arm64: dts: r8a7796: Add reset control properties for audio
[linux-2.6/btrfs-unstable.git] / mm / zsmalloc.c
blobd41edd28298b68ff335e6324df7e4e793a481d93
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
57 #define ZSPAGE_MAGIC 0x58
60 * This must be power of 2 and greater than of equal to sizeof(link_free).
61 * These two conditions ensure that any 'struct link_free' itself doesn't
62 * span more than 1 page which avoids complex case of mapping 2 pages simply
63 * to restore link_free pointer values.
65 #define ZS_ALIGN 8
68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 * Object location (<PFN>, <obj_idx>) is encoded as
78 * as single (unsigned long) handle value.
80 * Note that object index <obj_idx> starts from 0.
82 * This is made more complicated by various memory models and PAE.
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
91 * be PAGE_SHIFT
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
94 #endif
95 #endif
96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
99 * Memory for allocating for handle keeps object position by
100 * encoding <page, obj_idx> and the encoded value has a room
101 * in least bit(ie, look at obj_to_location).
102 * We use the bit to synchronize between object access by
103 * user and migration.
105 #define HANDLE_PIN_BIT 0
108 * Head in allocated object should have OBJ_ALLOCATED_TAG
109 * to identify the object was allocated or not.
110 * It's okay to add the status bit in the least bit because
111 * header keeps handle which is 4byte-aligned address so we
112 * have room for two bit at least.
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
121 #define ZS_MIN_ALLOC_SIZE \
122 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
123 /* each chunk includes extra space to keep handle */
124 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
127 * On systems with 4K page size, this gives 255 size classes! There is a
128 * trader-off here:
129 * - Large number of size classes is potentially wasteful as free page are
130 * spread across these classes
131 * - Small number of size classes causes large internal fragmentation
132 * - Probably its better to use specific size classes (empirically
133 * determined). NOTE: all those class sizes must be set as multiple of
134 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
136 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
137 * (reason above)
139 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
141 enum fullness_group {
142 ZS_EMPTY,
143 ZS_ALMOST_EMPTY,
144 ZS_ALMOST_FULL,
145 ZS_FULL,
146 NR_ZS_FULLNESS,
149 enum zs_stat_type {
150 CLASS_EMPTY,
151 CLASS_ALMOST_EMPTY,
152 CLASS_ALMOST_FULL,
153 CLASS_FULL,
154 OBJ_ALLOCATED,
155 OBJ_USED,
156 NR_ZS_STAT_TYPE,
159 struct zs_size_stat {
160 unsigned long objs[NR_ZS_STAT_TYPE];
163 #ifdef CONFIG_ZSMALLOC_STAT
164 static struct dentry *zs_stat_root;
165 #endif
167 #ifdef CONFIG_COMPACTION
168 static struct vfsmount *zsmalloc_mnt;
169 #endif
172 * number of size_classes
174 static int zs_size_classes;
177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178 * n <= N / f, where
179 * n = number of allocated objects
180 * N = total number of objects zspage can store
181 * f = fullness_threshold_frac
183 * Similarly, we assign zspage to:
184 * ZS_ALMOST_FULL when n > N / f
185 * ZS_EMPTY when n == 0
186 * ZS_FULL when n == N
188 * (see: fix_fullness_group())
190 static const int fullness_threshold_frac = 4;
192 struct size_class {
193 spinlock_t lock;
194 struct list_head fullness_list[NR_ZS_FULLNESS];
196 * Size of objects stored in this class. Must be multiple
197 * of ZS_ALIGN.
199 int size;
200 int objs_per_zspage;
201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 int pages_per_zspage;
204 unsigned int index;
205 struct zs_size_stat stats;
208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
209 static void SetPageHugeObject(struct page *page)
211 SetPageOwnerPriv1(page);
214 static void ClearPageHugeObject(struct page *page)
216 ClearPageOwnerPriv1(page);
219 static int PageHugeObject(struct page *page)
221 return PageOwnerPriv1(page);
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, zspage->freeobj gives head of this list.
228 * This must be power of 2 and less than or equal to ZS_ALIGN
230 struct link_free {
231 union {
233 * Free object index;
234 * It's valid for non-allocated object
236 unsigned long next;
238 * Handle of allocated object.
240 unsigned long handle;
244 struct zs_pool {
245 const char *name;
247 struct size_class **size_class;
248 struct kmem_cache *handle_cachep;
249 struct kmem_cache *zspage_cachep;
251 atomic_long_t pages_allocated;
253 struct zs_pool_stats stats;
255 /* Compact classes */
256 struct shrinker shrinker;
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
261 bool shrinker_enabled;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264 #endif
265 #ifdef CONFIG_COMPACTION
266 struct inode *inode;
267 struct work_struct free_work;
268 #endif
271 #define FULLNESS_BITS 2
272 #define CLASS_BITS 8
273 #define ISOLATED_BITS 3
274 #define MAGIC_VAL_BITS 8
276 struct zspage {
277 struct {
278 unsigned int fullness:FULLNESS_BITS;
279 unsigned int class:CLASS_BITS + 1;
280 unsigned int isolated:ISOLATED_BITS;
281 unsigned int magic:MAGIC_VAL_BITS;
283 unsigned int inuse;
284 unsigned int freeobj;
285 struct page *first_page;
286 struct list_head list; /* fullness list */
287 #ifdef CONFIG_COMPACTION
288 rwlock_t lock;
289 #endif
292 struct mapping_area {
293 #ifdef CONFIG_PGTABLE_MAPPING
294 struct vm_struct *vm; /* vm area for mapping object that span pages */
295 #else
296 char *vm_buf; /* copy buffer for objects that span pages */
297 #endif
298 char *vm_addr; /* address of kmap_atomic()'ed pages */
299 enum zs_mapmode vm_mm; /* mapping mode */
302 #ifdef CONFIG_COMPACTION
303 static int zs_register_migration(struct zs_pool *pool);
304 static void zs_unregister_migration(struct zs_pool *pool);
305 static void migrate_lock_init(struct zspage *zspage);
306 static void migrate_read_lock(struct zspage *zspage);
307 static void migrate_read_unlock(struct zspage *zspage);
308 static void kick_deferred_free(struct zs_pool *pool);
309 static void init_deferred_free(struct zs_pool *pool);
310 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
311 #else
312 static int zsmalloc_mount(void) { return 0; }
313 static void zsmalloc_unmount(void) {}
314 static int zs_register_migration(struct zs_pool *pool) { return 0; }
315 static void zs_unregister_migration(struct zs_pool *pool) {}
316 static void migrate_lock_init(struct zspage *zspage) {}
317 static void migrate_read_lock(struct zspage *zspage) {}
318 static void migrate_read_unlock(struct zspage *zspage) {}
319 static void kick_deferred_free(struct zs_pool *pool) {}
320 static void init_deferred_free(struct zs_pool *pool) {}
321 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
322 #endif
324 static int create_cache(struct zs_pool *pool)
326 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
327 0, 0, NULL);
328 if (!pool->handle_cachep)
329 return 1;
331 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
332 0, 0, NULL);
333 if (!pool->zspage_cachep) {
334 kmem_cache_destroy(pool->handle_cachep);
335 pool->handle_cachep = NULL;
336 return 1;
339 return 0;
342 static void destroy_cache(struct zs_pool *pool)
344 kmem_cache_destroy(pool->handle_cachep);
345 kmem_cache_destroy(pool->zspage_cachep);
348 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
350 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
351 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
354 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
356 kmem_cache_free(pool->handle_cachep, (void *)handle);
359 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
361 return kmem_cache_alloc(pool->zspage_cachep,
362 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
365 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
367 kmem_cache_free(pool->zspage_cachep, zspage);
370 static void record_obj(unsigned long handle, unsigned long obj)
373 * lsb of @obj represents handle lock while other bits
374 * represent object value the handle is pointing so
375 * updating shouldn't do store tearing.
377 WRITE_ONCE(*(unsigned long *)handle, obj);
380 /* zpool driver */
382 #ifdef CONFIG_ZPOOL
384 static void *zs_zpool_create(const char *name, gfp_t gfp,
385 const struct zpool_ops *zpool_ops,
386 struct zpool *zpool)
389 * Ignore global gfp flags: zs_malloc() may be invoked from
390 * different contexts and its caller must provide a valid
391 * gfp mask.
393 return zs_create_pool(name);
396 static void zs_zpool_destroy(void *pool)
398 zs_destroy_pool(pool);
401 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
402 unsigned long *handle)
404 *handle = zs_malloc(pool, size, gfp);
405 return *handle ? 0 : -1;
407 static void zs_zpool_free(void *pool, unsigned long handle)
409 zs_free(pool, handle);
412 static int zs_zpool_shrink(void *pool, unsigned int pages,
413 unsigned int *reclaimed)
415 return -EINVAL;
418 static void *zs_zpool_map(void *pool, unsigned long handle,
419 enum zpool_mapmode mm)
421 enum zs_mapmode zs_mm;
423 switch (mm) {
424 case ZPOOL_MM_RO:
425 zs_mm = ZS_MM_RO;
426 break;
427 case ZPOOL_MM_WO:
428 zs_mm = ZS_MM_WO;
429 break;
430 case ZPOOL_MM_RW: /* fallthru */
431 default:
432 zs_mm = ZS_MM_RW;
433 break;
436 return zs_map_object(pool, handle, zs_mm);
438 static void zs_zpool_unmap(void *pool, unsigned long handle)
440 zs_unmap_object(pool, handle);
443 static u64 zs_zpool_total_size(void *pool)
445 return zs_get_total_pages(pool) << PAGE_SHIFT;
448 static struct zpool_driver zs_zpool_driver = {
449 .type = "zsmalloc",
450 .owner = THIS_MODULE,
451 .create = zs_zpool_create,
452 .destroy = zs_zpool_destroy,
453 .malloc = zs_zpool_malloc,
454 .free = zs_zpool_free,
455 .shrink = zs_zpool_shrink,
456 .map = zs_zpool_map,
457 .unmap = zs_zpool_unmap,
458 .total_size = zs_zpool_total_size,
461 MODULE_ALIAS("zpool-zsmalloc");
462 #endif /* CONFIG_ZPOOL */
464 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
465 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
467 static bool is_zspage_isolated(struct zspage *zspage)
469 return zspage->isolated;
472 static int is_first_page(struct page *page)
474 return PagePrivate(page);
477 /* Protected by class->lock */
478 static inline int get_zspage_inuse(struct zspage *zspage)
480 return zspage->inuse;
483 static inline void set_zspage_inuse(struct zspage *zspage, int val)
485 zspage->inuse = val;
488 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
490 zspage->inuse += val;
493 static inline struct page *get_first_page(struct zspage *zspage)
495 struct page *first_page = zspage->first_page;
497 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
498 return first_page;
501 static inline int get_first_obj_offset(struct page *page)
503 return page->units;
506 static inline void set_first_obj_offset(struct page *page, int offset)
508 page->units = offset;
511 static inline unsigned int get_freeobj(struct zspage *zspage)
513 return zspage->freeobj;
516 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
518 zspage->freeobj = obj;
521 static void get_zspage_mapping(struct zspage *zspage,
522 unsigned int *class_idx,
523 enum fullness_group *fullness)
525 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
527 *fullness = zspage->fullness;
528 *class_idx = zspage->class;
531 static void set_zspage_mapping(struct zspage *zspage,
532 unsigned int class_idx,
533 enum fullness_group fullness)
535 zspage->class = class_idx;
536 zspage->fullness = fullness;
540 * zsmalloc divides the pool into various size classes where each
541 * class maintains a list of zspages where each zspage is divided
542 * into equal sized chunks. Each allocation falls into one of these
543 * classes depending on its size. This function returns index of the
544 * size class which has chunk size big enough to hold the give size.
546 static int get_size_class_index(int size)
548 int idx = 0;
550 if (likely(size > ZS_MIN_ALLOC_SIZE))
551 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
552 ZS_SIZE_CLASS_DELTA);
554 return min(zs_size_classes - 1, idx);
557 static inline void zs_stat_inc(struct size_class *class,
558 enum zs_stat_type type, unsigned long cnt)
560 class->stats.objs[type] += cnt;
563 static inline void zs_stat_dec(struct size_class *class,
564 enum zs_stat_type type, unsigned long cnt)
566 class->stats.objs[type] -= cnt;
569 static inline unsigned long zs_stat_get(struct size_class *class,
570 enum zs_stat_type type)
572 return class->stats.objs[type];
575 #ifdef CONFIG_ZSMALLOC_STAT
577 static void __init zs_stat_init(void)
579 if (!debugfs_initialized()) {
580 pr_warn("debugfs not available, stat dir not created\n");
581 return;
584 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
585 if (!zs_stat_root)
586 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
589 static void __exit zs_stat_exit(void)
591 debugfs_remove_recursive(zs_stat_root);
594 static unsigned long zs_can_compact(struct size_class *class);
596 static int zs_stats_size_show(struct seq_file *s, void *v)
598 int i;
599 struct zs_pool *pool = s->private;
600 struct size_class *class;
601 int objs_per_zspage;
602 unsigned long class_almost_full, class_almost_empty;
603 unsigned long obj_allocated, obj_used, pages_used, freeable;
604 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
605 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
606 unsigned long total_freeable = 0;
608 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
609 "class", "size", "almost_full", "almost_empty",
610 "obj_allocated", "obj_used", "pages_used",
611 "pages_per_zspage", "freeable");
613 for (i = 0; i < zs_size_classes; i++) {
614 class = pool->size_class[i];
616 if (class->index != i)
617 continue;
619 spin_lock(&class->lock);
620 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
621 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
622 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
623 obj_used = zs_stat_get(class, OBJ_USED);
624 freeable = zs_can_compact(class);
625 spin_unlock(&class->lock);
627 objs_per_zspage = class->objs_per_zspage;
628 pages_used = obj_allocated / objs_per_zspage *
629 class->pages_per_zspage;
631 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
632 " %10lu %10lu %16d %8lu\n",
633 i, class->size, class_almost_full, class_almost_empty,
634 obj_allocated, obj_used, pages_used,
635 class->pages_per_zspage, freeable);
637 total_class_almost_full += class_almost_full;
638 total_class_almost_empty += class_almost_empty;
639 total_objs += obj_allocated;
640 total_used_objs += obj_used;
641 total_pages += pages_used;
642 total_freeable += freeable;
645 seq_puts(s, "\n");
646 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
647 "Total", "", total_class_almost_full,
648 total_class_almost_empty, total_objs,
649 total_used_objs, total_pages, "", total_freeable);
651 return 0;
654 static int zs_stats_size_open(struct inode *inode, struct file *file)
656 return single_open(file, zs_stats_size_show, inode->i_private);
659 static const struct file_operations zs_stat_size_ops = {
660 .open = zs_stats_size_open,
661 .read = seq_read,
662 .llseek = seq_lseek,
663 .release = single_release,
666 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
668 struct dentry *entry;
670 if (!zs_stat_root) {
671 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
672 return;
675 entry = debugfs_create_dir(name, zs_stat_root);
676 if (!entry) {
677 pr_warn("debugfs dir <%s> creation failed\n", name);
678 return;
680 pool->stat_dentry = entry;
682 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
683 pool->stat_dentry, pool, &zs_stat_size_ops);
684 if (!entry) {
685 pr_warn("%s: debugfs file entry <%s> creation failed\n",
686 name, "classes");
687 debugfs_remove_recursive(pool->stat_dentry);
688 pool->stat_dentry = NULL;
692 static void zs_pool_stat_destroy(struct zs_pool *pool)
694 debugfs_remove_recursive(pool->stat_dentry);
697 #else /* CONFIG_ZSMALLOC_STAT */
698 static void __init zs_stat_init(void)
702 static void __exit zs_stat_exit(void)
706 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
710 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
713 #endif
717 * For each size class, zspages are divided into different groups
718 * depending on how "full" they are. This was done so that we could
719 * easily find empty or nearly empty zspages when we try to shrink
720 * the pool (not yet implemented). This function returns fullness
721 * status of the given page.
723 static enum fullness_group get_fullness_group(struct size_class *class,
724 struct zspage *zspage)
726 int inuse, objs_per_zspage;
727 enum fullness_group fg;
729 inuse = get_zspage_inuse(zspage);
730 objs_per_zspage = class->objs_per_zspage;
732 if (inuse == 0)
733 fg = ZS_EMPTY;
734 else if (inuse == objs_per_zspage)
735 fg = ZS_FULL;
736 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
737 fg = ZS_ALMOST_EMPTY;
738 else
739 fg = ZS_ALMOST_FULL;
741 return fg;
745 * Each size class maintains various freelists and zspages are assigned
746 * to one of these freelists based on the number of live objects they
747 * have. This functions inserts the given zspage into the freelist
748 * identified by <class, fullness_group>.
750 static void insert_zspage(struct size_class *class,
751 struct zspage *zspage,
752 enum fullness_group fullness)
754 struct zspage *head;
756 zs_stat_inc(class, fullness, 1);
757 head = list_first_entry_or_null(&class->fullness_list[fullness],
758 struct zspage, list);
760 * We want to see more ZS_FULL pages and less almost empty/full.
761 * Put pages with higher ->inuse first.
763 if (head) {
764 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
765 list_add(&zspage->list, &head->list);
766 return;
769 list_add(&zspage->list, &class->fullness_list[fullness]);
773 * This function removes the given zspage from the freelist identified
774 * by <class, fullness_group>.
776 static void remove_zspage(struct size_class *class,
777 struct zspage *zspage,
778 enum fullness_group fullness)
780 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
781 VM_BUG_ON(is_zspage_isolated(zspage));
783 list_del_init(&zspage->list);
784 zs_stat_dec(class, fullness, 1);
788 * Each size class maintains zspages in different fullness groups depending
789 * on the number of live objects they contain. When allocating or freeing
790 * objects, the fullness status of the page can change, say, from ALMOST_FULL
791 * to ALMOST_EMPTY when freeing an object. This function checks if such
792 * a status change has occurred for the given page and accordingly moves the
793 * page from the freelist of the old fullness group to that of the new
794 * fullness group.
796 static enum fullness_group fix_fullness_group(struct size_class *class,
797 struct zspage *zspage)
799 int class_idx;
800 enum fullness_group currfg, newfg;
802 get_zspage_mapping(zspage, &class_idx, &currfg);
803 newfg = get_fullness_group(class, zspage);
804 if (newfg == currfg)
805 goto out;
807 if (!is_zspage_isolated(zspage)) {
808 remove_zspage(class, zspage, currfg);
809 insert_zspage(class, zspage, newfg);
812 set_zspage_mapping(zspage, class_idx, newfg);
814 out:
815 return newfg;
819 * We have to decide on how many pages to link together
820 * to form a zspage for each size class. This is important
821 * to reduce wastage due to unusable space left at end of
822 * each zspage which is given as:
823 * wastage = Zp % class_size
824 * usage = Zp - wastage
825 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
827 * For example, for size class of 3/8 * PAGE_SIZE, we should
828 * link together 3 PAGE_SIZE sized pages to form a zspage
829 * since then we can perfectly fit in 8 such objects.
831 static int get_pages_per_zspage(int class_size)
833 int i, max_usedpc = 0;
834 /* zspage order which gives maximum used size per KB */
835 int max_usedpc_order = 1;
837 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
838 int zspage_size;
839 int waste, usedpc;
841 zspage_size = i * PAGE_SIZE;
842 waste = zspage_size % class_size;
843 usedpc = (zspage_size - waste) * 100 / zspage_size;
845 if (usedpc > max_usedpc) {
846 max_usedpc = usedpc;
847 max_usedpc_order = i;
851 return max_usedpc_order;
854 static struct zspage *get_zspage(struct page *page)
856 struct zspage *zspage = (struct zspage *)page->private;
858 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
859 return zspage;
862 static struct page *get_next_page(struct page *page)
864 if (unlikely(PageHugeObject(page)))
865 return NULL;
867 return page->freelist;
871 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
872 * @page: page object resides in zspage
873 * @obj_idx: object index
875 static void obj_to_location(unsigned long obj, struct page **page,
876 unsigned int *obj_idx)
878 obj >>= OBJ_TAG_BITS;
879 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
880 *obj_idx = (obj & OBJ_INDEX_MASK);
884 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
885 * @page: page object resides in zspage
886 * @obj_idx: object index
888 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
890 unsigned long obj;
892 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
893 obj |= obj_idx & OBJ_INDEX_MASK;
894 obj <<= OBJ_TAG_BITS;
896 return obj;
899 static unsigned long handle_to_obj(unsigned long handle)
901 return *(unsigned long *)handle;
904 static unsigned long obj_to_head(struct page *page, void *obj)
906 if (unlikely(PageHugeObject(page))) {
907 VM_BUG_ON_PAGE(!is_first_page(page), page);
908 return page->index;
909 } else
910 return *(unsigned long *)obj;
913 static inline int testpin_tag(unsigned long handle)
915 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
918 static inline int trypin_tag(unsigned long handle)
920 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
923 static void pin_tag(unsigned long handle)
925 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
928 static void unpin_tag(unsigned long handle)
930 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
933 static void reset_page(struct page *page)
935 __ClearPageMovable(page);
936 ClearPagePrivate(page);
937 set_page_private(page, 0);
938 page_mapcount_reset(page);
939 ClearPageHugeObject(page);
940 page->freelist = NULL;
944 * To prevent zspage destroy during migration, zspage freeing should
945 * hold locks of all pages in the zspage.
947 void lock_zspage(struct zspage *zspage)
949 struct page *page = get_first_page(zspage);
951 do {
952 lock_page(page);
953 } while ((page = get_next_page(page)) != NULL);
956 int trylock_zspage(struct zspage *zspage)
958 struct page *cursor, *fail;
960 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
961 get_next_page(cursor)) {
962 if (!trylock_page(cursor)) {
963 fail = cursor;
964 goto unlock;
968 return 1;
969 unlock:
970 for (cursor = get_first_page(zspage); cursor != fail; cursor =
971 get_next_page(cursor))
972 unlock_page(cursor);
974 return 0;
977 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
978 struct zspage *zspage)
980 struct page *page, *next;
981 enum fullness_group fg;
982 unsigned int class_idx;
984 get_zspage_mapping(zspage, &class_idx, &fg);
986 assert_spin_locked(&class->lock);
988 VM_BUG_ON(get_zspage_inuse(zspage));
989 VM_BUG_ON(fg != ZS_EMPTY);
991 next = page = get_first_page(zspage);
992 do {
993 VM_BUG_ON_PAGE(!PageLocked(page), page);
994 next = get_next_page(page);
995 reset_page(page);
996 unlock_page(page);
997 dec_zone_page_state(page, NR_ZSPAGES);
998 put_page(page);
999 page = next;
1000 } while (page != NULL);
1002 cache_free_zspage(pool, zspage);
1004 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1005 atomic_long_sub(class->pages_per_zspage,
1006 &pool->pages_allocated);
1009 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1010 struct zspage *zspage)
1012 VM_BUG_ON(get_zspage_inuse(zspage));
1013 VM_BUG_ON(list_empty(&zspage->list));
1015 if (!trylock_zspage(zspage)) {
1016 kick_deferred_free(pool);
1017 return;
1020 remove_zspage(class, zspage, ZS_EMPTY);
1021 __free_zspage(pool, class, zspage);
1024 /* Initialize a newly allocated zspage */
1025 static void init_zspage(struct size_class *class, struct zspage *zspage)
1027 unsigned int freeobj = 1;
1028 unsigned long off = 0;
1029 struct page *page = get_first_page(zspage);
1031 while (page) {
1032 struct page *next_page;
1033 struct link_free *link;
1034 void *vaddr;
1036 set_first_obj_offset(page, off);
1038 vaddr = kmap_atomic(page);
1039 link = (struct link_free *)vaddr + off / sizeof(*link);
1041 while ((off += class->size) < PAGE_SIZE) {
1042 link->next = freeobj++ << OBJ_TAG_BITS;
1043 link += class->size / sizeof(*link);
1047 * We now come to the last (full or partial) object on this
1048 * page, which must point to the first object on the next
1049 * page (if present)
1051 next_page = get_next_page(page);
1052 if (next_page) {
1053 link->next = freeobj++ << OBJ_TAG_BITS;
1054 } else {
1056 * Reset OBJ_TAG_BITS bit to last link to tell
1057 * whether it's allocated object or not.
1059 link->next = -1 << OBJ_TAG_BITS;
1061 kunmap_atomic(vaddr);
1062 page = next_page;
1063 off %= PAGE_SIZE;
1066 set_freeobj(zspage, 0);
1069 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1070 struct page *pages[])
1072 int i;
1073 struct page *page;
1074 struct page *prev_page = NULL;
1075 int nr_pages = class->pages_per_zspage;
1078 * Allocate individual pages and link them together as:
1079 * 1. all pages are linked together using page->freelist
1080 * 2. each sub-page point to zspage using page->private
1082 * we set PG_private to identify the first page (i.e. no other sub-page
1083 * has this flag set).
1085 for (i = 0; i < nr_pages; i++) {
1086 page = pages[i];
1087 set_page_private(page, (unsigned long)zspage);
1088 page->freelist = NULL;
1089 if (i == 0) {
1090 zspage->first_page = page;
1091 SetPagePrivate(page);
1092 if (unlikely(class->objs_per_zspage == 1 &&
1093 class->pages_per_zspage == 1))
1094 SetPageHugeObject(page);
1095 } else {
1096 prev_page->freelist = page;
1098 prev_page = page;
1103 * Allocate a zspage for the given size class
1105 static struct zspage *alloc_zspage(struct zs_pool *pool,
1106 struct size_class *class,
1107 gfp_t gfp)
1109 int i;
1110 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1111 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1113 if (!zspage)
1114 return NULL;
1116 memset(zspage, 0, sizeof(struct zspage));
1117 zspage->magic = ZSPAGE_MAGIC;
1118 migrate_lock_init(zspage);
1120 for (i = 0; i < class->pages_per_zspage; i++) {
1121 struct page *page;
1123 page = alloc_page(gfp);
1124 if (!page) {
1125 while (--i >= 0) {
1126 dec_zone_page_state(pages[i], NR_ZSPAGES);
1127 __free_page(pages[i]);
1129 cache_free_zspage(pool, zspage);
1130 return NULL;
1133 inc_zone_page_state(page, NR_ZSPAGES);
1134 pages[i] = page;
1137 create_page_chain(class, zspage, pages);
1138 init_zspage(class, zspage);
1140 return zspage;
1143 static struct zspage *find_get_zspage(struct size_class *class)
1145 int i;
1146 struct zspage *zspage;
1148 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1149 zspage = list_first_entry_or_null(&class->fullness_list[i],
1150 struct zspage, list);
1151 if (zspage)
1152 break;
1155 return zspage;
1158 #ifdef CONFIG_PGTABLE_MAPPING
1159 static inline int __zs_cpu_up(struct mapping_area *area)
1162 * Make sure we don't leak memory if a cpu UP notification
1163 * and zs_init() race and both call zs_cpu_up() on the same cpu
1165 if (area->vm)
1166 return 0;
1167 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1168 if (!area->vm)
1169 return -ENOMEM;
1170 return 0;
1173 static inline void __zs_cpu_down(struct mapping_area *area)
1175 if (area->vm)
1176 free_vm_area(area->vm);
1177 area->vm = NULL;
1180 static inline void *__zs_map_object(struct mapping_area *area,
1181 struct page *pages[2], int off, int size)
1183 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1184 area->vm_addr = area->vm->addr;
1185 return area->vm_addr + off;
1188 static inline void __zs_unmap_object(struct mapping_area *area,
1189 struct page *pages[2], int off, int size)
1191 unsigned long addr = (unsigned long)area->vm_addr;
1193 unmap_kernel_range(addr, PAGE_SIZE * 2);
1196 #else /* CONFIG_PGTABLE_MAPPING */
1198 static inline int __zs_cpu_up(struct mapping_area *area)
1201 * Make sure we don't leak memory if a cpu UP notification
1202 * and zs_init() race and both call zs_cpu_up() on the same cpu
1204 if (area->vm_buf)
1205 return 0;
1206 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1207 if (!area->vm_buf)
1208 return -ENOMEM;
1209 return 0;
1212 static inline void __zs_cpu_down(struct mapping_area *area)
1214 kfree(area->vm_buf);
1215 area->vm_buf = NULL;
1218 static void *__zs_map_object(struct mapping_area *area,
1219 struct page *pages[2], int off, int size)
1221 int sizes[2];
1222 void *addr;
1223 char *buf = area->vm_buf;
1225 /* disable page faults to match kmap_atomic() return conditions */
1226 pagefault_disable();
1228 /* no read fastpath */
1229 if (area->vm_mm == ZS_MM_WO)
1230 goto out;
1232 sizes[0] = PAGE_SIZE - off;
1233 sizes[1] = size - sizes[0];
1235 /* copy object to per-cpu buffer */
1236 addr = kmap_atomic(pages[0]);
1237 memcpy(buf, addr + off, sizes[0]);
1238 kunmap_atomic(addr);
1239 addr = kmap_atomic(pages[1]);
1240 memcpy(buf + sizes[0], addr, sizes[1]);
1241 kunmap_atomic(addr);
1242 out:
1243 return area->vm_buf;
1246 static void __zs_unmap_object(struct mapping_area *area,
1247 struct page *pages[2], int off, int size)
1249 int sizes[2];
1250 void *addr;
1251 char *buf;
1253 /* no write fastpath */
1254 if (area->vm_mm == ZS_MM_RO)
1255 goto out;
1257 buf = area->vm_buf;
1258 buf = buf + ZS_HANDLE_SIZE;
1259 size -= ZS_HANDLE_SIZE;
1260 off += ZS_HANDLE_SIZE;
1262 sizes[0] = PAGE_SIZE - off;
1263 sizes[1] = size - sizes[0];
1265 /* copy per-cpu buffer to object */
1266 addr = kmap_atomic(pages[0]);
1267 memcpy(addr + off, buf, sizes[0]);
1268 kunmap_atomic(addr);
1269 addr = kmap_atomic(pages[1]);
1270 memcpy(addr, buf + sizes[0], sizes[1]);
1271 kunmap_atomic(addr);
1273 out:
1274 /* enable page faults to match kunmap_atomic() return conditions */
1275 pagefault_enable();
1278 #endif /* CONFIG_PGTABLE_MAPPING */
1280 static int zs_cpu_prepare(unsigned int cpu)
1282 struct mapping_area *area;
1284 area = &per_cpu(zs_map_area, cpu);
1285 return __zs_cpu_up(area);
1288 static int zs_cpu_dead(unsigned int cpu)
1290 struct mapping_area *area;
1292 area = &per_cpu(zs_map_area, cpu);
1293 __zs_cpu_down(area);
1294 return 0;
1297 static void __init init_zs_size_classes(void)
1299 int nr;
1301 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1302 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1303 nr += 1;
1305 zs_size_classes = nr;
1308 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1309 int objs_per_zspage)
1311 if (prev->pages_per_zspage == pages_per_zspage &&
1312 prev->objs_per_zspage == objs_per_zspage)
1313 return true;
1315 return false;
1318 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1320 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1323 unsigned long zs_get_total_pages(struct zs_pool *pool)
1325 return atomic_long_read(&pool->pages_allocated);
1327 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1330 * zs_map_object - get address of allocated object from handle.
1331 * @pool: pool from which the object was allocated
1332 * @handle: handle returned from zs_malloc
1334 * Before using an object allocated from zs_malloc, it must be mapped using
1335 * this function. When done with the object, it must be unmapped using
1336 * zs_unmap_object.
1338 * Only one object can be mapped per cpu at a time. There is no protection
1339 * against nested mappings.
1341 * This function returns with preemption and page faults disabled.
1343 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1344 enum zs_mapmode mm)
1346 struct zspage *zspage;
1347 struct page *page;
1348 unsigned long obj, off;
1349 unsigned int obj_idx;
1351 unsigned int class_idx;
1352 enum fullness_group fg;
1353 struct size_class *class;
1354 struct mapping_area *area;
1355 struct page *pages[2];
1356 void *ret;
1359 * Because we use per-cpu mapping areas shared among the
1360 * pools/users, we can't allow mapping in interrupt context
1361 * because it can corrupt another users mappings.
1363 WARN_ON_ONCE(in_interrupt());
1365 /* From now on, migration cannot move the object */
1366 pin_tag(handle);
1368 obj = handle_to_obj(handle);
1369 obj_to_location(obj, &page, &obj_idx);
1370 zspage = get_zspage(page);
1372 /* migration cannot move any subpage in this zspage */
1373 migrate_read_lock(zspage);
1375 get_zspage_mapping(zspage, &class_idx, &fg);
1376 class = pool->size_class[class_idx];
1377 off = (class->size * obj_idx) & ~PAGE_MASK;
1379 area = &get_cpu_var(zs_map_area);
1380 area->vm_mm = mm;
1381 if (off + class->size <= PAGE_SIZE) {
1382 /* this object is contained entirely within a page */
1383 area->vm_addr = kmap_atomic(page);
1384 ret = area->vm_addr + off;
1385 goto out;
1388 /* this object spans two pages */
1389 pages[0] = page;
1390 pages[1] = get_next_page(page);
1391 BUG_ON(!pages[1]);
1393 ret = __zs_map_object(area, pages, off, class->size);
1394 out:
1395 if (likely(!PageHugeObject(page)))
1396 ret += ZS_HANDLE_SIZE;
1398 return ret;
1400 EXPORT_SYMBOL_GPL(zs_map_object);
1402 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1404 struct zspage *zspage;
1405 struct page *page;
1406 unsigned long obj, off;
1407 unsigned int obj_idx;
1409 unsigned int class_idx;
1410 enum fullness_group fg;
1411 struct size_class *class;
1412 struct mapping_area *area;
1414 obj = handle_to_obj(handle);
1415 obj_to_location(obj, &page, &obj_idx);
1416 zspage = get_zspage(page);
1417 get_zspage_mapping(zspage, &class_idx, &fg);
1418 class = pool->size_class[class_idx];
1419 off = (class->size * obj_idx) & ~PAGE_MASK;
1421 area = this_cpu_ptr(&zs_map_area);
1422 if (off + class->size <= PAGE_SIZE)
1423 kunmap_atomic(area->vm_addr);
1424 else {
1425 struct page *pages[2];
1427 pages[0] = page;
1428 pages[1] = get_next_page(page);
1429 BUG_ON(!pages[1]);
1431 __zs_unmap_object(area, pages, off, class->size);
1433 put_cpu_var(zs_map_area);
1435 migrate_read_unlock(zspage);
1436 unpin_tag(handle);
1438 EXPORT_SYMBOL_GPL(zs_unmap_object);
1440 static unsigned long obj_malloc(struct size_class *class,
1441 struct zspage *zspage, unsigned long handle)
1443 int i, nr_page, offset;
1444 unsigned long obj;
1445 struct link_free *link;
1447 struct page *m_page;
1448 unsigned long m_offset;
1449 void *vaddr;
1451 handle |= OBJ_ALLOCATED_TAG;
1452 obj = get_freeobj(zspage);
1454 offset = obj * class->size;
1455 nr_page = offset >> PAGE_SHIFT;
1456 m_offset = offset & ~PAGE_MASK;
1457 m_page = get_first_page(zspage);
1459 for (i = 0; i < nr_page; i++)
1460 m_page = get_next_page(m_page);
1462 vaddr = kmap_atomic(m_page);
1463 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1464 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1465 if (likely(!PageHugeObject(m_page)))
1466 /* record handle in the header of allocated chunk */
1467 link->handle = handle;
1468 else
1469 /* record handle to page->index */
1470 zspage->first_page->index = handle;
1472 kunmap_atomic(vaddr);
1473 mod_zspage_inuse(zspage, 1);
1474 zs_stat_inc(class, OBJ_USED, 1);
1476 obj = location_to_obj(m_page, obj);
1478 return obj;
1483 * zs_malloc - Allocate block of given size from pool.
1484 * @pool: pool to allocate from
1485 * @size: size of block to allocate
1486 * @gfp: gfp flags when allocating object
1488 * On success, handle to the allocated object is returned,
1489 * otherwise 0.
1490 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1492 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1494 unsigned long handle, obj;
1495 struct size_class *class;
1496 enum fullness_group newfg;
1497 struct zspage *zspage;
1499 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1500 return 0;
1502 handle = cache_alloc_handle(pool, gfp);
1503 if (!handle)
1504 return 0;
1506 /* extra space in chunk to keep the handle */
1507 size += ZS_HANDLE_SIZE;
1508 class = pool->size_class[get_size_class_index(size)];
1510 spin_lock(&class->lock);
1511 zspage = find_get_zspage(class);
1512 if (likely(zspage)) {
1513 obj = obj_malloc(class, zspage, handle);
1514 /* Now move the zspage to another fullness group, if required */
1515 fix_fullness_group(class, zspage);
1516 record_obj(handle, obj);
1517 spin_unlock(&class->lock);
1519 return handle;
1522 spin_unlock(&class->lock);
1524 zspage = alloc_zspage(pool, class, gfp);
1525 if (!zspage) {
1526 cache_free_handle(pool, handle);
1527 return 0;
1530 spin_lock(&class->lock);
1531 obj = obj_malloc(class, zspage, handle);
1532 newfg = get_fullness_group(class, zspage);
1533 insert_zspage(class, zspage, newfg);
1534 set_zspage_mapping(zspage, class->index, newfg);
1535 record_obj(handle, obj);
1536 atomic_long_add(class->pages_per_zspage,
1537 &pool->pages_allocated);
1538 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1540 /* We completely set up zspage so mark them as movable */
1541 SetZsPageMovable(pool, zspage);
1542 spin_unlock(&class->lock);
1544 return handle;
1546 EXPORT_SYMBOL_GPL(zs_malloc);
1548 static void obj_free(struct size_class *class, unsigned long obj)
1550 struct link_free *link;
1551 struct zspage *zspage;
1552 struct page *f_page;
1553 unsigned long f_offset;
1554 unsigned int f_objidx;
1555 void *vaddr;
1557 obj &= ~OBJ_ALLOCATED_TAG;
1558 obj_to_location(obj, &f_page, &f_objidx);
1559 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1560 zspage = get_zspage(f_page);
1562 vaddr = kmap_atomic(f_page);
1564 /* Insert this object in containing zspage's freelist */
1565 link = (struct link_free *)(vaddr + f_offset);
1566 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1567 kunmap_atomic(vaddr);
1568 set_freeobj(zspage, f_objidx);
1569 mod_zspage_inuse(zspage, -1);
1570 zs_stat_dec(class, OBJ_USED, 1);
1573 void zs_free(struct zs_pool *pool, unsigned long handle)
1575 struct zspage *zspage;
1576 struct page *f_page;
1577 unsigned long obj;
1578 unsigned int f_objidx;
1579 int class_idx;
1580 struct size_class *class;
1581 enum fullness_group fullness;
1582 bool isolated;
1584 if (unlikely(!handle))
1585 return;
1587 pin_tag(handle);
1588 obj = handle_to_obj(handle);
1589 obj_to_location(obj, &f_page, &f_objidx);
1590 zspage = get_zspage(f_page);
1592 migrate_read_lock(zspage);
1594 get_zspage_mapping(zspage, &class_idx, &fullness);
1595 class = pool->size_class[class_idx];
1597 spin_lock(&class->lock);
1598 obj_free(class, obj);
1599 fullness = fix_fullness_group(class, zspage);
1600 if (fullness != ZS_EMPTY) {
1601 migrate_read_unlock(zspage);
1602 goto out;
1605 isolated = is_zspage_isolated(zspage);
1606 migrate_read_unlock(zspage);
1607 /* If zspage is isolated, zs_page_putback will free the zspage */
1608 if (likely(!isolated))
1609 free_zspage(pool, class, zspage);
1610 out:
1612 spin_unlock(&class->lock);
1613 unpin_tag(handle);
1614 cache_free_handle(pool, handle);
1616 EXPORT_SYMBOL_GPL(zs_free);
1618 static void zs_object_copy(struct size_class *class, unsigned long dst,
1619 unsigned long src)
1621 struct page *s_page, *d_page;
1622 unsigned int s_objidx, d_objidx;
1623 unsigned long s_off, d_off;
1624 void *s_addr, *d_addr;
1625 int s_size, d_size, size;
1626 int written = 0;
1628 s_size = d_size = class->size;
1630 obj_to_location(src, &s_page, &s_objidx);
1631 obj_to_location(dst, &d_page, &d_objidx);
1633 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1634 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1636 if (s_off + class->size > PAGE_SIZE)
1637 s_size = PAGE_SIZE - s_off;
1639 if (d_off + class->size > PAGE_SIZE)
1640 d_size = PAGE_SIZE - d_off;
1642 s_addr = kmap_atomic(s_page);
1643 d_addr = kmap_atomic(d_page);
1645 while (1) {
1646 size = min(s_size, d_size);
1647 memcpy(d_addr + d_off, s_addr + s_off, size);
1648 written += size;
1650 if (written == class->size)
1651 break;
1653 s_off += size;
1654 s_size -= size;
1655 d_off += size;
1656 d_size -= size;
1658 if (s_off >= PAGE_SIZE) {
1659 kunmap_atomic(d_addr);
1660 kunmap_atomic(s_addr);
1661 s_page = get_next_page(s_page);
1662 s_addr = kmap_atomic(s_page);
1663 d_addr = kmap_atomic(d_page);
1664 s_size = class->size - written;
1665 s_off = 0;
1668 if (d_off >= PAGE_SIZE) {
1669 kunmap_atomic(d_addr);
1670 d_page = get_next_page(d_page);
1671 d_addr = kmap_atomic(d_page);
1672 d_size = class->size - written;
1673 d_off = 0;
1677 kunmap_atomic(d_addr);
1678 kunmap_atomic(s_addr);
1682 * Find alloced object in zspage from index object and
1683 * return handle.
1685 static unsigned long find_alloced_obj(struct size_class *class,
1686 struct page *page, int *obj_idx)
1688 unsigned long head;
1689 int offset = 0;
1690 int index = *obj_idx;
1691 unsigned long handle = 0;
1692 void *addr = kmap_atomic(page);
1694 offset = get_first_obj_offset(page);
1695 offset += class->size * index;
1697 while (offset < PAGE_SIZE) {
1698 head = obj_to_head(page, addr + offset);
1699 if (head & OBJ_ALLOCATED_TAG) {
1700 handle = head & ~OBJ_ALLOCATED_TAG;
1701 if (trypin_tag(handle))
1702 break;
1703 handle = 0;
1706 offset += class->size;
1707 index++;
1710 kunmap_atomic(addr);
1712 *obj_idx = index;
1714 return handle;
1717 struct zs_compact_control {
1718 /* Source spage for migration which could be a subpage of zspage */
1719 struct page *s_page;
1720 /* Destination page for migration which should be a first page
1721 * of zspage. */
1722 struct page *d_page;
1723 /* Starting object index within @s_page which used for live object
1724 * in the subpage. */
1725 int obj_idx;
1728 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1729 struct zs_compact_control *cc)
1731 unsigned long used_obj, free_obj;
1732 unsigned long handle;
1733 struct page *s_page = cc->s_page;
1734 struct page *d_page = cc->d_page;
1735 int obj_idx = cc->obj_idx;
1736 int ret = 0;
1738 while (1) {
1739 handle = find_alloced_obj(class, s_page, &obj_idx);
1740 if (!handle) {
1741 s_page = get_next_page(s_page);
1742 if (!s_page)
1743 break;
1744 obj_idx = 0;
1745 continue;
1748 /* Stop if there is no more space */
1749 if (zspage_full(class, get_zspage(d_page))) {
1750 unpin_tag(handle);
1751 ret = -ENOMEM;
1752 break;
1755 used_obj = handle_to_obj(handle);
1756 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1757 zs_object_copy(class, free_obj, used_obj);
1758 obj_idx++;
1760 * record_obj updates handle's value to free_obj and it will
1761 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1762 * breaks synchronization using pin_tag(e,g, zs_free) so
1763 * let's keep the lock bit.
1765 free_obj |= BIT(HANDLE_PIN_BIT);
1766 record_obj(handle, free_obj);
1767 unpin_tag(handle);
1768 obj_free(class, used_obj);
1771 /* Remember last position in this iteration */
1772 cc->s_page = s_page;
1773 cc->obj_idx = obj_idx;
1775 return ret;
1778 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1780 int i;
1781 struct zspage *zspage;
1782 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1784 if (!source) {
1785 fg[0] = ZS_ALMOST_FULL;
1786 fg[1] = ZS_ALMOST_EMPTY;
1789 for (i = 0; i < 2; i++) {
1790 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1791 struct zspage, list);
1792 if (zspage) {
1793 VM_BUG_ON(is_zspage_isolated(zspage));
1794 remove_zspage(class, zspage, fg[i]);
1795 return zspage;
1799 return zspage;
1803 * putback_zspage - add @zspage into right class's fullness list
1804 * @class: destination class
1805 * @zspage: target page
1807 * Return @zspage's fullness_group
1809 static enum fullness_group putback_zspage(struct size_class *class,
1810 struct zspage *zspage)
1812 enum fullness_group fullness;
1814 VM_BUG_ON(is_zspage_isolated(zspage));
1816 fullness = get_fullness_group(class, zspage);
1817 insert_zspage(class, zspage, fullness);
1818 set_zspage_mapping(zspage, class->index, fullness);
1820 return fullness;
1823 #ifdef CONFIG_COMPACTION
1824 static struct dentry *zs_mount(struct file_system_type *fs_type,
1825 int flags, const char *dev_name, void *data)
1827 static const struct dentry_operations ops = {
1828 .d_dname = simple_dname,
1831 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1834 static struct file_system_type zsmalloc_fs = {
1835 .name = "zsmalloc",
1836 .mount = zs_mount,
1837 .kill_sb = kill_anon_super,
1840 static int zsmalloc_mount(void)
1842 int ret = 0;
1844 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1845 if (IS_ERR(zsmalloc_mnt))
1846 ret = PTR_ERR(zsmalloc_mnt);
1848 return ret;
1851 static void zsmalloc_unmount(void)
1853 kern_unmount(zsmalloc_mnt);
1856 static void migrate_lock_init(struct zspage *zspage)
1858 rwlock_init(&zspage->lock);
1861 static void migrate_read_lock(struct zspage *zspage)
1863 read_lock(&zspage->lock);
1866 static void migrate_read_unlock(struct zspage *zspage)
1868 read_unlock(&zspage->lock);
1871 static void migrate_write_lock(struct zspage *zspage)
1873 write_lock(&zspage->lock);
1876 static void migrate_write_unlock(struct zspage *zspage)
1878 write_unlock(&zspage->lock);
1881 /* Number of isolated subpage for *page migration* in this zspage */
1882 static void inc_zspage_isolation(struct zspage *zspage)
1884 zspage->isolated++;
1887 static void dec_zspage_isolation(struct zspage *zspage)
1889 zspage->isolated--;
1892 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1893 struct page *newpage, struct page *oldpage)
1895 struct page *page;
1896 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1897 int idx = 0;
1899 page = get_first_page(zspage);
1900 do {
1901 if (page == oldpage)
1902 pages[idx] = newpage;
1903 else
1904 pages[idx] = page;
1905 idx++;
1906 } while ((page = get_next_page(page)) != NULL);
1908 create_page_chain(class, zspage, pages);
1909 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1910 if (unlikely(PageHugeObject(oldpage)))
1911 newpage->index = oldpage->index;
1912 __SetPageMovable(newpage, page_mapping(oldpage));
1915 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1917 struct zs_pool *pool;
1918 struct size_class *class;
1919 int class_idx;
1920 enum fullness_group fullness;
1921 struct zspage *zspage;
1922 struct address_space *mapping;
1925 * Page is locked so zspage couldn't be destroyed. For detail, look at
1926 * lock_zspage in free_zspage.
1928 VM_BUG_ON_PAGE(!PageMovable(page), page);
1929 VM_BUG_ON_PAGE(PageIsolated(page), page);
1931 zspage = get_zspage(page);
1934 * Without class lock, fullness could be stale while class_idx is okay
1935 * because class_idx is constant unless page is freed so we should get
1936 * fullness again under class lock.
1938 get_zspage_mapping(zspage, &class_idx, &fullness);
1939 mapping = page_mapping(page);
1940 pool = mapping->private_data;
1941 class = pool->size_class[class_idx];
1943 spin_lock(&class->lock);
1944 if (get_zspage_inuse(zspage) == 0) {
1945 spin_unlock(&class->lock);
1946 return false;
1949 /* zspage is isolated for object migration */
1950 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1951 spin_unlock(&class->lock);
1952 return false;
1956 * If this is first time isolation for the zspage, isolate zspage from
1957 * size_class to prevent further object allocation from the zspage.
1959 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1960 get_zspage_mapping(zspage, &class_idx, &fullness);
1961 remove_zspage(class, zspage, fullness);
1964 inc_zspage_isolation(zspage);
1965 spin_unlock(&class->lock);
1967 return true;
1970 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1971 struct page *page, enum migrate_mode mode)
1973 struct zs_pool *pool;
1974 struct size_class *class;
1975 int class_idx;
1976 enum fullness_group fullness;
1977 struct zspage *zspage;
1978 struct page *dummy;
1979 void *s_addr, *d_addr, *addr;
1980 int offset, pos;
1981 unsigned long handle, head;
1982 unsigned long old_obj, new_obj;
1983 unsigned int obj_idx;
1984 int ret = -EAGAIN;
1986 VM_BUG_ON_PAGE(!PageMovable(page), page);
1987 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1989 zspage = get_zspage(page);
1991 /* Concurrent compactor cannot migrate any subpage in zspage */
1992 migrate_write_lock(zspage);
1993 get_zspage_mapping(zspage, &class_idx, &fullness);
1994 pool = mapping->private_data;
1995 class = pool->size_class[class_idx];
1996 offset = get_first_obj_offset(page);
1998 spin_lock(&class->lock);
1999 if (!get_zspage_inuse(zspage)) {
2000 ret = -EBUSY;
2001 goto unlock_class;
2004 pos = offset;
2005 s_addr = kmap_atomic(page);
2006 while (pos < PAGE_SIZE) {
2007 head = obj_to_head(page, s_addr + pos);
2008 if (head & OBJ_ALLOCATED_TAG) {
2009 handle = head & ~OBJ_ALLOCATED_TAG;
2010 if (!trypin_tag(handle))
2011 goto unpin_objects;
2013 pos += class->size;
2017 * Here, any user cannot access all objects in the zspage so let's move.
2019 d_addr = kmap_atomic(newpage);
2020 memcpy(d_addr, s_addr, PAGE_SIZE);
2021 kunmap_atomic(d_addr);
2023 for (addr = s_addr + offset; addr < s_addr + pos;
2024 addr += class->size) {
2025 head = obj_to_head(page, addr);
2026 if (head & OBJ_ALLOCATED_TAG) {
2027 handle = head & ~OBJ_ALLOCATED_TAG;
2028 if (!testpin_tag(handle))
2029 BUG();
2031 old_obj = handle_to_obj(handle);
2032 obj_to_location(old_obj, &dummy, &obj_idx);
2033 new_obj = (unsigned long)location_to_obj(newpage,
2034 obj_idx);
2035 new_obj |= BIT(HANDLE_PIN_BIT);
2036 record_obj(handle, new_obj);
2040 replace_sub_page(class, zspage, newpage, page);
2041 get_page(newpage);
2043 dec_zspage_isolation(zspage);
2046 * Page migration is done so let's putback isolated zspage to
2047 * the list if @page is final isolated subpage in the zspage.
2049 if (!is_zspage_isolated(zspage))
2050 putback_zspage(class, zspage);
2052 reset_page(page);
2053 put_page(page);
2054 page = newpage;
2056 ret = MIGRATEPAGE_SUCCESS;
2057 unpin_objects:
2058 for (addr = s_addr + offset; addr < s_addr + pos;
2059 addr += class->size) {
2060 head = obj_to_head(page, addr);
2061 if (head & OBJ_ALLOCATED_TAG) {
2062 handle = head & ~OBJ_ALLOCATED_TAG;
2063 if (!testpin_tag(handle))
2064 BUG();
2065 unpin_tag(handle);
2068 kunmap_atomic(s_addr);
2069 unlock_class:
2070 spin_unlock(&class->lock);
2071 migrate_write_unlock(zspage);
2073 return ret;
2076 void zs_page_putback(struct page *page)
2078 struct zs_pool *pool;
2079 struct size_class *class;
2080 int class_idx;
2081 enum fullness_group fg;
2082 struct address_space *mapping;
2083 struct zspage *zspage;
2085 VM_BUG_ON_PAGE(!PageMovable(page), page);
2086 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2088 zspage = get_zspage(page);
2089 get_zspage_mapping(zspage, &class_idx, &fg);
2090 mapping = page_mapping(page);
2091 pool = mapping->private_data;
2092 class = pool->size_class[class_idx];
2094 spin_lock(&class->lock);
2095 dec_zspage_isolation(zspage);
2096 if (!is_zspage_isolated(zspage)) {
2097 fg = putback_zspage(class, zspage);
2099 * Due to page_lock, we cannot free zspage immediately
2100 * so let's defer.
2102 if (fg == ZS_EMPTY)
2103 schedule_work(&pool->free_work);
2105 spin_unlock(&class->lock);
2108 const struct address_space_operations zsmalloc_aops = {
2109 .isolate_page = zs_page_isolate,
2110 .migratepage = zs_page_migrate,
2111 .putback_page = zs_page_putback,
2114 static int zs_register_migration(struct zs_pool *pool)
2116 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2117 if (IS_ERR(pool->inode)) {
2118 pool->inode = NULL;
2119 return 1;
2122 pool->inode->i_mapping->private_data = pool;
2123 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2124 return 0;
2127 static void zs_unregister_migration(struct zs_pool *pool)
2129 flush_work(&pool->free_work);
2130 iput(pool->inode);
2134 * Caller should hold page_lock of all pages in the zspage
2135 * In here, we cannot use zspage meta data.
2137 static void async_free_zspage(struct work_struct *work)
2139 int i;
2140 struct size_class *class;
2141 unsigned int class_idx;
2142 enum fullness_group fullness;
2143 struct zspage *zspage, *tmp;
2144 LIST_HEAD(free_pages);
2145 struct zs_pool *pool = container_of(work, struct zs_pool,
2146 free_work);
2148 for (i = 0; i < zs_size_classes; i++) {
2149 class = pool->size_class[i];
2150 if (class->index != i)
2151 continue;
2153 spin_lock(&class->lock);
2154 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2155 spin_unlock(&class->lock);
2159 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2160 list_del(&zspage->list);
2161 lock_zspage(zspage);
2163 get_zspage_mapping(zspage, &class_idx, &fullness);
2164 VM_BUG_ON(fullness != ZS_EMPTY);
2165 class = pool->size_class[class_idx];
2166 spin_lock(&class->lock);
2167 __free_zspage(pool, pool->size_class[class_idx], zspage);
2168 spin_unlock(&class->lock);
2172 static void kick_deferred_free(struct zs_pool *pool)
2174 schedule_work(&pool->free_work);
2177 static void init_deferred_free(struct zs_pool *pool)
2179 INIT_WORK(&pool->free_work, async_free_zspage);
2182 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2184 struct page *page = get_first_page(zspage);
2186 do {
2187 WARN_ON(!trylock_page(page));
2188 __SetPageMovable(page, pool->inode->i_mapping);
2189 unlock_page(page);
2190 } while ((page = get_next_page(page)) != NULL);
2192 #endif
2196 * Based on the number of unused allocated objects calculate
2197 * and return the number of pages that we can free.
2199 static unsigned long zs_can_compact(struct size_class *class)
2201 unsigned long obj_wasted;
2202 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2203 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2205 if (obj_allocated <= obj_used)
2206 return 0;
2208 obj_wasted = obj_allocated - obj_used;
2209 obj_wasted /= class->objs_per_zspage;
2211 return obj_wasted * class->pages_per_zspage;
2214 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2216 struct zs_compact_control cc;
2217 struct zspage *src_zspage;
2218 struct zspage *dst_zspage = NULL;
2220 spin_lock(&class->lock);
2221 while ((src_zspage = isolate_zspage(class, true))) {
2223 if (!zs_can_compact(class))
2224 break;
2226 cc.obj_idx = 0;
2227 cc.s_page = get_first_page(src_zspage);
2229 while ((dst_zspage = isolate_zspage(class, false))) {
2230 cc.d_page = get_first_page(dst_zspage);
2232 * If there is no more space in dst_page, resched
2233 * and see if anyone had allocated another zspage.
2235 if (!migrate_zspage(pool, class, &cc))
2236 break;
2238 putback_zspage(class, dst_zspage);
2241 /* Stop if we couldn't find slot */
2242 if (dst_zspage == NULL)
2243 break;
2245 putback_zspage(class, dst_zspage);
2246 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2247 free_zspage(pool, class, src_zspage);
2248 pool->stats.pages_compacted += class->pages_per_zspage;
2250 spin_unlock(&class->lock);
2251 cond_resched();
2252 spin_lock(&class->lock);
2255 if (src_zspage)
2256 putback_zspage(class, src_zspage);
2258 spin_unlock(&class->lock);
2261 unsigned long zs_compact(struct zs_pool *pool)
2263 int i;
2264 struct size_class *class;
2266 for (i = zs_size_classes - 1; i >= 0; i--) {
2267 class = pool->size_class[i];
2268 if (!class)
2269 continue;
2270 if (class->index != i)
2271 continue;
2272 __zs_compact(pool, class);
2275 return pool->stats.pages_compacted;
2277 EXPORT_SYMBOL_GPL(zs_compact);
2279 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2281 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2283 EXPORT_SYMBOL_GPL(zs_pool_stats);
2285 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2286 struct shrink_control *sc)
2288 unsigned long pages_freed;
2289 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290 shrinker);
2292 pages_freed = pool->stats.pages_compacted;
2294 * Compact classes and calculate compaction delta.
2295 * Can run concurrently with a manually triggered
2296 * (by user) compaction.
2298 pages_freed = zs_compact(pool) - pages_freed;
2300 return pages_freed ? pages_freed : SHRINK_STOP;
2303 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2304 struct shrink_control *sc)
2306 int i;
2307 struct size_class *class;
2308 unsigned long pages_to_free = 0;
2309 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2310 shrinker);
2312 for (i = zs_size_classes - 1; i >= 0; i--) {
2313 class = pool->size_class[i];
2314 if (!class)
2315 continue;
2316 if (class->index != i)
2317 continue;
2319 pages_to_free += zs_can_compact(class);
2322 return pages_to_free;
2325 static void zs_unregister_shrinker(struct zs_pool *pool)
2327 if (pool->shrinker_enabled) {
2328 unregister_shrinker(&pool->shrinker);
2329 pool->shrinker_enabled = false;
2333 static int zs_register_shrinker(struct zs_pool *pool)
2335 pool->shrinker.scan_objects = zs_shrinker_scan;
2336 pool->shrinker.count_objects = zs_shrinker_count;
2337 pool->shrinker.batch = 0;
2338 pool->shrinker.seeks = DEFAULT_SEEKS;
2340 return register_shrinker(&pool->shrinker);
2344 * zs_create_pool - Creates an allocation pool to work from.
2345 * @name: pool name to be created
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
2350 * On success, a pointer to the newly created pool is returned,
2351 * otherwise NULL.
2353 struct zs_pool *zs_create_pool(const char *name)
2355 int i;
2356 struct zs_pool *pool;
2357 struct size_class *prev_class = NULL;
2359 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360 if (!pool)
2361 return NULL;
2363 init_deferred_free(pool);
2364 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2365 GFP_KERNEL);
2366 if (!pool->size_class) {
2367 kfree(pool);
2368 return NULL;
2371 pool->name = kstrdup(name, GFP_KERNEL);
2372 if (!pool->name)
2373 goto err;
2375 if (create_cache(pool))
2376 goto err;
2379 * Iterate reversely, because, size of size_class that we want to use
2380 * for merging should be larger or equal to current size.
2382 for (i = zs_size_classes - 1; i >= 0; i--) {
2383 int size;
2384 int pages_per_zspage;
2385 int objs_per_zspage;
2386 struct size_class *class;
2387 int fullness = 0;
2389 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2390 if (size > ZS_MAX_ALLOC_SIZE)
2391 size = ZS_MAX_ALLOC_SIZE;
2392 pages_per_zspage = get_pages_per_zspage(size);
2393 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2396 * size_class is used for normal zsmalloc operation such
2397 * as alloc/free for that size. Although it is natural that we
2398 * have one size_class for each size, there is a chance that we
2399 * can get more memory utilization if we use one size_class for
2400 * many different sizes whose size_class have same
2401 * characteristics. So, we makes size_class point to
2402 * previous size_class if possible.
2404 if (prev_class) {
2405 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2406 pool->size_class[i] = prev_class;
2407 continue;
2411 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2412 if (!class)
2413 goto err;
2415 class->size = size;
2416 class->index = i;
2417 class->pages_per_zspage = pages_per_zspage;
2418 class->objs_per_zspage = objs_per_zspage;
2419 spin_lock_init(&class->lock);
2420 pool->size_class[i] = class;
2421 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2422 fullness++)
2423 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2425 prev_class = class;
2428 /* debug only, don't abort if it fails */
2429 zs_pool_stat_create(pool, name);
2431 if (zs_register_migration(pool))
2432 goto err;
2435 * Not critical, we still can use the pool
2436 * and user can trigger compaction manually.
2438 if (zs_register_shrinker(pool) == 0)
2439 pool->shrinker_enabled = true;
2440 return pool;
2442 err:
2443 zs_destroy_pool(pool);
2444 return NULL;
2446 EXPORT_SYMBOL_GPL(zs_create_pool);
2448 void zs_destroy_pool(struct zs_pool *pool)
2450 int i;
2452 zs_unregister_shrinker(pool);
2453 zs_unregister_migration(pool);
2454 zs_pool_stat_destroy(pool);
2456 for (i = 0; i < zs_size_classes; i++) {
2457 int fg;
2458 struct size_class *class = pool->size_class[i];
2460 if (!class)
2461 continue;
2463 if (class->index != i)
2464 continue;
2466 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2467 if (!list_empty(&class->fullness_list[fg])) {
2468 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2469 class->size, fg);
2472 kfree(class);
2475 destroy_cache(pool);
2476 kfree(pool->size_class);
2477 kfree(pool->name);
2478 kfree(pool);
2480 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2482 static int __init zs_init(void)
2484 int ret;
2486 ret = zsmalloc_mount();
2487 if (ret)
2488 goto out;
2490 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2491 zs_cpu_prepare, zs_cpu_dead);
2492 if (ret)
2493 goto hp_setup_fail;
2495 init_zs_size_classes();
2497 #ifdef CONFIG_ZPOOL
2498 zpool_register_driver(&zs_zpool_driver);
2499 #endif
2501 zs_stat_init();
2503 return 0;
2505 hp_setup_fail:
2506 zsmalloc_unmount();
2507 out:
2508 return ret;
2511 static void __exit zs_exit(void)
2513 #ifdef CONFIG_ZPOOL
2514 zpool_unregister_driver(&zs_zpool_driver);
2515 #endif
2516 zsmalloc_unmount();
2517 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2519 zs_stat_exit();
2522 module_init(zs_init);
2523 module_exit(zs_exit);
2525 MODULE_LICENSE("Dual BSD/GPL");
2526 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");