTAMP << 8) |
468 TCPOLEN_TIMESTAMP);
469 options &= ~OPTION_SACK_ADVERTISE;
470 } else {
471 *ptr++ = htonl((TCPOPT_NOP << 24) |
472 (TCPOPT_NOP << 16) |
473 (TCPOPT_TIMESTAMP << 8) |
474 TCPOLEN_TIMESTAMP);
476 *ptr++ = htonl(opts->tsval);
477 *ptr++ = htonl(opts->tsecr);
480 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_SACK_PERM << 8) |
484 TCPOLEN_SACK_PERM);
487 if (unlikely(OPTION_WSCALE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_WINDOW << 16) |
490 (TCPOLEN_WINDOW << 8) |
491 opts->ws);
494 if (unlikely(opts->num_sack_blocks)) {
495 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 tp->duplicate_sack : tp->selective_acks;
497 int this_sack;
499 *ptr++ = htonl((TCPOPT_NOP << 24) |
500 (TCPOPT_NOP << 16) |
501 (TCPOPT_SACK << 8) |
502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 TCPOLEN_SACK_PERBLOCK)));
505 for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 ++this_sack) {
507 *ptr++ = htonl(sp[this_sack].start_seq);
508 *ptr++ = htonl(sp[this_sack].end_seq);
511 tp->rx_opt.dsack = 0;
514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 u8 *p = (u8 *)ptr;
517 u32 len; /* Fast Open option length */
519 if (foc->exp) {
520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 TCPOPT_FASTOPEN_MAGIC);
523 p += TCPOLEN_EXP_FASTOPEN_BASE;
524 } else {
525 len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 *p++ = TCPOPT_FASTOPEN;
527 *p++ = len;
530 memcpy(p, foc->val, foc->len);
531 if ((len & 3) == 2) {
532 p[foc->len] = TCPOPT_NOP;
533 p[foc->len + 1] = TCPOPT_NOP;
535 ptr += (len + 3) >> 2;
539 /* Compute TCP options for SYN packets. This is not the final
540 * network wire format yet.
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 struct tcp_out_options *opts,
544 struct tcp_md5sig_key **md5)
546 struct tcp_sock *tp = tcp_sk(sk);
547 unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
550 #ifdef CONFIG_TCP_MD5SIG
551 *md5 = tp->af_specific->md5_lookup(sk, sk);
552 if (*md5) {
553 opts->options |= OPTION_MD5;
554 remaining -= TCPOLEN_MD5SIG_ALIGNED;
556 #else
557 *md5 = NULL;
558 #endif
560 /* We always get an MSS option. The option bytes which will be seen in
561 * normal data packets should timestamps be used, must be in the MSS
562 * advertised. But we subtract them from tp->mss_cache so that
563 * calculations in tcp_sendmsg are simpler etc. So account for this
564 * fact here if necessary. If we don't do this correctly, as a
565 * receiver we won't recognize data packets as being full sized when we
566 * should, and thus we won't abide by the delayed ACK rules correctly.
567 * SACKs don't matter, we never delay an ACK when we have any of those
568 * going out. */
569 opts->mss = tcp_advertise_mss(sk);
570 remaining -= TCPOLEN_MSS_ALIGNED;
572 if (likely(sysctl_tcp_timestamps && !*md5)) {
573 opts->options |= OPTION_TS;
574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 opts->tsecr = tp->rx_opt.ts_recent;
576 remaining -= TCPOLEN_TSTAMP_ALIGNED;
578 if (likely(sysctl_tcp_window_scaling)) {
579 opts->ws = tp->rx_opt.rcv_wscale;
580 opts->options |= OPTION_WSCALE;
581 remaining -= TCPOLEN_WSCALE_ALIGNED;
583 if (likely(sysctl_tcp_sack)) {
584 opts->options |= OPTION_SACK_ADVERTISE;
585 if (unlikely(!(OPTION_TS & opts->options)))
586 remaining -= TCPOLEN_SACKPERM_ALIGNED;
589 if (fastopen && fastopen->cookie.len >= 0) {
590 u32 need = fastopen->cookie.len;
592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 TCPOLEN_FASTOPEN_BASE;
594 need = (need + 3) & ~3U; /* Align to 32 bits */
595 if (remaining >= need) {
596 opts->options |= OPTION_FAST_OPEN_COOKIE;
597 opts->fastopen_cookie = &fastopen->cookie;
598 remaining -= need;
599 tp->syn_fastopen = 1;
600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
604 return MAX_TCP_OPTION_SPACE - remaining;
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 unsigned int mss, struct sk_buff *skb,
610 struct tcp_out_options *opts,
611 const struct tcp_md5sig_key *md5,
612 struct tcp_fastopen_cookie *foc)
614 struct inet_request_sock *ireq = inet_rsk(req);
615 unsigned int remaining = MAX_TCP_OPTION_SPACE;
617 #ifdef CONFIG_TCP_MD5SIG
618 if (md5) {
619 opts->options |= OPTION_MD5;
620 remaining -= TCPOLEN_MD5SIG_ALIGNED;
622 /* We can't fit any SACK blocks in a packet with MD5 + TS
623 * options. There was discussion about disabling SACK
624 * rather than TS in order to fit in better with old,
625 * buggy kernels, but that was deemed to be unnecessary.
627 ireq->tstamp_ok &= !ireq->sack_ok;
629 #endif
631 /* We always send an MSS option. */
632 opts->mss = mss;
633 remaining -= TCPOLEN_MSS_ALIGNED;
635 if (likely(ireq->wscale_ok)) {
636 opts->ws = ireq->rcv_wscale;
637 opts->options |= OPTION_WSCALE;
638 remaining -= TCPOLEN_WSCALE_ALIGNED;
640 if (likely(ireq->tstamp_ok)) {
641 opts->options |= OPTION_TS;
642 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
643 opts->tsecr = req->ts_recent;
644 remaining -= TCPOLEN_TSTAMP_ALIGNED;
646 if (likely(ireq->sack_ok)) {
647 opts->options |= OPTION_SACK_ADVERTISE;
648 if (unlikely(!ireq->tstamp_ok))
649 remaining -= TCPOLEN_SACKPERM_ALIGNED;
651 if (foc != NULL && foc->len >= 0) {
652 u32 need = foc->len;
654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 TCPOLEN_FASTOPEN_BASE;
656 need = (need + 3) & ~3U; /* Align to 32 bits */
657 if (remaining >= need) {
658 opts->options |= OPTION_FAST_OPEN_COOKIE;
659 opts->fastopen_cookie = foc;
660 remaining -= need;
664 return MAX_TCP_OPTION_SPACE - remaining;
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668 * final wire format yet.
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 struct tcp_out_options *opts,
672 struct tcp_md5sig_key **md5)
674 struct tcp_sock *tp = tcp_sk(sk);
675 unsigned int size = 0;
676 unsigned int eff_sacks;
678 opts->options = 0;
680 #ifdef CONFIG_TCP_MD5SIG
681 *md5 = tp->af_specific->md5_lookup(sk, sk);
682 if (unlikely(*md5)) {
683 opts->options |= OPTION_MD5;
684 size += TCPOLEN_MD5SIG_ALIGNED;
686 #else
687 *md5 = NULL;
688 #endif
690 if (likely(tp->rx_opt.tstamp_ok)) {
691 opts->options |= OPTION_TS;
692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 opts->tsecr = tp->rx_opt.ts_recent;
694 size += TCPOLEN_TSTAMP_ALIGNED;
697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 if (unlikely(eff_sacks)) {
699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 opts->num_sack_blocks =
701 min_t(unsigned int, eff_sacks,
702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 TCPOLEN_SACK_PERBLOCK);
704 size += TCPOLEN_SACK_BASE_ALIGNED +
705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
708 return size;
712 /* TCP SMALL QUEUES (TSQ)
714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715 * to reduce RTT and bufferbloat.
716 * We do this using a special skb destructor (tcp_wfree).
718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719 * needs to be reallocated in a driver.
720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722 * Since transmit from skb destructor is forbidden, we use a tasklet
723 * to process all sockets that eventually need to send more skbs.
724 * We use one tasklet per cpu, with its own queue of sockets.
726 struct tsq_tasklet {
727 struct tasklet_struct tasklet;
728 struct list_head head; /* queue of tcp sockets */
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
732 static void tcp_tsq_handler(struct sock *sk)
734 if ((1 << sk->sk_state) &
735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
737 struct tcp_sock *tp = tcp_sk(sk);
739 if (tp->lost_out > tp->retrans_out &&
740 tp->snd_cwnd > tcp_packets_in_flight(tp))
741 tcp_xmit_retransmit_queue(sk);
743 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
744 0, GFP_ATOMIC);
748 * One tasklet per cpu tries to send more skbs.
749 * We run in tasklet context but need to disable irqs when
750 * transferring tsq->head because tcp_wfree() might
751 * interrupt us (non NAPI drivers)
753 static void tcp_tasklet_func(unsigned long data)
755 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
756 LIST_HEAD(list);
757 unsigned long flags;
758 struct list_head *q, *n;
759 struct tcp_sock *tp;
760 struct sock *sk;
762 local_irq_save(flags);
763 list_splice_init(&tsq->head, &list);
764 local_irq_restore(flags);
766 list_for_each_safe(q, n, &list) {
767 tp = list_entry(q, struct tcp_sock, tsq_node);
768 list_del(&tp->tsq_node);
770 sk = (struct sock *)tp;
771 smp_mb__before_atomic();
772 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
774 if (!sk->sk_lock.owned &&
775 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
776 bh_lock_sock(sk);
777 if (!sock_owned_by_user(sk)) {
778 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
779 tcp_tsq_handler(sk);
781 bh_unlock_sock(sk);
784 sk_free(sk);
788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
789 TCPF_WRITE_TIMER_DEFERRED | \
790 TCPF_DELACK_TIMER_DEFERRED | \
791 TCPF_MTU_REDUCED_DEFERRED)
793 * tcp_release_cb - tcp release_sock() callback
794 * @sk: socket
796 * called from release_sock() to perform protocol dependent
797 * actions before socket release.
799 void tcp_release_cb(struct sock *sk)
801 unsigned long flags, nflags;
803 /* perform an atomic operation only if at least one flag is set */
804 do {
805 flags = sk->sk_tsq_flags;
806 if (!(flags & TCP_DEFERRED_ALL))
807 return;
808 nflags = flags & ~TCP_DEFERRED_ALL;
809 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
811 if (flags & TCPF_TSQ_DEFERRED)
812 tcp_tsq_handler(sk);
814 /* Here begins the tricky part :
815 * We are called from release_sock() with :
816 * 1) BH disabled
817 * 2) sk_lock.slock spinlock held
818 * 3) socket owned by us (sk->sk_lock.owned == 1)
820 * But following code is meant to be called from BH handlers,
821 * so we should keep BH disabled, but early release socket ownership
823 sock_release_ownership(sk);
825 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
826 tcp_write_timer_handler(sk);
827 __sock_put(sk);
829 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
830 tcp_delack_timer_handler(sk);
831 __sock_put(sk);
833 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
835 __sock_put(sk);
838 EXPORT_SYMBOL(tcp_release_cb);
840 void __init tcp_tasklet_init(void)
842 int i;
844 for_each_possible_cpu(i) {
845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
847 INIT_LIST_HEAD(&tsq->head);
848 tasklet_init(&tsq->tasklet,
849 tcp_tasklet_func,
850 (unsigned long)tsq);
855 * Write buffer destructor automatically called from kfree_skb.
856 * We can't xmit new skbs from this context, as we might already
857 * hold qdisc lock.
859 void tcp_wfree(struct sk_buff *skb)
861 struct sock *sk = skb->sk;
862 struct tcp_sock *tp = tcp_sk(sk);
863 unsigned long flags, nval, oval;
864 int wmem;
866 /* Keep one reference on sk_wmem_alloc.
867 * Will be released by sk_free() from here or tcp_tasklet_func()
869 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
871 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
872 * Wait until our queues (qdisc + devices) are drained.
873 * This gives :
874 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
875 * - chance for incoming ACK (processed by another cpu maybe)
876 * to migrate this flow (skb->ooo_okay will be eventually set)
878 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
879 goto out;
881 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
882 struct tsq_tasklet *tsq;
883 bool empty;
885 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
886 goto out;
888 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
889 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
890 if (nval != oval)
891 continue;
893 /* queue this socket to tasklet queue */
894 local_irq_save(flags);
895 tsq = this_cpu_ptr(&tsq_tasklet);
896 empty = list_empty(&tsq->head);
897 list_add(&tp->tsq_node, &tsq->head);
898 if (empty)
899 tasklet_schedule(&tsq->tasklet);
900 local_irq_restore(flags);
901 return;
903 out:
904 sk_free(sk);
907 /* This routine actually transmits TCP packets queued in by
908 * tcp_do_sendmsg(). This is used by both the initial
909 * transmission and possible later retransmissions.
910 * All SKB's seen here are completely headerless. It is our
911 * job to build the TCP header, and pass the packet down to
912 * IP so it can do the same plus pass the packet off to the
913 * device.
915 * We are working here with either a clone of the original
916 * SKB, or a fresh unique copy made by the retransmit engine.
918 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
919 gfp_t gfp_mask)
921 const struct inet_connection_sock *icsk = inet_csk(sk);
922 struct inet_sock *inet;
923 struct tcp_sock *tp;
924 struct tcp_skb_cb *tcb;
925 struct tcp_out_options opts;
926 unsigned int tcp_options_size, tcp_header_size;
927 struct tcp_md5sig_key *md5;
928 struct tcphdr *th;
929 int err;
931 BUG_ON(!skb || !tcp_skb_pcount(skb));
932 tp = tcp_sk(sk);
934 if (clone_it) {
935 skb_mstamp_get(&skb->skb_mstamp);
936 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
937 - tp->snd_una;
938 tcp_rate_skb_sent(sk, skb);
940 if (unlikely(skb_cloned(skb)))
941 skb = pskb_copy(skb, gfp_mask);
942 else
943 skb = skb_clone(skb, gfp_mask);
944 if (unlikely(!skb))
945 return -ENOBUFS;
948 inet = inet_sk(sk);
949 tcb = TCP_SKB_CB(skb);
950 memset(&opts, 0, sizeof(opts));
952 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
953 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
954 else
955 tcp_options_size = tcp_established_options(sk, skb, &opts,
956 &md5);
957 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
959 /* if no packet is in qdisc/device queue, then allow XPS to select
960 * another queue. We can be called from tcp_tsq_handler()
961 * which holds one reference to sk_wmem_alloc.
963 * TODO: Ideally, in-flight pure ACK packets should not matter here.
964 * One way to get this would be to set skb->truesize = 2 on them.
966 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
968 /* If we had to use memory reserve to allocate this skb,
969 * this might cause drops if packet is looped back :
970 * Other socket might not have SOCK_MEMALLOC.
971 * Packets not looped back do not care about pfmemalloc.
973 skb->pfmemalloc = 0;
975 skb_push(skb, tcp_header_size);
976 skb_reset_transport_header(skb);
978 skb_orphan(skb);
979 skb->sk = sk;
980 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
981 skb_set_hash_from_sk(skb, sk);
982 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
984 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
986 /* Build TCP header and checksum it. */
987 th = (struct tcphdr *)skb->data;
988 th->source = inet->inet_sport;
989 th->dest = inet->inet_dport;
990 th->seq = htonl(tcb->seq);
991 th->ack_seq = htonl(tp->rcv_nxt);
992 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
993 tcb->tcp_flags);
995 th->check = 0;
996 th->urg_ptr = 0;
998 /* The urg_mode check is necessary during a below snd_una win probe */
999 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1000 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1001 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1002 th->urg = 1;
1003 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1004 th->urg_ptr = htons(0xFFFF);
1005 th->urg = 1;
1009 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1010 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1011 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1012 th->window = htons(tcp_select_window(sk));
1013 tcp_ecn_send(sk, skb, th, tcp_header_size);
1014 } else {
1015 /* RFC1323: The window in SYN & SYN/ACK segments
1016 * is never scaled.
1018 th->window = htons(min(tp->rcv_wnd, 65535U));
1020 #ifdef CONFIG_TCP_MD5SIG
1021 /* Calculate the MD5 hash, as we have all we need now */
1022 if (md5) {
1023 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1024 tp->af_specific->calc_md5_hash(opts.hash_location,
1025 md5, sk, skb);
1027 #endif
1029 icsk->icsk_af_ops->send_check(sk, skb);
1031 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1032 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1034 if (skb->len != tcp_header_size) {
1035 tcp_event_data_sent(tp, sk);
1036 tp->data_segs_out += tcp_skb_pcount(skb);
1039 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1040 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1041 tcp_skb_pcount(skb));
1043 tp->segs_out += tcp_skb_pcount(skb);
1044 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1045 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1046 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1048 /* Our usage of tstamp should remain private */
1049 skb->tstamp = 0;
1051 /* Cleanup our debris for IP stacks */
1052 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1053 sizeof(struct inet6_skb_parm)));
1055 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1057 if (likely(err <= 0))
1058 return err;
1060 tcp_enter_cwr(sk);
1062 return net_xmit_eval(err);
1065 /* This routine just queues the buffer for sending.
1067 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1068 * otherwise socket can stall.
1070 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1072 struct tcp_sock *tp = tcp_sk(sk);
1074 /* Advance write_seq and place onto the write_queue. */
1075 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1076 __skb_header_release(skb);
1077 tcp_add_write_queue_tail(sk, skb);
1078 sk->sk_wmem_queued += skb->truesize;
1079 sk_mem_charge(sk, skb->truesize);
1082 /* Initialize TSO segments for a packet. */
1083 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1085 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1086 /* Avoid the costly divide in the normal
1087 * non-TSO case.
1089 tcp_skb_pcount_set(skb, 1);
1090 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1091 } else {
1092 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1093 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1097 /* When a modification to fackets out becomes necessary, we need to check
1098 * skb is counted to fackets_out or not.
1100 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1101 int decr)
1103 struct tcp_sock *tp = tcp_sk(sk);
1105 if (!tp->sacked_out || tcp_is_reno(tp))
1106 return;
1108 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1109 tp->fackets_out -= decr;
1112 /* Pcount in the middle of the write queue got changed, we need to do various
1113 * tweaks to fix counters
1115 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1117 struct tcp_sock *tp = tcp_sk(sk);
1119 tp->packets_out -= decr;
1121 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1122 tp->sacked_out -= decr;
1123 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1124 tp->retrans_out -= decr;
1125 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1126 tp->lost_out -= decr;
1128 /* Reno case is special. Sigh... */
1129 if (tcp_is_reno(tp) && decr > 0)
1130 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1132 tcp_adjust_fackets_out(sk, skb, decr);
1134 if (tp->lost_skb_hint &&
1135 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1136 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1137 tp->lost_cnt_hint -= decr;
1139 tcp_verify_left_out(tp);
1142 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1144 return TCP_SKB_CB(skb)->txstamp_ack ||
1145 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1148 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1150 struct skb_shared_info *shinfo = skb_shinfo(skb);
1152 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1153 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1154 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1155 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1157 shinfo->tx_flags &= ~tsflags;
1158 shinfo2->tx_flags |= tsflags;
1159 swap(shinfo->tskey, shinfo2->tskey);
1160 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1161 TCP_SKB_CB(skb)->txstamp_ack = 0;
1165 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1167 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1168 TCP_SKB_CB(skb)->eor = 0;
1171 /* Function to create two new TCP segments. Shrinks the given segment
1172 * to the specified size and appends a new segment with the rest of the
1173 * packet to the list. This won't be called frequently, I hope.
1174 * Remember, these are still headerless SKBs at this point.
1176 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1177 unsigned int mss_now, gfp_t gfp)
1179 struct tcp_sock *tp = tcp_sk(sk);
1180 struct sk_buff *buff;
1181 int nsize, old_factor;
1182 int nlen;
1183 u8 flags;
1185 if (WARN_ON(len > skb->len))
1186 return -EINVAL;
1188 nsize = skb_headlen(skb) - len;
1189 if (nsize < 0)
1190 nsize = 0;
1192 if (skb_unclone(skb, gfp))
1193 return -ENOMEM;
1195 /* Get a new skb... force flag on. */
1196 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1197 if (!buff)
1198 return -ENOMEM; /* We'll just try again later. */
1200 sk->sk_wmem_queued += buff->truesize;
1201 sk_mem_charge(sk, buff->truesize);
1202 nlen = skb->len - len - nsize;
1203 buff->truesize += nlen;
1204 skb->truesize -= nlen;
1206 /* Correct the sequence numbers. */
1207 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1208 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1209 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1211 /* PSH and FIN should only be set in the second packet. */
1212 flags = TCP_SKB_CB(skb)->tcp_flags;
1213 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1214 TCP_SKB_CB(buff)->tcp_flags = flags;
1215 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1216 tcp_skb_fragment_eor(skb, buff);
1218 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1219 /* Copy and checksum data tail into the new buffer. */
1220 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1221 skb_put(buff, nsize),
1222 nsize, 0);
1224 skb_trim(skb, len);
1226 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1227 } else {
1228 skb->ip_summed = CHECKSUM_PARTIAL;
1229 skb_split(skb, buff, len);
1232 buff->ip_summed = skb->ip_summed;
1234 buff->tstamp = skb->tstamp;
1235 tcp_fragment_tstamp(skb, buff);
1237 old_factor = tcp_skb_pcount(skb);
1239 /* Fix up tso_factor for both original and new SKB. */
1240 tcp_set_skb_tso_segs(skb, mss_now);
1241 tcp_set_skb_tso_segs(buff, mss_now);
1243 /* Update delivered info for the new segment */
1244 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1246 /* If this packet has been sent out already, we must
1247 * adjust the various packet counters.
1249 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1250 int diff = old_factor - tcp_skb_pcount(skb) -
1251 tcp_skb_pcount(buff);
1253 if (diff)
1254 tcp_adjust_pcount(sk, skb, diff);
1257 /* Link BUFF into the send queue. */
1258 __skb_header_release(buff);
1259 tcp_insert_write_queue_after(skb, buff, sk);
1261 return 0;
1264 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1265 * eventually). The difference is that pulled data not copied, but
1266 * immediately discarded.
1268 static int __pskb_trim_head(struct sk_buff *skb, int len)
1270 struct skb_shared_info *shinfo;
1271 int i, k, eat;
1273 eat = min_t(int, len, skb_headlen(skb));
1274 if (eat) {
1275 __skb_pull(skb, eat);
1276 len -= eat;
1277 if (!len)
1278 return 0;
1280 eat = len;
1281 k = 0;
1282 shinfo = skb_shinfo(skb);
1283 for (i = 0; i < shinfo->nr_frags; i++) {
1284 int size = skb_frag_size(&shinfo->frags[i]);
1286 if (size <= eat) {
1287 skb_frag_unref(skb, i);
1288 eat -= size;
1289 } else {
1290 shinfo->frags[k] = shinfo->frags[i];
1291 if (eat) {
1292 shinfo->frags[k].page_offset += eat;
1293 skb_frag_size_sub(&shinfo->frags[k], eat);
1294 eat = 0;
1296 k++;
1299 shinfo->nr_frags = k;
1301 skb_reset_tail_pointer(skb);
1302 skb->data_len -= len;
1303 skb->len = skb->data_len;
1304 return len;
1307 /* Remove acked data from a packet in the transmit queue. */
1308 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1310 u32 delta_truesize;
1312 if (skb_unclone(skb, GFP_ATOMIC))
1313 return -ENOMEM;
1315 delta_truesize = __pskb_trim_head(skb, len);
1317 TCP_SKB_CB(skb)->seq += len;
1318 skb->ip_summed = CHECKSUM_PARTIAL;
1320 if (delta_truesize) {
1321 skb->truesize -= delta_truesize;
1322 sk->sk_wmem_queued -= delta_truesize;
1323 sk_mem_uncharge(sk, delta_truesize);
1324 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1327 /* Any change of skb->len requires recalculation of tso factor. */
1328 if (tcp_skb_pcount(skb) > 1)
1329 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1331 return 0;
1334 /* Calculate MSS not accounting any TCP options. */
1335 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1337 const struct tcp_sock *tp = tcp_sk(sk);
1338 const struct inet_connection_sock *icsk = inet_csk(sk);
1339 int mss_now;
1341 /* Calculate base mss without TCP options:
1342 It is MMS_S - sizeof(tcphdr) of rfc1122
1344 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1346 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1347 if (icsk->icsk_af_ops->net_frag_header_len) {
1348 const struct dst_entry *dst = __sk_dst_get(sk);
1350 if (dst && dst_allfrag(dst))
1351 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1354 /* Clamp it (mss_clamp does not include tcp options) */
1355 if (mss_now > tp->rx_opt.mss_clamp)
1356 mss_now = tp->rx_opt.mss_clamp;
1358 /* Now subtract optional transport overhead */
1359 mss_now -= icsk->icsk_ext_hdr_len;
1361 /* Then reserve room for full set of TCP options and 8 bytes of data */
1362 if (mss_now < 48)
1363 mss_now = 48;
1364 return mss_now;
1367 /* Calculate MSS. Not accounting for SACKs here. */
1368 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1370 /* Subtract TCP options size, not including SACKs */
1371 return __tcp_mtu_to_mss(sk, pmtu) -
1372 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1375 /* Inverse of above */
1376 int tcp_mss_to_mtu(struct sock *sk, int mss)
1378 const struct tcp_sock *tp = tcp_sk(sk);
1379 const struct inet_connection_sock *icsk = inet_csk(sk);
1380 int mtu;
1382 mtu = mss +
1383 tp->tcp_header_len +
1384 icsk->icsk_ext_hdr_len +
1385 icsk->icsk_af_ops->net_header_len;
1387 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1388 if (icsk->icsk_af_ops->net_frag_header_len) {
1389 const struct dst_entry *dst = __sk_dst_get(sk);
1391 if (dst && dst_allfrag(dst))
1392 mtu += icsk->icsk_af_ops->net_frag_header_len;
1394 return mtu;
1396 EXPORT_SYMBOL(tcp_mss_to_mtu);
1398 /* MTU probing init per socket */
1399 void tcp_mtup_init(struct sock *sk)
1401 struct tcp_sock *tp = tcp_sk(sk);
1402 struct inet_connection_sock *icsk = inet_csk(sk);
1403 struct net *net = sock_net(sk);
1405 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1406 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1407 icsk->icsk_af_ops->net_header_len;
1408 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1409 icsk->icsk_mtup.probe_size = 0;
1410 if (icsk->icsk_mtup.enabled)
1411 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1413 EXPORT_SYMBOL(tcp_mtup_init);
1415 /* This function synchronize snd mss to current pmtu/exthdr set.
1417 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1418 for TCP options, but includes only bare TCP header.
1420 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1421 It is minimum of user_mss and mss received with SYN.
1422 It also does not include TCP options.
1424 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1426 tp->mss_cache is current effective sending mss, including
1427 all tcp options except for SACKs. It is evaluated,
1428 taking into account current pmtu, but never exceeds
1429 tp->rx_opt.mss_clamp.
1431 NOTE1. rfc1122 clearly states that advertised MSS
1432 DOES NOT include either tcp or ip options.
1434 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1435 are READ ONLY outside this function. --ANK (980731)
1437 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1439 struct tcp_sock *tp = tcp_sk(sk);
1440 struct inet_connection_sock *icsk = inet_csk(sk);
1441 int mss_now;
1443 if (icsk->icsk_mtup.search_high > pmtu)
1444 icsk->icsk_mtup.search_high = pmtu;
1446 mss_now = tcp_mtu_to_mss(sk, pmtu);
1447 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1449 /* And store cached results */
1450 icsk->icsk_pmtu_cookie = pmtu;
1451 if (icsk->icsk_mtup.enabled)
1452 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1453 tp->mss_cache = mss_now;
1455 return mss_now;
1457 EXPORT_SYMBOL(tcp_sync_mss);
1459 /* Compute the current effective MSS, taking SACKs and IP options,
1460 * and even PMTU discovery events into account.
1462 unsigned int tcp_current_mss(struct sock *sk)
1464 const struct tcp_sock *tp = tcp_sk(sk);
1465 const struct dst_entry *dst = __sk_dst_get(sk);
1466 u32 mss_now;
1467 unsigned int header_len;
1468 struct tcp_out_options opts;
1469 struct tcp_md5sig_key *md5;
1471 mss_now = tp->mss_cache;
1473 if (dst) {
1474 u32 mtu = dst_mtu(dst);
1475 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1476 mss_now = tcp_sync_mss(sk, mtu);
1479 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1480 sizeof(struct tcphdr);
1481 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1482 * some common options. If this is an odd packet (because we have SACK
1483 * blocks etc) then our calculated header_len will be different, and
1484 * we have to adjust mss_now correspondingly */
1485 if (header_len != tp->tcp_header_len) {
1486 int delta = (int) header_len - tp->tcp_header_len;
1487 mss_now -= delta;
1490 return mss_now;
1493 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1494 * As additional protections, we do not touch cwnd in retransmission phases,
1495 * and if application hit its sndbuf limit recently.
1497 static void tcp_cwnd_application_limited(struct sock *sk)
1499 struct tcp_sock *tp = tcp_sk(sk);
1501 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1502 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1503 /* Limited by application or receiver window. */
1504 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1505 u32 win_used = max(tp->snd_cwnd_used, init_win);
1506 if (win_used < tp->snd_cwnd) {
1507 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1508 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1510 tp->snd_cwnd_used = 0;
1512 tp->snd_cwnd_stamp = tcp_time_stamp;
1515 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1517 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1518 struct tcp_sock *tp = tcp_sk(sk);
1520 /* Track the maximum number of outstanding packets in each
1521 * window, and remember whether we were cwnd-limited then.
1523 if (!before(tp->snd_una, tp->max_packets_seq) ||
1524 tp->packets_out > tp->max_packets_out) {
1525 tp->max_packets_out = tp->packets_out;
1526 tp->max_packets_seq = tp->snd_nxt;
1527 tp->is_cwnd_limited = is_cwnd_limited;
1530 if (tcp_is_cwnd_limited(sk)) {
1531 /* Network is feed fully. */
1532 tp->snd_cwnd_used = 0;
1533 tp->snd_cwnd_stamp = tcp_time_stamp;
1534 } else {
1535 /* Network starves. */
1536 if (tp->packets_out > tp->snd_cwnd_used)
1537 tp->snd_cwnd_used = tp->packets_out;
1539 if (sysctl_tcp_slow_start_after_idle &&
1540 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1541 !ca_ops->cong_control)
1542 tcp_cwnd_application_limited(sk);
1544 /* The following conditions together indicate the starvation
1545 * is caused by insufficient sender buffer:
1546 * 1) just sent some data (see tcp_write_xmit)
1547 * 2) not cwnd limited (this else condition)
1548 * 3) no more data to send (null tcp_send_head )
1549 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1551 if (!tcp_send_head(sk) && sk->sk_socket &&
1552 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1553 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1554 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1558 /* Minshall's variant of the Nagle send check. */
1559 static bool tcp_minshall_check(const struct tcp_sock *tp)
1561 return after(tp->snd_sml, tp->snd_una) &&
1562 !after(tp->snd_sml, tp->snd_nxt);
1565 /* Update snd_sml if this skb is under mss
1566 * Note that a TSO packet might end with a sub-mss segment
1567 * The test is really :
1568 * if ((skb->len % mss) != 0)
1569 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1570 * But we can avoid doing the divide again given we already have
1571 * skb_pcount = skb->len / mss_now
1573 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1574 const struct sk_buff *skb)
1576 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1577 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1580 /* Return false, if packet can be sent now without violation Nagle's rules:
1581 * 1. It is full sized. (provided by caller in %partial bool)
1582 * 2. Or it contains FIN. (already checked by caller)
1583 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1584 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1585 * With Minshall's modification: all sent small packets are ACKed.
1587 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1588 int nonagle)
1590 return partial &&
1591 ((nonagle & TCP_NAGLE_CORK) ||
1592 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1595 /* Return how many segs we'd like on a TSO packet,
1596 * to send one TSO packet per ms
1598 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1599 int min_tso_segs)
1601 u32 bytes, segs;
1603 bytes = min(sk->sk_pacing_rate >> 10,
1604 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1606 /* Goal is to send at least one packet per ms,
1607 * not one big TSO packet every 100 ms.
1608 * This preserves ACK clocking and is consistent
1609 * with tcp_tso_should_defer() heuristic.
1611 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1613 return min_t(u32, segs, sk->sk_gso_max_segs);
1615 EXPORT_SYMBOL(tcp_tso_autosize);
1617 /* Return the number of segments we want in the skb we are transmitting.
1618 * See if congestion control module wants to decide; otherwise, autosize.
1620 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1622 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1623 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1625 return tso_segs ? :
1626 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1629 /* Returns the portion of skb which can be sent right away */
1630 static unsigned int tcp_mss_split_point(const struct sock *sk,
1631 const struct sk_buff *skb,
1632 unsigned int mss_now,
1633 unsigned int max_segs,
1634 int nonagle)
1636 const struct tcp_sock *tp = tcp_sk(sk);
1637 u32 partial, needed, window, max_len;
1639 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1640 max_len = mss_now * max_segs;
1642 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1643 return max_len;
1645 needed = min(skb->len, window);
1647 if (max_len <= needed)
1648 return max_len;
1650 partial = needed % mss_now;
1651 /* If last segment is not a full MSS, check if Nagle rules allow us
1652 * to include this last segment in this skb.
1653 * Otherwise, we'll split the skb at last MSS boundary
1655 if (tcp_nagle_check(partial != 0, tp, nonagle))
1656 return needed - partial;
1658 return needed;
1661 /* Can at least one segment of SKB be sent right now, according to the
1662 * congestion window rules? If so, return how many segments are allowed.
1664 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1665 const struct sk_buff *skb)
1667 u32 in_flight, cwnd, halfcwnd;
1669 /* Don't be strict about the congestion window for the final FIN. */
1670 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1671 tcp_skb_pcount(skb) == 1)
1672 return 1;
1674 in_flight = tcp_packets_in_flight(tp);
1675 cwnd = tp->snd_cwnd;
1676 if (in_flight >= cwnd)
1677 return 0;
1679 /* For better scheduling, ensure we have at least
1680 * 2 GSO packets in flight.
1682 halfcwnd = max(cwnd >> 1, 1U);
1683 return min(halfcwnd, cwnd - in_flight);
1686 /* Initialize TSO state of a skb.
1687 * This must be invoked the first time we consider transmitting
1688 * SKB onto the wire.
1690 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1692 int tso_segs = tcp_skb_pcount(skb);
1694 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1695 tcp_set_skb_tso_segs(skb, mss_now);
1696 tso_segs = tcp_skb_pcount(skb);
1698 return tso_segs;
1702 /* Return true if the Nagle test allows this packet to be
1703 * sent now.
1705 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1706 unsigned int cur_mss, int nonagle)
1708 /* Nagle rule does not apply to frames, which sit in the middle of the
1709 * write_queue (they have no chances to get new data).
1711 * This is implemented in the callers, where they modify the 'nonagle'
1712 * argument based upon the location of SKB in the send queue.
1714 if (nonagle & TCP_NAGLE_PUSH)
1715 return true;
1717 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1718 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1719 return true;
1721 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1722 return true;
1724 return false;
1727 /* Does at least the first segment of SKB fit into the send window? */
1728 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1729 const struct sk_buff *skb,
1730 unsigned int cur_mss)
1732 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1734 if (skb->len > cur_mss)
1735 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1737 return !after(end_seq, tcp_wnd_end(tp));
1740 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1741 * should be put on the wire right now. If so, it returns the number of
1742 * packets allowed by the congestion window.
1744 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1745 unsigned int cur_mss, int nonagle)
1747 const struct tcp_sock *tp = tcp_sk(sk);
1748 unsigned int cwnd_quota;
1750 tcp_init_tso_segs(skb, cur_mss);
1752 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1753 return 0;
1755 cwnd_quota = tcp_cwnd_test(tp, skb);
1756 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1757 cwnd_quota = 0;
1759 return cwnd_quota;
1762 /* Test if sending is allowed right now. */
1763 bool tcp_may_send_now(struct sock *sk)
1765 const struct tcp_sock *tp = tcp_sk(sk);
1766 struct sk_buff *skb = tcp_send_head(sk);
1768 return skb &&
1769 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1770 (tcp_skb_is_last(sk, skb) ?
1771 tp->nonagle : TCP_NAGLE_PUSH));
1774 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1775 * which is put after SKB on the list. It is very much like
1776 * tcp_fragment() except that it may make several kinds of assumptions
1777 * in order to speed up the splitting operation. In particular, we
1778 * know that all the data is in scatter-gather pages, and that the
1779 * packet has never been sent out before (and thus is not cloned).
1781 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1782 unsigned int mss_now, gfp_t gfp)
1784 struct sk_buff *buff;
1785 int nlen = skb->len - len;
1786 u8 flags;
1788 /* All of a TSO frame must be composed of paged data. */
1789 if (skb->len != skb->data_len)
1790 return tcp_fragment(sk, skb, len, mss_now, gfp);
1792 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1793 if (unlikely(!buff))
1794 return -ENOMEM;
1796 sk->sk_wmem_queued += buff->truesize;
1797 sk_mem_charge(sk, buff->truesize);
1798 buff->truesize += nlen;
1799 skb->truesize -= nlen;
1801 /* Correct the sequence numbers. */
1802 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1803 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1804 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1806 /* PSH and FIN should only be set in the second packet. */
1807 flags = TCP_SKB_CB(skb)->tcp_flags;
1808 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1809 TCP_SKB_CB(buff)->tcp_flags = flags;
1811 /* This packet was never sent out yet, so no SACK bits. */
1812 TCP_SKB_CB(buff)->sacked = 0;
1814 tcp_skb_fragment_eor(skb, buff);
1816 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1817 skb_split(skb, buff, len);
1818 tcp_fragment_tstamp(skb, buff);
1820 /* Fix up tso_factor for both original and new SKB. */
1821 tcp_set_skb_tso_segs(skb, mss_now);
1822 tcp_set_skb_tso_segs(buff, mss_now);
1824 /* Link BUFF into the send queue. */
1825 __skb_header_release(buff);
1826 tcp_insert_write_queue_after(skb, buff, sk);
1828 return 0;
1831 /* Try to defer sending, if possible, in order to minimize the amount
1832 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1834 * This algorithm is from John Heffner.
1836 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1837 bool *is_cwnd_limited, u32 max_segs)
1839 const struct inet_connection_sock *icsk = inet_csk(sk);
1840 u32 age, send_win, cong_win, limit, in_flight;
1841 struct tcp_sock *tp = tcp_sk(sk);
1842 struct skb_mstamp now;
1843 struct sk_buff *head;
1844 int win_divisor;
1846 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1847 goto send_now;
1849 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1850 goto send_now;
1852 /* Avoid bursty behavior by allowing defer
1853 * only if the last write was recent.
1855 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1856 goto send_now;
1858 in_flight = tcp_packets_in_flight(tp);
1860 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1862 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1864 /* From in_flight test above, we know that cwnd > in_flight. */
1865 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1867 limit = min(send_win, cong_win);
1869 /* If a full-sized TSO skb can be sent, do it. */
1870 if (limit >= max_segs * tp->mss_cache)
1871 goto send_now;
1873 /* Middle in queue won't get any more data, full sendable already? */
1874 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1875 goto send_now;
1877 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1878 if (win_divisor) {
1879 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1881 /* If at least some fraction of a window is available,
1882 * just use it.
1884 chunk /= win_divisor;
1885 if (limit >= chunk)
1886 goto send_now;
1887 } else {
1888 /* Different approach, try not to defer past a single
1889 * ACK. Receiver should ACK every other full sized
1890 * frame, so if we have space for more than 3 frames
1891 * then send now.
1893 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1894 goto send_now;
1897 head = tcp_write_queue_head(sk);
1898 skb_mstamp_get(&now);
1899 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1900 /* If next ACK is likely to come too late (half srtt), do not defer */
1901 if (age < (tp->srtt_us >> 4))
1902 goto send_now;
1904 /* Ok, it looks like it is advisable to defer. */
1906 if (cong_win < send_win && cong_win <= skb->len)
1907 *is_cwnd_limited = true;
1909 return true;
1911 send_now:
1912 return false;
1915 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1917 struct inet_connection_sock *icsk = inet_csk(sk);
1918 struct tcp_sock *tp = tcp_sk(sk);
1919 struct net *net = sock_net(sk);
1920 u32 interval;
1921 s32 delta;
1923 interval = net->ipv4.sysctl_tcp_probe_interval;
1924 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1925 if (unlikely(delta >= interval * HZ)) {
1926 int mss = tcp_current_mss(sk);
1928 /* Update current search range */
1929 icsk->icsk_mtup.probe_size = 0;
1930 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1931 sizeof(struct tcphdr) +
1932 icsk->icsk_af_ops->net_header_len;
1933 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1935 /* Update probe time stamp */
1936 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1940 /* Create a new MTU probe if we are ready.
1941 * MTU probe is regularly attempting to increase the path MTU by
1942 * deliberately sending larger packets. This discovers routing
1943 * changes resulting in larger path MTUs.
1945 * Returns 0 if we should wait to probe (no cwnd available),
1946 * 1 if a probe was sent,
1947 * -1 otherwise
1949 static int tcp_mtu_probe(struct sock *sk)
1951 struct inet_connection_sock *icsk = inet_csk(sk);
1952 struct tcp_sock *tp = tcp_sk(sk);
1953 struct sk_buff *skb, *nskb, *next;
1954 struct net *net = sock_net(sk);
1955 int probe_size;
1956 int size_needed;
1957 int copy, len;
1958 int mss_now;
1959 int interval;
1961 /* Not currently probing/verifying,
1962 * not in recovery,
1963 * have enough cwnd, and
1964 * not SACKing (the variable headers throw things off)
1966 if (likely(!icsk->icsk_mtup.enabled ||
1967 icsk->icsk_mtup.probe_size ||
1968 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1969 tp->snd_cwnd < 11 ||
1970 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1971 return -1;
1973 /* Use binary search for probe_size between tcp_mss_base,
1974 * and current mss_clamp. if (search_high - search_low)
1975 * smaller than a threshold, backoff from probing.
1977 mss_now = tcp_current_mss(sk);
1978 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1979 icsk->icsk_mtup.search_low) >> 1);
1980 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1981 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1982 /* When misfortune happens, we are reprobing actively,
1983 * and then reprobe timer has expired. We stick with current
1984 * probing process by not resetting search range to its orignal.
1986 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1987 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1988 /* Check whether enough time has elaplased for
1989 * another round of probing.
1991 tcp_mtu_check_reprobe(sk);
1992 return -1;
1995 /* Have enough data in the send queue to probe? */
1996 if (tp->write_seq - tp->snd_nxt < size_needed)
1997 return -1;
1999 if (tp->snd_wnd < size_needed)
2000 return -1;
2001 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2002 return 0;
2004 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2005 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2006 if (!tcp_packets_in_flight(tp))
2007 return -1;
2008 else
2009 return 0;
2012 /* We're allowed to probe. Build it now. */
2013 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2014 if (!nskb)
2015 return -1;
2016 sk->sk_wmem_queued += nskb->truesize;
2017 sk_mem_charge(sk, nskb->truesize);
2019 skb = tcp_send_head(sk);
2021 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2022 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2023 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2024 TCP_SKB_CB(nskb)->sacked = 0;
2025 nskb->csum = 0;
2026 nskb->ip_summed = skb->ip_summed;
2028 tcp_insert_write_queue_before(nskb, skb, sk);
2030 len = 0;
2031 tcp_for_write_queue_from_safe(skb, next, sk) {
2032 copy = min_t(int, skb->len, probe_size - len);
2033 if (nskb->ip_summed) {
2034 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2035 } else {
2036 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2037 skb_put(nskb, copy),
2038 copy, 0);
2039 nskb->csum = csum_block_add(nskb->csum, csum, len);
2042 if (skb->len <= copy) {
2043 /* We've eaten all the data from this skb.
2044 * Throw it away. */
2045 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2046 tcp_unlink_write_queue(skb, sk);
2047 sk_wmem_free_skb(sk, skb);
2048 } else {
2049 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2050 ~(TCPHDR_FIN|TCPHDR_PSH);
2051 if (!skb_shinfo(skb)->nr_frags) {
2052 skb_pull(skb, copy);
2053 if (skb->ip_summed != CHECKSUM_PARTIAL)
2054 skb->csum = csum_partial(skb->data,
2055 skb->len, 0);
2056 } else {
2057 __pskb_trim_head(skb, copy);
2058 tcp_set_skb_tso_segs(skb, mss_now);
2060 TCP_SKB_CB(skb)->seq += copy;
2063 len += copy;
2065 if (len >= probe_size)
2066 break;
2068 tcp_init_tso_segs(nskb, nskb->len);
2070 /* We're ready to send. If this fails, the probe will
2071 * be resegmented into mss-sized pieces by tcp_write_xmit().
2073 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2074 /* Decrement cwnd here because we are sending
2075 * effectively two packets. */
2076 tp->snd_cwnd--;
2077 tcp_event_new_data_sent(sk, nskb);
2079 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2080 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2081 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2083 return 1;
2086 return -1;
2089 /* TCP Small Queues :
2090 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2091 * (These limits are doubled for retransmits)
2092 * This allows for :
2093 * - better RTT estimation and ACK scheduling
2094 * - faster recovery
2095 * - high rates
2096 * Alas, some drivers / subsystems require a fair amount
2097 * of queued bytes to ensure line rate.
2098 * One example is wifi aggregation (802.11 AMPDU)
2100 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2101 unsigned int factor)
2103 unsigned int limit;
2105 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2106 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2107 limit <<= factor;
2109 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2110 /* Always send the 1st or 2nd skb in write queue.
2111 * No need to wait for TX completion to call us back,
2112 * after softirq/tasklet schedule.
2113 * This helps when TX completions are delayed too much.
2115 if (skb == sk->sk_write_queue.next ||
2116 skb->prev == sk->sk_write_queue.next)
2117 return false;
2119 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2120 /* It is possible TX completion already happened
2121 * before we set TSQ_THROTTLED, so we must
2122 * test again the condition.
2124 smp_mb__after_atomic();
2125 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2126 return true;
2128 return false;
2131 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2133 const u32 now = tcp_time_stamp;
2135 if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2136 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2137 tp->chrono_start = now;
2138 tp->chrono_type = new;
2141 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2143 struct tcp_sock *tp = tcp_sk(sk);
2145 /* If there are multiple conditions worthy of tracking in a
2146 * chronograph then the highest priority enum takes precedence
2147 * over the other conditions. So that if something "more interesting"
2148 * starts happening, stop the previous chrono and start a new one.
2150 if (type > tp->chrono_type)
2151 tcp_chrono_set(tp, type);
2154 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2156 struct tcp_sock *tp = tcp_sk(sk);
2159 /* There are multiple conditions worthy of tracking in a
2160 * chronograph, so that the highest priority enum takes
2161 * precedence over the other conditions (see tcp_chrono_start).
2162 * If a condition stops, we only stop chrono tracking if
2163 * it's the "most interesting" or current chrono we are
2164 * tracking and starts busy chrono if we have pending data.
2166 if (tcp_write_queue_empty(sk))
2167 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2168 else if (type == tp->chrono_type)
2169 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2172 /* This routine writes packets to the network. It advances the
2173 * send_head. This happens as incoming acks open up the remote
2174 * window for us.
2176 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2177 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2178 * account rare use of URG, this is not a big flaw.
2180 * Send at most one packet when push_one > 0. Temporarily ignore
2181 * cwnd limit to force at most one packet out when push_one == 2.
2183 * Returns true, if no segments are in flight and we have queued segments,
2184 * but cannot send anything now because of SWS or another problem.
2186 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2187 int push_one, gfp_t gfp)
2189 struct tcp_sock *tp = tcp_sk(sk);
2190 struct sk_buff *skb;
2191 unsigned int tso_segs, sent_pkts;
2192 int cwnd_quota;
2193 int result;
2194 bool is_cwnd_limited = false, is_rwnd_limited = false;
2195 u32 max_segs;
2197 sent_pkts = 0;
2199 if (!push_one) {
2200 /* Do MTU probing. */
2201 result = tcp_mtu_probe(sk);
2202 if (!result) {
2203 return false;
2204 } else if (result > 0) {
2205 sent_pkts = 1;
2209 max_segs = tcp_tso_segs(sk, mss_now);
2210 while ((skb = tcp_send_head(sk))) {
2211 unsigned int limit;
2213 tso_segs = tcp_init_tso_segs(skb, mss_now);
2214 BUG_ON(!tso_segs);
2216 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2217 /* "skb_mstamp" is used as a start point for the retransmit timer */
2218 skb_mstamp_get(&skb->skb_mstamp);
2219 goto repair; /* Skip network transmission */
2222 cwnd_quota = tcp_cwnd_test(tp, skb);
2223 if (!cwnd_quota) {
2224 if (push_one == 2)
2225 /* Force out a loss probe pkt. */
2226 cwnd_quota = 1;
2227 else
2228 break;
2231 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2232 is_rwnd_limited = true;
2233 break;
2236 if (tso_segs == 1) {
2237 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2238 (tcp_skb_is_last(sk, skb) ?
2239 nonagle : TCP_NAGLE_PUSH))))
2240 break;
2241 } else {
2242 if (!push_one &&
2243 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2244 max_segs))
2245 break;
2248 limit = mss_now;
2249 if (tso_segs > 1 && !tcp_urg_mode(tp))
2250 limit = tcp_mss_split_point(sk, skb, mss_now,
2251 min_t(unsigned int,
2252 cwnd_quota,
2253 max_segs),
2254 nonagle);
2256 if (skb->len > limit &&
2257 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2258 break;
2260 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2261 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2262 if (tcp_small_queue_check(sk, skb, 0))
2263 break;
2265 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2266 break;
2268 repair:
2269 /* Advance the send_head. This one is sent out.
2270 * This call will increment packets_out.
2272 tcp_event_new_data_sent(sk, skb);
2274 tcp_minshall_update(tp, mss_now, skb);
2275 sent_pkts += tcp_skb_pcount(skb);
2277 if (push_one)
2278 break;
2281 if (is_rwnd_limited)
2282 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2283 else
2284 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2286 if (likely(sent_pkts)) {
2287 if (tcp_in_cwnd_reduction(sk))
2288 tp->prr_out += sent_pkts;
2290 /* Send one loss probe per tail loss episode. */
2291 if (push_one != 2)
2292 tcp_schedule_loss_probe(sk);
2293 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2294 tcp_cwnd_validate(sk, is_cwnd_limited);
2295 return false;
2297 return !tp->packets_out && tcp_send_head(sk);
2300 bool tcp_schedule_loss_probe(struct sock *sk)
2302 struct inet_connection_sock *icsk = inet_csk(sk);
2303 struct tcp_sock *tp = tcp_sk(sk);
2304 u32 timeout, tlp_time_stamp, rto_time_stamp;
2305 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2307 /* No consecutive loss probes. */
2308 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2309 tcp_rearm_rto(sk);
2310 return false;
2312 /* Don't do any loss probe on a Fast Open connection before 3WHS
2313 * finishes.
2315 if (tp->fastopen_rsk)
2316 return false;
2318 /* TLP is only scheduled when next timer event is RTO. */
2319 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2320 return false;
2322 /* Schedule a loss probe in 2*RTT for SACK capable connections
2323 * in Open state, that are either limited by cwnd or application.
2325 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2326 !tp->packets_out || !tcp_is_sack(tp) ||
2327 icsk->icsk_ca_state != TCP_CA_Open)
2328 return false;
2330 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2331 tcp_send_head(sk))
2332 return false;
2334 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2335 * for delayed ack when there's one outstanding packet. If no RTT
2336 * sample is available then probe after TCP_TIMEOUT_INIT.
2338 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2339 if (tp->packets_out == 1)
2340 timeout = max_t(u32, timeout,
2341 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2342 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2344 /* If RTO is shorter, just schedule TLP in its place. */
2345 tlp_time_stamp = tcp_time_stamp + timeout;
2346 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2347 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2348 s32 delta = rto_time_stamp - tcp_time_stamp;
2349 if (delta > 0)
2350 timeout = delta;
2353 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2354 TCP_RTO_MAX);
2355 return true;
2358 /* Thanks to skb fast clones, we can detect if a prior transmit of
2359 * a packet is still in a qdisc or driver queue.
2360 * In this case, there is very little point doing a retransmit !
2362 static bool skb_still_in_host_queue(const struct sock *sk,
2363 const struct sk_buff *skb)
2365 if (unlikely(skb_fclone_busy(sk, skb))) {
2366 NET_INC_STATS(sock_net(sk),
2367 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2368 return true;
2370 return false;
2373 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2374 * retransmit the last segment.
2376 void tcp_send_loss_probe(struct sock *sk)
2378 struct tcp_sock *tp = tcp_sk(sk);
2379 struct sk_buff *skb;
2380 int pcount;
2381 int mss = tcp_current_mss(sk);
2383 skb = tcp_send_head(sk);
2384 if (skb) {
2385 if (tcp_snd_wnd_test(tp, skb, mss)) {
2386 pcount = tp->packets_out;
2387 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2388 if (tp->packets_out > pcount)
2389 goto probe_sent;
2390 goto rearm_timer;
2392 skb = tcp_write_queue_prev(sk, skb);
2393 } else {
2394 skb = tcp_write_queue_tail(sk);
2397 /* At most one outstanding TLP retransmission. */
2398 if (tp->tlp_high_seq)
2399 goto rearm_timer;
2401 /* Retransmit last segment. */
2402 if (WARN_ON(!skb))
2403 goto rearm_timer;
2405 if (skb_still_in_host_queue(sk, skb))
2406 goto rearm_timer;
2408 pcount = tcp_skb_pcount(skb);
2409 if (WARN_ON(!pcount))
2410 goto rearm_timer;
2412 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2413 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2414 GFP_ATOMIC)))
2415 goto rearm_timer;
2416 skb = tcp_write_queue_next(sk, skb);
2419 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2420 goto rearm_timer;
2422 if (__tcp_retransmit_skb(sk, skb, 1))
2423 goto rearm_timer;
2425 /* Record snd_nxt for loss detection. */
2426 tp->tlp_high_seq = tp->snd_nxt;
2428 probe_sent:
2429 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2430 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2431 inet_csk(sk)->icsk_pending = 0;
2432 rearm_timer:
2433 tcp_rearm_rto(sk);
2436 /* Push out any pending frames which were held back due to
2437 * TCP_CORK or attempt at coalescing tiny packets.
2438 * The socket must be locked by the caller.
2440 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2441 int nonagle)
2443 /* If we are closed, the bytes will have to remain here.
2444 * In time closedown will finish, we empty the write queue and
2445 * all will be happy.
2447 if (unlikely(sk->sk_state == TCP_CLOSE))
2448 return;
2450 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2451 sk_gfp_mask(sk, GFP_ATOMIC)))
2452 tcp_check_probe_timer(sk);
2455 /* Send _single_ skb sitting at the send head. This function requires
2456 * true push pending frames to setup probe timer etc.
2458 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2460 struct sk_buff *skb = tcp_send_head(sk);
2462 BUG_ON(!skb || skb->len < mss_now);
2464 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2467 /* This function returns the amount that we can raise the
2468 * usable window based on the following constraints
2470 * 1. The window can never be shrunk once it is offered (RFC 793)
2471 * 2. We limit memory per socket
2473 * RFC 1122:
2474 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2475 * RECV.NEXT + RCV.WIN fixed until:
2476 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2478 * i.e. don't raise the right edge of the window until you can raise
2479 * it at least MSS bytes.
2481 * Unfortunately, the recommended algorithm breaks header prediction,
2482 * since header prediction assumes th->window stays fixed.
2484 * Strictly speaking, keeping th->window fixed violates the receiver
2485 * side SWS prevention criteria. The problem is that under this rule
2486 * a stream of single byte packets will cause the right side of the
2487 * window to always advance by a single byte.
2489 * Of course, if the sender implements sender side SWS prevention
2490 * then this will not be a problem.
2492 * BSD seems to make the following compromise:
2494 * If the free space is less than the 1/4 of the maximum
2495 * space available and the free space is less than 1/2 mss,
2496 * then set the window to 0.
2497 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2498 * Otherwise, just prevent the window from shrinking
2499 * and from being larger than the largest representable value.
2501 * This prevents incremental opening of the window in the regime
2502 * where TCP is limited by the speed of the reader side taking
2503 * data out of the TCP receive queue. It does nothing about
2504 * those cases where the window is constrained on the sender side
2505 * because the pipeline is full.
2507 * BSD also seems to "accidentally" limit itself to windows that are a
2508 * multiple of MSS, at least until the free space gets quite small.
2509 * This would appear to be a side effect of the mbuf implementation.
2510 * Combining these two algorithms results in the observed behavior
2511 * of having a fixed window size at almost all times.
2513 * Below we obtain similar behavior by forcing the offered window to
2514 * a multiple of the mss when it is feasible to do so.
2516 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2517 * Regular options like TIMESTAMP are taken into account.
2519 u32 __tcp_select_window(struct sock *sk)
2521 struct inet_connection_sock *icsk = inet_csk(sk);
2522 struct tcp_sock *tp = tcp_sk(sk);
2523 /* MSS for the peer's data. Previous versions used mss_clamp
2524 * here. I don't know if the value based on our guesses
2525 * of peer's MSS is better for the performance. It's more correct
2526 * but may be worse for the performance because of rcv_mss
2527 * fluctuations. --SAW 1998/11/1
2529 int mss = icsk->icsk_ack.rcv_mss;
2530 int free_space = tcp_space(sk);
2531 int allowed_space = tcp_full_space(sk);
2532 int full_space = min_t(int, tp->window_clamp, allowed_space);
2533 int window;
2535 if (unlikely(mss > full_space)) {
2536 mss = full_space;
2537 if (mss <= 0)
2538 return 0;
2540 if (free_space < (full_space >> 1)) {
2541 icsk->icsk_ack.quick = 0;
2543 if (tcp_under_memory_pressure(sk))
2544 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2545 4U * tp->advmss);
2547 /* free_space might become our new window, make sure we don't
2548 * increase it due to wscale.
2550 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2552 /* if free space is less than mss estimate, or is below 1/16th
2553 * of the maximum allowed, try to move to zero-window, else
2554 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2555 * new incoming data is dropped due to memory limits.
2556 * With large window, mss test triggers way too late in order
2557 * to announce zero window in time before rmem limit kicks in.
2559 if (free_space < (allowed_space >> 4) || free_space < mss)
2560 return 0;
2563 if (free_space > tp->rcv_ssthresh)
2564 free_space = tp->rcv_ssthresh;
2566 /* Don't do rounding if we are using window scaling, since the
2567 * scaled window will not line up with the MSS boundary anyway.
2569 if (tp->rx_opt.rcv_wscale) {
2570 window = free_space;
2572 /* Advertise enough space so that it won't get scaled away.
2573 * Import case: prevent zero window announcement if
2574 * 1<<rcv_wscale > mss.
2576 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2577 } else {
2578 window = tp->rcv_wnd;
2579 /* Get the largest window that is a nice multiple of mss.
2580 * Window clamp already applied above.
2581 * If our current window offering is within 1 mss of the
2582 * free space we just keep it. This prevents the divide
2583 * and multiply from happening most of the time.
2584 * We also don't do any window rounding when the free space
2585 * is too small.
2587 if (window <= free_space - mss || window > free_space)
2588 window = rounddown(free_space, mss);
2589 else if (mss == full_space &&
2590 free_space > window + (full_space >> 1))
2591 window = free_space;
2594 return window;
2597 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2598 const struct sk_buff *next_skb)
2600 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2601 const struct skb_shared_info *next_shinfo =
2602 skb_shinfo(next_skb);
2603 struct skb_shared_info *shinfo = skb_shinfo(skb);
2605 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2606 shinfo->tskey = next_shinfo->tskey;
2607 TCP_SKB_CB(skb)->txstamp_ack |=
2608 TCP_SKB_CB(next_skb)->txstamp_ack;
2612 /* Collapses two adjacent SKB's during retransmission. */
2613 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2615 struct tcp_sock *tp = tcp_sk(sk);
2616 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2617 int skb_size, next_skb_size;
2619 skb_size = skb->len;
2620 next_skb_size = next_skb->len;
2622 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2624 if (next_skb_size) {
2625 if (next_skb_size <= skb_availroom(skb))
2626 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2627 next_skb_size);
2628 else if (!skb_shift(skb, next_skb, next_skb_size))
2629 return false;
2631 tcp_highest_sack_combine(sk, next_skb, skb);
2633 tcp_unlink_write_queue(next_skb, sk);
2635 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2636 skb->ip_summed = CHECKSUM_PARTIAL;
2638 if (skb->ip_summed != CHECKSUM_PARTIAL)
2639 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2641 /* Update sequence range on original skb. */
2642 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2644 /* Merge over control information. This moves PSH/FIN etc. over */
2645 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2647 /* All done, get rid of second SKB and account for it so
2648 * packet counting does not break.
2650 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2651 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2653 /* changed transmit queue under us so clear hints */
2654 tcp_clear_retrans_hints_partial(tp);
2655 if (next_skb == tp->retransmit_skb_hint)
2656 tp->retransmit_skb_hint = skb;
2658 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2660 tcp_skb_collapse_tstamp(skb, next_skb);
2662 sk_wmem_free_skb(sk, next_skb);
2663 return true;
2666 /* Check if coalescing SKBs is legal. */
2667 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2669 if (tcp_skb_pcount(skb) > 1)
2670 return false;
2671 if (skb_cloned(skb))
2672 return false;
2673 if (skb == tcp_send_head(sk))
2674 return false;
2675 /* Some heuristics for collapsing over SACK'd could be invented */
2676 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2677 return false;
2679 return true;
2682 /* Collapse packets in the retransmit queue to make to create
2683 * less packets on the wire. This is only done on retransmission.
2685 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2686 int space)
2688 struct tcp_sock *tp = tcp_sk(sk);
2689 struct sk_buff *skb = to, *tmp;
2690 bool first = true;
2692 if (!sysctl_tcp_retrans_collapse)
2693 return;
2694 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2695 return;
2697 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2698 if (!tcp_can_collapse(sk, skb))
2699 break;
2701 if (!tcp_skb_can_collapse_to(to))
2702 break;
2704 space -= skb->len;
2706 if (first) {
2707 first = false;
2708 continue;
2711 if (space < 0)
2712 break;
2714 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2715 break;
2717 if (!tcp_collapse_retrans(sk, to))
2718 break;
2722 /* This retransmits one SKB. Policy decisions and retransmit queue
2723 * state updates are done by the caller. Returns non-zero if an
2724 * error occurred which prevented the send.
2726 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2728 struct inet_connection_sock *icsk = inet_csk(sk);
2729 struct tcp_sock *tp = tcp_sk(sk);
2730 unsigned int cur_mss;
2731 int diff, len, err;
2734 /* Inconclusive MTU probe */
2735 if (icsk->icsk_mtup.probe_size)
2736 icsk->icsk_mtup.probe_size = 0;
2738 /* Do not sent more than we queued. 1/4 is reserved for possible
2739 * copying overhead: fragmentation, tunneling, mangling etc.
2741 if (atomic_read(&sk->sk_wmem_alloc) >
2742 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2743 sk->sk_sndbuf))
2744 return -EAGAIN;
2746 if (skb_still_in_host_queue(sk, skb))
2747 return -EBUSY;
2749 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2750 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2751 BUG();
2752 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2753 return -ENOMEM;
2756 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2757 return -EHOSTUNREACH; /* Routing failure or similar. */
2759 cur_mss = tcp_current_mss(sk);
2761 /* If receiver has shrunk his window, and skb is out of
2762 * new window, do not retransmit it. The exception is the
2763 * case, when window is shrunk to zero. In this case
2764 * our retransmit serves as a zero window probe.
2766 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2767 TCP_SKB_CB(skb)->seq != tp->snd_una)
2768 return -EAGAIN;
2770 len = cur_mss * segs;
2771 if (skb->len > len) {
2772 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2773 return -ENOMEM; /* We'll try again later. */
2774 } else {
2775 if (skb_unclone(skb, GFP_ATOMIC))
2776 return -ENOMEM;
2778 diff = tcp_skb_pcount(skb);
2779 tcp_set_skb_tso_segs(skb, cur_mss);
2780 diff -= tcp_skb_pcount(skb);
2781 if (diff)
2782 tcp_adjust_pcount(sk, skb, diff);
2783 if (skb->len < cur_mss)
2784 tcp_retrans_try_collapse(sk, skb, cur_mss);
2787 /* RFC3168, section 6.1.1.1. ECN fallback */
2788 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2789 tcp_ecn_clear_syn(sk, skb);
2791 /* Update global and local TCP statistics. */
2792 segs = tcp_skb_pcount(skb);
2793 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2794 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2795 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2796 tp->total_retrans += segs;
2798 /* make sure skb->data is aligned on arches that require it
2799 * and check if ack-trimming & collapsing extended the headroom
2800 * beyond what csum_start can cover.
2802 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2803 skb_headroom(skb) >= 0xFFFF)) {
2804 struct sk_buff *nskb;
2806 skb_mstamp_get(&skb->skb_mstamp);
2807 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2808 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2809 -ENOBUFS;
2810 } else {
2811 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2814 if (likely(!err)) {
2815 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2816 } else if (err != -EBUSY) {
2817 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2819 return err;
2822 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2824 struct tcp_sock *tp = tcp_sk(sk);
2825 int err = __tcp_retransmit_skb(sk, skb, segs);
2827 if (err == 0) {
2828 #if FASTRETRANS_DEBUG > 0
2829 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2830 net_dbg_ratelimited("retrans_out leaked\n");
2832 #endif
2833 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2834 tp->retrans_out += tcp_skb_pcount(skb);
2836 /* Save stamp of the first retransmit. */
2837 if (!tp->retrans_stamp)
2838 tp->retrans_stamp = tcp_skb_timestamp(skb);
2842 if (tp->undo_retrans < 0)
2843 tp->undo_retrans = 0;
2844 tp->undo_retrans += tcp_skb_pcount(skb);
2845 return err;
2848 /* This gets called after a retransmit timeout, and the initially
2849 * retransmitted data is acknowledged. It tries to continue
2850 * resending the rest of the retransmit queue, until either
2851 * we've sent it all or the congestion window limit is reached.
2852 * If doing SACK, the first ACK which comes back for a timeout
2853 * based retransmit packet might feed us FACK information again.
2854 * If so, we use it to avoid unnecessarily retransmissions.
2856 void tcp_xmit_retransmit_queue(struct sock *sk)
2858 const struct inet_connection_sock *icsk = inet_csk(sk);
2859 struct tcp_sock *tp = tcp_sk(sk);
2860 struct sk_buff *skb;
2861 struct sk_buff *hole = NULL;
2862 u32 max_segs;
2863 int mib_idx;
2865 if (!tp->packets_out)
2866 return;
2868 if (tp->retransmit_skb_hint) {
2869 skb = tp->retransmit_skb_hint;
2870 } else {
2871 skb = tcp_write_queue_head(sk);
2874 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2875 tcp_for_write_queue_from(skb, sk) {
2876 __u8 sacked;
2877 int segs;
2879 if (skb == tcp_send_head(sk))
2880 break;
2881 /* we could do better than to assign each time */
2882 if (!hole)
2883 tp->retransmit_skb_hint = skb;
2885 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2886 if (segs <= 0)
2887 return;
2888 sacked = TCP_SKB_CB(skb)->sacked;
2889 /* In case tcp_shift_skb_data() have aggregated large skbs,
2890 * we need to make sure not sending too bigs TSO packets
2892 segs = min_t(int, segs, max_segs);
2894 if (tp->retrans_out >= tp->lost_out) {
2895 break;
2896 } else if (!(sacked & TCPCB_LOST)) {
2897 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2898 hole = skb;
2899 continue;
2901 } else {
2902 if (icsk->icsk_ca_state != TCP_CA_Loss)
2903 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2904 else
2905 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2908 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2909 continue;
2911 if (tcp_small_queue_check(sk, skb, 1))
2912 return;
2914 if (tcp_retransmit_skb(sk, skb, segs))
2915 return;
2917 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2919 if (tcp_in_cwnd_reduction(sk))
2920 tp->prr_out += tcp_skb_pcount(skb);
2922 if (skb == tcp_write_queue_head(sk) &&
2923 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2924 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2925 inet_csk(sk)->icsk_rto,
2926 TCP_RTO_MAX);
2930 /* We allow to exceed memory limits for FIN packets to expedite
2931 * connection tear down and (memory) recovery.
2932 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2933 * or even be forced to close flow without any FIN.
2934 * In general, we want to allow one skb per socket to avoid hangs
2935 * with edge trigger epoll()
2937 void sk_forced_mem_schedule(struct sock *sk, int size)
2939 int amt;
2941 if (size <= sk->sk_forward_alloc)
2942 return;
2943 amt = sk_mem_pages(size);
2944 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2945 sk_memory_allocated_add(sk, amt);
2947 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2948 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2951 /* Send a FIN. The caller locks the socket for us.
2952 * We should try to send a FIN packet really hard, but eventually give up.
2954 void tcp_send_fin(struct sock *sk)
2956 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2957 struct tcp_sock *tp = tcp_sk(sk);
2959 /* Optimization, tack on the FIN if we have one skb in write queue and
2960 * this skb was not yet sent, or we are under memory pressure.
2961 * Note: in the latter case, FIN packet will be sent after a timeout,
2962 * as TCP stack thinks it has already been transmitted.
2964 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2965 coalesce:
2966 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2967 TCP_SKB_CB(tskb)->end_seq++;
2968 tp->write_seq++;
2969 if (!tcp_send_head(sk)) {
2970 /* This means tskb was already sent.
2971 * Pretend we included the FIN on previous transmit.
2972 * We need to set tp->snd_nxt to the value it would have
2973 * if FIN had been sent. This is because retransmit path
2974 * does not change tp->snd_nxt.
2976 tp->snd_nxt++;
2977 return;
2979 } else {
2980 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2981 if (unlikely(!skb)) {
2982 if (tskb)
2983 goto coalesce;
2984 return;
2986 skb_reserve(skb, MAX_TCP_HEADER);
2987 sk_forced_mem_schedule(sk, skb->truesize);
2988 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2989 tcp_init_nondata_skb(skb, tp->write_seq,
2990 TCPHDR_ACK | TCPHDR_FIN);
2991 tcp_queue_skb(sk, skb);
2993 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2996 /* We get here when a process closes a file descriptor (either due to
2997 * an explicit close() or as a byproduct of exit()'ing) and there
2998 * was unread data in the receive queue. This behavior is recommended
2999 * by RFC 2525, section 2.17. -DaveM
3001 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3003 struct sk_buff *skb;
3005 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3007 /* NOTE: No TCP options attached and we never retransmit this. */
3008 skb = alloc_skb(MAX_TCP_HEADER, priority);
3009 if (!skb) {
3010 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3011 return;
3014 /* Reserve space for headers and prepare control bits. */
3015 skb_reserve(skb, MAX_TCP_HEADER);
3016 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3017 TCPHDR_ACK | TCPHDR_RST);
3018 skb_mstamp_get(&skb->skb_mstamp);
3019 /* Send it off. */
3020 if (tcp_transmit_skb(sk, skb, 0, priority))
3021 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3024 /* Send a crossed SYN-ACK during socket establishment.
3025 * WARNING: This routine must only be called when we have already sent
3026 * a SYN packet that crossed the incoming SYN that caused this routine
3027 * to get called. If this assumption fails then the initial rcv_wnd
3028 * and rcv_wscale values will not be correct.
3030 int tcp_send_synack(struct sock *sk)
3032 struct sk_buff *skb;
3034 skb = tcp_write_queue_head(sk);
3035 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3036 pr_debug("%s: wrong queue state\n", __func__);
3037 return -EFAULT;
3039 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3040 if (skb_cloned(skb)) {
3041 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3042 if (!nskb)
3043 return -ENOMEM;
3044 tcp_unlink_write_queue(skb, sk);
3045 __skb_header_release(nskb);
3046 __tcp_add_write_queue_head(sk, nskb);
3047 sk_wmem_free_skb(sk, skb);
3048 sk->sk_wmem_queued += nskb->truesize;
3049 sk_mem_charge(sk, nskb->truesize);
3050 skb = nskb;
3053 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3054 tcp_ecn_send_synack(sk, skb);
3056 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3060 * tcp_make_synack - Prepare a SYN-ACK.
3061 * sk: listener socket
3062 * dst: dst entry attached to the SYNACK
3063 * req: request_sock pointer
3065 * Allocate one skb and build a SYNACK packet.
3066 * @dst is consumed : Caller should not use it again.
3068 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3069 struct request_sock *req,
3070 struct tcp_fastopen_cookie *foc,
3071 enum tcp_synack_type synack_type)
3073 struct inet_request_sock *ireq = inet_rsk(req);
3074 const struct tcp_sock *tp = tcp_sk(sk);
3075 struct tcp_md5sig_key *md5 = NULL;
3076 struct tcp_out_options opts;
3077 struct sk_buff *skb;
3078 int tcp_header_size;
3079 struct tcphdr *th;
3080 int mss;
3082 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3083 if (unlikely(!skb)) {
3084 dst_release(dst);
3085 return NULL;
3087 /* Reserve space for headers. */
3088 skb_reserve(skb, MAX_TCP_HEADER);
3090 switch (synack_type) {
3091 case TCP_SYNACK_NORMAL:
3092 skb_set_owner_w(skb, req_to_sk(req));
3093 break;
3094 case TCP_SYNACK_COOKIE:
3095 /* Under synflood, we do not attach skb to a socket,
3096 * to avoid false sharing.
3098 break;
3099 case TCP_SYNACK_FASTOPEN:
3100 /* sk is a const pointer, because we want to express multiple
3101 * cpu might call us concurrently.
3102 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3104 skb_set_owner_w(skb, (struct sock *)sk);
3105 break;
3107 skb_dst_set(skb, dst);
3109 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3111 memset(&opts, 0, sizeof(opts));
3112 #ifdef CONFIG_SYN_COOKIES
3113 if (unlikely(req->cookie_ts))
3114 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3115 else
3116 #endif
3117 skb_mstamp_get(&skb->skb_mstamp);
3119 #ifdef CONFIG_TCP_MD5SIG
3120 rcu_read_lock();
3121 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3122 #endif
3123 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3124 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3125 sizeof(*th);
3127 skb_push(skb, tcp_header_size);
3128 skb_reset_transport_header(skb);
3130 th = (struct tcphdr *)skb->data;
3131 memset(th, 0, sizeof(struct tcphdr));
3132 th->syn = 1;
3133 th->ack = 1;
3134 tcp_ecn_make_synack(req, th);
3135 th->source = htons(ireq->ir_num);
3136 th->dest = ireq->ir_rmt_port;
3137 /* Setting of flags are superfluous here for callers (and ECE is
3138 * not even correctly set)
3140 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3141 TCPHDR_SYN | TCPHDR_ACK);
3143 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3144 /* XXX data is queued and acked as is. No buffer/window check */
3145 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3147 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3148 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3149 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3150 th->doff = (tcp_header_size >> 2);
3151 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3153 #ifdef CONFIG_TCP_MD5SIG
3154 /* Okay, we have all we need - do the md5 hash if needed */
3155 if (md5)
3156 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3157 md5, req_to_sk(req), skb);
3158 rcu_read_unlock();
3159 #endif
3161 /* Do not fool tcpdump (if any), clean our debris */
3162 skb->tstamp = 0;
3163 return skb;
3165 EXPORT_SYMBOL(tcp_make_synack);
3167 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3169 struct inet_connection_sock *icsk = inet_csk(sk);
3170 const struct tcp_congestion_ops *ca;
3171 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3173 if (ca_key == TCP_CA_UNSPEC)
3174 return;
3176 rcu_read_lock();
3177 ca = tcp_ca_find_key(ca_key);
3178 if (likely(ca && try_module_get(ca->owner))) {
3179 module_put(icsk->icsk_ca_ops->owner);
3180 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3181 icsk->icsk_ca_ops = ca;
3183 rcu_read_unlock();
3186 /* Do all connect socket setups that can be done AF independent. */
3187 static void tcp_connect_init(struct sock *sk)
3189 const struct dst_entry *dst = __sk_dst_get(sk);
3190 struct tcp_sock *tp = tcp_sk(sk);
3191 __u8 rcv_wscale;
3193 /* We'll fix this up when we get a response from the other end.
3194 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3196 tp->tcp_header_len = sizeof(struct tcphdr) +
3197 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3199 #ifdef CONFIG_TCP_MD5SIG
3200 if (tp->af_specific->md5_lookup(sk, sk))
3201 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3202 #endif
3204 /* If user gave his TCP_MAXSEG, record it to clamp */
3205 if (tp->rx_opt.user_mss)
3206 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3207 tp->max_window = 0;
3208 tcp_mtup_init(sk);
3209 tcp_sync_mss(sk, dst_mtu(dst));
3211 tcp_ca_dst_init(sk, dst);
3213 if (!tp->window_clamp)
3214 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3215 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3217 tcp_initialize_rcv_mss(sk);
3219 /* limit the window selection if the user enforce a smaller rx buffer */
3220 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3221 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3222 tp->window_clamp = tcp_full_space(sk);
3224 tcp_select_initial_window(tcp_full_space(sk),
3225 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3226 &tp->rcv_wnd,
3227 &tp->window_clamp,
3228 sysctl_tcp_window_scaling,
3229 &rcv_wscale,
3230 dst_metric(dst, RTAX_INITRWND));
3232 tp->rx_opt.rcv_wscale = rcv_wscale;
3233 tp->rcv_ssthresh = tp->rcv_wnd;
3235 sk->sk_err = 0;
3236 sock_reset_flag(sk, SOCK_DONE);
3237 tp->snd_wnd = 0;
3238 tcp_init_wl(tp, 0);
3239 tp->snd_una = tp->write_seq;
3240 tp->snd_sml = tp->write_seq;
3241 tp->snd_up = tp->write_seq;
3242 tp->snd_nxt = tp->write_seq;
3244 if (likely(!tp->repair))
3245 tp->rcv_nxt = 0;
3246 else
3247 tp->rcv_tstamp = tcp_time_stamp;
3248 tp->rcv_wup = tp->rcv_nxt;
3249 tp->copied_seq = tp->rcv_nxt;
3251 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3252 inet_csk(sk)->icsk_retransmits = 0;
3253 tcp_clear_retrans(tp);
3256 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3258 struct tcp_sock *tp = tcp_sk(sk);
3259 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3261 tcb->end_seq += skb->len;
3262 __skb_header_release(skb);
3263 __tcp_add_write_queue_tail(sk, skb);
3264 sk->sk_wmem_queued += skb->truesize;
3265 sk_mem_charge(sk, skb->truesize);
3266 tp->write_seq = tcb->end_seq;
3267 tp->packets_out += tcp_skb_pcount(skb);
3270 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3271 * queue a data-only packet after the regular SYN, such that regular SYNs
3272 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3273 * only the SYN sequence, the data are retransmitted in the first ACK.
3274 * If cookie is not cached or other error occurs, falls back to send a
3275 * regular SYN with Fast Open cookie request option.
3277 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3279 struct tcp_sock *tp = tcp_sk(sk);
3280 struct tcp_fastopen_request *fo = tp->fastopen_req;
3281 int space, err = 0;
3282 struct sk_buff *syn_data;
3284 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3285 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3286 goto fallback;
3288 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3289 * user-MSS. Reserve maximum option space for middleboxes that add
3290 * private TCP options. The cost is reduced data space in SYN :(
3292 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3294 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3295 MAX_TCP_OPTION_SPACE;
3297 space = min_t(size_t, space, fo->size);
3299 /* limit to order-0 allocations */
3300 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3302 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3303 if (!syn_data)
3304 goto fallback;
3305 syn_data->ip_summed = CHECKSUM_PARTIAL;
3306 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3307 if (space) {
3308 int copied = copy_from_iter(skb_put(syn_data, space), space,
3309 &fo->data->msg_iter);
3310 if (unlikely(!copied)) {
3311 kfree_skb(syn_data);
3312 goto fallback;
3314 if (copied != space) {
3315 skb_trim(syn_data, copied);
3316 space = copied;
3319 /* No more data pending in inet_wait_for_connect() */
3320 if (space == fo->size)
3321 fo->data = NULL;
3322 fo->copied = space;
3324 tcp_connect_queue_skb(sk, syn_data);
3325 if (syn_data->len)
3326 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3328 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3330 syn->skb_mstamp = syn_data->skb_mstamp;
3332 /* Now full SYN+DATA was cloned and sent (or not),
3333 * remove the SYN from the original skb (syn_data)
3334 * we keep in write queue in case of a retransmit, as we
3335 * also have the SYN packet (with no data) in the same queue.
3337 TCP_SKB_CB(syn_data)->seq++;
3338 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3339 if (!err) {
3340 tp->syn_data = (fo->copied > 0);
3341 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3342 goto done;
3345 fallback:
3346 /* Send a regular SYN with Fast Open cookie request option */
3347 if (fo->cookie.len > 0)
3348 fo->cookie.len = 0;
3349 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3350 if (err)
3351 tp->syn_fastopen = 0;
3352 done:
3353 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3354 return err;
3357 /* Build a SYN and send it off. */
3358 int tcp_connect(struct sock *sk)
3360 struct tcp_sock *tp = tcp_sk(sk);
3361 struct sk_buff *buff;
3362 int err;
3364 tcp_connect_init(sk);
3366 if (unlikely(tp->repair)) {
3367 tcp_finish_connect(sk, NULL);
3368 return 0;
3371 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3372 if (unlikely(!buff))
3373 return -ENOBUFS;
3375 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3376 tp->retrans_stamp = tcp_time_stamp;
3377 tcp_connect_queue_skb(sk, buff);
3378 tcp_ecn_send_syn(sk, buff);
3380 /* Send off SYN; include data in Fast Open. */
3381 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3382 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3383 if (err == -ECONNREFUSED)
3384 return err;
3386 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3387 * in order to make this packet get counted in tcpOutSegs.
3389 tp->snd_nxt = tp->write_seq;
3390 tp->pushed_seq = tp->write_seq;
3391 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3393 /* Timer for repeating the SYN until an answer. */
3394 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3395 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3396 return 0;
3398 EXPORT_SYMBOL(tcp_connect);
3400 /* Send out a delayed ack, the caller does the policy checking
3401 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3402 * for details.
3404 void tcp_send_delayed_ack(struct sock *sk)
3406 struct inet_connection_sock *icsk = inet_csk(sk);
3407 int ato = icsk->icsk_ack.ato;
3408 unsigned long timeout;
3410 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3412 if (ato > TCP_DELACK_MIN) {
3413 const struct tcp_sock *tp = tcp_sk(sk);
3414 int max_ato = HZ / 2;
3416 if (icsk->icsk_ack.pingpong ||
3417 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3418 max_ato = TCP_DELACK_MAX;
3420 /* Slow path, intersegment interval is "high". */
3422 /* If some rtt estimate is known, use it to bound delayed ack.
3423 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3424 * directly.
3426 if (tp->srtt_us) {
3427 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3428 TCP_DELACK_MIN);
3430 if (rtt < max_ato)
3431 max_ato = rtt;
3434 ato = min(ato, max_ato);
3437 /* Stay within the limit we were given */
3438 timeout = jiffies + ato;
3440 /* Use new timeout only if there wasn't a older one earlier. */
3441 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3442 /* If delack timer was blocked or is about to expire,
3443 * send ACK now.
3445 if (icsk->icsk_ack.blocked ||
3446 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3447 tcp_send_ack(sk);
3448 return;
3451 if (!time_before(timeout, icsk->icsk_ack.timeout))
3452 timeout = icsk->icsk_ack.timeout;
3454 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3455 icsk->icsk_ack.timeout = timeout;
3456 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3459 /* This routine sends an ack and also updates the window. */
3460 void tcp_send_ack(struct sock *sk)
3462 struct sk_buff *buff;
3464 /* If we have been reset, we may not send again. */
3465 if (sk->sk_state == TCP_CLOSE)
3466 return;
3468 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3470 /* We are not putting this on the write queue, so
3471 * tcp_transmit_skb() will set the ownership to this
3472 * sock.
3474 buff = alloc_skb(MAX_TCP_HEADER,
3475 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3476 if (unlikely(!buff)) {
3477 inet_csk_schedule_ack(sk);
3478 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3479 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3480 TCP_DELACK_MAX, TCP_RTO_MAX);
3481 return;
3484 /* Reserve space for headers and prepare control bits. */
3485 skb_reserve(buff, MAX_TCP_HEADER);
3486 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3488 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3489 * too much.
3490 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3492 skb_set_tcp_pure_ack(buff);
3494 /* Send it off, this clears delayed acks for us. */
3495 skb_mstamp_get(&buff->skb_mstamp);
3496 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3498 EXPORT_SYMBOL_GPL(tcp_send_ack);
3500 /* This routine sends a packet with an out of date sequence
3501 * number. It assumes the other end will try to ack it.
3503 * Question: what should we make while urgent mode?
3504 * 4.4BSD forces sending single byte of data. We cannot send
3505 * out of window data, because we have SND.NXT==SND.MAX...
3507 * Current solution: to send TWO zero-length segments in urgent mode:
3508 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3509 * out-of-date with SND.UNA-1 to probe window.
3511 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3513 struct tcp_sock *tp = tcp_sk(sk);
3514 struct sk_buff *skb;
3516 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3517 skb = alloc_skb(MAX_TCP_HEADER,
3518 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3519 if (!skb)
3520 return -1;
3522 /* Reserve space for headers and set control bits. */
3523 skb_reserve(skb, MAX_TCP_HEADER);
3524 /* Use a previous sequence. This should cause the other
3525 * end to send an ack. Don't queue or clone SKB, just
3526 * send it.
3528 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3529 skb_mstamp_get(&skb->skb_mstamp);
3530 NET_INC_STATS(sock_net(sk), mib);
3531 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3534 void tcp_send_window_probe(struct sock *sk)
3536 if (sk->sk_state == TCP_ESTABLISHED) {
3537 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3538 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3542 /* Initiate keepalive or window probe from timer. */
3543 int tcp_write_wakeup(struct sock *sk, int mib)
3545 struct tcp_sock *tp = tcp_sk(sk);
3546 struct sk_buff *skb;
3548 if (sk->sk_state == TCP_CLOSE)
3549 return -1;
3551 skb = tcp_send_head(sk);
3552 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3553 int err;
3554 unsigned int mss = tcp_current_mss(sk);
3555 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3557 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3558 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3560 /* We are probing the opening of a window
3561 * but the window size is != 0
3562 * must have been a result SWS avoidance ( sender )
3564 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3565 skb->len > mss) {
3566 seg_size = min(seg_size, mss);
3567 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3568 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3569 return -1;
3570 } else if (!tcp_skb_pcount(skb))
3571 tcp_set_skb_tso_segs(skb, mss);
3573 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3574 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3575 if (!err)
3576 tcp_event_new_data_sent(sk, skb);
3577 return err;
3578 } else {
3579 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3580 tcp_xmit_probe_skb(sk, 1, mib);
3581 return tcp_xmit_probe_skb(sk, 0, mib);
3585 /* A window probe timeout has occurred. If window is not closed send
3586 * a partial packet else a zero probe.
3588 void tcp_send_probe0(struct sock *sk)
3590 struct inet_connection_sock *icsk = inet_csk(sk);
3591 struct tcp_sock *tp = tcp_sk(sk);
3592 struct net *net = sock_net(sk);
3593 unsigned long probe_max;
3594 int err;
3596 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3598 if (tp->packets_out || !tcp_send_head(sk)) {
3599 /* Cancel probe timer, if it is not required. */
3600 icsk->icsk_probes_out = 0;
3601 icsk->icsk_backoff = 0;
3602 return;
3605 if (err <= 0) {
3606 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3607 icsk->icsk_backoff++;
3608 icsk->icsk_probes_out++;
3609 probe_max = TCP_RTO_MAX;
3610 } else {
3611 /* If packet was not sent due to local congestion,
3612 * do not backoff and do not remember icsk_probes_out.
3613 * Let local senders to fight for local resources.
3615 * Use accumulated backoff yet.
3617 if (!icsk->icsk_probes_out)
3618 icsk->icsk_probes_out = 1;
3619 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3621 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3622 tcp_probe0_when(sk, probe_max),
3623 TCP_RTO_MAX);
3626 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3628 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3629 struct flowi fl;
3630 int res;
3632 tcp_rsk(req)->txhash = net_tx_rndhash();
3633 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3634 if (!res) {
3635 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3636 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3637 if (unlikely(tcp_passive_fastopen(sk)))
3638 tcp_sk(sk)->total_retrans++;
3640 return res;
3642 EXPORT_SYMBOL(tcp_rtx_synack);