drivers/w1/slaves/w1_ds2760.c: fix the error handling in w1_ds2760_add_slave()
[linux-2.6/btrfs-unstable.git] / kernel / signal.c
blobcede58910f9c6629304cdddce66e0edf42a40148
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h" /* audit_signal_info() */
46 * SLAB caches for signal bits.
49 static struct kmem_cache *sigqueue_cachep;
51 int print_fatal_signals __read_mostly;
53 static void __user *sig_handler(struct task_struct *t, int sig)
55 return t->sighand->action[sig - 1].sa.sa_handler;
58 static int sig_handler_ignored(void __user *handler, int sig)
60 /* Is it explicitly or implicitly ignored? */
61 return handler == SIG_IGN ||
62 (handler == SIG_DFL && sig_kernel_ignore(sig));
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
67 void __user *handler;
69 handler = sig_handler(t, sig);
71 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72 handler == SIG_DFL && !force)
73 return 1;
75 return sig_handler_ignored(handler, sig);
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
81 * Blocked signals are never ignored, since the
82 * signal handler may change by the time it is
83 * unblocked.
85 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86 return 0;
88 if (!sig_task_ignored(t, sig, force))
89 return 0;
92 * Tracers may want to know about even ignored signals.
94 return !t->ptrace;
98 * Re-calculate pending state from the set of locally pending
99 * signals, globally pending signals, and blocked signals.
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
103 unsigned long ready;
104 long i;
106 switch (_NSIG_WORDS) {
107 default:
108 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109 ready |= signal->sig[i] &~ blocked->sig[i];
110 break;
112 case 4: ready = signal->sig[3] &~ blocked->sig[3];
113 ready |= signal->sig[2] &~ blocked->sig[2];
114 ready |= signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
118 case 2: ready = signal->sig[1] &~ blocked->sig[1];
119 ready |= signal->sig[0] &~ blocked->sig[0];
120 break;
122 case 1: ready = signal->sig[0] &~ blocked->sig[0];
124 return ready != 0;
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
129 static int recalc_sigpending_tsk(struct task_struct *t)
131 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132 PENDING(&t->pending, &t->blocked) ||
133 PENDING(&t->signal->shared_pending, &t->blocked)) {
134 set_tsk_thread_flag(t, TIF_SIGPENDING);
135 return 1;
138 * We must never clear the flag in another thread, or in current
139 * when it's possible the current syscall is returning -ERESTART*.
140 * So we don't clear it here, and only callers who know they should do.
142 return 0;
146 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147 * This is superfluous when called on current, the wakeup is a harmless no-op.
149 void recalc_sigpending_and_wake(struct task_struct *t)
151 if (recalc_sigpending_tsk(t))
152 signal_wake_up(t, 0);
155 void recalc_sigpending(void)
157 if (!recalc_sigpending_tsk(current) && !freezing(current))
158 clear_thread_flag(TIF_SIGPENDING);
162 /* Given the mask, find the first available signal that should be serviced. */
164 #define SYNCHRONOUS_MASK \
165 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
168 int next_signal(struct sigpending *pending, sigset_t *mask)
170 unsigned long i, *s, *m, x;
171 int sig = 0;
173 s = pending->signal.sig;
174 m = mask->sig;
177 * Handle the first word specially: it contains the
178 * synchronous signals that need to be dequeued first.
180 x = *s &~ *m;
181 if (x) {
182 if (x & SYNCHRONOUS_MASK)
183 x &= SYNCHRONOUS_MASK;
184 sig = ffz(~x) + 1;
185 return sig;
188 switch (_NSIG_WORDS) {
189 default:
190 for (i = 1; i < _NSIG_WORDS; ++i) {
191 x = *++s &~ *++m;
192 if (!x)
193 continue;
194 sig = ffz(~x) + i*_NSIG_BPW + 1;
195 break;
197 break;
199 case 2:
200 x = s[1] &~ m[1];
201 if (!x)
202 break;
203 sig = ffz(~x) + _NSIG_BPW + 1;
204 break;
206 case 1:
207 /* Nothing to do */
208 break;
211 return sig;
214 static inline void print_dropped_signal(int sig)
216 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
218 if (!print_fatal_signals)
219 return;
221 if (!__ratelimit(&ratelimit_state))
222 return;
224 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225 current->comm, current->pid, sig);
229 * task_set_jobctl_pending - set jobctl pending bits
230 * @task: target task
231 * @mask: pending bits to set
233 * Clear @mask from @task->jobctl. @mask must be subset of
234 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
236 * cleared. If @task is already being killed or exiting, this function
237 * becomes noop.
239 * CONTEXT:
240 * Must be called with @task->sighand->siglock held.
242 * RETURNS:
243 * %true if @mask is set, %false if made noop because @task was dying.
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
247 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
251 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252 return false;
254 if (mask & JOBCTL_STOP_SIGMASK)
255 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
257 task->jobctl |= mask;
258 return true;
262 * task_clear_jobctl_trapping - clear jobctl trapping bit
263 * @task: target task
265 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266 * Clear it and wake up the ptracer. Note that we don't need any further
267 * locking. @task->siglock guarantees that @task->parent points to the
268 * ptracer.
270 * CONTEXT:
271 * Must be called with @task->sighand->siglock held.
273 void task_clear_jobctl_trapping(struct task_struct *task)
275 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276 task->jobctl &= ~JOBCTL_TRAPPING;
277 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282 * task_clear_jobctl_pending - clear jobctl pending bits
283 * @task: target task
284 * @mask: pending bits to clear
286 * Clear @mask from @task->jobctl. @mask must be subset of
287 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
288 * STOP bits are cleared together.
290 * If clearing of @mask leaves no stop or trap pending, this function calls
291 * task_clear_jobctl_trapping().
293 * CONTEXT:
294 * Must be called with @task->sighand->siglock held.
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
298 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
300 if (mask & JOBCTL_STOP_PENDING)
301 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
303 task->jobctl &= ~mask;
305 if (!(task->jobctl & JOBCTL_PENDING_MASK))
306 task_clear_jobctl_trapping(task);
310 * task_participate_group_stop - participate in a group stop
311 * @task: task participating in a group stop
313 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314 * Group stop states are cleared and the group stop count is consumed if
315 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
316 * stop, the appropriate %SIGNAL_* flags are set.
318 * CONTEXT:
319 * Must be called with @task->sighand->siglock held.
321 * RETURNS:
322 * %true if group stop completion should be notified to the parent, %false
323 * otherwise.
325 static bool task_participate_group_stop(struct task_struct *task)
327 struct signal_struct *sig = task->signal;
328 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
330 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
332 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
334 if (!consume)
335 return false;
337 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338 sig->group_stop_count--;
341 * Tell the caller to notify completion iff we are entering into a
342 * fresh group stop. Read comment in do_signal_stop() for details.
344 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345 sig->flags = SIGNAL_STOP_STOPPED;
346 return true;
348 return false;
352 * allocate a new signal queue record
353 * - this may be called without locks if and only if t == current, otherwise an
354 * appropriate lock must be held to stop the target task from exiting
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
359 struct sigqueue *q = NULL;
360 struct user_struct *user;
363 * Protect access to @t credentials. This can go away when all
364 * callers hold rcu read lock.
366 rcu_read_lock();
367 user = get_uid(__task_cred(t)->user);
368 atomic_inc(&user->sigpending);
369 rcu_read_unlock();
371 if (override_rlimit ||
372 atomic_read(&user->sigpending) <=
373 task_rlimit(t, RLIMIT_SIGPENDING)) {
374 q = kmem_cache_alloc(sigqueue_cachep, flags);
375 } else {
376 print_dropped_signal(sig);
379 if (unlikely(q == NULL)) {
380 atomic_dec(&user->sigpending);
381 free_uid(user);
382 } else {
383 INIT_LIST_HEAD(&q->list);
384 q->flags = 0;
385 q->user = user;
388 return q;
391 static void __sigqueue_free(struct sigqueue *q)
393 if (q->flags & SIGQUEUE_PREALLOC)
394 return;
395 atomic_dec(&q->user->sigpending);
396 free_uid(q->user);
397 kmem_cache_free(sigqueue_cachep, q);
400 void flush_sigqueue(struct sigpending *queue)
402 struct sigqueue *q;
404 sigemptyset(&queue->signal);
405 while (!list_empty(&queue->list)) {
406 q = list_entry(queue->list.next, struct sigqueue , list);
407 list_del_init(&q->list);
408 __sigqueue_free(q);
413 * Flush all pending signals for a task.
415 void __flush_signals(struct task_struct *t)
417 clear_tsk_thread_flag(t, TIF_SIGPENDING);
418 flush_sigqueue(&t->pending);
419 flush_sigqueue(&t->signal->shared_pending);
422 void flush_signals(struct task_struct *t)
424 unsigned long flags;
426 spin_lock_irqsave(&t->sighand->siglock, flags);
427 __flush_signals(t);
428 spin_unlock_irqrestore(&t->sighand->siglock, flags);
431 static void __flush_itimer_signals(struct sigpending *pending)
433 sigset_t signal, retain;
434 struct sigqueue *q, *n;
436 signal = pending->signal;
437 sigemptyset(&retain);
439 list_for_each_entry_safe(q, n, &pending->list, list) {
440 int sig = q->info.si_signo;
442 if (likely(q->info.si_code != SI_TIMER)) {
443 sigaddset(&retain, sig);
444 } else {
445 sigdelset(&signal, sig);
446 list_del_init(&q->list);
447 __sigqueue_free(q);
451 sigorsets(&pending->signal, &signal, &retain);
454 void flush_itimer_signals(void)
456 struct task_struct *tsk = current;
457 unsigned long flags;
459 spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 __flush_itimer_signals(&tsk->pending);
461 __flush_itimer_signals(&tsk->signal->shared_pending);
462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
465 void ignore_signals(struct task_struct *t)
467 int i;
469 for (i = 0; i < _NSIG; ++i)
470 t->sighand->action[i].sa.sa_handler = SIG_IGN;
472 flush_signals(t);
476 * Flush all handlers for a task.
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
482 int i;
483 struct k_sigaction *ka = &t->sighand->action[0];
484 for (i = _NSIG ; i != 0 ; i--) {
485 if (force_default || ka->sa.sa_handler != SIG_IGN)
486 ka->sa.sa_handler = SIG_DFL;
487 ka->sa.sa_flags = 0;
488 #ifdef __ARCH_HAS_SA_RESTORER
489 ka->sa.sa_restorer = NULL;
490 #endif
491 sigemptyset(&ka->sa.sa_mask);
492 ka++;
496 int unhandled_signal(struct task_struct *tsk, int sig)
498 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
499 if (is_global_init(tsk))
500 return 1;
501 if (handler != SIG_IGN && handler != SIG_DFL)
502 return 0;
503 /* if ptraced, let the tracer determine */
504 return !tsk->ptrace;
508 * Notify the system that a driver wants to block all signals for this
509 * process, and wants to be notified if any signals at all were to be
510 * sent/acted upon. If the notifier routine returns non-zero, then the
511 * signal will be acted upon after all. If the notifier routine returns 0,
512 * then then signal will be blocked. Only one block per process is
513 * allowed. priv is a pointer to private data that the notifier routine
514 * can use to determine if the signal should be blocked or not.
516 void
517 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
519 unsigned long flags;
521 spin_lock_irqsave(&current->sighand->siglock, flags);
522 current->notifier_mask = mask;
523 current->notifier_data = priv;
524 current->notifier = notifier;
525 spin_unlock_irqrestore(&current->sighand->siglock, flags);
528 /* Notify the system that blocking has ended. */
530 void
531 unblock_all_signals(void)
533 unsigned long flags;
535 spin_lock_irqsave(&current->sighand->siglock, flags);
536 current->notifier = NULL;
537 current->notifier_data = NULL;
538 recalc_sigpending();
539 spin_unlock_irqrestore(&current->sighand->siglock, flags);
542 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
544 struct sigqueue *q, *first = NULL;
547 * Collect the siginfo appropriate to this signal. Check if
548 * there is another siginfo for the same signal.
550 list_for_each_entry(q, &list->list, list) {
551 if (q->info.si_signo == sig) {
552 if (first)
553 goto still_pending;
554 first = q;
558 sigdelset(&list->signal, sig);
560 if (first) {
561 still_pending:
562 list_del_init(&first->list);
563 copy_siginfo(info, &first->info);
564 __sigqueue_free(first);
565 } else {
567 * Ok, it wasn't in the queue. This must be
568 * a fast-pathed signal or we must have been
569 * out of queue space. So zero out the info.
571 info->si_signo = sig;
572 info->si_errno = 0;
573 info->si_code = SI_USER;
574 info->si_pid = 0;
575 info->si_uid = 0;
579 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
580 siginfo_t *info)
582 int sig = next_signal(pending, mask);
584 if (sig) {
585 if (current->notifier) {
586 if (sigismember(current->notifier_mask, sig)) {
587 if (!(current->notifier)(current->notifier_data)) {
588 clear_thread_flag(TIF_SIGPENDING);
589 return 0;
594 collect_signal(sig, pending, info);
597 return sig;
601 * Dequeue a signal and return the element to the caller, which is
602 * expected to free it.
604 * All callers have to hold the siglock.
606 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
608 int signr;
610 /* We only dequeue private signals from ourselves, we don't let
611 * signalfd steal them
613 signr = __dequeue_signal(&tsk->pending, mask, info);
614 if (!signr) {
615 signr = __dequeue_signal(&tsk->signal->shared_pending,
616 mask, info);
618 * itimer signal ?
620 * itimers are process shared and we restart periodic
621 * itimers in the signal delivery path to prevent DoS
622 * attacks in the high resolution timer case. This is
623 * compliant with the old way of self-restarting
624 * itimers, as the SIGALRM is a legacy signal and only
625 * queued once. Changing the restart behaviour to
626 * restart the timer in the signal dequeue path is
627 * reducing the timer noise on heavy loaded !highres
628 * systems too.
630 if (unlikely(signr == SIGALRM)) {
631 struct hrtimer *tmr = &tsk->signal->real_timer;
633 if (!hrtimer_is_queued(tmr) &&
634 tsk->signal->it_real_incr.tv64 != 0) {
635 hrtimer_forward(tmr, tmr->base->get_time(),
636 tsk->signal->it_real_incr);
637 hrtimer_restart(tmr);
642 recalc_sigpending();
643 if (!signr)
644 return 0;
646 if (unlikely(sig_kernel_stop(signr))) {
648 * Set a marker that we have dequeued a stop signal. Our
649 * caller might release the siglock and then the pending
650 * stop signal it is about to process is no longer in the
651 * pending bitmasks, but must still be cleared by a SIGCONT
652 * (and overruled by a SIGKILL). So those cases clear this
653 * shared flag after we've set it. Note that this flag may
654 * remain set after the signal we return is ignored or
655 * handled. That doesn't matter because its only purpose
656 * is to alert stop-signal processing code when another
657 * processor has come along and cleared the flag.
659 current->jobctl |= JOBCTL_STOP_DEQUEUED;
661 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
663 * Release the siglock to ensure proper locking order
664 * of timer locks outside of siglocks. Note, we leave
665 * irqs disabled here, since the posix-timers code is
666 * about to disable them again anyway.
668 spin_unlock(&tsk->sighand->siglock);
669 do_schedule_next_timer(info);
670 spin_lock(&tsk->sighand->siglock);
672 return signr;
676 * Tell a process that it has a new active signal..
678 * NOTE! we rely on the previous spin_lock to
679 * lock interrupts for us! We can only be called with
680 * "siglock" held, and the local interrupt must
681 * have been disabled when that got acquired!
683 * No need to set need_resched since signal event passing
684 * goes through ->blocked
686 void signal_wake_up_state(struct task_struct *t, unsigned int state)
688 set_tsk_thread_flag(t, TIF_SIGPENDING);
690 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
691 * case. We don't check t->state here because there is a race with it
692 * executing another processor and just now entering stopped state.
693 * By using wake_up_state, we ensure the process will wake up and
694 * handle its death signal.
696 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
697 kick_process(t);
701 * Remove signals in mask from the pending set and queue.
702 * Returns 1 if any signals were found.
704 * All callers must be holding the siglock.
706 * This version takes a sigset mask and looks at all signals,
707 * not just those in the first mask word.
709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
711 struct sigqueue *q, *n;
712 sigset_t m;
714 sigandsets(&m, mask, &s->signal);
715 if (sigisemptyset(&m))
716 return 0;
718 sigandnsets(&s->signal, &s->signal, mask);
719 list_for_each_entry_safe(q, n, &s->list, list) {
720 if (sigismember(mask, q->info.si_signo)) {
721 list_del_init(&q->list);
722 __sigqueue_free(q);
725 return 1;
728 * Remove signals in mask from the pending set and queue.
729 * Returns 1 if any signals were found.
731 * All callers must be holding the siglock.
733 static int rm_from_queue(unsigned long mask, struct sigpending *s)
735 struct sigqueue *q, *n;
737 if (!sigtestsetmask(&s->signal, mask))
738 return 0;
740 sigdelsetmask(&s->signal, mask);
741 list_for_each_entry_safe(q, n, &s->list, list) {
742 if (q->info.si_signo < SIGRTMIN &&
743 (mask & sigmask(q->info.si_signo))) {
744 list_del_init(&q->list);
745 __sigqueue_free(q);
748 return 1;
751 static inline int is_si_special(const struct siginfo *info)
753 return info <= SEND_SIG_FORCED;
756 static inline bool si_fromuser(const struct siginfo *info)
758 return info == SEND_SIG_NOINFO ||
759 (!is_si_special(info) && SI_FROMUSER(info));
763 * called with RCU read lock from check_kill_permission()
765 static int kill_ok_by_cred(struct task_struct *t)
767 const struct cred *cred = current_cred();
768 const struct cred *tcred = __task_cred(t);
770 if (uid_eq(cred->euid, tcred->suid) ||
771 uid_eq(cred->euid, tcred->uid) ||
772 uid_eq(cred->uid, tcred->suid) ||
773 uid_eq(cred->uid, tcred->uid))
774 return 1;
776 if (ns_capable(tcred->user_ns, CAP_KILL))
777 return 1;
779 return 0;
783 * Bad permissions for sending the signal
784 * - the caller must hold the RCU read lock
786 static int check_kill_permission(int sig, struct siginfo *info,
787 struct task_struct *t)
789 struct pid *sid;
790 int error;
792 if (!valid_signal(sig))
793 return -EINVAL;
795 if (!si_fromuser(info))
796 return 0;
798 error = audit_signal_info(sig, t); /* Let audit system see the signal */
799 if (error)
800 return error;
802 if (!same_thread_group(current, t) &&
803 !kill_ok_by_cred(t)) {
804 switch (sig) {
805 case SIGCONT:
806 sid = task_session(t);
808 * We don't return the error if sid == NULL. The
809 * task was unhashed, the caller must notice this.
811 if (!sid || sid == task_session(current))
812 break;
813 default:
814 return -EPERM;
818 return security_task_kill(t, info, sig, 0);
822 * ptrace_trap_notify - schedule trap to notify ptracer
823 * @t: tracee wanting to notify tracer
825 * This function schedules sticky ptrace trap which is cleared on the next
826 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
827 * ptracer.
829 * If @t is running, STOP trap will be taken. If trapped for STOP and
830 * ptracer is listening for events, tracee is woken up so that it can
831 * re-trap for the new event. If trapped otherwise, STOP trap will be
832 * eventually taken without returning to userland after the existing traps
833 * are finished by PTRACE_CONT.
835 * CONTEXT:
836 * Must be called with @task->sighand->siglock held.
838 static void ptrace_trap_notify(struct task_struct *t)
840 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
841 assert_spin_locked(&t->sighand->siglock);
843 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
844 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
848 * Handle magic process-wide effects of stop/continue signals. Unlike
849 * the signal actions, these happen immediately at signal-generation
850 * time regardless of blocking, ignoring, or handling. This does the
851 * actual continuing for SIGCONT, but not the actual stopping for stop
852 * signals. The process stop is done as a signal action for SIG_DFL.
854 * Returns true if the signal should be actually delivered, otherwise
855 * it should be dropped.
857 static bool prepare_signal(int sig, struct task_struct *p, bool force)
859 struct signal_struct *signal = p->signal;
860 struct task_struct *t;
862 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
863 if (signal->flags & SIGNAL_GROUP_COREDUMP)
864 return sig == SIGKILL;
866 * The process is in the middle of dying, nothing to do.
868 } else if (sig_kernel_stop(sig)) {
870 * This is a stop signal. Remove SIGCONT from all queues.
872 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
873 t = p;
874 do {
875 rm_from_queue(sigmask(SIGCONT), &t->pending);
876 } while_each_thread(p, t);
877 } else if (sig == SIGCONT) {
878 unsigned int why;
880 * Remove all stop signals from all queues, wake all threads.
882 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
883 t = p;
884 do {
885 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
886 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
887 if (likely(!(t->ptrace & PT_SEIZED)))
888 wake_up_state(t, __TASK_STOPPED);
889 else
890 ptrace_trap_notify(t);
891 } while_each_thread(p, t);
894 * Notify the parent with CLD_CONTINUED if we were stopped.
896 * If we were in the middle of a group stop, we pretend it
897 * was already finished, and then continued. Since SIGCHLD
898 * doesn't queue we report only CLD_STOPPED, as if the next
899 * CLD_CONTINUED was dropped.
901 why = 0;
902 if (signal->flags & SIGNAL_STOP_STOPPED)
903 why |= SIGNAL_CLD_CONTINUED;
904 else if (signal->group_stop_count)
905 why |= SIGNAL_CLD_STOPPED;
907 if (why) {
909 * The first thread which returns from do_signal_stop()
910 * will take ->siglock, notice SIGNAL_CLD_MASK, and
911 * notify its parent. See get_signal_to_deliver().
913 signal->flags = why | SIGNAL_STOP_CONTINUED;
914 signal->group_stop_count = 0;
915 signal->group_exit_code = 0;
919 return !sig_ignored(p, sig, force);
923 * Test if P wants to take SIG. After we've checked all threads with this,
924 * it's equivalent to finding no threads not blocking SIG. Any threads not
925 * blocking SIG were ruled out because they are not running and already
926 * have pending signals. Such threads will dequeue from the shared queue
927 * as soon as they're available, so putting the signal on the shared queue
928 * will be equivalent to sending it to one such thread.
930 static inline int wants_signal(int sig, struct task_struct *p)
932 if (sigismember(&p->blocked, sig))
933 return 0;
934 if (p->flags & PF_EXITING)
935 return 0;
936 if (sig == SIGKILL)
937 return 1;
938 if (task_is_stopped_or_traced(p))
939 return 0;
940 return task_curr(p) || !signal_pending(p);
943 static void complete_signal(int sig, struct task_struct *p, int group)
945 struct signal_struct *signal = p->signal;
946 struct task_struct *t;
949 * Now find a thread we can wake up to take the signal off the queue.
951 * If the main thread wants the signal, it gets first crack.
952 * Probably the least surprising to the average bear.
954 if (wants_signal(sig, p))
955 t = p;
956 else if (!group || thread_group_empty(p))
958 * There is just one thread and it does not need to be woken.
959 * It will dequeue unblocked signals before it runs again.
961 return;
962 else {
964 * Otherwise try to find a suitable thread.
966 t = signal->curr_target;
967 while (!wants_signal(sig, t)) {
968 t = next_thread(t);
969 if (t == signal->curr_target)
971 * No thread needs to be woken.
972 * Any eligible threads will see
973 * the signal in the queue soon.
975 return;
977 signal->curr_target = t;
981 * Found a killable thread. If the signal will be fatal,
982 * then start taking the whole group down immediately.
984 if (sig_fatal(p, sig) &&
985 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
986 !sigismember(&t->real_blocked, sig) &&
987 (sig == SIGKILL || !t->ptrace)) {
989 * This signal will be fatal to the whole group.
991 if (!sig_kernel_coredump(sig)) {
993 * Start a group exit and wake everybody up.
994 * This way we don't have other threads
995 * running and doing things after a slower
996 * thread has the fatal signal pending.
998 signal->flags = SIGNAL_GROUP_EXIT;
999 signal->group_exit_code = sig;
1000 signal->group_stop_count = 0;
1001 t = p;
1002 do {
1003 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1004 sigaddset(&t->pending.signal, SIGKILL);
1005 signal_wake_up(t, 1);
1006 } while_each_thread(p, t);
1007 return;
1012 * The signal is already in the shared-pending queue.
1013 * Tell the chosen thread to wake up and dequeue it.
1015 signal_wake_up(t, sig == SIGKILL);
1016 return;
1019 static inline int legacy_queue(struct sigpending *signals, int sig)
1021 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1024 #ifdef CONFIG_USER_NS
1025 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1027 if (current_user_ns() == task_cred_xxx(t, user_ns))
1028 return;
1030 if (SI_FROMKERNEL(info))
1031 return;
1033 rcu_read_lock();
1034 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1035 make_kuid(current_user_ns(), info->si_uid));
1036 rcu_read_unlock();
1038 #else
1039 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1041 return;
1043 #endif
1045 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1046 int group, int from_ancestor_ns)
1048 struct sigpending *pending;
1049 struct sigqueue *q;
1050 int override_rlimit;
1051 int ret = 0, result;
1053 assert_spin_locked(&t->sighand->siglock);
1055 result = TRACE_SIGNAL_IGNORED;
1056 if (!prepare_signal(sig, t,
1057 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1058 goto ret;
1060 pending = group ? &t->signal->shared_pending : &t->pending;
1062 * Short-circuit ignored signals and support queuing
1063 * exactly one non-rt signal, so that we can get more
1064 * detailed information about the cause of the signal.
1066 result = TRACE_SIGNAL_ALREADY_PENDING;
1067 if (legacy_queue(pending, sig))
1068 goto ret;
1070 result = TRACE_SIGNAL_DELIVERED;
1072 * fast-pathed signals for kernel-internal things like SIGSTOP
1073 * or SIGKILL.
1075 if (info == SEND_SIG_FORCED)
1076 goto out_set;
1079 * Real-time signals must be queued if sent by sigqueue, or
1080 * some other real-time mechanism. It is implementation
1081 * defined whether kill() does so. We attempt to do so, on
1082 * the principle of least surprise, but since kill is not
1083 * allowed to fail with EAGAIN when low on memory we just
1084 * make sure at least one signal gets delivered and don't
1085 * pass on the info struct.
1087 if (sig < SIGRTMIN)
1088 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1089 else
1090 override_rlimit = 0;
1092 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1093 override_rlimit);
1094 if (q) {
1095 list_add_tail(&q->list, &pending->list);
1096 switch ((unsigned long) info) {
1097 case (unsigned long) SEND_SIG_NOINFO:
1098 q->info.si_signo = sig;
1099 q->info.si_errno = 0;
1100 q->info.si_code = SI_USER;
1101 q->info.si_pid = task_tgid_nr_ns(current,
1102 task_active_pid_ns(t));
1103 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1104 break;
1105 case (unsigned long) SEND_SIG_PRIV:
1106 q->info.si_signo = sig;
1107 q->info.si_errno = 0;
1108 q->info.si_code = SI_KERNEL;
1109 q->info.si_pid = 0;
1110 q->info.si_uid = 0;
1111 break;
1112 default:
1113 copy_siginfo(&q->info, info);
1114 if (from_ancestor_ns)
1115 q->info.si_pid = 0;
1116 break;
1119 userns_fixup_signal_uid(&q->info, t);
1121 } else if (!is_si_special(info)) {
1122 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1124 * Queue overflow, abort. We may abort if the
1125 * signal was rt and sent by user using something
1126 * other than kill().
1128 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1129 ret = -EAGAIN;
1130 goto ret;
1131 } else {
1133 * This is a silent loss of information. We still
1134 * send the signal, but the *info bits are lost.
1136 result = TRACE_SIGNAL_LOSE_INFO;
1140 out_set:
1141 signalfd_notify(t, sig);
1142 sigaddset(&pending->signal, sig);
1143 complete_signal(sig, t, group);
1144 ret:
1145 trace_signal_generate(sig, info, t, group, result);
1146 return ret;
1149 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1150 int group)
1152 int from_ancestor_ns = 0;
1154 #ifdef CONFIG_PID_NS
1155 from_ancestor_ns = si_fromuser(info) &&
1156 !task_pid_nr_ns(current, task_active_pid_ns(t));
1157 #endif
1159 return __send_signal(sig, info, t, group, from_ancestor_ns);
1162 static void print_fatal_signal(int signr)
1164 struct pt_regs *regs = signal_pt_regs();
1165 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1167 #if defined(__i386__) && !defined(__arch_um__)
1168 printk(KERN_INFO "code at %08lx: ", regs->ip);
1170 int i;
1171 for (i = 0; i < 16; i++) {
1172 unsigned char insn;
1174 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1175 break;
1176 printk(KERN_CONT "%02x ", insn);
1179 printk(KERN_CONT "\n");
1180 #endif
1181 preempt_disable();
1182 show_regs(regs);
1183 preempt_enable();
1186 static int __init setup_print_fatal_signals(char *str)
1188 get_option (&str, &print_fatal_signals);
1190 return 1;
1193 __setup("print-fatal-signals=", setup_print_fatal_signals);
1196 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1198 return send_signal(sig, info, p, 1);
1201 static int
1202 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1204 return send_signal(sig, info, t, 0);
1207 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1208 bool group)
1210 unsigned long flags;
1211 int ret = -ESRCH;
1213 if (lock_task_sighand(p, &flags)) {
1214 ret = send_signal(sig, info, p, group);
1215 unlock_task_sighand(p, &flags);
1218 return ret;
1222 * Force a signal that the process can't ignore: if necessary
1223 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1225 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1226 * since we do not want to have a signal handler that was blocked
1227 * be invoked when user space had explicitly blocked it.
1229 * We don't want to have recursive SIGSEGV's etc, for example,
1230 * that is why we also clear SIGNAL_UNKILLABLE.
1233 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1235 unsigned long int flags;
1236 int ret, blocked, ignored;
1237 struct k_sigaction *action;
1239 spin_lock_irqsave(&t->sighand->siglock, flags);
1240 action = &t->sighand->action[sig-1];
1241 ignored = action->sa.sa_handler == SIG_IGN;
1242 blocked = sigismember(&t->blocked, sig);
1243 if (blocked || ignored) {
1244 action->sa.sa_handler = SIG_DFL;
1245 if (blocked) {
1246 sigdelset(&t->blocked, sig);
1247 recalc_sigpending_and_wake(t);
1250 if (action->sa.sa_handler == SIG_DFL)
1251 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1252 ret = specific_send_sig_info(sig, info, t);
1253 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1255 return ret;
1259 * Nuke all other threads in the group.
1261 int zap_other_threads(struct task_struct *p)
1263 struct task_struct *t = p;
1264 int count = 0;
1266 p->signal->group_stop_count = 0;
1268 while_each_thread(p, t) {
1269 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1270 count++;
1272 /* Don't bother with already dead threads */
1273 if (t->exit_state)
1274 continue;
1275 sigaddset(&t->pending.signal, SIGKILL);
1276 signal_wake_up(t, 1);
1279 return count;
1282 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1283 unsigned long *flags)
1285 struct sighand_struct *sighand;
1287 for (;;) {
1288 local_irq_save(*flags);
1289 rcu_read_lock();
1290 sighand = rcu_dereference(tsk->sighand);
1291 if (unlikely(sighand == NULL)) {
1292 rcu_read_unlock();
1293 local_irq_restore(*flags);
1294 break;
1297 spin_lock(&sighand->siglock);
1298 if (likely(sighand == tsk->sighand)) {
1299 rcu_read_unlock();
1300 break;
1302 spin_unlock(&sighand->siglock);
1303 rcu_read_unlock();
1304 local_irq_restore(*flags);
1307 return sighand;
1311 * send signal info to all the members of a group
1313 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1315 int ret;
1317 rcu_read_lock();
1318 ret = check_kill_permission(sig, info, p);
1319 rcu_read_unlock();
1321 if (!ret && sig)
1322 ret = do_send_sig_info(sig, info, p, true);
1324 return ret;
1328 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1329 * control characters do (^C, ^Z etc)
1330 * - the caller must hold at least a readlock on tasklist_lock
1332 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1334 struct task_struct *p = NULL;
1335 int retval, success;
1337 success = 0;
1338 retval = -ESRCH;
1339 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1340 int err = group_send_sig_info(sig, info, p);
1341 success |= !err;
1342 retval = err;
1343 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1344 return success ? 0 : retval;
1347 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1349 int error = -ESRCH;
1350 struct task_struct *p;
1352 rcu_read_lock();
1353 retry:
1354 p = pid_task(pid, PIDTYPE_PID);
1355 if (p) {
1356 error = group_send_sig_info(sig, info, p);
1357 if (unlikely(error == -ESRCH))
1359 * The task was unhashed in between, try again.
1360 * If it is dead, pid_task() will return NULL,
1361 * if we race with de_thread() it will find the
1362 * new leader.
1364 goto retry;
1366 rcu_read_unlock();
1368 return error;
1371 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1373 int error;
1374 rcu_read_lock();
1375 error = kill_pid_info(sig, info, find_vpid(pid));
1376 rcu_read_unlock();
1377 return error;
1380 static int kill_as_cred_perm(const struct cred *cred,
1381 struct task_struct *target)
1383 const struct cred *pcred = __task_cred(target);
1384 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1385 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1386 return 0;
1387 return 1;
1390 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1391 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1392 const struct cred *cred, u32 secid)
1394 int ret = -EINVAL;
1395 struct task_struct *p;
1396 unsigned long flags;
1398 if (!valid_signal(sig))
1399 return ret;
1401 rcu_read_lock();
1402 p = pid_task(pid, PIDTYPE_PID);
1403 if (!p) {
1404 ret = -ESRCH;
1405 goto out_unlock;
1407 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1408 ret = -EPERM;
1409 goto out_unlock;
1411 ret = security_task_kill(p, info, sig, secid);
1412 if (ret)
1413 goto out_unlock;
1415 if (sig) {
1416 if (lock_task_sighand(p, &flags)) {
1417 ret = __send_signal(sig, info, p, 1, 0);
1418 unlock_task_sighand(p, &flags);
1419 } else
1420 ret = -ESRCH;
1422 out_unlock:
1423 rcu_read_unlock();
1424 return ret;
1426 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1429 * kill_something_info() interprets pid in interesting ways just like kill(2).
1431 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1432 * is probably wrong. Should make it like BSD or SYSV.
1435 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1437 int ret;
1439 if (pid > 0) {
1440 rcu_read_lock();
1441 ret = kill_pid_info(sig, info, find_vpid(pid));
1442 rcu_read_unlock();
1443 return ret;
1446 read_lock(&tasklist_lock);
1447 if (pid != -1) {
1448 ret = __kill_pgrp_info(sig, info,
1449 pid ? find_vpid(-pid) : task_pgrp(current));
1450 } else {
1451 int retval = 0, count = 0;
1452 struct task_struct * p;
1454 for_each_process(p) {
1455 if (task_pid_vnr(p) > 1 &&
1456 !same_thread_group(p, current)) {
1457 int err = group_send_sig_info(sig, info, p);
1458 ++count;
1459 if (err != -EPERM)
1460 retval = err;
1463 ret = count ? retval : -ESRCH;
1465 read_unlock(&tasklist_lock);
1467 return ret;
1471 * These are for backward compatibility with the rest of the kernel source.
1474 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1477 * Make sure legacy kernel users don't send in bad values
1478 * (normal paths check this in check_kill_permission).
1480 if (!valid_signal(sig))
1481 return -EINVAL;
1483 return do_send_sig_info(sig, info, p, false);
1486 #define __si_special(priv) \
1487 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1490 send_sig(int sig, struct task_struct *p, int priv)
1492 return send_sig_info(sig, __si_special(priv), p);
1495 void
1496 force_sig(int sig, struct task_struct *p)
1498 force_sig_info(sig, SEND_SIG_PRIV, p);
1502 * When things go south during signal handling, we
1503 * will force a SIGSEGV. And if the signal that caused
1504 * the problem was already a SIGSEGV, we'll want to
1505 * make sure we don't even try to deliver the signal..
1508 force_sigsegv(int sig, struct task_struct *p)
1510 if (sig == SIGSEGV) {
1511 unsigned long flags;
1512 spin_lock_irqsave(&p->sighand->siglock, flags);
1513 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1514 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1516 force_sig(SIGSEGV, p);
1517 return 0;
1520 int kill_pgrp(struct pid *pid, int sig, int priv)
1522 int ret;
1524 read_lock(&tasklist_lock);
1525 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1526 read_unlock(&tasklist_lock);
1528 return ret;
1530 EXPORT_SYMBOL(kill_pgrp);
1532 int kill_pid(struct pid *pid, int sig, int priv)
1534 return kill_pid_info(sig, __si_special(priv), pid);
1536 EXPORT_SYMBOL(kill_pid);
1539 * These functions support sending signals using preallocated sigqueue
1540 * structures. This is needed "because realtime applications cannot
1541 * afford to lose notifications of asynchronous events, like timer
1542 * expirations or I/O completions". In the case of POSIX Timers
1543 * we allocate the sigqueue structure from the timer_create. If this
1544 * allocation fails we are able to report the failure to the application
1545 * with an EAGAIN error.
1547 struct sigqueue *sigqueue_alloc(void)
1549 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1551 if (q)
1552 q->flags |= SIGQUEUE_PREALLOC;
1554 return q;
1557 void sigqueue_free(struct sigqueue *q)
1559 unsigned long flags;
1560 spinlock_t *lock = &current->sighand->siglock;
1562 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1564 * We must hold ->siglock while testing q->list
1565 * to serialize with collect_signal() or with
1566 * __exit_signal()->flush_sigqueue().
1568 spin_lock_irqsave(lock, flags);
1569 q->flags &= ~SIGQUEUE_PREALLOC;
1571 * If it is queued it will be freed when dequeued,
1572 * like the "regular" sigqueue.
1574 if (!list_empty(&q->list))
1575 q = NULL;
1576 spin_unlock_irqrestore(lock, flags);
1578 if (q)
1579 __sigqueue_free(q);
1582 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1584 int sig = q->info.si_signo;
1585 struct sigpending *pending;
1586 unsigned long flags;
1587 int ret, result;
1589 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1591 ret = -1;
1592 if (!likely(lock_task_sighand(t, &flags)))
1593 goto ret;
1595 ret = 1; /* the signal is ignored */
1596 result = TRACE_SIGNAL_IGNORED;
1597 if (!prepare_signal(sig, t, false))
1598 goto out;
1600 ret = 0;
1601 if (unlikely(!list_empty(&q->list))) {
1603 * If an SI_TIMER entry is already queue just increment
1604 * the overrun count.
1606 BUG_ON(q->info.si_code != SI_TIMER);
1607 q->info.si_overrun++;
1608 result = TRACE_SIGNAL_ALREADY_PENDING;
1609 goto out;
1611 q->info.si_overrun = 0;
1613 signalfd_notify(t, sig);
1614 pending = group ? &t->signal->shared_pending : &t->pending;
1615 list_add_tail(&q->list, &pending->list);
1616 sigaddset(&pending->signal, sig);
1617 complete_signal(sig, t, group);
1618 result = TRACE_SIGNAL_DELIVERED;
1619 out:
1620 trace_signal_generate(sig, &q->info, t, group, result);
1621 unlock_task_sighand(t, &flags);
1622 ret:
1623 return ret;
1627 * Let a parent know about the death of a child.
1628 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1630 * Returns true if our parent ignored us and so we've switched to
1631 * self-reaping.
1633 bool do_notify_parent(struct task_struct *tsk, int sig)
1635 struct siginfo info;
1636 unsigned long flags;
1637 struct sighand_struct *psig;
1638 bool autoreap = false;
1639 cputime_t utime, stime;
1641 BUG_ON(sig == -1);
1643 /* do_notify_parent_cldstop should have been called instead. */
1644 BUG_ON(task_is_stopped_or_traced(tsk));
1646 BUG_ON(!tsk->ptrace &&
1647 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1649 if (sig != SIGCHLD) {
1651 * This is only possible if parent == real_parent.
1652 * Check if it has changed security domain.
1654 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1655 sig = SIGCHLD;
1658 info.si_signo = sig;
1659 info.si_errno = 0;
1661 * We are under tasklist_lock here so our parent is tied to
1662 * us and cannot change.
1664 * task_active_pid_ns will always return the same pid namespace
1665 * until a task passes through release_task.
1667 * write_lock() currently calls preempt_disable() which is the
1668 * same as rcu_read_lock(), but according to Oleg, this is not
1669 * correct to rely on this
1671 rcu_read_lock();
1672 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1673 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1674 task_uid(tsk));
1675 rcu_read_unlock();
1677 task_cputime(tsk, &utime, &stime);
1678 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1679 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1681 info.si_status = tsk->exit_code & 0x7f;
1682 if (tsk->exit_code & 0x80)
1683 info.si_code = CLD_DUMPED;
1684 else if (tsk->exit_code & 0x7f)
1685 info.si_code = CLD_KILLED;
1686 else {
1687 info.si_code = CLD_EXITED;
1688 info.si_status = tsk->exit_code >> 8;
1691 psig = tsk->parent->sighand;
1692 spin_lock_irqsave(&psig->siglock, flags);
1693 if (!tsk->ptrace && sig == SIGCHLD &&
1694 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1695 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1697 * We are exiting and our parent doesn't care. POSIX.1
1698 * defines special semantics for setting SIGCHLD to SIG_IGN
1699 * or setting the SA_NOCLDWAIT flag: we should be reaped
1700 * automatically and not left for our parent's wait4 call.
1701 * Rather than having the parent do it as a magic kind of
1702 * signal handler, we just set this to tell do_exit that we
1703 * can be cleaned up without becoming a zombie. Note that
1704 * we still call __wake_up_parent in this case, because a
1705 * blocked sys_wait4 might now return -ECHILD.
1707 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1708 * is implementation-defined: we do (if you don't want
1709 * it, just use SIG_IGN instead).
1711 autoreap = true;
1712 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1713 sig = 0;
1715 if (valid_signal(sig) && sig)
1716 __group_send_sig_info(sig, &info, tsk->parent);
1717 __wake_up_parent(tsk, tsk->parent);
1718 spin_unlock_irqrestore(&psig->siglock, flags);
1720 return autoreap;
1724 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1725 * @tsk: task reporting the state change
1726 * @for_ptracer: the notification is for ptracer
1727 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1729 * Notify @tsk's parent that the stopped/continued state has changed. If
1730 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1731 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1733 * CONTEXT:
1734 * Must be called with tasklist_lock at least read locked.
1736 static void do_notify_parent_cldstop(struct task_struct *tsk,
1737 bool for_ptracer, int why)
1739 struct siginfo info;
1740 unsigned long flags;
1741 struct task_struct *parent;
1742 struct sighand_struct *sighand;
1743 cputime_t utime, stime;
1745 if (for_ptracer) {
1746 parent = tsk->parent;
1747 } else {
1748 tsk = tsk->group_leader;
1749 parent = tsk->real_parent;
1752 info.si_signo = SIGCHLD;
1753 info.si_errno = 0;
1755 * see comment in do_notify_parent() about the following 4 lines
1757 rcu_read_lock();
1758 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1759 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1760 rcu_read_unlock();
1762 task_cputime(tsk, &utime, &stime);
1763 info.si_utime = cputime_to_clock_t(utime);
1764 info.si_stime = cputime_to_clock_t(stime);
1766 info.si_code = why;
1767 switch (why) {
1768 case CLD_CONTINUED:
1769 info.si_status = SIGCONT;
1770 break;
1771 case CLD_STOPPED:
1772 info.si_status = tsk->signal->group_exit_code & 0x7f;
1773 break;
1774 case CLD_TRAPPED:
1775 info.si_status = tsk->exit_code & 0x7f;
1776 break;
1777 default:
1778 BUG();
1781 sighand = parent->sighand;
1782 spin_lock_irqsave(&sighand->siglock, flags);
1783 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1784 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1785 __group_send_sig_info(SIGCHLD, &info, parent);
1787 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1789 __wake_up_parent(tsk, parent);
1790 spin_unlock_irqrestore(&sighand->siglock, flags);
1793 static inline int may_ptrace_stop(void)
1795 if (!likely(current->ptrace))
1796 return 0;
1798 * Are we in the middle of do_coredump?
1799 * If so and our tracer is also part of the coredump stopping
1800 * is a deadlock situation, and pointless because our tracer
1801 * is dead so don't allow us to stop.
1802 * If SIGKILL was already sent before the caller unlocked
1803 * ->siglock we must see ->core_state != NULL. Otherwise it
1804 * is safe to enter schedule().
1806 * This is almost outdated, a task with the pending SIGKILL can't
1807 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1808 * after SIGKILL was already dequeued.
1810 if (unlikely(current->mm->core_state) &&
1811 unlikely(current->mm == current->parent->mm))
1812 return 0;
1814 return 1;
1818 * Return non-zero if there is a SIGKILL that should be waking us up.
1819 * Called with the siglock held.
1821 static int sigkill_pending(struct task_struct *tsk)
1823 return sigismember(&tsk->pending.signal, SIGKILL) ||
1824 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828 * This must be called with current->sighand->siglock held.
1830 * This should be the path for all ptrace stops.
1831 * We always set current->last_siginfo while stopped here.
1832 * That makes it a way to test a stopped process for
1833 * being ptrace-stopped vs being job-control-stopped.
1835 * If we actually decide not to stop at all because the tracer
1836 * is gone, we keep current->exit_code unless clear_code.
1838 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1839 __releases(&current->sighand->siglock)
1840 __acquires(&current->sighand->siglock)
1842 bool gstop_done = false;
1844 if (arch_ptrace_stop_needed(exit_code, info)) {
1846 * The arch code has something special to do before a
1847 * ptrace stop. This is allowed to block, e.g. for faults
1848 * on user stack pages. We can't keep the siglock while
1849 * calling arch_ptrace_stop, so we must release it now.
1850 * To preserve proper semantics, we must do this before
1851 * any signal bookkeeping like checking group_stop_count.
1852 * Meanwhile, a SIGKILL could come in before we retake the
1853 * siglock. That must prevent us from sleeping in TASK_TRACED.
1854 * So after regaining the lock, we must check for SIGKILL.
1856 spin_unlock_irq(&current->sighand->siglock);
1857 arch_ptrace_stop(exit_code, info);
1858 spin_lock_irq(&current->sighand->siglock);
1859 if (sigkill_pending(current))
1860 return;
1864 * We're committing to trapping. TRACED should be visible before
1865 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1866 * Also, transition to TRACED and updates to ->jobctl should be
1867 * atomic with respect to siglock and should be done after the arch
1868 * hook as siglock is released and regrabbed across it.
1870 set_current_state(TASK_TRACED);
1872 current->last_siginfo = info;
1873 current->exit_code = exit_code;
1876 * If @why is CLD_STOPPED, we're trapping to participate in a group
1877 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1878 * across siglock relocks since INTERRUPT was scheduled, PENDING
1879 * could be clear now. We act as if SIGCONT is received after
1880 * TASK_TRACED is entered - ignore it.
1882 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1883 gstop_done = task_participate_group_stop(current);
1885 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1886 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1887 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1888 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1890 /* entering a trap, clear TRAPPING */
1891 task_clear_jobctl_trapping(current);
1893 spin_unlock_irq(&current->sighand->siglock);
1894 read_lock(&tasklist_lock);
1895 if (may_ptrace_stop()) {
1897 * Notify parents of the stop.
1899 * While ptraced, there are two parents - the ptracer and
1900 * the real_parent of the group_leader. The ptracer should
1901 * know about every stop while the real parent is only
1902 * interested in the completion of group stop. The states
1903 * for the two don't interact with each other. Notify
1904 * separately unless they're gonna be duplicates.
1906 do_notify_parent_cldstop(current, true, why);
1907 if (gstop_done && ptrace_reparented(current))
1908 do_notify_parent_cldstop(current, false, why);
1911 * Don't want to allow preemption here, because
1912 * sys_ptrace() needs this task to be inactive.
1914 * XXX: implement read_unlock_no_resched().
1916 preempt_disable();
1917 read_unlock(&tasklist_lock);
1918 preempt_enable_no_resched();
1919 freezable_schedule();
1920 } else {
1922 * By the time we got the lock, our tracer went away.
1923 * Don't drop the lock yet, another tracer may come.
1925 * If @gstop_done, the ptracer went away between group stop
1926 * completion and here. During detach, it would have set
1927 * JOBCTL_STOP_PENDING on us and we'll re-enter
1928 * TASK_STOPPED in do_signal_stop() on return, so notifying
1929 * the real parent of the group stop completion is enough.
1931 if (gstop_done)
1932 do_notify_parent_cldstop(current, false, why);
1934 /* tasklist protects us from ptrace_freeze_traced() */
1935 __set_current_state(TASK_RUNNING);
1936 if (clear_code)
1937 current->exit_code = 0;
1938 read_unlock(&tasklist_lock);
1942 * We are back. Now reacquire the siglock before touching
1943 * last_siginfo, so that we are sure to have synchronized with
1944 * any signal-sending on another CPU that wants to examine it.
1946 spin_lock_irq(&current->sighand->siglock);
1947 current->last_siginfo = NULL;
1949 /* LISTENING can be set only during STOP traps, clear it */
1950 current->jobctl &= ~JOBCTL_LISTENING;
1953 * Queued signals ignored us while we were stopped for tracing.
1954 * So check for any that we should take before resuming user mode.
1955 * This sets TIF_SIGPENDING, but never clears it.
1957 recalc_sigpending_tsk(current);
1960 static void ptrace_do_notify(int signr, int exit_code, int why)
1962 siginfo_t info;
1964 memset(&info, 0, sizeof info);
1965 info.si_signo = signr;
1966 info.si_code = exit_code;
1967 info.si_pid = task_pid_vnr(current);
1968 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1970 /* Let the debugger run. */
1971 ptrace_stop(exit_code, why, 1, &info);
1974 void ptrace_notify(int exit_code)
1976 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1977 if (unlikely(current->task_works))
1978 task_work_run();
1980 spin_lock_irq(&current->sighand->siglock);
1981 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1982 spin_unlock_irq(&current->sighand->siglock);
1986 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1987 * @signr: signr causing group stop if initiating
1989 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1990 * and participate in it. If already set, participate in the existing
1991 * group stop. If participated in a group stop (and thus slept), %true is
1992 * returned with siglock released.
1994 * If ptraced, this function doesn't handle stop itself. Instead,
1995 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1996 * untouched. The caller must ensure that INTERRUPT trap handling takes
1997 * places afterwards.
1999 * CONTEXT:
2000 * Must be called with @current->sighand->siglock held, which is released
2001 * on %true return.
2003 * RETURNS:
2004 * %false if group stop is already cancelled or ptrace trap is scheduled.
2005 * %true if participated in group stop.
2007 static bool do_signal_stop(int signr)
2008 __releases(&current->sighand->siglock)
2010 struct signal_struct *sig = current->signal;
2012 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2013 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2014 struct task_struct *t;
2016 /* signr will be recorded in task->jobctl for retries */
2017 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2019 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2020 unlikely(signal_group_exit(sig)))
2021 return false;
2023 * There is no group stop already in progress. We must
2024 * initiate one now.
2026 * While ptraced, a task may be resumed while group stop is
2027 * still in effect and then receive a stop signal and
2028 * initiate another group stop. This deviates from the
2029 * usual behavior as two consecutive stop signals can't
2030 * cause two group stops when !ptraced. That is why we
2031 * also check !task_is_stopped(t) below.
2033 * The condition can be distinguished by testing whether
2034 * SIGNAL_STOP_STOPPED is already set. Don't generate
2035 * group_exit_code in such case.
2037 * This is not necessary for SIGNAL_STOP_CONTINUED because
2038 * an intervening stop signal is required to cause two
2039 * continued events regardless of ptrace.
2041 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2042 sig->group_exit_code = signr;
2044 sig->group_stop_count = 0;
2046 if (task_set_jobctl_pending(current, signr | gstop))
2047 sig->group_stop_count++;
2049 for (t = next_thread(current); t != current;
2050 t = next_thread(t)) {
2052 * Setting state to TASK_STOPPED for a group
2053 * stop is always done with the siglock held,
2054 * so this check has no races.
2056 if (!task_is_stopped(t) &&
2057 task_set_jobctl_pending(t, signr | gstop)) {
2058 sig->group_stop_count++;
2059 if (likely(!(t->ptrace & PT_SEIZED)))
2060 signal_wake_up(t, 0);
2061 else
2062 ptrace_trap_notify(t);
2067 if (likely(!current->ptrace)) {
2068 int notify = 0;
2071 * If there are no other threads in the group, or if there
2072 * is a group stop in progress and we are the last to stop,
2073 * report to the parent.
2075 if (task_participate_group_stop(current))
2076 notify = CLD_STOPPED;
2078 __set_current_state(TASK_STOPPED);
2079 spin_unlock_irq(&current->sighand->siglock);
2082 * Notify the parent of the group stop completion. Because
2083 * we're not holding either the siglock or tasklist_lock
2084 * here, ptracer may attach inbetween; however, this is for
2085 * group stop and should always be delivered to the real
2086 * parent of the group leader. The new ptracer will get
2087 * its notification when this task transitions into
2088 * TASK_TRACED.
2090 if (notify) {
2091 read_lock(&tasklist_lock);
2092 do_notify_parent_cldstop(current, false, notify);
2093 read_unlock(&tasklist_lock);
2096 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2097 freezable_schedule();
2098 return true;
2099 } else {
2101 * While ptraced, group stop is handled by STOP trap.
2102 * Schedule it and let the caller deal with it.
2104 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2105 return false;
2110 * do_jobctl_trap - take care of ptrace jobctl traps
2112 * When PT_SEIZED, it's used for both group stop and explicit
2113 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2114 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2115 * the stop signal; otherwise, %SIGTRAP.
2117 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2118 * number as exit_code and no siginfo.
2120 * CONTEXT:
2121 * Must be called with @current->sighand->siglock held, which may be
2122 * released and re-acquired before returning with intervening sleep.
2124 static void do_jobctl_trap(void)
2126 struct signal_struct *signal = current->signal;
2127 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2129 if (current->ptrace & PT_SEIZED) {
2130 if (!signal->group_stop_count &&
2131 !(signal->flags & SIGNAL_STOP_STOPPED))
2132 signr = SIGTRAP;
2133 WARN_ON_ONCE(!signr);
2134 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2135 CLD_STOPPED);
2136 } else {
2137 WARN_ON_ONCE(!signr);
2138 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2139 current->exit_code = 0;
2143 static int ptrace_signal(int signr, siginfo_t *info)
2145 ptrace_signal_deliver();
2147 * We do not check sig_kernel_stop(signr) but set this marker
2148 * unconditionally because we do not know whether debugger will
2149 * change signr. This flag has no meaning unless we are going
2150 * to stop after return from ptrace_stop(). In this case it will
2151 * be checked in do_signal_stop(), we should only stop if it was
2152 * not cleared by SIGCONT while we were sleeping. See also the
2153 * comment in dequeue_signal().
2155 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2156 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2158 /* We're back. Did the debugger cancel the sig? */
2159 signr = current->exit_code;
2160 if (signr == 0)
2161 return signr;
2163 current->exit_code = 0;
2166 * Update the siginfo structure if the signal has
2167 * changed. If the debugger wanted something
2168 * specific in the siginfo structure then it should
2169 * have updated *info via PTRACE_SETSIGINFO.
2171 if (signr != info->si_signo) {
2172 info->si_signo = signr;
2173 info->si_errno = 0;
2174 info->si_code = SI_USER;
2175 rcu_read_lock();
2176 info->si_pid = task_pid_vnr(current->parent);
2177 info->si_uid = from_kuid_munged(current_user_ns(),
2178 task_uid(current->parent));
2179 rcu_read_unlock();
2182 /* If the (new) signal is now blocked, requeue it. */
2183 if (sigismember(&current->blocked, signr)) {
2184 specific_send_sig_info(signr, info, current);
2185 signr = 0;
2188 return signr;
2191 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2192 struct pt_regs *regs, void *cookie)
2194 struct sighand_struct *sighand = current->sighand;
2195 struct signal_struct *signal = current->signal;
2196 int signr;
2198 if (unlikely(current->task_works))
2199 task_work_run();
2201 if (unlikely(uprobe_deny_signal()))
2202 return 0;
2205 * Do this once, we can't return to user-mode if freezing() == T.
2206 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2207 * thus do not need another check after return.
2209 try_to_freeze();
2211 relock:
2212 spin_lock_irq(&sighand->siglock);
2214 * Every stopped thread goes here after wakeup. Check to see if
2215 * we should notify the parent, prepare_signal(SIGCONT) encodes
2216 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2218 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2219 int why;
2221 if (signal->flags & SIGNAL_CLD_CONTINUED)
2222 why = CLD_CONTINUED;
2223 else
2224 why = CLD_STOPPED;
2226 signal->flags &= ~SIGNAL_CLD_MASK;
2228 spin_unlock_irq(&sighand->siglock);
2231 * Notify the parent that we're continuing. This event is
2232 * always per-process and doesn't make whole lot of sense
2233 * for ptracers, who shouldn't consume the state via
2234 * wait(2) either, but, for backward compatibility, notify
2235 * the ptracer of the group leader too unless it's gonna be
2236 * a duplicate.
2238 read_lock(&tasklist_lock);
2239 do_notify_parent_cldstop(current, false, why);
2241 if (ptrace_reparented(current->group_leader))
2242 do_notify_parent_cldstop(current->group_leader,
2243 true, why);
2244 read_unlock(&tasklist_lock);
2246 goto relock;
2249 for (;;) {
2250 struct k_sigaction *ka;
2252 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2253 do_signal_stop(0))
2254 goto relock;
2256 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2257 do_jobctl_trap();
2258 spin_unlock_irq(&sighand->siglock);
2259 goto relock;
2262 signr = dequeue_signal(current, &current->blocked, info);
2264 if (!signr)
2265 break; /* will return 0 */
2267 if (unlikely(current->ptrace) && signr != SIGKILL) {
2268 signr = ptrace_signal(signr, info);
2269 if (!signr)
2270 continue;
2273 ka = &sighand->action[signr-1];
2275 /* Trace actually delivered signals. */
2276 trace_signal_deliver(signr, info, ka);
2278 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2279 continue;
2280 if (ka->sa.sa_handler != SIG_DFL) {
2281 /* Run the handler. */
2282 *return_ka = *ka;
2284 if (ka->sa.sa_flags & SA_ONESHOT)
2285 ka->sa.sa_handler = SIG_DFL;
2287 break; /* will return non-zero "signr" value */
2291 * Now we are doing the default action for this signal.
2293 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2294 continue;
2297 * Global init gets no signals it doesn't want.
2298 * Container-init gets no signals it doesn't want from same
2299 * container.
2301 * Note that if global/container-init sees a sig_kernel_only()
2302 * signal here, the signal must have been generated internally
2303 * or must have come from an ancestor namespace. In either
2304 * case, the signal cannot be dropped.
2306 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2307 !sig_kernel_only(signr))
2308 continue;
2310 if (sig_kernel_stop(signr)) {
2312 * The default action is to stop all threads in
2313 * the thread group. The job control signals
2314 * do nothing in an orphaned pgrp, but SIGSTOP
2315 * always works. Note that siglock needs to be
2316 * dropped during the call to is_orphaned_pgrp()
2317 * because of lock ordering with tasklist_lock.
2318 * This allows an intervening SIGCONT to be posted.
2319 * We need to check for that and bail out if necessary.
2321 if (signr != SIGSTOP) {
2322 spin_unlock_irq(&sighand->siglock);
2324 /* signals can be posted during this window */
2326 if (is_current_pgrp_orphaned())
2327 goto relock;
2329 spin_lock_irq(&sighand->siglock);
2332 if (likely(do_signal_stop(info->si_signo))) {
2333 /* It released the siglock. */
2334 goto relock;
2338 * We didn't actually stop, due to a race
2339 * with SIGCONT or something like that.
2341 continue;
2344 spin_unlock_irq(&sighand->siglock);
2347 * Anything else is fatal, maybe with a core dump.
2349 current->flags |= PF_SIGNALED;
2351 if (sig_kernel_coredump(signr)) {
2352 if (print_fatal_signals)
2353 print_fatal_signal(info->si_signo);
2355 * If it was able to dump core, this kills all
2356 * other threads in the group and synchronizes with
2357 * their demise. If we lost the race with another
2358 * thread getting here, it set group_exit_code
2359 * first and our do_group_exit call below will use
2360 * that value and ignore the one we pass it.
2362 do_coredump(info);
2366 * Death signals, no core dump.
2368 do_group_exit(info->si_signo);
2369 /* NOTREACHED */
2371 spin_unlock_irq(&sighand->siglock);
2372 return signr;
2376 * signal_delivered -
2377 * @sig: number of signal being delivered
2378 * @info: siginfo_t of signal being delivered
2379 * @ka: sigaction setting that chose the handler
2380 * @regs: user register state
2381 * @stepping: nonzero if debugger single-step or block-step in use
2383 * This function should be called when a signal has succesfully been
2384 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2385 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2386 * is set in @ka->sa.sa_flags. Tracing is notified.
2388 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2389 struct pt_regs *regs, int stepping)
2391 sigset_t blocked;
2393 /* A signal was successfully delivered, and the
2394 saved sigmask was stored on the signal frame,
2395 and will be restored by sigreturn. So we can
2396 simply clear the restore sigmask flag. */
2397 clear_restore_sigmask();
2399 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2400 if (!(ka->sa.sa_flags & SA_NODEFER))
2401 sigaddset(&blocked, sig);
2402 set_current_blocked(&blocked);
2403 tracehook_signal_handler(sig, info, ka, regs, stepping);
2406 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2408 if (failed)
2409 force_sigsegv(ksig->sig, current);
2410 else
2411 signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2412 signal_pt_regs(), stepping);
2416 * It could be that complete_signal() picked us to notify about the
2417 * group-wide signal. Other threads should be notified now to take
2418 * the shared signals in @which since we will not.
2420 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2422 sigset_t retarget;
2423 struct task_struct *t;
2425 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2426 if (sigisemptyset(&retarget))
2427 return;
2429 t = tsk;
2430 while_each_thread(tsk, t) {
2431 if (t->flags & PF_EXITING)
2432 continue;
2434 if (!has_pending_signals(&retarget, &t->blocked))
2435 continue;
2436 /* Remove the signals this thread can handle. */
2437 sigandsets(&retarget, &retarget, &t->blocked);
2439 if (!signal_pending(t))
2440 signal_wake_up(t, 0);
2442 if (sigisemptyset(&retarget))
2443 break;
2447 void exit_signals(struct task_struct *tsk)
2449 int group_stop = 0;
2450 sigset_t unblocked;
2453 * @tsk is about to have PF_EXITING set - lock out users which
2454 * expect stable threadgroup.
2456 threadgroup_change_begin(tsk);
2458 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2459 tsk->flags |= PF_EXITING;
2460 threadgroup_change_end(tsk);
2461 return;
2464 spin_lock_irq(&tsk->sighand->siglock);
2466 * From now this task is not visible for group-wide signals,
2467 * see wants_signal(), do_signal_stop().
2469 tsk->flags |= PF_EXITING;
2471 threadgroup_change_end(tsk);
2473 if (!signal_pending(tsk))
2474 goto out;
2476 unblocked = tsk->blocked;
2477 signotset(&unblocked);
2478 retarget_shared_pending(tsk, &unblocked);
2480 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2481 task_participate_group_stop(tsk))
2482 group_stop = CLD_STOPPED;
2483 out:
2484 spin_unlock_irq(&tsk->sighand->siglock);
2487 * If group stop has completed, deliver the notification. This
2488 * should always go to the real parent of the group leader.
2490 if (unlikely(group_stop)) {
2491 read_lock(&tasklist_lock);
2492 do_notify_parent_cldstop(tsk, false, group_stop);
2493 read_unlock(&tasklist_lock);
2497 EXPORT_SYMBOL(recalc_sigpending);
2498 EXPORT_SYMBOL_GPL(dequeue_signal);
2499 EXPORT_SYMBOL(flush_signals);
2500 EXPORT_SYMBOL(force_sig);
2501 EXPORT_SYMBOL(send_sig);
2502 EXPORT_SYMBOL(send_sig_info);
2503 EXPORT_SYMBOL(sigprocmask);
2504 EXPORT_SYMBOL(block_all_signals);
2505 EXPORT_SYMBOL(unblock_all_signals);
2509 * System call entry points.
2513 * sys_restart_syscall - restart a system call
2515 SYSCALL_DEFINE0(restart_syscall)
2517 struct restart_block *restart = &current_thread_info()->restart_block;
2518 return restart->fn(restart);
2521 long do_no_restart_syscall(struct restart_block *param)
2523 return -EINTR;
2526 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2528 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2529 sigset_t newblocked;
2530 /* A set of now blocked but previously unblocked signals. */
2531 sigandnsets(&newblocked, newset, &current->blocked);
2532 retarget_shared_pending(tsk, &newblocked);
2534 tsk->blocked = *newset;
2535 recalc_sigpending();
2539 * set_current_blocked - change current->blocked mask
2540 * @newset: new mask
2542 * It is wrong to change ->blocked directly, this helper should be used
2543 * to ensure the process can't miss a shared signal we are going to block.
2545 void set_current_blocked(sigset_t *newset)
2547 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2548 __set_current_blocked(newset);
2551 void __set_current_blocked(const sigset_t *newset)
2553 struct task_struct *tsk = current;
2555 spin_lock_irq(&tsk->sighand->siglock);
2556 __set_task_blocked(tsk, newset);
2557 spin_unlock_irq(&tsk->sighand->siglock);
2561 * This is also useful for kernel threads that want to temporarily
2562 * (or permanently) block certain signals.
2564 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2565 * interface happily blocks "unblockable" signals like SIGKILL
2566 * and friends.
2568 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2570 struct task_struct *tsk = current;
2571 sigset_t newset;
2573 /* Lockless, only current can change ->blocked, never from irq */
2574 if (oldset)
2575 *oldset = tsk->blocked;
2577 switch (how) {
2578 case SIG_BLOCK:
2579 sigorsets(&newset, &tsk->blocked, set);
2580 break;
2581 case SIG_UNBLOCK:
2582 sigandnsets(&newset, &tsk->blocked, set);
2583 break;
2584 case SIG_SETMASK:
2585 newset = *set;
2586 break;
2587 default:
2588 return -EINVAL;
2591 __set_current_blocked(&newset);
2592 return 0;
2596 * sys_rt_sigprocmask - change the list of currently blocked signals
2597 * @how: whether to add, remove, or set signals
2598 * @nset: stores pending signals
2599 * @oset: previous value of signal mask if non-null
2600 * @sigsetsize: size of sigset_t type
2602 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2603 sigset_t __user *, oset, size_t, sigsetsize)
2605 sigset_t old_set, new_set;
2606 int error;
2608 /* XXX: Don't preclude handling different sized sigset_t's. */
2609 if (sigsetsize != sizeof(sigset_t))
2610 return -EINVAL;
2612 old_set = current->blocked;
2614 if (nset) {
2615 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2616 return -EFAULT;
2617 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2619 error = sigprocmask(how, &new_set, NULL);
2620 if (error)
2621 return error;
2624 if (oset) {
2625 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2626 return -EFAULT;
2629 return 0;
2632 #ifdef CONFIG_COMPAT
2633 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2634 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2636 #ifdef __BIG_ENDIAN
2637 sigset_t old_set = current->blocked;
2639 /* XXX: Don't preclude handling different sized sigset_t's. */
2640 if (sigsetsize != sizeof(sigset_t))
2641 return -EINVAL;
2643 if (nset) {
2644 compat_sigset_t new32;
2645 sigset_t new_set;
2646 int error;
2647 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2648 return -EFAULT;
2650 sigset_from_compat(&new_set, &new32);
2651 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2653 error = sigprocmask(how, &new_set, NULL);
2654 if (error)
2655 return error;
2657 if (oset) {
2658 compat_sigset_t old32;
2659 sigset_to_compat(&old32, &old_set);
2660 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2661 return -EFAULT;
2663 return 0;
2664 #else
2665 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2666 (sigset_t __user *)oset, sigsetsize);
2667 #endif
2669 #endif
2671 static int do_sigpending(void *set, unsigned long sigsetsize)
2673 if (sigsetsize > sizeof(sigset_t))
2674 return -EINVAL;
2676 spin_lock_irq(&current->sighand->siglock);
2677 sigorsets(set, &current->pending.signal,
2678 &current->signal->shared_pending.signal);
2679 spin_unlock_irq(&current->sighand->siglock);
2681 /* Outside the lock because only this thread touches it. */
2682 sigandsets(set, &current->blocked, set);
2683 return 0;
2687 * sys_rt_sigpending - examine a pending signal that has been raised
2688 * while blocked
2689 * @uset: stores pending signals
2690 * @sigsetsize: size of sigset_t type or larger
2692 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2694 sigset_t set;
2695 int err = do_sigpending(&set, sigsetsize);
2696 if (!err && copy_to_user(uset, &set, sigsetsize))
2697 err = -EFAULT;
2698 return err;
2701 #ifdef CONFIG_COMPAT
2702 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2703 compat_size_t, sigsetsize)
2705 #ifdef __BIG_ENDIAN
2706 sigset_t set;
2707 int err = do_sigpending(&set, sigsetsize);
2708 if (!err) {
2709 compat_sigset_t set32;
2710 sigset_to_compat(&set32, &set);
2711 /* we can get here only if sigsetsize <= sizeof(set) */
2712 if (copy_to_user(uset, &set32, sigsetsize))
2713 err = -EFAULT;
2715 return err;
2716 #else
2717 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2718 #endif
2720 #endif
2722 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2724 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2726 int err;
2728 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2729 return -EFAULT;
2730 if (from->si_code < 0)
2731 return __copy_to_user(to, from, sizeof(siginfo_t))
2732 ? -EFAULT : 0;
2734 * If you change siginfo_t structure, please be sure
2735 * this code is fixed accordingly.
2736 * Please remember to update the signalfd_copyinfo() function
2737 * inside fs/signalfd.c too, in case siginfo_t changes.
2738 * It should never copy any pad contained in the structure
2739 * to avoid security leaks, but must copy the generic
2740 * 3 ints plus the relevant union member.
2742 err = __put_user(from->si_signo, &to->si_signo);
2743 err |= __put_user(from->si_errno, &to->si_errno);
2744 err |= __put_user((short)from->si_code, &to->si_code);
2745 switch (from->si_code & __SI_MASK) {
2746 case __SI_KILL:
2747 err |= __put_user(from->si_pid, &to->si_pid);
2748 err |= __put_user(from->si_uid, &to->si_uid);
2749 break;
2750 case __SI_TIMER:
2751 err |= __put_user(from->si_tid, &to->si_tid);
2752 err |= __put_user(from->si_overrun, &to->si_overrun);
2753 err |= __put_user(from->si_ptr, &to->si_ptr);
2754 break;
2755 case __SI_POLL:
2756 err |= __put_user(from->si_band, &to->si_band);
2757 err |= __put_user(from->si_fd, &to->si_fd);
2758 break;
2759 case __SI_FAULT:
2760 err |= __put_user(from->si_addr, &to->si_addr);
2761 #ifdef __ARCH_SI_TRAPNO
2762 err |= __put_user(from->si_trapno, &to->si_trapno);
2763 #endif
2764 #ifdef BUS_MCEERR_AO
2766 * Other callers might not initialize the si_lsb field,
2767 * so check explicitly for the right codes here.
2769 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2770 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2771 #endif
2772 break;
2773 case __SI_CHLD:
2774 err |= __put_user(from->si_pid, &to->si_pid);
2775 err |= __put_user(from->si_uid, &to->si_uid);
2776 err |= __put_user(from->si_status, &to->si_status);
2777 err |= __put_user(from->si_utime, &to->si_utime);
2778 err |= __put_user(from->si_stime, &to->si_stime);
2779 break;
2780 case __SI_RT: /* This is not generated by the kernel as of now. */
2781 case __SI_MESGQ: /* But this is */
2782 err |= __put_user(from->si_pid, &to->si_pid);
2783 err |= __put_user(from->si_uid, &to->si_uid);
2784 err |= __put_user(from->si_ptr, &to->si_ptr);
2785 break;
2786 #ifdef __ARCH_SIGSYS
2787 case __SI_SYS:
2788 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2789 err |= __put_user(from->si_syscall, &to->si_syscall);
2790 err |= __put_user(from->si_arch, &to->si_arch);
2791 break;
2792 #endif
2793 default: /* this is just in case for now ... */
2794 err |= __put_user(from->si_pid, &to->si_pid);
2795 err |= __put_user(from->si_uid, &to->si_uid);
2796 break;
2798 return err;
2801 #endif
2804 * do_sigtimedwait - wait for queued signals specified in @which
2805 * @which: queued signals to wait for
2806 * @info: if non-null, the signal's siginfo is returned here
2807 * @ts: upper bound on process time suspension
2809 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2810 const struct timespec *ts)
2812 struct task_struct *tsk = current;
2813 long timeout = MAX_SCHEDULE_TIMEOUT;
2814 sigset_t mask = *which;
2815 int sig;
2817 if (ts) {
2818 if (!timespec_valid(ts))
2819 return -EINVAL;
2820 timeout = timespec_to_jiffies(ts);
2822 * We can be close to the next tick, add another one
2823 * to ensure we will wait at least the time asked for.
2825 if (ts->tv_sec || ts->tv_nsec)
2826 timeout++;
2830 * Invert the set of allowed signals to get those we want to block.
2832 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2833 signotset(&mask);
2835 spin_lock_irq(&tsk->sighand->siglock);
2836 sig = dequeue_signal(tsk, &mask, info);
2837 if (!sig && timeout) {
2839 * None ready, temporarily unblock those we're interested
2840 * while we are sleeping in so that we'll be awakened when
2841 * they arrive. Unblocking is always fine, we can avoid
2842 * set_current_blocked().
2844 tsk->real_blocked = tsk->blocked;
2845 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2846 recalc_sigpending();
2847 spin_unlock_irq(&tsk->sighand->siglock);
2849 timeout = schedule_timeout_interruptible(timeout);
2851 spin_lock_irq(&tsk->sighand->siglock);
2852 __set_task_blocked(tsk, &tsk->real_blocked);
2853 siginitset(&tsk->real_blocked, 0);
2854 sig = dequeue_signal(tsk, &mask, info);
2856 spin_unlock_irq(&tsk->sighand->siglock);
2858 if (sig)
2859 return sig;
2860 return timeout ? -EINTR : -EAGAIN;
2864 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2865 * in @uthese
2866 * @uthese: queued signals to wait for
2867 * @uinfo: if non-null, the signal's siginfo is returned here
2868 * @uts: upper bound on process time suspension
2869 * @sigsetsize: size of sigset_t type
2871 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2872 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2873 size_t, sigsetsize)
2875 sigset_t these;
2876 struct timespec ts;
2877 siginfo_t info;
2878 int ret;
2880 /* XXX: Don't preclude handling different sized sigset_t's. */
2881 if (sigsetsize != sizeof(sigset_t))
2882 return -EINVAL;
2884 if (copy_from_user(&these, uthese, sizeof(these)))
2885 return -EFAULT;
2887 if (uts) {
2888 if (copy_from_user(&ts, uts, sizeof(ts)))
2889 return -EFAULT;
2892 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2894 if (ret > 0 && uinfo) {
2895 if (copy_siginfo_to_user(uinfo, &info))
2896 ret = -EFAULT;
2899 return ret;
2903 * sys_kill - send a signal to a process
2904 * @pid: the PID of the process
2905 * @sig: signal to be sent
2907 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2909 struct siginfo info;
2911 info.si_signo = sig;
2912 info.si_errno = 0;
2913 info.si_code = SI_USER;
2914 info.si_pid = task_tgid_vnr(current);
2915 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2917 return kill_something_info(sig, &info, pid);
2920 static int
2921 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2923 struct task_struct *p;
2924 int error = -ESRCH;
2926 rcu_read_lock();
2927 p = find_task_by_vpid(pid);
2928 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2929 error = check_kill_permission(sig, info, p);
2931 * The null signal is a permissions and process existence
2932 * probe. No signal is actually delivered.
2934 if (!error && sig) {
2935 error = do_send_sig_info(sig, info, p, false);
2937 * If lock_task_sighand() failed we pretend the task
2938 * dies after receiving the signal. The window is tiny,
2939 * and the signal is private anyway.
2941 if (unlikely(error == -ESRCH))
2942 error = 0;
2945 rcu_read_unlock();
2947 return error;
2950 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2952 struct siginfo info = {};
2954 info.si_signo = sig;
2955 info.si_errno = 0;
2956 info.si_code = SI_TKILL;
2957 info.si_pid = task_tgid_vnr(current);
2958 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2960 return do_send_specific(tgid, pid, sig, &info);
2964 * sys_tgkill - send signal to one specific thread
2965 * @tgid: the thread group ID of the thread
2966 * @pid: the PID of the thread
2967 * @sig: signal to be sent
2969 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2970 * exists but it's not belonging to the target process anymore. This
2971 * method solves the problem of threads exiting and PIDs getting reused.
2973 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2975 /* This is only valid for single tasks */
2976 if (pid <= 0 || tgid <= 0)
2977 return -EINVAL;
2979 return do_tkill(tgid, pid, sig);
2983 * sys_tkill - send signal to one specific task
2984 * @pid: the PID of the task
2985 * @sig: signal to be sent
2987 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2989 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2991 /* This is only valid for single tasks */
2992 if (pid <= 0)
2993 return -EINVAL;
2995 return do_tkill(0, pid, sig);
2998 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3000 /* Not even root can pretend to send signals from the kernel.
3001 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3003 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3004 (task_pid_vnr(current) != pid)) {
3005 /* We used to allow any < 0 si_code */
3006 WARN_ON_ONCE(info->si_code < 0);
3007 return -EPERM;
3009 info->si_signo = sig;
3011 /* POSIX.1b doesn't mention process groups. */
3012 return kill_proc_info(sig, info, pid);
3016 * sys_rt_sigqueueinfo - send signal information to a signal
3017 * @pid: the PID of the thread
3018 * @sig: signal to be sent
3019 * @uinfo: signal info to be sent
3021 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3022 siginfo_t __user *, uinfo)
3024 siginfo_t info;
3025 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3026 return -EFAULT;
3027 return do_rt_sigqueueinfo(pid, sig, &info);
3030 #ifdef CONFIG_COMPAT
3031 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3032 compat_pid_t, pid,
3033 int, sig,
3034 struct compat_siginfo __user *, uinfo)
3036 siginfo_t info;
3037 int ret = copy_siginfo_from_user32(&info, uinfo);
3038 if (unlikely(ret))
3039 return ret;
3040 return do_rt_sigqueueinfo(pid, sig, &info);
3042 #endif
3044 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3046 /* This is only valid for single tasks */
3047 if (pid <= 0 || tgid <= 0)
3048 return -EINVAL;
3050 /* Not even root can pretend to send signals from the kernel.
3051 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3053 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3054 (task_pid_vnr(current) != pid)) {
3055 /* We used to allow any < 0 si_code */
3056 WARN_ON_ONCE(info->si_code < 0);
3057 return -EPERM;
3059 info->si_signo = sig;
3061 return do_send_specific(tgid, pid, sig, info);
3064 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3065 siginfo_t __user *, uinfo)
3067 siginfo_t info;
3069 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3070 return -EFAULT;
3072 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3075 #ifdef CONFIG_COMPAT
3076 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3077 compat_pid_t, tgid,
3078 compat_pid_t, pid,
3079 int, sig,
3080 struct compat_siginfo __user *, uinfo)
3082 siginfo_t info;
3084 if (copy_siginfo_from_user32(&info, uinfo))
3085 return -EFAULT;
3086 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3088 #endif
3090 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3092 struct task_struct *t = current;
3093 struct k_sigaction *k;
3094 sigset_t mask;
3096 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3097 return -EINVAL;
3099 k = &t->sighand->action[sig-1];
3101 spin_lock_irq(&current->sighand->siglock);
3102 if (oact)
3103 *oact = *k;
3105 if (act) {
3106 sigdelsetmask(&act->sa.sa_mask,
3107 sigmask(SIGKILL) | sigmask(SIGSTOP));
3108 *k = *act;
3110 * POSIX 3.3.1.3:
3111 * "Setting a signal action to SIG_IGN for a signal that is
3112 * pending shall cause the pending signal to be discarded,
3113 * whether or not it is blocked."
3115 * "Setting a signal action to SIG_DFL for a signal that is
3116 * pending and whose default action is to ignore the signal
3117 * (for example, SIGCHLD), shall cause the pending signal to
3118 * be discarded, whether or not it is blocked"
3120 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3121 sigemptyset(&mask);
3122 sigaddset(&mask, sig);
3123 rm_from_queue_full(&mask, &t->signal->shared_pending);
3124 do {
3125 rm_from_queue_full(&mask, &t->pending);
3126 t = next_thread(t);
3127 } while (t != current);
3131 spin_unlock_irq(&current->sighand->siglock);
3132 return 0;
3135 static int
3136 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3138 stack_t oss;
3139 int error;
3141 oss.ss_sp = (void __user *) current->sas_ss_sp;
3142 oss.ss_size = current->sas_ss_size;
3143 oss.ss_flags = sas_ss_flags(sp);
3145 if (uss) {
3146 void __user *ss_sp;
3147 size_t ss_size;
3148 int ss_flags;
3150 error = -EFAULT;
3151 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3152 goto out;
3153 error = __get_user(ss_sp, &uss->ss_sp) |
3154 __get_user(ss_flags, &uss->ss_flags) |
3155 __get_user(ss_size, &uss->ss_size);
3156 if (error)
3157 goto out;
3159 error = -EPERM;
3160 if (on_sig_stack(sp))
3161 goto out;
3163 error = -EINVAL;
3165 * Note - this code used to test ss_flags incorrectly:
3166 * old code may have been written using ss_flags==0
3167 * to mean ss_flags==SS_ONSTACK (as this was the only
3168 * way that worked) - this fix preserves that older
3169 * mechanism.
3171 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3172 goto out;
3174 if (ss_flags == SS_DISABLE) {
3175 ss_size = 0;
3176 ss_sp = NULL;
3177 } else {
3178 error = -ENOMEM;
3179 if (ss_size < MINSIGSTKSZ)
3180 goto out;
3183 current->sas_ss_sp = (unsigned long) ss_sp;
3184 current->sas_ss_size = ss_size;
3187 error = 0;
3188 if (uoss) {
3189 error = -EFAULT;
3190 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3191 goto out;
3192 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3193 __put_user(oss.ss_size, &uoss->ss_size) |
3194 __put_user(oss.ss_flags, &uoss->ss_flags);
3197 out:
3198 return error;
3200 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3202 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3205 int restore_altstack(const stack_t __user *uss)
3207 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3208 /* squash all but EFAULT for now */
3209 return err == -EFAULT ? err : 0;
3212 int __save_altstack(stack_t __user *uss, unsigned long sp)
3214 struct task_struct *t = current;
3215 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3216 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3217 __put_user(t->sas_ss_size, &uss->ss_size);
3220 #ifdef CONFIG_COMPAT
3221 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3222 const compat_stack_t __user *, uss_ptr,
3223 compat_stack_t __user *, uoss_ptr)
3225 stack_t uss, uoss;
3226 int ret;
3227 mm_segment_t seg;
3229 if (uss_ptr) {
3230 compat_stack_t uss32;
3232 memset(&uss, 0, sizeof(stack_t));
3233 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3234 return -EFAULT;
3235 uss.ss_sp = compat_ptr(uss32.ss_sp);
3236 uss.ss_flags = uss32.ss_flags;
3237 uss.ss_size = uss32.ss_size;
3239 seg = get_fs();
3240 set_fs(KERNEL_DS);
3241 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3242 (stack_t __force __user *) &uoss,
3243 compat_user_stack_pointer());
3244 set_fs(seg);
3245 if (ret >= 0 && uoss_ptr) {
3246 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3247 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3248 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3249 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3250 ret = -EFAULT;
3252 return ret;
3255 int compat_restore_altstack(const compat_stack_t __user *uss)
3257 int err = compat_sys_sigaltstack(uss, NULL);
3258 /* squash all but -EFAULT for now */
3259 return err == -EFAULT ? err : 0;
3262 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3264 struct task_struct *t = current;
3265 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3266 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3267 __put_user(t->sas_ss_size, &uss->ss_size);
3269 #endif
3271 #ifdef __ARCH_WANT_SYS_SIGPENDING
3274 * sys_sigpending - examine pending signals
3275 * @set: where mask of pending signal is returned
3277 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3279 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3282 #endif
3284 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3286 * sys_sigprocmask - examine and change blocked signals
3287 * @how: whether to add, remove, or set signals
3288 * @nset: signals to add or remove (if non-null)
3289 * @oset: previous value of signal mask if non-null
3291 * Some platforms have their own version with special arguments;
3292 * others support only sys_rt_sigprocmask.
3295 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3296 old_sigset_t __user *, oset)
3298 old_sigset_t old_set, new_set;
3299 sigset_t new_blocked;
3301 old_set = current->blocked.sig[0];
3303 if (nset) {
3304 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3305 return -EFAULT;
3307 new_blocked = current->blocked;
3309 switch (how) {
3310 case SIG_BLOCK:
3311 sigaddsetmask(&new_blocked, new_set);
3312 break;
3313 case SIG_UNBLOCK:
3314 sigdelsetmask(&new_blocked, new_set);
3315 break;
3316 case SIG_SETMASK:
3317 new_blocked.sig[0] = new_set;
3318 break;
3319 default:
3320 return -EINVAL;
3323 set_current_blocked(&new_blocked);
3326 if (oset) {
3327 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3328 return -EFAULT;
3331 return 0;
3333 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3335 #ifndef CONFIG_ODD_RT_SIGACTION
3337 * sys_rt_sigaction - alter an action taken by a process
3338 * @sig: signal to be sent
3339 * @act: new sigaction
3340 * @oact: used to save the previous sigaction
3341 * @sigsetsize: size of sigset_t type
3343 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3344 const struct sigaction __user *, act,
3345 struct sigaction __user *, oact,
3346 size_t, sigsetsize)
3348 struct k_sigaction new_sa, old_sa;
3349 int ret = -EINVAL;
3351 /* XXX: Don't preclude handling different sized sigset_t's. */
3352 if (sigsetsize != sizeof(sigset_t))
3353 goto out;
3355 if (act) {
3356 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3357 return -EFAULT;
3360 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3362 if (!ret && oact) {
3363 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3364 return -EFAULT;
3366 out:
3367 return ret;
3369 #ifdef CONFIG_COMPAT
3370 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3371 const struct compat_sigaction __user *, act,
3372 struct compat_sigaction __user *, oact,
3373 compat_size_t, sigsetsize)
3375 struct k_sigaction new_ka, old_ka;
3376 compat_sigset_t mask;
3377 #ifdef __ARCH_HAS_SA_RESTORER
3378 compat_uptr_t restorer;
3379 #endif
3380 int ret;
3382 /* XXX: Don't preclude handling different sized sigset_t's. */
3383 if (sigsetsize != sizeof(compat_sigset_t))
3384 return -EINVAL;
3386 if (act) {
3387 compat_uptr_t handler;
3388 ret = get_user(handler, &act->sa_handler);
3389 new_ka.sa.sa_handler = compat_ptr(handler);
3390 #ifdef __ARCH_HAS_SA_RESTORER
3391 ret |= get_user(restorer, &act->sa_restorer);
3392 new_ka.sa.sa_restorer = compat_ptr(restorer);
3393 #endif
3394 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3395 ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags);
3396 if (ret)
3397 return -EFAULT;
3398 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3401 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3402 if (!ret && oact) {
3403 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3404 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3405 &oact->sa_handler);
3406 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3407 ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3408 #ifdef __ARCH_HAS_SA_RESTORER
3409 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3410 &oact->sa_restorer);
3411 #endif
3413 return ret;
3415 #endif
3416 #endif /* !CONFIG_ODD_RT_SIGACTION */
3418 #ifdef CONFIG_OLD_SIGACTION
3419 SYSCALL_DEFINE3(sigaction, int, sig,
3420 const struct old_sigaction __user *, act,
3421 struct old_sigaction __user *, oact)
3423 struct k_sigaction new_ka, old_ka;
3424 int ret;
3426 if (act) {
3427 old_sigset_t mask;
3428 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3429 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3430 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3431 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3432 __get_user(mask, &act->sa_mask))
3433 return -EFAULT;
3434 #ifdef __ARCH_HAS_KA_RESTORER
3435 new_ka.ka_restorer = NULL;
3436 #endif
3437 siginitset(&new_ka.sa.sa_mask, mask);
3440 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3442 if (!ret && oact) {
3443 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3444 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3445 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3446 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3447 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3448 return -EFAULT;
3451 return ret;
3453 #endif
3454 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3455 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3456 const struct compat_old_sigaction __user *, act,
3457 struct compat_old_sigaction __user *, oact)
3459 struct k_sigaction new_ka, old_ka;
3460 int ret;
3461 compat_old_sigset_t mask;
3462 compat_uptr_t handler, restorer;
3464 if (act) {
3465 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3466 __get_user(handler, &act->sa_handler) ||
3467 __get_user(restorer, &act->sa_restorer) ||
3468 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3469 __get_user(mask, &act->sa_mask))
3470 return -EFAULT;
3472 #ifdef __ARCH_HAS_KA_RESTORER
3473 new_ka.ka_restorer = NULL;
3474 #endif
3475 new_ka.sa.sa_handler = compat_ptr(handler);
3476 new_ka.sa.sa_restorer = compat_ptr(restorer);
3477 siginitset(&new_ka.sa.sa_mask, mask);
3480 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3482 if (!ret && oact) {
3483 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3484 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3485 &oact->sa_handler) ||
3486 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3487 &oact->sa_restorer) ||
3488 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3489 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3490 return -EFAULT;
3492 return ret;
3494 #endif
3496 #ifdef __ARCH_WANT_SYS_SGETMASK
3499 * For backwards compatibility. Functionality superseded by sigprocmask.
3501 SYSCALL_DEFINE0(sgetmask)
3503 /* SMP safe */
3504 return current->blocked.sig[0];
3507 SYSCALL_DEFINE1(ssetmask, int, newmask)
3509 int old = current->blocked.sig[0];
3510 sigset_t newset;
3512 siginitset(&newset, newmask);
3513 set_current_blocked(&newset);
3515 return old;
3517 #endif /* __ARCH_WANT_SGETMASK */
3519 #ifdef __ARCH_WANT_SYS_SIGNAL
3521 * For backwards compatibility. Functionality superseded by sigaction.
3523 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3525 struct k_sigaction new_sa, old_sa;
3526 int ret;
3528 new_sa.sa.sa_handler = handler;
3529 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3530 sigemptyset(&new_sa.sa.sa_mask);
3532 ret = do_sigaction(sig, &new_sa, &old_sa);
3534 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3536 #endif /* __ARCH_WANT_SYS_SIGNAL */
3538 #ifdef __ARCH_WANT_SYS_PAUSE
3540 SYSCALL_DEFINE0(pause)
3542 while (!signal_pending(current)) {
3543 current->state = TASK_INTERRUPTIBLE;
3544 schedule();
3546 return -ERESTARTNOHAND;
3549 #endif
3551 int sigsuspend(sigset_t *set)
3553 current->saved_sigmask = current->blocked;
3554 set_current_blocked(set);
3556 current->state = TASK_INTERRUPTIBLE;
3557 schedule();
3558 set_restore_sigmask();
3559 return -ERESTARTNOHAND;
3563 * sys_rt_sigsuspend - replace the signal mask for a value with the
3564 * @unewset value until a signal is received
3565 * @unewset: new signal mask value
3566 * @sigsetsize: size of sigset_t type
3568 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3570 sigset_t newset;
3572 /* XXX: Don't preclude handling different sized sigset_t's. */
3573 if (sigsetsize != sizeof(sigset_t))
3574 return -EINVAL;
3576 if (copy_from_user(&newset, unewset, sizeof(newset)))
3577 return -EFAULT;
3578 return sigsuspend(&newset);
3581 #ifdef CONFIG_COMPAT
3582 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3584 #ifdef __BIG_ENDIAN
3585 sigset_t newset;
3586 compat_sigset_t newset32;
3588 /* XXX: Don't preclude handling different sized sigset_t's. */
3589 if (sigsetsize != sizeof(sigset_t))
3590 return -EINVAL;
3592 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3593 return -EFAULT;
3594 sigset_from_compat(&newset, &newset32);
3595 return sigsuspend(&newset);
3596 #else
3597 /* on little-endian bitmaps don't care about granularity */
3598 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3599 #endif
3601 #endif
3603 #ifdef CONFIG_OLD_SIGSUSPEND
3604 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3606 sigset_t blocked;
3607 siginitset(&blocked, mask);
3608 return sigsuspend(&blocked);
3610 #endif
3611 #ifdef CONFIG_OLD_SIGSUSPEND3
3612 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3614 sigset_t blocked;
3615 siginitset(&blocked, mask);
3616 return sigsuspend(&blocked);
3618 #endif
3620 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3622 return NULL;
3625 void __init signals_init(void)
3627 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3630 #ifdef CONFIG_KGDB_KDB
3631 #include <linux/kdb.h>
3633 * kdb_send_sig_info - Allows kdb to send signals without exposing
3634 * signal internals. This function checks if the required locks are
3635 * available before calling the main signal code, to avoid kdb
3636 * deadlocks.
3638 void
3639 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3641 static struct task_struct *kdb_prev_t;
3642 int sig, new_t;
3643 if (!spin_trylock(&t->sighand->siglock)) {
3644 kdb_printf("Can't do kill command now.\n"
3645 "The sigmask lock is held somewhere else in "
3646 "kernel, try again later\n");
3647 return;
3649 spin_unlock(&t->sighand->siglock);
3650 new_t = kdb_prev_t != t;
3651 kdb_prev_t = t;
3652 if (t->state != TASK_RUNNING && new_t) {
3653 kdb_printf("Process is not RUNNING, sending a signal from "
3654 "kdb risks deadlock\n"
3655 "on the run queue locks. "
3656 "The signal has _not_ been sent.\n"
3657 "Reissue the kill command if you want to risk "
3658 "the deadlock.\n");
3659 return;
3661 sig = info->si_signo;
3662 if (send_sig_info(sig, info, t))
3663 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3664 sig, t->pid);
3665 else
3666 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3668 #endif /* CONFIG_KGDB_KDB */