drm/i915: shut up spurious message in intel_dp_get_hw_state
[linux-2.6/btrfs-unstable.git] / fs / jbd2 / journal.c
blob484b8d1c6cb6cd645a009f2cdb1c50884f3a9563
1 /*
2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_release_buffer);
64 EXPORT_SYMBOL(jbd2_journal_forget);
65 #if 0
66 EXPORT_SYMBOL(journal_sync_buffer);
67 #endif
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_log_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
86 EXPORT_SYMBOL(jbd2_journal_wipe);
87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
88 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
90 EXPORT_SYMBOL(jbd2_journal_force_commit);
91 EXPORT_SYMBOL(jbd2_journal_file_inode);
92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
95 EXPORT_SYMBOL(jbd2_inode_cache);
97 static void __journal_abort_soft (journal_t *journal, int errno);
98 static int jbd2_journal_create_slab(size_t slab_size);
100 /* Checksumming functions */
101 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
103 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
104 return 1;
106 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
109 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
111 __u32 csum, old_csum;
113 old_csum = sb->s_checksum;
114 sb->s_checksum = 0;
115 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
116 sb->s_checksum = old_csum;
118 return cpu_to_be32(csum);
121 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
123 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
124 return 1;
126 return sb->s_checksum == jbd2_superblock_csum(j, sb);
129 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
131 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
132 return;
134 sb->s_checksum = jbd2_superblock_csum(j, sb);
138 * Helper function used to manage commit timeouts
141 static void commit_timeout(unsigned long __data)
143 struct task_struct * p = (struct task_struct *) __data;
145 wake_up_process(p);
149 * kjournald2: The main thread function used to manage a logging device
150 * journal.
152 * This kernel thread is responsible for two things:
154 * 1) COMMIT: Every so often we need to commit the current state of the
155 * filesystem to disk. The journal thread is responsible for writing
156 * all of the metadata buffers to disk.
158 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
159 * of the data in that part of the log has been rewritten elsewhere on
160 * the disk. Flushing these old buffers to reclaim space in the log is
161 * known as checkpointing, and this thread is responsible for that job.
164 static int kjournald2(void *arg)
166 journal_t *journal = arg;
167 transaction_t *transaction;
170 * Set up an interval timer which can be used to trigger a commit wakeup
171 * after the commit interval expires
173 setup_timer(&journal->j_commit_timer, commit_timeout,
174 (unsigned long)current);
176 set_freezable();
178 /* Record that the journal thread is running */
179 journal->j_task = current;
180 wake_up(&journal->j_wait_done_commit);
183 * And now, wait forever for commit wakeup events.
185 write_lock(&journal->j_state_lock);
187 loop:
188 if (journal->j_flags & JBD2_UNMOUNT)
189 goto end_loop;
191 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
192 journal->j_commit_sequence, journal->j_commit_request);
194 if (journal->j_commit_sequence != journal->j_commit_request) {
195 jbd_debug(1, "OK, requests differ\n");
196 write_unlock(&journal->j_state_lock);
197 del_timer_sync(&journal->j_commit_timer);
198 jbd2_journal_commit_transaction(journal);
199 write_lock(&journal->j_state_lock);
200 goto loop;
203 wake_up(&journal->j_wait_done_commit);
204 if (freezing(current)) {
206 * The simpler the better. Flushing journal isn't a
207 * good idea, because that depends on threads that may
208 * be already stopped.
210 jbd_debug(1, "Now suspending kjournald2\n");
211 write_unlock(&journal->j_state_lock);
212 try_to_freeze();
213 write_lock(&journal->j_state_lock);
214 } else {
216 * We assume on resume that commits are already there,
217 * so we don't sleep
219 DEFINE_WAIT(wait);
220 int should_sleep = 1;
222 prepare_to_wait(&journal->j_wait_commit, &wait,
223 TASK_INTERRUPTIBLE);
224 if (journal->j_commit_sequence != journal->j_commit_request)
225 should_sleep = 0;
226 transaction = journal->j_running_transaction;
227 if (transaction && time_after_eq(jiffies,
228 transaction->t_expires))
229 should_sleep = 0;
230 if (journal->j_flags & JBD2_UNMOUNT)
231 should_sleep = 0;
232 if (should_sleep) {
233 write_unlock(&journal->j_state_lock);
234 schedule();
235 write_lock(&journal->j_state_lock);
237 finish_wait(&journal->j_wait_commit, &wait);
240 jbd_debug(1, "kjournald2 wakes\n");
243 * Were we woken up by a commit wakeup event?
245 transaction = journal->j_running_transaction;
246 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
247 journal->j_commit_request = transaction->t_tid;
248 jbd_debug(1, "woke because of timeout\n");
250 goto loop;
252 end_loop:
253 write_unlock(&journal->j_state_lock);
254 del_timer_sync(&journal->j_commit_timer);
255 journal->j_task = NULL;
256 wake_up(&journal->j_wait_done_commit);
257 jbd_debug(1, "Journal thread exiting.\n");
258 return 0;
261 static int jbd2_journal_start_thread(journal_t *journal)
263 struct task_struct *t;
265 t = kthread_run(kjournald2, journal, "jbd2/%s",
266 journal->j_devname);
267 if (IS_ERR(t))
268 return PTR_ERR(t);
270 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
271 return 0;
274 static void journal_kill_thread(journal_t *journal)
276 write_lock(&journal->j_state_lock);
277 journal->j_flags |= JBD2_UNMOUNT;
279 while (journal->j_task) {
280 wake_up(&journal->j_wait_commit);
281 write_unlock(&journal->j_state_lock);
282 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
283 write_lock(&journal->j_state_lock);
285 write_unlock(&journal->j_state_lock);
289 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
291 * Writes a metadata buffer to a given disk block. The actual IO is not
292 * performed but a new buffer_head is constructed which labels the data
293 * to be written with the correct destination disk block.
295 * Any magic-number escaping which needs to be done will cause a
296 * copy-out here. If the buffer happens to start with the
297 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
298 * magic number is only written to the log for descripter blocks. In
299 * this case, we copy the data and replace the first word with 0, and we
300 * return a result code which indicates that this buffer needs to be
301 * marked as an escaped buffer in the corresponding log descriptor
302 * block. The missing word can then be restored when the block is read
303 * during recovery.
305 * If the source buffer has already been modified by a new transaction
306 * since we took the last commit snapshot, we use the frozen copy of
307 * that data for IO. If we end up using the existing buffer_head's data
308 * for the write, then we *have* to lock the buffer to prevent anyone
309 * else from using and possibly modifying it while the IO is in
310 * progress.
312 * The function returns a pointer to the buffer_heads to be used for IO.
314 * We assume that the journal has already been locked in this function.
316 * Return value:
317 * <0: Error
318 * >=0: Finished OK
320 * On success:
321 * Bit 0 set == escape performed on the data
322 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
325 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
326 struct journal_head *jh_in,
327 struct journal_head **jh_out,
328 unsigned long long blocknr)
330 int need_copy_out = 0;
331 int done_copy_out = 0;
332 int do_escape = 0;
333 char *mapped_data;
334 struct buffer_head *new_bh;
335 struct journal_head *new_jh;
336 struct page *new_page;
337 unsigned int new_offset;
338 struct buffer_head *bh_in = jh2bh(jh_in);
339 journal_t *journal = transaction->t_journal;
342 * The buffer really shouldn't be locked: only the current committing
343 * transaction is allowed to write it, so nobody else is allowed
344 * to do any IO.
346 * akpm: except if we're journalling data, and write() output is
347 * also part of a shared mapping, and another thread has
348 * decided to launch a writepage() against this buffer.
350 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
352 retry_alloc:
353 new_bh = alloc_buffer_head(GFP_NOFS);
354 if (!new_bh) {
356 * Failure is not an option, but __GFP_NOFAIL is going
357 * away; so we retry ourselves here.
359 congestion_wait(BLK_RW_ASYNC, HZ/50);
360 goto retry_alloc;
363 /* keep subsequent assertions sane */
364 new_bh->b_state = 0;
365 init_buffer(new_bh, NULL, NULL);
366 atomic_set(&new_bh->b_count, 1);
367 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
370 * If a new transaction has already done a buffer copy-out, then
371 * we use that version of the data for the commit.
373 jbd_lock_bh_state(bh_in);
374 repeat:
375 if (jh_in->b_frozen_data) {
376 done_copy_out = 1;
377 new_page = virt_to_page(jh_in->b_frozen_data);
378 new_offset = offset_in_page(jh_in->b_frozen_data);
379 } else {
380 new_page = jh2bh(jh_in)->b_page;
381 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
384 mapped_data = kmap_atomic(new_page);
386 * Fire data frozen trigger if data already wasn't frozen. Do this
387 * before checking for escaping, as the trigger may modify the magic
388 * offset. If a copy-out happens afterwards, it will have the correct
389 * data in the buffer.
391 if (!done_copy_out)
392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 jh_in->b_triggers);
396 * Check for escaping
398 if (*((__be32 *)(mapped_data + new_offset)) ==
399 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 need_copy_out = 1;
401 do_escape = 1;
403 kunmap_atomic(mapped_data);
406 * Do we need to do a data copy?
408 if (need_copy_out && !done_copy_out) {
409 char *tmp;
411 jbd_unlock_bh_state(bh_in);
412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 if (!tmp) {
414 jbd2_journal_put_journal_head(new_jh);
415 return -ENOMEM;
417 jbd_lock_bh_state(bh_in);
418 if (jh_in->b_frozen_data) {
419 jbd2_free(tmp, bh_in->b_size);
420 goto repeat;
423 jh_in->b_frozen_data = tmp;
424 mapped_data = kmap_atomic(new_page);
425 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
426 kunmap_atomic(mapped_data);
428 new_page = virt_to_page(tmp);
429 new_offset = offset_in_page(tmp);
430 done_copy_out = 1;
433 * This isn't strictly necessary, as we're using frozen
434 * data for the escaping, but it keeps consistency with
435 * b_frozen_data usage.
437 jh_in->b_frozen_triggers = jh_in->b_triggers;
441 * Did we need to do an escaping? Now we've done all the
442 * copying, we can finally do so.
444 if (do_escape) {
445 mapped_data = kmap_atomic(new_page);
446 *((unsigned int *)(mapped_data + new_offset)) = 0;
447 kunmap_atomic(mapped_data);
450 set_bh_page(new_bh, new_page, new_offset);
451 new_jh->b_transaction = NULL;
452 new_bh->b_size = jh2bh(jh_in)->b_size;
453 new_bh->b_bdev = transaction->t_journal->j_dev;
454 new_bh->b_blocknr = blocknr;
455 set_buffer_mapped(new_bh);
456 set_buffer_dirty(new_bh);
458 *jh_out = new_jh;
461 * The to-be-written buffer needs to get moved to the io queue,
462 * and the original buffer whose contents we are shadowing or
463 * copying is moved to the transaction's shadow queue.
465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 spin_lock(&journal->j_list_lock);
467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 spin_unlock(&journal->j_list_lock);
469 jbd_unlock_bh_state(bh_in);
471 JBUFFER_TRACE(new_jh, "file as BJ_IO");
472 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
474 return do_escape | (done_copy_out << 1);
478 * Allocation code for the journal file. Manage the space left in the
479 * journal, so that we can begin checkpointing when appropriate.
483 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
485 * Called with the journal already locked.
487 * Called under j_state_lock
490 int __jbd2_log_space_left(journal_t *journal)
492 int left = journal->j_free;
494 /* assert_spin_locked(&journal->j_state_lock); */
497 * Be pessimistic here about the number of those free blocks which
498 * might be required for log descriptor control blocks.
501 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
503 left -= MIN_LOG_RESERVED_BLOCKS;
505 if (left <= 0)
506 return 0;
507 left -= (left >> 3);
508 return left;
512 * Called with j_state_lock locked for writing.
513 * Returns true if a transaction commit was started.
515 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
518 * The only transaction we can possibly wait upon is the
519 * currently running transaction (if it exists). Otherwise,
520 * the target tid must be an old one.
522 if (journal->j_running_transaction &&
523 journal->j_running_transaction->t_tid == target) {
525 * We want a new commit: OK, mark the request and wakeup the
526 * commit thread. We do _not_ do the commit ourselves.
529 journal->j_commit_request = target;
530 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
531 journal->j_commit_request,
532 journal->j_commit_sequence);
533 wake_up(&journal->j_wait_commit);
534 return 1;
535 } else if (!tid_geq(journal->j_commit_request, target))
536 /* This should never happen, but if it does, preserve
537 the evidence before kjournald goes into a loop and
538 increments j_commit_sequence beyond all recognition. */
539 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
540 journal->j_commit_request,
541 journal->j_commit_sequence,
542 target, journal->j_running_transaction ?
543 journal->j_running_transaction->t_tid : 0);
544 return 0;
547 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
549 int ret;
551 write_lock(&journal->j_state_lock);
552 ret = __jbd2_log_start_commit(journal, tid);
553 write_unlock(&journal->j_state_lock);
554 return ret;
558 * Force and wait upon a commit if the calling process is not within
559 * transaction. This is used for forcing out undo-protected data which contains
560 * bitmaps, when the fs is running out of space.
562 * We can only force the running transaction if we don't have an active handle;
563 * otherwise, we will deadlock.
565 * Returns true if a transaction was started.
567 int jbd2_journal_force_commit_nested(journal_t *journal)
569 transaction_t *transaction = NULL;
570 tid_t tid;
571 int need_to_start = 0;
573 read_lock(&journal->j_state_lock);
574 if (journal->j_running_transaction && !current->journal_info) {
575 transaction = journal->j_running_transaction;
576 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
577 need_to_start = 1;
578 } else if (journal->j_committing_transaction)
579 transaction = journal->j_committing_transaction;
581 if (!transaction) {
582 read_unlock(&journal->j_state_lock);
583 return 0; /* Nothing to retry */
586 tid = transaction->t_tid;
587 read_unlock(&journal->j_state_lock);
588 if (need_to_start)
589 jbd2_log_start_commit(journal, tid);
590 jbd2_log_wait_commit(journal, tid);
591 return 1;
595 * Start a commit of the current running transaction (if any). Returns true
596 * if a transaction is going to be committed (or is currently already
597 * committing), and fills its tid in at *ptid
599 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
601 int ret = 0;
603 write_lock(&journal->j_state_lock);
604 if (journal->j_running_transaction) {
605 tid_t tid = journal->j_running_transaction->t_tid;
607 __jbd2_log_start_commit(journal, tid);
608 /* There's a running transaction and we've just made sure
609 * it's commit has been scheduled. */
610 if (ptid)
611 *ptid = tid;
612 ret = 1;
613 } else if (journal->j_committing_transaction) {
615 * If commit has been started, then we have to wait for
616 * completion of that transaction.
618 if (ptid)
619 *ptid = journal->j_committing_transaction->t_tid;
620 ret = 1;
622 write_unlock(&journal->j_state_lock);
623 return ret;
627 * Return 1 if a given transaction has not yet sent barrier request
628 * connected with a transaction commit. If 0 is returned, transaction
629 * may or may not have sent the barrier. Used to avoid sending barrier
630 * twice in common cases.
632 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
634 int ret = 0;
635 transaction_t *commit_trans;
637 if (!(journal->j_flags & JBD2_BARRIER))
638 return 0;
639 read_lock(&journal->j_state_lock);
640 /* Transaction already committed? */
641 if (tid_geq(journal->j_commit_sequence, tid))
642 goto out;
643 commit_trans = journal->j_committing_transaction;
644 if (!commit_trans || commit_trans->t_tid != tid) {
645 ret = 1;
646 goto out;
649 * Transaction is being committed and we already proceeded to
650 * submitting a flush to fs partition?
652 if (journal->j_fs_dev != journal->j_dev) {
653 if (!commit_trans->t_need_data_flush ||
654 commit_trans->t_state >= T_COMMIT_DFLUSH)
655 goto out;
656 } else {
657 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
658 goto out;
660 ret = 1;
661 out:
662 read_unlock(&journal->j_state_lock);
663 return ret;
665 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
668 * Wait for a specified commit to complete.
669 * The caller may not hold the journal lock.
671 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
673 int err = 0;
675 read_lock(&journal->j_state_lock);
676 #ifdef CONFIG_JBD2_DEBUG
677 if (!tid_geq(journal->j_commit_request, tid)) {
678 printk(KERN_EMERG
679 "%s: error: j_commit_request=%d, tid=%d\n",
680 __func__, journal->j_commit_request, tid);
682 #endif
683 while (tid_gt(tid, journal->j_commit_sequence)) {
684 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
685 tid, journal->j_commit_sequence);
686 wake_up(&journal->j_wait_commit);
687 read_unlock(&journal->j_state_lock);
688 wait_event(journal->j_wait_done_commit,
689 !tid_gt(tid, journal->j_commit_sequence));
690 read_lock(&journal->j_state_lock);
692 read_unlock(&journal->j_state_lock);
694 if (unlikely(is_journal_aborted(journal))) {
695 printk(KERN_EMERG "journal commit I/O error\n");
696 err = -EIO;
698 return err;
702 * Log buffer allocation routines:
705 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
707 unsigned long blocknr;
709 write_lock(&journal->j_state_lock);
710 J_ASSERT(journal->j_free > 1);
712 blocknr = journal->j_head;
713 journal->j_head++;
714 journal->j_free--;
715 if (journal->j_head == journal->j_last)
716 journal->j_head = journal->j_first;
717 write_unlock(&journal->j_state_lock);
718 return jbd2_journal_bmap(journal, blocknr, retp);
722 * Conversion of logical to physical block numbers for the journal
724 * On external journals the journal blocks are identity-mapped, so
725 * this is a no-op. If needed, we can use j_blk_offset - everything is
726 * ready.
728 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
729 unsigned long long *retp)
731 int err = 0;
732 unsigned long long ret;
734 if (journal->j_inode) {
735 ret = bmap(journal->j_inode, blocknr);
736 if (ret)
737 *retp = ret;
738 else {
739 printk(KERN_ALERT "%s: journal block not found "
740 "at offset %lu on %s\n",
741 __func__, blocknr, journal->j_devname);
742 err = -EIO;
743 __journal_abort_soft(journal, err);
745 } else {
746 *retp = blocknr; /* +journal->j_blk_offset */
748 return err;
752 * We play buffer_head aliasing tricks to write data/metadata blocks to
753 * the journal without copying their contents, but for journal
754 * descriptor blocks we do need to generate bona fide buffers.
756 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
757 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
758 * But we don't bother doing that, so there will be coherency problems with
759 * mmaps of blockdevs which hold live JBD-controlled filesystems.
761 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
763 struct buffer_head *bh;
764 unsigned long long blocknr;
765 int err;
767 err = jbd2_journal_next_log_block(journal, &blocknr);
769 if (err)
770 return NULL;
772 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
773 if (!bh)
774 return NULL;
775 lock_buffer(bh);
776 memset(bh->b_data, 0, journal->j_blocksize);
777 set_buffer_uptodate(bh);
778 unlock_buffer(bh);
779 BUFFER_TRACE(bh, "return this buffer");
780 return jbd2_journal_add_journal_head(bh);
784 * Return tid of the oldest transaction in the journal and block in the journal
785 * where the transaction starts.
787 * If the journal is now empty, return which will be the next transaction ID
788 * we will write and where will that transaction start.
790 * The return value is 0 if journal tail cannot be pushed any further, 1 if
791 * it can.
793 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
794 unsigned long *block)
796 transaction_t *transaction;
797 int ret;
799 read_lock(&journal->j_state_lock);
800 spin_lock(&journal->j_list_lock);
801 transaction = journal->j_checkpoint_transactions;
802 if (transaction) {
803 *tid = transaction->t_tid;
804 *block = transaction->t_log_start;
805 } else if ((transaction = journal->j_committing_transaction) != NULL) {
806 *tid = transaction->t_tid;
807 *block = transaction->t_log_start;
808 } else if ((transaction = journal->j_running_transaction) != NULL) {
809 *tid = transaction->t_tid;
810 *block = journal->j_head;
811 } else {
812 *tid = journal->j_transaction_sequence;
813 *block = journal->j_head;
815 ret = tid_gt(*tid, journal->j_tail_sequence);
816 spin_unlock(&journal->j_list_lock);
817 read_unlock(&journal->j_state_lock);
819 return ret;
823 * Update information in journal structure and in on disk journal superblock
824 * about log tail. This function does not check whether information passed in
825 * really pushes log tail further. It's responsibility of the caller to make
826 * sure provided log tail information is valid (e.g. by holding
827 * j_checkpoint_mutex all the time between computing log tail and calling this
828 * function as is the case with jbd2_cleanup_journal_tail()).
830 * Requires j_checkpoint_mutex
832 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
834 unsigned long freed;
836 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
839 * We cannot afford for write to remain in drive's caches since as
840 * soon as we update j_tail, next transaction can start reusing journal
841 * space and if we lose sb update during power failure we'd replay
842 * old transaction with possibly newly overwritten data.
844 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
845 write_lock(&journal->j_state_lock);
846 freed = block - journal->j_tail;
847 if (block < journal->j_tail)
848 freed += journal->j_last - journal->j_first;
850 trace_jbd2_update_log_tail(journal, tid, block, freed);
851 jbd_debug(1,
852 "Cleaning journal tail from %d to %d (offset %lu), "
853 "freeing %lu\n",
854 journal->j_tail_sequence, tid, block, freed);
856 journal->j_free += freed;
857 journal->j_tail_sequence = tid;
858 journal->j_tail = block;
859 write_unlock(&journal->j_state_lock);
863 * This is a variaon of __jbd2_update_log_tail which checks for validity of
864 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
865 * with other threads updating log tail.
867 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
869 mutex_lock(&journal->j_checkpoint_mutex);
870 if (tid_gt(tid, journal->j_tail_sequence))
871 __jbd2_update_log_tail(journal, tid, block);
872 mutex_unlock(&journal->j_checkpoint_mutex);
875 struct jbd2_stats_proc_session {
876 journal_t *journal;
877 struct transaction_stats_s *stats;
878 int start;
879 int max;
882 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
884 return *pos ? NULL : SEQ_START_TOKEN;
887 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
889 return NULL;
892 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
894 struct jbd2_stats_proc_session *s = seq->private;
896 if (v != SEQ_START_TOKEN)
897 return 0;
898 seq_printf(seq, "%lu transaction, each up to %u blocks\n",
899 s->stats->ts_tid,
900 s->journal->j_max_transaction_buffers);
901 if (s->stats->ts_tid == 0)
902 return 0;
903 seq_printf(seq, "average: \n %ums waiting for transaction\n",
904 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
905 seq_printf(seq, " %ums running transaction\n",
906 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
907 seq_printf(seq, " %ums transaction was being locked\n",
908 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
909 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
910 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
911 seq_printf(seq, " %ums logging transaction\n",
912 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
913 seq_printf(seq, " %lluus average transaction commit time\n",
914 div_u64(s->journal->j_average_commit_time, 1000));
915 seq_printf(seq, " %lu handles per transaction\n",
916 s->stats->run.rs_handle_count / s->stats->ts_tid);
917 seq_printf(seq, " %lu blocks per transaction\n",
918 s->stats->run.rs_blocks / s->stats->ts_tid);
919 seq_printf(seq, " %lu logged blocks per transaction\n",
920 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
921 return 0;
924 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
928 static const struct seq_operations jbd2_seq_info_ops = {
929 .start = jbd2_seq_info_start,
930 .next = jbd2_seq_info_next,
931 .stop = jbd2_seq_info_stop,
932 .show = jbd2_seq_info_show,
935 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
937 journal_t *journal = PDE(inode)->data;
938 struct jbd2_stats_proc_session *s;
939 int rc, size;
941 s = kmalloc(sizeof(*s), GFP_KERNEL);
942 if (s == NULL)
943 return -ENOMEM;
944 size = sizeof(struct transaction_stats_s);
945 s->stats = kmalloc(size, GFP_KERNEL);
946 if (s->stats == NULL) {
947 kfree(s);
948 return -ENOMEM;
950 spin_lock(&journal->j_history_lock);
951 memcpy(s->stats, &journal->j_stats, size);
952 s->journal = journal;
953 spin_unlock(&journal->j_history_lock);
955 rc = seq_open(file, &jbd2_seq_info_ops);
956 if (rc == 0) {
957 struct seq_file *m = file->private_data;
958 m->private = s;
959 } else {
960 kfree(s->stats);
961 kfree(s);
963 return rc;
967 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
969 struct seq_file *seq = file->private_data;
970 struct jbd2_stats_proc_session *s = seq->private;
971 kfree(s->stats);
972 kfree(s);
973 return seq_release(inode, file);
976 static const struct file_operations jbd2_seq_info_fops = {
977 .owner = THIS_MODULE,
978 .open = jbd2_seq_info_open,
979 .read = seq_read,
980 .llseek = seq_lseek,
981 .release = jbd2_seq_info_release,
984 static struct proc_dir_entry *proc_jbd2_stats;
986 static void jbd2_stats_proc_init(journal_t *journal)
988 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
989 if (journal->j_proc_entry) {
990 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
991 &jbd2_seq_info_fops, journal);
995 static void jbd2_stats_proc_exit(journal_t *journal)
997 remove_proc_entry("info", journal->j_proc_entry);
998 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1002 * Management for journal control blocks: functions to create and
1003 * destroy journal_t structures, and to initialise and read existing
1004 * journal blocks from disk. */
1006 /* First: create and setup a journal_t object in memory. We initialise
1007 * very few fields yet: that has to wait until we have created the
1008 * journal structures from from scratch, or loaded them from disk. */
1010 static journal_t * journal_init_common (void)
1012 journal_t *journal;
1013 int err;
1015 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1016 if (!journal)
1017 return NULL;
1019 init_waitqueue_head(&journal->j_wait_transaction_locked);
1020 init_waitqueue_head(&journal->j_wait_logspace);
1021 init_waitqueue_head(&journal->j_wait_done_commit);
1022 init_waitqueue_head(&journal->j_wait_checkpoint);
1023 init_waitqueue_head(&journal->j_wait_commit);
1024 init_waitqueue_head(&journal->j_wait_updates);
1025 mutex_init(&journal->j_barrier);
1026 mutex_init(&journal->j_checkpoint_mutex);
1027 spin_lock_init(&journal->j_revoke_lock);
1028 spin_lock_init(&journal->j_list_lock);
1029 rwlock_init(&journal->j_state_lock);
1031 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1032 journal->j_min_batch_time = 0;
1033 journal->j_max_batch_time = 15000; /* 15ms */
1035 /* The journal is marked for error until we succeed with recovery! */
1036 journal->j_flags = JBD2_ABORT;
1038 /* Set up a default-sized revoke table for the new mount. */
1039 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1040 if (err) {
1041 kfree(journal);
1042 return NULL;
1045 spin_lock_init(&journal->j_history_lock);
1047 return journal;
1050 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1052 * Create a journal structure assigned some fixed set of disk blocks to
1053 * the journal. We don't actually touch those disk blocks yet, but we
1054 * need to set up all of the mapping information to tell the journaling
1055 * system where the journal blocks are.
1060 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1061 * @bdev: Block device on which to create the journal
1062 * @fs_dev: Device which hold journalled filesystem for this journal.
1063 * @start: Block nr Start of journal.
1064 * @len: Length of the journal in blocks.
1065 * @blocksize: blocksize of journalling device
1067 * Returns: a newly created journal_t *
1069 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1070 * range of blocks on an arbitrary block device.
1073 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1074 struct block_device *fs_dev,
1075 unsigned long long start, int len, int blocksize)
1077 journal_t *journal = journal_init_common();
1078 struct buffer_head *bh;
1079 char *p;
1080 int n;
1082 if (!journal)
1083 return NULL;
1085 /* journal descriptor can store up to n blocks -bzzz */
1086 journal->j_blocksize = blocksize;
1087 journal->j_dev = bdev;
1088 journal->j_fs_dev = fs_dev;
1089 journal->j_blk_offset = start;
1090 journal->j_maxlen = len;
1091 bdevname(journal->j_dev, journal->j_devname);
1092 p = journal->j_devname;
1093 while ((p = strchr(p, '/')))
1094 *p = '!';
1095 jbd2_stats_proc_init(journal);
1096 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1097 journal->j_wbufsize = n;
1098 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1099 if (!journal->j_wbuf) {
1100 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1101 __func__);
1102 goto out_err;
1105 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1106 if (!bh) {
1107 printk(KERN_ERR
1108 "%s: Cannot get buffer for journal superblock\n",
1109 __func__);
1110 goto out_err;
1112 journal->j_sb_buffer = bh;
1113 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1115 return journal;
1116 out_err:
1117 kfree(journal->j_wbuf);
1118 jbd2_stats_proc_exit(journal);
1119 kfree(journal);
1120 return NULL;
1124 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1125 * @inode: An inode to create the journal in
1127 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1128 * the journal. The inode must exist already, must support bmap() and
1129 * must have all data blocks preallocated.
1131 journal_t * jbd2_journal_init_inode (struct inode *inode)
1133 struct buffer_head *bh;
1134 journal_t *journal = journal_init_common();
1135 char *p;
1136 int err;
1137 int n;
1138 unsigned long long blocknr;
1140 if (!journal)
1141 return NULL;
1143 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1144 journal->j_inode = inode;
1145 bdevname(journal->j_dev, journal->j_devname);
1146 p = journal->j_devname;
1147 while ((p = strchr(p, '/')))
1148 *p = '!';
1149 p = journal->j_devname + strlen(journal->j_devname);
1150 sprintf(p, "-%lu", journal->j_inode->i_ino);
1151 jbd_debug(1,
1152 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1153 journal, inode->i_sb->s_id, inode->i_ino,
1154 (long long) inode->i_size,
1155 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1157 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1158 journal->j_blocksize = inode->i_sb->s_blocksize;
1159 jbd2_stats_proc_init(journal);
1161 /* journal descriptor can store up to n blocks -bzzz */
1162 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1163 journal->j_wbufsize = n;
1164 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1165 if (!journal->j_wbuf) {
1166 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1167 __func__);
1168 goto out_err;
1171 err = jbd2_journal_bmap(journal, 0, &blocknr);
1172 /* If that failed, give up */
1173 if (err) {
1174 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1175 __func__);
1176 goto out_err;
1179 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1180 if (!bh) {
1181 printk(KERN_ERR
1182 "%s: Cannot get buffer for journal superblock\n",
1183 __func__);
1184 goto out_err;
1186 journal->j_sb_buffer = bh;
1187 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1189 return journal;
1190 out_err:
1191 kfree(journal->j_wbuf);
1192 jbd2_stats_proc_exit(journal);
1193 kfree(journal);
1194 return NULL;
1198 * If the journal init or create aborts, we need to mark the journal
1199 * superblock as being NULL to prevent the journal destroy from writing
1200 * back a bogus superblock.
1202 static void journal_fail_superblock (journal_t *journal)
1204 struct buffer_head *bh = journal->j_sb_buffer;
1205 brelse(bh);
1206 journal->j_sb_buffer = NULL;
1210 * Given a journal_t structure, initialise the various fields for
1211 * startup of a new journaling session. We use this both when creating
1212 * a journal, and after recovering an old journal to reset it for
1213 * subsequent use.
1216 static int journal_reset(journal_t *journal)
1218 journal_superblock_t *sb = journal->j_superblock;
1219 unsigned long long first, last;
1221 first = be32_to_cpu(sb->s_first);
1222 last = be32_to_cpu(sb->s_maxlen);
1223 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1224 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1225 first, last);
1226 journal_fail_superblock(journal);
1227 return -EINVAL;
1230 journal->j_first = first;
1231 journal->j_last = last;
1233 journal->j_head = first;
1234 journal->j_tail = first;
1235 journal->j_free = last - first;
1237 journal->j_tail_sequence = journal->j_transaction_sequence;
1238 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1239 journal->j_commit_request = journal->j_commit_sequence;
1241 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1244 * As a special case, if the on-disk copy is already marked as needing
1245 * no recovery (s_start == 0), then we can safely defer the superblock
1246 * update until the next commit by setting JBD2_FLUSHED. This avoids
1247 * attempting a write to a potential-readonly device.
1249 if (sb->s_start == 0) {
1250 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1251 "(start %ld, seq %d, errno %d)\n",
1252 journal->j_tail, journal->j_tail_sequence,
1253 journal->j_errno);
1254 journal->j_flags |= JBD2_FLUSHED;
1255 } else {
1256 /* Lock here to make assertions happy... */
1257 mutex_lock(&journal->j_checkpoint_mutex);
1259 * Update log tail information. We use WRITE_FUA since new
1260 * transaction will start reusing journal space and so we
1261 * must make sure information about current log tail is on
1262 * disk before that.
1264 jbd2_journal_update_sb_log_tail(journal,
1265 journal->j_tail_sequence,
1266 journal->j_tail,
1267 WRITE_FUA);
1268 mutex_unlock(&journal->j_checkpoint_mutex);
1270 return jbd2_journal_start_thread(journal);
1273 static void jbd2_write_superblock(journal_t *journal, int write_op)
1275 struct buffer_head *bh = journal->j_sb_buffer;
1276 int ret;
1278 trace_jbd2_write_superblock(journal, write_op);
1279 if (!(journal->j_flags & JBD2_BARRIER))
1280 write_op &= ~(REQ_FUA | REQ_FLUSH);
1281 lock_buffer(bh);
1282 if (buffer_write_io_error(bh)) {
1284 * Oh, dear. A previous attempt to write the journal
1285 * superblock failed. This could happen because the
1286 * USB device was yanked out. Or it could happen to
1287 * be a transient write error and maybe the block will
1288 * be remapped. Nothing we can do but to retry the
1289 * write and hope for the best.
1291 printk(KERN_ERR "JBD2: previous I/O error detected "
1292 "for journal superblock update for %s.\n",
1293 journal->j_devname);
1294 clear_buffer_write_io_error(bh);
1295 set_buffer_uptodate(bh);
1297 get_bh(bh);
1298 bh->b_end_io = end_buffer_write_sync;
1299 ret = submit_bh(write_op, bh);
1300 wait_on_buffer(bh);
1301 if (buffer_write_io_error(bh)) {
1302 clear_buffer_write_io_error(bh);
1303 set_buffer_uptodate(bh);
1304 ret = -EIO;
1306 if (ret) {
1307 printk(KERN_ERR "JBD2: Error %d detected when updating "
1308 "journal superblock for %s.\n", ret,
1309 journal->j_devname);
1314 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1315 * @journal: The journal to update.
1316 * @tail_tid: TID of the new transaction at the tail of the log
1317 * @tail_block: The first block of the transaction at the tail of the log
1318 * @write_op: With which operation should we write the journal sb
1320 * Update a journal's superblock information about log tail and write it to
1321 * disk, waiting for the IO to complete.
1323 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1324 unsigned long tail_block, int write_op)
1326 journal_superblock_t *sb = journal->j_superblock;
1328 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1329 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1330 tail_block, tail_tid);
1332 sb->s_sequence = cpu_to_be32(tail_tid);
1333 sb->s_start = cpu_to_be32(tail_block);
1335 jbd2_write_superblock(journal, write_op);
1337 /* Log is no longer empty */
1338 write_lock(&journal->j_state_lock);
1339 WARN_ON(!sb->s_sequence);
1340 journal->j_flags &= ~JBD2_FLUSHED;
1341 write_unlock(&journal->j_state_lock);
1345 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1346 * @journal: The journal to update.
1348 * Update a journal's dynamic superblock fields to show that journal is empty.
1349 * Write updated superblock to disk waiting for IO to complete.
1351 static void jbd2_mark_journal_empty(journal_t *journal)
1353 journal_superblock_t *sb = journal->j_superblock;
1355 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1356 read_lock(&journal->j_state_lock);
1357 /* Is it already empty? */
1358 if (sb->s_start == 0) {
1359 read_unlock(&journal->j_state_lock);
1360 return;
1362 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1363 journal->j_tail_sequence);
1365 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1366 sb->s_start = cpu_to_be32(0);
1367 read_unlock(&journal->j_state_lock);
1369 jbd2_write_superblock(journal, WRITE_FUA);
1371 /* Log is no longer empty */
1372 write_lock(&journal->j_state_lock);
1373 journal->j_flags |= JBD2_FLUSHED;
1374 write_unlock(&journal->j_state_lock);
1379 * jbd2_journal_update_sb_errno() - Update error in the journal.
1380 * @journal: The journal to update.
1382 * Update a journal's errno. Write updated superblock to disk waiting for IO
1383 * to complete.
1385 void jbd2_journal_update_sb_errno(journal_t *journal)
1387 journal_superblock_t *sb = journal->j_superblock;
1389 read_lock(&journal->j_state_lock);
1390 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1391 journal->j_errno);
1392 sb->s_errno = cpu_to_be32(journal->j_errno);
1393 jbd2_superblock_csum_set(journal, sb);
1394 read_unlock(&journal->j_state_lock);
1396 jbd2_write_superblock(journal, WRITE_SYNC);
1398 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1401 * Read the superblock for a given journal, performing initial
1402 * validation of the format.
1404 static int journal_get_superblock(journal_t *journal)
1406 struct buffer_head *bh;
1407 journal_superblock_t *sb;
1408 int err = -EIO;
1410 bh = journal->j_sb_buffer;
1412 J_ASSERT(bh != NULL);
1413 if (!buffer_uptodate(bh)) {
1414 ll_rw_block(READ, 1, &bh);
1415 wait_on_buffer(bh);
1416 if (!buffer_uptodate(bh)) {
1417 printk(KERN_ERR
1418 "JBD2: IO error reading journal superblock\n");
1419 goto out;
1423 if (buffer_verified(bh))
1424 return 0;
1426 sb = journal->j_superblock;
1428 err = -EINVAL;
1430 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1431 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1432 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1433 goto out;
1436 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1437 case JBD2_SUPERBLOCK_V1:
1438 journal->j_format_version = 1;
1439 break;
1440 case JBD2_SUPERBLOCK_V2:
1441 journal->j_format_version = 2;
1442 break;
1443 default:
1444 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1445 goto out;
1448 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1449 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1450 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1451 printk(KERN_WARNING "JBD2: journal file too short\n");
1452 goto out;
1455 if (be32_to_cpu(sb->s_first) == 0 ||
1456 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1457 printk(KERN_WARNING
1458 "JBD2: Invalid start block of journal: %u\n",
1459 be32_to_cpu(sb->s_first));
1460 goto out;
1463 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1464 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1465 /* Can't have checksum v1 and v2 on at the same time! */
1466 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1467 "at the same time!\n");
1468 goto out;
1471 if (!jbd2_verify_csum_type(journal, sb)) {
1472 printk(KERN_ERR "JBD: Unknown checksum type\n");
1473 goto out;
1476 /* Load the checksum driver */
1477 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1478 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1479 if (IS_ERR(journal->j_chksum_driver)) {
1480 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1481 err = PTR_ERR(journal->j_chksum_driver);
1482 journal->j_chksum_driver = NULL;
1483 goto out;
1487 /* Check superblock checksum */
1488 if (!jbd2_superblock_csum_verify(journal, sb)) {
1489 printk(KERN_ERR "JBD: journal checksum error\n");
1490 goto out;
1493 /* Precompute checksum seed for all metadata */
1494 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1495 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1496 sizeof(sb->s_uuid));
1498 set_buffer_verified(bh);
1500 return 0;
1502 out:
1503 journal_fail_superblock(journal);
1504 return err;
1508 * Load the on-disk journal superblock and read the key fields into the
1509 * journal_t.
1512 static int load_superblock(journal_t *journal)
1514 int err;
1515 journal_superblock_t *sb;
1517 err = journal_get_superblock(journal);
1518 if (err)
1519 return err;
1521 sb = journal->j_superblock;
1523 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1524 journal->j_tail = be32_to_cpu(sb->s_start);
1525 journal->j_first = be32_to_cpu(sb->s_first);
1526 journal->j_last = be32_to_cpu(sb->s_maxlen);
1527 journal->j_errno = be32_to_cpu(sb->s_errno);
1529 return 0;
1534 * int jbd2_journal_load() - Read journal from disk.
1535 * @journal: Journal to act on.
1537 * Given a journal_t structure which tells us which disk blocks contain
1538 * a journal, read the journal from disk to initialise the in-memory
1539 * structures.
1541 int jbd2_journal_load(journal_t *journal)
1543 int err;
1544 journal_superblock_t *sb;
1546 err = load_superblock(journal);
1547 if (err)
1548 return err;
1550 sb = journal->j_superblock;
1551 /* If this is a V2 superblock, then we have to check the
1552 * features flags on it. */
1554 if (journal->j_format_version >= 2) {
1555 if ((sb->s_feature_ro_compat &
1556 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1557 (sb->s_feature_incompat &
1558 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1559 printk(KERN_WARNING
1560 "JBD2: Unrecognised features on journal\n");
1561 return -EINVAL;
1566 * Create a slab for this blocksize
1568 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1569 if (err)
1570 return err;
1572 /* Let the recovery code check whether it needs to recover any
1573 * data from the journal. */
1574 if (jbd2_journal_recover(journal))
1575 goto recovery_error;
1577 if (journal->j_failed_commit) {
1578 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1579 "is corrupt.\n", journal->j_failed_commit,
1580 journal->j_devname);
1581 return -EIO;
1584 /* OK, we've finished with the dynamic journal bits:
1585 * reinitialise the dynamic contents of the superblock in memory
1586 * and reset them on disk. */
1587 if (journal_reset(journal))
1588 goto recovery_error;
1590 journal->j_flags &= ~JBD2_ABORT;
1591 journal->j_flags |= JBD2_LOADED;
1592 return 0;
1594 recovery_error:
1595 printk(KERN_WARNING "JBD2: recovery failed\n");
1596 return -EIO;
1600 * void jbd2_journal_destroy() - Release a journal_t structure.
1601 * @journal: Journal to act on.
1603 * Release a journal_t structure once it is no longer in use by the
1604 * journaled object.
1605 * Return <0 if we couldn't clean up the journal.
1607 int jbd2_journal_destroy(journal_t *journal)
1609 int err = 0;
1611 /* Wait for the commit thread to wake up and die. */
1612 journal_kill_thread(journal);
1614 /* Force a final log commit */
1615 if (journal->j_running_transaction)
1616 jbd2_journal_commit_transaction(journal);
1618 /* Force any old transactions to disk */
1620 /* Totally anal locking here... */
1621 spin_lock(&journal->j_list_lock);
1622 while (journal->j_checkpoint_transactions != NULL) {
1623 spin_unlock(&journal->j_list_lock);
1624 mutex_lock(&journal->j_checkpoint_mutex);
1625 jbd2_log_do_checkpoint(journal);
1626 mutex_unlock(&journal->j_checkpoint_mutex);
1627 spin_lock(&journal->j_list_lock);
1630 J_ASSERT(journal->j_running_transaction == NULL);
1631 J_ASSERT(journal->j_committing_transaction == NULL);
1632 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1633 spin_unlock(&journal->j_list_lock);
1635 if (journal->j_sb_buffer) {
1636 if (!is_journal_aborted(journal)) {
1637 mutex_lock(&journal->j_checkpoint_mutex);
1638 jbd2_mark_journal_empty(journal);
1639 mutex_unlock(&journal->j_checkpoint_mutex);
1640 } else
1641 err = -EIO;
1642 brelse(journal->j_sb_buffer);
1645 if (journal->j_proc_entry)
1646 jbd2_stats_proc_exit(journal);
1647 if (journal->j_inode)
1648 iput(journal->j_inode);
1649 if (journal->j_revoke)
1650 jbd2_journal_destroy_revoke(journal);
1651 if (journal->j_chksum_driver)
1652 crypto_free_shash(journal->j_chksum_driver);
1653 kfree(journal->j_wbuf);
1654 kfree(journal);
1656 return err;
1661 *int jbd2_journal_check_used_features () - Check if features specified are used.
1662 * @journal: Journal to check.
1663 * @compat: bitmask of compatible features
1664 * @ro: bitmask of features that force read-only mount
1665 * @incompat: bitmask of incompatible features
1667 * Check whether the journal uses all of a given set of
1668 * features. Return true (non-zero) if it does.
1671 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1672 unsigned long ro, unsigned long incompat)
1674 journal_superblock_t *sb;
1676 if (!compat && !ro && !incompat)
1677 return 1;
1678 /* Load journal superblock if it is not loaded yet. */
1679 if (journal->j_format_version == 0 &&
1680 journal_get_superblock(journal) != 0)
1681 return 0;
1682 if (journal->j_format_version == 1)
1683 return 0;
1685 sb = journal->j_superblock;
1687 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1688 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1689 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1690 return 1;
1692 return 0;
1696 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1697 * @journal: Journal to check.
1698 * @compat: bitmask of compatible features
1699 * @ro: bitmask of features that force read-only mount
1700 * @incompat: bitmask of incompatible features
1702 * Check whether the journaling code supports the use of
1703 * all of a given set of features on this journal. Return true
1704 * (non-zero) if it can. */
1706 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1707 unsigned long ro, unsigned long incompat)
1709 if (!compat && !ro && !incompat)
1710 return 1;
1712 /* We can support any known requested features iff the
1713 * superblock is in version 2. Otherwise we fail to support any
1714 * extended sb features. */
1716 if (journal->j_format_version != 2)
1717 return 0;
1719 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1720 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1721 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1722 return 1;
1724 return 0;
1728 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1729 * @journal: Journal to act on.
1730 * @compat: bitmask of compatible features
1731 * @ro: bitmask of features that force read-only mount
1732 * @incompat: bitmask of incompatible features
1734 * Mark a given journal feature as present on the
1735 * superblock. Returns true if the requested features could be set.
1739 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1740 unsigned long ro, unsigned long incompat)
1742 #define INCOMPAT_FEATURE_ON(f) \
1743 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1744 #define COMPAT_FEATURE_ON(f) \
1745 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1746 journal_superblock_t *sb;
1748 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1749 return 1;
1751 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1752 return 0;
1754 /* Asking for checksumming v2 and v1? Only give them v2. */
1755 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1756 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1757 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1759 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1760 compat, ro, incompat);
1762 sb = journal->j_superblock;
1764 /* If enabling v2 checksums, update superblock */
1765 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1766 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1767 sb->s_feature_compat &=
1768 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1770 /* Load the checksum driver */
1771 if (journal->j_chksum_driver == NULL) {
1772 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1773 0, 0);
1774 if (IS_ERR(journal->j_chksum_driver)) {
1775 printk(KERN_ERR "JBD: Cannot load crc32c "
1776 "driver.\n");
1777 journal->j_chksum_driver = NULL;
1778 return 0;
1782 /* Precompute checksum seed for all metadata */
1783 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1784 JBD2_FEATURE_INCOMPAT_CSUM_V2))
1785 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1786 sb->s_uuid,
1787 sizeof(sb->s_uuid));
1790 /* If enabling v1 checksums, downgrade superblock */
1791 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1792 sb->s_feature_incompat &=
1793 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1795 sb->s_feature_compat |= cpu_to_be32(compat);
1796 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1797 sb->s_feature_incompat |= cpu_to_be32(incompat);
1799 return 1;
1800 #undef COMPAT_FEATURE_ON
1801 #undef INCOMPAT_FEATURE_ON
1805 * jbd2_journal_clear_features () - Clear a given journal feature in the
1806 * superblock
1807 * @journal: Journal to act on.
1808 * @compat: bitmask of compatible features
1809 * @ro: bitmask of features that force read-only mount
1810 * @incompat: bitmask of incompatible features
1812 * Clear a given journal feature as present on the
1813 * superblock.
1815 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1816 unsigned long ro, unsigned long incompat)
1818 journal_superblock_t *sb;
1820 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1821 compat, ro, incompat);
1823 sb = journal->j_superblock;
1825 sb->s_feature_compat &= ~cpu_to_be32(compat);
1826 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1827 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1829 EXPORT_SYMBOL(jbd2_journal_clear_features);
1832 * int jbd2_journal_flush () - Flush journal
1833 * @journal: Journal to act on.
1835 * Flush all data for a given journal to disk and empty the journal.
1836 * Filesystems can use this when remounting readonly to ensure that
1837 * recovery does not need to happen on remount.
1840 int jbd2_journal_flush(journal_t *journal)
1842 int err = 0;
1843 transaction_t *transaction = NULL;
1845 write_lock(&journal->j_state_lock);
1847 /* Force everything buffered to the log... */
1848 if (journal->j_running_transaction) {
1849 transaction = journal->j_running_transaction;
1850 __jbd2_log_start_commit(journal, transaction->t_tid);
1851 } else if (journal->j_committing_transaction)
1852 transaction = journal->j_committing_transaction;
1854 /* Wait for the log commit to complete... */
1855 if (transaction) {
1856 tid_t tid = transaction->t_tid;
1858 write_unlock(&journal->j_state_lock);
1859 jbd2_log_wait_commit(journal, tid);
1860 } else {
1861 write_unlock(&journal->j_state_lock);
1864 /* ...and flush everything in the log out to disk. */
1865 spin_lock(&journal->j_list_lock);
1866 while (!err && journal->j_checkpoint_transactions != NULL) {
1867 spin_unlock(&journal->j_list_lock);
1868 mutex_lock(&journal->j_checkpoint_mutex);
1869 err = jbd2_log_do_checkpoint(journal);
1870 mutex_unlock(&journal->j_checkpoint_mutex);
1871 spin_lock(&journal->j_list_lock);
1873 spin_unlock(&journal->j_list_lock);
1875 if (is_journal_aborted(journal))
1876 return -EIO;
1878 mutex_lock(&journal->j_checkpoint_mutex);
1879 jbd2_cleanup_journal_tail(journal);
1881 /* Finally, mark the journal as really needing no recovery.
1882 * This sets s_start==0 in the underlying superblock, which is
1883 * the magic code for a fully-recovered superblock. Any future
1884 * commits of data to the journal will restore the current
1885 * s_start value. */
1886 jbd2_mark_journal_empty(journal);
1887 mutex_unlock(&journal->j_checkpoint_mutex);
1888 write_lock(&journal->j_state_lock);
1889 J_ASSERT(!journal->j_running_transaction);
1890 J_ASSERT(!journal->j_committing_transaction);
1891 J_ASSERT(!journal->j_checkpoint_transactions);
1892 J_ASSERT(journal->j_head == journal->j_tail);
1893 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1894 write_unlock(&journal->j_state_lock);
1895 return 0;
1899 * int jbd2_journal_wipe() - Wipe journal contents
1900 * @journal: Journal to act on.
1901 * @write: flag (see below)
1903 * Wipe out all of the contents of a journal, safely. This will produce
1904 * a warning if the journal contains any valid recovery information.
1905 * Must be called between journal_init_*() and jbd2_journal_load().
1907 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1908 * we merely suppress recovery.
1911 int jbd2_journal_wipe(journal_t *journal, int write)
1913 int err = 0;
1915 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1917 err = load_superblock(journal);
1918 if (err)
1919 return err;
1921 if (!journal->j_tail)
1922 goto no_recovery;
1924 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1925 write ? "Clearing" : "Ignoring");
1927 err = jbd2_journal_skip_recovery(journal);
1928 if (write) {
1929 /* Lock to make assertions happy... */
1930 mutex_lock(&journal->j_checkpoint_mutex);
1931 jbd2_mark_journal_empty(journal);
1932 mutex_unlock(&journal->j_checkpoint_mutex);
1935 no_recovery:
1936 return err;
1940 * Journal abort has very specific semantics, which we describe
1941 * for journal abort.
1943 * Two internal functions, which provide abort to the jbd layer
1944 * itself are here.
1948 * Quick version for internal journal use (doesn't lock the journal).
1949 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1950 * and don't attempt to make any other journal updates.
1952 void __jbd2_journal_abort_hard(journal_t *journal)
1954 transaction_t *transaction;
1956 if (journal->j_flags & JBD2_ABORT)
1957 return;
1959 printk(KERN_ERR "Aborting journal on device %s.\n",
1960 journal->j_devname);
1962 write_lock(&journal->j_state_lock);
1963 journal->j_flags |= JBD2_ABORT;
1964 transaction = journal->j_running_transaction;
1965 if (transaction)
1966 __jbd2_log_start_commit(journal, transaction->t_tid);
1967 write_unlock(&journal->j_state_lock);
1970 /* Soft abort: record the abort error status in the journal superblock,
1971 * but don't do any other IO. */
1972 static void __journal_abort_soft (journal_t *journal, int errno)
1974 if (journal->j_flags & JBD2_ABORT)
1975 return;
1977 if (!journal->j_errno)
1978 journal->j_errno = errno;
1980 __jbd2_journal_abort_hard(journal);
1982 if (errno)
1983 jbd2_journal_update_sb_errno(journal);
1987 * void jbd2_journal_abort () - Shutdown the journal immediately.
1988 * @journal: the journal to shutdown.
1989 * @errno: an error number to record in the journal indicating
1990 * the reason for the shutdown.
1992 * Perform a complete, immediate shutdown of the ENTIRE
1993 * journal (not of a single transaction). This operation cannot be
1994 * undone without closing and reopening the journal.
1996 * The jbd2_journal_abort function is intended to support higher level error
1997 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1998 * mode.
2000 * Journal abort has very specific semantics. Any existing dirty,
2001 * unjournaled buffers in the main filesystem will still be written to
2002 * disk by bdflush, but the journaling mechanism will be suspended
2003 * immediately and no further transaction commits will be honoured.
2005 * Any dirty, journaled buffers will be written back to disk without
2006 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2007 * filesystem, but we _do_ attempt to leave as much data as possible
2008 * behind for fsck to use for cleanup.
2010 * Any attempt to get a new transaction handle on a journal which is in
2011 * ABORT state will just result in an -EROFS error return. A
2012 * jbd2_journal_stop on an existing handle will return -EIO if we have
2013 * entered abort state during the update.
2015 * Recursive transactions are not disturbed by journal abort until the
2016 * final jbd2_journal_stop, which will receive the -EIO error.
2018 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2019 * which will be recorded (if possible) in the journal superblock. This
2020 * allows a client to record failure conditions in the middle of a
2021 * transaction without having to complete the transaction to record the
2022 * failure to disk. ext3_error, for example, now uses this
2023 * functionality.
2025 * Errors which originate from within the journaling layer will NOT
2026 * supply an errno; a null errno implies that absolutely no further
2027 * writes are done to the journal (unless there are any already in
2028 * progress).
2032 void jbd2_journal_abort(journal_t *journal, int errno)
2034 __journal_abort_soft(journal, errno);
2038 * int jbd2_journal_errno () - returns the journal's error state.
2039 * @journal: journal to examine.
2041 * This is the errno number set with jbd2_journal_abort(), the last
2042 * time the journal was mounted - if the journal was stopped
2043 * without calling abort this will be 0.
2045 * If the journal has been aborted on this mount time -EROFS will
2046 * be returned.
2048 int jbd2_journal_errno(journal_t *journal)
2050 int err;
2052 read_lock(&journal->j_state_lock);
2053 if (journal->j_flags & JBD2_ABORT)
2054 err = -EROFS;
2055 else
2056 err = journal->j_errno;
2057 read_unlock(&journal->j_state_lock);
2058 return err;
2062 * int jbd2_journal_clear_err () - clears the journal's error state
2063 * @journal: journal to act on.
2065 * An error must be cleared or acked to take a FS out of readonly
2066 * mode.
2068 int jbd2_journal_clear_err(journal_t *journal)
2070 int err = 0;
2072 write_lock(&journal->j_state_lock);
2073 if (journal->j_flags & JBD2_ABORT)
2074 err = -EROFS;
2075 else
2076 journal->j_errno = 0;
2077 write_unlock(&journal->j_state_lock);
2078 return err;
2082 * void jbd2_journal_ack_err() - Ack journal err.
2083 * @journal: journal to act on.
2085 * An error must be cleared or acked to take a FS out of readonly
2086 * mode.
2088 void jbd2_journal_ack_err(journal_t *journal)
2090 write_lock(&journal->j_state_lock);
2091 if (journal->j_errno)
2092 journal->j_flags |= JBD2_ACK_ERR;
2093 write_unlock(&journal->j_state_lock);
2096 int jbd2_journal_blocks_per_page(struct inode *inode)
2098 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2102 * helper functions to deal with 32 or 64bit block numbers.
2104 size_t journal_tag_bytes(journal_t *journal)
2106 journal_block_tag_t tag;
2107 size_t x = 0;
2109 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2110 x += sizeof(tag.t_checksum);
2112 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2113 return x + JBD2_TAG_SIZE64;
2114 else
2115 return x + JBD2_TAG_SIZE32;
2119 * JBD memory management
2121 * These functions are used to allocate block-sized chunks of memory
2122 * used for making copies of buffer_head data. Very often it will be
2123 * page-sized chunks of data, but sometimes it will be in
2124 * sub-page-size chunks. (For example, 16k pages on Power systems
2125 * with a 4k block file system.) For blocks smaller than a page, we
2126 * use a SLAB allocator. There are slab caches for each block size,
2127 * which are allocated at mount time, if necessary, and we only free
2128 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2129 * this reason we don't need to a mutex to protect access to
2130 * jbd2_slab[] allocating or releasing memory; only in
2131 * jbd2_journal_create_slab().
2133 #define JBD2_MAX_SLABS 8
2134 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2136 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2137 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2138 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2142 static void jbd2_journal_destroy_slabs(void)
2144 int i;
2146 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2147 if (jbd2_slab[i])
2148 kmem_cache_destroy(jbd2_slab[i]);
2149 jbd2_slab[i] = NULL;
2153 static int jbd2_journal_create_slab(size_t size)
2155 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2156 int i = order_base_2(size) - 10;
2157 size_t slab_size;
2159 if (size == PAGE_SIZE)
2160 return 0;
2162 if (i >= JBD2_MAX_SLABS)
2163 return -EINVAL;
2165 if (unlikely(i < 0))
2166 i = 0;
2167 mutex_lock(&jbd2_slab_create_mutex);
2168 if (jbd2_slab[i]) {
2169 mutex_unlock(&jbd2_slab_create_mutex);
2170 return 0; /* Already created */
2173 slab_size = 1 << (i+10);
2174 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2175 slab_size, 0, NULL);
2176 mutex_unlock(&jbd2_slab_create_mutex);
2177 if (!jbd2_slab[i]) {
2178 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2179 return -ENOMEM;
2181 return 0;
2184 static struct kmem_cache *get_slab(size_t size)
2186 int i = order_base_2(size) - 10;
2188 BUG_ON(i >= JBD2_MAX_SLABS);
2189 if (unlikely(i < 0))
2190 i = 0;
2191 BUG_ON(jbd2_slab[i] == NULL);
2192 return jbd2_slab[i];
2195 void *jbd2_alloc(size_t size, gfp_t flags)
2197 void *ptr;
2199 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2201 flags |= __GFP_REPEAT;
2202 if (size == PAGE_SIZE)
2203 ptr = (void *)__get_free_pages(flags, 0);
2204 else if (size > PAGE_SIZE) {
2205 int order = get_order(size);
2207 if (order < 3)
2208 ptr = (void *)__get_free_pages(flags, order);
2209 else
2210 ptr = vmalloc(size);
2211 } else
2212 ptr = kmem_cache_alloc(get_slab(size), flags);
2214 /* Check alignment; SLUB has gotten this wrong in the past,
2215 * and this can lead to user data corruption! */
2216 BUG_ON(((unsigned long) ptr) & (size-1));
2218 return ptr;
2221 void jbd2_free(void *ptr, size_t size)
2223 if (size == PAGE_SIZE) {
2224 free_pages((unsigned long)ptr, 0);
2225 return;
2227 if (size > PAGE_SIZE) {
2228 int order = get_order(size);
2230 if (order < 3)
2231 free_pages((unsigned long)ptr, order);
2232 else
2233 vfree(ptr);
2234 return;
2236 kmem_cache_free(get_slab(size), ptr);
2240 * Journal_head storage management
2242 static struct kmem_cache *jbd2_journal_head_cache;
2243 #ifdef CONFIG_JBD2_DEBUG
2244 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2245 #endif
2247 static int jbd2_journal_init_journal_head_cache(void)
2249 int retval;
2251 J_ASSERT(jbd2_journal_head_cache == NULL);
2252 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2253 sizeof(struct journal_head),
2254 0, /* offset */
2255 SLAB_TEMPORARY, /* flags */
2256 NULL); /* ctor */
2257 retval = 0;
2258 if (!jbd2_journal_head_cache) {
2259 retval = -ENOMEM;
2260 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2262 return retval;
2265 static void jbd2_journal_destroy_journal_head_cache(void)
2267 if (jbd2_journal_head_cache) {
2268 kmem_cache_destroy(jbd2_journal_head_cache);
2269 jbd2_journal_head_cache = NULL;
2274 * journal_head splicing and dicing
2276 static struct journal_head *journal_alloc_journal_head(void)
2278 struct journal_head *ret;
2280 #ifdef CONFIG_JBD2_DEBUG
2281 atomic_inc(&nr_journal_heads);
2282 #endif
2283 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2284 if (!ret) {
2285 jbd_debug(1, "out of memory for journal_head\n");
2286 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2287 while (!ret) {
2288 yield();
2289 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2292 return ret;
2295 static void journal_free_journal_head(struct journal_head *jh)
2297 #ifdef CONFIG_JBD2_DEBUG
2298 atomic_dec(&nr_journal_heads);
2299 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2300 #endif
2301 kmem_cache_free(jbd2_journal_head_cache, jh);
2305 * A journal_head is attached to a buffer_head whenever JBD has an
2306 * interest in the buffer.
2308 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2309 * is set. This bit is tested in core kernel code where we need to take
2310 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2311 * there.
2313 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2315 * When a buffer has its BH_JBD bit set it is immune from being released by
2316 * core kernel code, mainly via ->b_count.
2318 * A journal_head is detached from its buffer_head when the journal_head's
2319 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2320 * transaction (b_cp_transaction) hold their references to b_jcount.
2322 * Various places in the kernel want to attach a journal_head to a buffer_head
2323 * _before_ attaching the journal_head to a transaction. To protect the
2324 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2325 * journal_head's b_jcount refcount by one. The caller must call
2326 * jbd2_journal_put_journal_head() to undo this.
2328 * So the typical usage would be:
2330 * (Attach a journal_head if needed. Increments b_jcount)
2331 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2332 * ...
2333 * (Get another reference for transaction)
2334 * jbd2_journal_grab_journal_head(bh);
2335 * jh->b_transaction = xxx;
2336 * (Put original reference)
2337 * jbd2_journal_put_journal_head(jh);
2341 * Give a buffer_head a journal_head.
2343 * May sleep.
2345 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2347 struct journal_head *jh;
2348 struct journal_head *new_jh = NULL;
2350 repeat:
2351 if (!buffer_jbd(bh)) {
2352 new_jh = journal_alloc_journal_head();
2353 memset(new_jh, 0, sizeof(*new_jh));
2356 jbd_lock_bh_journal_head(bh);
2357 if (buffer_jbd(bh)) {
2358 jh = bh2jh(bh);
2359 } else {
2360 J_ASSERT_BH(bh,
2361 (atomic_read(&bh->b_count) > 0) ||
2362 (bh->b_page && bh->b_page->mapping));
2364 if (!new_jh) {
2365 jbd_unlock_bh_journal_head(bh);
2366 goto repeat;
2369 jh = new_jh;
2370 new_jh = NULL; /* We consumed it */
2371 set_buffer_jbd(bh);
2372 bh->b_private = jh;
2373 jh->b_bh = bh;
2374 get_bh(bh);
2375 BUFFER_TRACE(bh, "added journal_head");
2377 jh->b_jcount++;
2378 jbd_unlock_bh_journal_head(bh);
2379 if (new_jh)
2380 journal_free_journal_head(new_jh);
2381 return bh->b_private;
2385 * Grab a ref against this buffer_head's journal_head. If it ended up not
2386 * having a journal_head, return NULL
2388 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2390 struct journal_head *jh = NULL;
2392 jbd_lock_bh_journal_head(bh);
2393 if (buffer_jbd(bh)) {
2394 jh = bh2jh(bh);
2395 jh->b_jcount++;
2397 jbd_unlock_bh_journal_head(bh);
2398 return jh;
2401 static void __journal_remove_journal_head(struct buffer_head *bh)
2403 struct journal_head *jh = bh2jh(bh);
2405 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2406 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2407 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2408 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2409 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2410 J_ASSERT_BH(bh, buffer_jbd(bh));
2411 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2412 BUFFER_TRACE(bh, "remove journal_head");
2413 if (jh->b_frozen_data) {
2414 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2415 jbd2_free(jh->b_frozen_data, bh->b_size);
2417 if (jh->b_committed_data) {
2418 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2419 jbd2_free(jh->b_committed_data, bh->b_size);
2421 bh->b_private = NULL;
2422 jh->b_bh = NULL; /* debug, really */
2423 clear_buffer_jbd(bh);
2424 journal_free_journal_head(jh);
2428 * Drop a reference on the passed journal_head. If it fell to zero then
2429 * release the journal_head from the buffer_head.
2431 void jbd2_journal_put_journal_head(struct journal_head *jh)
2433 struct buffer_head *bh = jh2bh(jh);
2435 jbd_lock_bh_journal_head(bh);
2436 J_ASSERT_JH(jh, jh->b_jcount > 0);
2437 --jh->b_jcount;
2438 if (!jh->b_jcount) {
2439 __journal_remove_journal_head(bh);
2440 jbd_unlock_bh_journal_head(bh);
2441 __brelse(bh);
2442 } else
2443 jbd_unlock_bh_journal_head(bh);
2447 * Initialize jbd inode head
2449 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2451 jinode->i_transaction = NULL;
2452 jinode->i_next_transaction = NULL;
2453 jinode->i_vfs_inode = inode;
2454 jinode->i_flags = 0;
2455 INIT_LIST_HEAD(&jinode->i_list);
2459 * Function to be called before we start removing inode from memory (i.e.,
2460 * clear_inode() is a fine place to be called from). It removes inode from
2461 * transaction's lists.
2463 void jbd2_journal_release_jbd_inode(journal_t *journal,
2464 struct jbd2_inode *jinode)
2466 if (!journal)
2467 return;
2468 restart:
2469 spin_lock(&journal->j_list_lock);
2470 /* Is commit writing out inode - we have to wait */
2471 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2472 wait_queue_head_t *wq;
2473 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2474 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2475 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2476 spin_unlock(&journal->j_list_lock);
2477 schedule();
2478 finish_wait(wq, &wait.wait);
2479 goto restart;
2482 if (jinode->i_transaction) {
2483 list_del(&jinode->i_list);
2484 jinode->i_transaction = NULL;
2486 spin_unlock(&journal->j_list_lock);
2490 * debugfs tunables
2492 #ifdef CONFIG_JBD2_DEBUG
2493 u8 jbd2_journal_enable_debug __read_mostly;
2494 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2496 #define JBD2_DEBUG_NAME "jbd2-debug"
2498 static struct dentry *jbd2_debugfs_dir;
2499 static struct dentry *jbd2_debug;
2501 static void __init jbd2_create_debugfs_entry(void)
2503 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2504 if (jbd2_debugfs_dir)
2505 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2506 S_IRUGO | S_IWUSR,
2507 jbd2_debugfs_dir,
2508 &jbd2_journal_enable_debug);
2511 static void __exit jbd2_remove_debugfs_entry(void)
2513 debugfs_remove(jbd2_debug);
2514 debugfs_remove(jbd2_debugfs_dir);
2517 #else
2519 static void __init jbd2_create_debugfs_entry(void)
2523 static void __exit jbd2_remove_debugfs_entry(void)
2527 #endif
2529 #ifdef CONFIG_PROC_FS
2531 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2533 static void __init jbd2_create_jbd_stats_proc_entry(void)
2535 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2538 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2540 if (proc_jbd2_stats)
2541 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2544 #else
2546 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2547 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2549 #endif
2551 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2553 static int __init jbd2_journal_init_handle_cache(void)
2555 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2556 if (jbd2_handle_cache == NULL) {
2557 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2558 return -ENOMEM;
2560 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2561 if (jbd2_inode_cache == NULL) {
2562 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2563 kmem_cache_destroy(jbd2_handle_cache);
2564 return -ENOMEM;
2566 return 0;
2569 static void jbd2_journal_destroy_handle_cache(void)
2571 if (jbd2_handle_cache)
2572 kmem_cache_destroy(jbd2_handle_cache);
2573 if (jbd2_inode_cache)
2574 kmem_cache_destroy(jbd2_inode_cache);
2579 * Module startup and shutdown
2582 static int __init journal_init_caches(void)
2584 int ret;
2586 ret = jbd2_journal_init_revoke_caches();
2587 if (ret == 0)
2588 ret = jbd2_journal_init_journal_head_cache();
2589 if (ret == 0)
2590 ret = jbd2_journal_init_handle_cache();
2591 if (ret == 0)
2592 ret = jbd2_journal_init_transaction_cache();
2593 return ret;
2596 static void jbd2_journal_destroy_caches(void)
2598 jbd2_journal_destroy_revoke_caches();
2599 jbd2_journal_destroy_journal_head_cache();
2600 jbd2_journal_destroy_handle_cache();
2601 jbd2_journal_destroy_transaction_cache();
2602 jbd2_journal_destroy_slabs();
2605 static int __init journal_init(void)
2607 int ret;
2609 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2611 ret = journal_init_caches();
2612 if (ret == 0) {
2613 jbd2_create_debugfs_entry();
2614 jbd2_create_jbd_stats_proc_entry();
2615 } else {
2616 jbd2_journal_destroy_caches();
2618 return ret;
2621 static void __exit journal_exit(void)
2623 #ifdef CONFIG_JBD2_DEBUG
2624 int n = atomic_read(&nr_journal_heads);
2625 if (n)
2626 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2627 #endif
2628 jbd2_remove_debugfs_entry();
2629 jbd2_remove_jbd_stats_proc_entry();
2630 jbd2_journal_destroy_caches();
2633 MODULE_LICENSE("GPL");
2634 module_init(journal_init);
2635 module_exit(journal_exit);